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ABSTRACT

Embedded systems are real-time, communicating systems, and the effective
modelling and analysis of these aspects of their behaviour is regarded as essential
for acquiring confidence in their correct operation. In practice, it is important
to minimise the burden of model construction and to automate the analysis,
if possible. Among the most promising techniques for real-time systems are
reachability analysis and model-checking of networks of timed automata. We
identify two obstacles to the application of these techniques to a large class of
distributed embedded systems: firstly, the language of timed automata is too
low-level for straightforward model construction, and secondly, the synchronous,
handshake communication mechanism of the timed automata model does not fit
well with the asynchronous, broadcast mechanism employed in many distributed
embedded systems. As a result, the task of model construction can be unduly
onerous.

This dissertation proposes an expressive language for the construction of
models of real-time, broadcasting control systems, and demonstrates how effi-
cient analysis techniques can be applied to them.

The dissertation is concerned in particular with the Controller Area Network
(CAN) protocol which is emerging as a de facto standard in the automotive
industry. An abstract formal model of CAN is developed. This model is adopted
as the communication primitive in a new language, bCANDLE, which includes
value passing, broadcast communication, message priorities and explicit time.
A high-level language, CANDLE, is introduced and its semantics defined by
translation to bCANDLE. We show how realistic CAN systems can be described
in CANDLE and how a timed transition model of a system can be extracted for
analysis. Finally, it is shown how efficient methods of analysis, such as ‘on-the-
fly’ and symbolic techniques, can be applied to these models. The dissertation
contributes to the practical application of formal methods within the domain
of broadcasting, embedded control systems.
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1. INTRODUCTION

This dissertation is concerned with the formal modelling and analysis of em-
bedded control systems. We adopt the view that the construction and analysis
of a formal model can contribute significantly to increased confidence in correct
system operation. Attention is directed to distributed systems whose compo-
nents communicate using a broadcast communication network. The deployment
of such systems is becoming increasingly common, and ensuring the reliable
fulfilment of their intended function is a challenging problem. In the rest of
this chapter, the topics of embedded systems, formal methods and broadcast
communication are introduced. The chapter concludes with a review of the
approach and contribution of the dissertation.

1.1 Embedded Control Systems

Embedded computer systems [Kop97] are pervasive in the electronic equipment
upon which we all are coming to depend. Applications range from household
products such as microwave ovens, video recorders and cellular phones to con-
trol systems for the transportation, chemical, electrical, gas, oil and nuclear
industries. What these computer systems have in common is that they are em-
bedded in a physical environment with which they are required to interact for
the purpose of control or monitoring. The role of the computer system in such
interaction is typically

• to monitor significant variables of the environment such as temperature,
pressure, flow or level;

• to execute a control algorithm which takes as its input the values of en-
vironmental variables and compute output values in accordance with one
or more mathematical models of the physical system;

• to use values computed by the control algorithm to generate signals to the
environment in order to control its function or optimise its performance.

The function of monitoring the environment is performed by physical sensors
within it. For example, a thermocouple produces an analogue signal (a voltage)
which varies with the temperature of the environment in which it is placed. A
digital value is obtained from an analogue signal by A/D conversion, calibration
and transformation to standard measurement units (e.g. degrees Celsius) in a
process known as signal conditioning. Such digital values are the inputs to the
control algorithms of the computer system.
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Fig. 1.1: Simple Embedded Control System

Control algorithms are developed by control engineers who understand the
behaviour of the physical environment. The function of a control algorithm
is to generate output signals to the environment to influence its behaviour so
that some performance criterion is satisfied, even in the presence of random
disturbances.

Output from control algorithms is transmitted to the environment in digital
or analogue form. For example, a digital output may cause a heating element
to be turned on or a valve to be closed, or an analogue output, generated by
a D/A converter, may vary a demand voltage to an electric motor in order to
control its speed.

Figure 1.1 illustrates a simple embedded control system [Kop97]. The ob-
jective of the control system is to maintain the flow of liquid through a pipe
at a set rate, despite changing environmental conditions: varying level of liq-
uid in the vessel or temperature sensitive viscosity of the liquid, for example.
The computer interacts with its physical environment by monitoring the rate
of flow, using the flow sensor F , and adjusting the position of the control valve
to bring the flow rate as close as possible to the set-point.

In many systems, control is distributed among several computing nodes
interconnected by a communication network [Tör98]. A distributed comput-
ing system architecture is often a ‘good fit’ with the distributed nature of the
physical environment. Cooperating control units can be placed close to the
physical devices which they control, communicating with each other via a sim-
ple computer network rather than the expensive and heavy wiring harness of
traditional control systems. A distributed architecture also accords with sound
design principles such as modularity, dependability and scalability [Kop97].

The emphasis in this work is on techniques for increasing confidence in as-
pects of distributed system dependability. Laprie [Lap90] identifies dependabil-
ity as being concerned with those attributes of a computer system pertaining
to the quality of service which it delivers to its users over an extended period
of time. It is clear that failure of an embedded system to deliver an acceptable
quality of service may have catastrophic consequences, either for the safety of
the physical environment or for the economic soundness of the system’s sup-
plier, which may suffer as a result of the need to recall or repair many faulty
units of a mass produced commodity.

A crucial aspect of the dependability of an embedded system is its ability
to react to stimuli from the environment in a timely way. More precisely, an
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embedded control system is a real-time system whose correctness depends not
only on the logical results of computations, but also on the physical instants
at which those results are produced [Sta88]. Real-time systems are classified
as either hard or soft. A hard real-time system is a real-time system in which
a single failure to produce a correct result within a specified interval of time is
regarded as unacceptable. A soft real-time system is one in which a (usually
small) number of such failures, over a given period of time, can be tolerated.

In this dissertation, we treat hard real-time systems, and are particularly
concerned with techniques which seek to contribute to the assurance of sys-
tem dependability by demonstrating that temporal requirements are satisfied
under all possible workloads. Such techniques rely upon the predictability of
the temporal properties of all aspects of system behaviour, including worst case
execution times of application code and operating system services, and also
communication latencies and hardware performance [CVGH98, Hal93, HS91].
The requirement for predictability demands simplicity in system design, and
when necessary, flexibility and resource utilisation are sacrificed by adopting
static structures which can be analysed at design time.

1.2 Formal Methods

Formal methods entail the use of mathematically based languages, techniques
and tools for developing and reasoning about computer hardware and software.
The mathematics required is usually discrete mathematics, incorporating ideas
from set theory and logic. The use of mathematics has an impact both on the
descriptive and on the analytical tasks which are required in the development
of a computer system. For example, a descriptive task, such as specifying a
set of requirements, can be accomplished precisely, concisely, and unambigu-
ously using a mathematical language. Similarly, an analytical task, such as
demonstrating that a program function correctly implements a high-level de-
sign, can be discharged convincingly using a mathematically rigorous argument.
The objectives in applying a formal method are to achieve clarity and precision
in description, and to reduce reliance on human intuition and judgement in
analysis, making greater use of mathematical calculation.

This broad framework allows for a variety of levels of formality in the ap-
plication of formal methods within a project. The NASA guidebook [Nat97]
identifies the following:

1. Level 1 methods involve the use of notations and concepts derived from
discrete mathematics in order to develop more precise requirements state-
ments. Analysis, if any, is informal. There are no mechanical tools (com-
puterised algorithms) to support the writing or analysis of formal expres-
sions.

2. Level 2 methods involve the use of formalised specification languages
with mechanised support tools ranging from syntax checkers and pretty-
printers to type checkers, interpreters and animators. Usually, tool sup-
port for eliciting or checking mathematical arguments is not available.
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3. Level 3 methods involve the use of formal languages with rigorous seman-
tics and correspondingly formal methods of semantical analysis which
support mechanisation.

Wolper [Wol97] categorises methods at levels 1 and 2 as ‘weak’ formal methods
and methods at level 3 as ‘strong’. His opinion is that

Without semantical analysis formal methods are of limited value
with respect to their stated goal of ensuring the correctness of soft-
ware systems: their formal syntax and semantics are just theoretical
properties, not assets that are exploited in a substantial way. From
the point of view of the author, a strong formal method even with
limited applicability is more meaningful than a weak one that is
perfectly general.

There is a similar latitude in the scope of application of formal methods
within a project. For example, some stages in the development life cycle may
be singled out for particular attention, certain system components may be iden-
tified as critical to mission success or safety, and some system properties may
be judged particularly important and worthy of special attention.

Careful decisions are needed about the appropriate level of formality and
scope of application for each individual project, so that a good balance can be
achieved between the costs and benefits of formalisation.

In this work, we consider the problem of constructing formal models of
distributed embedded control systems, and of providing mechanical assistance
for the analysis of their functional and temporal properties. So the focus is
on ‘strong’ formal methods, in Wolper’s sense. As to scope of application, it
is often acknowledged that a formal model is useful in the design stages of a
computer system, as it facilitates the early detection of bugs and helps to avoid
expensive implementation of a faulty design. This is certainly the case. In
addition, however, we wish to emphasise the usefulness, for embedded systems
particularly, of a formal model of (some features of) the implementation. The
satisfaction of temporal properties of the system usually depends crucially on
implementation decisions whose details may not be available in the early stages
of design. For example, choice of processors and communication mechanisms,
task and message allocation and priorities, scheduling policies, and so on, can
all have a significant effect on real-time performance. It is important to take
steps to gain assurance that temporal requirements which are satisfied by the
design are also preserved in the implementation.

Experience suggests that successful application of formal methods in an
industrial setting depends upon a number of factors, including

• the use of expressive languages which are accessible to system designers,
being ‘intuitive’ and ‘easy to use’;

• the availability of computer-based tools which provide prompt and useful
feedback to their users; and
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• the ability to integrate the formal method into a familiar development
methodology, so that the method augments, rather than replaces, tradi-
tional techniques.

Many prominent formal methods are very expressive within a given context:
e.g., Z [Spi88] and VDM [Jon90] offer the full generality of set theory and pred-
icate calculus; Petri nets [Mur89] offer a general model of concurrency, and Hy-
brid Automata [Hen96] allow the expression of a wide variety of timed systems.
However, there is a growing interest in domain specific languages [JW96], which
sacrifice generality of expression in order to offer the system designer a more
familiar syntax, a greater ease of expression for typical applications within their
domain, and the possibility of tractable analysis supported by software tools.
It is hoped that these advantages can weaken resistance to the application of
formal methods in industry by reducing the cost of model building and analysis.
This is the approach followed here.

The need for automation and the provision of useful feedback to the user
has led to the increasing popularity of a style of analysis known as model check-
ing [CGP99]. Model checking is a technique which relies on building a finite
state transition model of a system and checking that a desired property holds
in that model. The basic procedure in model checking is exhaustive state space
search, which is guaranteed to terminate since the model is finite. Once the
model has been constructed and the property of interest specified, the checking
is entirely automatic. Furthermore, in the case that the property does not hold
in the model, a counterexample is generated, which can provide the designer
with valuable insight into the behaviour of the system and aid in debugging.

The main obstacle in the application of model checking to industrial scale
systems is the size of the state spaces which arise in exhaustive search. This
is known as the state explosion problem. There are many techniques for at-
tacking this problem (§2.7.7). Here, we mention the importance of abstrac-
tion [LGS+95]. An abstract model omits detail from the system description.
However, it retains sufficient detail to preserve system properties of interest.
In this way, the size of the state space to be searched is reduced and useful
questions can be decided in practice. Some abstract models are exact, i.e., for
all properties of interest, the property holds for the model iff it holds for the
system. Other abstract models are conservative approximations, i.e., if a prop-
erty holds for the model, it also holds for the system; but, if it does not hold
for the model, its status with respect to the system is undecided. Clearly, an
exact abstraction is desirable, but a conservative approximation may lead to a
greater reduction in the size of the state space. If a property fails to hold in
a conservative approximation, further investigation is required to determine if
the failure is a genuine feature of the system, or an aberration caused by the
approximation. Conservative approximations have been used successfully to
analyse the behaviour of embedded system implementations [BHKR94, Cor96]
and they are used extensively in the rest of the dissertation.

Even an abstract formal model can produce a state space which is too large
to search completely in a reasonable amount of time or memory. Nevertheless,
the model can be used effectively for debugging the design or implementation
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from which it is derived. The focus here changes from verification based on
exhaustive search to falsification based on semi-exhaustive search [FKFV99].
Techniques motivated by this point of view include state storage methods which
allow a small probability that some reachable states are not explored [Hol95,
Ste97] and simulation techniques which aim for a saturated coverage of the
state space [GA98, YSAA97]. The coverage provided by these methods can
improve significantly on traditional validation techniques such as simulation
and testing [Mye79].

In summary, formal methods are one important approach among several
for gaining increased confidence in system dependability. The benefits include
increased understanding gained from the construction and analysis of formal
models, improved communication made possible by formal documentation, and
a formal basis provided for the construction of software tools to assist in system
development.

1.3 Broadcast Communication

The communication architecture encountered most frequently in the implemen-
tation of distributed embedded control systems is the broadcast bus [UK94]. In
broadcast communication, a message transmitted from a single sending node
can be received directly by all nodes connected to the network. This contrasts
with point-to-point communication in which messages are transmitted from a
single sender to a single receiver. The use of a broadcast bus simplifies im-
plementation of the common requirement in an embedded system to provide
a consistent view of the state of the physical environment to a number of dif-
ferent nodes, e.g., to a man-machine interface, a process control node and an
alarm-monitoring node [Kop97]. It can also simplify the implementation of
clock synchronisation and the tolerance of individual node failures.

A wide variety of broadcast protocols is seen in practice, each offering a solu-
tion to the problems posed by a particular application area, e.g., Profibus [DIN89]
for process control, LON [Ech91] for building automation and CAN [ISO92],
TTP [KG93] and QWIK [JO99] for automotive applications. It is not our in-
tention to review this extensive field here. Surveys of the relevant principles
and applications can be found in [Kop97, KS97, UK94, Ver97b]. However, we
do offer a more detailed consideration of one such protocol, CAN, which is the
basis of the formal model presented later in the dissertation and will serve as
our canonical example of broadcast communication.

1.3.1 Controller Area Network

Controller Area Network (CAN) [Bos91, ISO92] is a simple, deterministic,
broadcast communication protocol which is not only attractive to system de-
velopers but also amenable to formal modelling and analysis. It is gaining
increasing importance and attention in the implementation of distributed real-
time systems, as evidenced by the variety of contributions in the proceedings
of recent International CAN Conferences [CiA99].
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CAN provides multi-master, priority-based bus access using a CSMA/CD
protocol similar to Ethernet’s, but with a deterministic collision resolution pol-
icy which makes it suitable for use in hard real-time systems. It is a robust
protocol offering high reliability even in harsh electromagnetic environments
and is suitable for the transmission of short messages over a small area at
speeds of up to 1 Mbit/s. CAN was developed by Bosch in the mid-eighties
in order to reduce the need for complex wiring harnesses in the automotive
industry. Its use in the European car industry has grown to the point where
it is an acknowledged industry standard and its popularity is growing in the
USA where it has been accepted as a standard by the SAE for bus and truck
manufacture [SAE92]. The availability of low cost components from a vari-
ety of manufacturers, who are seeking to satisfy the high volume requirements
of the automotive industry, has encouraged the use of CAN in an expanding
range of application areas, including: medical, packaging control, agricultural
machinery, lift control, measurement, robot control and PLC controlled manu-
facturing.

CAN Operation

Information is transmitted as fixed format frames which consist of a message
identifier, 0 to 8 data bytes and sundry control bits as shown in figure 1.2. The
physical medium is usually twisted pair cable over which frames are transmitted
using NRZ encoding with stuff bits inserted when needed to preserve synchro-
nisation. When the bus is idle, any connected node may start to transmit a new
frame. If two or more nodes start to transmit frames at the same time, the bus
access conflict is resolved by non-destructive bitwise arbitration which is based
upon the message identifier. The bitwise arbitration mechanism classifies bits
as either dominant or recessive. During transmission of the arbitration field,
transmitting nodes monitor the bus. Transmission of a dominant bit by any
node causes all nodes to monitor a dominant bit on the bus; only if all transmit-
ting nodes send a recessive bit is the monitored bit recessive. If the transmitted
bit is recessive, but a dominant bit is detected on the bus, the transmitting
node recognises that it has lost the bus arbitration, ceases transmission of its
frame and behaves as a receiver of the highest priority competing frame. In
a standard CAN frame, the arbitration field consists of the message identifier
and the RTR (Remote-Transmit-Request) bit. A message identifier consists of
11 (29) bits in the standard (extended) frame format and is interpreted as a
non-negative integer assigning a priority to the frame. Priorities are assigned
in monotonically decreasing order starting from 0. The transmitter with the
frame of highest priority gains bus access without experiencing any delay due
to the access conflict, i.e. it behaves as if it were the only node seeking access
to the bus. This property makes the bus particularly suitable for predictable,
real-time communication. Frames which are disturbed either by losing arbi-
tration or by the occurrence of errors during transmission are retransmitted
automatically when the bus becomes idle again. A frame which is retransmit-
ted is handled like any other frame, i.e. it participates again in the arbitration
process in order to gain bus access.
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Fig. 1.2: CAN Frame – Standard Format

In addition to giving a priority to a frame, the message identifier is also
used by each receiving node to determine whether or not it wishes to ‘accept’
the frame. There is no address associated with a frame to indicate its intended
recipient. Each node connected to the bus performs an acceptance test during,
or shortly after, the transmission of a frame. If the frame passes the test, its
data field is made available to the accepting node, otherwise the node ignores
the frame.

CAN-based protocols and analysis

There has been much interest in developing CAN-based protocols and analysis
to solve a variety of typical distributed system problems. Tindell et al. [THW94]
show how fixed priority pre-emptive scheduling analysis can be applied in order
to bound message response time for systems with a suitably restricted compu-
tational model [TBW95]. Another approach to message scheduling is presented
in [LKJ99], in which hard real-time messages are allocated off-line to slots in a
Time Division Multiple Access (TDMA) schedule [KS97], with redundant time
slots provided to achieve some fault tolerance; the redundant slots are used in
the Earliest Deadline First (EDF) scheduling [KS97] of soft real-time messages,
in the case of error-free transmission. Veŕıssimo et al. [VRM97] derive bounds
for bus inaccessibility under a variety of fault scenarios. Protocols for achiev-
ing atomic broadcast in the presence of network faults are given in [RVA+98]
and [LK99]. A solution to the problem of fault-tolerant clock synchronisation
is presented in [RGR98]. The only other formal study of CAN-based communi-
cation, so far as we know, is the Z specification of the protocol by Benzekri and
Bruel [BB97]; however, real-time and performance aspects are not discussed in
their work.

1.4 The dissertation

1.4.1 Justification

The work presented in this dissertation addresses the problem of providing a
high-level language for modelling embedded systems which communicate using
broadcast communication, with a view to exploiting efficient, automated analysis
techniques in order to increase confidence in the satisfaction of temporal system
properties. We briefly justify our belief in the need for work in these areas.

High-level language We have argued that a formal approach to system de-
velopment is an important component in the construction of dependable
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systems, and that high-level languages and computer-aided analysis are
required if formal methods are to be of practical use in industry. Much
recent research on formal analysis of real-time systems has concentrated
on techniques based on timed automata [AD90]. However, the language of
timed automata is generally acknowledged to be too low-level for general
use [AD94, BFK+98, Tri98, Pet99]. Therefore, there is a need for re-
search on methods to exploit the analysis techniques developed for timed
automata in the context of high-level languages for modelling and devel-
opment.

Broadcast communication An increasing number of distributed embedded
systems are implemented which rely on broadcast communication. CAN
is a simple, predictable broadcast protocol which is coming to dominate a
large sector of this market. As it is often employed in systems which de-
mand high dependability, there is considerable interest in the question of
how to apply formal methods in the development of CAN-based systems.
Currently available methods, however, do not offer a straightforward way
to model systems which communicate via the CAN protocol. Our work
is aimed at providing such a method.

Efficient analysis A high-level language for modelling broadcast systems will
only be useful in so far as there are efficient techniques for analysing
the models which are described with it. Our work shows how existing
techniques can be applied and also proposes new techniques for efficient
analysis.

1.4.2 Structure and contribution

Chapter 2 introduces labelled timed transition systems as a basic model for real-
time systems and describes how such models can be derived using either timed
automata or timed process algebra. The use of automata and temporal logic
for the specification of system properties is presented. Techniques for verifying
that a timed model possesses specified properties are described in some detail.
This chapter presents no new results but is the foundation on which the rest of
the dissertation is built.

Chapter 3 presents a new system modelling language, called bCANDLE,
which allows the expression of process behaviour using a small set of process
operators, includes primitives for broadcast communication based on a CAN-
style protocol, and permits the modelling of both data and control structures.
It is shown that the language satisfies a number of algebraic laws and is ex-
pressive enough to model essential features of CAN communication, including
message priorities and channel latency, as well as standard real-time constructs,
such as timeouts and watchdog timers. So far as we know, this is the first for-
mally defined language which treats broadcast communication with prioritised
message passing over latent channels in a dense time framework.

Chapter 4 defines a translation to timed automata for a large subset of
bCANDLE systems. An efficient method for performing the translation is de-
scribed and implemented. This work builds upon and extends the approach
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developed by Garavel in the translation of LOTOS [Gar92] and of Yovine in
the translation of ATP [Yov93]. We demonstrate the use of the method by
applying it to a simple bCANDLE model which is analysed using the KRO-
NOS [BDM+98] model-checking tool.

Chapter 5 presents two techniques for efficient analysis of bCANDLE mod-
els: firstly, an on-the-fly generation of the simulation graph, incorporating clock
activity reduction; secondly, a BDD-like, compact representation of the state
space which treats discrete data variables and clock variables in a uniform man-
ner. The application of the latter technique to timed systems is entirely novel.
The former technique is based upon a combination of methods which is pre-
sented here for the first time.

Chapter 6 serves to validate the ideas presented in Chapters 3–5, and to
point the way to future developments. It presents a high-level modelling lan-
guage whose semantics are given by translation to bCANDLE, so providing a
route to the use of the numerous analysis techniques based on timed automata,
including those introduced in Chapter 5. The framework of a practical mod-
elling and analysis environment is outlined. The utility and limitations of the
techniques are illustrated in a small case study.

Chapter 7 summarises the work and suggests lines of future enquiry. Related
work is referred to and discussed in context.



2. MODELS, SPECIFICATIONS AND

CORRECTNESS

2.1 Introduction

Very simply, the use of formal methods in the development of a computing
system involves:

1. the construction of a symbolic representation of (part of) the system,
which captures what are believed to be essential features of its structure
or behaviour. We call this symbolic representation a model.

2. the construction of a symbolic representation of some desired property of
the system’s structure or behaviour. We call this symbolic representation
a specification.

3. the demonstration that the property described by a specification is exhib-
ited by a model of the system. Such a demonstration is said to establish
the correctness of the model with respect to its specification.

There is a wide variety of languages for expressing models and specifications,
and of methods for establishing correctness. In this chapter, we introduce in
some detail those languages and methods which are relied upon later in the
dissertation. We also give a brief review of alternatives.

Most models of real-time systems, and specifications of their properties, em-
ploy a representation of Time. The representation which we use is introduced
in §2.2. In §2.3, we introduce labelled transition systems and their executions,
which serve as a unifying model of computation for both system models and
specifications. Labelled transition systems can be described using several lan-
guages, including process algebra and automata which are the topics of §2.4 and
§2.5, respectively. Specifications can also be given as automata, but in addition
we use temporal logic; these approaches are discussed in §2.6. Verification is
the topic of §2.7. Finally, in §2.8 we summarise and mention briefly some other
approaches to modelling, specification and verification which have appeared in
the literature.

2.2 Models of Time

Notation. In this section, and throughout the dissertation, the following nota-
tion is used to denote sets of numbers: R – the set of non-negative real numbers;
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Q – the set of rational numbers; Z – the set of integers; and N – the set of natural
numbers.

The model of time used in this work is the non-negative reals, which we denote
by R and use with the usual operations of equality (=), ordering (≤), addition
(+), and multiplication (·). As usual, we write t < t ′ if t ≤ t ′ and t 6= t ′. It is
sometimes convenient to augment this domain with a value, ∞, which is defined
to be strictly greater than any other time value. We write R∞ for R∪{∞} and
assume that the arithmetic operators and relations are extended to R∞ in the
usual way: for every t ∈ R, t <∞, and for every t ∈ R∞, t +∞ = ∞+ t = ∞.
We also make use of an operator for subtraction, −. : R∞ × R → R∞, which
satisfies,

t1 −. t2 =

{
0 if t1 < t2

t if t2 ≤ t1 ∧ t1 = t2 + t .

This model of time is one of a number which have been proposed for use
in the analysis of real-time systems [AH91, Jos91, Koy91, Nic92]. We briefly
draw attention to some salient features and their relationship to the model of
computation which will be used.

An important choice is the one between a dense or a discrete time domain.
In a dense domain, such as R or Q, any two distinct time points are separated
by a set of intervening points which are also elements of the domain. In a
discrete domain, such as Z, each time point has a unique successor. Formally,
R is a dense domain since it satisfies

(∃ t , t ′ ∈ R . t < t ′) ∧ (∀ t , t ′ ∈ R | t < t ′ . ∃ t ′′ ∈ R . t < t ′′ < t ′)

whereas N is a discrete domain since it satisfies

∀ t , t ′ ∈ N . t < t ′ ⇒ (∃ t ′′ ∈ N . t < t ′′ ∧ ∀ t ′′′ ∈ N . t < t ′′′ ⇒ t ′′ ≤ t ′′′).

Alur [Alu91] has argued convincingly that dense time is more appropriate in
the modelling of asynchronous systems, where an arbitrarily small amount of
time may separate event occurrences. If a discrete domain is chosen, then
continuous physical time must be approximated by fixing a time granularity a
priori, and no matter how fine the granularity chosen, for some systems the
discrete model is not accurate enough to ensure that all possible erroneous
behaviours will be detected [ACD93]. This problem has been noted also by
Asarin et al. [AMP98] who exhibit a class of cyclic circuits as an example.
Moreover, even when it is possible to choose a sufficiently fine granularity, it
may be so fine that the size of the state space becomes too large for verification
to be feasible. A dense domain is also more convenient when it comes to the
composition of systems, since there is no need to worry about matching the
time granularities of the components, as is the case for a discrete model. A
possible advantage of the discrete model is that it facilitates the application of
efficient verification techniques known from the analysis of untimed systems, in
particular symbolic state space representation using binary decision diagrams



2. Models, Specifications and Correctness 13

(BDDs) [Bry86, McM92]. It remains to be seen whether or not efficient symbolic
representations will be discovered for dense time systems; the clock difference
diagrams of [LWYP98] show some promise in this respect. Another interesting
approach is to consider when it is possible to construct a discrete time model
which is known to preserve dense time properties, since then we can have the
expressiveness of the dense time model together with the efficient analysis of
the discrete model [ABK+97, AMP98, BMPY97, HMP92].

An alternative to a point-based domain, such as R, is a domain based on
intervals, in which statements concerning the duration of events may be more
conveniently expressed, see [Koy91] for further details. In its favour, we find
that the domain R fits naturally with a simple computational model of time-
stamped event sequences or trees. In this model, events are assumed to happen
instantaneously, and system behaviour consists in a sequence of two-phase steps.
In the first phase of a step, time passes by some finite or infinite amount. In
the second phase, a finite, though arbitrarily large, number of instantaneous
events occur in some well-defined order. A new step begins when the second
phase terminates. This two-phase model has proven very effective in practice
and is widely used; further arguments in its defence can be found in [NS91]. In
this approach, a duration can be modelled by introducing instantaneous events
representing its beginning and end.

It is convenient to assume that event sequences respect a weakly mono-
tonic ordering, i.e., for a sequence 〈(e1, t1), (e2, t2), . . .〉, where ei represents an
event and ti its time-stamp, then ti is required to be less than or equal to
ti+1, rather than strictly less than, as would be required by a strongly mono-
tonic ordering. This allows concurrency to be modelled by the interleaving of
events: for example, a computation in which the events a and b occur concur-
rently, can be modelled by the pair of sequences 〈. . . , (a, ti ), (b, ti+1), . . .〉 and
〈. . . , (b, ti ), (a, ti+1), . . .〉, where ti = ti+1 in each case.

One further point about the structure of time, which is also intimately re-
lated to the underlying computational model, concerns views of time as either
a linear or a branching structure [EH86, Lam80, Pnu85]. In the linear model
of time, it is assumed that at any moment there is only one possible next mo-
ment; system behaviour is represented as a set of possible execution sequences.
In the branching model, time has a tree-like structure where it is assumed that
each moment has at most one directly preceding moment, but perhaps many
next moments, representing different possible futures; system behaviour is rep-
resented as a tree and an execution is a path through the tree. Each view
supports the statement of system properties which cannot be expressed in the
other. We regard the two views as complementary and make no commitment
to either, but use whichever seems appropriate in the circumstances.

2.3 Transition Systems

2.3.1 Labelled Transition Systems

A method of modelling systems and their behaviour, which has been success-
fully applied in a wide variety of circumstances, is based on the idea that it
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is possible to identify a set of states which characterise certain aspects of the
system which are of interest to the modeller. A system begins its operation in
some initial state. During the operation of the system, its state may change.
A change of state is called a transition and a system model consisting of states
and transitions is a state transition system (usually abbreviated to transition
system). It is often useful to associate a label with a transition. The label
can be used for a variety of purposes: perhaps to identify an action which has
caused the transition, or an event whose occurrence is indicated by the tran-
sition. A transition system in which labels are associated with transitions is
called a labelled transition system (LTS). Within this basic framework, a system
modeller has wide discretion in the choice of states, transitions and labels in
the construction of a useful model. These ideas are presented formally below.

Definition 2.1 (Labelled Transition System) A labelled transition system
S = (Σ, σI ,L,−→) is a tuple where Σ is the set of states, σI ∈ Σ is the initial
state, L is the set of labels and −→ ⊆ Σ × L × Σ is the set of transitions. 2

Notation. We write σ
λ

−→σ′ for (σ, λ, σ′) ∈ −→. If σ
λ

−→σ′ for some label λ ∈ L
then σ′ is said to be a λ-successor of σ and σ is a λ-predecessor of σ ′. If σ′ is a
λ-successor (resp. -predecessor) of σ, then σ ′ is a successor (resp. predecessor)

of σ. If σ has a λ-successor, we note this by σ
λ

−→. If σ has no λ-successor, we

write σ
λ

6−→. We use σ0 −→n σn to denote σ0
λ0−→σ1

λ1−→ · · ·
λn−2
−→σn−1

λn−1
−→σn , for

0 ≤ i < n and λi ∈ L, and σ0 −→
∗

σf if σ0 −→n σf for some n ∈ N.

Definition 2.2 (Finite, Finitely Branching, Deterministic) A transition
system, S = (Σ, σI ,L,−→), is finite if the set of states Σ and the transition
relation −→ are finite. S is finitely branching if for all σ ∈ Σ and λ ∈ L, the

set {(λ, σ′) | σ
λ

−→σ′} is finite. S is deterministic if, for any state σ and label

λ, if σ
λ

−→σ′ and σ
λ

−→σ′′ then σ′ = σ′′. 2

Definition 2.3 (Isomorphism)
Let S1 = (Σ1, σ

I
1 ,L,−→1) and S2 = (Σ2, σ

I
2 ,L,−→2) be transition systems. S1

and S2 are said to be isomorphic iff there exists a bijection f : Σ1 → Σ2 such
that

1. f (σI1 ) = σI2 , and

2. for every σ, σ′ ∈ Σ1, λ ∈ L, σ
λ

−→1σ
′ iff f (σ)

λ
−→2f (σ′) 2

Definition 2.4 (Path) Let S = (Σ, σI ,L,−→) be a transition system. Let
σ ∈ Σ. A path in S from σ is a finite or infinite sequence, p = σ0λ0σ1λ1σ2λ2 · · · ,
of alternating states and labels which satisfies

1. p starts with state σ = σ0, known as the source of p, and
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2. for all i = 0, 1, . . ., σi+1 is a λi -successor of σi . 2

A path of length n is a finite path p = σ0λ0σ1λ1 · · · λn−1σn . Let p = σ0λ0σ1λ1 · · ·
be a finite or infinite path. For i = 0, 1, 2, . . ., the i-th state of p, denoted p(i),
is defined to be σi and the i-th label of p, denoted labelp(i), is defined to be λi .

Definition 2.5 (Reachability) A state σ ′ is reachable from state σ iff there
is a path in S from σ which contains σ′. The state σ is reachable in S iff σ is
reachable from the initial state, σI . 2

2.3.2 Timed Transition Systems

A real-time system can be modelled as a labelled transition system. The actions
of the system are represented by transitions whose labels are drawn from some
set A of actions. Such transitions are known as discrete transitions and are
assumed to be atomic and instantaneous. The passage of time is modelled by
transitions whose labels are drawn from the set of non-negative real numbers
R; these transitions are called time transitions. The set of labels is thus A∪R.
We assume A ∩ R = ∅. In order to serve as a model of a real-time system,
we require that the transition system S = (Σ, σI ,L,−→) satisfies the following
properties:

Time determinism The evolution of the system is deterministic with respect
to the passage of time [NS91, Nic92, Yi90], i.e., for a given state and a
given time, there is at most one state which can be reached in a single
step by taking the time transition. Formally,

∀σ, σ′, σ′′ ∈ Σ; t ∈ R . σ
t

−→σ′ ∧ σ
t

−→σ′′ ⇒ σ′ = σ′′

Time additivity The evolution of the system is continuous with respect to the
passage of time [NS91, Nic92, Yi90]. If a time transition is possible from
some state, then all smaller time transitions are also possible. Formally,

∀σ, σ′ ∈ Σ; t , t ′ ∈ R . σ
t+t ′
−→σ′ ⇔ ∃σ′′ ∈ Σ . σ

t
−→σ′′ ∧ σ′′

t ′
−→σ′

Definition 2.6 (Timed Transition System) A timed transition system S =
(Σ, σI ,L,−→) is a labelled transition system whose set of labels L is A∪R for
some set A such that A ∩ R = ∅, and which satisfies the properties of time
determinism and time additivity. 2

Definition 2.7 (Execution, Run) An execution or run of a timed transition
system S, starting from a state σ, is an infinite path in S from σ. We denote
the set of all executions from σ by ΞS(σ), and by ΞS =

⋃
σ∈Σ ΞS(σ) the set of

executions of S. 2
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We are primarily interested in those runs which can be regarded as a model
of some physical system. In particular, we wish to ensure that basic physical
laws concerning Time are respected:

1. a system cannot act with infinite speed, and

2. a system cannot block the progress of Time.

These ideas are captured for a timed transition system in the definition of a
time-divergent run.

Definition 2.8 (Time-divergent run, Non-Zeno system)
Let S = (Σ, σI ,L,−→) be a timed transition system, ξ ∈ ΞS an execution in
S and i ,n ∈ N. The i-th delay in ξ, denoted δξ(i), is defined to be labelξ(i)
if labelξ(i) ∈ R, otherwise δξ(i) is 0. The time elapsed in ξ from ξ(0) to ξ(n),
denoted ∆ξ(n), is defined

∆ξ(n) =
∑

i<n δξ(i)

A run ξ is time-divergent (or simply divergent) iff limi→∞ ∆ξ(i) = ∞. The set
of time-divergent runs from σ ∈ Σ is denoted Ξ∞

S (σ) and the set
⋃
σ∈Σ Ξ∞

S (σ)
of all time-divergent runs in S is denoted Ξ∞

S .
S is a Non-Zeno (well-timed) system iff every reachable state σ ∈ Σ is the

source of some time-divergent run. 2

Remark 2.1 (Finite Variability, Time Progress) It follows directly from
Definition 2.8 that there are a finite number of transitions represented in any
bounded time interval of a divergent run, ξ. It is also apparent that for any
t ∈ R, there is a number n ∈ N such that ∆ξ(n) > t , i.e., time progresses
beyond any bound.

2.3.3 Composition of transition systems

A complex system can be modelled by identifying and modelling smaller com-
ponents of the whole system and then by stating precisely what is the behaviour
of the system which is obtained by combining components.

A standard form of combination for transition systems is a product which
models the parallel execution of two or more transition systems as a single
system. We now define a commonly used product of transition systems. Let
S1 = (Σ1, σ

I
1 ,L1,−→1) and S2 = (Σ2, σ

I
2 ,L2,−→2) be two transition systems

which we assume to represent system components. In the product of S1 and
S2, a state is a pair (σ1, σ2) where σ1 ∈ Σ1 and σ2 ∈ Σ2. The transitions of
the product take their labels from the set L1 ∪ L2. If λ is a label which occurs
both in L1 and in L2, then we require each of S1 and S2 to perform a λ-labelled
transition together in order for the product to perform a λ-labelled transition.
If the label λ occurs in the set of labels of only one component, then that
component can perform a λ-labelled transition independently in the product.
The systems are said to synchronise on their shared labels, otherwise they act
independently.
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Definition 2.9 (Product of transition systems)
Let S1 = (Σ1, σ

I
1 ,L1,−→1) and S2 = (Σ2, σ

I
2 ,L2,−→2) be two transition sys-

tems. The transition system product of S1 and S2, which is written S1 | S2, is

the transition system (Σ1×Σ2, (σ
I
1 , σ

I
2 ),L1∪L2,−→) where (σ1, σ2)

λ
−→(σ′1, σ

′
2)

iff

1. λ ∈ L1 ∩ L2 and σ1
λ

−→1σ
′
1 and σ2

λ
−→2σ

′
2, or

2. λ ∈ L1 \ L2 and σ1
λ

−→1σ
′
1 and σ′2 = σ2, or

3. λ ∈ L2 \ L1 and σ2
λ

−→2σ
′
2 and σ′1 = σ1. 2

2.4 Process Algebra

2.4.1 Basic concepts

The understanding of distributed systems has been advanced considerably by
the study of process algebra. In this approach, a system is regarded as a process,
which is constructed from smaller processes using a set of process constructors
(operators). Some processes are regarded as primitive – not subject to further
investigation – and larger processes are constructed from them using the process
operators, resulting in an algebraic structure. Processes are investigated by
considering equivalences between them, which leads to an equational style of
reasoning. There are several different approaches to the algebraic treatment of
processes. They can be characterised by:

• the choice of basic processes and process operators,

• the methods and models used to give a meaning to processes, and

• the notion of equivalence between processes.

The well known process algebras CCS [Mil89], CSP [Hoa85] and ACP [BW90]
exemplify the main variations within each of these categories; these references
should be consulted for a thorough introduction to the field. Here we mention
some aspects which may be helpful in understanding the rest of the dissertation.

In process algebra, system events are modelled as atomic actions. In the
family of ACP algebras, atomic actions are basic processes and act as the con-
stants of the algebra. There is a sequential composition operator which models
the execution of one process followed by the execution of another process. CCS
adopts a different approach in which an atomic action a is not regarded as a
basic process in its own right, but can be composed with some process P using
an action prefix operator, to yield a new process a.P , which is capable of first
performing the action a and then behaving as process P . In this approach,
the nil process, which cannot perform any action, serves as a basic process.
Given the possibility for modelling very simple systems such as these, more
complex systems can be constructed using a variety of other operators includ-
ing: choice, disabling, parallel composition and abstraction. Other features of
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system behaviour can also be modelled within the process algebraic framework,
e.g., process priority, memory state and shared resources [BV95, LBGG94].
The formal description technique LOTOS [ISO88b] offers both a variety of use-
ful process operators and a data language for modelling the data values which
are stored and communicated by a system. It has been used extensively for
modelling and analysing systems of practical interest.

Currently, the predominant method for giving a meaning to the terms of
a process algebra is structural operational semantics (SOS) [Plo81]. SOS gen-
erates a labelled transition system, whose states are the terms of the process
algebra, and whose transitions are obtained inductively from a set of transition
rules of the form premises

conclusions . An example of a typical transition rule is

P
a

−→P ′

P + Q
a

−→P ′

from which we can conclude the existence of an a-labelled transition from any
term of the form P + Q to a term of the form P ′, if we can demonstrate
the existence of an a-labelled transition from P to P ′. In general, validity
of the premises of a transition rule, under a certain substitution, implies the
validity of the conclusion of this rule under the same substitution [AFV99]. This
operational style of semantic definition gives a meaning to a process description
in terms of its effect upon the behaviour of some abstract machine. Other
semantic approaches are the denotational method of CSP [BHR84] and the
axiomatic method of ACP [BK84].

A variety of process equivalences are studied in the literature [vG90, vG93].
They range from a weak equivalence, in which processes are equated iff they
can perform the same set of transition sequences, to a strong equivalence in
which they are equated iff their derivation trees are isomorphic. The former
equivalence may equate processes P and Q even though there are environ-
ments in which P deadlocks while Q does not. The latter equivalence may
distinguish processes even if they can perform the same actions in all envi-
ronments. Useful equivalences are found somewhere between these extremes.
The variety of useful equivalences is greater in settings which distinguish be-
tween a set of actions which are observable and a set of actions which are
hidden or silent [vG93]. The process equivalence of most relevance to our
work is based on the idea of strong bisimulation [Mil89] and equates pro-
cesses P and Q iff for every action a, every a-successor of P is equivalent
to some a-successor of Q , and vice versa (cf. §3.6.3). This is generally re-
garded as the strongest of the useful equivalences. To be really useful, an
equivalence should also be a congruence, i.e., equivalent processes should be-
have the same in all contexts, e.g., assume op is an arbitrary process operator
and P and Q are equivalent processes, then op(P1, . . . ,Pi−1,P ,Pi+1 . . .Pn) and
op(P1, . . . ,Pi−1,Q ,Pi+1 . . .Pn) should also be equivalent processes.

2.4.2 Timed Extensions

In the process algebras considered so far, there is not the possibility to model
and reason about the quantitative aspects of the passage of time. This defi-
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ciency has been addressed by many researchers and, consequently, there are
now many timed process algebras which can be used in the analysis of real-time
systems. Vereijken [Ver97a] gives a very comprehensive review which covers
almost 40 different timed process algebras. Nicollin and Sifakis [NS91] present
a helpful unifying framework. Corradini et al. [CDI99] give a detailed study
of the relationship between four CCS-like variants. Here we aim to give just a
flavour of the main themes.

In general, timed process algebras introduce constants ranging over some
time domain, either discrete or dense, and a number of time constraining oper-
ators, into the framework of an untimed algebra. A typical time constraining
operator is one which delays a process, e.g., let t be a constant of the time
domain, t > 0, then the process (t).P is one which behaves just like P after
exactly t time units. Such an operator is used in Temporal CCS [MT90], Timed
CCS [Yi90], Real-Time CSP [Dav93] and Urgent LOTOS [BL91]. ACPρ [BB91]
adopts a different approach in which actions are time-stamped. Time stamps
can be absolute or relative. In the absolute case, a(t) performs the action a
after t time units following the start of the process; in the relative case, a[t ]
performs a after t time units following the execution of the previous action.
The time-stamp operator has the effect of allowing the modelling both of de-
lays and also of urgent actions; a delayed action becomes urgent when the time
delay expires. Urgency can also be modelled by the introduction of immediate
actions, which do not admit the possibility of time passing until either they are
executed or disabled. This approach is adopted in ATP [NS94]. Other time
constraining operators which have appeared in several algebras, and which are
of practical interest for modelling real-time systems, are the timeout and watch-
dog operators. Real-time CSP offers both operators. Each takes two process
arguments P and Q and a time parameter t . The timeout P .{t} Q behaves
as P if an initial action of P is performed within time t , otherwise it behaves as
Q , after time t . The watchdog P ↙{t} Q behaves as P until time t . At time
t , P is aborted and Q is started. Similar operators are found in other algebras,
e.g. ATP.

Schneider [Sch95] discusses the operational, denotational and axiomatic
styles of semantic definition in timed process algebras, and surveys the associ-
ated approaches to process equivalence. The decidability of timed bisimulation
is shown in [Cĕr92].

We return to some of the ideas mentioned in this section in Chapter 3, where
their influence on the design of the language which is introduced there will be
evident.

2.5 Timed Automata

2.5.1 Introduction

One of the most successful research areas of the last few years, in the mod-
elling and analysis of real-time systems, features the use of timed automata,
which were introduced in the seminal paper of Alur and Dill [AD90]. Early
work concentrated on the theoretical aspects of the decidability and complex-
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ity of the model-checking and satisfiability problems for timed temporal logics
such as TCTL [ACD90, AD94, AH91, Alu91]. Later, attention turned to the
development of practical algorithms [HNSY94, YPD94]. More recently, the ap-
plication of timed automata to the modelling of industrial problems [HSLL97,
LPY98, TY98], and the development of software tools to support their analy-
sis [BLL+98, BDM+98], have been receiving considerable attention.

Informally, a timed automaton is a finite state automaton in which the sys-
tem states are augmented by a finite number of real-valued variables called
clocks. All clocks are synchronised and are assumed to keep perfect time. Tran-
sitions between states can be constrained to occur when the values of the clocks
satisfy some specified property. On the occurrence of a transition, one or more
clocks can be reset to zero. In this way, it is possible to model the “real time”
of occurrence of events and the time elapsed between events. Timed automata
are presented formally below.

2.5.2 Clocks

Let H be a finite set of real-valued variables called clocks. A H-valuation (clock
valuation) is a total function v : H → R which assigns to each clock h ∈ H a
non-negative real number v(h). The set of H-valuations is denoted RH. The
H-valuation which assigns 0 to every clock in H is denoted 0. Let v ∈ RH and
H ⊆ H. v[H := 0] denotes the valuation v′ such that for all h ∈ H, v′(h) is
0 if h ∈ H and is v(h) otherwise. This models the operation of resetting some
clocks while leaving the values of the other clocks unchanged. The elapse of
time is modelled by advancing the values of all clocks in a valuation by the
same amount. Let v ∈ RH and t ∈ R. v + t denotes the valuation v′ in
which v′(h) = v(h) + t for all clocks h ∈ H. Occasionally, we will need the
operation t · v where for t ∈ R and v ∈ RH, t · v is the valuation v′ such that
v′(h) = t · v(h), for all h ∈ H.

2.5.3 Clock Constraints

Let H denote a set of clocks ranged over by h, h ′. An atomic constraint on H
is an expression of the form h ./ c or h − h ′ ./ c, where ./ ∈ {<,≤,≥, >} and
c ∈ N. The set of clock constraints on H, denoted ΨH, is generated by the
grammar:

ψ ::= χ | ψ ∧ ψ | ¬ ψ

where χ is an atomic constraint. The set of clock zones on H, denoted ZH,
with ZH ⊂ ΨH, is the set of conjunctions of atomic constraints. Let ζ, ζ ′ range
over ZH.

The restricted grammar of clock constraints is necessary in order to ensure
that some important verification questions, such as model-checking, remain
decidable. It is possible to extend the range of c to the non-negative rational
numbers Q+, but the restriction to N simplifies the presentation at no cost to
expressive power [AD94].
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A clock valuation v ∈ RH is said to satisfy a clock constraint ψ ∈ ΨH,
denoted v |= ψ, if

v |= h ./ c iff v(h) ./ c
v |= h − h ′ ./ c iff v(h) − v(h ′) ./ c
v |= ψ ∧ ψ′ iff v |= ψ and v |= ψ′

v |= ¬ ψ iff v 6|= ψ

The set of all clock valuations satisfying a clock constraint ψ ∈ ΨH is denoted
[[ψ]], i.e., [[ψ]] = {v ∈ RH | v |= ψ}.

We use tt to denote a clock constraint such as h ≥ 0 which is satisfied by
any clock valuation, and ff to denote a clock constraint such as h < 0 which is
not satisfied by any clock valuation, i.e., [[tt]] = RH and [[ff]] = ∅. It is also useful
to have a notation for the clock constraint which requires that all clocks have
the value 0, zeroH denotes such a constraint, i.e., zeroH =̂

∧
h∈H h = 0, (we will

just write zero when H is clear from the context).

2.5.4 Syntax and informal semantics

We can now give a formal definition of the syntax of timed automata. We also
provide some simple examples and an informal explanation of semantics.

Definition 2.10 (Timed Automaton) A timed automaton (TA) is a tuple
A = (Q , qI ,A,H,E , I ) where:

• Q is a finite set of control locations.

• qI ∈ Q is the initial control location.

• A is a finite set of action labels.

• H is a finite set of clocks.

• E ⊆ Q ×ZH × A × 2H × Q is a finite set of edges.

Each edge e ∈ E is of the form (q , ζ, a,H, q ′) where q , q ′ ∈ Q are control
locations, denoted src(e), tgt(e), respectively; ζ ∈ ZH is a clock zone,
called the guard of e and denoted guard(e); a ∈ A is an action label,
denoted label(e) and H ⊆ H is a set of clocks to be reset, denoted reset(e).

• I : Q → ZH is a function which associates a time progress condition (or
invariant) with each control location. Control can remain at a location
while time passes so long as the invariant associated with the location
remains true.

We use cmax (A, h) to denote the greatest constant to which the clock variable
h is compared in any guard or invariant condition of A, and cmax (A) to denote
max{cmax (A, h) | h ∈ H}. 2
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Fig. 2.1: A simple timed automaton

Example 2.1 We can explain some of these details informally by reference to
Figure 2.1 which shows a simple example of a TA. The set of control locations
is {0, 1}. Location 0 is assumed to be the initial location. The set of action
labels is {a, b}. The set of clocks is {H 1}. The invariant associated with lo-
cation 0 is tt; this means that the system can spend an arbitrary amount of
time in location 0. In the absence of an explicit clock constraint, the edge from
0 to 1 is assumed to have the clock constraint tt, and so an a-transition from
0 to 1 is possible at any time. If an a-transition occurs, clock H 1 is reset to
0. While in location 1, the value of clock H 1 shows the amount of time for
which control has been at this location. Control can remain here for no more
than 2 time units, as shown by the invariant H 1 ≤ 2, i.e., the invariant serves
as a way of enforcing progress: some transition via an outgoing edge must be
taken before the location invariant becomes false. The constraint H 1 ≥ 1 on
the edge from 1 to 0 ensures that a b-transition cannot occur until control
has resided at location 1 for at least 1 time unit, when a b-transition becomes
possible, taking control back to location 0. It is assumed that no clocks are
reset by a b-transition (the missing reset set on the edge from 1 to 0 is taken
to be ∅). The timing requirement expressed by this automaton is that every
a action is inevitably followed by a b action after a delay of 1 to 2 time units. 2

2.5.5 Formal Semantics

The semantics of the timed automaton, A, is defined by assigning a timed
transition system to it. A state in the transition system is a pair (q ,v) where
q is a location of A and v is a clock valuation satisfying the invariant of q .
The initial state consists of the initial location and the clock valuation in which
all clocks are set to 0. The transition relation −→ comprises both discrete
transitions and time transitions. In a discrete transition, the location of control
may change by following an outgoing edge. In a time transition, the location
of control remains the same while time passes; the location invariant must be
satisfied throughout the passage of time. Formally, the semantics is defined as
follows:

Definition 2.11 (Timed Automaton Semantics) The semantics of the timed
automaton A = (Q , qI ,A,H,E , I ) is given by the timed transition system

T [[A]] = (Σ, σI ,L,−→) where

• Σ = {(q ,v) | q ∈ Q ∧ v ∈ RH ∧ v |= I (q)}.
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• σI = (qI ,0) is the initial state.

• L = A ∪ R is the set of labels.

• −→ ⊆ Σ × L × Σ is the transition relation defined by:

– Discrete transitions

TA.1
(q , ζ, a,H, q ′) ∈ E ∧ v |= ζ ∧ v[H := 0] |= I (q ′)

(q ,v)
a

−→(q ′,v[H := 0])

We say that (q ′,v[H := 0]) is a discrete successor of (q ,v).

– Time transitions

TA.2
t ∈ R ∧ ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |= I (q)

(q ,v)
t

−→(q ,v + t)

We say that (q ,v + t) is a time successor of (q ,v). 2

Notation. If σ = (q ,v), then σ + t denotes the state (q ,v + t) and σ[H := 0]
denotes (q ,v[H := 0]).

Example 2.2 Referring again to Figure 2.1, we can see that the state space
Σ ⊆ {0, 1} × ({H 1} → R). The initial state is (0, {H 1 7→ 0}). The label set
L = {a, b} ∪ R and some possible transitions are:

(0, {H 1 7→ 0})
1.7
−→(0, {H 1 7→ 1.7})

a
−→(1, {H 1 7→ 0})

0.2
−→(1, {H 1 7→ 0.2})

1.3
−→

(1, {H 1 7→ 1.5})
b

−→(0, {H 1 7→ 1.5})
50
−→(0, {H 1 7→ 51.5})

a
−→(1, {H 1 7→ 0}) . . .

2

We define a notion of deterministic timed automata by analogy with the
classical notion of determinism for finite state automata, viz., the state reached
by following an edge with a given label is uniquely determined by the current
state. However, in the case of timed automata, it is not necessary to prohibit
the use of the same label on distinct outgoing edges of every location, but,
instead, it is required only that for any pair of such edges, the associated clock
constraints are mutually exclusive, so that at any time at most one of them is
enabled.

Definition 2.12 (Deterministic Timed Automaton) A timed automaton
is said to deterministic iff for all q ∈ Q , for all a ∈ A and for every pair of
distinct edges of the form (q , ζ1, a,H1, q

′) and (q , ζ2, a,H2, q
′′), there is no clock

valuation v which satisfies both of the following conditions:

1. v |= ζ1 and v[H1 := 0] |= I (q ′),

2. v |= ζ2 and v[H2 := 0] |= I (q ′′). 2
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Fig. 2.2: Product construction for timed automata

2.5.6 Composition of timed automata

By defining a product for timed automata, we can model a complex system
using several smaller, interacting component automata.

Let A1 = (Q1, q
I
1 ,A1,H1,E1, I1) and A2 = (Q2, q

I
2 ,A2,H2,E2, I2) be two

timed automata. Assume that the clock sets H1 and H2 are disjoint. Then
the product, denoted A1 | A2, is the timed automaton (Q1 × Q2, (q

I
1 , q

I
2 ),A1 ∪

A2,H1 ∪H2,E , I ), where I (q1, q2) is defined to be I1(q1) ∧ I2(q2) and the edges
E are given by:

1. For a ∈ A1 ∩ A2, for every (q1, ζ1, a,H1, q
′
1) ∈ E1 and (q2, ζ2, a,H2, q

′
2) ∈

E2, E contains ((q1, q2), ζ1 ∧ ζ2, a,H1 ∪ H2, (q
′
1, q

′
2))

2. For a ∈ A1 \ A2, for every (q1, ζ, a,H, q
′
1) ∈ E1 and every q2 ∈ Q2, E

contains ((q1, q2), ζ, a,H, (q
′
1, q2))

3. For a ∈ A2 \ A1, for every (q2, ζ, a,H, q
′
2) ∈ E2 and every q1 ∈ Q1, E

contains ((q1, q2), ζ, a,H, (q1, q
′
2))

From this we can see that the locations of the product are just pairs of
component locations and the invariant of a compound location is the conjunc-
tion of the invariants of its component locations. The edges are obtained by
synchronising edges with identical labels.

For timed automata A1 and A2, it can be shown that the product of the
models of A1 and A2 is the same as the model of the product of A1 and A2;
i.e., T [[A1]] | T [[A2]] is isomorphic to T [[A1 | A2]] [AD94]. Figure 2.2 shows a
simple example of a product construction of timed automata.

Example 2.3 (Train Gate Controller) The level crossing controller is a ubiq-
uitous introductory example. We consider a simple system consisting of three
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Fig. 2.3: Level Crossing Control System

components: a train, a gate and a controller. Each of these can be modelled
as a TA (see Figure 2.3). Timing constraints are expressed using 3 clocks: H 1
for the train, H 2 for the gate and H 3 for the controller. The train advises the
controller of its approach more than 2 minutes before it enters the crossing.
The approach of the train is indicated by the action approach, and entry into
the crossing by the action in. Notice that the guard on the edge labelled in

is H1 > 2. The maximum delay between the actions approach and exit is 5
minutes. The gate is open in location Gate.0 and closed in location Gate.2.
The actions raise and lower are used to indicate requests for service from
the gate by the controller. The actions up (resp. down) indicate that the gate
has been completely raised (resp. lowered). The controller idles in location
Controller.0. Whenever it detects that the train is approaching, it requests
that the gate should be lowered. Similarly, whenever it detects that the train
has left the crossing, it requests that the gate should be raised. The com-
plete system is expressed as the composition of the three components Train |

Gate | Controller. The safety requirement for the system is straightforward:
whenever the train is in the crossing, the gate should be closed. 2

2.6 Property Specification

The main point of constructing a formal system model is to check it for the
presence of desirable properties and the absence of undesirable properties. A
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first step in this direction involves formally stating the properties of inter-
est. A classification of properties which has proved of enduring usefulness is
the distinction between safety and liveness properties, introduced by Lam-
port [Lam77, Lam80]. Informally, a safety property specifies that ‘nothing bad
ever happens’, while a liveness property specifies that ‘something good even-
tually happens’. There is a variety of approaches to expressing both safety
and liveness properties of timed transition system models. We consider some
of them in this section. The remainder of the section is structured as follows.
In §2.6.1, we consider the expression of properties of individual states using
state formulas. This allows us to state simple safety invariants which can be
checked by exploring all reachable states and testing them for satisfaction of
the invariant property. More complicated properties, involving system execu-
tions, can be expressed using specification automata or temporal logic. These
approaches are considered in §2.6.2 and §2.6.3, respectively. The relationship
between automata and temporal logic is considered in §2.6.4.

2.6.1 State Properties

For a state transition model, S, the simplest properties to assert and check are
those concerned only with individual states, i.e. given some state σ determine
whether or not a property p holds at σ. What structure we attribute to a
state will depend on the circumstances. At the least, we assume that a state is
associated with a unique identifier; sometimes, in addition, we assume that a
state gives a valuation for a set of typed variables. Let Var be such a set and
let x range over Var . The value of x at state σ is denoted σ.x . We assume
that a state formula p is a boolean expression constructed in the usual way
from variables, function symbols, predicate symbols and boolean connectives,
and that there is a valuation function [[p]]σ, which gives the value of p at σ.
We write σ ||= p iff [[p]]σ = true. The reader should refer to [MP92] for further
explanation of state formulas, if required.

Let S = T [[A]] be a transition system, where the TA A = (Q , q I ,A,H,E , I )
is either a simple TA, or a composition of TA A1 | · · · | An . Then enable(a) and
Ai@q can be encoded as state formulas, where a ∈ A is an action and q ∈ Q is
a location. Informally, enable(a) is true if it is possible to take an a-transition
from the current state, and Ai@q is true if control in the TA Ai currently
resides at location q .

Formally,

(q ,v) ||= enable(a) iff ∃(q , ζ, a,H, q ′) ∈ E . v |= ζ ∧ v[H := 0] |= I (q ′)

and, for 1 ≤ i ≤ n,

((q1, q2, . . . , qn),v) ||= Ai@qi .

