
Formal System-level Design Space Exploration

Daniel Knorreck and Ludovic Apvrille and Renaud Pacalet
System-on-Chip laboratory (LabSoC), Institut Telecom, Telecom ParisTech, LTCI CNRS

2229, routes des Crêtes, B.P. 193, F-06904 Sophia-Antipolis Cedex

Email: {daniel.knorreck, ludovic.apvrille, renaud.pacalet}@telecom-paristech.fr

Abstract—The paper focuses on the formal aspects of the
DIPLODOCUS environment. DIPLODOCUS is a UML pro-
file intended for the modeling and verification of real-time
and embedded applications meant to be executed on complex
Systems-on-Chip. Application tasks and architectural elements
(e.g., CPUs, bus, memories) are described with a UML-based
language, using an open-source toolkit named TTool. Those
descriptions may be automatically transformed into a formal
hardware and software specification. From that specification,
model-checking techniques may be applied to evaluate several
properties of the system, e.g., safety, schedulability, and perfor-
mance properties. The approach is exemplified with an MPEG2
decoding application.

I. INTRODUCTION

A System-on-Chip (SoC) is a set of functions distributed

over hardware computation elements (CPUs, hardware accel-

erators) interconnected with complex communication elements

(e.g., NoC). Designers of SoC have to tackle advanced con-

straint issues because applications executed on SoC are more

and more complex, typically like applications running on smart

phones. While simulation techniques applied on low-level

software and hardware models are widely used for verification

purpose, formal verification is the only technique that can

offer strong guarantees because it explores all possible system

paths. Unfortunately, the well-known combinatorial explosion

usually limits its use to very small subparts of low-level system

(e.g., a bus controller). Additionally, the prohibitive cost of

late SoC re-engineering advocates designs flows with early

guarantees.

Design Space Exploration (DSE) is a major step in system

design: it consists in selecting a software / hardware archi-

tecture complying to a set of functional and non-functional

constraints (performance, power consumption, etc.). But, at

Design Space Exploration stage, the complexity may already

be non-manageable, and so, we suggest to perform that stage

on very abstract models to pave the way for fast performance

estimations. DIPLODOCUS is the environment we propose

for addressing Design Space Exploration. As it relies on the

Y-Chart approach, architecture and application are represented

in an orthogonal fashion. DIPLODOCUS explicitly takes into

account the hardware platform on which application tasks are

meant to be executed. While modeling [1] and simulation [2]

capabilities of DIPLODOCUS, as well as the toolkit support-

ing DIPLODOCUS [3] - TTool [4] - were already described

in previous publications, the semantic support, one of the

main strengths of DIPLODOCUS, has not been addressed so

far. More precisely, for formal verification purpose, we have

provided a formal semantics to all DIPLODOCUS diagrams

(applications, hardware architectures, mapping of applications

onto hardware architectures). Formal analysis is based on a

process algebra named LOTOS [5] and on UPPAAL [6]. The

paper is more particularly focused on abstractions made to

describe tasks and hardware platforms, on how formal analysis

can be done from this abstraction, and on the associated toolkit

(TTool) in which all underlying formal techniques are totally

masked to the designer (press-button approach).

The paper is organized as follows. Section II reviews re-

lated contributions. Section III recalls the DIPLODOCUS

environment. Section IV focuses on the formal semantics in

DIPLODOCUS, and more precisely on the abstractions offered

by DIPLODOCUS to allow formal analysis with limited

combinatory explosion. Section V presents the implemented

support toolkit. Section VI illustrates our approach on a real-

time multimedia application. Finally, section VII concludes the

article.

II. RELATED WORK

Design Space Exploration (DSE) of system-on-Chip is the

process of analyzing various functionally equivalent imple-

mentation alternatives to select an optimal solution [7]. The

most suitable design is commonly chosen based on metrics

such as functionality, performance, cost, power, reliability,

and flexibility. At system-level, DSE is challenging because

the system design space is extremely large and so usual

simulation-based analysis techniques fail to efficiently observe

the above mentioned metrics. Contributions on DSE environ-

ments [8]–[15] generally rely on a high-level language to

describe application functions and architectures. For example,

[13]–[15] rely on UML or MARTE diagrams. Functions are

sometimes described with only their cost [16]. Unfortunately,

in many of these environments, architecture and application

concerns are not independent [10], making the study of

alternative solutions more complex. Second, they propose a

way to map functions onto hardware execution nodes. Lastly,

they introduce simulation techniques to simulate the system

built from the mapping of functions over hardware nodes.

But the level of abstraction being commonly rather low,

simulation may also be slow. For example, [8] relies on an

Instruction Set Simulator which executes the real code of

the application. In [12], hardware components are considered

at micro-architecture level, hence leading to long simulation

times. Otherwise, other environments offer formal exploration,

but generally limited to sub-elements of the platform [17].

-1- 978-1-4244-7068-6/10/$26.00 ©2010 IEEE

SymTA/S [18] [19] and Real Time Calculus (RTC) rely on

formal methods such as the real-time scheduling theory and

deterministic queuing systems to determine characteristics of

distributed systems. In SymTA/S the behavior of the environ-

ment is modeled by means of standard event arrival patterns

including periodic and sporadic events with jitters or bursts.

RTC imposes less restrictions by allowing deterministic event

streams to be modeled with the aid of arrival curves denoting

lower and upper bounds for event occurrences. Event streams

are propagated among resources of distributed systems in

a way that each resource may be analyzed separately with

classical algorithms. However, the applicability of scheduling

theories requires the task model to be simplistic and thus

it merely reflects best case and worst case execution times.

Control flow within tasks cannot be considered at all. For that

reason it may be tedious if not impossible to model tasks

exhibiting a data dependent or irregular behavior.

[20] relies on timed automata to analyze timeliness properties

of embedded systems. The UPPAAL model checker is used to

evaluate the automata