Example 2.4 Let S = T [[Train | Gate | Controller]], where Train, Gate
and Controller are as given in Figure 2.3. Let q = (1, 1, 0), i.e. q is a com-
pound location in which the components are: Train at location 1, Gate at lo-
cation 1 and Controller at location 0. Let v = {h1 7→ 1.5, h2 7→ 0.5, h3 7→ 1.5}
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be a clock valuation. Let σ = (q ,v). Then, we have σ ||= enable(down) and
σ ||= Gate@1, but σ 6||= enable(in) and σ 6||= Controller@1. 2

Example 2.5 Let σ be a state over integer variables x , y and boolean variable
z , such that σ = {x 7→ 5, y 7→ 7, z 7→ true}. Then, σ ||= z , σ 6||= x > y ,
σ ||= x + y < 15 and σ ||= z ⇒ (y − x = 2). 2

Example 2.6 In the level crossing control system of Figure 2.3, the safety
requirement can be stated as the absence of any reachable state σ satisfying
σ ||= Train@2 ∧ ¬ Gate@2. 2

2.6.2 Automata

We can go beyond checking simple state properties and check properties of
executions by reasoning about the system in the context of a testing (observer)
automaton. Given a TA AM which models the behaviour of a system, a test
TA AS is constructed to capture a property specification, and the composition
AM | AS is checked to see if some error state is reachable. Using this technique
it is possible, for example, to test a bounded response property, i.e., that the
occurrence of a stimulus is followed by a response within a bounded period of
time.

Example 2.7 Figure 2.41 shows a test automaton for the level crossing control
system. The test automaton is used to check the bounded response property
‘the gate is always raised strictly within 10 minutes of being lowered’. We con-
sider the behaviour of the composition Train | Gate | Controller | Test.
A down action in Gate synchronises with a down action in Test, causing a tran-
sition in Test to location 1, resetting the test clock Ht. The invariant Ht <=

10 ensures that control can reside at Test.1 for no more than 10 minutes. At
any time before 10 minutes, an occurrence of any action other than up leaves
control at Test.1; an up action returns control to Test.0. When 10 minutes
have passed at Test.1, the only possible action for Test is fail, which takes
control to the error location Test.2. The bounded response property for the
system is satisfied iff it is not possible to reach a state satisfying Test@2. 2

The approach to property checking via test automata is closely related to
classical verification methods based on language containment [AD94, Kur94,
Tho90]. We give a brief introduction to the use of such a method for timed
systems.

Let AM be a TA defining a system model and AS a TA, extended with
an acceptance condition, which defines a property specification. Let LM =

1 Standard abbreviations are used in the figure to reduce its size: an edge labelled with a
set of actions A represents a set of edges, one for each action in A; for any action a ∈ A, the
notation \ a stands for the set A \ {a}.
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Fig. 2.4: Test automaton for bounded response

Ξ∞(σIM ) be the set of non-Zeno executions of AM and LS = {ξ ∈ Ξ∞(σIS ) |
ξ satisfies the acceptance condition of AS} the set of those non-Zeno executions
of AS which satisfy its acceptance condition. LM is called the language of AM

and LS the language of AS . The system model satisfies the specification iff
LM ⊆ LS , i.e., if the language LM ∩ LS = ∅. Intuitively, AS defines the set
of all allowed executions and AM defines the set of all possible executions of
the system. The verification problem is to show that all possible executions are
allowed or, equivalently, that no disallowed execution is possible. Attention is
restricted to the non-Zeno executions since they are the only ones which can
reasonably be judged to model the behaviour of a physical system.

Several acceptance conditions have been proposed in the literature [Tho90].
For timed systems, Büchi acceptance and Muller acceptance have received most
attention [AD94]. Here we concentrate on Büchi acceptance.

Büchi acceptance is defined for a TA A = (Q , qI ,A,H,E , I ) augmented
with a set F ⊆ Q of accepting locations. In any execution, one or more loca-
tions are visited infinitely often. Let inf(ξ) be the set of all infinitely occurring
locations of the execution ξ. ξ is accepted iff inf(ξ) ∩ F 6= ∅, i.e. if some ac-
cepting state occurs infinitely often in it. A timed automaton extended with a
Büchi acceptance condition is called a timed Büchi automaton (TBA).

In practice, the test for language containment LM ⊆ LS is usually imple-
mented by constructing the automaton AM | AS and checking for the absence
of any acceptance cycle. A problem with this approach is the requirement to
construct the complement AS of the specification automaton AS , since TBA
are not closed under complementation. However, if AS is deterministic then
it can be complemented effectively. The restriction to deterministic TBA still
allows the expression of a wide range of specifications. An even more pragmatic
approach to the problem of complementation is to avoid it entirely by requiring
the specifier to provide AS directly, rather than AS . This approach is adopted,
for example, in [Tri98] where an efficient algorithm is given for testing TBA
emptiness.

Example 2.8 Figure 2.52 shows a deterministic TBA which specifies the bounded
response property for the level crossing control system. 2

2 Accepting locations are shown as a double circle, as usual.



2. Models, Specifications and Correctness 29

0 1

\down

down,{Ht}

Ht<10, \up

Ht<10, up

Fig. 2.5: TBA for bounded response

2.6.3 Temporal Logic

Temporal logic [Eme90] was developed originally in the field of philosophy,
where it was used to describe and reason about how the truth values of asser-
tions vary with time. For some assertion φ, typical temporal operators include
sometime φ, which is true now if φ will become true at some time in the
future, and always φ, which is true now if φ is true now and forever more.
Pnueli [Pnu77] was the first to show how temporal logic could be used to rea-
son about the behaviour of computer programs, particularly reactive programs
such as operating systems and communication protocols. This early work often
involved a difficult manual construction of the proof of some program property.
Interest in the use of temporal logic for program specification increased when
it was shown that the validity of a specification for a given program could be
determined automatically by model checking [CE81, QS81], i.e., by checking
the truth or falsehood of the specification when interpreted using the program
as a model. The EMC model checker, developed at Carnegie Mellon, allowed
small programs to be checked automatically in linear time for satisfaction of
specifications written in the branching time logic CTL [CES86]. Activity in the
area intensified with the introduction of symbolic methods [BCM+92, McM92]
which facilitate the storage of the large state spaces which arise in the checking
of realistic programs. The extension of temporal logics with explicit references
to time quantities was motivated by the desire to apply temporal logic to the
specification and verification of real-time programs, where, for example, it is
not enough to assert just “sometime φ”, but rather “sometime within the next
5 seconds φ”. Early quantitative temporal logics were based upon a discrete
model of time [AH93, Eme91, EMSS90, HLP90, Ost86]. However, the decid-
ability of the model-checking problem for a dense time model was demonstrated
in [ACD90] which introduced Timed Computation Tree Logic (TCTL), a timed
extension of CTL. The usefulness of this result was advanced by [HNSY94]
which gave a practical method for implementing the model-checking of timed
automata with respect to TCTL specifications; this method has been imple-
mented in the verification tool KRONOS [BDM+98]. An efficient, on-the-fly
implementation of model-checking for TECTL

∗
∃, a logic strictly more expressive

than TCTL, is proposed in [BTY97].
It is outside the scope of this dissertation to provide a detailed survey of

temporal logics and model-checking, for which we refer the reader to the liter-
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ature [AH91, CGP99, Eme90, Yov97]; however, we do provide an introduction
to TCTL, since it is used in the rest of the dissertation for specifying real-time
properties.

TCTL: Syntax and Semantics

Let I denote the set of all intervals of R of the form [c, c ′], [c, c′), (c, c′], (c, c′),
[c,∞] and (c,∞) where c, c ′ ∈ N. The set of TCTL formulas is defined by the
following syntax:

φ ::= p | ¬ φ | φ ∨ φ | φ ∃UI φ | φ ∀UI φ

where p is a state formula and I ∈ I is an interval.
Let A be a TA. TCTL formulas are interpreted with respect to the transition

system T [[A]] = (Σ, σI ,L,−→), and a satisfaction relation ||= for state formulas
p. The fact that a state σ ∈ Σ satisfies a TCTL formula φ is denoted σ |=(A,||=) φ
(the subscript is usually omitted to avoid clutter). The dense nature of the
time model requires us to take some care in the definition of satisfaction for
TCTL and it is helpful to introduce some further notation before giving a
formal definition. For a state σ, the temporal modalities ∃UI and ∀UI are
interpreted with respect to the non-Zeno executions starting from σ, i.e., Ξ∞

A (σ).
Suppose ξ ∈ Ξ∞

A (σ) is such an execution, along which we see the partial sequence

. . . σi
t

−→σi+1 . . .. In interpreting a formula such as φ1 ∃UI φ2, we are required,
by the dense nature of time, to consider the truth values of the sub-formulas φ1

and φ2, not only at σi and σi+1, but also at all states between them, as time
passes for t time units. This motivates the introduction of the idea of a position
along an execution, where for an execution ξ ∈ ΞA(σ) a position of ξ is a pair
(i , t) ∈ N×R such that t ≤ δξ(i). We denote by Πξ the set of all positions of ξ.
Positions are ordered lexicographically so that (i , t) ≤ (j , t ′) iff i < j , or i = j
and t ≤ t ′. Given an execution ξ and a position (i , t) of ξ, we use ξ(i , t) to
denote the state ξ(i) + t , and ∆ξ(i , t) to denote ∆ξ(i) + t . We can now define
σ |= φ as follows:

σ |= p iff σ ||= p
σ |= ¬ φ iff σ 6|= φ
σ |= φ1 ∨ φ2 iff σ |= φ1 or σ |= φ2

σ |= φ1 ∃UI φ2 iff ∃ ξ ∈ Ξ∞
A (σ) . ∃π ∈ Πξ . ∆ξ(π) ∈ I ∧ ξ(π) |= φ2 ∧

∀π′ ≤ π . ξ(π′) |= φ1 ∨ φ2

σ |= φ1 ∀UI φ2 iff ∀ ξ ∈ Ξ∞
A (σ) . ∃π ∈ Πξ . ∆ξ(π) ∈ I ∧ ξ(π) |= φ2 ∧

∀π′ ≤ π . ξ(π′) |= φ1 ∨ φ2

A TA A is said to satisfy a TCTL formula φ, denoted A |= φ, if the initial state
σI satisfies φ.

The only tricky parts in the definition of satisfaction concern the operators
∃UI and ∀UI . The intention is that a state σ satisfies the formula φ1 ∃UI φ2

if there is some position along a non-Zeno run starting from σ which satisfies
φ2, and the time elapsed in the run up to that position lies within the interval
I , and finally that φ1 is satisfied continuously throughout the run up to that
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position. In fact, the formal statement of the final condition is that φ1 ∨ φ2 is
satisfied continuously until φ2 is satisfied. This modification is required to com-
ply with the dense nature of the time domain, as explained in [HNSY94]. The
interpretation for ∀UI is similar, the only difference being that the conditions
must be satisfied by all non-Zeno runs from σ.

A number of abbreviations are commonly used:

∃3I φ =̂ true ∃UI φ

∀3I φ =̂ true ∀UI φ

∃2I φ =̂ ¬ ∀3I ¬ φ

∀2I φ =̂ ¬ ∃3I ¬ φ

Other abbreviations are used to simplify the notation for intervals: for example,
∀3≤5 φ is equivalent to ∀3[0,5] φ and ∃2 φ is equivalent to ∃2[0,∞) φ.

Property Specification Patterns

It is not always easy to construct a temporal logic formula which specifies pre-
cisely a given property, e.g. the specification of a property of periodicity with
bounded jitter will be seen shortly to require some effort. This problem has
received some attention with respect to the qualitative logics LTL and CTL,
for which specification patterns have been identified for a variety of commonly
required properties [DAC98]. It is possible to apply this approach also to quan-
titative logics like TCTL. We give here a small selection of some simple property
patterns.

Invariance ∀2 φ — φ is invariantly true, i.e., it holds in all states along all
executions

Bounded Invariance ∀2I φ — φ is satisfied continuously throughout the in-
terval I .

Bounded Inevitability ∀3I φ — φ is satisfied eventually at some time within
the interval I ;

Bounded Potentiality ∃3I φ — φ is satisfied eventually at some time within
the interval I , along at least one execution.

Upper Bounded Response ∀2(φ1 ⇒ ∀3≤t φ2) — φ2 is satisfied within at
most t time units of the satisfaction of φ1

Lower Bounded Response ∀2(φ1 ⇒ ¬ ∃3≤t φ2) — satisfaction of φ2 is
separated by at least t time units from the satisfaction of φ1

Non-Zenoness init ⇒ ∀2 ∃3=1 true — Assume that init uniquely charac-
terises the initial state of a system. Then, the truth of this formula
implies that the system is non-Zeno, i.e. that from any reachable state,
time can progress without bound [HNSY94].
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Periodicity with bounded jitter ∀3 φ ∧ ∀2(φ ⇒ ∀3≤t((∀2<t1
¬ φ) ∧

(∀3≤t2
φ))) — Assume that φ stands for enable(a) which holds iff the

action a is enabled. Assume also that a always occurs within t time
units of becoming enabled. Then the formula above specifies that a oc-
curs periodically, the distance between occurrences being in the interval
[t1, t2 + t ].

There is a need for a more systematic approach to the development of property
patterns for TCTL, with a view to developing a useful library.

Example 2.9 Consider again the level crossing controller of Figure 2.3. The
safety property ‘the gate is closed whenever the train is in the crossing’ can
be expressed in TCTL as init ⇒ ∀2(Train@2 ⇒ Gate@2), and the bounded
response property ‘the gate is always opened within 10 seconds of being closed’
as init ⇒ ∀2(Gate@2 ⇒ ∀3<10 Gate@0). 2

2.6.4 Discussion

Naturally enough, the literature on both timed and untimed formalisms is
replete with discussions concerning the pros and cons of specification using
automata and temporal logic, and of the relationship between them [AH91,
BVW94, DW99, GPVW95, HKV96, Var96, VW86, VW94]. A prevalent view
is that automata, because of their explicit structure and simple, operational se-
mantics, are better suited to the construction of verification algorithms, while
temporal logics, because of their concise, more readable syntax, are better suited
to the expression of specifications. An obvious direction to follow in the search
for practical and usable formal methods is to see to what extent it is possible to
automate the translation of specifications expressed in temporal logic to equiva-
lent automata which can be used for verification. In the case of the qualitative,
linear-time logic LTL, this has been achieved [GPVW95] and found to lead to
an efficient, on-the-fly model checking procedure which has been implemented
in the verification tool SPIN [Hol96].

A similar relationship between the branching-time logic CTL and alter-
nating tree automata has been established in [BVW94]. This work has been
extended to TCTL in [HKV96] and the relationship between TCTL and timed
alternating tree automata is further developed in [DW99]. Although, this
work lays the theoretical foundations for efficient, on-the-fly model checking
for TCTL, we know of no implementations of the ideas or experimental results
which demonstrate their effectiveness in practice.

The relationship between temporal logic and testing automata is studied
in [ABL98]. The authors introduce a restricted safety and bounded liveness
logic (SBLL) and demonstrate that for any closed formula φ of SBLL and any
TA AM , there is a test automaton AS such that AM satisfies φ iff no error
state is reachable in AM | AS

3. Moreover, they show how to construct AS

3 The notions of satisfaction and parallel composition used in [ABL98] differ somewhat from
those used in this dissertation, but their work is of interest and relevance, even so.



2. Models, Specifications and Correctness 33

automatically from φ. In [ABBL98], a complete characterisation is provided
of the class of properties of TA for which model-checking can be reduced to
reachability analysis in the context of testing automata.

In conclusion, we remark that a variety of techniques are useful in property
specification. Most often, specifications are more succinctly and clearly ex-
pressed with temporal logic than with automata. Even so, support in the form
of a library of specification templates would be welcome. Restricting oneself
to a logic such as SBLL allows for the automatic generation of test automata
which can be used in model-checking based on efficient reachability techniques.
However, the use of a logic such as TCTL permits the expression of a wider
range of properties. Quite often, human ingenuity enables us to construct a test
automaton or annotate an existing automaton in such a way that a verification
problem can be solved more efficiently, but in adopting this approach, we need
to be especially vigilant that we have really specified the property that was
intended.

2.7 Verification

Verification is the conclusive demonstration that a system model possesses some
well-specified property. It can take many forms, depending on the form of
the model and the property. In this work, we are concerned primarily with
reachability analysis. We assume that a system model is given as a TA A and
that the property of interest is the reachability of some set of target states from
a specified source state, along some time-divergent run in the transition system

T [[A]]. As we have seen, verification of safety properties of real-time systems can
be formulated as reachability problems for TA. Also, the techniques developed
in the solution of the reachability problem provide the basis for solutions to a
wide variety of other verification problems such as model checking and language
emptiness. The difficulty of the reachability problem for TA is caused by the
infinite state spaces which inevitably arise because of the dense nature of the
time domain. Solutions to the problem are based upon the identification of a
finite number of classes of equivalent states which partition the infinite state
space. We introduce the main ideas below.

2.7.1 Region Equivalence

The classic equivalence which is the foundation for most of the verification re-
sults on timed automata is the region equivalence [AD90, Alu91, ACD93, AD94].
Region equivalence has the crucial property of inducing a finite partition of the
state space while preserving both linear time properties (such as reachability
and TBA-emptiness) and branching time properties (such as TCTL satisfac-
tion). Informally, clock valuations are region equivalent if they agree on the
integral parts of all clock values and on the ordering of the fractional parts of
all clock values. This idea on its own does not lead to a finite number of equiv-
alence classes, since clock values can grow arbitrarily large. However once the
value of a clock exceeds the largest constant c to which it is compared in a clock
constraint, then its actual value is of no further interest – it is simply greater
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than c. These ideas, taken together, give the basis for a finite partitioning of
the infinite space of clock valuations, which is presented formally below.

Definition 2.13 (Region Equivalence) Let t ∈ R. We denote by btc the
greatest integer smaller than or equal to t and by 〈t〉 the value t−btc. Let A be
a timed automaton with set of clocks H = {h1, h2, . . . , hn}. For i = 1, 2, . . . ,n,
let ci ≥ cmax (A, hi ). Two H-valuations v and v′ are region equivalent, denoted
v ' v′, iff for 1 ≤ i , j ≤ n the following conditions hold:

1. v(hi ) > ci iff v′(hi ) > ci

2. if v(hi ) ≤ ci then

(a) bv(hi )c = bv′(hi )c

(b) 〈v(hi )〉 = 0 iff 〈v′(hi )〉 = 0

(c) 〈v(hi )〉 ≤ 〈v(hj )〉 iff 〈v′(hi )〉 ≤ 〈v′(hj )〉 2

It can be shown that ' is an equivalence relation, whatever the values of
ci , and that it partitions RH into a finite number of equivalence classes, called
clock regions. The clock region including v is denoted [v]. A clock region of RH

is known as a H-region. A clock region ρ is said to be unbounded if for all v ∈ ρ,
v(hi ) > ci , for i = 1, 2, . . . ,n. Clearly, the values of all clocks in an unbounded
region ρ may grow without bound and [v + t ] = ρ, for all t ∈ R. It is a useful
property of region equivalence that every clock region can be characterised
uniquely by a clock constraint which it satisfies. When convenient, we will
identify a clock region with the constraint which characterises it.

Example 2.10 Figure 2.6 shows an example of the region equivalence for two
clocks h1 and h2 with maximal constants c1 = c2 = 2. Some characteristic
constraints are shown. 2

The number of clock regions is finite and bounded from above [ACD93] by

n! · 2n ·
∏

i≤n(2 · ci + 2)

It can be shown that for any clock constraint ψ of A, if v ' v′ then v |= ψ iff
v′ |= ψ.

2.7.2 Region Graph

The region equivalence ' over clock valuations can be extended to an equiva-
lence relation over the state space of A. Let (Σ, σI ,L,−→) be the transition sys-
tem of A. Two states from Σ are equivalent if they have identical locations and
their clock valuations are region equivalent. Formally, for (q ,v), (q ′,v′) ∈ Σ,
(q ,v) ' (q ′,v′) iff q = q ′ and v ' v′. The region (equivalence class) of
σ = (q ,v) is denoted [σ]. The key property of region equivalence is its stability
with respect to the transition relation of A, stated as follows:
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Fig. 2.6: Clock regions on {h1, h2} with c1 = c2 = 2

Proposition 2.1 (Stability of region equivalence) Let T [[A]] = (Σ, σI ,A∪
R,−→) be the transition system of A. Let σ1 ' σ2.

1. For all a ∈ A, whenever σ1
a

−→σ′1, there exists σ′2 such that σ2
a

−→σ′2 and
σ′1 ' σ′2.

2. For all t ∈ R, whenever σ1
t

−→σ′1, there exists σ′2 and t ′ ∈ R such that

σ2
t ′

−→σ′2, and σ′1 ' σ′2. 2

We can gain an informal understanding of stability by considering again the
regions of Figure 2.6. A state change can occur either through a discrete tran-
sition or a time transition. For a discrete transition, if two states are in the
same region then they satisfy the same set of guards and so if the transition
is possible for one state then it is also possible for the other. In taking the
transition, one or more of the clocks h1, h2 may be set to 0. Assume that h2 is
reset. This give a projection onto the h1 axis. It can be seen that equivalent
states are projected to equivalent states. For a time transition, since both h1

and h2 increase at the same rate, the state change occurs along the diagonal
at 45◦ to the h1 axis. Again it can be seen that for any region and any pair
of states within it, the sequence of regions encountered on the diagonal is the
same.

Definition 2.14 (Region Graph [ACD93, Yov97]) Let T [[A]] = (Σ, σI ,A ∪
R,−→). Let ' be a region equivalence for A over Σ. Let τ /∈ A and
Aτ = A ∪ {τ}. The region graph RG(A) is given by (Σ', [σ

I ],Aτ ,−→rg) where

1. Σ' = {[σ] | σ ∈ Σ}

2. −→rg ⊆ Σ' × Aτ × Σ' is such that

(a) for all a ∈ A and for all ρ, ρ′ ∈ Σ', ρ
a

−→rgρ
′ iff there exists σ, σ′ ∈ Σ

such that ρ = [σ], ρ′ = [σ′], and σ
a

−→σ′.
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(b) for all ρ, ρ′ ∈ Σ', ρ
τ

−→rgρ
′ iff

i. ρ = ρ′ is an unbounded region, or

ii. ρ 6= ρ′ and there exists σ, σ′ ∈ Σ and t ∈ R such that σ
t

−→σ′,
and ρ = [σ] and ρ′ = [σ′], and for all t ′ ∈ R, if t ′ ≤ t then [σ+ t ]
is either ρ or ρ′. 2

In the region graph, the passage of time is indicated by the occurrence of a τ -
transition which records the fact that time has passed but abstracts the exact
amount of time elapsed. RG(A) is known as a time-abstract transition system.

From the stability of the region equivalence, it is clear that a state σ ′ is
reachable from a state σ in the transition system of A iff [σ ′] is reachable
from [σ] in the region graph of A. It is also clear that RG(A) is finite since
Σ' = {(q , [v]) | q ∈ Q ∧ v ∈ RH ∧ v |= I (q)} is finite, Aτ is finite and
therefore −→rg ⊆ Σ' × Aτ × Σ' is finite. It follows that reachability can be
decided automatically by constructing and searching the region graph. Both
forward and backward traversals of the region graph lead to effective algorithms.
For example, a method based on forward traversal consists in starting from [σ]
and visiting the set of its successors and the successors of those and so on, until
all reachable regions have been visited. In this way, we construct the sequence
Z0 ⊆ Z1 ⊆ · · · , such that

Z0 = [σ]

Zi+1 = Zi ∪ {ρ | ∃ρi ∈ Zi . ρi−→rgρ}

Assume that Z = limi≥0 Zi . Then, [σ′] is reachable from [σ] iff [σ′] ∈ Z .

2.7.3 Complexity of reachability

A timed automaton A with m locations and n clocks, in which c ≥ cmax (A),
gives rise to a region graph with at most m · n! · 2n · (2c + 2)n nodes. This
bound is linear in the number of locations but exponential both in the number
of clocks and the size of the constants appearing in the clock constraints. It can
be shown that the number of edges in the region graph is similarly related to
the number of locations and clocks and the size of constants [AD94]. In order
to determine if a state σ is reachable in T [[A]], we search the region graph to
see if [σ] is reachable in RG(A) – Figure 2.7 outlines an algorithm to achieve
this. Such a search is linear in the number of nodes and edges of the region
graph. Therefore, the complexity of the reachability problem for A is linear in
the number of locations, exponential in the number of clocks and exponential
in the size of the constants in the clock constraints. Formally, the problem
is shown to be PSPACE-complete [AD94]. In fact, it is usually the case, in
practice, that A is a product of component automata, so the region graph can
be seen as being exponential also in the number of component automata. To
summarise the causes of complexity, we can identify the following factors:

1. the number of component automata
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VISITED := {(qI , [0])}
WAITING := {(qI , [0])}
while WAITING 6= ∅ do

remove some ρ from WAITING

succ := {ρs | ρ−→rgρs}
foreach ρs ∈ succ do

if ρs /∈ VISITED

add ρs to VISITED

add ρs to WAITING

fi

od

od

Fig. 2.7: Region graph reachability

2. the number of clocks

3. the size of the constants in the clock constraints

The combination of these factors cause a rapid growth in the number of states
which must be considered, as the size of the problem description increases. This
rapid growth is known as the state explosion problem and is currently the most
challenging of the technical difficulties to be addressed in the application of
automated analysis to formal verification problems in the analysis of real-time
systems.

The state explosion problem

Consider again the algorithm for generating reachable regions in Figure 2.7. It
can be seen that the algorithm stores each region from the region graph in the
set VISITED . For the purposes of this algorithm, a ‘state’ is equated with a
region. Storing the set of VISITED states makes termination of the algorithm
easy to determine and ensures that states are not explored (have their successors
generated) more than once. However, because the number of states can be very
large, the available computational resources may become exhausted before the
problem is solved. A number of attacks on the state explosion problem can be
suggested:

1. generate fewer ‘states’,

2. store fewer ‘states’,

3. compress the ‘state’ store so that it requires less memory.

Such methods may be orthogonal and so can be combined to produce even
greater benefits. In the following section, we consider one such approach which
has proven successful in practice and is the basis for some of the most effective
verification tools currently in use.
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2.7.4 Constraint Solving

The partitioning of the space of clock valuations which arises in the construc-
tion of the region graph, although finite, is very fine-grained. Consequently,
implementations based directly on the region graph turn out to be not very
efficient. In [HNSY94] a symbolic technique was proposed which works di-
rectly with the clock constraints which arise in the calculation of discrete- and
time-predecessors (and successors). This technique leads to a much coarser par-
titioning of the state space. The method of [HNSY94] works in a ‘backward’
manner, whereby starting from a set of target locations, the set of all states
from which it is possible to reach those locations is calculated – it is then sim-
ple to test if an initial state lies within this set. In fact, this method is used in
solving the model-checking problem for TCTL rather than simple reachability.
The main problems with a backward traversal of the state space are:

• the whole of the potential state space may be considered rather than just
that part which is reachable from an initial state;

• an answer cannot be returned until the complete state space exploration
terminates;

• it is not easy to provide a diagnostic trace in the case that a violating
state is found to be reachable.

The idea of working symbolically with clock constraints in a ‘forward’ man-
ner seems to have arisen independently, at about the same time, in several
groups [ACD+92, Oli94, YPD94]. This approach is often more efficient in prac-
tice, allows for a diagnostic trace to be provided when a property is found to
be violated and is the basis of successful implementations [BLL+95, DOTY95].
We rely on ‘forward’ constraint solving techniques in Chapter 5 and provide an
introduction below.

Symbolic states

A node in the region graph of a TA A is a ‘symbolic’ state which represents a
(possibly infinite) number of states in the transition system of A. Each node
is of the form (q , ρ) where q is a location of A and ρ is a clock region. Such a
symbolic state represents the set of states (q ,v) where v ∈ ρ. We have seen that
every clock region can be characterised by a clock constraint, so a node (q , ρ)
can be written as (q , ψ) where ψ is the characteristic formula of the region ρ.
This idea can be extended by allowing ψ to be a constraint which characterises
a union of perhaps many clock regions. Formally, a symbolic state is defined
as follows.

Definition 2.15 (Symbolic state) Let A = (Q , qI ,A,H,E , I ) be a timed
automaton. A symbolic state of A is a pair (q , ψ) where q ∈ Q is a location of
A and ψ ∈ ΨH is a clock constraint.

The meaning of a symbolic state (q , ψ), denoted [[(q , ψ)]], is the set of states
{(q ,v) | v |= ψ}. 2
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Let Z be a set of symbolic states. We denote by [[Z ]] the set
⋃
{[[(q , ψ)]] |

(q , ψ) ∈ Z} and by locations(Z ) the set of locations {q | ∃ψ ∈ ΨH . (q , ψ) ∈ Z}.
The state space may be covered by a much smaller set of symbolic states

of this form, and so the problem of state space explosion may be mitigated to
some extent. In particular, a set of regions Z can be represented as a united set
of symbolic states Z ′ = {(q , ψq ) | q ∈ Q ∧ ψq ∈ ΨH} in which there is at most
one element (q , ψq ) for each location q , and ψq is the characteristic formula for
the set of all clock regions in Z which are paired with the location q .

Let Z be a set of symbolic states. We denote by ψZ
q the clock constraint char-

acterising the set of clock valuations associated with q in Z , i.e., [[ψZ
q ]] =

⋃
{[[ψ]] |

(q , ψ) ∈ Z}. We use unite(Z ) to denote the set {(q , ψZ
q ) | q ∈ locations(Z )},

and Z1 ] Z2 to denote unite(Z1 ∪ Z2) and
⊎

i∈I Zi to denote unite(
⋃

i∈I Zi).
In the following section, we discuss the calculation of the discrete and time-

successors of symbolic states, and show how united sets of symbolic states can
be used in the forward computation of reachable states.

Forward computation of clock constraints

Let q ∈ Q , ψ ∈ ΨH and e = (q , ζ, a,H, q ′) ∈ E . We consider predicate
transformers suce(ψ) and suc

q
τ (ψ) which are needed in the calculation of discrete

and time-successors, respectively, of a symbolic state (q , ψ).
On the one hand, suce(ψ) denotes a clock constraint over H which charac-

terises the set of clock valuations which are reachable from the clock valuations
in ψ when a discrete transition is taken via the edge e, i.e., suce(ψ) denotes a
predicate satisfying

[[ suce(ψ)]] = {v[H := 0] | v ∈ RH ∧ (v |= ψ ∧ ζ) ∧ v[H := 0] |= I (q ′)}

On the other hand, suc
q
τ (ψ) denotes a clock constraint over H which charac-

terises the set of clock valuations which are reachable from the clock valuations
in ψ as time passes while control resides at q , i.e., suc

q
τ (ψ) denotes a predicate

satisfying

[[ suc
q
τ (ψ)]] = {v + t | v ∈ RH ∧ t ∈ R ∧ v |= ψ ∧

∀ t ′ ∈ R . t ′ ≤ t ⇒ v + t ′ |= I (q)}

Together, suce(ψ) and suc
q
τ (ψ) can be used in solving the reachability prob-

lem by computing the sequence of sets of symbolic states Z0,Z1, · · · as follows:

Z0 = {(q , ψ)}

Zi+1 = {(q ′, suce(ψ)) | (q , ψ) ∈ Zi ∧ e = (q , ζ, a,H, q ′) ∈ E} ]

{(q , sucq
τ (ψ)) | (q , ψ) ∈ Zi}

Notice that Zi ⊆ {(q , suc
q
τ (ψ)) | (q , ψ) ∈ Zi}. Let Z = limi≥0 Zi . All

states in a symbolic state (q ′, ψ′) are reachable from some state in (q , ψ) iff
(q ′, ψ′′) ∈ Z and [[ψ′]] ⊆ [[ψ′′]], i.e., ψ′ implies ψ′′.
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Implementing the constraint solving approach

In order to exploit these ideas in practice, it is necessary to see how it is possible
to represent clock constraints and to implement the operations ], suce and sucτ
using this representation. As a first step, we observe that ΨH is closed under
these operations for any timed automaton, i.e., the operations are always well-
defined – the reader is referred to [Oli94] for a proof. Next, we note that the
adoption of a ‘geometric’ perspective leads to natural definitions of many of the
operations which are needed and helps in acquiring an intuitive understanding
of them. We follow this approach below.

Polyhedra

Let H = {h1, h2, . . . , hn} be a set of clocks. A union of H-regions is a H-
polyhedron in the n-dimensional Euclidean space, where a H-polyhedron is
simply the set of H-valuations satisfying a clock constraint ψ ∈ ΨH. It is
often convenient, notationally, to identify a constraint with the H-polyhedron
which it defines, and so, for example, we will write v ∈ ψ for v ∈ [[ψ]], or ψ1∪ψ2

for [[ψ1]] ∪ [[ψ2]].
A polyhedron is said to be convex, if for any two points within it, all points

on the line segment joining them are also within it. Formally, a H-polyhedron
ζ is convex iff for any v1,v2 ∈ ζ and t ∈ R such that 0 < t < 1, we have
t ·v1 +(1− t) ·v2 ∈ ζ. This means that if v and v+ t are clock valuations, both
of which lie within a convex polyhedron ψ, then all valuations v + t ′, where
t ′ ≤ t , also lie within ψ.

It can be shown that the set of convex H-polyhedra coincides with the set
ZH of clock zones, i.e., any convex H-polyhedron can be expressed as a conjunc-
tion of atomic constraints, and any conjunction of atomic constraints defines
a convex H-polyhedron. Note that any non-convex H-polyhedron, ψ, can be
expressed as the union of a finite set of convex H-polyhedra,

⋃
{ζ1, ζ2, . . . , ζm}.

Example 2.11 Figure 2.8 shows (a) one convex and (b,c) two non-convex poly-
hedra, which are unions of clock regions and are defined by the constraints:

a) 1 ≤ h1 ≤ 3 ∧ 1 ≤ h2 ≤ 3 ∧ −1 ≤ h2 − h1 ≤ 1

b) (0 ≤ h1 ≤ 3 ∧ 0 ≤ h2 ≤ 1 ∧ 0 ≤ h1 − h2 ≤ 2) ∨
(1 ≤ h1 ≤ 2 ∧ 2 ≤ h2 ≤ 3)

c) (0 ≤ h1 ≤ 1 ∧ 1 ≤ h2 ≤ 3) ∨ (1 ≤ h1 ≤ 2 ∧ 1 ≤ h2 ≤ 2) 2

Operations on polyhedra

In this section, we define a number of operations on polyhedra which are needed
in the rest of the dissertation. Some of the operations are illustrated in Fig-
ure 2.9 where the result of each operation is indicated by the shaded part in
each case.
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Fig. 2.8: Convex and Non-convex Polyhedra

Basic operations Intersection, union and complementation are given imme-
diately by conjunction, disjunction and negation respectively, i.e., ψ1 ∩ ψ2 =
{v ∈ RH | v |= ψ1 ∧ ψ2}, ψ1 ∪ ψ2 = {v ∈ RH | v |= ψ1 ∨ ψ2} and ψ = {v ∈
RH | v |= ¬ ψ} – examples of intersection and union are given in Figures 2.9(a)
and (b), respectively. Difference is defined as usual by ψ1 \ ψ2 = ψ1 ∩ ψ2 and
the inclusion ψ1 ⊆ ψ2 is equivalent to ψ1 \ ψ2 = ∅.

Convex hull The convex hull of two H-polyhedra ψ1 and ψ2 is denoted ψ1 t
ψ2, and is defined to be the smallest convex H-polyhedron ζ which contains
both ψ1 and ψ2, i.e., ψ1 ⊆ ζ and ψ2 ⊆ ζ. Figure 2.9(c) gives an example of the
convex hull operation.

Projections The forward projection of a H-polyhedron ψ, denoted ↗ψ, is
the largest set of H-valuations which can be obtained from the valuations in ψ
by the passage of time. Formally,

↗ψ =̂ {v + t | v ∈ ψ ∧ t ∈ R}

For a polyhedron ψ on {h1, h2}, since h1 and h2 advance together in lock-step
with the passage of time, the forward projection ↗ψ encompasses all those
valuations which can be reached from a valuation in ψ by following the diagonal
at 45◦ to the horizontal axis. Figure 2.9(d) shows an example.

The operation giving the reset successors of a H-polyhedron ψ, for a given
reset set H ⊆ H, is denoted ψ[H := 0] and is defined by:

ψ[H := 0] =̂ {v[H := 0] | v ∈ ψ}

Intuitively, the reset of a clock h2, for a polyhedron ψ, involves a projection of
ψ onto the h1 axis – see Figure 2.9(e).

c-closure The operation of c-closure, defined on convex polyhedra, is based
on the idea that if the value of some clock exceeds a specified constant c in each
of two clock valuations, then that clock is not regarded as significant in distin-
guishing between them. The c-closure operation is used to ensure the finiteness
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Fig. 2.9: Operations on Polyhedra

of partitionings of the infinite space of clock valuations. We have seen a similar
idea already in connection with the region graph (§2.7.2). c-closure appears
in the literature under a variety of names, e.g., rounding [Won95], extrapola-
tion [DT98] and normalisation [Pet99]. The definition given here follows [Tri98].

Let c ∈ N and v,v′ ∈ RH. We say that v and v′ are c-equivalent if:

1. for any clock h, either v(h) = v′(h), or v(h) > c and v′(h) > c, and

2. for any pair of clocks, h1, h2, either v(h1) − v(h2) = v′(h1) − v′(h2), or
v(h1) − v(h2) > c and v′(h1) − v′(h2) > c.

For a convex H-polyhedron ζ, the c-closure of ζ, denoted closec(ζ), is defined
to be the greatest convex H-polyhedron ζ ′ ⊇ ζ, such that for all v′ ∈ ζ ′ there
exists v ∈ ζ and v, v′ are c-equivalent. ζ is said to be c-closed if closec(ζ) = ζ.
Figure 2.9(f) shows an example of c-closure.

Proposition 2.2 c-closure satisfies the following properties:

1. If ζ is c-closed then it is c ′-closed, for any c ′ ≥ c.

2. If ζ1 and ζ2 are c-closed then ζ1 ∩ ζ2 is also c-closed.

3. For any ζ, there exists a constant c such that ζ is c-closed.

4. For any constant c, there is a finite number of c-closed convex H-polyhedra.
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Proof cf. Tripakis [Tri98] 2

Properties of polyhedral operations

Firstly, we identify those operations of the previous section which preserve
convexity.

Proposition 2.3 Let ζ, ζ1, ζ2 be convex H-polyhedra. Let H ⊆ H and c ∈ N.
Then, ζ1 ∩ ζ2, ζ1 t ζ2, ↗ ζ, ζ[H := 0] and closec(ζ) are all convex.

Proof cf. Tripakis [Tri98] 2

Proposition 2.4 Let A be a timed automaton with a set H of clocks and a set
E of edges with e = (q , ζ, a,H, q ′) ∈ E. Let ψ be a H-polyhedron. The following
equalities hold.

suce(ψ) = ((ψ ∩ ζ)[H := 0]) ∩ I (q ′)

sucq
τ (ψ) = ↗ψ ∩ I (q)

Proof The equalities can be derived directly from the definitions of sucτ , suce

and the polyhedral operations. 2

Proposition 2.4 leads some way towards an implementation of the constraint-
solving approach. In order to make further progress, we need to define an
efficient representation for clock constraints and show how the polyhedral oper-
ations can be implemented on it. It is also necessary to consider the implications
of the use of the ] operator, which, in the general case, gives rise to non-convex
polyhedra. The issues raised by this consideration are more easily discussed fol-
lowing the introduction of the difference bound matrix representation of clock
constraints which is presented in the following section.

2.7.5 Difference Bound Matrices

The efficient implementation of algorithms for automatic analysis based on con-
straint solving relies upon a representation of polyhedra which is compact and
which supports the operations identified in section 2.7.4. Dill [Dil89] introduced
difference bound matrices (DBMs) for this purpose4 and this data structure
remains pre-eminent in the implementation of analysis tools for dense-time sys-
tems – KRONOS and UPPAAL are examples. We now present those details
of DBMs and their use which will be needed later in the dissertation; more
detailed presentations, including proofs, can be found in [Dil89, Oli94, Tri98,
Yov93, Yov97].

4 In fact, the data structure was known many years earlier [Bel57] and later had been used
in the analysis of Time Petri nets [MB83] but Dill’s paper revived interest and pointed the
way to their use in the analysis of timed automata.
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Fig. 2.10: Representation of a convex polyhedron by DBM’s

Bounds

A bound is a pair (c,≺) ∈ Z∞ × {<,≤}, where Z∞ = Z ∪ {∞}. Bounds are
ordered as follows: c <∞, for any c ∈ Z, and < is strictly less than ≤; we then
take the usual lexicographic ordering where for all (c,≺), (c ′,≺′) ∈ Z∞×{<,≤},
(c,≺) < (c ′,≺′) if either c < c ′, or c = c′ and ≺<≺′. (c,≺) ≤ (c ′,≺′) if
(c,≺) < (c ′,≺′) or c = c′ and ≺=≺′.

The minimum of two bounds (c,≺), (c ′,≺′), denoted min((c,≺), (c ′,≺′)), is
(c,≺) if (c,≺) ≤ (c ′,≺′) and (c′,≺′) otherwise. The maximum of two bounds
(c,≺), (c ′,≺′), denoted max((c,≺), (c ′,≺′)), is (c,≺) if (c ′,≺′) ≤ (c,≺) and
(c′,≺′) otherwise. The addition of bounds is defined by the following table:

+ (c′,≤) (c′, <)

(c,≤) (c + c ′,≤) (c + c′, <)
(c, <) (c + c ′, <) (c + c′, <)

Note that as usual c + ∞ = ∞ + c = ∞ for any c ∈ Z∞.

Representation of convex polyhedra

Let H = {h1, h2, . . . , hn} be a set of clocks. The set ZH of convex H-polyhedra
contains elements which are given as the conjunction of atomic constraints. An
atomic constraint of the form hi − hj ≺ c can be represented by associating the
bound (c,≺) with the pair of clocks hi , hj . A constraint such as hi − hj ≥ c
is equivalent to hj − hi ≤ −c and so can be represented by associating the
bound (−c,≤) with hj , hi . In order to achieve a uniform representation, a new
fictitious clock variable h0 is introduced to represent the constant 0. This allows
constraints such as hi ≺ c to be represented as hi−h0 ≺ c. In this way, a convex
H-polyhedron can be encoded as a (n + 1) × (n + 1) square matrix M whose
elements are bounds. Such a matrix is said to have dimension n. The element
Mi ,j gives the upper bound on the clock difference hi − hj . For example, the
constraint h2 < 9 is encoded as M2,0 = (9, <) and h5 ≥ 6 by M0,5 = (−6,≤). If
hi−hj is unbounded then we set Mi ,j = (∞, <). The set of H-valuations defined
by the DBM M , denoted [[M ]], is the set {v ∈ RH | ∀ i , j ∈ {0..n} . Mi ,j = (c,≺
) ⇒ v(hi )−v(hj ) ≺ c}. Notice that we silently extend v by requiring v(h0) = 0.
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Fig. 2.11: Weighted graph interpretation of a DBM

Example 2.12 Let ζ = 2 ≤ h1 ≤ 4 ∧ 1 ≤ h2 ≤ 3 be a clock constraint. Fig-
ure 2.10 illustrates the convex polyhedron defined by ζ and the DBM M which
represents it. 2

A DBM can also be regarded as the adjacency matrix of a fully connected,
weighted directed graph, where each clock is a node in the graph and each entry
Mi ,j gives the weight on the arc from hi to hj . Figure 2.11 shows the weighted
graph corresponding to DBM M in Figure 2.10. We will use this interpretation
whenever it is convenient in a given context.

Notice that there may be many DBMs which represent a given convex poly-
hedron, i.e., the representation is not unique. This can be observed in Fig-
ure 2.10 where M ′ represents the same polyhedron as M . A canonical repre-
sentation is desirable since it allows certain semantic operations on polyhedra
– the testing of equality, emptiness and inclusion, for example – to be reduced
to syntactic operations on DBMs. An ordering on DBMs is induced by the
ordering on bounds: M ≤ M ′ iff Mi ,j ≤ M ′

i ,j , for all 0 ≤ i , j ≤ n where n is
the dimension of M and M ′. This ordering allows a canonical form Mζ to be
defined for any non-empty convex polyhedron ζ: we require that Mζ ≤ M , for
any DBM M representing ζ, i.e., in the canonical form, all bounds are as ‘tight’
as possible. The empty polyhedron is defined by any inconsistent set of con-
straints. We choose its canonical form arbitrarily to be one of the many possible
representations, denoting it M ∅, where M ∅

i ,j =̂ (0, <), for 0 ≤ i , j ≤ n. If M is
a DBM, then cf(M ) denotes the canonical form of M and [[ cf(M )]] = [[M ]]. In
Figure 2.10, M ′ = cf(M ). It is now simple to test if two matrices represent the
same constraint: M and M ′ represent the same constraint if cf(M ) = cf(M ′).

Notice that [[M ∅]] = ∅ and so represents the constraint ff. The universal
matrix U, which imposes the minimal constraints that clock differences should
be at least 0 and less than ∞, is defined by: Ui ,j = (0,≤) if i = 0 or i = j
otherwise Ui ,j = (∞, <). [[U]] = RH and so represents the constraint tt.
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mk canonical(M )
begin

for k = 0 to n do

for i = 0 to n do

for j = 0 to n do

Mi,j := min(Mi,j ,Mi,k + Mk ,j )
od

if Mi,i < (0,≤) then return M ∅ fi

od

od

return M
end

Fig. 2.12: Procedure to compute the canonical form of a DBM

Implementation of polyhedra operations

Canonical Form The canonical form M ′, of a DBM M of dimension n,
can be computed from the interpretation of M as a weighted directed graph
by requiring that, for all 0 ≤ i , j ≤ n, the weight M ′

i ,j = min{weightM (p) |
p is a path from hi to hj }, where a path p from hi to hj is any sequence of
nodes hi = hi1 , hi2 , . . . , him = hj and its weight in M , denoted weightM (p), is
given by Mi1,i2 +Mi2,i3 + · · ·+Mim−1,im . If there is a cycle hi = hi1 , hi2 , . . . , him =
hi , such that weightM (hi1 , hi2 , . . . , him ) < (0,≤), then M represents the empty
polyhedron — clearly, it cannot be the case that hi −hi < 0 — and its canonical
form is M ∅, otherwise the canonical form of M is given by M ′. We can calculate
the canonical form of a DBM by using a version of the Floyd-Warshall all-
pairs shortest path algorithm, as shown in Figure 2.12. It is apparent that the
complexity of the algorithm is O((n + 1)3) for a DBM of dimension n.

Intersection Given two DBMs M and M ′ of dimension n, representing the
convex polyhedra ζ, ζ ′, respectively, then the intersection ζ ∩ ζ ′ is represented
by the DBM M ′′, where M ′′

i ,j = min(Mi ,j ,M
′
i ,j ) for 0 ≤ i , j ≤ n. This is true

even if M and M ′ are not in canonical form. However, M ′′ is not necessarily in
canonical form even if both M and M ′ are.

Inclusion Let M and M ′ be the DBMs of dimension n which are the canonical
representatives of the convex polyhedra ζ and ζ ′, respectively. ζ ⊆ ζ ′ iff Mi ,j ≤
M ′

i ,j , for 0 ≤ i , j ≤ n.

Convex hull Let the DBMs M and M ′ of dimension n be the canonical
representatives of the convex H-polyhedra ζ and ζ ′, respectively. The DBM M ′′

given by M ′′
i ,j = max(Mi ,j ,M

′
i ,j ), for 0 ≤ i , j ≤ n, is the canonical representative

of the convex H-polyhedron ζ ′′ = ζtζ ′. If M and M ′ are not in canonical form,
M ′′ still represents a convex polyhedron containing those represented by M and
M ′, but it may not be the smallest one and it may not be in canonical form.
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Projections Let ζ be a convex H-polyhedron and let M be a DBM which
represents ζ.

In the forward projection, ↗ ζ, which models the elapse of time, all clock
differences remain the same, since all clocks increase at the same rate; lower
bounds also remain unchanged, since clock values never decrease; however all
upper bounds are removed, since time can advance beyond any bound. There-
fore, if M is in canonical form, then M ′ is the canonical DBM representing ↗ ζ,
where for 0 ≤ i , j ≤ n:

M ′
i ,j =

{
(∞, <), if i > 0 ∧ j = 0
Mi ,j , otherwise

If M is not in canonical form, then M ′ represents a superset of the forward
projection.

The operation giving the DBM M ′, representing the reset successors ζ[H :=
0] of the polyhedron ζ, for the set of clocks H ⊆ H, is computed quite simply.
First, notice that resetting a single clock hi ∈ H is the same as setting the value
of hi to the value of h0. So, all constraints on h0 in M become constraints on
hi in M ′. If a pair of clocks hi , hj are both reset, then clearly the differences
hi − hj and hj − hi become equal to 0. Finally, if neither of a pair of clocks
hi , hj is reset then the differences hi − hj and hj − hi remain unchanged in M ′.
Formally, if M is the canonical representative of ζ, then M ′ is the canonical
representative of ζ[H := 0], where for 0 ≤ i , j ≤ n, the entry for M ′

i ,j satisfies
the following:

M ′
i ,j =





(0,≤), if hi ∈ H ∧ hj ∈ H

M0,j , if hi ∈ H ∧ hj /∈ H

Mi ,0, if hi /∈ H ∧ hj ∈ H

Mi ,j , if hi /∈ H ∧ hj /∈ H

If M is not in canonical form, then M ′ represents some convex H-polyhedron
ζ ′ ⊇ ζ[H := 0].

c-closure Given the canonical DBM M representing a polyhedron ζ, the c-
closure of ζ, closec(ζ), is canonically represented by the DBM M ′, where, for
0 ≤ i , j ≤ n:

M ′
i ,j =





(∞, <), if Mi ,j > (c,≤) ∧ i 6= j
(−c, <), if Mi ,j + (c,≤) < (0,≤) ∧ i 6= j
Mi ,j , otherwise

That is, an upper bound such as h ≤ c ′, where c′ > c, is replaced by h < ∞.
Also, a lower bound such as h ≥ c ′, where c′ > c, is replaced by h > c. All
other bounds remain unchanged.

Union and Complementation Clearly, ZH is not closed under union; this
can be seen easily in Figure 2.9(b) which shows two convex polyhedra whose
union is obviously non-convex. Similarly, complementation does not preserve
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Fig. 2.13: Convex decompositions of a non-convex polyhedron

convexity. However, as we have observed, any non-convex polyhedron ψ can
be expressed as a finite union

⋃
{ζ1, ζ2, . . . , ζm} of convex polyhedra. This

means that we can represent ψ as the set {M 1,M 2, . . . ,M m} where each M i

is the DBM encoding ζi . The representation of non-convex polyhedra as sets
of DBMs has been implemented in tools such as KRONOS. It has been found
that some polyhedral operations, projections for example, can still be imple-
mented efficiently, but that others, such as intersection, are more expensive. A
major problem, however, is that, in general, there is no obvious canonical form
for a non-convex polyhedron. This is apparent in Figure 2.13 which shows a
non-convex polyhedron and three of the possible ways in which it can be de-
composed into convex polyhedra [Tri98]. It is not clear which, if any, of the
decompositions is the most suitable canonical representative. The lack of a
canonical form militates against the efficient testing of inclusion and equality.
It is also difficult to check whether the union of two or more polyhedra is in
fact convex, and so could be represented using a single DBM in order to reduce
storage requirements.

2.7.6 Implementing constraint solving

Avoiding non-convex polyhedra

In the previous section, we have seen a number of pragmatic reasons for avoiding
the use of non-convex polyhedra in implementing a constraint-solving approach
to the reachability problem. This has motivated the investigation of meth-
ods which rely exclusively on convex polyhedra. Recall that the reachability
problem can be solved by computing the limit of the sequence Z0,Z1, . . ., where

Z0 = {(q , ψ)}

Zi+1 = {(q ′, suce(ψ)) | (q , ψ) ∈ Zi ∧ e = (q , ζe , a,H, q
′) ∈ E} ]

{(q , sucq
τ (ψ)) | (q , ψ) ∈ Zi}

It has been shown already that sucτ and suce preserve convexity. However,
] can give rise to non-convex polyhedra, because of the union of clock zones
which is implicit in its definition. This union can be avoided simply by re-
placing it with a convex hull. In order to do this, we redefine ψZ

q , so that,
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for a set of symbolic states Z , [[ψZ
q ]] =

⊔
{ψ | (q , ψ) ∈ Z}. If we modify the

definitions of unite and ] to make use of this new definition, then all opera-
tions required in computing Z0,Z1, . . ., preserve the convexity of polyhedra and
so every clock constraint can be represented by a single DBM, with all of the
efficiency gains which that implies. This approach has been adopted directly
by Balarin [Bal96] who combines it with a representation of the complete state
space using BDDs. The main problem with this method is that the convex
hull gives only an (over-)approximation of the set of clock valuations associated
with any location, and so, while the set of reachable states is clearly included
in Z = limi≥0 Zi , it is clear that Z may also include states which are not in fact
reachable. Moreover, the approximation errors accumulate over the sequence
Z0,Z1, . . .. The consequence of this is that the verification problem runs the
risk of being answered by a ‘false negative’: i.e., we may be told that a specifi-
cation is not satisfied because a violating state is reachable, when, in fact such
a state occurs only among those ‘extra’ states added by the approximation.
Wong-Toi [Won95] proposes a solution to this problem in which a succession of
over- and under-approximations is computed. If a violating state is reachable in
an under-approximation, then the specification is not satisfied. If no violating
state is reachable in an over-approximation, then the specification is satisfied.
An increasingly accurate sequence of approximations is computed until the ver-
ification problem can be answered in this way. However, in some cases, it may
be necessary to compute an approximation which captures the set of reachable
states exactly, before the verification problem can be answered – this is less
efficient than a direct computation of the exact set of reachable states. An
alternative approach, which avoids the use of non-convex polyhedra and also
avoids the use of approximations, is considered below.

Simulation Graph

In this section we consider a construction, the simulation graph [Oli94, DT98],
which has appeared often in the literature of dense-time verification under
a variety of names, including: set-graph [ACD+92, Won95], zone automa-
ton [AD96, AK95] and symbolic semantics [LPY95, Pet99]. We first give details
of the construction and then consider the advantages and disadvantages of its
use.

Definition 2.16 (Simulation Graph) Let A = (Q , qI ,A,H,E , I ) be a TA.
Let c be a constant at least as great as cmax (A). The simulation graph of A with
respect to c, starting at the symbolic state z0 = (q0, ζ0), is denoted SG(A, c, z0),
and is given by (Z, z I ,A,−→sg), where Z ⊆ Q × ZH and −→sg ⊆ Z × A × Z
are the smallest sets satisfying:

1. zI = (q0, suc
q0
τ (ζ0)) ∈ Z

2. for every z = (q , ζ) ∈ Z and for every e = (q , ζe , a,H, q
′) ∈ E , if

ζ ′ = closec(suc
q ′

τ (suce(ζ))) 6= ∅, then z ′ = (q ′, ζ ′) ∈ Z and z
a

−→sgz
′

2
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Notation. The simulation graph of A with respect to c, starting at the initial
state (qI , zero), is denoted simply by SG(A, c), and SG(A) denotes SG(A, cmax (A)).

Intuitively, a simulation graph of A is constructed by starting with a given
symbolic state, and then allowing time to pass – rule 1, above; we then consider
all the edges of A and look for any which can be taken from a node already in
the graph; any possible edge transition is taken and time allowed to pass again,
the successor node being added to the graph – rule 2, above; c-closure is used
to ensure that the graph is finite; this process continues until all possible nodes
and edges have been added to the graph.

Let A = (Q , qI ,A,H,E , I ) be a TA with T [[A]] = (Σ, σI ,L,−→). Let
c ≥ cmax (A) and z a symbolic state. We now state the two key properties of
the simulation graph SG(A, c, z ) = (Z, z I ,A,−→sg).

Proposition 2.5 SG(A, c, z ) is finite.

Proof This follows immediately from the fact that the locations and edges of
any TA are finite sets together with proposition 2.2(4). 2

Proposition 2.6 (Correctness of simulation graph) Assume, without loss
of generality, that z is the symbolic state (q0, ζ0), where ζ0 denotes the convex
H-polyhedron which contains the single point v0. Then,

• (Soundness) whenever (q0, ζ0) −→
∗

sg (qf , ζf ) then (q0,v0) −→
∗

(qf ,vf ),
for all vf ∈ ζf ;

• (Completeness) whenever (q0,v0) −→
∗

(qf ,vf ) then (q0, ζ0) −→
∗

sg (qf , ζf )
for some ζf such that vf ∈ ζf .

Proof Straightforward adaptation of theorem 4.1 in Pettersson [Pet99] 2

It is clear from Proposition 2.6 that the reachability problem can be solved
by searching the simulation graph: in order to determine if (q ′,v′) is reachable
from (q ,v) in the transition system of A, it suffices to construct the simulation
graph SG(A, cmax (A), z ) where z = (q , {v}); if there is a node (q ′′, ζ ′′) such
that q ′ = q ′′ and v′ ∈ ζ ′′ then the answer is ‘yes’, otherwise the answer is ‘no’.
Figure 2.14 outlines an algorithm which implements this approach.

There are several reasons why reachability analysis based on the simulation
graph has been applied successfully:

• Only convex polyhedra are needed in the implementation of the algorithm.
We have already seen that there are efficient algorithms for manipulat-
ing the DBM representation of convex polyhedra which ensures that the
membership test at line 9, the generation of successors at lines 12–13, the
test for emptiness at line 13 and the implicit equality test at line 15 can
all be computed effectively.
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1 input

2 A = (Q , qI ,A,H,E , I ), c = cmax (A),
3 initial state (q ,v), final state (q ′,v′)
4 begin

5 VISITED := {(q , {v})};
6 WAITING := {(q , {v})};
7 while WAITING 6= ∅ do

8 remove some (q ′′, ζ ′′) from WAITING

9 if (q ′ = q ′′) ∧ (v′ ∈ ζ ′′)
10 then return ‘yes’
11 else

12 succ := {(qs , ζs) | e = (q ′′, , , , qs) ∈ E ∧
13 ζs = closec(sucqs

τ (suce(ζ
′′))) 6= ∅};

14 foreach (qs , ζs) ∈ succ do

15 if (qs , ζs) /∈ VISITED

16 add (qs , ζs) to VISITED;
17 add (qs , ζs) to WAITING

18 fi

19 od

20 fi

21 od;
22 return ‘no’
23 end

Fig. 2.14: An algorithm for reachability based on the simulation graph

• The reachability test is performed ‘on-the-fly’, i.e., it is not necessary to
generate explicitly the complete product automaton of several TA, nor is
it necessary to generate the full state space, before checking whether or
not a particular state is reachable. The test (at line 9) can be performed
as the state space is constructed, and, indeed, in many cases the algorithm
will terminate when only a small fraction of the total number of states
has been generated.

• A diagnostic trail can be provided based on the contents of WAITING ,
assuming a stack implementation. In practice, this is of great assistance
to the user in the modification of an incorrect system.

• Although the theoretical bound on the size of the simulation graph is
exponential in the number of clock regions [ACD+92], in practice, far
fewer states are generated than in region graph algorithms – sensitivity
to the size of constants in clock constraints is alleviated.

More heuristics

The size of the set VISITED of stored states can be reduced by employing two
further heuristics, one of which preserves reachability exactly and the other of
which preserves it conservatively.
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• Inclusion abstraction is based on the idea that for two symbolic states z1

and z2 such that z1 ⊆ z2, z1 need not be explored, since any state in z1

also belongs to z2, and any successor of z1 is also a successor of z2. The
implementation of this idea simply involves a modification of the test at
line 15 from (qs , ζs) /∈ VISITED to ¬ ∃ ζ ∈ ZH . (qs , ζ) ∈ VISITED ∧
ζs ⊆ ζ. The effect of this is that instead of checking that a successor state
is not already in the set of visited states, we check that there is no visited
state which ‘covers’ the successor state, in the sense of having the same
control location and being associated with a set of clock valuations which
includes all those of the successor. Clearly, this modification may reduce
the number of symbolic states which are stored, while ensuring that all,
and only, reachable states are considered. This technique is used in the
tool UPPAAL [LPY97] and in later versions of KRONOS [BDM+98]. A
proof of correctness can be found in [DT98, Tri98].

• Convex hull abstraction implements the proposal mentioned above, in
the section on avoiding non-convex polyhedra. Once again, the idea is
to tolerate an over-approximation of the set of reachable states with the
compensation that it is necessary to keep only a single symbolic state
(q , ζ) for each control location q . This can be implemented by replacing
lines 15–18 with the following:

if ∃ ζ ∈ ZH . (qs , ζ) ∈ VISITED

then

if ζs 6⊆ ζ
then

add (qs , ζ t ζs) to VISITED

add (qs , ζ t ζs) to WAITING

fi

else

add (qs , ζs) to VISITED

add (qs , ζs) to WAITING

fi

The advantages and disadvantages of this approach have been discussed
already.

2.7.7 Other attacks on state space explosion

In addition to the symbolic constraint solving algorithms of the previous section,
there are several other techniques which have been applied to the problem of
state space explosion in the analysis of timed systems. It is outside the scope of
this dissertation to give a detailed survey of the literature; instead, we briefly
review some of the most significant ideas.

Large grain partitions

As we have seen, the primary objective of any verification algorithm for TA, is to
identify a finite partitioning of the infinite space of clock valuations, where the
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partitioning respects the transition relation. Although the region graph satisfies
this requirement, it produces a very fine partitioning with a large number of
classes, and so leads to algorithms which often require more computational
resources (memory and time) than are available. An interesting question is
whether or not it is possible to construct a partitioning with the smallest number
of classes needed to solve a given verification problem. This question can be
answered positively in the case of timed bisimulation equivalence and model
checking.

The problem of constructing the quotient of a LTS with respect to an equiv-
alence relation is well-known in the setting of untimed systems, and generic
algorithms exist to solve the problem [BFH+92, LY92]. These algorithms have
been adapted to TA in [ACD+92, ACH+92], where it is shown how to simul-
taneously generate and minimise the reachable sub-LTS of a TA. Tripakis and
Yovine [TY96] have shown how such minimisation can be performed more ef-
ficiently by adapting the idea from [YL93] of avoiding the costly operation of
set complementation. Once constructed, the minimal model of a TA may be
reduced still further with respect to untimed abstractions, and then checked
for equivalence with an untimed specification automaton using a tool such as
CADP [FGK+96].

A similar use of large-grained partitions is made by Sokolsky and Smolka [SS95,
Sok96] to solve the full model-checking problem for a timed modal µ-calculus.
In their approach, partition refinement is applied to a structure which models
the ‘product’ of the symbolic state space and a graph representation of the
property specification; their algorithm strives to construct the coarsest possible
partitioning which allows the validity of the specification to be decided. Recent
work by Lutje-Spelberg et al. [LSTA98] seeks to improve on this approach by
using a more compact representation of the set of regions which a partition
comprises.

Partial Order Reduction

In asynchronous system models, state space explosion is due partly to the mod-
elling of concurrency by interleaving, whereby the simultaneous occurrence of
two or more events is represented by a set of executions which contains all pos-
sible orderings of those events. Partial order reduction exploits the observation
that it is not always necessary to consider the whole set of such executions, but
rather to consider only one representative from each of the classes of ‘equivalent’
executions [God96, Pel92, Val93]. The application of partial order techniques
in tools for the analysis of untimed systems has demonstrated significant state
space reduction [Hol96, HP94]. However, similar success has not (yet) been
demonstrated for real-time systems. A major difficulty seems to be that the in-
dependence of system components is reduced by their need to synchronise with
each other in respect of the passage of time [YS96, Pag96, Pag97]. Bengtsson et
al. [BJLY98] have recently proposed the use of ‘local’ clocks in TA, which usu-
ally advance independently and are synchronised only when there is a need for
communication. Dams et al. [DGKK98] suggest a different approach which in-
corporates a generalised notion of independence, called ‘covering’. Both of these
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approaches are intended to allow a greater potential for independent behaviour
and so to give a coarser partitioning of the set of executions into ‘equivalent’
classes. So far as we know, there are as yet no successful implementations of
partial order reduction methods for dense real-time systems.

Abstraction

All modelling and analysis relies upon abstracting details from the system un-
der investigation, while keeping what is necessary to preserve the properties
of interest. An extreme example of abstraction can be seen in approaches
which abstract all details of data values from their models, leaving only con-
trol information. Less extreme methods of property-preserving abstraction,
set within the framework of abstract interpretation [CC77], have been proposed
in [CGL94, LGS+95, SBLS99]. Application to the verification of LTL properties
is discussed in [KP98]. In the case of timed systems, the possibility of abstract-
ing all timing information initially, adding it only when it is known to be needed
to demonstrate a given property, has been investigated in [AIKY95]. A different
approach is adopted in [TY96], where timed models are constructed initially
and then reduced according to a time-abstracting bisimulation. Daws and Tri-
pakis have placed a number of standard techniques for reducing the size of timed
systems within the framework of property-preserving abstractions [DT98]. The
problem of demonstrating that a timed system model is a correct abstraction
of a more concrete system is considered in [TAKB96]. A combination of ab-
straction with other techniques is the norm. When used in conjunction with
modular reasoning and/or theorem proving, it can extend the scope of model
checking to systems with infinite state spaces [AAB+99, DF95, RSS95, SS99].

On-the-fly techniques

A system model comprising a set of concurrent tasks exhibits state explosion
when the product space is constructed. On-the-fly methods combat state ex-
plosion by solving a problem during the construction of the product space,
rather than after it. This means that the full product space may not need to
be constructed at all, and so state explosion can be avoided. This technique
has been applied successfully in solving reachability problems [JJ91], computing
behavioural equivalences and preorders [FM91], checking temporal logic prop-
erties [GPVW95, VW86] and minimising state graphs [BFH+92]. Extension of
the technique to the solution of similar problems in timed systems has been
considered in [BTY97, HKV96, TY96]. On-the-fly methods are most useful
when debugging a system, i.e. when checking properties which turn out not to
hold. It is difficult to avoid considering all reachable states when checking a
true property.

Symbolic methods

The model checking approach was given a big boost by the work of McMillan in
the late eighties [McM92]. He discovered that regularly structured state spaces,
such as those derived from models of hardware components or communication
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protocols, can be represented very compactly using binary decision diagrams
(BDDs) [Bry86]. The operations needed for model checking can be adapted to
work with sets of states, represented as BDDs, rather than individual states.
Using this technique, it is possible to verify systems having more than 1020

states [BCM+92]. So far, the benefits of such symbolic techniques have not
been realised completely in the analysis of timed systems. We consider this
problem in more detail in Chapter 5.

Modular/Compositional Verification

We have seen that many systems are implemented and modelled as the composi-
tion of several components. Yet another approach to avoiding the construction
of the product of the component state spaces is to decompose a global system
property into a number of local properties of one or more components, and then
to prove that, if the local properties are satisfied, the global property is satis-
fied also. The intention here is to transform a single, large verification problem
into several smaller problems [GL94]. In proving a local property, it is often
convenient to assume that the environment behaves in a certain manner; it is
then necessary for the other system components to guarantee this behaviour.
The assume/guarantee paradigm is discussed in [HQR98]. The task of decom-
posing a problem can require significant insight and often defies automation.
An approach which can be automated involves the computation of a quotient
property with respect to some component which is then removed from the sys-
tem model, such that proving the quotient property in the reduced model is
equivalent to proving the original property in the original model. Iteration of
this technique allows a property to verified automatically without having to
construct the product state space. This approach has been applied to timed
systems [KLL+97] and implemented in the model checker CMC [LL98]. A differ-
ent approach to automating compositional analysis is introduced in [LAB+98].
In this approach, backwards reachability analysis is performed using only those
components which are required to determine the property of interest. De-
pendency analysis is used to determine which components are relevant. The
technique has been applied successfully to embedded systems but its scope has
not yet been extended to include timed systems.

Clock reductions

The state explosion problem in timed systems is compounded by the need to
take account of clock values [AD94]. The most significant attack on this aspect
of the problem is the work of Daws and Yovine [DY96] which shows two methods
for reducing the number of clocks needed in a TA:

• Clock activity reduction relies on identifying for each TA location those
clocks which do not affect the behaviour of the TA before they are reset.
Such clocks are said to be inactive; the other clocks are said to be active. It
is only necessary to record the values of the active clocks in each location,
so reducing the memory requirements for a set of timed states.
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• Clock equality reduction is achieved by identifying those clocks whose val-
ues are equal in all locations. Such a set of equal-valued clocks can be
replaced by a single clock.

Another technique, with a similar purpose, has been introduced in [LLPY97].
The aim here is to replace a DBM M with a minimal set of clock constraints
whose solution set is the same as M ’s. An algorithm is given which computes
a minimal set of constraints for any DBM. Memory requirements are reduced
by storing this minimal set rather than the full DBM.

2.7.8 Tools

There is now a large number of well-developed computer programs which im-
plement automatic verification of finite state systems (see [CK96] for a survey).
Here we concentrate exclusively on those tools which have been shown to be
effective in the analysis of dense real-time systems, and which implement the
techniques mentioned earlier in this section.

COSPAN has been developed at AT&T and applied to a number of industrial-
scale examples, being the basis of the commercial tool FormalCheck. It is
based on the theory of ω-automata [Kur94] and allows both enumerative
and BDD-based search [TBK95] and homomorphic reductions [TAKB96].
Real-time verification can be performed using either the region graph
or the simulation graph [AK95] and timing constraints can be checked
incrementally [AIKY95].

HYTECH is a symbolic model checker for linear hybrid automata [HHWT97],
which may be seen as generalising TA by allowing the use of continuous
variables to model other aspects of system state than time, e.g., temper-
ature or pressure. A system is described as a set of coordinating linear
hybrid automata and a symbolic fixpoint computation is used to check
the validity of a specification given as an expression in a branching real-
time logic which extends TCTL [ACH+95]. The tool has been used to
verify a number of small examples [AHP96], including the Philips audio
transmission protocol [HWT95]. A key feature of HYTECH is its ability
to perform parametric analysis, i.e., to determine the values of design pa-
rameters for which a linear hybrid automaton satisfies a temporal logic
requirement.

KRONOS was developed originally by Sergio Yovine to implement the model-
checking of TA with respect to TCTL specifications using the symbolic
method proposed in [HNSY94]. It has since been extended with proce-
dures for: on-the-fly checking of TBA emptiness [BTY97], generation of
minimal models by time-abstracting bisimulation [TY96], automatic re-
duction of the number of clock variables [Daw98b, DY96], inclusion and
convex hull abstraction [DT98], and symbolic state space representation
using BDDs [BMPY97]. The PhD dissertations of Tripakis [Tri98] and
Daws [Daw98a] give detailed descriptions of the most recent technical ad-
vances which are implemented in the current version of the tool. The
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effectiveness of KRONOS has been demonstrated through its application
to several case studies, including: the Philips audio transmission proto-
col [DY95], the CNET protocol [TY98] and the STARI chip [BMPY97].

UPPAAL allows the checking of networks of TA based on reachability analy-
sis of the simulation graph as described earlier. The underlying principles
of this approach were described in [YPD94]. The property specification
language allows the expression of safety properties, including bounded
response, and also simple liveness properties of the form ∃2 p and ∀3 p,
where p is a ‘locally’ checkable state property. The tool also reports all
deadlocked states (i.e., states where no discrete transition will be possible
in the future) encountered during a verification. Since its first release
in 1995 [BLL+95], UPPAAL has been improved by the introduction of a
more efficient representation of clock constraints, a new termination algo-
rithm which requires the storage of fewer visited states [LLPY97], and an
improved hash table implementation of the set of visited states [BLL+98].
An important feature of UPPAAL, from the point of view of usability, is a
graphical interface which integrates the various features of the tool, such
as system description, property specification, simulation and verification.
UPPAAL is now sufficiently mature to have been used in a number of
industrial case studies, including the analysis of communication protocols
such as the Bang & Olufsen audio/video protocol [HSLL97], the Bounded
Retransmission protocol [DKRT97], the Dacapo startup protocol [LP97]
and a lip synchronisation algorithm for the transmission of multimedia
data [BFK+98]. It has also been used in a collaborative project with the
automotive industry to assist in the design of a gear controller [LPY98].

Other interesting approaches for which tools exist, although perhaps less well-
developed and case-tested than those mentioned above, include: VERITI [Won95]
which implements Wong-Toi’s method based on successive over- and under-
approximation; RT-SPIN [TC96] which extends ProMela, the language of the
model-checker SPIN [Hol96], with simple time guards and performs constraint-
based reachability analysis on the derived TA; SGM [HW98] which provides an
environment in which it is possible to experiment with different combinations
of several state graph manipulators [WH98b, WH98a] in order to reduce the
size of the state space; PMC [LSTA98] which implements the partition refine-
ment algorithm of Lutje-Spelberg et al.; and CMC [LL98] which implements an
improved version of the compositional approach to model checking which was
first introduced in [LL95].

2.8 Conclusions

This chapter has reviewed an approach to the formal modelling and analysis of
real-time systems. Systems are modelled as labelled timed transition systems
over a dense time domain. We have considered the expression of such mod-
els using timed process algebra and timed automata. Specifications are given
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either as expressions in a timed temporal logic such as TCTL, or as specifi-
cation automata. Analysis techniques are based upon exhaustive state space
search, where the major difficulty is the state explosion problem. We have dis-
cussed in detail approaches to this problem in which sets of clock valuations are
represented as linear constraints, implemented efficiently using DBMs. These
languages and methods are the foundation for the work presented in the rest of
the dissertation.

This review has necessarily omitted consideration of many other approaches
to the modelling and analysis of timed systems, which have appeared in the lit-
erature in recent years. We take a small step to fill this gap by briefly mentioning
some of them now.

There is a large Petri net community which has established many theoret-
ical results and practical techniques for modelling and analysis. In this con-
text, a variety of timed Petri nets have been suggested for use with timed
systems [BD91, Rok93, Sif77].

Graphical modelling languages are of interest since many designers find a
visual syntax ‘intuitively’ clear. Hierarchical structures are needed in order
to manage the size of the diagrams for all but the simplest systems. State-
charts [Har87] allow such a hierarchical representation of untimed state transi-
tion models. Modecharts [JLM88, JM87, YMW93] extend this approach with
explicit timing constraints; another timed Statechart extension, which can be
used for modelling hybrid systems also, is given in [KP92].

Lynch and Vaandrager have introduced timed I/O automata, which offer a
similar model of timed systems to the timed automata discussed in this chap-
ter; rather than verification via model-checking, they propose refinement and
simulation proof techniques [LV95].

Cardell-Oliver [CO92] proposes the use of higher order logic both to model
the behaviour of a system and its environment, and also to specify require-
ments. The task of proving that the combined system and environment sat-
isfy the requirements is supported by the use of a mechanical theorem prover.
Hooman [Hoo91, Hoo96] offers a related assertional style of modelling and spec-
ification using extended Hoare triples [Hoa69]. Duration Calculus [CHR91,
Liu96] is yet another approach in which modelling and verification is conducted
within a single logical framework.

Validation of real-time systems by means of formally constructed test suites
is considered in [COG98, SVD97].



3. bCANDLE: A LOW LEVEL

MODELLING LANGUAGE

3.1 Introduction

This chapter introduces a new modelling language called bCANDLE. The pur-
pose of bCANDLE is to serve as a language for modelling embedded, real-time
systems which are organised as a collection of distributed processes communicat-
ing via a broadcast network. The broadcast communication primitive adopted
by bCANDLE is an abstraction of the CAN protocol [ISO92] and bCANDLE

has been designed specifically with this protocol in mind. It should be possi-
ble to adapt the approach described here to the modelling of other styles of
broadcast communication but this idea is not pursued in this thesis.

bCANDLE is a system modelling language, i.e., it is a language intended to
allow the expression of models of real-time systems. It is not a programming
language nor is it a language for specification. It is assumed that programs are
developed using a programming language with a range of real-time and commu-
nication constructs to simplify the task, and that system requirements are spec-
ified more abstractly using some sort of temporal logic language. bCANDLE

is a low-level language in the sense that it contains a minimal set of constructs
for capturing the behaviour of realistic systems. Here minimal is not used with
some precise meaning, but is intended to imply that it is difficult to see how any
of the features of the language could be omitted without adding significantly to
the task of the user in constructing models. However, it is possible to imagine
higher-level languages which would further ease the task of the model-builder.
Such a high-level language is discussed in Chapter 6.

The rest of this chapter is organised as follows: in §3.2 an informal intro-
duction is given to the class of systems to be modelled; the main components of
a bCANDLE model, namely the data environment, the network model and the
process behaviour model are introduced in §3.3, §3.4 and §3.5, respectively; the
formal semantics is presented in §3.6 and a simple example of a system model
is shown in §3.7. The chapter concludes with a brief discussion of related work
in §3.8.

3.2 Informal system model

We address a class of control systems (Figure 3.1) which can be identified by a
number of properties:
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Fig. 3.1: Control system model

• Control is distributed over a set of processes which are statically allocated
to computing nodes.

• A computing node consists of at least a central processing unit, which has
access to some local memory, one or more communication controllers and
a programmable timer.

• Several processes may be allocated to a single computing node and share
its processing unit using some fixed scheduling policy. The approach
taken in this work to the construction of timed models of control systems
requires the choice of scheduling policy to be restricted to one which allows
static calculation of computation response times: e.g. round-robin or
cyclic executive. This allows the effects of scheduling to be accounted for
when the model is constructed, without requiring the model to represent
the scheduler explicitly. Future work will address how this constraint may
be relaxed.

• Processes communicate by using one or more communication channels
to send and receive broadcast messages. Each channel implements an
abstraction of the CAN protocol, as discussed below.

• Even processes which share a processor communicate by broadcasting
messages, rather than by unconstrained access to shared memory, i.e.,
all processes communicate using (logically) a single mechanism, whether
they share a computing node or not. This requirement simplifies the
model and can be satisfied with acceptable efficiency in practice. For
example, a CAN-style channel can be implemented using shared memory
techniques such as condition variables [ISO96] or the mutable variables of
Concurrent Haskell [PJF96]. The latency of such a (pseudo-) channel is
clearly different from that of a ‘real’ CAN channel but can be modelled
using the same techniques.

• There is no interference between communications on different channels,
i.e. the transmission of a message on some channel a has no effect on
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any other channel b, unless a and b are the same channel. This require-
ment can be satisfied simply by requiring that every node has a dedicated
communication controller for each channel which it uses.

• Each computing node may have access to a number of sensors and actua-
tors which form part of the interface to the controlled system. In the case
of multi-tasking, it is assumed that each sensor and actuator is accessed
exclusively by a single process.

In constructing a formal model of a system of the sort described above, it
is essential to abstract from some of the details, in order to ensure that an
analysis of the model is tractable. With this in mind, the following features of
an abstract model are identified:

• The data model is an abstraction of the set of local memories of the
computing nodes. We adopt a single global mapping from data variables
to data values and assume that locality is ensured by the syntax of a
high-level modelling language.

• The communication model abstracts entirely from communication con-
trollers and represents the communication channels only. It is assumed
that communication channels operate without errors or failures. Also,
the details of bit-level data transmission are abstracted by adopting the
assumption that messages are transmitted atomically.

• The process model represents the dynamic behaviour of processes, while
abstracting from the allocation of processes to computing nodes, and from
the scheduling policies adopted by multi-tasking nodes. We assume that
an a priori analysis accounts for these factors in determining bounds
on the completion times of computations. This assumption restricts the
systems which can be modelled to those with simple cyclic scheduling
policies, but seems essential for tractable analysis.

We present the formal description of each of these aspects of the system models
in the following sections.

3.3 The Data Model

Many approaches to the description of concurrent and real-time systems have
adopted the point of view that the data environment in which a system acts
can be either completely disregarded, or else encoded in the system’s behaviour
in some way [Mil89, Dav93]. This assumption can simplify the semantic model
and its analysis. However, for many systems, the effects of data-dependent be-
haviour cannot be ignored or abstracted from entirely, and the need to develop
an artificial encoding can be tiresome. Therefore we have chosen to include an
explicit model of (at least part of) the data environment in our system models,
and to employ appropriate abstractions in their analysis when it becomes clearer
which properties of the data environment are relevant to the system properties
of interest. A similar approach has been adopted in AORTA [BHKR01].
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Unlike the LOTOS family of languages [ISO88b, ISO98, Sig98], for exam-
ple, which give a very detailed description of a particular data sub-language,
bCANDLE specifies only a minimal set of requirements which a data language
must satisfy. In principle, this allows the system modeller to derive models
from a variety of different data languages, so long as they are well-defined with
respect to the properties described below. For example, a high-level language
such as B [Abr96], a programming language such as Spark Ada [Bar96] or a
simple guarded command language, as introduced in Chapter 6, can be used as
the data language for bCANDLE. Although some effort is required to establish
the necessary semantic relations, it is rewarded by the flexibility in the choice
of language and the simplification in the presentation of bCANDLE.

3.3.1 Formal Definition

There are three kinds of syntactic object relating to data which can occur in a
bCANDLE description: data variables, operation names and predicate names
(or guards). The necessary formal definitions are introduced below.

Let Var be a finite set of data variables. Each variable x ∈ Var takes its
value from some non-empty, finite set of values type(x ) ⊆ V , where V is the set
of data values. We assume that V contains at least the distinguished value ⊥,
where ⊥ /∈

⋃
x∈Var type(x ), which is taken to be the “undefined” data value. In

modelling the behaviour of a system, the current valuation of the data variables
is given by a total function from variables to values. The set of valuations is
defined by:

Valuation =̂ Var → V

where for any val ∈ Valuation and x ∈ Var , either val(x ) ∈ type(x ) or val(x ) =
⊥.

Data operations are modelled as relations on valuations. This allows the
use of non-deterministic operation specifications, which are often useful in the
construction of abstract system models. Let Ω be a finite set of operation names.
Each operation name ω ∈ Ω is interpreted by a total relation on valuations. The
set of operations is defined by:

Operation =̂ Valuation ↔ Valuation

where it is required that for every operation o and for every valuation val, there
is at least one valuation to which val is related by o, i.e.

∀ o ∈ Operation . dom(o) = Valuation .

Predicates on data are modelled simply as the sets of valuations which satisfy
them. Let Γ be a finite set of predicate names. Each predicate name γ ∈ Γ is
interpreted by the set of valuations which satisfy it. The set of predicates is
defined:

Predicate =̂ 2Valuation
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In defining a data environment D with respect to given sets of data vari-
ables Var , operation names Ω and predicate names Γ, we say that D is a data
environment over Var ,Ω and Γ, and denote the set of such environments by
DataEnvVar ,Ω,Γ. We can now formally define our notion of a data environment.

Definition 3.1 (Data Environment) Let Var be a finite set of variable names,
Ω a finite set of operation names and Γ a finite set of predicate names. Let V
be the set of data values. A data environment D over Var ,Ω and Γ is a tuple

D = (type, operation, predicate, val)

where (type, operation, predicate, val) ∈ DataEnvVar ,Ω,Γ iff

• type : Var → 2V is a total function, giving for each variable x ∈ Var , a
non-empty, finite set of data values type(x ) ranged over by x ;

• operation : Ω → Operation is a total function, giving for each operation
name ω ∈ Ω, an operation operation(ω) which interprets it;

• predicate : Γ → Predicate is a total function, giving for each predicate
name γ ∈ Γ, a predicate predicate(γ) which interprets it;

• val : Var → V is a total function which, for each variable x ∈ Var , gives
the current valuation of x , where val(x ) ∈ type(x ) or val(x ) = ⊥. 2

We assume that for a given bCANDLE description, the interpretations of
the variable, operation and predicate names are fixed but that the current
valuation may change as the system evolves.

Notation. It is convenient to establish some notational conventions. Let D =
(type, operation, predicate, val) be a data environment. Let x , y ∈ Var be data
variables, and v ∈ V a data value.

• D . type, D . operation, D . predicate and D .val denote type, operation, predicate

and val, respectively.

• D .x denotes the value val(x ).

• D [x := v ] denotes the data environment D ′ = (type, operation, predicate, val′)
where val′(x ) = v and val′(y) = val(y) for all y ≡| x (≡ denotes syntactic
identity and ≡| its negation).

• D
ω

−→dD
′ abbreviates the condition

(val, val′) ∈ operation(ω) ∧ D ′ = (type, operation, predicate, val′)

We reserve the operation name ID and require that it is interpreted in
any data environment by the operation operation(ID), where

operation(ID) =̂ {(val, val) | val ∈ Valuation}

i.e., operation(ID) is the identity relation on valuations.
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• D |= γ abbreviates the condition val ∈ predicate(γ). We write D 6|= γ for
val /∈ predicate(γ). We reserve the predicate names true and false and
require that ∀D . D |= true ∧ D 6|= false , i.e., true and false are inter-
preted in every data environment by predicate(true) and predicate(false),
as follows:

predicate(true) =̂ Valuation

predicate(false) =̂ ∅

Let Di = (typei , operationi , predicatei , vali) for i ∈ {1, 2} be two data environ-
ments. D1 and D2 are said to be compatible iff type1 = type2, operation1 =
operation2, and predicate1 = predicate2. If D1 and D2 are compatible data en-
vironments, and additionally val1 = val2, then D1 and D2 are said to be equal,
denoted D1 = D2. Here it is assumed that all component equalities are defined
extensionally in the usual way.

3.4 The Network Model

A network model is an abstraction of a CAN network. It consists of one or more
broadcast channels, each implementing an abstraction of the CAN protocol, as
follows:

• Each channel operates fault-free, i.e. without the need for error or over-
load frames.

• A transmitting node only attempts to transmit its highest priority mes-
sage. (This requirement may seem obvious but in fact needs some effort
to satisfy when using some CAN controllers.)

• A node which has messages to transmit attempts to transmit its highest
priority message as soon as the channel is free. This implies that each
communication controller does not release the channel between transmis-
sions, i.e. it enters a message for arbitration in every arbitration phase
if it has a message to transmit. This is important in ensuring that lower
priority messages cannot delay the transmission of pending messages of
higher priority by beginning transmission during a “gap” between message
transmissions.

• It is guaranteed that a message is “simultaneously” accepted either by all
nodes which are configured to accept it, or by none of them. There is no
possibility of a “partially successful” transmission.

• We assume that we can determine the point during the transmission of
a message when a controller begins its acceptance test for the message.
In normal operation, a controller which becomes configured to accept
messages at any time before it begins its acceptance test, will accept all
messages which pass the test thereafter.

In the rest of this section, the structure of channels and networks is consid-
ered first; this is followed by a consideration of network behaviour.
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3.4.1 Structure

A network is a collection of broadcast channels, each of which is capable of
transmitting messages from a single sending node to one or more receiving
nodes. Messages comprise a message identifier and a data value. The identifier
serves both to identify the type of data contained in the message and also to give
a priority to the message for use in the arbitration of transmission collisions.
The remainder of this section expands and formalises these ideas.

Messages

The following example will be used throughout this section to illustrate the
ideas which are introduced.

Example 3.1 Consider a simple system for monitoring the temperature of a
liquid in a chemical tank and the state of a heater which is used to regulate the
temperature. The monitoring system receives messages broadcast by a pair of
intelligent sensors, one giving the temperature of the liquid and one giving the
state of the heater. Let I = {HEATER,TEMPERATURE} be the set of mes-
sage identifiers and V = {ON ,OFF} ∪ {−275 . . 275} be the set of data values.
A message consisting of message identifier i and data value v is denoted i .v .
Some possible messages are HEATER.ON and TEMPERATURE .127. The set
of all possible messages is given by I × V . Notice, however, that some combi-
nations of message identifier and data value are not sensible, e.g., HEATER.75
and TEMPERATURE .OFF . 2

Example 3.1 suggests that it is helpful to identify the messages which a
channel is allowed to transmit and leads us to the following definitions.

Definition 3.2 (Messages) Let I be a finite set of message identifiers. Let
V be the set of data values. A set of messages over I is any finite subset
M ⊆ I × V . 2

Notation. A message (i , v) ∈ M is written i .v .

Message Priority

Referring again to Example 3.1, it is clear that a mechanism is needed to resolve
the conflict which arises if the temperature and heater sensors try to transmit
their messages simultaneously on the same channel. Such a conflict is resolved,
as in the CAN protocol, by assigning a priority ordering to the set of message
identifiers associated with the channel. Let HEATER ≺ TEMPERATURE de-
note that HEATER is a higher priority identifier than TEMPERATURE . Then,
for example, if transmission of the messages HEATER.ON and
TEMPERATURE .127 is initiated simultaneously, the transmission of the higher
priority message HEATER.ON will succeed, and the message
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TEMPERATURE .127 will compete again for the channel when it next becomes
idle.

Definition 3.3 (Priority Ordering) Let I be a set of message identifiers and
V a set of data values. Let M ⊆ I ×V be a set of messages. A priority ordering
is a strict total ordering ≺ : I ↔ I on the message identifiers. The reflexive
ordering � is defined as usual: for all i , i ′ ∈ I ,

i � i ′ ⇔ i ≺ i ′ ∨ i = i ′.

A priority ordering on identifiers induces a partial ordering on the message set
M . The derived ordering ≺ : M ↔ M satisfies for all m,m ′ ∈ M ,

m ≺ m ′ ⇔ i ≺ i ′

and the reflexive ordering � : M ↔ M satisfies

m � m ′ ⇔ i � i ′

where m = i .v and m ′ = i ′.v ′, in each case. These orderings on messages are
also referred to as priority orderings, and the overloading is resolved by context.

2

Message Transmission

Before transmission of a message can begin, it is required that no other mes-
sage is already being transmitted on the communication channel; in this case,
the channel is said to be free. At some time following the commencement of
message transmission, all nodes which are listening to the channel perform a
test to determine whether or not the message should be accepted. This decision
depends on the identifier of the transmitted message. If the message identifier
matches a message identifier in the acceptance set of a node, then the node
accepts the message and the message data is made available to processes resid-
ing on it, otherwise the node ignores the message. It is assumed that all nodes
perform the acceptance test instantaneously at the same time. At some time
after the acceptance test, the channel becomes free again and is available to
transmit another message.

Three phases can be clearly identified in the transmission of a message.
The acceptance phase is the point during the transmission of a message when
listening nodes perform their acceptance test. The pre-acceptance phase extends
from the start of transmission to the point of acceptance. The post-acceptance
phase extends from the acceptance point to the instant at which the channel
next becomes free.

The transmission latency of a message is the time which passes during
the pre-acceptance and post-acceptance phases of message transmission. It is
assumed that upper and lower bounds can be determined for the pre-acceptance
and post-acceptance latency of all messages.
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HEATER. (µs) TEMPERATURE . (µs)

δlb 43 55
δub 53 65
δlB 10 10
δuB 12 12

Tab. 3.1: Example of Transmission Latency Functions

Definition 3.4 (Transmission Latency) Let M be a set of messages. A
transmission latency function for M is a function δ : M → R∞×R∞×R∞×R∞,
where δ(m) = (l , u, l ′, u ′) implies that l ≤ u, l ′ ≤ u ′ and that the lower and
upper bounds on the pre- (resp. post-) acceptance phase of the transmission of
m are given by l and u (resp. l ′ and u ′).

The derived functions δlb, δub, δlB, δuB : M → R∞ satisfy

∀m ∈ M . δlb(m) = l ∧ δub(m) = u ∧ δlB(m) = l ′ ∧ δuB(m) = u ′

⇔ δ(m) = (l , u, l ′, u ′)

2

Notation. The notation lb (resp. ub, lB, uB) is used as an abbreviation for
δlb(m) (resp. δub(m), δlB(m), δuB(m)) when m is clear from the context.

Example 3.2 Refer again to Example 3.1. Let the transmission latency func-
tion be defined as in Table 3.1, where HEATER. stands for the messages
HEATER.ON and HEATER.OFF and TEMPERATURE . stands for any mes-
sage TEMPERATURE .v with v ∈ {−275 . . 275}1. Some example interpreta-
tions are: the lower bound on the time taken to complete the pre-acceptance
phase of transmission of the message HEATER.OFF is 43µs; the upper bound
on the time taken to complete the pre-acceptance phase of the transmission of
the message TEMPERATURE .127 is 65µs; and the lower (resp. upper) bound
on the time taken to complete the post-acceptance phase of any message is 10µs
(resp. 12µs). 2

The transmission status of a channel identifies whether the channel is free
or is transmitting a message and, if transmitting a message, whether it is in the
pre-acceptance, acceptance or post-acceptance phase. If a channel is in its pre-
acceptance or post-acceptance phase, the bounds on the time to completion of
the phase are deemed to be part of its transmission status, since they determine
the time at which the channel may next influence the behaviour of a system.
As time passes, the bounds on the time to completion of a phase are reduced
equally until the lower bound becomes 0, after which the upper bound may
approach the lower bound until it too becomes 0.

1 Notice that here and throughout, we make use of to denote an arbitrary value taken
from whatever set of values is appropriate in its context.
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Notation ASCII Transmission Status

↓ \/ FREE
t1,t2
; m --t1,t2->m (PRE,m, t1, t2), pre-acceptance phase of trans-

mission of message m with bounds t1, t2 on time
to completion, 0 ≤ t1 ≤ lb, 0 ≤ t2 ≤ ub

↑m /\m (ACCEPT,m), acceptance point in transmission
of m

m
t1,t2
; m--t1,t2-> (POST,m, t1, t2), post-acceptance phase of

transmission of message m with bounds t1, t2
on time to completion, 0 ≤ t1 ≤ lB, 0 ≤ t2 ≤ uB

Fig. 3.2: Transmission Status Notation (m ∈ M and t1, t2 ∈ R∞)

Definition 3.5 (Transmission Status) Let M be a set of messages and δ :
M → R∞ × R∞ × R∞ × R∞ a transmission latency function for M . Let
{FREE,PRE,ACCEPT,POST} be a set of distinct constant symbols. The set
StatusM ,δ is defined:

StatusM ,δ =̂ {FREE} ∪ PreAcceptanceM ,δ ∪ ({ACCEPT} × M )

∪ PostAcceptanceM ,δ

where, for a message m ∈ M , a lower bound t1 ∈ R∞ and an upper bound
t2 ∈ R∞:

1. (PRE,m, t1, t2) ∈ PreAcceptanceM ,δ iff t1 ≤ δlb(m), t2 ≤ δub(m), and
t2 − t1 = δub(m) − δlb(m) if t1 > 0, otherwise t2 − t1 ≤ δub(m) − δlb(m);

2. (POST,m, t1, t2) ∈ PostAcceptanceM ,δ iff t1 ≤ δlB(m), t2 ≤ δuB(m), and
t2− t1 = δuB(m)−δlB(m) if t1 > 0, otherwise t2− t1 ≤ δuB(m)−δlB(m). 2

Notation. In the rest of the dissertation, the notation shown in Figure 3.2 is
often used as a shorter and more suggestive notation for transmission status.

Message Queues

If it is attempted to transmit a message on a channel which is not free, the
message must be stored and offered for transmission again some time after the
current transmission has finished. Since messages succeed in their transmis-
sion attempts according to their priority, the storing of messages is modelled
naturally as a priority ordered queue. If an attempt is made to transmit a
message m, whose identifier is the same as that of another message m ′ which is
already in the message queue, then m replaces m ′ in the queue and m ′ is lost
forever, i.e. m ′ is ‘overwritten’ by m. This represents the behaviour of most
implementations of the CAN protocol.
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Definition 3.6 (Message Queue) Let I be a finite set of message identifiers
and V a set of data values. Let M ⊆ I × V be a set of messages and ≺ a
priority ordering for M . QueueM ,≺ is defined to be the set of all sequences over
the message set M which satisfy the following two invariant properties:

∀ u ∈ QueueM ,≺; j , j ′ ∈ dom u . j < j ′ ⇒ u(j ) ≺ u(j ′) (3.1)

∀ u ∈ QueueM ,≺; i ∈ I . #{j | j ∈ domu ∧ u(j ) = i . } ≤ 1 (3.2)

i.e. All message queues preserve the priority ordering of messages and contain
at most one message with a given message identifier. 2

A corollary of property 3.2 is that all message queues are of finite length.

Proposition 3.1 Let I be a finite set of message identifiers and V a set of
data values. Let M ⊆ I ×V be a set of messages and ≺ a priority ordering for
M . For all u ∈ QueueM ,≺, u is of finite length.

Proof Immediate from property 3.2 of Definition 3.6 and the fact that I is
finite. 2

Notation. An empty queue is denoted 〈〉. A queue with highest priority mes-
sage m and remaining messages u is written m:u.

The queueing of a message is modelled by the following operation.

Definition 3.7 (Message Queue Insertion) Let I be a set of message iden-
tifiers and V a set of data values. Let M ⊆ I ×V be a set of messages and ≺ a
priority ordering for M . The insertion operator ": QueueM ,≺×M → QueueM ,≺

is defined:

u " i .v =





〈i .v〉 , if u = 〈〉

i .v :u ′ , if u = i . :u ′

i .v :m:u ′ , if u = m:u ′ ∧ i .v ≺ m

m:(u ′ " i .v) , if u = m:u ′ ∧ m ≺ i .v

2

It is easy to show that " preserves the message queue invariants.

Proposition 3.2 Let M be a set of messages and ≺ a priority ordering for M .
For all u ∈ QueueM ,≺ and all m ∈ M, u " m satisfies properties 3.1 and 3.2
of Definition 3.6.

Proof Induction on the length of u. 2
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Channels

All of the prerequisites for the definition of communication channels have now
been introduced.

Definition 3.8 (Channel) Let I be a set of message identifiers. Let V be
the set of data values. A channel over I is a tuple (M ,≺, δ, s, u). The set of
channels over I is denoted ChannelI , and (M ,≺, δ, s, u) ∈ ChannelI iff

• M ⊆ I × V is a set of messages,

• ≺: I ↔ I is a priority ordering,

• δ : M → R∞ × R∞ × R∞ × R∞ is a transmission latency function,

• s : StatusM ,δ is a transmission status

• u : QueueM ,≺ is a message queue 2

Let (M ,≺, δ, s, u) be a channel. It is assumed that M , ≺ and δ are static,
i.e., defined at system initialisation and unchanging thereafter. On the other
hand, s and u are used to model the current transmission status and message
queue of a channel as a system evolves, and are therefore dynamic.

The variables η, η′, η1 etc. are used to range over channels. Let ηi = (Mi ,≺i ,
δi , si , ui) be two channels. η1 and η2 are said to be equal, denoted η1 = η2, iff
M1 = M2, ≺1 = ≺2, δ1 = δ2, s1 = s2 and u1 = u2, where the component
equalities are defined extensionally as usual.

Networks

A network is a collection of channels in which each channel is associated with
its own unique identifier.

Definition 3.9 (Network) Let K be a finite set of channel identifiers and I
a finite set of message identifiers. A network N over K and I is a mapping
N : K → ChannelI . The set of networks over K and I is denoted NetworkK ,I ,
where NetworkK ,I =̂ K → ChannelI . 2

Notation. Let K be a set of channel identifiers and N a network over K . Let
k ∈ K be a channel identifier. We write Nk for the function application N (k),
i.e. Nk denotes the channel associated with the identifier k in the network N .

Network equality is defined extensionally as usual.
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3.4.2 Behaviour

Each channel in a network can act independently by making a discrete change
in its transmission status or its message queue. Alternatively, the state of
the whole network may be affected as time progresses. We consider first the
modelling of discrete state changes.

When a channel η makes a discrete change, it gives rise to a new network
state in which η is in its new state and the state of all the other channels is
the same as before. It is convenient to introduce an operator which models the
effect on a network of a change of state in a single channel.

Definition 3.10 (Network Update) Let K be a set of channel identifiers
and I a set of message identifiers. Let N ∈ NetworkK ,I be a network. Let
η ∈ ChannelI be a channel. The notation N [k := η] denotes the network N ′,
where N ′

k = η and N ′
k ′ = Nk ′ , for all k ′ ∈ K \ {k}. 2

Network behaviour is modelled by a relation −→n ⊆ Network × (An ∪
R) × Network which represents possible changes in network state. As usual,

(N , λnt,N
′) ∈ −→n is written N

λnt−→nN
′ and represents a change of state from

N to N ′ annotated with the label λnt which ranges over An ∪ R. An is the
set of network action labels which are used to annotate discrete state changes.
Elements of R are used to annotate state changes due to the passage of time.

Definition 3.11 (Network Action Labels) Let V be the set of data values.
The set An of network action labels over K and I is defined by:

An =̂ {k; i .v | k ∈ K ∧ i ∈ I ∧ v ∈ V } (* pre-acceptance *)
∪ {k↑ i .v | k ∈ K ∧ i ∈ I ∧ v ∈ V } (* acceptance *)
∪ {i .v ;k | k ∈ K ∧ i ∈ I ∧ v ∈ V } (* post-acceptance *)
∪ {k↓ | k ∈ K} (* free *)

where K and I are sets of channel identifiers and message identifiers, respec-
tively. 2

Notation. In describing the behaviour of a network, it is often convenient to
mention only the dynamic components of each network channel. For example,
the channel (M ,≺, δ, s, u) may be written (s, u). The static components (M ,≺
and δ) are inferred from the context.

The relation −→n is given by a set of Plotkin-style inference rules, as intro-
duced below.

Pre-Acceptance

A channel which has a non-empty queue of pending messages, and whose trans-
mission status is free, starts transmission of its highest priority message. The
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transmitted message m is removed from the pending queue and the trans-
mission status of the channel shows that it is in the pre-acceptance phase of
transmission of m. The lower and upper bounds on the time to completion of
the pre-acceptance phase are given by δ lb(m) and δub(m), respectively. This is
expressed formally by the rule N.1 below:

N.1
Nk = (↓,m : u)

N
k;m
−→nN [k := (

lb,ub
; m, u)]

Acceptance

When the lower bound on the time to completion of the pre-acceptance phase
of the transmission of the message m becomes 0, a channel can change state to
the acceptance phase of the transmission of m. This is expressed formally by
the rule N.2 below:

N.2
Nk = (

0,
;m , u)

N
k↑m
−→nN [k := (↑m , u)]

Post-Acceptance

A channel in the acceptance phase of the transmission of a message m can enter
the post-acceptance phase, whose bounds on time to completion are given by
δlB(m) and δuB(m). This is expressed formally by the rule N.3 below:

N.3
Nk = (↑m, u)

N
m;k
−→nN [k := (m

lB,uB
; , u)]

Free

When the lower bound on the time to completion of the post-acceptance phase
of the transmission of the message m becomes 0, a channel can change its state
to free. This is expressed formally by the rule N.4 below:

N.4
Nk = (

0,
;, u)

N
k↓

−→nN [k := (↓, u)]

Time Progress

In order for time progress to be possible for a network N , it must be possible for
all channels in N ; the rate of progress is the same in all channels. A free channel
allows time to pass indefinitely if its message queue is empty, but must begin
transmission of its highest priority message without delay otherwise. Similarly,
a channel at its acceptance point does not allow time to pass. Passage of time
in the pre-acceptance and post-acceptance phases of message transmission is
bounded by the time to completion of the phase. We define a function tcp

which determines, for any given channel, the maximum amount of time that
can pass before the channel must make a discrete state change.
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Definition 3.12 (Time Progress) Let η be a channel. The maximum time
progress allowed for η is given by tcp(η), where

tcp(↓, 〈〉) =̂ ∞ tcp(↓, : ) =̂ 0 tcp(
,t

; , ) =̂ t

tcp(↑ , ) =̂ 0 tcp(
,t

;, ) =̂ t

Let K be a set of channel identifiers and N a network over K . The maximum
time progress allowed for N is given by tcp(N ), which is defined by

tcp(N ) =̂ min{tcp(Nk ) | k ∈ K}

where minS returns the minimum of the finite, ordered set S . 2

When time passes, the state of the network changes accordingly. We use
the notation η + t (resp. N + t) to denote the state of the channel η (resp.
network N ) after the passage of t units of time.

Definition 3.13 (Effect of time progress: Channels) Let η be a channel.
Let t ∈ R. The state of the channel η after the progress of t units of time is
denoted η + t , where η + t is defined by:

(↓, 〈〉) + t =̂ (↓, 〈〉)

(↓,m : u) + t =̂ if t = 0 then (↓,m : u) else ⊥

(
t1,t2
; m, u) + t =̂ if t ≤ t2 then (

t1−
. t ,t2−

. t
; m, u) else ⊥

(↑m, u) + t =̂ if t = 0 then (↑m, u) else ⊥

(m
t1,t2
; , u) + t =̂ if t ≤ t2 then (m

t1−
. t ,t2−

. t
; , u) else ⊥

where η + t = ⊥ is interpreted to mean that the result is not a well-defined
channel. 2

Proposition 3.3 Let η be a channel. Then, η + 0 = η.

Proof Immediate from Definition 3.13. 2

Definition 3.14 (Effect of time progress: Networks) Let K be a set of
channel identifiers and N a network over K . Let t ∈ R. The state of the
network N after the progress of t units of time is denoted by N + t , where

N + t =̂

{
{k 7→ (Nk + t) | k ∈ K}, ∀ k ∈ K . Nk + t 6= ⊥

⊥, otherwise

where N + t = ⊥ is interpreted to mean that the result is not a well-defined
network. 2
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Proposition 3.4 Let N be a network. Then, N + 0 = N .

Proof By Definition 3.14 and Proposition 3.3. 2

Proposition 3.5 For any network N and time t ∈ R, if 0 ≤ t ≤ tcp(N ) then
N + t is well-defined, i.e., N + t 6= ⊥.

Proof Immediate from definitions 3.12 and 3.14. 2

If all channels in a network N can allow time to progress by t time units,
then N can allow time to progress by t time units, changing state to become
N + t . This is expressed formally by the rule N.5 below:

N.5
0 ≤ t ≤ tcp(N )

N
t

−→nN + t

Proposition 3.6 Let N be a network. Then, N
0

−→nN .

Proof Immediate from N.5, Proposition 3.4 and Definition 3.12. 2

Summary

For ease of reference, we summarise the discussion of network behaviour by
giving the following definition:

Definition 3.15 (Network Behaviour) Let V be the set of data values. Let
K and I be sets of channel identifiers and message identifiers, respectively. Let
An be the set of action labels over K and I . The network behaviour relation
−→n ⊆ NetworkK ,I × (An ∪R)×NetworkK ,I is given by the rules of Figure 3.3,

where for all N ,N ′ ∈ Network and λnt ∈ An ∪ R, N
λnt−→nN

′ iff this can be
inferred from the rules N.1 – N.5. 2

It is clear that −→n is well-behaved in that, if N
λnt−→nN

′, then N ′ is a well-
defined network and all of the static components are the same in N and N ′.

Proposition 3.7 Let K be a set of channel identifiers and N a network over

K . If N
λnt−→nN

′, then N ′ 6= ⊥, and, for any channel identifier k, where Nk =
(M ,≺, δ, s, u) and N ′

k = (M ′,≺′, δ′, s ′, u ′), the following properties hold:

1. M = M ′, ≺ = ≺′ and δ = δ′;

2. s ′ ∈ StatusM ,δ

3. u ′ ∈ QueueM ,≺
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N.1
Nk = (↓,m : u)

N
k;m
−→nN [k := (

lb,ub
; m, u)]

N.2
Nk = (

0,
; m, u)

N
k↑m
−→nN [k := (↑m, u)]

N.3
Nk = (↑m, u)

N
m;k
−→nN [k := (m

lB,uB
; , u)]

N.4
Nk = (

0,
;, u)

N
k↓

−→nN [k := (↓, u)]

N.5
0 ≤ t ≤ tcp(N )

N
t

−→nN + t

Fig. 3.3: Rules for Network Behaviour

Proof The proofs of all properties follow directly from case analysis of the

rules N.1 – N.5 by which N
λnt−→nN

′ is inferred. That N ′ 6= ⊥ is immediate
from N.5 and Proposition 3.5. Properties 1–3 follow from N.1 – N.5 and Def-
initions 3.5 and 3.6. 2

Example of network behaviour

We now give an example of the possible behaviour of a simple network.

Example 3.3 Consider a network consisting of a single channel which can
transmit messages of type temperature or of type pressure. Assume that the
values transmitted are abstractions of actual sensor readings, where 0 represents
a reading in the low range, 1 a reading in the normal range, and 2 a reading in
the high range. The network can be defined as follows.

The message identifiers are given by the set I = {temperature, pressure},
with priority order ≺ given by temperature ≺ pressure. The set of data values
is V = {0, 1, 2} and the set of messages is M = I ×V . There is a single channel
identifier given by the set K = {k}. The function δ specifies transmission
latencies in µsecs, as follows:

temperature. pressure.

δlb 43 32
δub 53 42
δlB 10 10
δuB 12 12

The network is N = {k 7→ (M ,≺, δ,↓, 〈temperature.1, pressure.0〉)}. Notice
that we are assuming that the messages temperature.1 and pressure.0 have
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(↓, 〈temperature.1, pressure.0〉)
k;temperature.1

−→n (N .1)

(
43,53
; temperature.1, 〈pressure.0〉)

47
−→n (N .5)

(
0,6
; temperature.1, 〈pressure.0〉)

k↑temperature.1
−→n (N .2)

(↑ temperature.1, 〈pressure.0〉)
temperature.1;k

−→n (N .3)

(temperature.1
10,12
; , 〈pressure.0〉)

12
−→n (N .5)

(temperature.1
0,0
;, 〈pressure.0〉)

k↓
−→n (N .4)

(↓, 〈pressure.0〉)
k;pressure.0

−→n (N .1)

(
32,42
; pressure.0, 〈〉)

32
−→n (N .5)

(
0,10
; pressure.0, 〈〉)

k↑pressure.0
−→n (N .2)

(↑pressure.0, 〈〉)
pressure.0;k

−→n (N .3)

(pressure.0
10,12
; , 〈〉)

11
−→n (N .5)

(pressure.0
0,1
;, 〈〉)

k↓
−→n (N .4)

(↓, 〈〉)
5

−→n (N .5)

(↓, 〈〉)
2

−→n (N .5)

(↓, 〈〉)
500
−→n (N .5)

...

Fig. 3.4: Example of network behaviour

already been placed in the message queue of k .
Now a possible trace of the network behaviour from this initial state is given

in Figure 3.4. 2

The behaviour given in this example is very simple, since messages are trans-
mitted but not received. How a network interacts with receiving processes is
considered in the following section.

3.5 The Process Model

We use a simple process language to describe the behaviour of processes. In
choosing the operators of the language, we have been concerned to identify a
small set which allows us to express naturally the behavioural models in which
we are interested, while allowing the definition of a timed transition semantics
in a direct manner. The syntax and informal semantics of the language are
presented in this section. Section 3.6 gives a formal semantics and the work of
the numerous researchers which has influenced the language design is discussed
in §3.8.
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3.5.1 Syntax

Definition 3.16 (Process terms) Let K and I be finite sets of channel iden-
tifiers and message identifiers, respectively. Let Var be a finite set of data vari-
ables, Ω a finite set of operation names and Γ a finite set of predicate names.
Finally, let R∞ be the time domain and X a countable set of process variables.
The set of process terms over K , I ,Var ,Ω and Γ is denoted Proc+

K ,I ,Var ,Ω,Γ, and
is defined inductively by:

P ::= k !i .x (* send broadcast message *)
| k?i .x (* receive broadcast message *)
| [ω : t1, t2] (* time-bounded computation *)
| γ → P (* data guard *)
| P ; P (* sequential composition *)
| P + P (* non-deterministic choice *)
| P [> P (* interrupt *)
| P | P (* parallel composition *)
| recX .P (* recursion *)
| X (* process variable *)

where k ∈ K , i ∈ I , x ∈ Var , ω ∈ Ω, γ ∈ Γ, X ∈ X and t1 ≤ t2 ∈ R∞. 2

Notation. The subscript is dropped from Proc+
K ,I ,Var ,Ω,Γ if it is not relevant or

can be inferred from the context.

Terms of the form k !i .x , k?i .x and [ω : t1, t2] are called basic terms. We
use variables β, β1, β2 . . . to range over basic terms. The precedence of the
operators, from high to low is: →, ; ,+, [>, rec , |. We use a number of syntactic
abbreviations:

[ω : t1] =̂ [ω : t1, t1] [t1] =̂ [ID : t1] [t1, t2] =̂ [ID : t1, t2]

idle =̂ [ID : ∞] null =̂ [ID : 0]

Free and bound variables are defined as usual.

Definition 3.17 (Free and bound variables)

Let P ∈ Proc+ and ./∈ {; ,+, [>, |}. The free (process) variables and bound
(process) variables of P are given by fv(P) and bv(P) respectively, which are
defined as the least sets satisfying:

fv(k !i .x ) = ∅ bv(k !i .x ) = ∅

fv(k?i .x ) = ∅ bv(k?i .x ) = ∅

fv([ω : t1, t2]) = ∅ bv([ω : t1, t2]) = ∅

fv(γ → P) = fv(P) bv(γ → P) = bv(P)

fv(X ) = {X } bv(X ) = ∅

fv(recX .P) = fv(P) \ {X } bv(recX .P) = bv(P) ∪ {X }

fv(P ./ Q) = fv(P) ∪ fv(Q) bv(P ./ Q) = bv(P) ∪ bv(Q) 2
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Definition 3.18 (Closed term) For any P ∈ Proc+, P is a closed term if
fv(P) = ∅. 2

The use of sequential composition as a basic operator, rather than action
prefix, requires some care in the definition of guarded terms.

Definition 3.19 (Guarding, Guarded process variable, Guarded term)
Any basic term β ∈ Proc+ is guarding. A term of the form P1 ; P2 or P1 | P2

is guarding if P1 is guarding or P2 is guarding. A term of the form P1 + P2 or
P1 [> P2 is guarding if P1 and P2 are guarding. A term of the form recX .P is
guarding if P is guarding.

Let P ∈ Proc+ be a term containing one or more occurrences of a variable
X ∈ X . An occurrence of X is guarded in P if P has a subterm of the form
P1 ; P2 where the occurrence of X is contained in P2 and P1 is guarding. Oth-
erwise this occurrence of X is unguarded in P . A process variable X is guarded
in a term P if every occurrence of X is guarded in P . A term P is guarded if
all of its process variables are guarded in P . 2

Definition 3.20 (Closed, guarded terms) The set Proc ⊂ Proc+ is defined
to be the set of closed, guarded terms in Proc+. 2

Equational Presentation

In practice, the use of the recursion operator recX .P is often inconvenient
and the use of a set of mutually recursive equations is preferable. We will
use whatever form is more convenient in its context and regard a term defined
using a set of simultaneous equations as denoting its corresponding term given
in terms of the recursion operator.

Definition 3.21 LetE be a finite set of equations {X1 =̂ P1,X2 =̂ P2, . . . ,Xn =̂
Pn} where

⋃
i∈{1..n} fv(Pi) ⊆ {X1, . . . ,Xn}. Let P be a process term, fv(P) ⊆

{X1, . .,Xn}. Then, the process term corresponding to P is given by the normal
form of PE under the rewrite relation −→rw, defined by:

XE−→rw

{
recX .(PE\{X =̂P}) if (X =̂ P) ∈ E,

X otherwise

(k !i .x )E −→rw k !i .x (k?i .x )E −→rw k?i .x
([ω : t1, t2])

E −→rw [ω : t1, t2] (γ → P)E −→rw γ → (P)E

(P ; Q)E −→rw (P)E ; (Q)E (P + Q)E −→rw (P)E + (Q)E

(P [> Q)E −→rw (P)E [> (Q)E (P | Q)E −→rw (P)E | (Q)E

2
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Example 3.4 Consider the equational presentation

A

where

A = [a:1] ; B

B = [b:1] ; A

Let EA =̂ {A =̂ [a : 1] ; B}, EB =̂ {B =̂ [b : 1] ; A}, and E =̂ EA ∪ EB .
Then, with respect to E , A is taken to stand for the term

AE −→rw recA.([a : 1] ; B)EB

−→rw recA.[a : 1]EB ; BEB

−→rw recA.[a : 1] ; BEB

−→rw recA.[a : 1] ; rec B .([b : 1] ; A)∅

−→rw recA.[a : 1] ; rec B .[b : 1]∅ ; A∅

−→rw recA.[a : 1] ; rec B .[b : 1] ; A∅

−→rw recA.[a : 1] ; rec B .[b : 1] ; A

2

3.5.2 Informal Semantics

Each process term represents a potential process which, when given a context
(i.e., a network and a data environment), is capable of exhibiting some be-
haviour. We give an informal introduction to the behaviour of process terms in
the remainder of this section. The formal semantics is deferred to §3.6.

Send The term, k !i .x , denotes a process which causes a message to be queued
for transmission on channel k . The message consists of the message identifier,
i , and the data value associated with the variable, x . Sending is asynchronous.
The process k !i .x cannot be delayed. It causes its message to be queued in-
stantaneously and terminates immediately.

Receive k?i .x is a process which waits to accept a message from channel k .
It will only accept a message with the identifier i . It ignores messages with
any other identifier, simply allowing time to pass and other network activity
to occur. When an i -message reaches its acceptance point during transmission
on channel k , then k?i .x must accept the message instantly, causing the data
variable x to become associated with the message’s data value. k?i .x then
terminates immediately.

Compute [ω : t1, t2] is a process which transforms the data state according to
the specification of the operation ω. It begins execution immediately and is
guaranteed to terminate no later (resp. no sooner) than t2 (resp. t1) time units
after it has started. The specified change to the data state occurs in a single,
instantaneous action at the moment of termination. Two forms of the compute
process are deemed important enough to warrant giving them their own names:
the idle process, defined as [ID : ∞], which never performs any action but
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simply allows time to pass forever; and the null process, defined as [ID : 0],
which terminates immediately, leaving the data state unchanged.

Evaluate Guard γ → P causes the evaluation of the guard γ (which is a
predicate on data states) in the current environment. If the guard is satisfied,
the process carries on immediately to behave as P ; otherwise γ → P simply
idles, allowing time to pass and network activity to occur.

Sequential Composition P ; Q behaves just as P until P terminates. It then
carries on immediately to behave as Q , using the state of the network and the
data environment at P ’s termination. If P does not terminate then Q is never
started.

Choice P + Q behaves either as P or as Q . The choice is resolved in favour of
whichever process can first perform an action. If both P and Q can perform
an action simultaneously, the choice is resolved arbitrarily in favour of one of
them. Network activity and the passage of time must be allowed by both P
and Q in order to occur; neither resolves the choice. The choice operator can
be used quite simply to model a timeout, e.g.,

k?i .x ; P + [Timeout : 4] ; Q

denotes a process which is able to receive a message with identifier i from
channel k and then behave like process P , or, alternatively, may execute the
Timeout operation at time 4 and then behave like process Q . Notice that if an
i message becomes available for reception before time 4 then it will be received
and the timeout branch will be discarded. On the other hand, if an i message
does not become available at any time up to, and including, time 4 then the
timeout branch will be taken and the possibility of the message reception will
be discarded. If an i message becomes available at exactly time 4 then one or
the other branch will be taken non-deterministically, i.e., the view is taken that
when two or more actions are possible at the same moment in time, we cannot
determine the order in which they may occur but must consider all possible
interleavings.

Interrupt P [> Q behaves as P until either Q performs an action or P termi-
nates. In the first case, the system carries on to behave as Q with whatever is
the current state of the network and data environment (P is aborted); in the
second case, the whole process, P [> Q , terminates. If both P and Q can per-
form an action simultaneously, the choice is resolved arbitrarily in favour of one
of them. Network activity and the passage of time both require the willingness
of P and Q to allow them to occur. When time passes, it does so in both P and
Q . An interrupt is forced when Q can perform an action but cannot allow time
progress, and, at the same time, neither P nor the network can perform any
action. In effect, the interrupt operator behaves just like the choice operator,
except that the occurrence of an action a in the left operand does not cause the
right operand to be discarded unless a is a terminating action.

Parallel Composition The parallel operator, P |Q , gives a simple interleaving
of the actions of P and Q . As with the other operators, network activity and
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the passage of time require the willingness of both P and Q to allow them to
occur.

Recursion The process recX .P denotes a recursive process which has the po-
tential for repetitive behaviour.

3.6 Formal system model

The formal model of an embedded control system, of the sort which was intro-
duced informally in §3.2, is given by a tuple (P ,N ,D), where P is a process
term describing the behaviour of the system processes, N is a network consisting
of one or more communication channels, and D is a data environment. There
are some obvious ‘sanity’ properties which a model (P ,N ,D) must satisfy in
order to be considered well-formed. This section specifies what it means for a
model to be well-formed. A well-formed model is called a bCANDLE system.
A formal semantics is given to a bCANDLE system (P ,N ,D) in a standard
way, using structured operational rules in the style of Plotkin [Plo81]. A strong
equivalence is defined for bCANDLE systems and some simple equational laws
are identified.

3.6.1 Well-formed systems

Clearly, there are some models (P ,N ,D) to which we need not attempt to give
a semantics, e.g., if k !i .x is a sub-term of P and either k does not identify
a channel in N or D .x is undefined. We rule out such models by defining
the set of well-formed models, which we call bCANDLE systems. Essentially, a
model (P ,N ,D) is well-formed iff P ,N and D agree on their channel identifiers,
messages identifiers, data variables, operation names and predicate names, and
it is both transmit-safe and receive-safe. A model (P ,N ,D) is transmit-safe
iff any message which may be sent by P on some channel k is a transmissible
message for k in the network N . A model is receive-safe iff, for any message i .v
which may be received by P into a data variable x , v is in the type of x .

The send and receive sub-terms of a term P are defined simply.

Definition 3.22 (snd(P), rcv(P)) Let P ∈ Proc+ and ./∈ {; ,+, [>, |}. The
send and receive sub-terms of P are given by snd(P) and rcv(P) respectively,
which are defined as the least sets satisfying:

snd(k !i .x ) = {k !i .x} rcv(k !i .x ) = ∅

snd(k?i .x ) = ∅ rcv(k?i .x ) = {k?i .x}

snd([ω : t1, t2]) = ∅ rcv([ω : t1, t2]) = ∅

snd(γ → P) = snd(P) rcv(γ → P) = rcv(P)

snd(X ) = ∅ rcv(X ) = ∅

snd(recX .P) = snd(P) rcv(recX .P) = rcv(P)

snd(P ./ Q) = snd(P) ∪ snd(Q) rcv(P ./ Q) = rcv(P) ∪ rcv(Q)

2
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We are now in a position to define the set of bCANDLE systems.

Definition 3.23 (bCANDLE system) Let K and I be finite sets of channel
identifiers and message identifiers. Let Var ,Ω and Γ be finite sets of vari-
able names, operation names and predicate names, respectively. Let V be
the set of data values. The set of bCANDLE systems over K , I ,Var ,Ω and
Γ is denoted bCAN K ,I ,Var ,Ω,Γ and a tuple (P ,N ,D) ∈ bCAN K ,I ,Var ,Ω,Γ iff
P ∈ ProcK ,I ,Var ,Ω,Γ, N ∈ NetworkK ,I , D ∈ DataEnvVar ,Ω,Γ and the following
two properties are satisfied:

k !i .x ∈ snd(P) ∧ Nk = (M , , , , ) ⇒ {i .v | v ∈ D . type(x )} ⊆ M (3.3)

k?i .x ∈ rcv(P) ∧ Nk = (M , , , , ) ⇒ {v | i .v ∈ M } ⊆ D . type(x ) (3.4)

2

Conditions 3.3 and 3.4 express the requirements for transmit-safe and receive-
safe models, respectively.

Notation. As usual, the subscript is dropped from bCAN K ,I ,Var ,Ω,Γ when it
can be inferred from the context.

3.6.2 Operational semantics

The semantics of a bCANDLE system is given by a labelled timed transition
system. The set of labels consists of the network action labels An, the time
passage labels R, and the process action labels Ap, defined as follows.

Definition 3.24 (Process Action Labels) Let K and I be sets of channel
and message identifiers, respectively. Let Ω be a set of operation names and Γ
a set of predicate names. Let V be the set of data values. The set Ap of process
action labels over K , I , Ω and Γ, is defined

Ap =̂ Ω ∪ Γ ∪ {k !i .v | k ∈ K ∧ i ∈ I ∧ v ∈ V }

∪ {k?i .v | k ∈ K ∧ i ∈ I ∧ v ∈ V }

2

Definition 3.25 (bCANDLE semantics) The semantics of a system B ∈ bCAN ,
is given by the timed transition system T [[B ]] = (Σ, σI ,L,−→) where

• Σ = bCAN , is the set of states of the system.

• The initial state, σI , is B .

• L = Ap ∪ An ∪ R is the set of transition labels.
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Snd.1
Nk = (s , u) ∧ v = D .x

(k !i .x ,N ,D)
k !i.v
−→(X,N [k := (s , u " i .v)],D)

Snd.2
N

λn−→nN
′

(k !i .x ,N ,D)
λn−→(k !i .x ,N ′,D)

Snd.3
(k !i .x ,N ,D)

0
−→(k !i .x ,N ,D)

Rcv.1
Nk = (↑ i .v , )

(k?i .x ,N ,D)
k?i.v
−→ (X,N ,D [x := v ])

Rcv.2
N

λn−→nN
′ ∧ (Nk 6= (↑ i . , ) ∨ Nk = N ′

k )

(k?i .x ,N ,D)
λn−→(k?i .x ,N ′,D)

Rcv.3
N

t
−→nN

′

(k?i .x ,N ,D)
t

−→(k?i .x ,N ′,D)

Comp.1
D

ω
−→dD

′

([ω : 0, ],N ,D)
ω

−→(X,N ,D ′)

Comp.2
N

λn−→nN
′

([ω : t1, t2],N ,D)
λn−→([ω : t1, t2],N

′,D)

Comp.3
N

t
−→nN

′ ∧ t ≤ t2

([ω : t1, t2],N ,D)
t

−→([ω : t1 −. t , t2 −. t ],N ′,D)

Fig. 3.5: Rules for Basic Systems

• −→ ⊆ (Σ×L×Σ) is the least relation which is closed under the structured
operational rules of Figures 3.3, 3.5, 3.6 and 3.7. These rules make use of
generic labels λp, λn, λnt and λ where λp ranges over Ap, λn ranges over
An, λnt ranges over An ∪R and λ ranges over L. We assume that t ranges
over R, whereas t1, t2 range over R∞. 2

Termination

The distinguished process name X is used in the semantic rules to indicate suc-
cessful termination. It is used only in giving the semantics and is not available
to a user of the language as a process term. This side-steps many of the tricky
issues which arise in attempting to give a proper treatment of termination in a
timed setting and permits a standard approach to be taken to the definition of
the operational semantics and strong bisimilarity. The reader who is interested
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Gu.1
D |= γ

(γ → P ,N ,D)
γ

−→(P ,N ,D)

Gu.2
N

λn−→nN
′

(γ → P ,N ,D)
λn−→(γ → P ,N ′,D)

Gu.3
N

t
−→nN

′ ∧ (D 6|= γ ∨ t = 0)

(γ → P ,N ,D)
t

−→(γ → P ,N ′,D)

Seq.1
(P ,N ,D)

λ
−→(P ′,N ′,D ′) ∧ P ′ ≡| X

(P ; Q ,N ,D)
λ

−→(P ′ ; Q ,N ′,D ′)

Seq.2
(P ,N ,D)

λp

−→(X,N ′,D ′)

(P ; Q ,N ,D)
λp

−→(Q ,N ′,D ′)

Ch.1
(P ,N ,D)

λp

−→(P ′,N ′,D ′)

(P + Q ,N ,D)
λp

−→(P ′,N ′,D ′)

Ch.2
(Q ,N ,D)

λp

−→(Q ′,N ′,D ′)

(P + Q ,N ,D)
λp

−→(Q ′,N ′,D ′)

Ch.3
(P ,N ,D)

λnt−→(P ′,N ′,D) ∧ (Q ,N ,D)
λnt−→(Q ′,N ′,D)

(P + Q ,N ,D)
λnt−→(P ′ + Q ′,N ′,D)

Rec
(P [recX .P/X ],N ,D)

λ
−→(P ′,N ′,D ′)

(recX .P ,N ,D)
λ

−→(P ′,N ′,D ′)

Fig. 3.6: Rules for Guard, Sequential Composition, Choice and Recursion

in some of the issues which arise when a more satisfying algebraic approach is
attempted is referred to [BV97, Ver97a, BR00].

Proposition 3.8 (Time determinism, time additivity) For any
bCANDLE system, B, T [[B ]] is a timed transition system.

Proof By Definition 2.6 and induction on the depth of the inferences which
justify the time transitions. 2

3.6.3 Strong equivalence

We define a strong equivalence for bCANDLE systems using bisimulation [Mil89].
The standard notion of bisimulation is adapted by requiring that bisimilar states
have identical contexts, i.e., their networks and data environments must be the
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Int.1
(P ,N ,D)

λp

−→(P ′,N ′,D ′) ∧ P ′ ≡| X

(P [>Q ,N ,D)
λp

−→(P ′ [>Q ,N ′,D ′)

Int.2
(P ,N ,D)

λp

−→(X,N ′,D ′)

(P [>Q ,N ,D)
λp

−→(X,N ′,D ′)

Int.3
(Q ,N ,D)

λp

−→(Q ′,N ′,D ′)

(P [>Q ,N ,D)
λp

−→(Q ′,N ′,D ′)

Int.4
(P ,N ,D)

λnt−→(P ′,N ′,D) ∧ (Q ,N ,D)
λnt−→(Q ′,N ′,D)

(P [>Q ,N ,D)
λnt−→(P ′ [>Q ′,N ′,D)

Par.1
(P ,N ,D)

λp

−→(P ′,N ′,D ′) ∧ P ′ ≡| X

(P | Q ,N ,D)
λp

−→(P ′ | Q ,N ′,D ′)

Par.2
(P ,N ,D)

λp

−→(X,N ′,D ′)

(P | Q ,N ,D)
λp

−→(Q ,N ′,D ′)

Par.3
(Q ,N ,D)

λp

−→(Q ′,N ′,D ′) ∧ Q ′ ≡| X

(P | Q ,N ,D)
λp

−→(P | Q ′,N ′,D ′)

Par.4
(Q ,N ,D)

λp

−→(X,N ′,D ′)

(P | Q ,N ,D)
λp

−→(P ,N ′,D ′)

Par.5
(P ,N ,D)

λnt−→(P ′,N ′,D) ∧ (Q ,N ,D)
λnt−→(Q ′,N ′,D)

(P | Q ,N ,D)
λnt−→(P ′ | Q ′,N ′,D)

Fig. 3.7: Rules for Interrupt and Parallel Composition

same. This seems essential intuitively and accords with other treatments of
bisimulation for systems whose states contain an explicit context [GP94, BV94].

Firstly, the standard definition of bisimulation is given with respect to an
equivalence relation between states.

Definition 3.26 (Strong Bisimulation) Let S = (Σ, σI ,L,−→) be a LTS.
Let ≈ be an equivalence relation on Σ. A binary relation R ⊆ Σ×Σ is a strong
≈-bisimulation if σ1Rσ2 implies

1. σ1 ≈ σ2

2. for all λ ∈ L, if σ1
λ

−→σ′1, then σ2
λ

−→σ′2 for some σ′2 such that σ′1Rσ
′
2

3. for all λ ∈ L, if σ2
λ

−→σ′2, then σ1
λ

−→σ′1 for some σ′1 such that σ′1Rσ
′
2 2
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Notice that one obtains the standard definition of strong bisimulation by taking
≈ to be Σ × Σ.

Definition 3.27 (Strong equivalence) Let S = (Σ, σI ,L,−→) be a LTS.
σ1, σ2 in Σ are strongly equivalent (≈-bisimilar), denoted σ1 ↔≈ σ2, iff there is
a strong ≈-bisimulation R such that σ1Rσ2. 2

Strong equivalence is extended to transition systems, as follows.

Definition 3.28 Let S1 = (Σ1, σ
I
1 ,L1,−→1) and S2 = (Σ2, σ

I
2 ,L2,−→2) be

LTS’s. A ≈-bisimulation between S1 and S2 is a binary relation R ⊆ Σ1 × Σ2,
satisfying σI1 RσI2 and the three clauses of Definition 3.26. S1 is strongly equiv-
alent (≈-bisimilar) to S2, denoted S1 ↔≈ S2, iff there is a ≈-bisimulation
between them. 2

Notation. We write σ1 ↔ σ2 for σ1 ↔≈ σ2, and S1 ↔ S2 for S1 ↔≈ S2, when
the relation ≈ is clear from the context.

In order to develop a notion of strong equivalence for bCANDLE systems,
we define context equivalence which simply requires that networks and data
environments are identical.

Definition 3.29 (Context equivalence) Let σ1 = (P1,N1,D1) and σ2 =
(P2,N2,D2) be two bCANDLE system states in bCAN . σ1 is context equiv-
alent to σ2, denoted σ1 ≈ND σ2, iff N1 = N2 and D1 = D2. 2

Clearly, ≈ND is an equivalence relation. Now, strong equivalence for bCANDLE

systems is defined simply as ≈ND -bisimilarity.

Definition 3.30 Let B1,B2 ∈ bCAN . B1 is strongly equivalent to B2, denoted
B1 ↔ B2 iff their transition systems are ≈ND -bisimilar, i.e. T [[B1]] ↔≈ND

T [[B2]] 2

We also extend the notion of strong equivalence to the set Proc of closed,
guarded process terms.

Definition 3.31 Let P ,Q ∈ Proc be closed, guarded process terms. P is
strongly equivalent to Q , denoted P ↔ Q , iff (P ,N ,D) ↔ (Q ,N ,D) for all
bCANDLE systems (P ,N ,D), (Q ,N ,D) ∈ bCAN . 2

Notation. bCAN |= P ↔ Q denotes the fact that P is strongly equivalent to
Q with respect to the semantics of bCAN .

Proposition 3.9 (Congruence) The relation ↔ between terms in Proc , is a
congruence with respect to all process operators.
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+.1 P + Q = Q + P
+.2 P + (Q + R) = (P + Q) + R
+.3 P + P = P
+.4 P + idle = P
; .1 (P ; Q) ; R = P ; (Q ; R)
; .2 (P + Q) ; R = P ; R + Q ; R
; .3 idle ; P = idle
[>.1 idle [> P = P
[>.2 P [> idle = P
[>.3 (P [>Q) [> R = P [> (Q [> R)
|.1 P | Q = Q | P
|.2 P | (Q | R) = (P | Q) | R
|.3 P | idle = P if P is persistent
rec .1 rec X .P = P [rec X .P/X ]
rec .2 If P [Q/X ] = Q and X is guarded in P then recX .P = Q

Tab. 3.2: Equational laws

Proof The structured operational rules which define the semantics fall within
the Super-SOS format of [BV94]. The proof of the proposition then follows from
the fact that strong equivalence is a congruence with respect to any set of op-
erators defined by such a set of rules. 2

3.6.4 Equational laws

Our primary approach to verification is via graph-based exploration techniques
such as model checking and reachability analysis, rather than by algebraic rea-
soning. However, we observe that many of the usual laws are satisfied. Table 3.2
summarises the known laws for bCANDLE systems. Consideration of a frame-
work in which it is possible to derive a complete axiomatisation, and useful
theorems such as an expansion theorem, is of interest but has been judged, so
far, to be of secondary importance to the development of algorithmic analysis
techniques.

Notation. We write bCAN ` P = Q , if P and Q are equivalent modulo the
laws of Table 3.2.

Proposition 3.10 (Soundness) For all process terms P ,Q ∈ Proc,
bCAN ` P = Q ⇒ bCAN |= P ↔ Q

Proof The proof is a standard application of bisimulation. 2

Notice that the law |.3 holds only for persistent systems, where a bCANDLE

system is regarded as persistent if it cannot reach a state of the form (X,N ,D).
For example, (k !i .x ; idle,N ,D) is persistent, whereas (k !i .x ,N ,D) is not per-
sistent, for any N and D .
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Definition 3.32 (Persistent bCANDLE system)
A bCANDLE system (P ,N ,D) is said to be persistent if there is no transition
sequence (P ,N ,D) −→

∗

(X,N ′D ′), for any network N ′ and data environment
D ′. A process term P is said to be persistent if every bCANDLE system
(P ,N ,D) is persistent. 2

It is apparent that the law P | idle = P does not hold unless P is persistent.
Consider, for example, the systems (null | idle,N ,D) and (null,N ,D), for any

N and D . The former has a transition (null | idle,N ,D)
ID
−→(idle,N ,D) (by

Comp.1 and Par.2), while the latter has a transition (null,N ,D)
ID
−→(X,N ,D)

(by Comp.1). It is clear that (idle,N ,D) 6↔ (X,N ,D).
It is not difficult to see that for any non-persistent system (P ,N ,D), there

is a persistent system (P ′,N ,D) which has the same behaviour up to the point
when P becomes X and which, thereafter, only allows the completion of network
activity and the progress of time. For example, we can take P ′ to be either
P ; idle or P | idle.

From now on we assume that we are only dealing with persistent systems,
unless stated otherwise.

3.7 A simple example

In this section the use of bCANDLE is illustrated by modelling the simple
flow control system which was introduced in §1.1. The purpose of the system
is to maintain the flow of liquid through a pipe at a preset constant rate.
Assume that the system is implemented using two distributed processors: one
for reading the flow sensor, the other for adjusting the control valve. The
processors are connected by a CAN bus operating at 1Mbit/sec. Figure 3.8
shows a bCANDLE model of the system. It consists of two processes: Flow
and Valve.

Flow models a process which periodically reads a flow sensor and broadcasts
its value in a flow message. It is assumed that the implementation requires
between 85 and 90µsecs to sample the flow sensor, condition the signal and
configure a CAN controller to transmit the flow message. A hardware timer,
which implements the periodic behaviour of the process, interrupts at intervals
of approximately 10 msecs.

Valve models a process which repeatedly waits to receive a flow message,
executes a control algorithm to calculate a new value for the valve position,
and instructs an actuator to move the valve to its new position. It is assumed
that it takes between 200 to 300µsecs from receipt of a flow message to the
configuration of the valve actuator.

The network section of the bCANDLE model gives the static attributes of
the communication channel implemented by the CAN bus. Channel k models a
CAN bus which transmits flow messages with a transmission latency of between
43 and 53µsecs from start of transmission to acceptance test, and a latency of
between 10 and 12µsecs from acceptance test to bus idle.
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Flow | Valve

where

Flow = [ReadSensor:85,90] ; k!flow.x ; idle

[> [PERIOD:10000,10250] ; Flow

Valve = k?flow.y ; [AdjustValve:200,300]; Valve

network

/* pri dlb dub dlB duB */

k = (flow : 1, 43, 53, 10, 12)

data x, y

Fig. 3.8: Flow regulator in bCANDLE

The data section introduces the names of data variables used in the model.
Initially, the values of all variables are undefined. Variable types, operation
specifications and predicate definitions are assumed to be defined externally.
Currently, a bCANDLE model can be explored using simulators implemented
in either Prolog or C. Both simulators require the necessary data definitions to
be provided in the host language. In this example, we abstract entirely from
the effects of data by assuming that all variables are of type unit and all data
operations leave the data state unchanged. The modelling of data is discussed
in more detail in §6.3.

Our Prolog simulator for bCANDLE is a direct implementation of the tran-
sition semantics. This approach allows the exploration of bCANDLE system
models and also helps in gaining confidence in the operational semantics. A
similar approach to the animation of the hardware description language VER-
ILOG [Gol96] has been proposed recently by Bowen [Bow99].

A (slightly modified) simulator trace of the flow regulator example is shown
in Figure 3.9. The following conventions are adopted:

• A system state is shown as a tuple (P ,N ) – the data component D is
omitted since it is not of interest here.

• The network component N shows only the dynamic attributes of the single
channel k .

• The unit value is written as 1.

• Time delays are chosen arbitrarily from the allowable range of values.

Exploration of a system model in this way can lead quickly to a good under-
standing of system behaviour. A more thorough exploration can be achieved
by applying the model-checking techniques introduced in the next chapter.
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(Flow | Valve, (↓, 〈〉))
90
−→

(Flow1 | Valve, (↓, 〈〉))
ReadSensor

−→

(Flow2 | Valve, (↓, 〈〉))
k !flow .1
−→

(Flow3 | Valve, (↓, 〈flow .1〉))
k;flow .1
−→

(Flow3 | Valve, (
43,53
; flow .1, 〈〉))

50
−→

(Flow4 | Valve, (
0,3
;flow .1, 〈〉))

k↑flow .1
−→

(Flow4 | Valve, (↑flow .1, 〈〉))
k?flow .1
−→

(Flow4 | Valve1, (↑flow .1, 〈〉))
flow .1;k
−→

(Flow4 | Valve1, (flow .1
10,12
; , 〈〉))

10
−→

(Flow5 | Valve2, (flow .1
0,2
;, 〈〉))

k↓
−→

(Flow5 | Valve2, (↓, 〈〉))
200
−→

(Flow6 | Valve3, (↓, 〈〉))
AdjustValve

−→

(Flow6 | Valve, (↓, 〈〉))
9700
−→

(Flow7 | Valve, (↓, 〈〉))
PERIOD
−→

(Flow | Valve, (↓, 〈〉)) −→
...

where the process identifiers are defined as follows:

Flow1 = [ReadSensor : 0, 0] ; k !flow .x ; idle [> [PERIOD : 9910, 10160] ; Flow

Flow2 = k !flow .x ; idle [> [PERIOD : 9910, 10160] ; Flow

Flow3 = idle [> [PERIOD : 9910, 10160] ; Flow

Flow4 = idle [> [PERIOD : 9860, 10110] ; Flow

Flow5 = idle [> [PERIOD : 9850, 10100] ; Flow

Flow6 = idle [> [PERIOD : 9650, 9900] ; Flow

Flow7 = idle [> [PERIOD : 0, 200] ; Flow

Valve1 = [AdjustValve : 200, 300] ; Valve

Valve2 = [AdjustValve : 190, 290] ; Valve

Valve3 = [AdjustValve : 0, 90] ; Valve

Fig. 3.9: Simulator trace of the flow regulator example
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3.8 Conclusions and Related Work

The language introduced in this chapter draws on ideas from a variety of sources,
mainly in the field of process algebra. Our concern, however, has not been to
develop a new process algebra but to design a language with a formal semantics,
which is suitable for the pragmatic purpose of modelling a particular class of
broadcasting embedded control systems, and which is amenable to analysis by
model checking as discussed later in Chapters 4 and 5. Therefore, whenever
we have had to choose between an intuitively ‘natural’ syntax or semantics,
on the one hand, and truly satisfying algebraic properties, on the other hand,
we have erred in favour of the former. The result is a practical modelling lan-
guage which accommodates prioritised, CAN-style communication over latent
channels, has a dense time semantics, and is amenable to a variety of efficient
analysis techniques, known from the study of timed automata.

3.8.1 Broadcast communication and Real-Time

The bCANDLE communication mechanism is an asynchronous, broadcast of
messages with explicit transmission latency. These characteristics seem to be
natural for the performance modelling of CAN-like systems. However, there
appears to be no other formal language which combines all three properties in a
single communication primitive. We provide a short review of those approaches
which seem to come closest to providing what is required.

An early recognition of the importance of broadcast communication is seen
in [Geh84], which describes a number of programming examples in a CSP-like
language, extended with both unbuffered and buffered broadcast primitives.
Some notion of the passing of time is offered by a delay construct, but com-
munication is instantaneous and the formal semantics of the language is not
considered. The inadequacy of a point-to-point communication primitive for
modelling broadcast networks is addressed in [CA91], where a proposal is made
for the extension of the formal description technique Estelle [ISO88a] with prim-
itive broadcast channels. The synchronous programming languages, such as
ESTEREL [BG92], Lustre [HLR92], Argos [Mar92] and Statecharts [Har87], of-
fer a broadcast primitive, but their reliance on the synchrony hypothesis makes
them unsuitable for use in distributed systems. This problem is addressed
in [BRS93], which envisages a distributed system as a collection of locally re-
active ESTEREL nodes communicating asynchronously with each other. How-
ever, the proposed asynchronous communication is the CSP rendezvous, not
an asynchronous broadcast. Prasad has developed the Calculus of Broadcast-
ing Systems (CBS) [Pra95], which offers an asynchronous, unbuffered broadcast
primitive. A timed version of the calculus is introduced in [Pra96]. His concerns
are primarily with algebraic properties of the language, such as an expansion
theorem and a complete axiomatisation, rather than with the development of
an expressive language for modelling embedded systems. For this reason, there
are some features of bCANDLE which would be difficult to capture in CBS, e.g.,
the interrupt operator and transmission latency. In his thesis [Hol94], Holmer
discusses the relationship of CBS and SCCS [Mil89] and gives a translation from
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CBS to SCCS. This opens the possibility of automated analysis of CBS mod-
els using the Concurrency Workbench [CPS93]; however, dense real-time is not
addressed in this framework. A language which is closer to bCANDLE is the
Timed Statechart language of [KP92], which offers an asynchronous broadcast
primitive and an expressive, timed process language; however, broadcasts are
instantaneous, so modelling of transmission latency requires the introduction
of a process to capture the delay in each broadcast channel. A similar ap-
proach needs to be adopted to make use of the broadcast primitive introduced
into Real-Time CSP in [DJS92]. The importance of broadcast communication
as a primitive concept has been recognised again more recently in [EFM99],
which addresses the model-checking problems for safety and liveness properties
in broadcast protocols; once again, real-time issues are not considered.

3.8.2 Process Operators

Clearly, the process language of bCANDLE has been influenced by a number
of other languages. Here, we briefly acknowledge our debts.

The relative time-stamped actions, sequential composition and choice opera-
tors are as seen in ACPρ [BB91], while our parallel composition is the standard,
asynchronous, interleaving operator. The interrupt operator has the same se-
mantics as the operator of ET-LOTOS, which allows time to pass in both argu-
ments, rather than the corresponding operator of Real-Time CSP, which allows
time to pass only in its left argument [BDS94]. This allows us to omit RT-
CSP’s watchdog operator, at no cost to expressiveness. Our treatment of state,
particularly with respect to the modelling of asynchronous broadcast channels
and the associated send and receive operations has been influenced by the work
of Kesten and Pnueli [KP92].



4. ANALYSIS VIA TIMED AUTOMATA

In this chapter we define a method for generating timed automata (TA) from
bCANDLE system descriptions. The method described supports the auto-
matic construction of a TA which is equivalent, in a well-defined sense, to a
given bCANDLE description. This introduces the possibility of using the pow-
erful verification techniques and tools, described in §2.7, for the analysis of
bCANDLE systems.

Translation from modelling languages to automata has been studied in
a variety of settings. Early approaches were concerned with the family of
synchronous programming languages which includes ESTEREL [BG92], Lus-
tre [HLR92] and Argos [JM95]. The problem has also been studied for the un-
timed process algebra LOTOS [Gar92] and for the timed languages ATP [Nic92,
NSY92, Yov93], AORTA [BHKR95] and ET-LOTOS [Her98]. This is the first
treatment which considers a language which combines latent broadcast commu-
nication with data and dense time.

The organisation of the rest of the chapter is as follows. Section 4.1 gives an
informal introduction to the objectives of the chapter using a simple example.
In §4.2 we revise our system models to include explicit clock variables. This
modification facilitates the construction of a TA for a bCANDLE description.
The construction and its correctness are considered in §4.3. Section 4.4 pro-
vides the foundations for the practical implementation of the construction. The
application of the method is demonstrated with an example in §4.5 and finally
we present our conclusions in §4.6.

4.1 A bCANDLE System and its Timed Automaton

We can illustrate our objectives in this chapter with a modified version of the
flow regulator example (§3.7). The example is curtailed in order to simplify the
presentation.

Consider the bCANDLE description shown in Figure 4.1. The example
models a one-shot flow regulator, in which a single interaction occurs between
a flow sensor and a valve controller. The system consists of two processes, Flow
and Valve, and a broadcast channel k . The Flow process takes a single reading
from a flow sensor. We abstract from the actual value read by the ReadSensor
operation. Flow broadcasts the flow message on channel k and then idles
forever. We assume that k can transmit only one type of message, namely
flow messages, and that it does so within the bounds shown in its declaration
in the network section. The Valve process waits to receive the flow reading
from channel k . When the message is received, Valve executes its AdjustValve
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Flow | Valve

where

Flow = [ReadSensor:85,90] ; k!flow.x ; idle

Valve = k?flow.y ; [AdjustValve:200,300]; idle

network

/* pri dlb dub dlB duB */

k = (flow : 1, 43, 53, 10, 12)

data x, y

Fig. 4.1: One-shot flow regulator in bCANDLE

operation and then also idles forever.
An equivalent behaviour can be expressed using the TA of Figure 4.2. We

recall from §2.5.4 that a TA is a tuple A = (Q , qI ,A,H,E , I ) of locations,
initial location, action labels, clocks, edges and invariant function. The exam-
ple automaton has eleven locations, twelve edges and four clocks. The initial
location is (0). The set of TA labels is the set comprising the network action
labels and process action labels of the bCANDLE system. Now consider the
behaviour of the TA. Clock H 4 is active in location (0). It constrains the con-
trol in the automaton to reside in this location for not more than 90 time units.
After 85 time units the ReadSensor transition can be taken. This captures
the behaviour of [ReadSensor : 85, 90] and is typical of the translation of a
bCANDLE computation. The edge from location (1) to location (2) models
the instantaneous queueing of the message flow on channel k . The urgency of
the action is captured by the invariant condition H 1 ≤ 0 attached to location
(1). Edges from (2) to (3) and from (3) to (4) represent the transmission of
the message up to the point at which it is available for reception by waiting
processes. Notice that clock H 2 has been allocated to channel k and is used
to capture all non-urgent timing constraints on the behaviour of this channel.
The edge from (4) to (5) represents the reception of the message by the Valve
process. Subsequent edges capture the possible interleavings of actions as the
channel enters its post-acceptance phase and becomes free, while the Valve
process completes its AdjustValve operation. When control eventually reaches
location (10), the system idles forever.

It is not difficult to convince oneself that the TA describes the same system
as the bCANDLE model. Notice, however, that some of the edges in the TA
are redundant. For example, the edge between locations (5) and (6) has a
guard, H 3 ≥ 200, which can never be satisfied, since both H 1 and H 3 are reset
on entry to location (5), and the invariant at (5) requires H 1 ≤ 0. Similarly,
the guard on the edge between locations (7) and (8) is unsatisfiable, since H 2
and H 3 must be 0 on entry to location (7). The inclusion of such redundant
edges does not compromise the equivalence between the TA and the bCANDLE
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tt

10

8

H2<=12

6

H1<=0

1

H1<=0

4

H1<=0

3

H2<=53

2

H1<=0

k->flow,
tt,

{H1,H2}

tt,

H2>=43,

AdjustValve,
H3>=200,

{H1}
flow->k,

tt,

{H1,H2}

k\/,
{H1}

H2>=10,

AdjustValve,
H3>=200,

{H1}
k\/,

H2>=10,

{H1}

H3>=200,

{H1}
AdjustValve,flow->k,

tt,

{H1,H2}

tt,
k?flow,

{H1,H3}

0

H4<=90

H4>=85,

9

H3<=300

7

5

H1<=0,

H2<=12,

k!flow,
{H1}

k/\flow,
{H1}

ReadSensor,
{H1}

H3<=300

H3<=300

PSfrag replacements

flow

Fig. 4.2: A timed automaton for the one-shot flow regulator

model, but the efficiency of automatic analysis procedures based on the TA may
be degraded. This problem is addressed in Chapter 5.

The purpose of the remainder of this chapter is to define a translation from
bCANDLE models to their equivalent TA, and to show how the translation can
be implemented efficiently.

4.2 Models with explicit clocks

Timed automata model the passing of time by using explicit clock variables. On
the other hand, timed process algebra represent either absolute or relative time
in the syntax of process terms, without the use of explicit clock variables. This
is the case for bCANDLE. As a first step in the translation from bCANDLE to
timed automata, explicit clock variables are introduced into bCANDLE models.
The approach is similar to that adopted in the translation of ATP [Nic92].

As an example, look again at the one-shot flow regulator of Figure 4.1. Its
TA is constructed on the assumption that the process term has been decorated
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with clock variables as follows:

[ReadSensor : 85, 90]H4; k !flow .x ; idle
|
k?flow .y ; [AdjustValve : 200, 300]H3 ; idle

Similarly, it is assumed that the network channel k has been decorated with the
clock variable H 2. The clock H 1 is reserved to enforce urgent actions, such as
k !i .x , which must be either executed or disabled without delay. Now, imagine
that time advances by 10 time units from the initial state, and consider the
effect of this time passage on the term [ReadSensor : 85, 90]. In an unclocked
scenario, we expect to see this term evolve to [ReadSensor : 75, 80]. However,
when using explicit clock variables, we find that [ReadSensor : 85, 90] remains
unchanged but the value of clock H 4 advances from 0 to 10. In this case,
a ReadSensor transition becomes enabled when the value of H 4 reaches 85.
Network transitions are controlled similarly by clock H 2.

The remainder of this section formalises this idea by introducing the basic
definitions of explicitly clocked bCANDLE models. Throughout, it is assumed
that H is the set of clock variables and h ranges over H.

4.2.1 Clocked Networks

In the case of the network model, each network channel is simply associated with
a clock variable which is used to measure the passage of time during message
transmission.

Let K be a finite set of channel identifiers and I a finite set of message
identifiers.

Definition 4.1 (Clocked Network) A clocked network over K and I is a
mapping N̂ : K → ChannelI ×H. The set of clocked networks over K and I is
denoted ̂NetworkK ,I , where ̂NetworkK ,I =̂ K → ChannelI ×H. 2

Remark 4.1 Recall that the constants occurring in the clock constraints of
the invariant function and edges of a TA are required to be natural num-
bers (§2.5.3). Therefore, it is necessary to restrict attention to clocked networks
in which the transmission latency function of every channel is defined by a func-
tion δ : M → N∞×N∞×N∞ ×N∞, where N∞ =̂ N∪{∞} (cf. Definition 3.4).

We require that all clocked networks N̂ ∈ ̂Network satisfy this constraint. 2

Notation. Let N̂ be a clocked network and N̂k = (η, h). The notation ηh is
used as an abbreviation for (η, h). In fact, we sometimes omit the clock variable
entirely when we do not intend to refer to it in some context, and simply write
N̂k = η.

Definition 4.2 (Clock Variables: Network) Let K be a set of channel iden-
tifiers. The clock variables used in a clocked network are given by the function
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clk : ̂NetworkK → 2H, where clk(N̂ ) =̂ {h | k ∈ K ∧ N̂k = ( , h)} 2

Definition 4.3 (Unclocked Network) The unclocked network correspond-

ing to a clocked network is given by the function unclk : ̂NetworkK → Network,
where unclk(N̂ ) =̂ {k 7→ η | k ∈ K ∧ N̂k = (η, )}. 2

4.2.2 Clocked Process Terms

In defining the set of clocked process terms, we also introduce a number of
syntactic restrictions which ensure that a TA can be constructed in a straight-
forward manner:

1. Constants t1, t2 in time-bounded computations [ω : t1, t2] are required
to be natural numbers. This is for similar reasons to those discussed in
Remark 4.1.

2. The use of the parallel operator is restricted to the top-level. This restric-
tion simplifies the implementation of the TA translation.

3. All terms are required to have static control. This is discussed in more
detail below.

In practice, these restrictions do not severely curtail the models which can be
expressed. In fact, we will see that the high-level language CANDLE allows the
expression of a wide variety of systems, and yet all CANDLE programs can be
translated into bCANDLE models which satisfy these syntactic constraints.

The first two restrictions are captured in the following definition of clocked
process terms.

Definition 4.4 (Clocked Process Terms) The set of clocked process terms,
̂Proc+, over K , I ,Var ,Ω and Γ is defined inductively by:

P̂ ::= Q̂

| P̂ | P̂

Q̂ ::= k !i .x | k?i .x | [ω : t1, t2]
h | γ → Q̂

| Q̂ ; Q̂ | Q̂ + Q̂ | Q̂ [> Q̂

| rec X .Q̂ | X

where H is a set of clocks, h ∈ H, t1, t2 ∈ N∞, P̂ ranges over ̂Proc+, Q̂ ranges

over the terms in ̂Proc+ except those containing the parallel operator, and the
other variables are defined as usual (Definition 3.16). 2

In keeping with our previous convention, we use the variables β̂, β̂′, β̂1 etc. to
range over the clocked basic terms, which are of the form k !i .x , k?i .x and
[ω : t1, t2]

h .
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The definitions over the structure of terms given in §3.5 are easily extended
to clocked terms, and we shall refer to closed and guarded clocked process terms
without further explanation. The set of closed, guarded, clocked process terms
is denoted P̂roc .

Static control

There are some bCANDLE systems which cannot be represented by any finite
TA. For example, consider a system (P ,N ,D) ∈ bCAN where the process P is
defined as

P =̂ recX .(([a : 0] ; X ) [> ([b : 0] ; idle)).

This can give rise to an unbounded expansion

((rec X .[a : 0] ; X [> [b : 0] ; idle) [> [b : 0] ; idle) [> · · · [> [b : 0] ; idle

by repeatedly unwinding the recursion. In the general case, an infinite number
of locations are required in a TA generated by the translation of systems contain-
ing an unbounded expansion of this sort. Similar difficulties can be seen with
recursion involving parallel and sequential composition. Clearly, such terms
should be excluded from consideration when proposing a translation scheme to
finite TA.

Although, it is difficult to provide a precise characterisation of the offending
terms, it is possible to identify a larger set which clearly contains all non-finite
cases; we call this the set of terms which compromise static control. Roughly
speaking, a term compromises static control if it contains a recursion through
the parallel operator | or to the left of the sequential composition or interrupt
operators, ; and [>. This idea is stated formally in the following definition:

Definition 4.5 (Static control) A term P ∈ Proc compromises static con-
trol if P is of the form rec X .P1 and any of the following conditions hold:

1. P1 contains a sub-term of the form Q | R and X ∈ fv(Q) ∪ fv(R);

2. P1 contains a sub-term of the form Q ; R and X ∈ fv(Q);

3. P1 contains a sub-term of the form Q [> R and X ∈ fv(Q).

A term P ∈ Proc has static control iff P does not contain any term which com-
promises static control. A bCANDLE system (P ,N ,D) ∈ bCAN has static
control iff P has static control. 2

This definition is extended naturally to clocked process terms. However, notice
that by restricting the use of the parallel operator to the top-level in clocked
terms, there is no possibility of static control being compromised by a clocked
term satisfying condition (1). The benefits of restricting attention to systems
having static control can be summarised as follows [Gar92]:

• A finite TA can be constructed for systems with static control.
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• The property of static control is decidable using a simple and efficient
algorithm.

• It is easy for the system developer to understand the constraint and to
develop models which satisfy it.

• TA construction for systems with static control can be implemented effi-
ciently.

• Most systems of practical interest can be modelled within the required
constraint.

Unless stated otherwise, we assume from now on that clocked process terms
have static control.

Operations on clocked process terms

There are a number of operations on the syntax of clocked terms which are
useful. The functions clk, iclk and unclk are defined below.

Definition 4.6 (Clock Variables) The clock variables of a clocked process

term are identified by the function clk : ̂Proc+ → 2H, defined as the least set
satisfying:

clk([ω : t1, t2]
h) = {h}

clk(k !i .x ) = clk(k?i .x ) = clk(X ) = ∅

clk(γ → P̂1) = clk(P̂1)

clk(P̂1 ./ P̂2) = clk(P̂1) ∪ clk(P̂2), ./ ∈ {; ,+, [>, |}

clk(rec X .P̂1) = clk(P̂1)

2

Definition 4.7 (Initial Clock Variables) The initial clock variables of a

clocked process term, P̂ , are identified by the function iclk : ̂Proc+ → 2H,
defined as the least set satisfying:

iclk([ω : t1, t2]
h ) = {h}

iclk(k !i .x ) = iclk(k?i .x ) = ∅

iclk(γ → P̂1) = ∅

iclk(P̂1 ; P̂2) = iclk(P̂1)

iclk(P̂1 ./ P̂2) = iclk(P̂1) ∪ iclk(P̂2), ./ ∈ {+, [>, |}

iclk(rec X .P̂1) = iclk(P̂1[rec X .P̂1/X ])

where iclk(P̂) is well defined iff P̂ is guarded. 2
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Definition 4.8 (Unclocked process term) The unclocked process term cor-

responding to a clocked process term is given by the function unclk : ̂Proc+ →
Proc+, where unclk(P̂) is defined by:

unclk(k !i .x ) =̂ k !i .x

unclk(k?i .x ) =̂ k?i .x

unclk([ω : t1, t2]
h ) =̂ [ω : t1, t2]

unclk(γ → P̂1) =̂ γ → unclk(P̂1)

unclk(P̂1 ./ P̂2) =̂ unclk(P̂1) ./ unclk(P̂2), ./ ∈ {; ,+, [>, |}

unclk(rec X .P̂1) =̂ recX .unclk(P̂1)

unclk(X ) =̂ X

2

These operations are illustrated in the following small example.

Example 4.1 Let P̂ be the clocked process term defined by

P̂ =̂ recX .([Init : t1]
H1 ; k?flow .x ; [TestFlow : t2]

H2;
(FlowOk → [Delay : t3]

H3 + FlowHigh → k !alarm.x ; idle)) ; X

Then, clk(P̂) gives the set of all clock variables used in P̂ , i.e. clk(P̂) =
{H 1,H 2,H 3}. The set iclk(P̂) = {H 1} gives the set of clocks which can influ-
ence the initial behaviour of P̂ . Finally, the unclocked term unclk(P̂) is just P̂
with all clock variables removed:

unclk(P̂) = recX .([Init : t1] ; k?flow .x ; [TestFlow : t2];
(FlowOk → [Delay : t3] + FlowHigh → k !alarm.x ; idle)) ; X

2

4.2.3 Safe Clock Allocations

So far, we have imposed no constraints on how clocks can be allocated to
process terms and networks. Efficiency suggests that we should use as few
clock variables as possible. However, it is clear that some clock allocations will
cause problems. For example, consider the clocked term

[ReadSensor : 10]H1 ; [LogData : 20]H1 ; idle | [ComputeSetPoint : 15]H1 ; idle .

The ReadSensor transition should reset H 1 so that it can be used to mea-
sure the progress of LogData. On the other hand, if ReadSensor resets H 1,
then the passage of time for the ComputeSetPoint computation will not be
measured properly: the reset of H 1 at time 10 will delay the execution of
ComputeSetPoint until time 25, which is clearly not the intended behaviour.
Similar difficulties can be observed with clock allocations to network channels.
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The problem exists when two or more system components share the use of a
clock variable but do not agree on the instants when it should be reset. In this
case, we say that the system exhibits clock (variable) contention, otherwise it
is said to be contention free.

In the absence of recursion, we can be sure that a system can never evolve
to one which exhibits clock contention if the sets of clock variables allocated to
process terms involved in an interrupt or parallel composition are disjoint, and
each network channel also has its own distinct clock variable. However, with
recursion, even this restriction is not enough to remove the possibility of clock
contention.

Example 4.2 Consider the term

P̂ =̂ recX .[a : 2]H1 ; ([b : 1]H1 ; [c : 2]H1 [>X ).

Ignoring network and data environment, we see that P̂ can evolve by the passage
of two units of time, and the execution of an a-action, to the term

[b : 1]H1 ; [c : 2]H1 [> (rec X .[a : 2]H1 ; ([b : 1]H1 ; [c : 2]H1 [>X )).

Now, when the b-action is executed after the passage of one further time unit,
we see the problem of clock variable contention. On the one hand, clock H 1
should be reset in order to begin timing the computation [c : 2]H1, but, on the
other hand, H 1 must not be reset since it is currently required in timing the
computation [a : 2]H1. 2

This example prompts us to introduce one final restriction on the syntax of
process terms, namely, that in any term of the form P̂1 [> P̂2, the term P̂2 must
be guarded.
These ideas are summarised by the notion of a safely clocked process term.

Definition 4.9 (Safely clocked process term) P̂ ∈ P̂roc is said to be safely
clocked iff all sub-terms P̂ ′ of P̂ satisfy

1. if P̂ ′ is of the form P̂1 [> P̂2, then P̂2 is guarded, and the initial clock
variables of P̂2 do not occur in the clock variables of P̂1, i.e clk(P̂1) ∩
iclk(P̂2) = ∅, and

2. if P̂ ′ is of the form P̂1 | P̂2, then the clock variables of P̂1 and P̂2 are
disjoint, i.e. clk(P̂1) ∩ clk(P̂2) = ∅. 2

Clearly, if P̂ is a safely clocked process term, then P̂ is contention free.
For the sake of completeness, the formal definition of a safely clocked network
is given as follows.

Definition 4.10 (Safely clocked network) A clocked network N̂ ∈ ̂NetworkK

is said to be safely clocked if each channel is associated with a distinct clock
variable, i.e. if

∀ k , k ′ ∈ K | k 6= k ′ . N̂k = ( , h) ∧ N̂k ′ = ( , h ′) ⇒ h 6= h ′. 2
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It can be shown that the edge relation of a TA constructed by the method
of §4.3 preserves the safety of clock allocation, i.e. if a location q is safely
clocked and there are ψ1, . . . , ψn , λ1, . . . , λn and H1, . . . ,Hn (n ≥ 0) such that

q = q0
ψ1,λ1,H1
−→ q1 · · ·

ψn ,λn ,Hn
−→ qn = q ′, then q ′ is safely clocked. The property

of static control is essential for the proof, which is a long but straightforward
induction and is omitted. An obvious corollary is that if the initial location is
safely clocked, then all reachable locations are contention free.

The requirement of safe clock allocation is stronger than strictly necessary
to ensure that the sort of problems mentioned above are avoided. However,
it is a simple property which can be checked statically, and will be enforced
throughout, unless its relaxation is explicitly stated and justified.

4.2.4 Clocked bCANDLE systems

The definitions are extended to bCANDLE systems in an obvious way.

Definition 4.11 (Clocked bCANDLE systems) The set ̂bCAN of clocked

bCANDLE systems is the set of triples (P̂ , N̂ ,D) where P̂ ∈ P̂roc is a safely
clocked process term with static control, N̂ is a safely clocked network in

̂Network, D is a data environment in DataEnv, and the following conditions
are satisfied:

• the sets of process and network clocks are disjoint, i.e. clk(P̂)∩clk(N̂ ) = ∅;

• the corresponding unclocked system (unclk(P̂), unclk(N̂ ),D) is a bCANDLE

system in bCAN . 2

Definition 4.12 (Clock Variables: bCANDLE system) The clock variables

of a bCANDLE system B̂ ∈ ̂bCAN are identified by the function clk : ̂bCAN →
2H, where clk(P̂ , N̂ ,D) =̂ clk(P̂) ∪ clk(N̂ ). 2

Definition 4.13 (Unclocked bCANDLE system) The unclocked bCANDLE

system corresponding to a clocked bCANDLE system is given by the function
unclk : ̂bCAN → bCAN , where unclk(P̂ , N̂ ,D) =̂ (unclk(P̂), unclk(N̂ ),D). 2

4.3 Timed Automaton Construction

4.3.1 Principles of construction

The TA for a clocked bCANDLE system B̂ ∈ ̂bCAN has some subset of ̂bCAN
as its set of locations with B̂ as the initial location. The set H of clocks com-
prises the set clk(B̂) of clocks occurring in B̂ , together with a distinct urgent
clock hu /∈ clk(B̂), used in enforcing immediate actions. The set A of actions
contains the sets of process and network actions Ap ∪ An. The definition of
the construction of the edges of the TA closely follows the standard semantic
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rules for the corresponding unclocked system (§3.6). For each rule in the se-
mantics which justifies a transition labelled with a discrete action, there is a
corresponding rule which introduces an edge in the automaton. Similarly, the
rules which justify the time transitions are captured by the definition of the
invariant function I . This style of presentation, adopted also in [Nic92, DB96],
emphasises the relationship between the semantics of a system model and its
associated TA.

4.3.2 Construction of the automaton

We begin by explaining the notion of structurally reachable location which is a
useful auxiliary concept in the definition of the TA construction.

A location q is structurally reachable if there is a sequence of edges from the
initial location qI to q , i.e. there are ψ1, . . . , ψn , λ1, . . . , λn and H1, . . . ,Hn (n ≥

0) such that qI = q0
ψ1,λ1,H1
−→ q1 · · ·

ψn ,λn ,Hn
−→ qn = q . The structurally reachable

part of an automaton A is the automaton sreach(A) which is given by the
restriction to structurally reachable locations. We use the term “structural
reachability” for this concept since it is based on the structure of an automaton
as a directed graph, and is different from the usual concept of reachability in
the transition system of the automaton (see Definitions 2.5 and 2.11).

Definition 4.14 Let A = (Q , qI ,A,H,E , I ) be an automaton. Then, the
structurally reachable part of A is denoted sreach(A) and is defined to be the
automaton (Q ′, qI ,A,H,E ′, I ′), where

• Q ′ is the least set satisfying

1. qI ∈ Q ′

2. if q ∈ Q ′ and (q , , , , q ′) ∈ E then q ′ ∈ Q ′

and

• E ′ = E ∩ (Q ′ × ΨH × A × 2H × Q ′)

• I ′ = I ∩ (Q ′ × ΨH) 2

Remark 4.2 For any TA A, it is clear that the transition systems of A and
sreach(A) are strongly equivalent.

Now, we can formally define the construction of a TA corresponding to a
bCANDLE system.

Definition 4.15 (Timed automaton construction) The timed automaton

for a clocked bCANDLE system B̂ ∈ ̂bCAN is denoted G(B̂), where G(B̂) =̂
sreach(G+(B̂)) and G+(B̂) is the automaton (Q , qI ,A,H,E , I ), where

• Q = ̂bCAN is the set of locations.

• qI = B̂ is the initial location.
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E N.1
N̂k = (↓,m : u)h

N̂
tt,k;m,{hu ,h}

−→n N̂ [k := (
lb,ub
; m, u)h ]

E N.2
N̂k = (

t1,t2
; m, u)h ∧ t1 ∈ N

N̂
h≥t1,k↑m,{hu}

−→n N̂ [k := (↑m , u)h ]

E N.3
N̂k = (↑m , u)h

N̂
tt,m;k ,{hu ,h}

−→n N̂ [k := (m
lB,uB
; , u)h ]

E N.4
N̂k = (

t1,t2
; , u)h ∧ t1 ∈ N

N̂
h≥t1,k↓,{hu}

−→n N̂ [k := (↓, u)h ]

Fig. 4.3: Rules for Network Edges

• A = Ap ∪An is the set of action labels.

• H = clk(B̂) ∪ {hu} is the set of clock variables, where hu /∈ clk(B̂).

• E is the least set of edges which is closed under the rules of figures 4.3,
4.4, 4.5 and 4.6. The rules make use of generic labels λp, λn and λ, where
λp ranges over Ap, λn ranges over An and λ ranges over A.

• I : Q → ΨH is the invariant function as defined in Definition 4.16. 2

Definition 4.16 (Invariant Function) Let H be a set of clock variables and

let B̂ ∈ ̂bCAN be a clocked bCANDLE system, where clk(B̂)∪ {hu} ⊆ H. The

invariant function, I : ̂bCAN → ΨH is as defined in Figure 4.7. 2

4.3.3 Commentary on the construction

The translation of a bCANDLE system to its associated TA is straightforward
for the most part. However, there are some aspects which require clarification.
These concern the treatment of data and the enforcement of urgent transitions.
These points are considered below.

Treatment of Data

The TA constructed by the method described here are exactly the timed safety
automata (TSA) defined in [HNSY94]. These automata have been studied ex-
tensively and can be analysed automatically using tools such as
KRONOS [BDM+98]. The choice of TSA as the target of the translation from
bCANDLE directs the translation process in a number of ways. In the treat-
ment of data, it requires that each distinct reachable data environment gives rise
to at least one distinct location in the corresponding TA. Very often, this leads
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E Snd.1
N̂k = (s , u) ∧ v = D .x

(k !i .x , N̂ ,D)
tt,k !i.v ,{hu}

−→ (X, N̂ [k := (s , u " i .v)],D)

E Snd.2
N̂
ψ,λn,H
−→n N̂ ′

(k !i .x , N̂ ,D)
ψ,λn,H
−→ (k !i .x , N̂ ′,D)

E Rcv.1
N̂k = (↑ i .v , )

(k?i .x , N̂ ,D)
tt,k?i.v ,{hu}

−→ (X, N̂ ,D [x := v ])

E Rcv.2
N̂
ψ,λn,H
−→n N̂ ′ ∧ (N̂k 6= (↑ i . , ) ∨ N̂k = N̂ ′

k )

(k?i .x , N̂ ,D)
ψ,λn,H
−→ (k?i .x , N̂ ′,D)

E Comp.1
D

ω
−→dD

′ ∧ t1 ∈ N

([ω : t1, t2]
h , N̂ ,D)

h≥t1,ω,{hu}
−→ (X, N̂ ,D ′)

E Comp.2
N̂
ψ,λn,H
−→n N̂ ′

([ω : t1, t2]
h , N̂ ,D)

ψ,λn,H
−→ ([ω : t1, t2]

h , N̂ ′,D)

Fig. 4.4: Rules for Basic System Edges

to the creation of a TA with a large number of locations. Other approaches
which accommodate explicit data in TA models have avoided this problem by
working with extended automata; the usual extension being to allow the use
of conditions over data variables on edges, in addition to conditions over clock
variables, see for example [Tri98, Her98, BLL+98, BLSTV99]. A single location
may then represent many control states, each having a different data environ-
ment. If the user is expected to create a system model explicitly as a network of
TA, then the handling of data is done most sensibly using extended automata
of this sort. Certainly, one would not wish to construct by hand the automata
which are created by our method. However the situation is not so clear when
creating automata automatically from some other input language, as is the case
here for bCANDLE. For although the construction may give rise to many more
locations in the TA than a construction for extended automata, it does not lead
to an increase in the number of states in the simulation graph (§2.7.6), which
is the primary structure over which most analyses are performed and whose
size is their main constraining factor. This point will be considered further in
Chapter 5.

Urgent transitions

There are several operations in bCANDLE which must either be executed or
disabled without delay, such operations are called urgent. The urgent operations
of the process component of a bCANDLE model are

• all send operations, k !i .x ,
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E Gu.1
D |= γ

(γ → P̂ , N̂ ,D)
tt,γ,{hu}∪iclk(P̂)

−→ (P̂ , N̂ ,D)

E Gu.2
N̂
ψ,λn,H
−→n N̂ ′

(γ → P̂ , N̂ ,D)
ψ,λn,H
−→ (γ → P̂ , N̂ ′,D)

E Seq.1
(P̂ , N̂ ,D)

ψ,λ,H
−→ (P̂ ′, N̂ ′,D ′) ∧ P̂ ′ ≡| X

(P̂ ; Q̂ , N̂ ,D)
ψ,λ,H
−→ (P̂ ′ ; Q̂ , N̂ ′,D ′)

E Seq.2
(P̂ , N̂ ,D)

ψ,λp,H
−→ (X, N̂ ′,D ′)

(P̂ ; Q̂ , N̂ ,D)
ψ,λp,H∪iclk(Q̂)

−→ (Q̂ , N̂ ′,D ′)

E Ch.1
(P̂ , N̂ ,D)

ψ,λp,H
−→ (P̂ ′, N̂ ′,D ′)

(P̂ + Q̂ , N̂ ,D)
ψ,λp,H
−→ (P̂ ′, N̂ ′,D ′)

E Ch.2
(Q̂ , N̂ ,D)

ψ,λp,H
−→ (Q̂ ′, N̂ ′,D ′)

(P̂ + Q̂ , N̂ ,D)
ψ,λp,H
−→ (Q̂ ′, N̂ ′,D ′)

E Ch.3
(P̂ , N̂ ,D)

ψ,λn,H
−→ (P̂ , N̂ ′,D) ∧ (Q̂ , N̂ ,D)

ψ,λn,H
−→ (Q̂ , N̂ ′,D)

(P̂ + Q̂ , N̂ ,D)
ψ,λn,H
−→ (P̂ + Q̂ , N̂ ′,D)

E Rec
(P̂ [recX .P̂/X ], N̂ ,D)

ψ,λ,H
−→ (P̂ ′, N̂ ′,D ′)

(recX .P̂ , N̂ ,D)
ψ,λ,H
−→ (P̂ ′, N̂ ′,D ′)

Fig. 4.5: Rules for Guard, Sequential Composition, Choice and Recursion
Edges

• data guarded operations, γ → P , when the guard γ is satisfied, and

• computations for which the upper bound is 0, i.e. computations of the
form [ω : 0, 0].

The urgent network operations are

• the commencement of the transmission of the highest priority pending
message when a channel is free and its message queue is not empty, i.e.
transitions of the form k;m, and

• the commencement of the post-acceptance phase of message transmission,
i.e. transitions of the form m ;k .

The urgency of these operations is enforced in a TA by using a single distinct
clock variable hu , which is reset on every edge and which is used in the invariant
hu ≤ 0, attached to all locations in which an urgent transition is enabled. Notice
that the clock guard on all urgent transitions is tt.
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E Int.1
(P̂ , N̂ ,D)

ψ,λp,H
−→ (P̂ ′, N̂ ′,D ′) ∧ P̂ ′ ≡| X

(P̂ [> Q̂ , N̂ ,D)
ψ,λp,H
−→ (P̂ ′ [> Q̂ , N̂ ′,D ′)

E Int.2
(P̂ , N̂ ,D)

ψ,λp,H
−→ (X, N̂ ′,D ′)

(P̂ [> Q̂ , N̂ ,D)
ψ,λp,H
−→ (X, N̂ ′,D ′)

E Int.3
(Q̂ , N̂ ,D)

ψ,λp,H
−→ (Q̂ ′, N̂ ′,D ′)

(P̂ [> Q̂ , N̂ ,D)
ψ,λp,H
−→ (Q̂ ′, N̂ ′,D ′)

E Int.4
(P̂ , N̂ ,D)

ψ,λn,H
−→ (P̂ , N̂ ′,D) ∧ (Q̂ , N̂ ,D)

ψ,λn,H
−→ (Q̂ , N̂ ′,D)

(P̂ [> Q̂ , N̂ ,D)
ψ,λn,H
−→ (P̂ [> Q̂ , N̂ ′,D)

E Par.1
(P̂ , N̂ ,D)

ψ,λp,H
−→ (P̂ ′, N̂ ′,D ′) ∧ P̂ ′ ≡| X

(P̂ | Q̂ , N̂ ,D)
ψ,λp,H
−→ (P̂ ′ | Q̂ , N̂ ′,D ′)

E Par.2
(P̂ , N̂ ,D)

ψ,λp,H
−→ (X, N̂ ′,D ′)

(P̂ | Q̂ , N̂ ,D)
ψ,λp,H
−→ (Q̂ , N̂ ′,D ′)

E Par.3
(Q̂ , N̂ ,D)

ψ,λp,H
−→ (Q̂ ′, N̂ ′,D ′) ∧ Q̂ ′ ≡| X

(P̂ | Q̂ , N̂ ,D)
ψ,λp,H
−→ (P̂ | Q̂ ′, N̂ ′,D ′)

E Par.4
(Q̂ , N̂ ,D)

ψ,λp,H
−→ (X, N̂ ′,D ′)

(P̂ | Q̂ , N̂ ,D)
ψ,λp,H
−→ (P̂ , N̂ ′,D ′)

E Par.5
(P̂ , N̂ ,D)

ψ,λn,H
−→ (P̂ , N̂ ′,D) ∧ (Q̂ , N̂ ,D)

ψ,λn,H
−→ (Q̂ , N̂ ′,D)

(P̂ | Q̂ , N̂ ,D)
ψ,λn,H
−→ (P̂ | Q̂ , N̂ ′,D)

Fig. 4.6: Rules for Interrupt and Parallel Composition Edges

Proposition 4.1 Let B̂ ∈ ̂bCAN be a clocked bCANDLE system and G(B̂) =
(Q , qI ,A,H,E , I ) the TA constructed from B̂ according to Definition 4.15.
Then, for any edge e = (q , ψ, λ,H, q ′) ∈ E, the urgent clock is reset by e,
i.e. hu ∈ H.

Proof Induction on the depth of the inference justifying the existence of the
edge. Intuitively, one can see that hu is reset by every basic process and network
edge and that the resets are propagated by all process operators. 2

4.3.4 Correctness of the construction

The TA generated from a bCANDLE system model yields a transition system
which is strongly equivalent to that given by the standard bCANDLE semantics.
Therefore, we can be confident that conclusions reached by analysing the TA
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I (P̂ , N̂ ,D) =̂ I (P̂ ,D) ∧ I (N̂ )

I (k !i .x ,D) =̂ hu ≤ 0

I (k?i .x ,D) =̂ tt

I ([ω : t1, t2]
h ,D) =̂ if t2 ∈ N then h ≤ t2 else tt

I (γ → P̂ ,D) =̂ if D |= γ then hu ≤ 0 else tt

I (P̂1 ; P̂2,D) =̂ I (P̂1,D)

I (P̂1 ./ P̂2,D) =̂ I (P̂1,D) ∧ I (P̂2,D) ./ ∈ {+, [>, |}

I (rec X .P̂ ,D) =̂ I (P̂ [rec X .P̂/X ],D)

I (N̂ ) =̂
∧

k∈K

I (N̂k )

I (↓, 〈〉)h =̂ tt

I (↓,m : u)h =̂ hu ≤ 0

I (
t1,t2
; m, u)h =̂ if t2 ∈ N then h ≤ t2 else tt

I (↑m, u)h =̂ hu ≤ 0

I (m
t1,t2
; , u)h =̂ if t2 ∈ N then h ≤ t2 else tt

Fig. 4.7: Invariant function I : ̂bCAN → ΨH

are valid for the system model. We state the equivalence formally below but
relegate the details of the proof to Appendix B.

Proposition 4.2 Let B̂ ∈ ̂bCAN be a clocked bCANDLE system and B =̂
unclk(B̂) the corresponding unclocked system. Let G(B̂) be the TA given by
Definition 4.15. Then, the transition systems of G(B̂) and B are strongly equiv-
alent.

T [[ G(B̂)]] ↔ T [[B ]]

Proof Appendix B. 2

4.4 Implementation of the construction

Although §4.3.2 gives a precise description of the TA which corresponds to a
bCANDLE system, it does not give a practical method for constructing it.

A significant difficulty, in practice, concerns the size of the representation
of locations (P̂ , N̂ ,D) ∈ ̂bCAN . In particular, the representation of the control
component P̂ by an algebraic term results in implementations which are ex-
tremely inefficient in their use of computer memory. Moreover, a construction
of the TA based upon repeated construction and/or comparison of the TA of
the sub-systems, is not time-efficient.
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Similar problems have been observed by Garavel in the translation of LO-
TOS [Gar92], and by Yovine in the translation of ATP [Yov93]. We adapt their
solutions to our system models, in developing an approach which accommodates
both explicit data values and dense real-time. In this approach, the translation
of a system model into a TA is performed in two stages:

• in the first stage, a compact, intermediate form, similar to a Petri net [Mur89],
is constructed for the system model;

• in the second stage, the TA itself is constructed efficiently using the net
built in the first stage.

The main advantage of using a net as an intermediate representation is that
it is then possible to represent the control component of a system state by a
marking of the net. This representation is likely to be much more compact
than the abstract syntax tree of the corresponding process term, and it leads
to algorithms with a reduced need to manipulate sub-terms.

The remainder of this section is concerned with the development of an effi-
cient method for constructing the TA of a bCANDLE system B̂ , i.e. with the
construction of G(B̂).

4.4.1 Nets

Introduction

The nets which are used in this work are not strictly Petri nets but are close
to the extended nets of [Yov93]. As usual, a net consists of a set of places and
a set of transitions; the convention used here is to denote a set of places by
W ,W ′,W1 etc. and a set of transitions by Θ,Θ′,Θ1 etc. Two main extensions
are introduced.

1. Each transition has an associated attribute which is used in determining
whether or not the transition is fireable in a given system context, where
a context consists of a network and a data environment. This is in accord
with many of the varieties of generalised or interpreted Petri net [Kel76,
Sif77].

2. In addition to a source set of places which must be marked in order for
a transition to be fireable, and a target set of places to which control
flows when a transition fires, each transition is also associated with a set
of places which are said to be vulnerable to the firing of the transition.
When a transition fires, control is removed not only from the places in
its source set but also from all those places which are vulnerable to it.
This extension allows a compact representation of the interrupt operator
in particular.

Example 4.3 Figure 4.8 shows an example net. It represents the process term
k?flow .y ; [AdjustValve : 200, 300]H1 [> [450, 500]H2 ; idle. The places of the net
are shown as circles and the transitions as boxes. The shaded circles represent
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idle

k?flow.y

34

2 1

[ID:450,500]^H2

[AdjustValve:200,300]^H1

Fig. 4.8: Example Net

a distinguished place tick1, modelling termination. A label inside a transition
box denotes the transition attribute, e.g., k?flow .y . The standard flow relation
is shown using solid lines, e.g., if place 2 is marked, and the context allows, the
transition k?flow .y can fire, removing a token from place 2 and adding a token
to place 1. The vulnerability relation is shown using dashed lines, e.g., places 1
and 2 are vulnerable to the firing of the transition [ID : 450, 500]H2 , so a token
in either of those places is removed when the transition fires. The small black
circles in places 2 and 4 show that those places are marked. 2

Nets are introduced formally below.

Definitions and Notation

Let P̂roc be a set of clocked process terms over process variables X , predicate
names Γ and clocks H. The set Attribute of transition attributes is defined:

α ::= β̂ | 〈γ〉 | X

where α ∈ Attribute is a transition attribute, β̂ ∈ P̂roc is a clocked basic term
and X ∈ X is a process variable. We use the notation 〈γ〉 to denote a transition
attribute consisting of the predicate name γ ∈ Γ.

The set of clocks associated with a transition attribute α is denoted clk(α),
where clk([ω : t1, t2]

h) =̂ {h}, and clk(α) =̂ ∅, for any attribute α of the form
k !i .x , k?i .x , 〈γ〉, and X .

A net can now be defined as follows.

Definition 4.17 (Net) A net is a tuple R = (W ,Θ,W I ) where

• W is the set of places

1 In the diagram of a net, we often have more than one shaded circle, in order to simplify
the layout. All such shaded circles should be interpreted as representing the same tick place.
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• Θ ⊆ W ×2W ×Attribute ×2WX

is the set of transitions. WX denotes the
set of places W ∪ {tick} in which tick /∈ W is a distinguished place used
in the representation of the terminal process X.

• WI ⊆ W is the set of initial places 2

Let R = (W ,Θ,WI ) be a net and θ = (w ,WV , α,WT ) ∈ Θ a transition. We
adopt the following conventions:

• w ∈ W is the trigger of θ, denoted •θ.

• WV ⊆ W is the set of places vulnerable to θ, denoted ◦θ

• α ∈ Attribute is the attribute of θ, denoted αθ

• WT ⊆ W is the target set of θ, denoted θ•

In the case that a place w is the trigger of exactly one transition, the tran-
sition triggered by w is denoted by θw . Every place in a net constructed from
a bCANDLE system according to the method of §4.4.2 is the trigger of exactly
one transition.

A marking is a set of places. The marking W I is the initial marking. Let W
be a marking. For each transition θ, if •θ ∈ W , then θ is said to be conditionally
enabled in W .

Let Ri = (Wi ,Θi ,W
I
i ) for i ∈ {1, 2}, be two nets. R1 and R2 are said to

be disjoint iff W1 ∩ W2 = ∅.
The set of clocks associated with a set W of places is denoted clk(W ), where

clk(W ) =̂
⋃

w∈W clk(αθw ).

Behaviour

The semantics of a net is given with respect to a system context which comprises
a network and a data environment. The semantics is given as a transition system
between states consisting of a marking of the net and a context. Given a net
R = (W ,Θ,WI ), a state (P̂ , N̂ ,D) ∈ ̂bCAN can be represented by (W1, N̂ ,D)
where W1 ⊆ W is a marking of R which represents the control component
P̂ . Intuitively, a system can evolve from one state (W1, N̂ ,D) to another state
(W2, N̂

′,D ′) as the result of either a process transition or a network transition.
For a process transition, assume w ∈ W1 and that w is the trigger of some

transition θ. If the context N̂ ,D satisfies the conditions required by the at-
tribute αθ, then a new marking W2 is created from W1 by removing w and
any places which are vulnerable to θ, and then including all of the target places
of θ. The new context, N̂ ′,D ′ is created according to the requirements of the
attribute αθ.

In the case of a network transition, the system may evolve to a new state, in
which the network component is modified, but the marking and data environ-
ment remain unchanged. However, notice that a network transition is inhibited
by a marking as follows:
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• a message offer cannot be removed if some process is ready to accept it,
i.e., a network transition to the post-acceptance phase of transmission
of a message with identifier i on a channel k is not allowed if the cur-
rent marking contains a place which is the trigger of a transition whose
attribute is k?i .x for some data variable x .

These ideas are presented formally in the rules R.1 and R.2 below.

Definition 4.18 Let R = (W ,Θ,WI ) be a net, W1 ⊆ W . Let N̂ be a clocked
network over sets K of channel identifiers and I of message identifiers. Let D
be a data environment.

The process transitions of (W1, N̂ ,D) are given by the rule:

R.1

w ∈ W1 ∧ (w ,WV , α,WT ) ∈ Θ ∧ fire(α, N̂ ,D , ψ, λ,H′, N̂ ′,D ′) ∧
W2 = W1 \ ({w} ∪WV ) ∪ WT ∧ H = H′ ∪ clk(WT )

(W1, N̂ ,D)
ψ,λ,H
−→R(W2, N̂

′,D ′)

and the network transitions by the rule:

R.2

N̂
ψ,λn,H
−→n N̂ ′ ∧

∀ k ∈ K , i ∈ I . (¬ awaited(W , k , i) ∨ N̂k 6= (↑ i . , ) ∨ N̂k = N̂ ′
k )

(W , N̂ ,D)
ψ,λn,H
−→R(W , N̂ ′,D)

where

• the fire relation, as given in Figure 4.9, simply recasts the semantic rules
for basic terms and guards, in defining the behaviour of each transition
attribute in a given system context, and

• awaited(W , k , i) holds iff, in the marking W , it is possible to receive from
channel k a message with identifier i . Formally,

awaited(W , k , i) =̂ {w ∈ W | αθw = k?i . } 6= ∅ 2

4.4.2 Constructing the net for a clocked term

Let (P̂ , N̂ ,D) ∈ ̂bCAN be a bCANDLE system. In this section, it is shown
how to construct the net for P̂ , denoted N [[P̂ ]]. We begin by considering the
construction of nets for the basic terms. The construction of a net for a com-
pound term, P̂1 ; P̂2, P̂1 + P̂2, P̂1 [> P̂2 and P̂1 | P̂2, proceeds compositionally
from the nets for P̂1 and P̂2.

Basic Terms

The net for each of the clocked basic terms, β̂ ∈ P̂roc is constructed in the same
way for each. A new place is created to act as the trigger of a transition whose
attribute is the term itself and whose outgoing arc leads to the distinguished
place, tick.
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F Snd
N̂k = (s , u) ∧ v = D .x

fire(k !i .x , N̂ ,D , tt, k !i .v , {hu}, N̂ [k := (s , u " i .v)],D)

F Rcv
N̂k = (↑ i .v , )

fire(k?i .x , N̂ ,D , tt, k?i .v , {hu}, N̂ ,D [x := v ])

F Comp
D

ω
−→dD

′ ∧ t1 ∈ N

fire([ω : t1, t2]
h , N̂ ,D , h ≥ t1, ω, {hu}, N̂ ,D

′)

F Gu
D |= γ

fire(〈γ〉, N̂ ,D , tt, γ, {hu}, N̂ ,D)

Fig. 4.9: Rules for fire

Example 4.4 Let β̂ be the term k?flow .y . Figure 4.10 shows the net given by
N [[β̂]]. The figure shows the initial marking of the net. The terminal place tick

k?flow.y1

Fig. 4.10: Net for a basic term

is shown as a shaded circle. Place (1) is the trigger of the net’s only transition,
whose attribute is shown inside the box, and whose target set is the singleton
{tick}. 2

Definition 4.19 Let β̂ be one of the basic terms k !i .x , k?i .x or [ω : t1, t2]
h .

Then the net for β̂, is constructed as follows:

N [[β̂]] =̂ ({w}, {(w , {}, β̂ , {tick})}, {w})

where w 6= tick is a place. 2

Sequential Composition

In constructing the net of the sequential composition, P̂1; P̂2, all that needs to be
done is to combine the nets of P̂1 and P̂2 and then modify each transition θ of P̂1,
which leads to the immediate termination of P̂1, so that it leads instead to the
initial places of P̂2. This represents the transfer of control from a termination
point in P̂1 to the starting point(s) of P̂2. A transition θ leads to immediate
termination iff its target set, θ•, is {tick}. The transfer of control is implemented
simply by making θ• equal to the initial places of P̂2.
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Example 4.5 Consider the term k?flow .y ; [AdjustValve : 200, 300]H1 . Its net
is constructed very simply, as shown in Figure 4.11. 2

k?flow.y2 1 [AdjustValve:200,300]^H1

Fig. 4.11: Net for a sequential composition

Definition 4.20 Let (Wi ,Θi ,W
I
i ) = N [[P̂i ]], for i ∈ {1, 2}, be disjoint nets.

The net N [[P̂1 ; P̂2]] for the sequential composition P̂1 ; P̂2 is given by

N [[P̂1 ; P̂2]] =̂ (W1 ∪ W2,Θ
′
1 ∪ Θ2,W

I
1 )

where

Θ′
1 =̂ {θ | θ ∈ Θ1 ∧ θ• 6= {tick}}

∪ {(•θ, ◦θ, αθ,WI
2 ) | θ ∈ Θ1 ∧ θ• = {tick}}

2

Guard

A guarded process γ → P̂ evaluates the guard γ in its current data environment
and then behaves as P̂ if the guard is true or simply idles otherwise. We
construct a net rather as if γ is a basic term and → is sequential composition.

Example 4.6 Let P̂ be the term Shutdown → idle. Figure 4.12 shows the net
given by N [[P̂ ]]. 2

idle2 1<Shutdown>

Fig. 4.12: Net for a data-guarded term

Definition 4.21 Let N [[P̂ ]] = (W ,Θ,WI ), then the net of γ → P̂ is given by

N [[γ → P̂ ]] =̂ (W ∪ {w},Θ ∪ {(w , {}, 〈γ〉,WI )}, {w})

where w /∈ WX is a place. 2
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Choice

A choice, P̂1 + P̂2, is resolved in favour of the process which is first able to
perform an initial transition, the possibility of action then being removed from
the other process. The removal of control is represented in the net for P̂1+P̂2 by
adjusting the vulnerable sets of the transitions of each process, so that control
is removed from one process whenever an action occurs in the other.

Example 4.7

Let P̂1 = k?flow .y ; [AdjustValve : 200, 300]H1 and P̂2 = [450, 500]H2 ; idle.
The term P̂1 + P̂2 models the situation in which one of two possible behaviours
can occur: either a flow message is received on channel k within 500 time units
and then the process adjusts a valve; or a flow message is not received for at
least 450 time units, after which the timeout may elapse and the process idles
forever. Figure 4.13 shows the net which is constructed for N [[P̂1 + P̂2]]. Notice

idle

k?flow.y

34

2 1 [AdjustValve:200,300]^H1

[ID:450,500]^H2

Fig. 4.13: Net for a choice

that the marking of the net shows the initial possibility of both behaviours. The
places which are vulnerable to a transition are indicated with a dashed line, di-
rected from each vulnerable place to the transition(s) to which it is vulnerable.
For example, place 4 is vulnerable to the transition k?flow .y . This means that
if k?flow .y fires, then a token residing at place 4 will be removed, and so the
transition which is triggered by it will be disabled. 2

Definition 4.22 Let (Wi ,Θi ,W
I
i ) = N [[P̂i ]], for i ∈ {1, 2}, be disjoint nets.

Then

N [[P̂1 + P̂2]] =̂ (W1 ∪ W2,Θ,W
I
1 ∪ WI

2 )

where

Θ =̂ {θ | θ ∈ Θ1 ∧ •θ /∈ WI
1}

∪ {(•θ, ◦θ ∪ WI
2 , αθ, θ

•) | θ ∈ Θ1 ∧ •θ ∈ WI
1}

∪ {θ | θ ∈ Θ2 ∧ •θ /∈ WI
2}

∪ {(•θ, ◦θ ∪ WI
1 , αθ, θ

•) | θ ∈ Θ2 ∧ •θ ∈ WI
2} 2
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Interrupt

An interrupt, P̂1 [> P̂2, differs from choice in that control is only removed from
P̂2 when a terminating transition of P̂1 occurs. So P̂1 can perform transitions
while P̂2 retains the possibility of action. Wherever control resides in P̂1, it is
removed upon the occurrence of an initial transition of P̂2.

Example 4.8

Let P̂1 = k?flow .y ; [AdjustValve : 200, 300]H1 and P̂2 = [450, 500]H2 ; idle.
The term P̂1 [> P̂2 behaves similarly to P̂1 + P̂2 which was considered in Ex-
ample 4.7; the primary difference being that [450, 500]H2 acts as a watchdog
timer rather than a timeout: i.e., it remains active throughout the behaviour
of P̂1 and is only disabled when P̂1 terminates. This difference is reflected in
the construction of the net for P̂1 [> P̂2 shown in Figure 4.14. Attention should

idle

k?flow.y

34

2 1

[ID:450,500]^H2

[AdjustValve:200,300]^H1

Fig. 4.14: Net for an interrupt

be given to the following points:

• the triggers of all transitions associated with P̂1 are made vulnerable to
the initial transition of P̂2, and

• the trigger of the initial transition of P̂2 is vulnerable only to the termi-
nating transition of P̂1.

The effect of this is that [ID : 450, 500]H2 remains fireable even after k?flow .y
has fired, and, if [ID : 450, 500]H2 is fired, then both k?flow .y and [AdjustValve :
200, 300]H1 are disabled. Contrast this with the net for choice in Figure 4.13. 2

Definition 4.23 Let (Wi ,Θi ,W
I
i ) = N [[P̂i ]], for i ∈ {1, 2}, be disjoint nets.

Then

N [[P̂1 [> P̂2]] =̂ (W1 ∪W2,Θ,W
I
1 ∪ WI

2 )
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where

Θ =̂ {θ | θ ∈ Θ1 ∧ θ• 6= {tick}}

∪ {(•θ, ◦θ ∪ WI
2 , αθ, θ

•) | θ ∈ Θ1 ∧ θ• = {tick}}

∪ {θ | θ ∈ Θ2 ∧ •θ /∈ WI
2}

∪ {(•θ, ◦θ ∪ W1, αθ, θ
•) | θ ∈ Θ2 ∧ •θ ∈ WI

2}

2

Parallel Composition

Control in a parallel composition, P̂1 | P̂2, is maintained independently in each
process. Moreover, the parallel operator occurs only at the top-level, i.e. we
never encounter terms such as (P̂1 | P̂2) ; P̂3. In this case, the net for P̂1 | P̂2

can be constructed simply as the independent nets for P̂1 and P̂2.

Definition 4.24 Let (Wi ,Θi ,W
I
i ) = N [[P̂i ]], for i ∈ {1, 2}, be disjoint nets.

Then

N [[P̂1 | P̂2]] =̂ (W1 ∪ W2,Θ1 ∪ Θ2,W
I
1 ∪ WI

2 )

2

The benefits of the restricted use of parallelism can be seen here in the very
simple net translation and in the fact that it is possible to support the trans-
lation of bCANDLE into nets in which every transition requires only a single
trigger. The use of such simple nets has consequent benefits in the efficiency of
the implementation of the TA construction which is based on them.

Process Variable

A process variable, X , represents a recursion point. As such, it has a net
representation consisting of a place which is the trigger of a single transition
whose target set is empty initially and is finalised later in the construction, on
encountering the binding, rec X . There is sure to be such a binding since we
are dealing only with closed terms. Notice also that because of the restriction
to systems with static control, a free process variable cannot be encountered
on the left of a sequential composition and so the target set of the net for the
process variable remains unchanged until the binding is encountered.

Definition 4.25 Let X be a process variable. The net of X is defined:

N [[X ]] =̂ ({w}, {(w , {},X , {})}, {w})

where w 6= tick is a place. 2
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Recursion Operator

The construction of the net for the recursion operator, rec X .P̂ , involves the
resolution of the target sets of all those transitions in the net for P̂ whose
attribute is the free process variable X . If (W ,Θ,W I ) is the net constructed
for P̂ , then each such target set is made equal to the set, W I , of initial places
of P̂ ; i.e., the ‘knot is tied’.

Example 4.9 Consider the term

rec Flow .[ReadSensor : 85, 90]H1 ; k !flow .x ; Flow

which models control in a system which repeatedly reads a flow sensor, storing
the reading in the variable x , and transmits its value on channel k . Its net is
shown in Figure 4.15; the knot is tied simply in this case by returning control

1 2 3[ReadSensor:85,90]^H1 k!flow.x Flow

Fig. 4.15: Net for a recursion

to the beginning of the process. Notice that control is returned indirectly from
k !flow .x to the start of the process at place 1 via the transition Flow triggered
by place 3. A more compact net can be used in which the redundant place
and transition (place 3 and Flow) are omitted and in which control is returned
directly from k !flow .x to the beginning of the process (see Figure 4.16). It will

1 2[ReadSensor:85,90]^H1 k!flow.x

Fig. 4.16: Compact net for a recursion

be shown later how such indirections can be systematically removed and we
will assume that this is always done in the nets which we construct. 2

Definition 4.26 Let N [[P̂ ]] = (W ,Θ,WI ), then the net of recX .P̂ is given by

N [[rec X .P̂ ]] =̂ (W ,Θ′,WI )

where

Θ′ =̂ {θ | θ ∈ Θ ∧ αθ 6= X }

∪ {(•θ, ◦θ, αθ,WI ) | θ ∈ Θ ∧ αθ = X }

2
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Removing indirections

The net of a recursive process, constructed using the approach described above,
contains places and transitions whose only purpose is to redirect the flow of con-
trol via a recursion point. Such transitions, which we have called indirections,
have a process variable for their attribute. We can remove each of these transi-
tions from the net, and also the places which trigger them, and transfer control
directly to the start of the process. This avoids the generation of redundant
locations and edges in the construction of the TA of the process. An algorithm
is presented shortly which gives a method for the removal of indirections. First,
we give an example which has been constructed to illustrate its most significant
features.

Example 4.10 Consider the term

P̂ =̂ recX .[a : 1]H1 ; (X + stop → [b : 0]H1 ; idle)

which models a process which repeatedly executes an a action until the predi-
cate stop becomes true when it executes a single b action and then idles forever.
The net for this process, including indirections, is shown in Figure 4.17. For

1 2

3 4 5

X

idle

[a:1]^H1

<stop> [b:0]^H1

Fig. 4.17: A recursion with indirections

the most part, the net is unremarkable. But, notice that the unguarded process
variable X , in the term (X + stop → [b : 0]H1 ; idle), does not cause problems
in the net representation: the term P̂ is represented by the net as shown, and
the term P̂ + stop → [b : 0]H1 ; idle, which is reached after the recursion is
unwound, is represented by the same net with the marking {1, 3}. The net
contains a single indirection, namely the transition whose attribute is X and
whose trigger is the place labelled 2. The result of removing this indirection is
shown in Figure 4.18. In order to remove the indirection we need to perform
the following steps:

1. Modify those transitions which are directed towards the indirection – in
this case there is just one such transition, [a : 1]H1 – so that they bypass
the indirection and are directed to its target set instead – in this case, the
place labelled 1.

2. Modify vulnerable sets to take account of the above change. There are
two cases in which vulnerable sets need to be altered:
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idle

1

3 4 5

[a:1]^H1

<stop> [b:0]^H1

Fig. 4.18: A recursion with indirections removed

1 input

2 A net (W ,Θ,WI ) constructed as described in §4.4.2
3 output

4 A new, equivalent net, (W ′,Θ′,WI ), which does not contain indirections.
5 begin

6 I := { θ | αθ = X , for any process variable X }
7 W ′ := W \ { •i | i ∈ I }
8 Θ′ := Θ \ I
9 foreach θ ∈ Θ′ do

10 foreach i ∈ I do

11 if •i ∈ θ• then θ• := θ• \ {•i} ∪ i• fi

12 if •i ∈ ◦θ then ◦θ := ◦θ \ {•i} ∪ i• fi

13 if •θ ∈ i• then ◦θ := ◦θ ∪ ◦i fi

14 od

15 od

16 end

Fig. 4.19: Algorithm to remove indirections

(a) If an indirection is vulnerable to some transition θ then all places
to which it directs control should become vulnerable to θ. In Fig-
ure 4.17, 2 is vulnerable to 〈stop〉, so in the modified net (Figure 4.18)
1 has become vulnerable to this transition.

(b) Any places which are vulnerable to the indirection should instead
be made vulnerable to those transitions to which control is directed
by it. Notice in Figure 4.17 that 3 is vulnerable to X , whereas in
the modified net of Figure 4.18, this place is vulnerable instead to
[a : 1]H1. 2

The algorithm in Figure 4.19 formalises a method for the removal of indirections.
The following remarks are intended to explain this algorithm. I is the set of
indirections, Θ′ is the set of all transitions except indirections, W ′ is the set of all
places except those which are the trigger of some indirection. For each transition
θ ∈ Θ′ and for each indirection i ∈ I , the algorithm first causes the indirection
to be bypassed (line 11); then all those places to which the indirection directs
control are made vulnerable to θ, if i is vulnerable to θ (line 12); finally, if i
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directs control to θ then all places vulnerable to i are made vulnerable to θ
(line 13).

4.4.3 Final stage of timed automaton construction

The final stage of the construction of the TA for a system (P̂ , N̂ ,D) is to build
the automaton itself, based on the net N [[P̂ ]] constructed in the previous stage.
If R = (W ,Θ,WI ) is the net for P̂ , then a simple and efficient algorithm can
be used to generate the TA for (P̂ , N̂ ,D) by starting from the initial location
(WI , N̂ ,D) and visiting all reachable locations under the relation −→R as de-
fined by rules R.1 and R.2 (Definition 4.18). A standard reachability algorithm
is employed for this purpose (Figure 4.20). The following definition gives the
details.

Definition 4.27 Let (P̂ , N̂ ,D) ∈ ̂bCAN be a clocked bCANDLE system. Let
R = (W ,Θ,WI ) be the net N [[P̂ ]]. Then, the TA G ′(P̂ , N̂ ,D) =̂ (Q , qI ,A,H,E , I )
is built as follows:

• The set Q of locations is as given when the algorithm in Figure 4.20
terminates.

• The initial location qI is (WI , N̂ ,D).

• The set A of action labels is Ap ∪An.

• The set H of clocks is the set of clocks associated with the attributes
of the transitions in Θ, together with the network clocks and the urgent
clock hu , i.e., H =̂ clk(W ) ∪ clk(N̂ ) ∪ {hu}, where hu /∈ clk(W ) ∪ clk(N̂ ).

• The set E of edges is as given when the algorithm in Figure 4.20 termi-
nates.

• The invariant function I : Q → ΨH is given by

I (W , N̂ ,D) =̂ I (W ,D) ∧ I (N̂ )

I (W ,D) =̂
∧

w∈W

I (αθw ,D)

where I (β̂,D) and I (N̂ ) are as in Definition 4.16 and

I (〈γ〉,D) =̂ if D |= γ then hu ≤ 0 else tt

2

For any clocked bCANDLE system B̂ ∈ ̂bCAN , we conjecture that G ′(B̂)
is isomorphic to G(B̂), and so, from Proposition 4.2, we conclude that its tran-
sition system is strongly equivalent to the corresponding bCANDLE system
unclk(B̂). The proof of the conjecture is left to future work.
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1 input

2 A bCANDLE system (P̂ , N̂ ,D)

3 A net R = (W ,Θ,WI ) = N [[P̂ ]]
4 output

5 The set of locations Q
6 The set of edges E
7 begin

8 Q := {(WI , N̂ ,D)}

9 WAITING := {(WI , N̂ ,D)}
10 E := ∅
11 while WAITING 6= ∅ do

12 remove some q from WAITING

13 E ′ := {(q , ζ, λ,H, q ′) | q
ζ,λ,H
−→Rq ′}

14 E := E ∪ E ′

15 foreach ( , , , , q ′) ∈ E ′ do

16 if q ′ /∈ Q
17 add q ′ to Q
18 add q ′ to WAITING
19 fi

20 od

21 od

22 end

Fig. 4.20: Algorithm to construct a timed automaton

4.5 A simple example

In order to illustrate the automatic TA construction method, we return to
the example of the simple flow regulator (§3.7). For ease of reference, the
bCANDLE model is presented again in Figure 4.21. We briefly describe the
various stages of the translation of the model to a TA.

Initially, the source file containing the model description is parsed, and
equational definitions are rewritten as recursive process terms. Next, the clock
variables are allocated. This gives the following clocked process term:

((rec Flow .(([ReadSensor : 85, 90]H3; (k !flow .x ; idle))
[>([PERIOD : 10000, 10250]H5 ; Flow)))

|
(rec Valve.(k?flow .y ; ([AdjustValve : 200, 300]H4 ; Valve))))

The static components of each network channel are constructed from the details
given in the network section of the model. A unique clock variable is allocated
to each network channel. In this case, there is only one network channel k
whose static components are:

• Clock H 2,

• Message set M = {flow .1},

• Priority relation ≺ = {}, and
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Flow | Valve

where

Flow = [ReadSensor:85,90] ; k!flow.x ; idle

[> [PERIOD:10000,10250] ; Flow

Valve = k?flow.y ; [AdjustValve:200,300]; Valve

network

/* pri dlb dub dlB duB */

k = (flow : 1, 43, 53, 10, 12)

data x, y

Fig. 4.21: The flow regulator revisited

idle1

k?flow.y

2 3

5 6

4

k!flow.x[ReadSensor:85,90]^H3

[Period:10000,10250]^H5

[AdjustValve:200,300]^H4

Fig. 4.22: Net for the flow regulator

• Transmission latency functions δ lb = {flow .1 7→ 43}, δub = {flow .1 7→
53}, δlB = {flow .1 7→ 10} and δuB = {flow .1 7→ 12}.

Clock H 1 is used as the urgent clock.
The next stage of the translation is the construction of the net for the

clocked process term. Figure 4.22 shows the net for our example.
Finally, the TA is constructed by applying the algorithm of Figure 4.20,

starting from the initial location (W , N̂ ,D), where the initial marking W =
{1, 4, 5}; the initial state of the network N̂ = {k 7→ (↓, 〈〉)} i.e., the condition of
channel k is free and its pending message queue is empty ; and the initial data
environment D = {x 7→ ⊥, y 7→ ⊥}.

The final TA has 48 locations, 146 edges, and uses 5 clock variables. It is
shown in full in Appendix A. Many of the locations and edges in the generated
TA are redundant, in the sense that some locations are unreachable and some
edges are guarded by clock constraints which are unsatisfiable. This is typical of
many automatic translators [Yov93, Bra95, Her98]. Since the clock constraints
are not used to guide the construction of the TA, the worst-case complexity of
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the translation is comparable to that for an untimed language, i.e., exponential
in the number of processes, channels and data variables. A more careful analysis
of the clock constraints would allow many of the redundancies to be eliminated,
although the fundamental complexity of the problem remains the same. This
approach has not been implemented. Instead, it will be seen that an alternative
approach presented in Chapter 5 addresses the problem in a way which appears
to be effective in practice. Note also that it is possible to improve the quality of
the generated TA by using a clock optimisation tool such as OptiKron [Daw98b],
which produces an equivalent TA having a reduced number of clocks. For the
example given here, OptiKron reduces the number of clocks required from 5
to 4.

Once the TA has been generated, a model-checking tool, such as KRONOS,
can be used to ensure that the model exhibits desirable properties. For example,
the simple bounded response property that the AdjustValve operation is always
enabled within 300 time units of the enabling of the ReadSensor operation, can
be expressed in TCTL as

init ⇒ ∀2(enable(ReadSensor) ⇒ ∀3≤300 enable(AdjustValve))

Let flow.tctl be a file containing a statement of this property in the syntax
expected by KRONOS:

init IMPL AB (enable(OP_ReadSensor) IMPL

(AD{<=300} enable(OP_AdjustValve)))

Let flow.tg be a file containing the TA generated from the bCANDLE model.
The property can be checked in a forward reachability analysis using the com-
mand

kronos -forw flow.tg flow.tctl

giving the result

kronos: release 2.4.4 (i686) date Tue Aug 29 16:16:08 WET DST 2000

kronos: file flow.kro already exists

kronos: reading file flow.kro...

kronos: begin evaluation of flow.tctl

kronos: begin forward analysis

kronos: 14 simulation states generated

kronos: 14 simulation transitions generated

kronos: Invariance *** TRUE ***

kronos: end evaluation of flow.tctl

kronos: compacting

---------------------------------------------------------------------------

kronos: fixpoint : system 0.010s * user 3.410s * #iterations 17

kronos: compact time : system 0.000s * user 0.000s *

kronos: forward analysis : system 0.000s * user 0.010s *

kronos: total time : system 0.010s * user 3.460s *

---------------------------------------------------------------------------

Another property can be stated and checked, concerning the periodicity and
jitter of the enabling of AdjustValve, for example,

init ⇒ ∀3 enable(AdjustValve) ∧
∀2(enable(AdjustValve) ⇒

∀3≤100((∀2<9885 ¬ enable(AdjustValve)) ∧

(∀3<=10165 enable(AdjustValve))))
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which states that AdjustValve is eventually enabled and, whenever enabled,
it fires within 100 time units, remaining disabled thereafter until it becomes
enabled again after no less than 9885, and no more than 10165, time units.
KRONOS verifies this property also.

The stated bounds (9885 and 10165) are as tight as possible for this example
and, even for such a simple model, are not obvious by inspection. An analysis
of this sort helps to build confidence in the quality of control which may be
supplied by an implementation of the flow regulator.

In fact, there is a hidden assumption in the interpretation, given above,
of the periodicity property: that whenever AdjustValve is enabled, it becomes
disabled only by firing, and not as the result of an interrupt or timeout. In this
case, the correctness of the assumption can be seen immediately by inspection of
the model. However, in general, this may not be straightforward and one would
like to be able to state the property in TCTL and check it using KRONOS. As
Hernalsteen has observed [Her98], it is not so easy in TCTL to state properties
concerning the firing of transitions as opposed to their enabling. This is because
TCTL is a state-based, rather than an event-based, logic. The firing of a
transition can be checked only by encoding this event somehow in the discrete
state of the model. If the encoding is done by the modeller in an ad-hoc fashion,
there is the possibility that errors will be introduced into the model; if it is done
automatically for all events by the translator, the size of the state space will be
increased, perhaps unnecessarily. One possible solution is to allow some events
to be marked by the user for ‘tracking’ in the model, so that the translator
can automatically add the encodings required only for those events of interest.
Alternatively, one could consider the use of a logic in which both states and
events can be referenced.

4.6 Conclusions

In this chapter, we have presented a translation to timed automata of the timed
process language bCANDLE. The translation closely follows the semantic rules
of the language and can be shown to be correct in a straightforward manner.
We have also described an efficient method by which the translation can be
implemented. The method adapts and extends techniques which have proved
effective in similar settings [Gar92, Yov93]. A translator has been implemented
and has been applied to a number of examples. As a result of this work, it is
now possible, for the first time, to apply automatic analysis techniques, such as
model checking, to system models which are described using a timed language
which provides value-passing, prioritised, broadcast communication over latent
channels as a primitive construct.



5. SPACE-EFFICIENT, ON-THE-FLY

REACHABILITY ANALYSIS

5.1 Introduction

We have seen that reachability analysis and model checking of TA are well-
established and successful techniques in the analysis of real-time systems. In
Chapter 4, we have shown how bCANDLE models can be translated into TA,
and thus have provided a way by which these verification methods can be ap-
plied to bCANDLE systems. As usual, the state space explosion problem is the
major limiting factor in the use of such techniques, from a technical point of
view. Much current research in TA verification is aimed at alleviating the worst
effects of this problem: in particular, on-the-fly and symbolic approaches have
proven effective in this respect. In this chapter, we consider how such methods
can be adapted for use in the analysis of bCANDLE models.

Traditionally, a system model is presented as a network of small component
TA, and on-the-fly methods, especially, derive their benefit from the fact that
it may be unnecessary to construct their product automaton completely, be-
fore the verification question can be decided. Unfortunately, in the approach
taken in Chapter 4, it is necessary to construct a monolithic TA for the sys-
tem model as a whole, before verification begins. This is contrary to the spirit
of on-the-fly verification, since, even though the verification problem may be
decided during construction of the simulation graph, the monolithic TA itself
may be very large. Recall that we need to build a monolithic TA if we wish
to stay within the framework of the standard timed safety automata (TSA) of
Henzinger et al. [HNSY94], since the product construction for TSA does not
allow a satisfactory modelling of broadcast communication as we have defined
it in Chapter 3. It may be possible to define a translation of bCANDLE models
into networks of TA if we allow the use of TA extended with data variables
and guards [ALST98, Boz98, LPY97]. This would allow us to take advantage
of existing on-the-fly techniques. However, we do not pursue that line of en-
quiry in this work, but rather propose a novel solution to the problem: namely
to generate the simulation graph of a system directly from the extended net
created for the construction of its TA, but without ever constructing the TA
explicitly. In this way, we obtain full on-the-fly verification for bCANDLE. Al-
though several proposals have been published for the verification of real-time
languages by means of translation to TA [DOY94, Her98, JM95, NSY91], we
believe that this is the first time that the approach described here has appeared
in the literature.
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In addition, we combine on-the-fly verification with a compact represen-
tation of the state space. Binary decision diagrams (BDD’s) have been used
successfully, mainly in the analysis of hardware systems where the need for a
compact representation of boolean functions is prevalent [Bry86]. However, the
modelling of software systems commonly employs a richer set of data types
and this fact motivates the investigation of different encodings of sets of states
than by their characteristic functions. In this chapter, we consider the use of
minimised deterministic finite state automata (MA’s) [HP99] for the storage of
the set of visited states in the reachability analysis of bCANDLE models. This
state space representation promotes sharing of common parts of a set of state
vectors, and seems to be particularly useful in mitigating the effects of state
explosion caused by interleaving in asynchronous models. So far as we know,
this is the first time that this state compression technique has been investigated
in the analysis of timed systems.

The rest of this chapter is organised as follows: in §5.2 the algorithm for on-
the fly reachability analysis is described; minimised automata are introduced in
§5.3 and their use in the representation of the set of visited states is described
in §5.4; salient features of an experimental platform are outlined in §5.5 and
experimental results are discussed in §5.6; in §5.7, we consider related work; and
finally, in §5.8, we present our conclusions and suggestions for further work.

5.2 On-the-fly reachability analysis

5.2.1 Basic algorithm

We consider the problem of determining whether or not it is possible for a given
bCANDLE system (P ,N ,D) to reach a state which satisfies some state formula
p. Recall that the validity of any state formula p can be determined locally for
any state σ, and that σ ||= p denotes the fact that σ satisfies p.

In fact, all the machinery needed to solve this problem is already in place.
The algorithm for constructing a TA from a bCANDLE system is given in
Figure 4.20 and the algorithm for reachability in the simulation graph of a
TA is given in Figure 2.14. Clearly, we can solve our problem by executing
these algorithms consecutively. However, it is straightforward to combine them
into a single algorithm which solves the reachability problem without explicitly
constructing the TA. Such an algorithm is shown in Figure 5.1, to which we
refer in the following explanatory comments.

We assume that (P̂ , N̂ ,D) is a safely clocked bCANDLE system and that
cmax (P̂ , N̂ ,D) gives the value of the largest constant appearing in a computa-
tion [ω : t1, t2] in P̂ , or a message transmission latency bound δub(m), δuB(m)
in N̂ . The net R = (W ,Θ,WI ), given by N [[P̂ ]], is constructed as described
in §4.4.2. We wish to check whether a state satisfying the state formula p
is reachable from the initial state comprising the location q I = (WI , N̂ ,D)

and the clock zone suc
qI

τ (zero). The rest of the algorithm shows a standard
depth-first or breadth-first search of the reachable state space. The only sec-
tion warranting further comment concerns the calculation of successor states
at lines (14–15). Notice here that a location q is of the form (W , N̂ ,D) and
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1 input

2 initial system (P̂ , N̂ ,D), c = cmax (P̂ , N̂ ,D)

3 net R = (W ,Θ,WI ) = N [[P̂ ]]
4 state formula p
5 begin

6 qI := (WI , N̂ ,D)

7 VISITED := {(qI , sucq
I

τ (zero))}

8 WAITING := {(qI , sucq
I

τ (zero))}
9 while WAITING 6= ∅ do

10 remove some (q , ζ) from WAITING

11 if (q , ζ) ||= p
12 then return ‘yes’
13 else

14 succ := {(q ′, ζ ′) | q
ζ′′,λ,H
−→Rq ′ ∧ e = (q , ζ ′′, λ,H, q ′) ∧

15 ζ ′ = closec(sucq
′

τ (suce(ζ))) 6= ∅}
16 foreach (qs , ζs) ∈ succ do

17 if (qs , ζs) /∈ VISITED

18 add (qs , ζs ) to VISITED

19 add (qs , ζs ) to WAITING

20 fi

21 od

22 fi

23 od

24 return ‘no’
25 end

Fig. 5.1: Algorithm for on-the-fly reachability for bCANDLE

that the relation q
ζ,λ,H
−→Rq ′ yields successor locations q ′ = (W ′, N̂ ′,D ′) accord-

ing to the rules R.1 and R.2 (Definition 4.18). Each such successor determines
an edge e = (q , ζ ′′, λ,H, q ′) which can be used in the calculation of the clock

zone successors of ζ in the usual way: ζ ′ = closec(suc
q ′

τ (suce(ζ))). This al-
lows the algorithm to follow the usual pattern for simulation graph reachability
(Figure 2.14).

5.2.2 Clock activity reduction

The memory requirements of the basic on-the-fly reachability algorithm can
be reduced considerably by reducing the number of clock variables which are
used in the model to be analysed. Daws and Yovine [DY96] have proposed an
important technique, known as clock activity reduction, which ensures that only
the active clocks are recorded in each symbolic state in the simulation graph. A
clock is considered to be active if its value will be tested before it is next reset. It
is clear that there is no need to record the values of the other clocks, since they
can have no effect upon the behaviour of the system until their current values
have been destroyed by a clock reset. The remainder of this section shows how
clock activity reduction can be employed in the on-the-fly reachability algorithm
for bCANDLE.
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Active clocks

Let A be a TA with set Q of locations, set H of clocks and set E of edges. Define
an edge path of length n, over E , to be a sequence e of edges, e0, e1, . . . , en−1,
where n ∈ N, ei ∈ E , and, for 0 < i < n, src(ei ) = tgt(ei−1). Let E -path
denote the set of edge paths over E , and |e| denote the length of edge path
e ∈ E -path.

We say that a clock h ∈ H is tested in location q ∈ Q , if h occurs in the
invariant I (q) or in the guard of some outgoing edge of q . We denote by tclk(q)
the set of clocks tested in q . A clock h is said to be active in location q iff it is
either tested in q or is tested in some location q ′ ∈ Q which is connected to q
by an edge path along which h is never reset.

Definition 5.1 (Active clocks) Let A = (Q , qI ,A,H,E , I ) be a TA. Let
tclk : Q → 2H define, for each location q ∈ Q , the set of clocks occurring either
in the invariant I (q), or in the clock constraint of some outgoing edge of q .
Then, for any location q ∈ Q , the set of active clocks of q is denoted act(q),
and is defined by

act(q) =̂ tclk(q) ∪ H(q)

where a clock h is in H(q) iff h is not tested in q but is tested in some location
connected to q by an edge path along which h is never reset, i.e.

H(q) =̂ {h ∈ H | h /∈ tclk(q) ∧
(∃ e ∈ E -path, q ′ ∈ Q . q = src(e0) ∧ q ′ = tgt(e|e|−1) ∧

h ∈ tclk(q ′) ∧ h /∈
⋃

0≤i<|e| reset(ei))} 2

Activity graph

An activity function act : Q → 2H can be used in a dimension-restricting
projection of the convex H-polyhedron ζ, occurring in a symbolic state (q , ζ),
in order to produce a new symbolic state (q , ζ ′), where ζ ′ is a polyhedron on
act(q) ⊆ H instead of on H. If act(q) ⊂ H, then the DBM representation of ζ ′

can be smaller than the representation of ζ. In practice, for a TA constructed
from a bCANDLE description, as described earlier, the savings are usually very
significant and allow the analysis of many models which would be intractable
without this reduction.

Definition 5.2 (Dimension restricting projection [Tri98])
Given a H-polyhedron ζ and a subset of clocks H ⊆ H, the dimension-restricting
projection of ζ to H, denoted ζcH, is the H-polyhedron ζ ′ such that

v′ ∈ ζ ′ iff ∃v ∈ ζ . ∀ h ∈ H . v(h) = v′(h) 2

Definition 5.3 (Activity Graph [Tri98]) Let A = (Q , q I ,A,H,E , I ) be a
TA with c ≥ cmax (A). Let act : Q → 2H be an activity function for A.
The activity graph of A with respect to c, starting at the symbolic state z0, is
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denoted AG(A, c, z0), and is obtained from the simulation graph SG(A, c, z0) by
the following modification:

• For each node (q , ζ) of SG(A, c, z0), the node (q , ζcact(q)) is a node of
AG(A, c, z0)

• For each edge (q , ζ)
a

−→(q ′, ζ ′) of SG(A, c, z0), (q , ζcact(q))
a

−→(q ′, ζ ′cact(q ′))

is an edge of AG(A, c, z0). 2

Notation. The activity graph of A with respect to c, starting at the initial state
(qI , zero), is denoted simply by AG(A, c), and AG(A) denotes AG(A, cmax (A)).

Tripakis [Tri98] shows that the activity graph preserves the same proper-
ties as the simulation graph. In particular, the correctness theorem (Propo-
sition 2.6) is preserved, and so we can safely use the activity graph to decide
reachability properties. In fact, it is trivial to modify the algorithm of Fig-
ure 5.1 to achieve this. We simply replace the calculation of successors (lines
14–15) so that each clock zone is restricted to the active clocks, as follows

succ := {(q ′, ζ ′cact(q ′)) | q
ζ′′,λ,H
−→Rq ′ ∧ e = (q , ζ ′′, λ,H, q ′) ∧

ζ ′ = closec(suc
q ′

τ (suce(ζ))) 6= ∅}

Calculating active clocks in bCANDLE

In [DY96], an algorithm is given to compute the activity function act from the
syntactic structure of a single TA modelling the entire system. It is shown
in [DT98] how to compute and apply act on-the-fly, during construction of the
simulation graph of the parallel composition of a set of TA. In order for activity
reduction to be useful in the reachability analysis of bCANDLE, it is necessary
to achieve a similar on-the-fly computation of act. We see from the modification
above, to the on-the-fly algorithm for bCANDLE, that the only point at which
act is required is during the calculation of successors, when, given an edge
e = (q , , , , q ′), we need to be able to compute act(q ′). Before considering
the calculation of active clocks, we first identify the clocks which are tested in
a given location.

A location q , in the TA of a bCANDLE system, is a tuple (W , N̂ ,D). The
set of tested clocks of such a location is defined below.

Definition 5.4 (Tested Clocks) Let B̂ ∈ ̂bCAN be a clocked bCANDLE

system and G ′(B̂) = (Q , qI ,A,H,E , I ) the TA constructed by Definition 4.27.
Let (W , N̂ ,D) ∈ Q . The tested clocks of (W , N̂ ,D) are denoted tclk(W , N̂ ,D),
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where

tclk(W , N̂ ,D) =̂ tclk(W ,D) ∪ tclk(N̂ )

tclk(W ,D) =̂
⋃

w∈W

tclk(αθw ,D)

tclk(k !i .x ,D) =̂ {hu}

tclk(k?i .x ,D) =̂ ∅

tclk([ω : t1, t2]
h ,D) =̂ if t1 ∈ N ∨ t2 ∈ N then {h} else ∅

tclk(〈γ〉,D) =̂ if D |= γ then {hu} else ∅

tclk(N̂ ) =̂
⋃

k∈K

tclk(N̂k )

tclk(↓, 〈〉)h =̂ ∅

tclk(↓,m:u)h =̂ {hu}

tclk(
t1,t2
; m , u)h =̂ if t1 ∈ N ∨ t2 ∈ N then {h} else ∅

tclk(↑m , u)h =̂ {hu}

tclk(m
t1,t2
; , u)h =̂ if t1 ∈ N ∨ t2 ∈ N then {h} else ∅

2

It is easy to see that a clock h appears in the invariant, or the guard of an
outgoing edge, of a location (W , N̂ ,D) iff h ∈ tclk(W , N̂ ,D). This follows
directly from the definitions of tclk, rules R.1 and R.2 (Definition 4.18) and
the invariant function (Definition 4.27).

Now we observe that, in fact, for any location q = (W , N̂ ,D), the set of
clocks active in q is identical to the set of clocks tested in q .

Proposition 5.1

Let B̂ ∈ ̂bCAN be a clocked bCANDLE system and G ′(B̂) = (Q , qI ,A,H,E , I )
its TA. Then, for any q ∈ Q, it is the case that act(q) = tclk(q).

Proof By definition, act(q) = tclk(q)∪H(q). We show that H(q) = ∅, for any
q ∈ Q . The following lemma is required:

Lemma 5.1 For any clock h ∈ H and any edge e ∈ E, if h /∈ tclk(src(e)) and
h ∈ tclk(tgt(e)), then h ∈ reset(e)

Proof Let src(e) = (W1, N̂ ,D) and tgt(e) = (W2, N̂
′,D ′). Observe that e

must be derived using one of the rules R.1 or R.2. We consider a clock h ∈ H
such that h /∈ tclk(W1, N̂ ,D) and either h ∈ tclk(W2,D

′) or h ∈ tclk(N̂ ′). We
show that h ∈ reset(e). There are two cases to consider.

(Case h ∈ tclk(W2,D
′)) By definition, tclk(W2,D

′) =
⋃

w2∈W2
tclk(αθw2

,D ′).
By R.1, we have that for all w2 ∈ W2, either there is some w1 ∈ W1 and
transition θw1

= (w1,W
V , α,WT ) such that w2 ∈ WT , or w2 ∈ W1 \ WT . If

w2 ∈ WT then, since tclk(WT ,D ′) ⊆ clk(WT ) ⊆ reset(e), we have h ∈ reset(e).
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On the other hand, if w2 ∈ W1 \ WT , then h ≡ hu ; this must be so since, by
assumption, h /∈ tclk(W1,D), and, therefore, must be tested in D ′ by reason of
the fact that αθw2

= 〈γ〉 for some data guard γ such that D 6|= γ and D ′ |= γ.
Since the urgent clock is reset on every edge, again, we have h ∈ reset(e).

(Case h ∈ tclk(N̂ ′)) If h ∈ tclk(N̂ ′) then either h ≡ hk , for some channel iden-
tifier k , such that N̂k = ( , hk ), or h ≡ hu . If hk /∈ tclk(N̂ ) and hk ∈ tclk(N̂ ′)
then e must be derived by R.2 using either E N.1 or E N.3. In both cases,
h ≡ hk ∈ reset(e). On the other hand, if h ≡ hu , then h ∈ reset(e). In either
case, the result follows.

2

Now, observe that H(q) =
⋃

n≥0 Hn(q), where H0(q) =̂ ∅, and, for n > 0,

Hn(q) =̂ {h ∈ H | h /∈ tclk(q) ∧
(∃ e ∈ E -path, q ′ ∈ Q . |e| = n ∧ q = src(e0) ∧ q ′ = tgt(en−1) ∧

h ∈ tclk(q ′) ∧ h /∈
⋃

0≤i<n reset(ei ))}

The proof of the proposition then follows by induction on the length of an
E -path. 2

This result has significant implications for the efficiency of the analyses
which can be performed on bCANDLE systems, which surpasses that which can
be achieved for general TA models where this property may not be exhibited.
Most significantly, the result justifies the use of tclk as the activity function in
the construction of the activity graph. Clearly, tclk can be calculated locally for
any given location and, therefore, can be implemented efficiently and applied
on-the-fly to achieve clock activity reduction during construction of the graph.
The experimental data presented in §5.6 and §6.6.3 provides evidence for the
utility of this technique in practice.

5.3 A Minimised Automaton Representation of
Reachable States

Even with the clock activity reduction described in the previous section, the
size of the state space, which arises in the analysis of a system model, can grow
too big to be stored in computer memory. There are many proposals in the
literature for reducing the memory required to store a set of states – see §5.7.
In this section, we consider an approach in which a state vector is regarded as
being encoded as a string over some alphabet, and the set of visited states is
represented by a minimised deterministic finite automaton (MA) which recog-
nises the language comprising the set of state vector strings. This technique
has been implemented in the model checker SPIN [HP99], where it has been
shown to achieve even better compression for many systems than that obtained
by the use of BDD’s [Vis96]. Similar results have been reported in experiments
using sharing trees [GGZ95, Zam97] (also known as GE-SETS [Gré96]); the
implementation of the sharing tree data structure is very similar to the MA
implementation described here. By comparison with other techniques which
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also ensure complete state space coverage, the space reductions achieved by the
use of MA’s are among the best reported in the literature. It is of considerable
interest to see if this performance is observed also in the storage of the state
spaces which arise in the analysis of timed systems. Our work is the first to
report such experiments.

In the remainder of this section, we introduce the basic ideas and definitions
for the use of MA’s in state space storage. Later, we discuss their application
in the implementation of a state store for bCANDLE.

5.3.1 Minimised Deterministic Finite State Automata

Definition 5.5 A k -layer deterministic finite state automaton (DFA) is a tuple
A = (Q ,A,E ) where

• Q =
⋃
{Qi | 0 ≤ i ≤ k} is the set of states. Qi , ∅ ⊂ Qi ⊂ Q , is the set

of states at the ith layer and Qi ∩ Qj = ∅ for i 6= j . Q0 is a singleton
containing the initial state and Qk = {T,F}, where T is the accepting
final state and F is the rejecting final state. The set Q \ Qk is denoted
Q−.

• A is the alphabet.

• E : Q− × A → Q is a total function such that for all states q ∈ Q− and
symbols a ∈ A, if q ∈ Qi then E (q , a) ∈ Qi+1. 2

A string a of length n is a sequence of symbols a = a0, a1, . . . , an−1, where
ai ∈ A for 0 ≤ i < n. An denotes the set of strings of length n over the alphabet
A. A string a = a0, a1, . . . , an−1 generates a state sequence q0, q1, . . . , qn from
state q = q0, where qj+1 = E (qj , aj ) for 0 ≤ j < n. For a state q ∈ Qi , we
denote the language of q by LA(q). LA(q) is the set of strings which generate
a state sequence from q ending with the terminal state T. Formally, for q ∈ Qi ,

LA(q) =̂ {a ∈ Ak−i | a generates the state sequence q0, q1, . . . , qk−i

from q , and qk−i = T}

We define L(A) = LA(q0) where q0 ∈ Q0. A DFA is minimised provided
L(qi) = L(qj ) iff qi = qj .

Example 5.1 The MA of Figure 5.2 is A = ({Qi}
4
i=0,A,E ), where Q0 =

{0},Q1 = {1, 2, 3},Q2 = {4, 5}, Q3 = {6, 7} and Q4 = {T,F} is the set of
states; A = {a, b, c} is the alphabet; and E is the set of edges as shown in the
figure. A represents the set S ⊆ A4 of strings where

S = {aaaa, aaba, aaca , abaa, abba , abca, acaa, acba , acca,

baab, baba, baca, bbab, bbba, bbca, bcaa, bcba, bcca,

caab, caba, caca, cbaa, cbba, cbca, ccab, ccba, ccca}

2
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Fig. 5.2: A minimised automaton

It can be seen that a MA achieves a compact representation of a set of strings
by a combination of prefix merging and suffix merging. The requirement that
a MA is deterministic ensures that all shared prefixes are recorded only once.
Similarly, the requirement of minimisation ensures that many shared suffixes
are also recorded only once. Furthermore, for any MA, the amount of sharing
in prefixes and suffixes is optimal, in the sense that any other MA recording
the same information is guaranteed to be isomorphic. In fact, a MA gives a
canonical representation of a language – there is only one MA (up to isomor-
phism) representing a given language, and different languages are represented
by different MA’s [HU79]. An effective use of MA’s for state space represen-
tation will require that state vectors are organised so as to promote as much
prefix and suffix merging as possible. It is worth noting that the compactness
of sharing trees (GE-SETS) relies on the same idea. The relationship between
MA’s and sharing trees is discussed in [Zam97].

MA Operations

There are three basic operations on MA’s which are required to implement a
state store for reachability analysis:

initialise – create a MA A having an empty language, i.e., ensure A satisfies
L(A) = ∅;

insert – given a MA A and a string a, create a MA A′ such that L(A′) =
L(A) ∪ {a};
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Marking (W ) {w1,w2, . . . ,wm}

LOCATION (q) Network (N̂ ) {(s1, u1), (s2, u2), . . . , (sn , un)}
Data (D) {v1, v2, . . . , vd}

ZONE (ζ) {b1, b2, . . . , bz}

Fig. 5.3: Structure of a bCANDLE state vector

member – given a MA A and a string a, return true if a ∈ L(A), otherwise
return false.

Holzmann and Puri [HP99] give efficient algorithms for each of these operations.
To be precise, for a k -layer MA A over an alphabet A, their insert algorithm
is O(k |A|), member is O(k) and initialise is O(1). We refer the reader to the
cited work for a detailed description of the algorithms.

5.4 Implementing a MA state store for bCANDLE

In order to use a MA for the state store in a reachability analysis of a bCANDLE

system, it is necessary to partition the state vector and allocate partitions to
layers in the MA. How this is done can have a significant effect upon the effi-
ciency of the state store. In this section, we discuss the structure of a bCANDLE

state vector and consider some principles which may be applied in determining
an effective partitioning.

5.4.1 The state vector

A bCANDLE state vector has the general form shown in Figure 5.3, where it
can be seen that a state vector represents a location q = (W , N̂ ,D) and a clock
zone ζ. The representation is discussed in more detail below.

Marking The marking W = {w1,w2, . . . ,wm} is the set of marked places of
the system net (§4.4.1) which represents the state of the system processes.

Network For each channel in the system network, its dynamically changing
components are recorded in the state vector, i.e., the status s and the
queue u of messages pending transmission. The status consists of one
of the four values FREE,PRE,ACCEPT, or POST, and, optionally, an
associated message, comprising a message identifier and a data value. The
message queue can be modelled in a variety of ways. In the following, we
will assume a fixed length sequence of messages.

Data Let Var = {x1, x2, . . . , xd} be the set of data variables, where each vari-
able xi ranges over a domain of values, Vxi

. The data environment D
is represented by recording its valuation function val = {x1 7→ v1, x2 7→
v2, . . . , xd 7→ vd}. This is done simply by fixing the order of the variables
and storing the corresponding values {v1, v2, . . . , vd}.
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M 0 1 2 3

0 4 (−3,≤) (−5,≤) (−2,≤)
1 (7,≤) h2 (2,≤) (5,≤)
2 (6,≤) (3,≤) h5 (4,≤)
3 (8,≤) (5,≤) (3,≤) h7

(a)

M ′ 0 1 2 3

0 3 (−3,≤) (−5,≤) ⊥
1 (7,≤) h2 (2,≤) ⊥
2 (6,≤) (3,≤) h5 ⊥
3 ⊥ ⊥ ⊥ ⊥

M ′′ 0 1 2

0 3 (−3,≤) (−5,≤)
1 (7,≤) h2 (2,≤)
2 (6,≤) (3,≤) h5

(b) (c)

Fig. 5.4: Simple DBMs

Zone The clock zone ζ is represented as a DBM (§2.7.5), i.e. a set of bounds
{b1, . . . , bz}. Here, the main issue is how to take advantage of clock activ-
ity reduction in order to reduce the storage requirements. For example,
consider a TA A with clock set H = {h1, h2, . . . , h7}, whose set of reachable
states contains no state in which more than 3 clocks are active simultane-
ously, and many states which have fewer than 3 active clocks. It is sensible
to take advantage of this observation in the state vector representation
of the DBM’s. We illustrate this with an example. Figure 5.4(a) shows
a DBM in which only the clocks h2, h5 and h7 are active. First, notice
that the diagonal of any DBM contains redundant information: for any
H-polyhedron ζ, h − h = 0, for all h ∈ H. So this information need not
be stored explicitly in a DBM representing ζ. Instead, we can use the
diagonal to store the size of the (active part) of the DBM and the names
of the active clocks, whose differences are represented in the DBM. In
Figure 5.4(a), the value of M0,0 indicates that M is a DBM of size 4; the
value of M1,1 shows that row (1) and column (1) represent clock h2; the
value of M2,2 shows that row (2) and column (2) represent clock h5; and
so the value of M1,2 shows that h2 − h5 ≤ 2.

In representing a zone containing fewer than 3 active clocks, we can use
a DBM of the same size as that for a 3-clock zone, marking as unused
those cells which are not required. Figure 5.4(b) shows a DBM M ′ which
represents a zone having 2 active clocks, h2 and h5. M ′

0,0 shows that the
active part of the DBM has size 3. We use ⊥ to show that the entries
in row (3) and column (3) are unused. In this way we can use DBMs
of constant size in all states. This is useful in conjunction with a MA
state store, where all state vectors are required to be the same length.
Naturally, we choose the smallest size which is large enough to represent
the maximum number of active clocks occurring in any state.
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Cell # 0 1 2 3 4 5 6 7
Data 4 (−3,≤) (−5,≤) (−2,≤) (7,≤) h2 (2,≤) (5,≤)

Cell # 8 9 10 11 12 13 14 15
Data (6,≤) (3,≤) h5 (4,≤) (8,≤) (5,≤) (3,≤) h7

Fig. 5.5: State vector representation of a 3-clock zone

Alternatively, we can choose to use DBMs of variable dimension, in which,
for each state, there are only as many entries as are required to store the
values of the active clocks for that state [Tri98]. Figure 5.4(c) shows the
DBM M ′′, which represents the same zone as M ′ but has fewer entries.
This representation can reduce memory requirements when clock zones
are stored in an auxiliary hash table, and only a pointer to a clock zone
is stored in each state vector entry in the MA.

In the following, we will use DBMs of both constant and variable di-
mension. Figure 5.5 shows a typical state vector representation of the
DBM M .

5.4.2 Mapping the state vector to MA layers

It is clear that the way in which a state vector is partitioned, and the partitions
allocated to layers, will have a major impact on the memory reduction achieved
when storing a set of state vectors in a MA. Consider an extreme case in which
the whole state vector is allocated to a single layer. All possibility for sharing
is lost and there is no compensation for the overheads of implementing the
MA. At the other extreme, one can consider a bit-level allocation, in which
each bit of the state vector is allocated to a layer in the MA, giving, for a
state vector of n bits, a MA of n + 1 layers over the alphabet {0, 1}. This
scheme allows the possibility of maximal sharing, but increases the overheads
incurred in implementing the layers: each bit of the state vector needs 2 pointers
to encode it. It is easy to envision similar schemes with a different unit of
allocation: byte or word, for example. The height of a MA is given by the
number of layers, the width is the largest number of nodes on a layer, and is
proportional to the size of the alphabet, |A|. A small unit of allocation leads to
a ‘tall, thin’ MA, a large unit of allocation to a ‘short, fat’ MA. It is not clear,
analytically, which scheme will lead to the most compact encoding, in general.
Holzmann and Puri [HP99] show experimental data suggesting that a byte-level
partitioning is a reasonable choice for the state spaces which they consider.

Another approach to partitioning the state vector seeks to maintain the
integrity of state variables within a single layer of the MA. A simple application
of this idea is a partitioning in which each variable is allocated to its own MA
layer. A modification of this approach allows variables over small domains to
be clustered together in a single layer. Only when the domain of a variable is
considered to be too large, is it split over two or more layers. This approach
is adopted effectively in the GE-SET implementation of [Gré96]. However, it
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is not so easy to implement this partitioning automatically, and the byte-level
partitioning of [HP99] appears to be just as effective.

5.4.3 Variable Ordering

In common with other compact encodings, such as BDD’s [Bry86] and GE-
sets [Gré96], MA’s are sensitive to variable ordering, i.e., the size of a MA
representing a set of state vectors can be affected by the ordering of variables
within the state vector: for some variable orderings, growth in memory usage
may be linear in the number of states; for others, growth may be exponential.
In the construction of MA’s, the following guidelines have proved useful in
achieving an acceptable growth.

• Ensure that the least frequently changing components of the state vector
occur as prefixes and suffixes, in order to promote as much sharing as
possible.

• Group together variables which are strongly related, i.e., which show
clearly identifiable patterns of recurrence in the set of reachable state
vectors.

These ideas have been confirmed frequently in applications of sharing trees [GGZ95,
Gré96, Zam97], and the latter idea is familiar also to users of BDD’s, where it
arises in the well-known recommendation to interleave the variables of the pre-
and post-states in representing a transition relation [Bry92].

In applying these principles to the construction of a MA state store for
bCANDLE, we have considered the following possibilities:

• permutations of the major state vector components: marking W , context
C (network and data environment) and zone Z .

• placement of cells within the encoding of the DBM representing the clock
zone (see Figure 5.6):

– O0 is the standard row-major matrix encoding;

– O1 removes clock names from the diagonal, stores them before all
other cells and then follows row-major ordering of the remaining
cells;

– O2 removes clock names from the diagonal, as for O1, and addition-
ally, stores contiguously both the lower and upper bounds for each
clock difference.

Of course, there is no guarantee that this framework leads to the discovery of
an optimal variable ordering. However, the experimental results indicate that,
in many practical applications, it does lead to the discovery of an ordering
whereby substantial reductions in memory requirements can be achieved.
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Cell # 0 1 2 3 4 5 6 7 8
Data 3 (−3,≤) (−5,≤) (7,≤) h2 (2,≤) (6,≤) (3,≤) h5

(O0)

Cell # 0 1 2 3 4 5 6 7 8
Data 3 h2 h5 (−3,≤) (−5,≤) (7,≤) (2,≤) (6,≤) (3,≤)

(O1)

Cell # 0 1 2 3 4 5 6 7 8
Data 3 h2 h5 (−3,≤) (7,≤) (−5,≤) (6,≤) (2,≤) (3,≤)

(O2)

Fig. 5.6: Orderings of the cells of DBM M ′′ (see Figure 5.4)

5.5 An experimental platform

No state storage technique can escape the known worst-case complexity of reach-
ability analysis. The best that can be hoped is that heuristics are identified
which improve performance on a range of examples which arise in practice. This
can only be confirmed empirically. In this section, we introduce the salient fea-
tures of an experimental platform which has been developed in order to allow
us to explore a variety of approaches to the analysis of bCANDLE systems.

5.5.1 The bCANDLE Compiler

We have implemented a prototype ‘compiler’ for bCANDLE. The compiler is
written in ML and generates C code to perform a given task on a system model.
The user can choose to

1. generate the timed automaton for the model (in KRONOS .tg format),

2. perform reachability analysis of the simulation graph on-the-fly, without
first generating the timed automaton,

3. explore the simulation graph interactively.

It is the second facility which is of interest here. An important feature of the
reachability analyser is that it provides the user with a wide choice of techniques
for the storage of the state space.

5.5.2 State Space Storage Modes

The bCANDLE compiler is able to generate C code for a variety of state space
storage modes. Each mode is based upon essentially the same state vector
encoding, as introduced below.
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State vector encoding

A state vector comprises a marking, network, data environment and clock zone.

Marking The marking is represented by a bitmap in which, for each place in
the control system net, there is a corresponding bit, whose value is 1 if
the place is marked and 0 if it is not.

Network The network is represented by a pair of arrays: a channel status
array and a message array. The channel status array records the status
of each channel, where a channel status is encoded in two 16 bit integers.
Two bits of the first integer are allocated for the representation of the con-
dition of the channel (FREE,PRE,ACCEPT or POST), 11 bits store the
message identifier, and the remaining bits are unused. The second integer
records the message value. If the channel condition is FREE, the message
identifier and value are unused. The message array is a fixed length array
of messages where each message is encoded in two 16 bit integers. Five
bits of the first integer are used for the channel identifier, and the re-
maining 11 bits for the message identifier. The second integer records the
message value. The length of the message array is user-definable, the op-
timal length being the maximum number of messages which are pending
transmission simultaneously in the network of some system state.

Data environment The data environment {x1 7→ v1, x2 7→ v2, . . . , xd 7→ vd}
is encoded by fixing an order for the data variables and storing the values
only. A data value vi ∈ Vxi

is encoded using ni = dlog(|Vxi
|)e bits, and

the set of values is represented by d(Σxi∈Varni)/8e bytes.

Zone The zone is represented by an array of bounds. Each bound (c,≺) ∈
Z∞ × {<,≤} is encoded using a 16 bit integer in which 15 bits are used
for the constant value c and 1 bit to distinguish between the comparison
operators, < and ≤.

Storage modes

The following storage modes are defined:

H The state vector encoding is as described above. In each state, storage is
allocated for the maximum number of clocks required system-wide, even
though there may be many states in which fewer clocks are active (§5.2.2).
The set of visited states is stored in a single hash table. This mode corre-
sponds to the ‘naive’ approach, as adopted in early versions of UPPAAL
and KRONOS.

M As for H, except that the set of visited states is stored as a MA. In con-
structing the MA, the state vector is treated as a string of bytes. A state
vector of n bytes gives rise to a MA of n + 1 layers. In this mode, the
user has further options to control the ordering, within the state vector,
of the location components: marking W , context C (network and data
environment) and zone Z . Any permutation of the location components
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System Procs Vars Chans Mtypes Clocks Zones States

Boiler1 2 2 1 1 5 22824 115660
Boiler2 2 3 1 1 3 588 1110198
Disbmut 4 10 1 6 6 46561 223604

Tab. 5.1: Test systems

is permissible. In addition, it is possible to choose one of the orderings
O0, O1 and O2, which modify the placement of cells within the encoding
of the DBM representing the clock zone, as discussed in §5.4.3.

HV Each state vector is encoded as for mode H, except that the clock zone is
represented by a pointer to a variable dimension matrix. The set of state
vectors is stored in one hash table and the associated variable dimension
matrices in another. This means that for each state, only sufficient storage
is allocated for the number of clocks active in it, and that only one copy
of each distinct clock zone is stored for the whole system. This mode
corresponds closely to the storage method adopted in the most recent
implementations of KRONOS [Tri98].

MV As for HV, except that the hash table storing the state vectors is replaced
by a MA, constructed as for mode M.

For any of these storage modes, the user can choose whether or not to apply
the clock activity reduction of §5.2.2.

5.6 Experiments

5.6.1 System models

We have tested our implementation on some example system models: Boiler1
and Boiler2 model part of a boiler control system; Disbmut models a CAN im-
plementation of a standard algorithm for distributed mutual exclusion [Tan92].
The model included here is for a single coordinator and three competing pro-
cesses. Table 5.1 gives information regarding the scale of the examples: number
of processes, variables, CAN channels, message types and clocks required by
each system, and the number of distinct zones and symbolic states identified in
generating the whole of the reachable state space in the simulation graph.

5.6.2 Experimental results

Performance measurements for each system and each state space storage mode
are given in Table 5.2. We show the time taken and the total memory used in
generating the reachable state space. We take mode H as the basis of compar-
ison and show memory compression and time overheads as percentages of the
requirements of mode H. It should be noted that clock activity reduction was
applied in all cases. The measurements were taken on a 233MHz Pentium II
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System Mode Mem (Mb) Comp % Time (s) Over %

Boiler1 H 11.90 100 15 100
M 7.89 66 73 486
HV 5.48 46 15 100
MV 2.99 25 24 160

Boiler2 H 56.45 100 89 100
M 3.79 7 205 230
HV 25.44 45 81 92
MV 3.30 6 140 157

Disbmut H 34.53 100 66 100
M 15.10 44 266 403
HV 16.02 46 65 98
MV 9.55 28 89 135

Tab. 5.2: Comparison of storage modes

System Mode Order Nodes Edges Mem (Mb)

Boiler1 M ZWC, O1 140757 429127 7.89
M WZC, O2 310224 879807 15.57

MV WZC 4659 57194 2.99
MV CZW 4420 73846 3.61

Boiler2 M CWZ, O0 14002 49372 3.79
M ZCW, O0 54041 139680 5.33

MV CWZ 4988 28657 3.30
MV ZCW 45674 120875 5.04

Disbmut M CWZ, O1 258518 718351 15.10
M WZC, O2 – – >63.43

MV CWZ 74085 376663 9.55
MV WCZ 209094 651873 15.59

Tab. 5.3: Impact of variable ordering on minimised automaton modes

having 64Mb RAM (58Mb available) and 128Mb swap, running RedHat Linux
5.0.

Table 5.3 shows the state space usage of the variable orderings which show
the best, and the worst, performance for each system and each MA mode. The
nodes (resp. edges) column shows the total number of nodes (resp. edges) used
in the final MA.

5.6.3 Discussion of experimental results

Reference to Table 5.2 shows that the most economical use of space, for all
examples, involves the use of a MA. The memory reductions achieved range
approximately from a factor of 4 to a factor of 17, with reductions at the lower
end of this range for realistic systems. When considering the effect of the inclu-
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sion of timing information, we observe that the inclusion of the zone encoding
in the MA (mode M) gives a worse use of space than that given by the use
of variable dimension matrices (mode MV). This suggests that a MA repre-
sentation does not enable sufficient sharing to compensate for the inclusion of
redundant bounds within clock zones, nor does it allow for significant sharing
of bounds, either in a union of zones associated with a single discrete state,
or between zones associated with different discrete states. However, it is clear
that the MA representation is effective in encoding the discrete state variables.
Moreover, the inclusion of timing information, in the form of variable dimen-
sion matrices, although having a somewhat adverse effect, allows for significant
memory reductions – compare the average reduction factor of 6.5, achieved for
the timed systems analysed here, with that of 7.1 for systems without timing
information as reported in [HP99].

As expected, we pay a time performance penalty for the use of MA, the av-
erage increase being by a factor of about 1.5. Notice, however, that in all cases,
it is possible to find a MA mode in which the memory reduction significantly
outweighs the time overhead.

Achieving good compression requires the use of a good variable ordering.
From Table. 5.3, we observe that in 4 of 6 cases the best ordering for the state
vector components is context, marking, zone (CWZ), and in 2 of 3 cases the
best ordering for cell elements is O1. Although not shown here, we note that
in the exceptional cases, the performance of CWZ and O1 is only slightly
worse than the best. Notice, however, that use of a bad variable ordering can
be disastrous, as witnessed by the worst case1 for Disbmut, mode M, which
increases memory requirements by a factor of more than 2.

5.7 Related work

Courtiat and de Oliveira have proposed a similar approach to on-the-fly reach-
ability analysis of a timed process algebra [CdO95]. Our approach has been
developed independently and differs in several important respects. Firstly,
it keeps within the framework of timed safety automata, which have been
studied extensively [HNSY94, NSY91, NSY92, Sok96, Yov93, Yov97] and are
well-understood; in their paper, Courtiat and de Oliveira propose a different
model, called Dynamic Timed Automata, which appears not to be used else-
where. Secondly, it is able to take advantage of a standard clock reduction
technique [Daw98a, DT98, DY96, Tri98]. Finally, it is based upon a compact
net representation of control states, which allows each state vector to be en-
coded very efficiently. By contrast, the method of Courtiat and de Oliveira
uses structural configurations which are closely related to the abstract syntax
of process terms, and consequently appears to suffer from a bloated state vector
representation [ACdP97]. However, an interesting feature of their work is its
use of the algorithm of Yannakakis and Lee [YL93] to minimise the reachability
graph as it is constructed. We intend to investigate whether our approach can

1 In fact, the worst case for Disbmut failed to terminate with the available resources; hence
the approximation shown in the table.
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benefit from this idea.
The use of binary decision diagrams (BDDs) for compact state space rep-

resentation is well-known [BRB90, Bry86, Bry92]. However, there is a growing
body of evidence which supports the view that, in the analysis of asynchronous
systems, explicit state enumeration, combined with other compaction methods,
often provides better performance – see for example the paper of Visser [Vis96]
in which BDDs are compared unfavourably with sharing trees for representing
the state space in the SPIN model checker.

If one is prepared to allow a very small probability that not all reach-
able states are considered in an analysis, then the bitstate technique of Holz-
mann [Hol95] and the probabilistic hash compaction of Stern [Ste97] can achieve
memory reductions of one or two orders of magnitude.

The stack storage method of [Hol90] allows reachability analysis without
the need to store the set of visited states at all, but at the cost of a potentially
exponential increase in run time. Run time performance can be improved by
adapting this technique with the maintenance of a state space cache [Hol85,
JJ91]. This method is particularly effective in combination with partial order
reduction [GHP95].

Representation of timing constraints by DBMs was proposed by Dill [Dil89]
and has been preferred in the most efficient verification tools for timed systems,
such as KRONOS [HNSY94] and UPPAAL [LPY97].

Wong-Toi and Dill [WTD94] and Balarin [Bal96] have each shown tech-
niques for encoding the transition relation of timed systems using BDD’s, ap-
proximating unions of zones using convex hulls. Bozga et. al. [BMPY97] of-
fer a canonical representation of discretised sets of clock configurations using
NDDs2 [ABK+97], which are a BDD-based encoding amenable to combination
with a symbolic representation of the discrete part of the system. The difficulty
with these techniques is that they are very sensitive to the size of the constants
in the timing constraints of the system model. If the constants are large then
state space explosion is not controlled effectively.

Larsen et. al. [LLPY97] propose a compact encoding for DBMs which pro-
vides a minimal and canonical representation of clock constraints and allows for
efficient inclusion checking between constraint systems. They do not consider
how this representation may be combined with a compact representation of the
rest of the system.

Behrmann et. al. [BLP+99] have recently proposed clock difference diagrams
(CDD’s) as a data structure for the compact representation of unions of zones.
On a variety of case studies, they report space savings of between 46%–99%
over their earlier DBM implementation. Difference decision diagrams (DDD’s)
are a similar data structure developed by Møller et.al. [ML98]. As yet, they
are relatively untried in practice, although experimental results of their appli-
cation in the analysis of a timed version of Milner’s cyclic scheduler are very
promising [MLAH99]. Other work in this area are the Interval Diagrams of
Strehl [Str99], the Region Encoding Diagrams of Wang [Wan00] and the timed
polyhedra of Bournez and Maler [BM00].

2 Numerical Decision Diagrams
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5.8 Conclusions and further work

In this chapter, we have introduced an on-the-fly algorithm for reachability
analysis of bCANDLE systems. The algorithm allows for the analysis of a sys-
tem model during construction of its simulation graph, without first requiring
construction of its equivalent TA. We have also shown how clock activity re-
duction can be applied on-the-fly. This is essential, in practice, for the analysis
of even moderately sized models. In addition, we have proposed the use of
MA’s for the representation of the state space in the reachability analysis of
timed systems. The advantage of this approach is that a compact representa-
tion of the discrete state variables can be combined very simply with a DBM
representation of clock zones. Experimental results suggest that this leads to
significant space reductions, which are achieved in spite of the inclusion of tim-
ing information. The impact of MA’s on the space requirements of clock zones
is less promising and shows no improvement over the use of variable dimension
DBM’s. For this reason, we expect to see the greatest benefits in the analysis
of asynchronous, data-bearing systems, where the value of this approach has al-
ready been demonstrated in untimed settings [GGZ95, Gré96]. The CAN-based
systems which we consider fall mainly within this class.

Further work includes applying MA state storage to a wider range of ex-
amples in order to confirm the findings reported here. In addition, it may be
possible to discover more effective partitionings and variable orderings than
those considered so far: techniques based on a static analysis of variable de-
pendencies may offer a promising line of attack. It would also be worthwhile to
consider combining MA state storage with orthogonal state vector compression
techniques such as the collapse method of [Vis96], the tightening of variable
ranges of [GdV99] and the compact DBM encoding of [LLPY97]. It is also
necessary to compare the performance of MA state storage with CDD’s and
DDD’s. It is clear that a MA gives a more natural encoding of the discrete
state variables, however CDD/DDD’s are likely to be more effective in the
compact representation of clock zones. More substantial work is needed in or-
der to assess the effectiveness of MA state storage in conjunction with partial
order reduction. A potential advantage of the MA approach over CDD/DDD’s
is that a MA state store does not hinder a standard implementation of p.o. re-
duction, based on depth-first search with tagging of states already on the stack.
It is not yet clear how p.o. reduction can be be combined with a fully symbolic
use of CDD/DDD’s.

In a wider context, we expect that a MA option would be a useful addition
to KRONOS and UPPAAL, now that both tools handle system descriptions
with discrete variables.



6. CANDLE: MODELLING AND

ANALYSIS IN PRACTICE

6.1 Introduction

This chapter presents CANDLE – a CAN Development Language and Environ-
ment. The purpose of CANDLE is to demonstrate

• a programming language for distributed embedded systems whose com-
ponents communicate using the CAN protocol, and

• a development environment which integrates a variety of tools to support
both system implementation and formal analysis.

Our approach is very much influenced by ESTEREL [BG92], a program-
ming language and tool set for the construction and analysis of uni-processor
embedded systems. We aim to provide support for the view that bCANDLE

offers an effective formal basis to support the ESTEREL philosophy of WYVI-
WYE (‘What You Verify Is What You Execute’) in the case of CAN-based
distributed systems. The emphasis in this chapter is on the construction and
analysis of models, rather than on code generation and system implementation,
which are mentioned only in connection with model construction.

Work on CANDLE continues. Both the language and the development
environment are evolving. This chapter provides a snapshot of the current
status. The chapter is organised as follows. An informal ‘tour’ of the language,
in the style of the ESTEREL Language Primer [Ber98a], is presented in §6.2
and a simple data modelling language is introduced in §6.3. The translation
to bCANDLE is discussed in §6.4. Section 6.5 outlines the main features of
the development environment which support the construction and analysis of
formal models of a CANDLE system. A simple example is described in §6.6.
Finally, conclusions and related work appear in §6.7.

6.2 A Tour of CANDLE

The CANDLE language is intended as a simple, high-level programming lan-
guage for use in the construction of distributed, CAN-based, embedded systems.
It can be used to describe the implementation of CAN system designs, which
may have been developed and explored at an abstract level using bCANDLE.
Particular care has been taken to ensure that a formal model of a system can
be automatically extracted from its CANDLE implementation. This has the
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benefits of removing the task of model construction from the system developer
and ensuring that the model which is analysed is up to date with the current
implementation. A CANDLE program can be translated automatically into a
program written in a host language, such as C or Ada, in order to construct a
system implementation, or it can be translated automatically into a bCANDLE

model, and thence to a Prolog or C implementation of the corresponding la-
belled transition system, for the purposes of simulation and verification. This
section provides an informal introduction to CANDLE. A complete grammar
appears in Appendix C and details of the construction of a formal model are
given in §6.4.

6.2.1 Modules

A CANDLE program consists of a collection of modules. The CANDLE module
system is modelled on that of ESTEREL. A module has a name and, optionally,
a declaration part and a body which is an executable statement. One module
is designated as the main program module. Modules can use sub-modules by
executing module instantiation statements. If module A uses another module
B , then A is said to depend on B . The module dependency relation is required
to be acyclic, i.e. recursive module instantiation is prohibited.

Here is a simple example of a CANDLE module:

module Flow is

const

PERIOD : duration

type

flow_reading

procedure

ReadSensor(out flow_reading)

channel

k : (flow.flow_reading)

var

x : flow_reading

behaviour

every PERIOD do

ReadSensor(x);

snd(k,flow.x)

end every

end module

The name of the module is Flow and it implements the behaviour of the
flow sensor task described in §3.7. This is a task which periodically reads a flow
sensor and broadcasts its value on a communication channel. This behaviour is
shown in the module following the keyword behaviour. The preceding sections
are declarations of constants, types, procedures, channels and variables. These
language features are explained below.
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6.2.2 Data declarations

As with ESTEREL, CANDLE provides only a very limited facility for de-
scribing data types and operations, instead it relies on an external data lan-
guage to provide the necessary definitions. This approach occasionally appears
rather cumbersome but is extremely flexible in practice. It provides porta-
bility, and more importantly, facilitates the use of different languages for data
modelling and implementation. This allows the user to choose an abstract, non-
deterministic language, such as Z, for modelling, and a traditional programming
language, such as C or Ada, for implementation.

A simple data modelling language, SDML, is introduced later in §6.3 in
order to illustrate the use of an external data language with CANDLE for the
purpose of constructing system models. With some additional work, more fully
developed modelling languages such as B [Abr96], VDM [Jon90] and Z [Spi88]
could be used instead of SDML. This would require the reconcilation of different
styles of semantic definition, e.g. the denotational style of Z with the operational
style of bCANDLE. The restriction of CANDLE to finite data types should
simplify this problem and future work will seek to exploit this benefit.

Data objects in CANDLE are either pre-defined or user-defined. A few
primitive data operations are provided in order to ease the expression of some
typical idioms: assignment, comparison and so on. All data objects are global
to a program. Each data object used within a module must be declared in
that module. In the case that a data object is declared in several modules of a
multi-module program, it is required that the declarations are compatible (see
module instantiation §6.2.4).

Types and Operators

CANDLE provides the primitive types unit, boolean, id and duration.

• The unit type contains the single value uvalue.

• The boolean type contains the constants true and false. The operations
and, or and not are defined.

• The id type is the set of message identifiers. For any CANDLE program,
id contains the message identifiers occurring in the channel declarations
of the program.

• The duration type is the set of time units for CANDLE programs. There
are pre-defined functions Secs, Msecs, Usecs and Cycles which can be
used to convert to the duration type an integer expression representing
seconds, milliseconds, microseconds and clock cycles, respectively. For
example, the expression Msecs(30) denotes the value of type duration

which is equivalent to 30 milliseconds.

CANDLE allows the use of integer constants 0, 1, -1, 2, -2, ... and ex-
pressions involving the operators +, -, *, / and mod. However, there is no
unbounded, primitive type integer. It is assumed that integer expressions
evaluate to an element of some user-defined, finite integer subrange.
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User-defined types are introduced into a CANDLE program simply by
declaring their names in a type declaration, for example:

type flow_reading

Several type names can be introduced in a single type declaration, as follows:

type

byte;

command;

resource_status

As has been mentioned, user-defined types are abstract, the concrete definitions
being given in an external data language.

The relational operators =, /=, <, <=, >=, and > can be used with any data
type. If they are used, they must be adequately defined in the external data
language.

Constants

Constants are introduced by declaring their name and type, as follows:

const N : byte

const PERIOD : duration

The value of a constant is defined either in the external data language or
through module instantiation. There is no explicit constant value definition
in CANDLE.

Variables

Variables are assignable objects which have a name and a type. Variables are
declared with the var declaration, as follows:

var x : flow_reading

var wl : water_level

The variable declarations of a set of program modules give rise to a single global
state space. If a variable is declared in two or more modules of a multi-module
program then all declarations must be type compatible. CANDLE inherits the
notion of type compatibility defined by the external data language.

A variable may be modified by assignments, procedure calls and message
receptions. It is not possible to assign a value to a variable in its declaration.
Each variable must be initialised explicitly by an executable statement before it
is used. It is an error if any variable is referenced by distinct behaviour expres-
sions occurring as the arguments of a parallel composition, i.e. concurrently
executing processes cannot communicate via shared variables.
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Functions and Procedures

Functions and procedures are introduced by declaring their names and the type
of their parameters. Parameters must be declared to have one of the modes
in, out or inout, so that an appropriate parameter-passing mechanism can
be chosen for the host language, for example: call-by-value for in parameters
and call-by-reference for out and inout parameters. The following example
illustrates:

procedure

ReadSensor(out flow_reading);

UseResource()

function

IsFullQueue(queue) : boolean

If a parameter mode is not specified explicitly, the mode is assumed to be in.
So the declaration of IsFullQueue above is equivalent to

IsFullqueue(in queue): boolean.

All parameters to a function must be in parameters. Neither procedures nor
functions can have access to variables, other than local variables, except through
their parameter lists. It follows that function evaluation in CANDLE is side-
effect free.

Channels

Channels are the objects through which processes communicate by passing mes-
sages. Message passing is by broadcast using an abstracted CAN protocol. A
message consists of a message identifier and an optional data value. A channel
declaration introduces the name of a channel and optionally a set of priority
ordered message templates which defines the messages which can be communi-
cated by the channel. For example,

channel

k : (ok.unit, node.command)

declares a channel called k which can transmit two kinds of messages: those
consisting of the message identifier ok and the unit value uvalue, and those
consisting of the message identifier node and any value of the type command.
The order of the message templates is significant: higher priority messages are
declared first. So, for channel k, ok messages have higher priority than node

messages.
In a multi-module program, the complete declaration of a channel is derived

from the (possibly partial) declarations of the channel in all modules where they
occur. Not every declaration of a channel is required to be complete in itself.
A channel declaration is complete when the identifier, priority ordering and
value type of every message mentioned in the program body can be determined.
Multiple channel declarations must be compatible, which means that they must
agree on the priority ordering and value type of all messages. For example, the
following are compatible declarations of the channel k declared above:
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channel k -- declare the name only

channel k : (ok.unit) -- not all message templates declared

channel k : (ok, node) -- message types not yet specified

Whereas these declarations are not compatible:

channel k : (node.command, ok.unit) -- wrong priority ordering

channel k : (node.unit) -- incompatible type

Exceptions

CANDLE allows exceptions to be declared and used in trap and exit state-
ments. An exception has a name and can carry a value. An exception is declared
like a variable, by giving its name and the type of value carried:

exception SensorFailure : unit

exception Alarm : alarm_t

As with variables, exceptions form part of the global state space of a program.
If an exception is declared in two or more modules of a multi-module program,
the declarations must be type compatible.

6.2.3 Expressions

The expression language of CANDLE is very simple. It is built from:

• constant values of the predefined types unit, boolean, id and duration,
together with the integer constants from some finite integer subrange;

• variable identifiers;

• a small number of built-in operators, including: and, or, not, +, -, *, /,
mod, =, /=, <, <=, >= and >;

• the pre-defined functions Secs, Msecs, Usecs and Cycles;

• the exception value operator ?, which returns the value bound to a named
exception;

• user-declared function calls.

Here are some examples of CANDLE expressions:

temperature > maxTemperature

count mod N = 0 or count < 10

Alarm2String(?Alarm)

Usecs(30)

CANDLE adopts the type compatibility rules of the external data language.
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6.2.4 Statements

null and idle statements

The simplest CANDLE statements are null and idle. Execution of the null

statement terminates instantaneously with no effect on the state of the network
or data environment. Execution of the idle statement similarly leaves the
program context unchanged but delays forever without terminating.

Send and Receive statements

Broadcast message transmission is initiated by the snd statement, as follows:

snd(k, node.req)

snd(k, ok)

The first parameter names the communication channel on which the message
is to be transmitted. The second parameter consists of a message identifier
and, optionally, a data value, which together constitute the message to be
transmitted, e.g. node.req where node is the message identifier and req is the
data value. In the case that no data value is given, the unit value is assumed,
e.g. snd(k, ok) is equivalent to snd(k, ok.uvalue). The snd statement is
non-blocking.

Willingness to receive a broadcast message is indicated by the rcv state-
ment, as follows:

rcv(k, node.x)

rcv(k, ok)

The first parameter names the communication channel from which the message
is to be received. The second parameter gives the required message identifier
and, optionally, the data variable to which the received data value is to be
assigned, e.g. rcv(k, node.x) can receive a message having the identifier
node and will assign the data value of the message to the variable x. In the
case that a message carries the unit data value, it is not necessary to specify
a data variable to receive it, e.g. rcv(k, ok) succeeds when an ok message is
available on channel k.

The rcv statement is blocking – if there is no suitable message available,
the calling process waits.

Elapse statement

The elapse statement is used to cause a process to wait for a specified period
of time.

elapse Secs(5)

elapse Msecs(10)

elapse Cycles(50)
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The constant expression denoting the extent of the delay is required to be
evaluable at compile-time and must be of type duration.

It is assumed that a compiler will generate code for the elapse statement
which, starting from the initiation of its execution, will produce a delay which
is as close as possible to the requested value. Construction of the model of the
elapse statement needs to take into account how the generated code and the
run-time environment operate in creating the delay. This is discussed in more
detail in §6.4.

Assignment and Procedure Call

The assignment statement has the form

x := e

where x is a variable and e is a data expression. The variable and the expres-
sion must be type compatible. The bounds on the time taken to execute an
assignment statement for a given variable type are determined either by analy-
sis of the code which is generated to perform the assignment, or by an explicit
bounds declaration in the external data model, as discussed in §6.3.

A procedure call has the form

P(e1, e2, ..., en )

where e1 . . . en are data expressions, whose mode and type are compatible with
the corresponding parameters in the declaration of the procedure P . Bounds on
the procedure execution time are determined as for the assignment statement.

Sequential and Parallel statements

CANDLE allows statements to be combined both in sequence and in paral-
lel. The sequencing of behaviours is described by the sequential composition
operator “;”, e.g.

ReadSensor(x) ; snd(k,flow.x)

where execution of the procedure ReadSensor is immediately followed by exe-
cution of the communication statement snd(k,flow.x).

In the behaviour

s1 ; s2

the statement s1 is started as soon as the sequence is started. If s1 terminates,
then s2 is started at once. If s1 does not terminate, then s2 is never started.

The parallel statement is written using the parallel composition operator
“|”, e.g.

ReadSensor(x) ; snd(k,flow.x) | rcv(k,flow.y) ; AdjustValve(y)
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The parallel composition operator has lower precedence than sequential com-
position. It is only allowed at the top-level of a behaviour.

In the behaviour

s1 | s2

the statements s1 and s2 are both started as soon as the parallel behaviour
is started, and are assumed to execute concurrently. The parallel behaviour
terminates when both s1 and s2 terminate. Parallel composition in CANDLE is
asynchronous and communication is restricted to message passing via broadcast
channels. In order to guard against interference between the behaviours s1 and
s2, it is required that the sets of variables and exceptions to which they refer
are disjoint.

If statement

The if statement is used to allow the execution of a program to depend upon
the value of boolean data expressions. The general form of an if statement is

if e0 then s0
elsif e1 then s1
...
elsif en then sn
else s
end if

where e0 to en are boolean expressions and s0 to sn are statements, as is s. The
elsif and else parts of the statement are optional. The expressions e0 to en

are evaluated in sequence. The first true expression causes the corresponding
statement to be executed. If none of the expressions evaluates to true, then
the else statement s is executed if it is present, otherwise the if statement
terminates.

Iteration statements

Repetitive behaviours can be described in CANDLE using a variety of iteration
constructs. The simplest iteration construct is the basic loop statement which
allows the expression of a behaviour which is executed repeatedly forever. The
named loop statement extends the basic loop by providing a name which can be
used in an exit statement to cause the named loop to be terminated. The every
statement allows the description of a behaviour which is executed periodically.

A basic loop statement has the form

loop do

s
end loop

where s is a statement. A basic loop executes the statement s repeatedly
forever.
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Here is an example of the use of a basic loop in implementing the Valve

process for the flow regulator example of §3.7:

module Valve is

type

flow_reading

procedure

AdjustValve(flow_reading)

channel

k : (flow.flow_reading)

var

x : flow_reading

behaviour

loop do

rcv(k,flow.x);

AdjustValve(x)

end loop

end module

The process repeatedly waits to receive a flow message and then adjusts a valve
accordingly.

A named loop statement has the form

loop LoopName do

s
end loop

where s is a statement and LoopName is an identifier.
In the case of a named loop, an exit statement, occurring as part of the

statement s, causes the loop to be terminated, e.g.

x := 0;

loop Transmit do

snd(k, value.x);

x := x + 1;

if x = 10 then exit Transmit end if

end loop

The Transmit loop is terminated after ten iterations.
Another form of repetition is introduced in CANDLE by the every state-

ment, which has the form:

every T do

s
end every

where T is a statically evaluable constant expression of type duration and s
is a statement. The every statement causes s to be executed periodically, with
execution beginning every T time units. For example,
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every Msecs(10) do

ReadSensor(x);

snd(k, flow.x)

end every

causes execution of the statement body to be initiated immediately and to be
executed periodically every 10 msecs thereafter.

Select statement

A basic select statement allows a choice to be made from several alternative
statements, depending on the reception of a message or the elapse of a time
delay. It has the general form:

select

:: rcv(k1, i1.x1) ; s1
:: rcv(k2, i2.x2) ; s2
...
:: rcv(kn , in .xn) ; sn
:: elapseT ; s

end select

If one of the rcv(kj , ij .xj ) statements succeeds, then the program continues by
executing the statement sj . If more than one of the rcv statements can succeed
simultaneously, then a choice between them is made non-deterministically. If
no rcv statement can succeed before T time units have elapsed, then statement
s is executed.

CANDLE also offers an extended select statement, which has the form

select

:: rcv(k1, i1.x1) ; s1
:: rcv(k2, i2.x2) ; s2
...
:: rcv(kn , in .xn) ; sn
:: elapseT ; s

in

body
end select

and behaves like a basic select statement, except that the statement body is
executed while a message reception or timeout is awaited. If a message is
received or the time delay elapses before body terminates, then the execution
of body is aborted and execution of the corresponding statement is started. If
body terminates before a message is received or the time delay elapses then the
select statement terminates.
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The following example illustrates both forms of the select statement:

select

:: rcv(k,shutdown); ShutDown(); idle

in

loop do

select

:: rcv(k,pump_on) ; PumpOn()

:: rcv(k,pump_off) ; PumpOff()

end select

end loop

end select

The body of the outer select statement is a loop which repeatedly waits
for either a pump on or pump off message and then executes the appropriate
procedure. However, if a shutdown message is received, the loop is aborted,
the ShutDown procedure is executed and the process idles.

Trap and Exit statements

The trap statement can be used to trap exceptions raised in a program block
and to define an appropriate behaviour for handling each trapped exception.
The trap statement has the general form:

trap

:: x1 => s1
:: x2 => s2
...
:: xn => sn

in

body
end trap

where each xi is a previously declared exception identifier and each si is a
statement which acts as the handler for exception xi . Execution of the trap

statement begins by executing the statement body . An exception can be raised
in body by using the exit statement. If an exception is raised, the execution
of body is aborted and, if the exception is trapped, execution of the exception
handler is started. In the case of a valued exception, the exit statement is used
to define the value of the exception, e.g.

exit Alarm(flowHigh)

raises the Alarm exception and binds to it the value flowHigh. Notice that the
value of an exception can be referred to in its handler by using the ? operator,
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as in

trap
...
:: Alarm => if ?Alarm = flowHigh then ... end if
...

in
...
exit Alarm(flowHigh);
...

end trap

It is an error to attempt to refer to the value of an exception outside its handler.

Module Instantiation

A module can be instantiated within another module by using a module instan-
tiation statement. This has the forms

M -- module identifier, no renaming

M [R] -- module identifier, with renaming

where M is the name of a module and R is a list of renamings. The instantiation
is syntactically replaced by the body of the module M renamed according to R.
A renaming e/I causes all occurrences of the identifier I in M to be replaced
with the expression e. This is simple textual replacement; e is not evaluated
at this point. The resulting module must be well-formed.

All declarations are global to a CANDLE program. Therefore, the decla-
rations of the instantiated module are exported to the parent module. If the
parent and child modules both declare objects having the same name, then the
declarations must be compatible. Compatibility for constants, variables, pro-
cedures and functions is simply type compatibility as defined by the external
data language. Compatibility for channels is described in §6.2.2 page 150.

Here is an example of the use of module instantiation, which uses the Flow

and Valve modules declared earlier.

module FlowRegulator is

behaviour

Flow[Msecs(10)/PERIOD] | Valve[y/x]

end module

The details for the expansion of a module instantiation are as given below.
Firstly, a module is called independent if it does not contain any module

instantiation statements in its body; otherwise it is said to be dependent.

• To expand an independent module instantiation M 1[R] in a parent mod-
ule M :



6. CANDLE: Modelling and Analysis in Practice 159

module FlowRegulator_E is

type

flow_reading

procedure

ReadSensor(out flow_reading);

AdjustValve(flow_reading)

channel

k : (flow.flow_reading)

var

x : flow_reading;

y : flow_reading

behaviour

every Msecs(10) do

ReadSensor(x);

snd(k,flow.x)

end every

|

loop do

rcv(k,flow.y);

AdjustValve(y)

end loop

end module

Fig. 6.1: Flow Regulator: Instantiated and Renamed

1. Apply the renaming R to M 1, giving the renamed module M 1′.

2. Textually replace the module instantiation statement with the body
of the module M 1′.

3. Merge the declarations of M 1′ with the declarations of its parent
module M .

• To expand a dependent module instantiation M 1[R] in a parent module
M :

1. Recursively expand any module instantiations in the body of M 1.

2. Expand the remaining independent module instantiation in M , as
described above.

The effect of applying these rules in expanding the instantiations in the
module FlowRegulator is shown in the module FlowRegulator E of Figure 6.1.

6.3 SDML: Simple Data Modelling Language

We require an external data language in order to provide complete examples of
the modelling of systems using CANDLE. It is outside the scope of this thesis
to discuss the connection of CANDLE to a standard data language such as Z.
Instead, we introduce a simple data modelling language, SDML, which is an ex-
tension of Dijkstra’s non-deterministic language of guarded commands [Dij76].
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A SDML program is just a sequence of type, constant, function and procedure
declarations. This section gives an informal introduction to SDML. A complete
grammar is given in Appendix D.

6.3.1 Types

SDML has the same pre-defined types as CANDLE: unit, boolean, id and
duration. In addition, the following types can be constructed:

• enumeration types, which are declared by enclosing between braces a
comma-separated list of the values of the type, e.g. {low, ok, high};

• subrange types, which have the form low .. high, where low and high
are expressions which are evaluable at compile-time and denote values
of some ordered type; values of the subrange type are all those of the
underlying ordered type from low to high inclusive, e.g. 0..4 defines the
values 0,1,2,3 and 4;

• record types, which are are tuples of named elements, enclosed by the
delimiters {| and |}, e.g.

{| numerator : 0..9999; denominator : 0..9999 |}

consists of a pair of integers in the range 0..9999;

• array types, which are sequences of values of some previously defined type,
indexed by a subrange of some ordered type, e.g. array 0..4 of boolean.

A type can be given a name in a type declaration, as follows:

type flow_reading is unit

type water_level is {low, ok, high}

type byte is 0..255

type rational is {| numerator : 0..9999;

denominator : 0..9999 |};

byte_array is array 0..3 of byte

Recursive type declarations are not allowed.
In modelling the data of a system, it is usually the case that we abstract

from the full set of data values of the underlying implementation and use a
smaller set of values which is large enough to preserve the system properties
of interest. For example, in the declaration of flow reading above, we have
abstracted entirely from the set of flow readings and use the unit type instead.
However, in order to calculate the communication latency of messages which
contain flow reading data, it is necessary to know the size of its representation
as implemented. We extend type declarations to allow this information to be
included:

type flow_reading is unit size Bytes(4)

where the size clause introduces an expression giving the size of the imple-
mented data representation of the type. The pre-defined functions Bytes and
Bits can be used in size expressions.



6. CANDLE: Modelling and Analysis in Practice 161

6.3.2 Constants

Constants are declared using the keyword const:

const

req : command;

NUMBER_OF_NODES : 0..255 is 10;

MAX_TEMPERATURE : 0..65535 is 25000

where each constant is declared by giving its name, its type and, optionally, its
value. The value of a constant is given by an expression following the keyword
is, as in

const NUMBER_OF_NODES : 0..255 is 10.
An expression used in a constant definition must be evaluable at compile-time.

6.3.3 Expressions

Expressions in SDML are the same as in CANDLE, with the following exten-
sions:

• The pre-defined functions Bytes and Bits are provided for use in size

declarations.

• The non-deterministic expression any typeIdentifier, evaluates to any one
of the values of the type denoted by typeIdentifier. For example, the
expression any water level evaluates to any one of low, ok or high.
The use of the any expression is restricted to simple assignment, e.g.
wl := any water level.

• A field selector expression has the form x.f , where x is a record vari-
able and f is a field. For example, if x is a record variable whose value is
{| numerator = 1; denominator = 2 |}, then the value of x.numerator
is 1 and the value of x.denominator is 2.

• An array element selector expression has the form a[i], where a is an
array variable and i is an expression denoting a value of the index type of
a. For example, if a is an array variable whose value is [| 0; 2; 4; 8 |],
then a[2] is an expression whose value is 4, assuming that the index type
of a is 0..3.

6.3.4 Functions and Procedures

Function and procedure declarations consist of a header, which has the same
syntax as in CANDLE and a body which is written after the keyword is:

function IsEmptyQueue(q : queue) : boolean is

bounds Cycles(30) ; Cycles(45)

begin

return (q.rear = 0)

end
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procedure Swap(inout x : byte; inout y : byte) is

bounds Usecs(100) ; Usecs(125)

var temp : byte

begin

temp := x;

x := y;

y := temp

end

The body of the function or procedure consists of a bounds declaration, a lo-
cal variable declaration and a statement. The bounds declaration allows the
user to state lower and upper bounds on the execution time of the function or
procedure. In the declaration

bounds Cycles(30) ; Cycles(45)

the lower (resp. upper) bound is 30 (resp. 45) clock cycles. The expression
for each bound must be of type duration. It is usual to state bounds in clock
cycles and to allow a duration value to be calculated automatically when the
execution environment is fixed for a particular invocation of the sub-program.
However, it is possible to state bounds which are independent of the execution
environment, as in the declaration of Swap. In the declaration bounds t lb ; tub,
it is required that t lb ≤ tub. The ‘infinite bound’ ∞ can be used and is written
as ~, e.g. bounds Cycles(30); ~.

A function declaration is required to respect the following constraints:

• the non-deterministic assignment statement is not allowed in a function
body, nor in the body of any procedure which is called by a function;

• all function parameters are required to have the mode in;

• the only variables which can be referred to in the body of a function are
actual parameters and local variables.

6.3.5 Statements

A SDML statement is either an atomic statement or a sequential statement.
The atomic statements are:

• the skip statement which terminates leaving the data state unchanged;

• the assignment statement x := e which causes the value of the expression
e to be bound to the variable x ;

• the procedure call statement P(e1, . . . en), where P is the name of a pro-
cedure and e1 to en are the actual parameters;

• the return statement return e which is used in a function body to indi-
cate that the value of the function is e;



6. CANDLE: Modelling and Analysis in Practice 163

• the non-deterministic if statement

if

:: e1 => s1
:: e2 => s2
...
:: en => sn

fi

where each ei is a boolean expression, called a guard, and each si is
a statement which can be chosen for execution if the associated guard
evaluates to true. When more than one guard is true, the statement to
be executed is chosen non-deterministically from among the statements
whose guards are true. It is required that at least one of the guards in an
if statement is true.

• the non-deterministic do statement

do

:: e1 => s1
:: e2 => s2
...
:: en => sn

od

whose branches are as for the if statement. If some guard evaluates to
true, a statement is chosen for execution and the do statement is repeated.
The do statement terminates when no guard evaluates to true. The user
is required to establish the termination of every do statement in a SDML

program.

In a sequential statement s1 ; s2, the statement s1 is executed and, when the
execution of s1 terminates, execution of s2 begins.

6.3.6 Semantics

SDML is a block-structured, statically-scoped, sequential programming lan-
guage. It introduces a few familiar mechanisms for declaring types, constants,
functions and procedures. Statements are essentially as in Dijkstra’s guarded
command language [Dij76]. We assume the existence of a semantic function
which gives the meaning of SDML statements. This function is required later
in constructing a bCANDLE model from a CANDLE program where SDML is
used as the external data language.

Let Statement be the set of SDML statements. For a SDML program,
let Var be the set of data variables and V be the set of data values. Let
Valuation =̂ Var → V be the set of valuations. Then, the semantic function

S : Statement → Valuation → 2Valuation
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gives the meaning of SDML statements, where S [[s]]val denotes the set of valua-
tions which are possible results of executing the statement s under the valuation
val.

Notice that because SDML is a non-deterministic language, a statement
maps a valuation to a set of result valuations. Nevertheless, the definition of
the semantic function is quite straightforward; the interested reader is referred
to standard texts such as Schmidt [Sch86] or Winskel [Win93] for further details.

6.4 Constructing a Formal Model

This section describes how a CANDLE program can be translated into bCANDLE,
so that its behaviour can be simulated or verified. The construction of a
bCANDLE model, which conservatively approximates the implemented sys-
tem, depends not only on the CANDLE program but also on features of the
code generator and the execution environment. It is outside the scope of this
thesis to discuss these aspects fully. The intention here is to provide a general
framework for the translation, which can be adapted to accommodate particular
requirements.

It is assumed, without loss of generality, that a bCANDLE model is con-
structed from a single CANDLE module of the form:

module moduleName is

type typeDecl1; . . . ; typeDecln
const constantDecl1; . . . ; constantDecln
var variableDecl1; . . . ; variableDecln
function functionDecl1; . . . ; functionDecln
procedure procedureDecl1 ; . . . ; procedureDecln
channel channelDecl1; . . . ; channelDecln
exception exceptionDecl1; . . . ; exceptionDecln
behaviour statement

end module

and a single SDML module of the form:

data moduleName is

type typeDecl1; . . . ; typeDecln
const constantDecl1; . . . ; constantDecln
function functionDecl1; . . . ; functionDecln
procedure procedureDecl1 ; . . . ; procedureDecln

end data

That is to say, module instantiation statements are expanded, and declarations
are collected, to give a well-formed, stand-alone CANDLE module; and the
external data definitions are presented as a single SDML module.

Recall that a bCANDLE model is a tuple (P ,N ,D), where P is a process
term, N is a network and D is a data environment (§3.6). In the rest of this
section, we show how each component of the model can be constructed from a
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CANDLE program. First, we consider how the data environment and network
model are constructed from CANDLE declarations; then, how a process term
is constructed from a behaviour section.

6.4.1 Declarations

Data

A bCANDLE data environment is a tuple (type, operation, predicate, val) (§3.3).
This section shows how a CANDLE program defines a bCANDLE data envi-
ronment.

A valuation val : Var → V is a mapping from variables to values. The set
Var of variables is defined by the CANDLE var and exception declaration
sections. There is one bCANDLE variable for each declared CANDLE variable
and exception. In addition, Var includes a number of system variables which
are not referred to in the CANDLE program but are used to hold the values
of expressions occurring in the behaviour section. In constructing the formal
model, we assume that there is a unique system variable for each program ex-
pression. In practice, a smaller number of variables are used and expressions are
assigned to them according to principles which ensure that conflict is avoided.
The type of a variable is given either directly by its declaration or, in the case
of a system variable, can be inferred from the type of the expression whose
value is bound to it. Furthermore, each SDML type expression clearly denotes
a finite set of values. So each variable x ∈ Var is associated with a finite set
Vx of values, which is given by the type of x . The set V of all program data
values is then given by

V =̂
⋃

x∈Var Vx ∪ {⊥},

where ⊥ represents the distinguished “undefined” value. The function type :
Var → 2V is defined simply by

type(x ) =̂ Vx

for all x ∈ Var . A valuation val : Var → V maps each variable x to some value
v , where either v ∈ type(x ) or v = ⊥. For any CANDLE program, the initial
valuation maps every variable to ⊥.

The operation symbols and predicate symbols of the bCANDLE model are
determined during the translation of the behaviour section, as are their inter-
pretations. Consideration of the details is deferred to §6.4.2.

Network

A bCANDLE network is a mapping from channel identifiers to channels (§3.4),
where a channel is defined by its static and dynamic attributes. This section
shows how a CANDLE channel declaration section

channel channelDecl1; . . . ; channelDecln

defines a bCANDLE network.
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Each channel declared in a CANDLE channel declaration is modelled by its
own distinct bCANDLE channel, whose attributes are constructed as follows:

Static attributes In constructing the static attributes of a channel, we need to
identify the message set M , the priority ordering ≺ and the transmission
latency function δ. The message set and priority ordering are constructed
from the CANDLE declaration of the channel and the declaration of the
message data types, e.g. the declarations

type command is (req, rel)

channel k : (ok.unit, node.command)

define a message set

M = {ok.uvalue, node.req, node.rel}

and a priority ordering

ok ≺ node.

The construction of the transmission latency function δ depends not only
on the CANDLE channel and data declarations, but also on the char-
acteristics of the physical communication links to which the channels
are mapped by the system architecture. For example, assume that k

is mapped to a CAN bus operating at 5 × 105bit/s, in which the accep-
tance test coincides with the leading edge of bit ACK0 (see Figure 1.2).
Assume also that 1 unit of duration = 1µsecs. Then, the transmission
latency function is as follows:

δ units of duration
ok.uvalue node.req node.rel

δlb 70 86 86
δub 86 106 106
δlB 24 24 24
δuB 24 24 24

Here, the calculation of δ assumes CAN packets of 0 data bytes for ok

messages and 1 data byte for node messages. As an illustration of the
calculation, consider δub(node.req). In a CAN packet with 1 data byte,
there are 43 bits from SOF up to, but not including, ACK0. A stuff bit is
inserted after every 5 consecutive transmitted bits of the same value. Bit
stuffing occurs from SOF up to, but not including, the CRC delimiter.
The pattern of transmitted bits containing the maximum number of stuff
bits is of the form

00000[1]1111[0]0000[1]1111[0] . . .

where the inserted stuff bits are shown in brackets. So, in the example,
there are at most b41/4c = 10 stuff bits, and thus, at most 43 + 10 = 53
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transmitted bits, before the acceptance test of a node.req packet. At a
data rate of 5× 105bit/s, 53 bits are transmitted in 106µsecs. The other
values for δ are calculated similarly. Notice that it is only coincidence
that δub(ok.uvalue) = δlb(node.req). It just happens that the maximum
number of stuff bits for a CAN packet containing 0 data bytes is 8 bits,
just the same as the number of extra bits in a CAN packet containing 1
data byte and no stuff bits.

Dynamic attributes The dynamic attributes of a channel are its status and
its pending message queue. The initial status of a channel is defined to
be FREE and the initial pending message queue is empty.

6.4.2 Behaviour

A bCANDLE process term is constructed from the behaviour section of a
CANDLE program as described below. The translation of a CANDLE be-
haviour depends upon the semantic function S which gives the meaning of
SDML statements (§6.3.6). This is required to define the results of executing
an assignment statement or procedure call. A semantic function is similarly
required to give a meaning to CANDLE expressions. Let Expression denote
the set of CANDLE expressions. For a CANDLE program, let Var be the set
of data variables and V the set of data values. Let Valuation =̂ Var → V be
the set of valuations. Then,

E : Expression → Valuation → V

is the semantic function which gives a meaning to CANDLE expressions, and

E [[e]]val denotes the value of the expression e under the valuation val.
Now, the translation from a CANDLE program to a bCANDLE model can

be given inductively, as follows.

Null and Idle statements

Both null and idle leave the data state unchanged. The difference is that
null terminates immediately whereas idle never terminates. They have direct
counterparts in bCANDLE:

• [[null]] =̂ null

• [[idle]] =̂ idle

Send and Receive statements

Each communication, snd(k , i .e) and rcv(k , i .x ), requires some computation
time both before and after it, not only to evaluate the expression e in the case
of snd, but perhaps also to configure a communication controller or modify the
process status; the particular details depend upon the execution environment,
which must be analysed in order to calculate the required execution bounds.

Let pre snd (resp. post snd) denote the bounds on the execution time
needed before (resp. after) the completion of the snd operation. Let pre rcv
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and post rcv denote the corresponding bounds for the rcv operation. Then,
the snd and rcv operations are modelled as follows:

• [[snd(k , i .e)]] =̂ [ω : pre snd ] ; k !i .x ; [post snd ],
where x is a system variable allocated to hold the value of the expression
e, and ω is a new operation symbol defined by:

operation(ω) =̂
{(val, val′) ∈ Valuation × Valuation | val′ = val[x := E [[e]]val]}

• [[rcv(k , i .x )]] =̂ [pre rcv ] ; k?i .x ; [post rcv ]

Elapse statement

The implementation of the elapse statement requires access to a timer ser-
vice provided by the execution environment. It is assumed that some time-
consuming operations are required both before and after the requested delay.
What operations are needed, and how much time they consume, is determined
by the particular implementation, and may include: calling a timer service rou-
tine, configuring a hardware timer, rescheduling a process after a delay expiry,
and so on. In addition, the duration of the implemented delay may only ap-
proximate the requested delay. The model of the elapse statement seeks to
account for such implementation details.

Let pre timer (resp. post timer) denote the bounds on the computation
time required before (resp. after) a request to use a timer service. Let approx T
denote the bounds on the actual delay delivered by a request for a delay of T
time units. Then, the elapse statement is modelled as follows:

• [[elapse(T )]] =̂ [pre timer ] ; [approx T ] ; [post timer ]

Assignment and Procedure Call

An assignment statement of the form x := e, where x is a variable whose type
is denoted by type id , is treated as syntactic sugar for a procedure call:

assign type id(x , e)

which is assumed to have the declaration

procedure assign type id(out type id , in type id)

The translation of an assignment statement is then given by the translation of
its corresponding procedure call, as explained below.

A procedure call has the form:

P(e1, . . . , en)

where P is the name of the procedure and each ei is an expression denoting an
actual parameter of P . It is assumed that all parameters are evaluated before
the procedure executes. Let t lb

i (resp. tub
i ) denote the lower bound (resp. upper
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bound) on the time required to complete the evaluation of ei . Let t lb(P) (resp.
tub(P)) denote the lower bound (resp. upper bound) on the time required to
execute the procedure P once all its parameters have been evaluated. Then,
the translation of P(e1, . . . , en) is given by:

• [[P(e1, . . . , en)]] =̂ [ω : t lb, tub],
in which ω is a new operation symbol defined by:

operation(ω) =̂
{(val, val′) ∈ Valuation × Valuation | val′ ∈ S [[P(e1, . . . , en)]]val}

where t lb =̂ t lb(P) + Σn
i=1t

lb
i and tub =̂ tub(P) + Σn

i=1t
ub
i .

If statement

The if statement has the form:

if e1 7→ s1, . . . , en−1 7→ sn−1, true 7→ sn end if

where each ei is a boolean expression and each si is a statement. The imple-
mentation of the if statement evaluates each expression ei in turn and executes
the corresponding statement si of the first expression whose value is true.

• [[if e1 7→ s1, . . . , en 7→ sn end if ]] =̂
[t lb

1 , t
ub
1 ] ; (γ1 → [[s1]] + γ1 → [[if e2 7→ s2, . . . , en 7→ sn end if]]),

where t lb
1 (resp. tub

1 ) denotes the lower bound (resp. upper bound) on the
time required to complete the evaluation of e1 and, for 1 ≤ i ≤ n, γi and
γi are new predicate symbols defined by:

predicate(γi) =̂ {val ∈ Valuation | E [[ei ]]val = true},

and

predicate(γi) =̂ {val ∈ Valuation | E [[ei ]]val = false}.

• [[if true 7→ s end if]] =̂ [[s]].

Select statement

Consider a select statement of the form:

select :: g1 ; s1 . . . :: gn ; sn end select

where each gi is either a rcv statement or an elapse statement. The statement
gi acts as a guard to entry of the ith alternative in the select statement. Notice
that the translation of an individual guard statement g has the form

[[g ]] = [pre g ] ; β ; [post g ],

where, [pre g ] is either [pre rcv ] or [pre timer ], β is either k?i .x or [approx T ],
and [post g ] is either [post rcv ] or [post timer ]. However, there is a variety
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of different ways in which a set of guards can be implemented when used in
a select statement. Clearly, some computation is required to configure at
least one communication request or delay before one of the select guards
can be executed. However, when several communications and delays must be
configured, an implementation has several degrees of freedom, including:

• the order in which the configurations are completed;

• whether all configurations must be completed before one of the select

alternatives can begin execution.

The translation given below assumes that before a select alternative can be
chosen:

• at least one configuration has been completed, giving a minimum set up
time

t lb = min{t lb
i | 1 ≤ i ≤ n},

• possibly, all configurations have been completed, giving a maximum set
up time

tub = Σn
i=1t

ub
i ,

where [[gi ]] = [t lb
i , t

ub
i ] ; βi ; [post gi ];

The translation of the select statement is then:

• [[select :: g1 ; s1 . . . :: gn ; sn end select]] =̂
[t lb, tub] ;

(β1 ; [post g1] ; [[s1]] + β2 ; [post g2] ; [[s2]] + · · · + βn ; [post gn ] ; [[sn ]]),
where [[gi ]] = [t lb

i , t
ub
i ] ; βi ; [post gi ], t lb = min{t lb

i | 1 ≤ i ≤ n} and
tub = Σn

i=1t
ub
i .

Of course, it is possible to modify this model to accommodate more elaborate
assumptions about the implementation, and this may lead to a tightening of
the bounds which are derived using the weak assumptions given here.

Now consider an extended select statement of the form:

select :: g1 ; s1 . . . :: gn ; sn in s end select

It is translated in a similar way. The difference is that execution of the state-
ment s is started immediately on entry to the extended select statement and
continues until termination or until interrupted by the execution of one of the
guards gi . This gives the following translation:

• [[select :: g1 ; s1 . . . :: gn ; sn in s end select]] =̂
[t lb, tub] ;

([[s]] [>β1 ; [post g1] ; [[s1]]+β2 ; [post g2] ; [[s2]]+ · · ·+βn ; [post gn ] ; [[sn ]]),
where [[gi ]] = [t lb

i , t
ub
i ] ; βi ; [post gi ], t lb = min{t lb

i | 1 ≤ i ≤ n} and
tub = Σn

i=1t
ub
i .
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Trap and Exit statements

The trap statement has the form:

trap :: x1 => s1 . . . :: xn => sn in s end trap

where each xi is an exception identifier and each si is a statement.
There are several possible implementations of the trap statement. In con-

structing the corresponding bCANDLE model, it is assumed that an exception
is represented by a record variable of type

{|raised : boolean; value : sometype|},
where for an exception x , x .raised is assigned the value true when the excep-
tion x is raised, and otherwise has the value false. x .value holds the value
assigned to x when it was last raised, and can be referred to in expressions
using the notation ?x .
The translation of the trap statement is then given by

• [[trap :: x1 => s1 . . . :: xn => sn in s end trap]] =̂
[[s]] [> (γ1 → [ω1 : t lb, tub] ; [[s1]]

+γ2 → [ω2 : t lb, tub] ; [[s2]]
+ · · · + γn → [ωn : t lb, tub] ; [[sn ]]) ,

where each γi is a new predicate symbol which is true just when the corre-
sponding variable xi .raised is true, i.e.

predicate(γi ) =̂ {val ∈ Valuation | val(xi .raised) = true}.

Each ωi is a new operation symbol which simply resets xi .raised, i.e.

operation(ωi ) =̂
{(val, val′) ∈ Valuation × Valuation | val′ = val[xi .raised := false]}

and t lb (resp. tub) gives the lower bound (resp. upper bound) on the time
required to clear an exception and transfer control to its handler.

The exit statement has the form exit x (e), where x is an exception iden-
tifier and e is an expression denoting the value to be associated with x . The
translation of the exit statement is defined simply to set x .raised and bind
the value of e to x .value:

• [[exit x (e)]] =̂ [ω : t lb, tub] ; idle,
where ω is a new operation symbol defined by

operation(ω) =̂
{(val, val′) ∈ Valuation × Valuation | val′ = val[x .raised := true,

x .value := E [[e]]val]},

and t lb (resp. tub) gives the lower bound (resp. upper bound) on the time
required to evaluate e and raise the exception.
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Loop statement

The basic loop statement has the form:

loop do s end loop

where s is a statement. It is translated simply using a recursive bCANDLE

process:

• [[loop do s end loop]] =̂ rec LOOP . [[s]] ; LOOP ,
where LOOP is a new process variable.

The named loop statement has the form:

loop loopName do s end loop

where loopName is the name of the loop and s is a statement. It is treated as
syntactic sugar for a trap statement which encloses a basic loop statement, as
follows:

• [[loop loopName do s end loop ]] =̂
[[trap :: x loopName => null in loop do s end loop end trap]],

where x loopName is a new exception of type unit.

Every statement

The everyT statement is just syntactic sugar for a loop which executes its body
every T time units. It is translated as follows:

• [[every T do s end every]] =̂
[[loop do select :: elapse T in s ; idle end select end loop]]

Notice that execution of the statement s ; idle begins immediately on enter-
ing the every statement. It is assumed that s terminates and idle is started
before the elapse of T time units. After T time units, idle is interrupted and
the loop repeats.

Sequential and Parallel Composition

The sequential and parallel composition statements of CANDLE have direct
counterparts in bCANDLE and their translation is simple:

• [[S1 ; S2]] =̂ [[S1]] ; [[S2]]

• [[S1 | S2]] =̂ [[S1]] | [[S2]]

6.4.3 An example

The flow regulator example is used to illustrate the translation from CANDLE

to bCANDLE. The CANDLE program for the example is reviewed in Fig-
ure 6.2. In the following, we consider how each component of the bCANDLE

model (P ,N ,D) is derived from the CANDLE program.
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module FlowRegulator_E is

type

flow_reading

procedure

ReadSensor(out flow_reading);

AdjustValve(flow_reading)

channel

k : (flow.flow_reading)

var

x : flow_reading;

y : flow_reading

behaviour

every Msecs(10) do

ReadSensor(x);

snd(k,flow.x)

end every

|

loop do

rcv(k,flow.y);

AdjustValve(y)

end loop

end module

data FlowRegulator_E is

type flow_reading is unit size Bytes(1)

procedure ReadSensor(out r : flow_reading) is

bounds Usecs(85) ; Usecs(90)

begin

r := any flow_reading

end

procedure AdjustValve(in r : flow_reading) is

bounds Usecs(200) ; Usecs(300)

end data

Fig. 6.2: Flow Regulator in CANDLE

Data Environment

The data environment D = (type, operation , predicate, val) is constructed as
follows.

• There are two program variables x and y, each of type flow reading.
The data module declares flow reading to be a synonym for the unit

type. So we have

type(x) = type(y) = {uvalue}

• There are two procedure calls in the behaviour section of the CANDLE

module: ReadSensor(x) and AdjustValve(y). So, the set of operation
symbols is

Ω = {ReadSensorx ,AdjustValvey},

where the definition of ReadSensorx is derived from its data module dec-
laration and gives the effect of applying the operation in any data envi-



6. CANDLE: Modelling and Analysis in Practice 174

ronment:

operation(ReadSensorx ) =̂
{

{x 7→ ⊥, y 7→ ⊥} 7→ {x 7→ uvalue, y 7→ ⊥},
{x 7→ ⊥, y 7→ uvalue} 7→ {x 7→ uvalue, y 7→ uvalue},
{x 7→ uvalue, y 7→ ⊥} 7→ {x 7→ uvalue, y 7→ ⊥},
{x 7→ uvalue, y 7→ uvalue} 7→ {x 7→ uvalue, y 7→ uvalue}

}

operation(AdjustValvey ) is defined similarly (with the roles of x and y
reversed).

• The set Γ of predicate symbols is empty, so

predicate =̂ ∅.

• Finally the initial valuation maps each variable to the undefined value

val =̂ {x 7→ ⊥, y 7→ ⊥}.

Network

In constructing the static attributes of the network, we need to identify, for
each channel, the message set M , the priority ordering ≺ and the transmis-
sion latency function δ. The message set is constructed from the declarations
of the channel and the message data types. In the example, the declaration
of channel k comprises a single message template flow.flow reading, where
flow reading is a synonym for the unit data type. So the message set M
for k is the singleton {flow.uvalue}. Since there is only a single message in
M , the priority relation ≺ is just the empty set ∅. In order to construct the
transmission latency function δ for the channel k, it is necessary to know some
details of the physical channel which implements it. Let us assume as before
that k is implemented by a CAN bus operating at 5 × 105bit/s. Then, the
transmission latency function is as follows:

δ units of duration
flow.uvalue

δlb 70
δub 86
δlB 24
δuB 24

All other assumptions are as in §6.4.1.

Behaviour

The process term P , modelling the system behaviour, is derived from the
behaviour section of the CANDLE program. In our example, this comprises
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the parallel composition of two processes: every Msecs(10) . . . and loop do

rcv(k, flow.y) . . . . We illustrate by considering the translation

[[every Msecs(10) do

ReadSensor(x);

snd(k, flow.x)

end every]]

In the first translation step, the every statement is unpacked, giving

[[loop do select :: elapse Msecs(10) in

ReadSensor(x); snd(k,flow.x) ; idle end loop]]

Next, the loop statement is translated into a recursion

rec LOOP .[[select :: elapse Msecs(10) in

ReadSensor(x); snd(k, flow.x); idle]] ; LOOP

The translation of the select statement depends upon the translation of
elapse Msecs(10), which is given by [pre timer ]; [approx 10000]; [post timer ].
As before, we assume that 1 unit of duration is equivalent to 1µsec. We now
have

rec LOOP .[pre timer ];
([[ReadSensor(x); snd(k, flow.x); idle]]
[>[approx 10000] ; [post timer ]) ; LOOP

The final steps translate the remaining simple statements, giving the result

rec LOOP .[pre timer ];
([ReadSensorx : 85, 90] ; [pre snd ] ; k !flow .x ; [post snd ] ; idle
[>[approx 10000] ; [post timer ]) ; LOOP

where all that remains is to ‘plug in’ the bounds denoted by pre timer , approx 10000,
post timer , pre snd and post snd .

The remaining process is translated similarly, giving

rec LOOP .[pre rcv ] ; k?flow .y ; [post rcv ] ; [AdjustValvey : 200, 300] ; LOOP

6.5 The CANDLE Development Environment

6.5.1 Overview

The development of a high-integrity embedded system requires the use of a
wide variety of software tools, including: text editors, compilers, simulators,
model-checkers, theorem-provers and test case generators. A computer-aided
development environment is required which

• is open and extensible, making it possible to combine different tools to
provide implementation and validation functions as required;
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System
Generation

Model
Generation

System
Execution and Testing

Symbolic
Execution and Analysis

.sa .can .ds

.ps

.exe .exe

User commands for all tools are entered using a graphical
user interface to the development environment which checks
consistency.

.ds Specification files for the data state and sequential opera-
tions of each system process. Model-based specification lan-
guages such as B, Z or VDM can be used. Sequential code
is developed from specifications using a standard method-
ology, e.g. refinement. Abstract data model is extracted
from the same specifications for system verification.

.can CANDLE program modules: contain a description of the
dynamic behaviour of processes including communication
and synchronisation. Declare broadcast channels, including
message identifiers and their priorities.

.sa System architecture files: map processes to processors, com-
munication channels to CAN buses, etc.; describe the prop-
erties of system components, e.g. processors, CAN buses
and hardware timers in order to allow the prediction of tim-
ing properties.

.ps Property specification file: a specification of system prop-
erties using a logic such as TCTL, a specification TA, or
a regular expression. Can be used by model generator to
optimise model for verification of specific properties.

Fig. 6.3: CANDLE Development Environment: Architecture

• ensures that all tools have a consistent view of a development project, so
that the principle of ‘What You Verify Is What You Execute’ is respected.

The CANDLE development environment is intended to meet these requirements
in supporting the development of CAN-based embedded systems. It allows the
integration of a variety of tools for implementation and validation. A key aspect
of the environment in maintaining consistency and promoting usability is its use
of the same set of inputs for system implementation and model generation, as
shown in Figure 6.3. It is intended that system implementation in CANDLE

will follow a similar path to ESTEREL [Ber98b] and AORTA [Bra95]. This will
be the subject of a future research project and is not considered further here.
The remainder of this section is devoted to the model generation and analysis
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.code

.ps
CAN2BCAN

BCAN2C
SDML2C

C Compiler

profounder exhibitorgeneratorxsimulator evaluator

OPEN/CAESAR

CANDLE

LIBRARIES

KRONOS
UPPAAL
IF
...

.sa .can .ds

Module Expansion

CANDLE-OPEN

Code Timing
Analysis

Network
Analysis

Data
Abstraction

.c

.out

.code Source and object code files of implemented system; pro-
duced by system generation component and required by
model generation component for code timing analysis.

.c Source code of the LTS module; combined with CANDLE

and OPEN/CÆSAR libraries to produce executable analy-
sis program.

.out Output of symbolic analysis: Reachability graph, Yes/No
answer, Timed/Untimed diagnostic trace etc.

Fig. 6.4: CANDLE Validation Environment: Architecture

components of the validation environment.

6.5.2 Validation Environment

The validation environment of CANDLE consists of components for model gen-
eration and analysis. The core of the validation environment is organised ac-
cording to the principles of the OPEN/CÆSAR architecture [Gar98]. This ap-
proach means that the CADP tool box [FGK+96] and OPEN/KRONOS [Tri98]
are immediately applicable to CANDLE programs; it also provides a very flexi-
ble mechanism for extending the validation environment in the future. The ar-
chitecture of the CANDLE validation environment is illustrated in Figure 6.4.
Its main features are discussed in more detail below.
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6.5.3 The OPEN/CÆSAR Architecture

The design of the OPEN/CÆSAR architecture evolved during the course of
projects to extend the functionality of the CÆSAR compiler [Gar92], a transla-
tor from LOTOS programs to labelled transition systems. Functional extensions
included tools for random execution, interactive simulation, behavioural equiv-
alence checking, temporal logic model-checking and test case generation. The
desire to allow these tools to be used with languages other than LOTOS led to
a design which encapsulates all language-dependent aspects. The final design
offers a flexible and practical basis for the development of an open, extensible
validation environment.

Encapsulation of language dependencies is achieved in OPEN/CÆSAR by
requiring that any source program is seen by the validation environment as
simply a labelled transition system which implements a well-defined application
programming interface (API). The LTS API provides access to a representation
of states and labels, and primitive operations to compute the transition relation
(i.e., the initial state and successors of a given state). Knowledge of a source
program by validation tools is restricted to the LTS API, which is implemented
by a C program generated by an OPEN/CÆSAR-compliant compiler for the
source language.

6.5.4 Model Generation

CANDLE-OPEN is the OPEN/CÆSAR-compliant compiler for CANDLE (Fig-
ure 6.4). It translates a CANDLE program into a C program which implements
the OPEN/CÆSAR LTS API, generating the CANDLE program’s simulation
graph on demand. CANDLE-OPEN defines interfaces which integrate a num-
ber of loosely coupled components. These components are described briefly
below.

• Code Timing Analysis: This component provides a connection to a
program for calculating execution time bounds on sequential code frag-
ments. This can be used to obtain bounds for the data operations and
expressions of the CANDLE program by analysing their implementations.
Access to the source and object code files of the implementation is pro-
vided by the system generation module (Figure 6.3). The process map
and processor models are given by the system architecture files. So far,
we have experimented with the use of the CINDERELLA code timing
analysis tool for 68000 micro-processors [LMW95]. Other code timing
tools remain to be investigated.

In the case that the implementation of some data operation is not avail-
able for analysis, as will be the case quite often in the early stages of a
design, execution time bounds are obtained from the bounds clause of
the SDML model of the operation. The user can configure the develop-
ment environment to obtain the bounds on each data operation either by
analysis of its implementation, by examination of its bounds clause, or
by user input via the keyboard. This allows the design to be explored in
whatever way is judged to be most convenient or interesting.
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• Network Analysis: This component constructs the static network model,
which defines for each communication channel, its message set, message
priorities and message transmission latencies. The message set and mes-
sage priorities of each channel are stated explicitly in the CANDLE pro-
gram. Calculation of transmission latencies depends upon the character-
istics of the physical communication links implementing the channels and
upon the size of message packets.

• Data Abstraction: This component constructs an abstract data model
from a data specification. The abstract data model is described in SDML

and currently is generated by the user. The integration into CANDLE-OPEN
of a tool such as InVeSt [BLO98] to support the construction of the ab-
stract model is envisaged.

• Module Expansion: This component constructs a ‘flattened’ CANDLE

program by in-line expansion of all module instantiations.

• CAN2BCAN, BCAN2C, SDML2C: These components combine to
generate the C program which implements the LTS module. CAN2BCAN
translates the flattened CANDLE program to its equivalent bCANDLE

representation, using the techniques described in §6.4. BCAN2C gen-
erates the C functions to implement the algorithm described in §5.2 to
compute the transition relation of the simulation graph. SDML2C gen-
erates C functions to implement the data operations and predicates. As
an alternative to generating code to construct the simulation graph on-
the-fly, the user can choose to construct a TA in KRONOS .tg format,
for later analysis. Although not yet implemented, other outputs which
could be easily generated include UPPAAL .ta format [LPY97] and IF
code [BFG+99b]. These may give access to a wider range of analyses and
optimisations.

Optimisation

A variety of optimisations can be applied at several stages of the model gen-
eration process, in order to combat state explosion. For example, variable
analysis [BFG99a, SS98] can improve the quality of C functions generated by
BCAN2C and SDML2C, by identifying dead variables which can be consis-
tently reset. In addition, it seems possible to take advantage of program slicing
techniques [CDH+00, HDZ00, LS98], which can reduce the size of a model by
removing those parts of it which cannot affect the outcome of the analysis of
some specified property. Application of such optimisations remains to be inves-
tigated.

6.5.5 Model Exploration

A variety of tools can be applied to the exploration of generated LTS models.
Many are provided by exploration modules from CADP or OPEN/KRONOS;
the generator module has been developed specifically for CANDLE, in order
to experiment with the MA state storage technique described in Chapter 5.
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module Boiler is

behaviour

WaterLevel[Msecs(5)/WL_READY_PERIOD,

Msecs(10)/WL_NORMAL_PERIOD, w1/w]

|

Pump[Msecs(5)/PUMP_READY_PERIOD]

|

Controller[Msecs(15)/SENSOR_TIMEDOUT, w2/w]

end module

Fig. 6.5: The Steam Boiler module

• xsimulator is an interactive simulator allowing step-by-step exploration
of the simulation graph in a window-based environment.

• evaluator implements local and global algorithms for on-the-fly model-
checking of branching µ-calculus.

• exhibitor performs a depth-first or breadth-first search for a finite un-
timed trail matching an input regular expression.

• profounder is an OPEN/KRONOS module which implements an algo-
rithm to test for language emptiness of the simulation graph and a spec-
ification TBA.

• generator builds the simulation graph of the system, using one of several
user-specified state storage mechanisms.

6.6 An example

In this section, we give an example of the use of CANDLE in modelling a
slightly larger control system. The example is a modified version of the steam
boiler control problem [ABL96].

6.6.1 The CANDLE program

We consider a system comprising a steam boiler, a pump, and a water-level
sensor. We assume that the pump controls the flow of water into the boiler and
that steam is drawn off via a steam outlet pipe. The water-level sensor gives
the level of water in the tank. The purpose of the control program is to ensure
that the water level is maintained within minimum and maximum bounds, or
to shutdown the system if failure of the water-level sensor is detected.

The main program module is Boiler , shown in Figure 6.5. It shows that the
system is structured as the parallel composition of three processes: WaterLevel ,
Pump and Controller , which are described in Figures 6.6 and 6.7. Figure 6.8
shows the data module for the system.

Each process executes three phases: local initialisation, ready and normal.

• In the local initialisation phase, a process resets its devices and initialises
its local data. It is assumed that the system is started with the water
level in the boiler between low and high, and the pump off .
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module WaterLevel is

const

WL_READY_PERIOD : duration;

WL_NORMAL_PERIOD : duration

type

water_level

procedure

InitSensor(out water_level);

ReadSensor(out water_level)

channel

k : (shutdown.unit,

level.water_level,

start.unit,

sensor_ready.unit)

var

w : water_level

behaviour

InitSensor(w);

select

:: rcv(k,start)

in

every WL_READY_PERIOD do

snd(k,sensor_ready)

end every

end select;

select

:: rcv(k,shutdown) ; idle

in

every WL_NORMAL_PERIOD do

ReadSensor(w);

snd(k,level.w)

end every

end select

end module

module Pump is

const

PUMP_READY_PERIOD : duration

type

pump_status

procedure

InitPump(out pump_status);

PumpOn(out pump_status);

PumpOff(out pump_status)

channel

k : (shutdown.unit,

pump_off.unit,

pump_on.unit,

start.unit,

pump_ready.unit)

var

p : pump_status

behaviour

InitPump(p);

select

:: rcv(k,start)

in

every PUMP_READY_PERIOD do

snd(k,pump_ready)

end every

end select;

select

:: rcv(k,shutdown); PumpOff(p); idle

in

loop do

select

:: rcv(k,pump_on) ; PumpOn(p)

:: rcv(k,pump_off) ; PumpOff(p)

end select

end loop

end select

end module

(a) (b)

Fig. 6.6: Water-level Sensor and Pump modules

• In the ready phase, the WaterLevel and Pump processes repeatedly trans-
mit a ready message until they receive a start message from the Controller .
The start message is broadcast by Controller after it has received a ready
message from both Waterlevel and Pump.

• In normal operation, WaterLevel , repeatedly reads the water-level sensor,
updating a data variable with the current sensor value before broadcast-
ing the value on channel k . The Controller process receives the sensor
value from channel k and stores it in a data variable. IsLowLevel and
IsHighLevel are boolean functions on the data state, used to test the
value of the water level variable. If the level is too high, a message is sent
to turn off the pump, if the level is too low, a message is sent to turn on
the pump, otherwise the pump is left in its current state. If Controller
does not receive a water-level message before timing out, it is assumed
that the water-level sensor is faulty and a shutdown message is broadcast
which brings the operation of the system to a halt with the pump turned
off. We assume that the system is then made safe manually.
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module Controller is

const

SENSOR_TIMEDOUT : duration

type

water_level

procedure

InitController(out water_level)

function

IsHighLevel(water_level) : boolean;

IsLowLevel(water_level) : boolean

channel

k : (shutdown.unit, pumpoff.unit, pumpon.unit,

level.water_level, start.unit, pump_ready.unit,

sensor_ready.unit)

var

w : water_level

behaviour

InitController(w);

select

:: rcv(k,sensor_ready); rcv(k,pump_ready)

:: rcv(k,pump_ready); rcv(k,sensor_ready)

end select;

snd(k,start);

loop do

select

:: rcv(k,level.w);

if IsHighLevel(w) then snd(k,pump_off)

elsif IsLowLevel(w) then snd (k,pump_on)

end if

:: elapse SENSOR_TIMEDOUT; snd(k,shutdown); idle

end select

end loop

end module

Fig. 6.7: Controller module

6.6.2 The bCANDLE model

The CANDLE program for the steam boiler can be translated into a bCANDLE

model, as shown in Figure 6.9.
We have made a number of simplifying assumptions in order to clarify the

relationship between the program and its model:

• Each process is allocated to its own dedicated processor.

• All processors run at the same speed, where 1 clock cycle is assumed to
be 1µsec, which is assumed to be equivalent to 1 unit of duration.

• The bus implementing channel k runs at 106bit/s, i.e. 1 bit is transmitted
in 1µsec.

• The bounds on all pre snd , post snd , pre rcv and post rcv operations
are 0, and so these operations have been omitted from the model.

The description of process behaviour in Figure 6.9 has been derived using
the translation method described earlier, with the assumptions stated above and
with some small modifications to aid readability: recursion is expressed using
the equational style, rather than by using explicit rec terms; ‘extra’ equational
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data Boiler is

type water_level is {low, ok, high}

type pump_status is {on, off}

procedure

InitSensor(out wl : water_level) is bounds Cycles(300); Cycles(350)

begin wl := ok end ;

InitPump(out p : pump_status) is bounds Cycles(250); Cycles(1500)

begin p := off end ;

InitController(out wl : water_level) is bounds Cycles(400); Cycles(500)

begin wl := ok end;

PumpOn(out p : pump_status) is bounds Cycles(200); Cycles(300)

begin p := on end;

PumpOff(out p : pump_status) is bounds Cycles(200); Cycles(300)

begin p := off end

ReadSensor(out wl : water_level) is bounds Cycles(50); Cycles(75)

begin wl := any water_level end

function

IsHighLevel(wl : water_level) : boolean is bounds Cycles(10); Cycles(15)

begin return (wl = high) end;

IsLowLevel(wl : water_level) : boolean is bounds Cycles(10); Cycles(15)

begin return (wl = low) end

end data

Fig. 6.8: Steam Boiler Data Module

definitions have been introduced to emphasise the initialisation, ready and nor-
mal phases of process behaviour.

The network section of the model is derived from the CANDLE channel

declarations and the assumptions about the underlying communication mech-
anism. It defines the network structure – in this case, simply a single channel
– giving the priority of messages and the transmission latency function. Notice
that all messages, except level messages, consist only of a message identifier,
whereas level messages contain a water level value in addition to the message
identifier, and hence have a greater pre-acceptance latency.

The data section declares the names of the data variables used in the model.
The bCANDLE data environment is constructed from the SDML data module
in a straightforward way, as described in §6.4.3. We do not elaborate the data
environment here.

6.6.3 Analysis of the model

The CANDLE-OPEN environment can be used to generate the simulation
graph of the bCANDLE model, and to explore it interactively, or exhaustively,
to ensure that it exhibits desirable behaviour. In this case, generator produces
the graph in less than a second on a 233MHz Pentium II, running RedHat Linux
5.2. The output
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WaterLevel | Pump | Controller

where

WaterLevel = [InitSensor: 300,350]; WL_Ready; WL_Normal

WL_Ready = WL_Ready0 [> k?start._

WL_Ready0 = k!sensor_ready._ ; idle

[> [WL_ReadyPeriod: 5000,5100] ; WL_Ready0

WL_Normal = (WL_Normal0 [> k?shutdown._ ; idle)

WL_Normal0 =

[ReadWaterLevel:50,75]; k!level.w1 ; idle

[>

[WL_NormalPeriod:10000,10250]; WL_Normal0

Pump = [InitPump:250,1500]; P_Ready; P_Normal

P_Ready = P_Ready0 [> k?start._

P_Ready0 = k!pump_ready._ ; idle

[> [P_ReadyPeriod: 5000,5100] ; P_Ready0

P_Normal = (P_Normal0 [> k?shutdown._; [PumpOff:200,300] ; idle)

P_Normal0 = (k?pumpon._ ; [PumpOn:200,300] +

k?pumpoff._ ; [PumpOff:200,300]);

P_Normal0

Controller = [InitController:400,500]; C_Ready; C_Normal

C_Ready = (k?sensor_ready._ ; k?pump_ready._ +

k?pump_ready._ ; k?sensor_ready._);

k!start._

C_Normal = k?level.w2;

[TestHighLevel: 10,15];

(HighLevel -> k!pumpoff._ +

notHighLevel ->

[TestLowLevel: 10,15];

(LowLevel -> k!pumpon._ +

notLowLevel -> null));

C_Normal

+

[SensorTimedOut: 15000,15500]; k!shutdown._ ; idle

network

/* Pri dlb dub dlB duB */

k = (shutdown : 1, 35, 43, 11, 13;

pumpoff : 2, 35, 43, 11, 13;

pumpon : 3, 35, 43, 11, 13;

level : 4, 43, 53, 11, 13;

start : 5, 35, 43, 11, 13;

pump_ready : 6, 35, 43, 11, 13;

sensor_ready : 7, 35, 43, 11, 13

)

data w1, w2, p

Fig. 6.9: A bCANDLE model for a simple boiler controller
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generator: Release 1.1.1 Thu Oct 27 22:03:15 GMT 2000

Simulation Graph: Boiler

#states 1963

#trans 2661

#matrices 1123

shows the number of states and transitions in the simulation graph. The number
of matrices indicates the number of distinct clock zones explored. It is worth
noting that the simulation graph for the boiler control system is very much
smaller than the equivalent TA generated from the bCANDLE model using the
standard techniques of Chapter 4. That TA has more than 500,000 locations,
exceeding the capacity of model checkers such as KRONOS. This is a clear
indication of the benefit of generating the simulation graph ‘on-the-fly’. The
application of clock activity reduction to the example reduces the number of
clocks required from 12 to 5. This also has a significant effect on the size of the
model, reducing the number of states in the simulation graph from > 115, 000
to 1963.

The simulation graph can be checked for a variety of properties, which
increase confidence in the correctness of the control system. A number of simple
properties, which the graph satisfies, are discussed below.

Notation. Notice that the properties are expressed using predicates over the
state variables, rather than using a propositional encoding as required by KRO-
NOS. The status and pending message queue of a channel k are denoted k .status
and k .queue, respectively. See §3.4.1 for an explanation of other channel nota-
tion.

1. Basic ‘sanity’ checks:

(a) The model is non-Zeno.
init ⇒ ∀2 ∃3=1 true

(b) Whenever the channel is not busy, and there are messages pending
transmission, the channel begins transmitting a message immedi-
ately.

∀2((k .status = FREE ∧ k .queue 6= 〈〉) ⇒ ∀3=0 k .status =
PRE)

In fact, it can be shown that any persistent bCANDLE model satisfies
these properties. However, failure to satisfy either property alerts the
user to a fundamental error in the construction of the model.

2. Properties of the communication system:

(a) A pending message is never overwritten, i.e. once a message is
queued, it will be transmitted before another message with the same
identifier is queued.

∀2(enable(k !i . ) ⇒ ∀ j ∈ dom(k .queue) . k .queue[j ] 6= i . )

(b) When any message transmission reaches the acceptance point, some
process will be able to accept the message.

∀2(enable(k↑m) ⇒ ∀3=0 enable(k?m))
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(c) The time between acceptance tests for any type of message is at least
t .

∀2(enable(k↑ i . ) ⇒ ∀3=0(∀2<t ¬ enable(k↑ i . )))

Of course, there are many systems for which these properties are not
required. But, very often, the failure of one or more of them is an indica-
tion of a flaw in the implementation of the control system. For example,
property (c) is helpful in checking the behaviour of a multi-tasking node
implemented with round robin scheduling and polled communication, as
the value of t for any channel and message type should not be less than
the quantum of the scheduler, otherwise messages may be lost.

3. Basic response properties:

(a) If a low water level is detected, then the pump will be on within
1msec.

∀2(w1 = low ⇒ ∀3≤1000(p = on))

(b) If a high water level is detected, then the pump will be off within
1msec.

∀2(w1 = high ⇒ ∀3≤1000(p = off ))

4. Further response properties:

(a) If it is not possible for the Controller to receive a level message
immediately, then, within 16msecs, it can receive such a message, or
it will transmit the shutdown message.

∀2(¬ enable(k?level . ) ⇒
∀3≤16000(enable(k?level . ) ∨ enable(k !shutdown)))

(b) If transmission of the shutdown message is enabled, then, within
1msec, the pump is turned off and the system idles.

∀2(enable(k !shutdown) ⇒ ∀3≤1000(p = off ∧ ∀2(¬ enable( ))))

Verification of some control system properties is most conveniently under-
taken by an analysis of the control system model in conjunction with a model
of its environment. For example, to verify that the boiler control system al-
ways maintains the level of water within acceptable bounds, a model of the
boiler can be constructed, including aspects of its behaviour such as: the rate
of flow of water from the pump; the response lag of the pump to a control
command; the rate of flow of steam from the boiler, and so on. Henzinger and
Wong-Toi [HWT96] describe a hybrid automata model of a steam boiler, which
could form the basis of a suitable environmental model for composition with
our model of the boiler control system. As usual, the limiting factor is the
state explosion problem. A benefit of our approach is that it is possible to take
advantage of a minimisation tool, such as minim [Tri98], in order to reduce the
size of the control system model before composing it with an environmental
model.
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6.7 Conclusions and Related Work

6.7.1 Conclusions

We have defined a programming language for broadcasting embedded control
systems. The language has many of the constructs which one would expect
in a modern, real-time language [BW01], and it has been shown that the pro-
cess language bCANDLE is expressive enough to give a semantics to these
constructs in a natural way. We have described a development and validation
environment which integrates a variety of languages and tools. In particular,
the environment supports the translation of CANDLE programs to TA, en-
abling the application of tools such as KRONOS and CADP for validation.
Future work will include further development of the language, in particular to
improve the module system, and also further development of the tool support.
Automation of the development of executable abstract data models from B or
VDM specifications is also of interest. An important focus of future work will be
the efficient composition of control system models with environmental models
in order to allow validation of a wider range of system properties. Finally, more
experience is needed of applying both language and tools to a wider range of
case studies, so that the techniques can be tested on examples which are more
realistic in terms of their size and complexity than those which are described
in this chapter.

6.7.2 Related Work

ESTEREL [BG92] is the classical example of a language which supports both
the development and validation of embedded systems. It represents the syn-
chronous approach which has been so effective in the uniprocessor domain.
Interest in the application of model-checking to asynchronous systems is com-
paratively recent. One of the first tools for untimed systems is VeriSoft [God97]
which supports stateless search in the verification of C programs. Holzmann and
Smith [HS99] describe an approach in which a SPIN [Hol97] model is extracted
from an annotated C program, allowing the checking of properties specified in
LTL. Related approaches to the verification of Java programs are described by
Havelund and Pressburger [HP00] and Corbett et al. [CDH+00]. The latter
work builds upon experience gained in applying similar techniques to the ver-
ification of Ada programs [DPC98]. Huch [Huc99] has developed a dedicated
model checker for a subset of Erlang – an untyped higher-order concurrent
functional language with asynchronous communication primitives. All of these
approaches employ techniques to construct an abstract model using only the
source code of the program to be verified. Our approach enforces a clear sepa-
ration of control algorithms and sequential data operations, and assumes that
abstract specifications are available for the latter. We believe that these speci-
fications will prove to be a better starting point for the construction of efficient
models.

In the case of timed systems, the work of Corbett [Cor96] is the most am-
bitious in its choice of input language. He describes a method for translating
(a subset of) Ada programs into hybrid automata, so enabling the checking of
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a variety of temporal properties using the HyTech [HHWT97] model checker.
His models can accommodate fixed priority pre-emptive scheduling of concur-
rent tasks but he considers only uniprocessor systems, deferring distributed
systems to further work. Hune [Hun99] considers the problem of using UP-
PAAL [LPY97] for verifying programs executing on the LEGO RCX brick.
The LEGO RCX brick is part of the LEGO MINDSTORMS range of LEGO
toys. It contains a micro-processor and is equipped with three sensors, three
actuators and an infra-red port for communication to enable program down-
loading. Hune describes a translation from the RCX assembly language into
a network of TA described using the UPPAAL input language. Again, the
work is restricted to uniprocessor systems; the scheduling policy is round-robin.
Iversen et al. [IKL+00] also consider the same problem, but allow the use of
a more expressive programming language, NQC (Not Quite C), which is a re-
stricted form of C. Dierks [Die01] introduces PLC-automata with a view to
developing and analysing real-time systems implemented with programmable
logic controllers. He describes a method for translating PLC-automata to timed
automata so that KRONOS and UPPAAL can be used for the analysis.

This brief survey of related work is evidence of the recent interest in apply-
ing model-checking to the analysis of embedded system implementations. We
believe that the work described in this chapter is the first to present a gen-
eral method for real-time model-checking of distributed, high-level programs
implemented on an industry-standard, broadcast network.



7. CONCLUSIONS AND FURTHER

WORK

7.1 Conclusions

Formal methods can be useful for gaining confidence in the correct behaviour of
systems. Expressive languages and automatic analysis techniques are needed to
promote the acceptance of formal methods in industry. For embedded systems,
such languages and techniques should allow the expression of, and reasoning
about, real-time properties. For a large class of embedded systems, broad-
cast communication is an implementation primitive and should be accommo-
dated comfortably within a formal method intended for application in that
domain. This dissertation has proposed a formal language which is claimed to
satisfy these requirements, at least partially. Our approach has been to define
a language in which process behaviour can be described using a few primitive
operators, including operators for the sending and receiving of broadcast mes-
sages. The communication semantics is an abstraction of the CAN protocol
and models both message priority and communication latency. This language
has proved suitable as a bridge between the high-level expression of embedded
system models and their low-level representation in a form which is appropriate
for the application of a wide variety of analysis techniques. We have demon-
strated how the most efficient of current methods can be applied to models
expressed in our language. In particular, we have given an algorithm for on-
the-fly generation of the simulation graph, including clock activity reduction.
This provides a foundation for the application of methods such as reachabil-
ity analysis, model checking, TBA emptiness, minimisation and time-abstract
bisimulation, as implemented in tools such as KRONOS, UPPAAL and CADP.
In addition, we have demonstrated the use of minimised automata for compact
state space representation. Minimised automata have been employed in the
model checking tool SPIN for the analysis of untimed, asynchronous models.
They are applied here, for the first time, in the analysis of timed system models
and we give experimental data to confirm their utility.

7.2 Further Work

The expressiveness of our language is restricted in several ways. For example,
we do not allow control to depend explicitly on the time of event occurrences,
nor is it possible for an interrupted task to resume execution from its point of
interruption. Both features are available in ET-LOTOS [Her98], for example.
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More seriously, we cannot model multi-tasking systems in which the CPU re-
source is allocated to tasks using a more sophisticated scheduling policy than
round-robin, e.g., a fixed priority preemptive policy. It also remains to consider
the modelling of the occurrence of faults in broadcast message transmission.

It is not difficult to see how some of these additional features could be ac-
commodated, e.g. an explicit scheduler could be added to the execution model,
as could a ‘daemon’ for fault injection. The problem is to cope with the ex-
tra complexity and its effect on state explosion. The addition of such features
almost certainly leads to a hybrid system model for which many verification
problems become either undecidable or, at best, even more resource demand-
ing [HKPV95].

Even without adding to the complexity of the language, further work is
needed on state space explosion. Some obvious lines of inquiry are suggested at
the end of Chapter 5, where work on variable ordering and live variable analysis
has the potential to bring reductions in the size of the discrete state space. Also
of interest is investigation of the use of partial order reduction and symbolic
clock constraint representations. In particular, research is needed to compare
the performance of DDD’s with that of MA’s when applied to typical asyn-
chronous broadcast systems, especially when considered in combination with
reduction techniques such as partial order and inclusion/convex hull abstrac-
tions, where the use of MA’s seems to offer a prima facie advantage.

One can imagine that more use can be made of the high-level, algebraic
structure apparent in the models, to transform them into more space-efficient,
equivalent representations. This should be possible at all levels, from the high-
level CANDLE model, through the bCANDLE and net representations, to the
timed automaton. Undoubtedly, compositional techniques will be required in
order to extend a fully automated approach to industrial-scale systems.

Finally, further work remains on a number of pragmatic issues affecting
industrial usage of the technology: at a high-level, the issue of requirements
capture and their relationship to formal specifications; at a low-level, the formal
specification and implementation of an execution environment which satisfies
the abstraction assumptions of Chapter 3.

Some progress has been made but much remains to be done before it will
be possible to realise Pnueli’s vision of a seamless development process [Pnu99]
for broadcasting embedded control systems.
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A. FLOW REGULATOR TA

A.1 KRONOS .tg

Format
The KRONOS .tg format adopts the following conven-

tions in the presentation of a TA. Each location is identi-

fied by a unique integer introduced by the keyword state.

The location invariant is shown following the keyword

invar and outgoing edges following the keyword trans.

Each edge is of the form guard ⇒ label ; reset H; goto

target, where ⇒, reset and goto are keywords, guard is

a clock condition, label is the edge label, H is a set of

clocks and target is an integer identifying the target lo-

cation of the edge. The bCANDLE translator introduces

further conventions with respect to the structure of la-

bels: communications of the form k!i.x and k?i.x are la-

belled SND k i v and RCV k i v, respectively, where k and

i are shown as their internal integer representations and

v is the value of x in the current data environment. Sim-

ilarly, the network action labels, k; i.v, k↑ i.v, i.v ;k,

and k↓ are shown as FP k i v, PA k i v, AP k, and PF k,

respectively. Operation names are prefixed with OP and

predicate names with PRED .

A.2 Flow Regulator TA
#states 48

#trans 146

#clocks 5

H1 H2 H3 H4 H5

state: 0

invar: H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 1

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 0

state: 1

invar: H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 2

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 0

state: 2

invar: H1 <= 0 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 3

true => FP_0_0_0; RESET{ H1 H2 }; goto 4

state: 3

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 5

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 3

true => FP_0_0_0; RESET{ H1 H2 }; goto 6

state: 4

invar: H2 <= 53 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 6

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 7

state: 5

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 2

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 3

true => FP_0_0_0; RESET{ H1 H2 }; goto 8

state: 6

invar: H2 <= 53 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 8

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 6

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 9

state: 7

invar: H1 <= 0 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 9

true => RCV_0_0_0; RESET{ H1 H4 }; goto 10

state: 8

invar: H2 <= 53 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 11

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 6

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 12

state: 9

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 12

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 9

true => RCV_0_0_0; RESET{ H1 H4 }; goto 13

state: 10

invar: H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 13

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 7

true => AP_0; RESET{ H1 H2 }; goto 14

state: 11

invar: H2 <= 53 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 15

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 16

state: 12

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 16

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 9

true => RCV_0_0_0; RESET{ H1 H4 }; goto 17

state: 13

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 17

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 13

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 9

true => AP_0; RESET{ H1 H2 }; goto 18

state: 14

invar: H2 <= 12 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 18

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 19

H2 >= 10 => PF_0; RESET{ H1 }; goto 20

state: 15

invar: H2 <= 53 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 21

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 15

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 22

state: 16

invar: H1 <= 0 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 22

true => RCV_0_0_0; RESET{ H1 H4 }; goto 23

state: 17

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 23

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 13

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 12
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true => AP_0; RESET{ H1 H2 }; goto 24

state: 18

invar: H2 <= 12 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 24

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 18

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 25

H2 >= 10 => PF_0; RESET{ H1 }; goto 26

state: 19

invar: H2 <= 12 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 25

H2 >= 10 => PF_0; RESET{ H1 }; goto 27

state: 20

invar: H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 26

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 27

state: 21

invar: H2 <= 53 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 11

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 15

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 28

state: 22

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 28

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 22

true => RCV_0_0_0; RESET{ H1 H4 }; goto 29

state: 23

invar: H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 29

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 16

true => AP_0; RESET{ H1 H2 }; goto 30

state: 24

invar: H2 <= 12 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 30

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 18

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 31

H2 >= 10 => PF_0; RESET{ H1 }; goto 32

state: 25

invar: H2 <= 12 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 31

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 25

H2 >= 10 => PF_0; RESET{ H1 }; goto 0

state: 26

invar: H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 32

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 26

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 0

state: 27

invar: H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 0

state: 28

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 16

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 22

true => RCV_0_0_0; RESET{ H1 H4 }; goto 33

state: 29

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 33

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 29

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 22

true => AP_0; RESET{ H1 H2 }; goto 34

state: 30

invar: H2 <= 12 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 34

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 35

H2 >= 10 => PF_0; RESET{ H1 }; goto 36

state: 31

invar: H2 <= 12 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 35

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 25

H2 >= 10 => PF_0; RESET{ H1 }; goto 1

state: 32

invar: H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 36

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 26

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 1

state: 33

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 23

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 29

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 28

true => AP_0; RESET{ H1 H2 }; goto 37

state: 34

invar: H2 <= 12 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 37

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 34

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 38

H2 >= 10 => PF_0; RESET{ H1 }; goto 39

state: 35

invar: H2 <= 12 AND H5 <= 10250

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 38

H2 >= 10 => PF_0; RESET{ H1 }; goto 2

state: 36

invar: H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 39

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 2

true => FP_0_0_0; RESET{ H1 H2 }; goto 40

state: 37

invar: H2 <= 12 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 30

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 34

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 41

H2 >= 10 => PF_0; RESET{ H1 }; goto 42

state: 38

invar: H2 <= 12 AND H3 <= 90 AND H5 <= 10250

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 41

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 38

H2 >= 10 => PF_0; RESET{ H1 }; goto 3

state: 39

invar: H1 <= 0 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 42

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 39

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 3

true => FP_0_0_0; RESET{ H1 H2 }; goto 43

state: 40

invar: H2 <= 53 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 43

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 4

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 10

state: 41

invar: H2 <= 12 AND H1 <= 0 AND H5 <= 10250

trans:

true => SND_0_0_0; RESET{ H1 }; goto 35

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 38

H2 >= 10 => PF_0; RESET{ H1 }; goto 5

state: 42

invar: H1 <= 0 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 36

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 39

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 5

true => FP_0_0_0; RESET{ H1 H2 }; goto 44
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state: 43

invar: H2 <= 53 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 44

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 43

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 6

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 13

state: 44

invar: H2 <= 53 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 45

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 43

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 8

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 17

state: 45

invar: H2 <= 53 AND H5 <= 10250 AND H4 <= 300

trans:

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 46

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 11

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 23

state: 46

invar: H2 <= 53 AND H3 <= 90 AND H5 <= 10250 AND H4 <= 300

trans:

H3 >= 85 => OP_ReadSensor; RESET{ H1 }; goto 47

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 46

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 15

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 29

state: 47

invar: H2 <= 53 AND H1 <= 0 AND H5 <= 10250 AND H4 <= 300

trans:

true => SND_0_0_0; RESET{ H1 }; goto 45

H5 >= 10000 => OP_PERIOD; RESET{ H1 H3 H5 }; goto 46

H4 >= 200 => OP_AdjustValve; RESET{ H1 }; goto 21

H2 >= 43 => PA_0_0_0; RESET{ H1 }; goto 33



B. PROOFS

B.1 Correctness of the translation

This section is concerned with demonstrating the correctness of the translation
of bCANDLE system models to timed automata. Its purpose is to prove the
validity of Proposition 4.2, which we state again here.

Proposition B.1 Let B̂ ∈ ̂bCAN be a clocked bCANDLE system and B =̂
unclk(B̂) the corresponding unclocked system. Let G(B̂) be the TA given by
Definition 4.15. Then, the transition systems of G(B̂) and B are strongly equiv-
alent.

T [[ G(B̂)]] ↔ T [[B ]]

The proof of the proposition depends upon demonstrating the existence
of a strong bisimulation relation between T [[ G(B̂)]] and T [[B ]]. A number of
auxiliary definitions and lemmas are required.

Firstly, we define the set of states which can occur in the transition system
of a clocked bCANDLE system, where it is required that in any such state
(B̂ ,v), the clock valuation v satisfies the location invariant I (B̂ ).

Definition B.1 Let H be a set of clock variables and B̂ ∈ ̂bCAN a clocked
bCANDLE system whose clocks are taken from the set H, i.e. clk(B̂) ⊆ H.
It is assumed that H also contains the distinguished urgent clock hu , i.e.
hu ∈ H \ clk(B̂). We denote by Σ ̂bCAN ,H

the states of the transition system of

the TA for B̂ , i.e.
Σ ̂bCAN ,H

=̂ {(B̂ ,v) | B̂ ∈ ̂bCAN ∧ v ∈ RH ∧ v |= I (B̂)} 2

Now, a clocked bCANDLE system B̂ is related to an equivalent bCANDLE

system B , by the notion of aging :

Definition B.2 (Aging) Let H be a set of clock variables. Let B̂ ∈ ̂bCAN be
a clocked bCANDLE system where clk(B̂) ⊆ H. Then, age : Σ ̂bCAN ,H

→ bCAN
is a function giving an aged bCANDLE system, where

age((P̂ , N̂ ,D),v) =̂ (age(P̂ ,v), age(N̂ ,v),D).
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The function age : P̂roc × RH → Proc is defined by

age(k !i .x ,v) =̂ k !i .x

age(k?i .x ,v) =̂ k?i .x

age([ω : t1, t2]
h ,v) =̂ [ω : t1 −. v(h), t2 −. v(h)]

age(γ → P̂ ,v) =̂ γ → unclk(P̂)

age(P̂ ; Q̂ ,v) =̂ age(P̂ ,v) ; unclk(Q̂)

age(P̂ ./ Q̂ ,v) =̂ age(P̂ ,v) ./ age(Q̂ ,v), ./ ∈ {+, [>, |}

age(rec X .P̂ ,v) =̂ age(P̂ [recX .P̂/X ],v)

As usual, we rely on the fact that P̂ is guarded to ensure that age(P̂ ,v) is
well-defined.

The function age : ̂NetworkK × RH → NetworkK is defined by

age(N̂ ,v) =̂ {k 7→ age(N̂k ,v) | k ∈ K}

where

age((↓, u)h ,v) =̂ (↓, u)

age((
t1,t2
; m, u)h ,v) =̂ (

t1−
.
v(h),t2−

.
v(h)

; m, u)

age((↑m, u)h ,v) =̂ (↑m, u)

age((m
t1,t2
; , u)h ,v) =̂ (m

t1−
.
v(h),t2−

.
v(h)

; , u)

2

The main proof makes use of the standard technique of demonstrating a
strong bisimulation up to ↔. It is necessary to adapt the usual notion of
strong bisimulation up to ↔ to ≈-bisimulation.

Definition B.3 (Strong bisimulation up to ↔) Let S = (Σ, σI ,L,−→) be
a LTS. Let ≈ be an equivalence relation on Σ. A binary relation R ⊆ Σ × Σ is
a strong ≈-bisimulation up to ↔ if σ1Rσ2 implies

1. σ1 ≈ σ2

2. for all λ ∈ L, if σ1
λ

−→σ′1, then σ2
λ

−→σ′2 for some σ′2 such that σ′1 ↔ R ↔
σ′2

3. for all λ ∈ L, if σ2
λ

−→σ′2, then σ1
λ

−→σ′1 for some σ′1 such that σ′1 ↔ R ↔
σ′2 2

Proposition B.2 If R is a strong ≈-bisimulation up to ↔, then ↔ R ↔ is a
strong ≈-bisimulation.
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Proof As the proof of Lemma 4.5 in Milner [Mil89]. 2

In order to apply the notion of strong bisimulation in the context of the
main proof, it is necessary to extend ≈ND -bisimulation to clocked states and to
pairs of clocked and unclocked states. This requires us to revise our definition
of context equivalence.

Definition B.4 (Context Equivalence) Let σ1, σ2 ∈ bCAN ∪ Σ ̂bCAN ,H
be

either clocked or unclocked bCANDLE system states. We denote by σ1 ≈ND σ2

that σ1 is context equivalent to σ2, and define ≈ND⊆ bCAN ∪Σ ̂bCAN ,H
×bCAN ∪

Σ ̂bCAN ,H
by requiring that σ1 ≈ND σ2 iff one of the following conditions is

satisfied:

1. σ1 = (P1,N1,D1) ∈ bCAN , σ2 = (P2,N2,D2) ∈ bCAN , N1 = N2 and
D1 = D2

2. σ1 = (P ,N ,D) ∈ bCAN , σ2 = ((P̂ , N̂ , D̂),v) ∈ Σ ̂bCAN ,H
, N = age(N̂ ,v)

and D = D̂

3. as (2) with the roles of σ1 and σ2 reversed

4. σ1 = ((P̂1, N̂1, D̂1),v1) ∈ Σ ̂bCAN ,H
, σ2 = ((P̂2, N̂2, D̂2),v2) ∈ Σ ̂bCAN ,H

,

age(N̂1,v1) = age(N̂2,v2) and D̂1 = D̂2. 2

Proposition B.3 ≈ND is an equivalence relation.

Proof Immediate from Definition B.4. 2

Strong equivalence of both clocked and unclocked bCANDLE states is de-
fined simply as ≈ND -bisimilarity, and related definitions are obtained in the
obvious way.

Remark B.1 Notice that Propositions 3.9 and 3.10 are valid when extended
to clocked systems, i.e. ↔ is a congruence for the operators of P̂roc and the

equational laws are sound for ̂bCAN .

Now, we turn our attention to addressing a technical point concerning the
use of X. We wish to obtain a compositional proof and to avoid the need to
reason about the persistence of systems. In order to achieve this, it is conve-
nient to treat X as a (distinguished) process term and to introduce locations
(X, N̂ , D̂) corresponding to systems (X,N ,D). We silently extend bCAN and

̂bCAN to contain these additional systems. The definition of age is extended by
age(X,v) =̂ X, and the invariant function I by I (X, N̂ , D̂) =̂ hu ≤ 0 ∧ I (N̂ ).
Now, as currently defined, a system (X,N ,D) has no transitions. But if a clock

valuation v satisfies I (X, N̂ , D̂), then ((X, N̂ , D̂),v)
0

−→((X, N̂ , D̂),v). To re-
solve this discrepancy, we assume that the semantics of bCANDLE is extended
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with a rule

P-X
(X,N ,D)

0
−→(X,N ,D)

Now it is clear that ((X, N̂ , D̂),v[hu := 0]) is strongly bisimilar to age((X, N̂ , D̂),
v[hu := 0]), each state having only a 0-transition to itself.

The following proposition asserts that X really is a distinguished process
term.

Proposition B.4 For any bCANDLE system (P ,N ,D) ∈ bCAN ,

if (P ,N ,D) ↔ (X,N ,D), then P ≡ X .

Proof A standard induction. Intuitively, we can see from the semantics that
X is the only process which does not allow either the immediate execution of
some discrete action or the passage of time by some strictly positive amount.

2

We now introduce several lemmas which will be useful in the main proof.
Each lemma is introduced by a few words of informal explanation.

The first two lemmas simply assert that network behaviour is both indepen-
dently determined and non-intrusive in both clocked and unclocked systems.
Network behaviour is independently determined in the sense that each new
network state is uniquely determined by a current network state and a network
action, irrespective of the system context. It is non-intrusive in that the process
and data components of a system state are unchanged by network transitions.

Lemma B.1 Let (P1,N ,D1), (P
′
1,N

′,D ′
1), (P2,N ,D2) and (P ′

2,N
′′,D ′

2) be
bCANDLE system states in bCAN . Let λ ∈ An ∪ R be a network transition
label. Then, if

(P1,N ,D1)
λ

−→(P ′
1,N

′,D ′
1) and (P2,N ,D2)

λ
−→(P ′

2,N
′′,D ′

2)

we have

1. the new network state is uniquely determined, i.e. N ′ = N ′′, and

2. the data component is unchanged, i.e. D1 = D ′
1.

Additionally, for λ ∈ An, we have

3. the process component is unchanged, i.e. P1 ≡ P ′
1.

Proof It is clear from the network rules (Definition 3.15) that a new network
state is uniquely determined by the current state and the network action. When
included in a system context, the rules for basic systems and data-guarded sys-
tems show that the new network state is unaffected by the process and data
components, which are themselves unchanged by the network transition in the
case of a network action (only the data component being unchanged in the case
of a strictly positive delay action). This property is preserved by all the process
operators (Definition 3.25). 2
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Lemma B.2 Let B̂ ∈ ̂bCAN be a clocked bCANDLE system and G(B̂) =
(Q , qI ,H,E , I ) its corresponding TA. Let (P̂1, N̂ , D̂1), (P̂

′
1, N̂

′, D̂ ′
1), (P̂2, N̂ , D̂2)

and (P̂ ′
2, N̂

′′, D̂ ′
2) be locations in Q. Let λn ∈ An be a network action label.

Then, if E contains edges

(P̂1, N̂ , D̂1)
ψ1,λn,H1
−→ (P̂ ′

1, N̂
′, D̂ ′

1) and (P̂2, N̂ , D̂2)
ψ2,λn,H2
−→ (P̂ ′

2, N̂
′′, D̂ ′

2)

we have

1. the new network state is uniquely determined, i.e. N̂ ′ = N̂ ′′,

2. the process and data components are unchanged, i.e. P̂1 = P̂ ′
1 and D̂1 =

D̂ ′
1, and

3. the clock guards and reset sets are identical, i.e. ψ1 ≡ ψ2 and H1 = H2.

Proof Similar to Lemma B.1, using Definition 4.15. 2

The next three lemmas are concerned with the effect of clock resets on the
satisfaction of location invariants.

If a clock valuation satisfies a location invariant, then any clock valuation
derived from it by resetting some clocks also satisfies the location invariant.

Lemma B.3 Let H be a set of clock variables, H ⊆ H and v ∈ RH a H-
valuation. Let B̂ ∈ ̂bCAN be a clocked bCANDLE system, where clk(B̂) ⊆ H.
If v |= I (B̂), then v[H := 0] |= I (B̂).

Proof Induction on the number of steps in the expansion of I (B̂), using Def-
inition 4.16. 2

If a clock valuation satisfies the invariant of a process term in some data
environment, then any clock valuation derived from it by resetting some clocks
satisfies the invariant in any compatible data environment, provided the urgent
clock hu is reset.

Lemma B.4 Let H be a set of clock variables and v ∈ RH a H-valuation. Let
P̂ ∈ P̂roc be a clocked process term, where clk(P̂) ⊆ H. Let H ⊆ H with hu ∈ H.
Then, if there is some data environment D̂ ∈ DataEnv such that v |= I (P̂ , D̂),
it is the case that for all D̂ ′ ∈ DataEnv, such that D̂ ′ and D̂ are compatible, we
have v[H := 0] |= I (P̂ , D̂ ′).

Proof By induction on the number of steps in the expansion of I (P̂ , D̂), using
Definition 4.16. 2

If the initial clocks of a process term, together with the urgent clock hu , are
all reset in some clock valuation, then the resulting clock valuation satisfies the
process term invariant.

Lemma B.5 Let H be a set of clock variables, v ∈ RH a H-valuation and
P̂ ∈ P̂roc a clocked term, where clk(P̂) ⊆ H. Let H ⊆ H. Then, if iclk(P̂) ∪
{hu} ⊆ H, it is the case that v[H := 0] |= I (P̂ , D̂), in any data environment D̂.
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Proof By induction on the number of steps in the expansion of I (P̂ , D̂), using
Definitions 4.7 and 4.16. 2

The remaining lemmas are concerned with properties of the age function.
Only the values of network clocks can affect the result of aging a network,

and only the values of initial clocks can affect the result of aging a process term.

Lemma B.6 Let H be a set of clock variables and v,v′ ∈ RH be H-valuations.

1. Let N̂ ∈ ̂Network be a clocked network. Then,

(age(N̂ ,v) = N ∧ ∀ h ∈ clk(N̂ ) . v′(h) = v(h)) ⇒ age(N̂ ,v′) = N

2. Let P̂ ∈ P̂roc be a clocked process term. Then,

(age(P̂ ,v) = P ∧ ∀ h ∈ iclk(P̂) . v′(h) = v(h)) ⇒ age(P̂ ,v′) = P

Proof Immediate from Definition B.2 for N̂ and by induction on the number
of steps in the expansion of age(P̂ ,v) for P̂ . 2

If the initial clocks of a process term are all reset in some clock valuation,
then the aging of the term by that clock valuation produces a term which is
equivalent to the corresponding unclocked term.

Lemma B.7 Let H be a set of clock variables, v ∈ RH a H-valuation and
P̂ ∈ P̂roc a clocked term, where clk(P̂) ⊆ H. Let H ⊆ H. If iclk(P̂) ⊆ H, then
age(P̂ ,v[H := 0]) ↔ unclk(P̂).

Proof By induction on the number of steps in the expansion of age(P̂ ,v[H :=
0]) using Definitions 4.7, 4.8 and B.2. Intuitively, we can see that for all terms,
except those containing terms of the form rec X .P̂ , age and unclk give results
which are syntactically identical. In the case of recX .P̂ , unclk simply removes
the clock variables, whereas age unwinds the recursion until there is no leading
rec , and then removes the clock variables. In either case, it is clear that the
results are equivalent. 2

If a clock valuation can be increased by time t , while satisfying the invariant
of a clocked network, then the corresponding aged network allows the passage
of time t .

Lemma B.8 Let H be a set of clock variables. Let K be a finite set of channel
identifiers and N̂ ∈ ̂NetworkK a network over K , where clk(N̂ ) ⊆ H. Let
v ∈ RH be a H-valuation and t ∈ R. Then,

v + t |= I (N̂ ) ⇒ t ≤ tcp(age(N̂ ,v))

Proof We assume that v+t |= I (N̂ ) and show that ∀ k ∈ K . t ≤ tcp(age(N̂k ,v)).
The result follows directly from Definition 3.12 and N.5. The proof proceeds

by case analysis on channel status. We illustrate for the case N̂k = (
t1,t2
; m, u)h .
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1. Case: N̂k = (
t1,t2
; m, u)h .

By Definition B.2, age(N̂k ,v) = (
t1−

.
v(h),t2−

.
v(h)

; m, u). By Definition 3.12,

tcp(
t1−

.
v(h),t2−

.
v(h)

; m, u) = t2 −. v(h). But, if v + t |= I (N̂k ), then v + t |=
if t2 ∈ N then h ≤ t2 else tt, and

t2 ∈ N ⇒ v + t |= h ≤ t2

⇒ v(h) + t ≤ t2, by Definition of |=

⇒ t ≤ t2 − v(h)

⇒ t ≤ tcp(age(N̂k ,v))

t2 = ∞ ⇒ t2 −. v(h) = ∞

⇒ t ≤ tcp(age(N̂k ,v))

The other cases are similar. 2

Main Proof

It is now possible to state the proof of Proposition B.1.
Let T [[G+(B̂)]] = (Σ1, σ

I
1 ,L1,−→1) and T [[B ]] = (Σ2, σ

I
2 ,L2,−→2). We

show that the relation R is a ≈ND -bisimulation up to ↔, where

R =̂ {((B̂ ,v), age(B̂ ,v)) | (B̂ ,v) ∈ Σ ̂bCAN ,H
}

and σI1 ↔ R ↔ σI2 . The proof of the proposition follows from Remark 4.2 and
the transitivity of ↔.

To show that R is a ≈ND -bisimulation up to ↔, we reason as follows. Let
σ̂Rσ.

1. It is clear from Definitions B.2, B.4 and the definition of R, that σ̂ ≈ND σ.

2. It is enough to show that for all λ ∈ L, if σ = (P ,N ,D)
λ

−→(P ′,N ′,D ′),

then σ̂ = ((P̂ , N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′), and there exist P̂ ′′ ↔ P̂ ′

and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). The proof is by
induction on the number of steps in the calculation of age(σ̂). We proceed
by case analysis on the structure of σ̂.

(a) Case: σ̂ ≡ ((k !i .x , N̂ , D̂),v).
So σ ≡ (k !i .x ,N ,D), where age(N̂ ,v) = N and D̂ = D .

There are three sub-cases to consider:

i. Snd.1: λ = k !i .v , σ′ ≡ (X,N ′,D), where Nk = (s, u), v = D .x ,
and N ′ = N [k := (s, u " i .v)].
In this case, since age(N̂ ,v) = N , then N̂k = (ŝ , û)h , where
age(ŝ , û)h ,v) = (s, u) which implies, by Definition B.2, that
u = û. And, since D̂ = D , then D̂ .x = v . So by E Snd.1,

there is an edge (k !i .x , N̂ , D̂)
tt,k !i .v ,{hu}

−→ (X, N̂ ′, D̂), where N̂ ′ =
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N̂ [k := (ŝ , u " i .v)h ]. Clearly, v |= tt and, since v |= I (N̂ ),
then, by Definition 4.16, v[hu := 0] |= I (N̂ ′), so by TA.1, there

is a transition ((k !i .x , N̂ , D̂),v)
k !i .v
−→((X, N̂ ′, D̂),v[hu := 0]). It

is easy to see that age(N̂ ′,v[hu := 0]) = N ′, and, therefore,
((X, N̂ ′, D̂),v[hu := 0])R(X,N ′,D).

ii. Snd.2: λ ∈ An, σ
′ ≡ (k !i .x ,N ′,D).

There are four sub-cases to consider: one for each of the ways
in which the network transition can be derived.

A. N.1: similar to the following case.

B. N.2: λ = k↑m, Nk = (
0,t
;m , u), N ′ = N [k := (↑m , u)]

In this case, since age(N̂ ,v) = N , then, by Definition B.2,

N̂k = (
t1,t2
; m , u)h and v(h) ≥ t1. So by E Snd.2 and

E N.2, there is an edge (k !i .x , N̂ , D̂)
h≥t1,k↑m ,{hu}

−→ (k !i .x , N̂ ′, D̂),
where N̂ ′ = N̂ [k := (↑m, u)h ]. Clearly, v |= h ≥ t1, and
v[hu := 0] |= I (k !i .x , N̂ ′, D̂), so by TA.1, there is a transi-

tion ((k !i .x , N̂ , D̂),v)
k↑m
−→((k !i .x , N̂ ′, D̂),v[hu := 0]). Obvi-

ously, ((k !i .x , N̂ ′, D̂),v[hu := 0])R(k !i .x ,N ′,D).

C. N.3: similar to the previous case.

D. N.4: similar to the previous case.

iii. Snd.3: λ = 0, σ′ ≡ (k !i .x ,N ,D).

Since v |= I (k !i .x , N̂ , D̂), then by TA.2, ((k !i .x , N̂ , D̂),v)
0

−→
((k !i .x , N̂ , D̂),v). We already have that ((k !i .x , N̂ , D̂),v)R(k !i .x ,N ,D).

(b) Case: σ̂ ≡ ((k?i .x , N̂ , D̂),v): similar to the previous case.

(c) Case: σ̂ ≡ (([ω : t1, t2]
h , N̂ , D̂),v): similar to the previous case.

(d) Case: σ̂ ≡ ((γ → P , N̂ , D̂),v): similar to the following case.

(e) Case: σ̂ ≡ ((P̂ ; Q̂ , N̂ , D̂),v)
So, since σ̂Rσ, we have σ ≡ (P ; Q ,N ,D), where P = age(P̂ ,v),
Q = unclk(Q̂), N = age(N̂ ,v), and D = D̂ .

There are two sub-cases to consider:

i. Seq.1: λ ∈ Ap ∪ An ∪ R, σ′ ≡ (P ′ ; Q ,N ′,D ′), P ′ ≡| X

By Seq.1, (P ,N ,D)
λ

−→(P ′,N ′,D ′), where P ′ ≡| X, and so, by

i.h., ((P̂ , N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′), and there exist P̂ ′′ ↔ P̂ ′

and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). There
are now two sub-cases to consider:

A. λ ∈ Ap ∪ An: So ((P̂ , N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′) must be

derived by TA.1 from an edge (P̂ , N̂ , D̂)
ψ,λ,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′). Now,

by E Seq.1, there must be an edge (P̂ ; Q̂ , N̂ , D̂)
ψ,λ,H
−→ (P̂ ′ ;

Q̂ , N̂ ′, D̂ ′). We already have v |= ψ and, since v[H := 0] |=
(P̂ ′, N̂ ′, D̂ ′), we also have v[H := 0] |= I (P̂ ′ ; Q̂ , N̂ ′, D̂ ′),
by Definition 4.16. So, by TA.1, there is a transition ((P̂ ;

Q̂ , N̂ , D̂),v)
λ

−→((P̂ ′; Q̂ , N̂ ′D̂ ′),v′). Since ((P̂ ′′, N̂ ′, D̂ ′),v′)R
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(P ′′,N ′,D ′), and unclk(Q̂) = Q , then ((P̂ ′′ ; Q̂ , N̂ ′, D̂ ′),v′)R
(P ′′ ; Q ,N ′,D ′). Moreover, P̂ ′′ ; Q̂ ↔ P̂ ′ ; Q̂ and P ′′ ; Q ↔
P ′ ; Q , as required.

B. λ = t ∈ R:
So ((P̂ , N̂ , D̂),v)

t
−→((P̂ ′, N̂ ′, D̂ ′),v′) must be derived by TA.2

with (P̂ ′, N̂ ′, D̂ ′) ≡ (P̂ , N̂ , D̂), v′ = v+ t , and ∀ t ′ ∈ R | t ′ ≤
t . v + t ′ |= I (P̂ , N̂ , D̂). By Definition 4.16, we have ∀ t ′ ∈
R | t ′ ≤ t . v + t ′ |= I (P̂ ; Q̂ , N̂ , D̂), and so by TA.2, there

is a transition ((P̂ ; Q̂ , N̂ , D̂),v)
t

−→((P̂ ′ ; Q̂ , N̂ , D̂),v′). From
i.h., we have P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ , D̂),v′)R
(P ′′,N ′,D ′), and so, since unclk(Q̂) = Q , we have ((P̂ ′′ ;
Q̂ , N̂ , D̂),v′)R(P ′′ ; Q ,N ′,D ′), where P̂ ′′ ; Q̂ ↔ P̂ ′ ; Q̂ and
P ′′ ; Q ↔ P ′ ; Q .

ii. Seq.2: λ = λp ∈ Ap, σ
′ ≡ (Q ,N ′,D ′)

By Seq.2, (P ,N ,D)
λp
−→(X,N ′,D ′), and so, by i.h., ((P̂ , N̂ , D̂),v)

λp
−→((P̂ ′, N̂ ′, D̂ ′),v′), where there exist P̂ ′′ ↔ P̂ ′ and P ′′ ↔ X,
such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). But, by definition of
age and Proposition B.4, we must therefore have P̂ ′′ ≡ P̂ ′ ≡
P ′′ ≡ X.

The transition ((P̂ , N̂ , D̂),v)
λp
−→((X, N̂ ′, D̂ ′),v′) must be de-

rived by TA.1 from an edge (P̂ , N̂ , D̂)
ψ,λp,H
−→ (X, N̂ ′, D̂ ′), where

v |= ψ and v′ = v[H := 0] |= I (X, N̂ ′, D̂ ′). So, by E Seq.2,

there is an edge (P̂ ; Q̂ , N̂ , D̂)
ψ,λp,H∪iclk(Q̂)

−→ (Q̂ , N̂ ′, D̂ ′). We al-
ready have v |= ψ and, by Lemmas B.3 and B.5, we have
v[H ∪ iclk(Q̂) := 0] |= (Q̂ , N̂ ′, D̂ ′). So, by TA.1, there is a tran-

sition ((P̂ ; Q̂ , N̂ , D̂),v)
λp
−→((Q̂ , N̂ ′, D̂ ′),v′′), where v′′ = v[H ∪

iclk(Q̂) := 0]. Since ((X, N̂ ′, D̂ ′),v′)R(X,N ′,D ′), then, D ′ =
D̂ ′, and, by Lemma B.6, N ′ = age(N̂ ′,v′′). Let Q̃ = age(Q̂ ,v′′).
Clearly, ((Q̂ , N̂ ′, D̂ ′),v′′)R(Q̃ ,N ′,D ′). But, Q = unclk(Q̂), and
by Lemma B.7, unclk(Q̂) ↔ Q̃ , so Q ↔ Q̃ , as required.

(f) Case: σ̂ ≡ ((P̂ + Q̂ , N̂ , D̂),v): similar to the following case.

(g) Case: σ̂ ≡ ((P̂ [> Q̂ , N̂ , D̂),v).
So, since σ̂Rσ, we have σ ≡ (P [> Q ,N ,D), where age(P̂ ,v) = P ,
age(Q̂ ,v) = Q , age(N̂ ,v) = N and D̂ = D .

There are four sub-cases to consider:

i. Int.1: λ = λp ∈ Ap, σ
′ ≡ (P ′ [>Q ,N ′,D ′), P ′ ≡| X.

By Int.1, (P ,N ,D)
λp
−→(P ′,N ′,D ′) and so, by i.h., ((P̂ , N̂ , D̂),v)

λp
−→((P̂ ′, N̂ ′, D̂ ′),v′), and there exist P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′

such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). But this transition

must be derived by TA.1 from an edge (P̂ , N̂ , D̂)
ψ,λp,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where P̂ ′ ≡| X, v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′).

So, by E Int.1, there is an edge (P̂ [> Q̂ , N̂ , D̂)
ψ,λp,H
−→ (P̂ ′ [>
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Q̂ , N̂ ′, D̂ ′). We already have v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′) and
v |= I (Q̂ , N̂ , D̂). Since the urgent clock hu is reset by every edge,
then, by Lemmas B.3 and B.4, we have v[H := 0] |= I (Q̂ , D̂ ′).
So, by Definition 4.16, we have v[H := 0] |= I (P̂ ′ [> Q̂ , N̂ ′, D̂ ′).
Moreover, v |= ψ, so by TA.1, there is a transition ((P̂ [>

Q̂ , N̂ , D̂),v)
λp
−→((P̂ ′ [> Q̂ , N̂ ′, D̂ ′),v[H := 0]).

Since P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′, then P̂ ′′ [> Q̂ ↔ P̂ ′ [> Q̂ and
P ′′ [> Q ↔ P ′ [> Q . To see that ((P̂ ′′ [> Q̂ , N̂ ′, D̂ ′),v[H :=
0])R(P ′′ [> Q ,N ′,D ′), we reason as follows. By construction of
R, P ′′ = age(P̂ ′′,v[H := 0]). Furthermore, by safety of clock
variable allocation, H ∩ iclk(Q̂) = ∅, so, by Lemma B.6, Q =
age(Q̂ ,v[H := 0]) and N ′ = age(N̂ ′,v[H := 0]). The result
follows by construction of R.

ii. Int.2: similar to previous case.

iii. Int.3: similar to previous case.

iv. Int.4: λ = λnt ∈ An ∪ R, σ′ ≡ (P ′ [>Q ′,N ′,D ′)
There are two sub-cases to consider:

A. λ = λn ∈ An:
In this case, by Lemma B.1, we have P ′ [> Q ′ ≡ P [> Q

and D ′ = D . So, by Int.4, (P ,N ,D)
λn−→(P ,N ′,D) and

(Q ,N ,D)
λn−→(Q ,N ′,D). Moreover, by i.h. and Lemma B.2,

((P̂ , N̂ , D̂),v)
λn−→((P̂ , N̂ ′, D̂),v′) and (Q̂ , N̂ , D̂),v)

λn−→
((Q̂ , N̂ ′, D̂),v′), and there exist P̂ ′′ ↔ P̂ , Q̂ ′′ ↔ Q̂ , P ′′ ↔ P
and Q ′′ ↔ Q such that ((P̂ ′′, N̂ ′, D̂),v′)R(P ′′,N ′,D) and
((Q̂ ′′, N̂ ′, D̂),v′)R(Q ′′,N ′,D).

But ((P̂ , N̂ , D̂),v)
λn−→((P̂ , N̂ ′, D̂),v′), must be derived by

TA.1 from an edge (P̂ , N̂ , D̂)
ψ,λn,H
−→ (P̂ , N̂ ′, D̂), where v |= ψ

and v′ = v[H := 0] |= I (P̂ , N̂ ′, D̂). Similarly for ((Q̂ , N̂ , D̂),v)
λn−→((Q̂ , N̂ ′, D̂),v′) — Lemma B.2 ensures that this edge

will have the same clock guard and reset set as the edge for

(P̂ , N̂ , D̂). So by E Int.4, there is an edge (P̂ [>Q̂ , N̂ , D̂)
ψ,λn ,H
−→

(P̂ [>Q̂ , N̂ ′, D̂), and, since v |= ψ and v′ |= I (P̂ [>Q̂ , N̂ ′, D̂),

there is a transition ((P̂ [>Q̂ , N̂ , D̂),v)
λn−→((P̂ [>Q̂ , N̂ ′, D̂),v′).

Clearly, by i.h. and Definition B.2, ((P̂ ′′[>Q̂ ′′, N̂ ′, D̂),v′)R(P ′′[>
Q ′′,N ′,D), where P̂ ′′ [> Q̂ ′′ ↔ P̂ [> Q̂ and P ′′ [> Q ′′ ↔
P [>Q .

B. λ = t ∈ R:
In this case, by Lemma B.1, we have D ′ = D . So, by Int.4,

(P ,N ,D)
t

−→(P ′,N ′,D) and (Q ,N ,D)
t

−→(Q ′,N ′,D). More-

over, by i.h., ((P̂ , N̂ , D̂),v)
t

−→((P̂ ′, N̂ ′, D̂ ′),v′) and (Q̂ , N̂ , D̂),v)
t

−→((Q̂ ′, N̂ ′′, D̂ ′′),v′′), and there exist P̂ ′′ ↔ P̂ , Q̂ ′′ ↔ Q̂ ,
P ′′ ↔ P and Q ′′ ↔ Q such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D)

and ((Q̂ ′′, N̂ ′′, D̂ ′′),v′′)R(Q ′′,N ′,D). But, ((P̂ , N̂ , D̂),v)
t

−→
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((P̂ , N̂ , D̂),v′), must be derived by TA.2, where (P̂ ′, N̂ ′, D̂ ′) ≡
(P̂ , N̂ , D̂), v′ = v + t and ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |=
I (P̂ , N̂ , D̂). Similarly for Q̂ . So, from Definition 4.16, it is
clear that ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |= I (P̂ [> Q̂ , N̂ , D̂), and,

therefore, by TA.2, ((P̂ [>Q̂ , N̂ , D̂),v)
t

−→((P̂ [>Q̂ , N̂ , D̂),v+
t). By i.h and construction of R, (P̂ ′′ [> Q̂ ′′, N̂ , D̂),v +
t)R(P ′′ [>Q ′′,N ′,D), where P̂ ′′ [> Q̂ ′′ ↔ P̂ [> Q̂ and P ′′ [>
Q ′′ ↔ P ′ [>Q ′.

(h) Case: σ̂ ≡ ((P̂ | Q̂ , N̂ , D̂),v): similar to the previous case.

(i) Case: σ̂ ≡ ((rec X .P̂1, N̂ , D̂),v)
So, since σ̂Rσ, we have σ ≡ (P ,N ,D), where P = age(rec X .P̂1,v),
N = age(N̂ ,v), and D = D̂ . But age(rec X .P̂1,v) =
age(P̂1[rec X .P̂1/X ],v), which is derived by a shorter calculation,

and so, if (P ,N ,D)
λ

−→(P ′,N ′,D ′), then, by i.h.,

((P̂1[rec X .P̂1/X ], N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′) and there exist P̂ ′′ ↔
P̂ ′ and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). There are
two sub-cases to consider:

i. λ ∈ Ap ∪ An:

So ((P̂1[recX .P̂1/X ], N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′) must be de-

rived by TA.1 from an edge (P̂1[rec X .P̂1/X ], N̂ , D̂)
ψ,λ,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′). But then,

by E Rec, there is an edge (rec X .P̂1, N̂ , D̂)
ψ,λ,H
−→ (P̂ ′, N̂ ′, D̂ ′),

and so, by TA.1, there is a transition ((rec X .P̂1, N̂ , D̂),v)
λ

−→
((P̂ ′, N̂ ′, D̂ ′),v′). By i.h., we have ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′),
where P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′.

ii. λ = t ∈ R:
So ((P̂1[recX .P̂1/X ], N̂ , D̂),v)

t
−→((P̂ ′, N̂ ′, D̂ ′),v′) must be de-

rived by TA.2, where (P̂ ′, N̂ ′, D̂ ′) ≡ (P̂1[rec X .P̂1/X ], N̂ , D̂),
v′ = v+t and ∀ t ′ ∈ R | t ′ ≤ t . v+t ′ |= I (P̂ ′, N̂ ′, D̂ ′). But then,
by Definition 4.16, ∀ t ′ ∈ R | t ′ ≤ t . v+t ′ |= I (rec X .P̂1, N̂

′, D̂ ′),

and so, by TA.2, there is a transition ((rec X .P̂1, N̂ , D̂),v)
t

−→
((rec X .P̂1, N̂

′, D̂ ′),v′). By i.h., we have ((P̂ ′′, N̂ ′, D̂ ′),v′)R
(P ′′,N ′,D ′), where P̂ ′′ ↔ P̂ ′ ≡ P̂1[recX .P̂1/X ] ↔ rec X .P̂1,
and P ′′ ↔ P ′, as required.

3. It is enough to show that for all λ ∈ L, if σ̂ = ((P̂ , N̂ , D̂),v)
λ

−→

((P̂ ′, N̂ ′, D̂ ′),v′), then σ = (P ,N ,D)
λ

−→(P ′,N ′,D ′), and there exist P̂ ′′ ↔
P̂ ′ and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′). Again, the
proof is by induction on the number of steps in the calculation of age(σ̂).
The proof is symmetrical to the previous case. We provide some illustra-
tive variations.

(a) Case: σ̂ ≡ (([ω : t1, t2]
h , N̂ , D̂),v)

Since σ̂Rσ, then σ ≡ (P ,N ,D), where P = age(P̂ ,v), N = age(N̂ ,v)
and D = D̂ . There are three sub-cases to consider:
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i. λ = ω ∈ Ap

A transition (([ω : t1, t2]
h , N̂ , D̂),v)

ω
−→((P̂ ′, N̂ ′, D̂ ′),v′) must be

derived by TA.1 from an edge ([ω : t1, t2]
h , N̂ , D̂)

ψ,ω,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′). Such
an edge can be constructed only by E Comp.1, so t1 ∈ N,
ψ ≡ h ≥ t1, H = {hu}, P̂ ′ = X, N̂ ′ = N̂ and D̂

ω
−→dD̂

′.
Since v |= h ≥ t1 and v |= h ≤ t2, then t2 ≥ v(h) ≥ t1
and so P = age([ω : t1, t2]

h ,v) = [ω : 0, t2 −. v(h)]. Also,
D = D̂

ω
−→dD̂

′. So by Comp.1, (P ,N ,D)
ω

−→(X,N ,D ′) where
D ′ = D̂ ′. Clearly, ((X, N̂ , D̂ ′),v′)R(X,N ,D ′).

ii. λ = λn ∈ An

A transition (([ω : t1, t2]
h , N̂ , D̂),v)

λn−→((P̂ ′, N̂ ′, D̂ ′),v′) must be

derived by TA.1 from an edge ([ω : t1, t2]
h , N̂ , D̂)

ψ,λn,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′). Such an edge
can be constructed only by E Comp.2, so P̂ ′ = P̂ , D̂ ′ = D̂ and

N̂
λn−→nN̂

′. There are four sub-cases to consider: one for each of

the ways in which N̂
λn−→nN̂

′ can be derived. We show the case
E N.4. Cases E N.1 – E N.3 can be proved similarly.

A. E N.4.
If N̂

λn−→nN̂
′ is derived by E N.4, then, for some chan-

nel identifier k ∈ K , N̂k = (m
t lb,tub

; , u)hk , N̂ ′ = N̂ [k :=
(↓, u)hk ], ψ ≡ hk ≥ t lb, λn = k↓ and H = {hu}. We have
v |= hk ≤ tub and v |= hk ≥ t lb, so t lb ≤ v(hk ) ≤ tub,

and therefore Nk = age(N̂k ,v) = (m
0,tub−. v(hk )

; , u). It fol-

lows, by N.4, that N
k↓

−→nN
′, where N ′ = N [k := (↓, u)].

So, by Comp.2, we have (P ,N ,D)
k↓
−→(P ,N ′,D). To show

that ((P̂ , N̂ ′, D̂),v′)R(P ,N ′,D), we reason as follows. Since
H = {hu}, then v′ = v[hu := 0]. Now, for the process term,
we have P = age([ω : t1, t2]

h ,v) = age([ω : t1, t2]
h ,v′), since,

by safety of clock variable allocation, h 6= hu . For the net-
work, we have N̂ ′ = N̂ [k := (↓, u)hk ]. But age(N̂ ,v) = N
and age((↓, u)hk ,v′) = (↓, u), so, by safety of clock variable
allocation, age(N̂ ′,v′) = N ′. Finally, D = D̂ . The result
follows.

iii. λ = t ∈ R

A transition (([ω : t1, t2]
h , N̂ , D̂),v)

t
−→((P̂ ′, N̂ ′, D̂ ′),v′) must be

derived by TA.2, so (P̂ ′, N̂ ′D̂ ′) = ([ω : t1, t2]
h , N̂ , D̂), v′ =

v + t , and ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |= I ([ω : t1, t2]
h , N̂ , D̂).

By Definition 4.16, v + t |= h ≤ t2 ∧ I (N̂ ). Now, we have
P = age([ω : t1, t2]

h ,v) = [ω : t1 −. v(h), t2 −. v(h)], and,
since v(h) + t ≤ t2, then t ≤ t2 − v(h). Also, we have N =
age(N̂ ,v), and, by Lemma B.8, t ≤ tcp(N ), so, by N.4, we

have N
t

−→nN
′, where N ′ = N + t . Therefore, by Comp.3, we

derive (P ,N ,D)
t

−→(P ′,N ′,D ′), where P ′ = [ω : t1 −. v(h) −.
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t , t2 −. v(h) −. t ], and D ′ = D . It is a simple application of the
definitions to show that ((P̂ ′, N̂ ′, D̂ ′),v′)R(P ′,N ′,D ′).

(b) Case: σ̂ ≡ ((P̂ [> Q̂ , N̂ , D̂),v).
Since σ̂Rσ, then σ ≡ (P [> Q ,N ,D), where P = age(P̂ ,v), Q =
age(Q̂ ,v), N = age(N̂ ,v) and D = D̂ . There are five sub-cases to
consider: four for each of the ways in which an edge can be con-
structed which justifies a discrete transition by TA.1, and one for
the justification of a time transition by TA.2.

i. E Int.1

In this case, the edge is of the form (P̂ [> Q̂ , N̂ , D̂)
ψ,λp,H
−→ (P̂ ′ [>

Q̂ , N̂ ′, D̂ ′), with λ = λp ∈ A, P̂ ′ ≡| X, v |= ψ, and v[H := 0] |=

I (P̂ ′ [> Q̂ , N̂ ′, D̂ ′). But this edge must be derived from an edge

(P̂ , N̂ , D̂)
ψ,λp,H
−→ (P̂ ′, N̂ ′, D̂ ′). Now, by TA.1, this edge justifies

a transition ((P̂ , N̂ , D̂),v)
λp
−→ ((P̂ ′, N̂ ′, D̂ ′),v[H := 0]). So, by

i.h., there is a transition (P ,N ,D)
λp
−→ (P ′,N ′,D ′), where there

exist P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v[H :=
0])R(P ′′,N ′,D ′). Since P̂ ′ ≡| X then, by Definition B.2 and
Proposition B.4, we have P ′ ≡| X, and so it follows by Int.1

that there is a transition (P [> Q ,N ,D)
λp
−→(P ′ [> Q ,N ′,D ′).

Since P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′, then P̂ ′′ [> Q̂ ↔ P̂ ′ [> Q̂ and
P ′′ [> Q ↔ P ′ [> Q . To see that ((P̂ ′′ [> Q̂ , N̂ ′, D̂ ′),v[H :=
0])R(P ′′ [> Q ,N ′,D ′), we reason as follows. By construction of
R, P ′′ = age(P̂ ′′,v[H := 0]). Furthermore, by safety of clock
variable allocation, H ∩ iclk(Q̂) = ∅, so, by Lemma B.6, Q =
age(Q̂ ,v[H := 0]) and N ′ = age(N̂ ′,v[H := 0]). The result
follows by construction of R.

ii. E Int.2 Similar to previous case.

iii. E Int.3 Similar to previous case.

iv. E Int.4
In this case the edge is of the form (P̂ [> Q̂ , N̂ , D̂)

ψ,λn,H
−→ (P̂ [>

Q̂ , N̂ ′, D̂), where λ = λn ∈ An, v |= ψ, and v′ = v[H := 0] |=
I (P̂ [> Q̂ , N̂ ′, D̂). But the existence of this edge depends upon

edges (P̂ , N̂ , D̂)
ψ,λn,H
−→ (P̂ , N̂ ′, D̂) and (Q̂ , N̂ , D̂)

ψ,λn,H
−→ (Q̂ , N̂ ′, D̂).

Now, by TA.1, these edges justify transitions ((P̂ , N̂ , D̂),v)
λn−→

((P̂ , N̂ ′, D̂),v′) and ((P̂ , N̂ , D̂),v)
λn−→((P̂ , N̂ ′, D̂),v′). So, by

i.h. and Lemma B.1, there are transitions (P ,N ,D)
λn−→(P ,N ′,D)

and (Q ,N ,D)
λn−→(Q ,N ′,D), where there exist P̂ ′′ ↔ P̂ , P ′′ ↔

P , Q̂ ′′ ↔ Q̂ , and Q ′′ ↔ Q such that ((P̂ ′′, N̂ ′, D̂),v′)R(P ′′,N ′,D)
and ((Q̂ ′′, N̂ ′, D̂),v′)R(Q ′′,N ′,D). Therefore, by Int.4, (P [>

Q ,N ,D)
λn−→(P [>Q ,N ′,D). Clearly, by i.h. and Definition B.2,

((P̂ ′′ [> Q̂ ′′, N̂ ′, D̂),v′)R(P ′′ [> Q ′′,N ′,D), where P̂ ′′ [> Q̂ ′′ ↔
P̂ [> Q̂ and P ′′ [>Q ′′ ↔ P [>Q .

v. λ = t ∈ R
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This transition is derived by TA.2, where ((P̂ [>Q̂ , N̂ , D̂),v)
t

−→
((P̂ , N̂ , D̂),v′), where v′ = v+ t . The transition is possible only
if ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |= I (P̂ [> Q̂ , N̂ , D̂). So, by Defini-
tion 4.16, v+ t |= I (P̂ , D̂) ∧ I (Q̂ , D̂) ∧ I (N̂ ), and, therefore, by

TA.2, ((P̂ , N̂ , D̂),v)
t

−→((P̂ , N̂ , D̂),v′), and ((Q̂ , N̂ , D̂),v)
t

−→

((Q̂ , N̂ , D̂),v′). By i.h. and Lemma B.1, (P ,N ,D)
t

−→(P ′,N ′,D)

and (Q ,N ,D)
t

−→(Q ′,N ′,D) and there exist P̂ ′′ ↔ P̂ , P ′′ ↔ P ′,
Q̂ ′′ ↔ Q̂ and Q ′′ ↔ Q ′ such that ((P̂ ′′, N̂ , D̂),v′)R(P ′,N ′,D)
and ((Q̂ ′′, N̂ , D̂),v′)R(Q ′,N ′,D). Therefore, by Int.4, (P [>

Q ,N ,D)
t

−→(P ′ [>Q ′,N ′,D), and, by construction of R, ((P̂ ′′ [>
Q̂ ′′, N̂ , D̂),v′)R(P ′′ [>Q ′′,N ′,D), where P̂ ′′ [>Q̂ ′′ ↔ P̂ [>Q̂ and
P ′′ [>Q ′′ ↔ P ′ [>Q ′.

(c) Case: σ̂ ≡ ((rec X .P̂1, N̂ , D̂),v)
So, since σ̂Rσ, we have σ ≡ (P ,N ,D), where P = age(rec X .P̂1,v),
N = age(N̂ ,v), and D = D̂ . There are two sub-cases to consider:

i. λ ∈ Ap ∪ An:

Then, the transition ((rec X .P̂1, N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′) must

be derived by TA.1 from an edge (rec X .P̂1, N̂ , D̂)
ψ,λ,H
−→ (P̂ ′, N̂ ′, D̂ ′),

where v |= ψ and v′ = v[H := 0] |= I (P̂ ′, N̂ ′, D̂ ′). This edge
must be justified by E Rec from an edge (P̂1[recX .P̂1/X ], N̂ , D̂)
ψ,λ,H
−→ (P̂ ′, N̂ ′, D̂ ′). So, by TA.1, there is a transition

((P̂1[rec X .P̂1/X ], N̂ , D̂),v)
λ

−→((P̂ ′, N̂ ′, D̂ ′),v′). But age(rec X .P̂1,v)
= age(P̂1[rec X .P̂1/X ],v), which is derived by a shorter calcula-

tion, and so, by i.h., we have (P ,N ,D)
λ

−→(P ′,N ′,D ′) and there
exist P̂ ′′ ↔ P̂ ′ and P ′′ ↔ P ′ such that ((P̂ ′′, N̂ ′, D̂ ′),v′)R(P ′′,N ′,D ′).

ii. λ = t ∈ R:
Then, the transition ((rec X .P̂1, N̂ , D̂),v)

t
−→((P̂ ′, N̂ ′, D̂ ′),v′) must

be derived by TA.2, where (P̂ ′, N̂ ′, D̂ ′) ≡ (rec X .P̂1, N̂ , D̂),
v′ = v + t and ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |= I (rec X .P̂1, N̂ , D̂).
But then, by Definition 4.16, we have ∀ t ′ ∈ R | t ′ ≤ t . v + t ′ |=
I (P̂1[rec X .P̂1/X ], N̂ , D̂), and so, by TA.2, there is a transition

((P̂1[rec X .P̂1/X ], N̂ , D̂),v)
t

−→((P̂1[recX .P̂1/X ], N̂ , D̂),v′). By

i.h., we have (P ,N ,D)
t

−→(P ′,N ′,D ′) and there exist P̂ ′′ ↔
P̂1[rec X .P̂1/X ] and P ′′ ↔ P ′ such that ((P̂1[rec X .P̂1/X ], N̂ , D̂),v′)
R(P ′′,N ′,D ′). But P̂ ′′ ↔ P̂1[rec X .P̂1/X ] ↔ recX .P̂1, as re-
quired.

2



C. THE CANDLE GRAMMAR

C.1 Syntax Notation

The grammar of CANDLE is described in an extended Backus-Naur-Form
(BNF).

• Italicized words are used to denote syntactic categories (non-terminal
symbols), for example:

module
formalParameter
statement

• Typewriter font is used for lexical elements of the language (terminal
symbols) such as keywords and special symbols, for example:

function

>=

every

• A list of alternative items is written with each alternative occurring on a
new line, for example:

parameterMode ::=
in

out

inout

Indentation is used to show that a new line is intended as a continuation
of the previous item, rather than the beginning of a new alternative.

• [·] denotes an optional item, for example:

loopStatement ::=
loop [loopIdentifier] do seqStatement end loop

is a rule for a loop statement, in which a loopIdentifier may be present
but is not required.

• {·}∗ denotes zero or more occurrences of an item, and {·}+ denotes one
or more occurrences of an item, for example
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module ::=
module moduleIdentifier is {declSection}∗ [behaviour] end module

is a rule which shows that zero or more occurrences of a declSection item
may occur in a module declaration.

C.2 Lexical Conventions

The lexical conventions of CANDLE are standard:

• Whitespace characters are space, tab and newline. Any string starting
with two dashes “--” and ending with a newline is a comment. Multiple-
line comments start with the string “(*” and end with the string “*)”.

• A number is any sequence of digits.

• An identifier is any sequence of characters in the set {A−Z , a−z , 0−9, }
which starts with a letter, excluding the reserved words shown below. All
characters in an identifier are significant, and case is significant.

• The reserved words are:
and behaviour channel const do elapse

else elsif end exception exit every function

if idle in inout is loop mod

module not null or out procedure rcv

return select snd then trap type var

C.3 Modules

program ::=
{module}∗

module ::=
module moduleIdentifier is {declSection}∗ [behaviour] end module

C.4 Declarations

declSection ::=
typeDeclSection
constantDeclSection
variableDeclSection
functionDeclSection
procedureDeclSection
channelDeclSection
exceptionDeclSection
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C.4.1 Type Declarations

typeDeclSection ::=
type typeDecl {; typeDecl}∗

typeDecl ::=
typeIdentifier

C.4.2 Constant Declarations

constantDeclSection ::=
const constantDecl {; constantDecl}∗

constantDecl ::=
constantIdentifier : typeIdentifier

C.4.3 Variable Declarations

variableDeclSection ::=
var variableDecl {; variableDecl}∗

variableDecl ::=
variableIdentifier : typeIdentifier

C.4.4 Function and Procedure Declarations

functionDeclSection ::=
function functionDecl {; functionDecl}∗

functionDecl ::=
functionIdentifier ( [formalParameter {; formalParameter}∗ ] ) :

typeIdentifier

procedureDeclSection ::=
procedure procedureDecl {; procedureDecl}∗

procedureDecl ::=
procedureIdentifier ( [formalParameter {; formalParameter}∗ ] )

formalParameter ::=
[parameterMode] typeIdentifier

parameterMode ::=
in

out

inout
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C.4.5 Channel Declarations

channelDeclSection ::=
channel channelDecl {; channelDecl}∗

channelDecl ::=
channelIdentifier [channelSpec]

channelSpec ::=
: ( messageSpec {, messageSpec}∗ )

messageSpec ::=
messageIdentifier [. typeIdentifier]

C.4.6 Exception Declarations

exceptionDeclSection ::=
exception exceptionDecl {; exceptionDecl}∗

exceptionDecl ::=
exceptionIdentifier : typeIdentifier

C.5 Expressions

expression ::=
constantLiteral
identifier
? exceptionIdentifier
functionCall
- expression
expression * expression
expression / expression
expression + expression
expression - expression
expression mod expression
expression = expression
expression /= expression
expression < expression
expression <= expression
expression > expression
expression >= expression
not expression
expression and expression
expression or expression
( expression )

The precedence of operators is given below. Operators of equal precedence
are shown on the same line. Operators of lower precedence are shown first. All
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operators are left-associative, except unary minus and logical negation which
are non-associative.

or

and

not

= /= < <= >= >

+ -

* / mod

constantLiteral ::=
uvalue

false

true

number

functionCall ::=
functionIdentifier ( [expression {, expression}∗] )

C.6 Behaviour

behaviour ::=
behaviour statement

statement ::=
seqStatement | statement
seqStatement

seqStatement ::=
atomicStatement ; seqStatement
atomicStatement

atomicStatement ::=
null

idle

sndStatement
rcvStatement
elapseStatement
assignmentStatement
procedureCall
ifStatement
loopStatement
everyStatement
selectStatement
trapStatement
exitStatement
moduleInstantiation
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C.6.1 Send statement

sndStatement ::=
snd ( channelIdentifier , messageIdentifier [. expression] )

C.6.2 Receive statement

rcvStatement ::=
rcv ( channelIdentifier , messageIdentifier [. variableIdentifier] )

C.6.3 Elapse statement

elapseStatement ::=
elapse expression

C.6.4 Assignment statement and Procedure Call

assignmentStatement ::=
variableIdentifier := expression

procedureCall ::=
procedureIdentifier ( [expression {, expression}∗] )

C.6.5 If statement

ifStatement ::=
if thenPart {elsifPart}∗ [elsePart] end if

thenPart ::=
expression then seqStatement

elsifPart ::=
elsif expression then seqStatement

elsePart ::=
else seqStatement

C.6.6 Repetition statements

loopStatement ::=
loop [loopIdentifier] do seqStatement end loop

everyStatement ::=
every expression do seqStatement end every
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C.6.7 Select statement

selectStatement ::=
select {selectAlternative}+ [in seqStatement] end select

selectAlternative ::=
:: rcvElapseOrModuleInstantiation [; seqStatement]

rcvElapseOrModuleInstantiation ::=
rcvStatement
elapseStatement
moduleInstantiation

C.6.8 Trap statement

trapStatement ::=
trap {trapAlternative}+ in seqStatement end trap

trapAlternative ::=
:: exceptionIdentifier => seqStatement

exitStatement ::=
exit exceptionIdentifier [( expression )]

C.6.9 Module Instantiation

moduleInstantiation ::=
moduleIdentifier [[ renaming {, renaming}∗ ]]

renaming ::=
expression / identifier



D. THE SDML GRAMMAR

D.1 Introduction

SDML is a simple data modelling language which can be used with CANDLE

for describing the data objects and operations in CAN-based systems.
The notation used in giving the grammar of SDML is the same as the

notation of Appendix C, as are the lexical conventions, except for the reserved
words, which are as follows:
and any array begin boolean bounds const

data do end fi function if in

is inout mod not od of or

out procedure return skip type uvalue var

D.2 Data Modules

program ::=
{dataModule}∗

dataModule ::=
data dataModuleIdentifier is {declSection}∗ end data

D.3 Declarations

declSection ::=
typeDeclSection
constantDeclSection
functionDeclSection
procedureDeclSection

D.3.1 Type Declarations

typeDeclSection ::=
type typeDecl {; typeDecl}∗

typeDecl ::=
typeIdentifier is typeExpr [size expression]

typeExpr ::=
enumerationType
subrangeType
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recordType
arrayType
typeIdentifier

enumerationType ::=
{ enumElement {, enumElement}∗ }

enumElement ::=
constantIdentifier
number

subrangeType ::=
expression .. expression

recordType ::=
{| variableDecl {; variableDecl}∗ |}

arrayType ::=
array typeExpr of typeExpr

D.3.2 Constant Declarations

constantDeclSection ::=
const constantDecl {; constantDecl}∗

constantDecl ::=
constantIdentifier : typeIdentifier [is expression]

D.3.3 Function and Procedure Declarations

functionDeclSection ::=
function functionDecl {; functionDecl}∗

functionDecl ::=
functionIdentifier ( [formalParameter {; formalParameter}∗ ] ) :

typeIdentifier
is [bounds] [variableDeclSection] statementPart

procedureDeclSection ::=
procedure procedureDecl {; procedureDecl}∗

procedureDecl ::=
procedureIdentifier ( [formalParameter {; formalParameter}∗ ] )
is [bounds] [[variableDeclSection] statementPart]

formalParameter ::=
[parameterMode] variableIdentifier : typeIdentifier
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parameterMode ::=
in

out

inout

bounds ::=
bounds bound ; bound

bound ::=
expression
~

D.3.4 Variable Declarations

variableDeclSection ::=
var variableDecl {; variableDecl}∗

variableDecl ::=
variableIdentifier : typeExpr

D.4 Expressions

assignableExpression ::=
expression
any typeIdentifier

expression ::=
designator
constantLiteral
functionCall
- expression
expression * expression
expression / expression
expression + expression
expression - expression
expression mod expression
expression = expression
expression /= expression
expression < expression
expression <= expression
expression > expression
expression >= expression
not expression
expression and expression
expression or expression
( expression )
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designator ::=
variableIdentifier
designator . fieldIdentifier
designator [ expression ]

constantLiteral ::=
uvalue

false

true

number

fieldAssignment ::=
identifier = expression

functionCall ::=
functionIdentifier ( [expression {, expression}∗] )

D.5 Statements

statementPart ::=
begin statement end

statement ::=
atomicStatement ; statement
atomicStatement

atomicStatement ::=
skip

assignmentStatement
procedureCall
returnStatement
ifStatement
doStatement

D.5.1 Assignment statement and Procedure Call

assignmentStatement ::=
designator := assignableExpression

procedureCall ::=
procedureIdentifier ( [expression {, expression}∗] )

D.5.2 Return statement

returnStatement ::=
return expression
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D.5.3 If statement and Repetition

ifStatement ::=
if {guardedCommand}+ fi

doStatement ::=
do {guardedCommand}+ od

guardedCommand ::=
:: expression => statement



E. GLOSSARY

Below are the notations used in this
dissertation together with the section in
which each notation is defined or first ap-
pears.

Sets of Numbers

N Natural numbers 2.2
N∞ N ∪ {∞} 4.2.1
Z Integer numbers 2.2
Z∞ Z ∪ {∞} 2.7.5
Q Rational numbers 2.2
R Non-negative real

numbers
2.2

R∞ R ∪ {∞} 2.2

Actions

R Set of delay actions 2.3.2
t Delay action of

duration t in R

2.3.2

τ Time-abstracted
delay action

2.7.2

An Set of network
actions

3.4.2

λn Network action in
An

3.6.2

λnt Network or delay
action in An ∪ R

3.6.2

Ap Set of process
actions

3.6.2

λp Process action in Ap 3.6.2
A Set of discrete

actions
2.3.2

a Discrete action in A 2.3.2
Aτ A ∪ {τ} 2.7.2
L Set of all actions 2.3
λ Any action in L 2.3

Labelled Transition
Systems (LTS)

S Labelled transition
system (LTS)

2.3

Σ Set of states of a
LTS

2.3

σI Initial state of a LTS 2.3
σ State of LTS in Σ 2.3
p Path σ0λ0σ1λ1 · · ·

in LTS
2.3

labelp(i) Label of i-th action
in the path p

2.3

ΞS(σ) Set of executions
(infinite paths) from
state σ in LTS S

2.3.2

ξ Execution in ΞS 2.3.2
δξ(i) Duration of i-th

action in the
execution ξ

2.3.2

∆ξ(n) Time elapsed in ξ
from σ0 to σn

2.3.2

Ξ∞
S (σ) Set of time divergent

executions from σ
2.3.2

S1 | S2 Parallel composition
of LTS’s

2.3.3

Transition Relations

−→ Transition relation 2.3
−→n n-ary composition of

−→
2.3

−→
∗

n-ary composition of
−→ for some n ∈ N

2.3

−→n Network transition
relation

3.4.2

−→rg Region graph
transition relation

2.7.2

−→sg Simulation graph
transition relation

2.7.6
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Equivalence Relations

P ≡ Q Syntactic identity 3.3
P ↔ Q Strong bisimulation 3.6.3
P = Q Equality (modulo

equational theory)
3.6.4

Clocks

H Set of clock variables 2.5.2
h Clock

(meta-)variable
ranging over H

2.5.2

RH Set of clock
valuations

2.5.2

v Clock valuation in
RH

2.5.2

0 Clock valuation with
all clock variables
equal to 0

2.5.2

v[H := 0] Reset of all clocks
h ∈ H

2.5.2

v + t v after delay of
duration t

2.5.2

ΨH Set of clock
constraints

2.5.2

χ Atomic clock
constraint

2.5.2

ZH Set of conjunctions
of atomic clock
constraints, convex
clock constraints

2.5.2

ζ Convex clock
constraint, ζ ∈ ZH

2.5.2

ψ Clock constraint,
ψ ∈ ΨH

2.5.2

v |= ψ Clock valuation v
satisfies clock
constraint ψ

2.5.2

[[ψ]] Characteristic set of
ψ

2.5.2

tt, ff True and False clock
constraints

2.5.2

Timed Automata (TA)

A Timed
Automaton

2.5

Q Set of locations 2.5.4
qI Initial location 2.5.4
q Location in Q 2.5.4
E Set of edges 2.5.4
e Edge in E 2.5.4
guard(e) Guard of edge e 2.5.4
label(e) Action label of

edge e
2.5.4

reset(e) Reset clocks of
edge e

2.5.4

I Invariant
function

2.5.4

cmax (A) Largest constant
value in guard
or invariant of A

2.5.4

A1 | A2 Parallel
composition of
TA

2.5.6

T [[A]] LTS derived
from TA A

2.5.5

(q ,v) State in the LTS
of a TA

2.5.5

(q ,v) + t Alternative to
(q ,v + t)

2.5.5

(q ,v)[H := 0] Alternative to
(q ,v[H := 0])

2.5.5

RG(A) Region graph of
the TA A

2.7.2

SG(A) Simulation
graph of the TA
A

2.7.6

AG(A) Activity graph
of the TA A

5.2.2
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Polyhedra

ψ H-polyhedron,
ψ ∈ ΨH

2.7.4

ζ Convex
H-polyhedron,
ζ ∈ ZH

2.7.4

suce(ψ) Polyhedron
denoting
successors of ψ
via TA edge e

2.7.4

sucqτ (ψ) Polyhedron
denoting
successors of ψ
as time passes
at TA location q

2.7.4

ψ1 ∩ ψ2 Intersection of
polyhedra

2.7.4

ψ1 ∪ ψ2 Union of
polyhedra

2.7.4

ψ1 \ ψ2 Difference of
polyhedra

2.7.4

ψ1 ⊆ ψ2 Inclusion of
polyhedra

2.7.4

ψ1 t ψ2 Convex hull of
polyhedra

2.7.4

ψ Complement of
polyhedron

2.7.4

↗ψ Forward
projection

2.7.4

ψ[H := 0] Reset projection 2.7.4
closec(ζ) c-closure 2.7.4

Difference Bound
Matrices (DBM)

(c,≺) Bound in
Z∞ × {<,≤}

2.7.5

M Difference Bound
Matrix

2.7.5

Mi,j Bound at row i ,
column j in DBM M

2.7.5

[[M ]] Set of clock
valuations denoted
by DBM M

2.7.5

M ∅ Empty DBM, i.e.
[[M ∅]] = ∅

2.7.5

U Universal DBM, i.e.
[[U]] = RH

2.7.5

cf M Canonical form of
DBM M

2.7.5

Data Environment

Var Set of data
variables

3.3.1

x Data variable in
Var

3.3.1

V Set of data
values

3.3.1

v Data value in V 3.3.1
type(x ) Type of data

variable x
3.3.1

Valuation Set of data
valuations,
Var → V

3.3.1

val(x ) Value of data
variable x

3.3.1

Ω Set of data
operation names

3.3.1

ω Data operation
name in Ω

3.3.1

operation(ω) Operation which
interprets the
operation name
ω

3.3.1

Γ Set of data
predicate names

3.3.1

γ Data predicate
name in Γ

3.3.1

predicate(γ) Predicate which
interprets the
predicate name
γ

3.3.1

DataEnvVar ,Ω,Γ Set of data
environments
over Var , Ω and
Γ

3.3.1

D Data
environment in
DataEnv

3.3.1

D .x Value of data
variable x given
by D

3.3.1

D [x := v ] Update value of
x to become v

3.3.1

D
ω

−→dD
′ Data

environment
transformation
by operation ω

3.3.1

ID Identity data
operation

3.3.1

true, false True and False
data predicates

3.3.1
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Channels

I Set of message
identifiers

3.4.1

M Set of messages,
M ⊆ I × V

3.4.1

i .v Message with
identifier i and
data value v

3.4.1

m ≺ m ′ Message m has
higher priority
than m ′

3.4.1

δ Transmission
latency function,
derived
functions are
δlb, δub, δlB, and
δuB

3.4.1

StatusM ,δ Set of
transmission
statuses

3.4.1

s Transmission
status in Status

3.4.1

↓ Free status 3.4.1
t1,t2
; m Pre-acceptance

phase of
message
transmission

3.4.1

↑m Acceptance
point in message
transmission

3.4.1

m
t1,t2
; Post-acceptance

phase of
message
transmission

3.4.1

QueueM ,≺ Set of message
queues

3.4.1

u Message queue
in Queue

3.4.1

〈〉 Empty message
queue

3.4.1

m:u Message queue
with highest
priority message
m

3.4.1

u " m Prioritised
insertion of m
into u

3.4.1

ChannelI Set of channels
over I

3.4.1

η Channel in
Channel

3.4.1

Networks

K Set of channel
identifiers

3.4.1

k Channel identifier in
K

3.4.1

NetworkK ,I Set of networks,
K → ChannelI

3.4.1

̂NetworkK ,I Set of clocked
networks,
K → ChannelI ×H

4.2.1

Nk Channel k in
network N

3.4.1

N̂k Channel k in clocked
network N̂

4.2.1

N [k := η] Update of channel k
in network N

3.4.2

tcp(N ) Maximum time
progress for network
N

3.4.2

N + t State of network N
after delay of
duration t

3.4.2
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Process Constructions

k !i .x Send broadcast
message

3.5

k?i .x Receive broadcast
message

3.5

[ω : t1, t2] Time bounded
computation

3.5

γ → P Data guard 3.5
P ; P Sequential

composition
3.5

P + P Non-deterministic
choice

3.5

P [> P Interrupt 3.5
P | P Parallel composition 3.5
recX .P Recursion 3.5
idle [ID : ∞] 3.5
null [ID : 0] 3.5
Proc+ Set of process terms 3.5
Proc Set of closed,

guarded process
terms

3.5

P ,Q Process terms in
Proc+ or Proc

3.5

β Basic term in Proc+

or Proc
3.5

P̂roc Set of clocked,
closed, guarded
process terms

4.2.2

P̂ , Q̂ Clocked process
terms in P̂roc

4.2.2

β̂ Clocked basic term
in P̂roc

4.2.2

Nets

R A net (W ,Θ,WI ) 4.4.1
W Set of places 4.4.1
w Place in W 4.4.1
Θ Set of transitions 4.4.1
θ Transition in Θ 4.4.1
WI Set of initial places 4.4.1
•θ Trigger place of θ 4.4.1
◦θ Vulnerable places to

θ
4.4.1

θ• Target places of θ 4.4.1
αθ Attribute of θ 4.4.1
θw Transition triggered

by place w
4.4.1

Minimised Automata
(MA)

A Minimised
deterministic finite
state automaton

5.3.1

Q Set of states of a
MA

5.3.1

Qi Set of states at layer
i in a MA

5.3.1

Q− Q \ Qk , for a k -layer
MA

5.3.1

A Alphabet of a MA 5.3.1
E Transition relation

of a MA
5.3.1

T,F Accepting and
rejecting final states
in a MA

5.3.1

a A string
a0, a1, . . . , an−1

5.3.1

LA(q) Language of A from
state q

5.3.1

L(A) LA(q0) 5.3.1
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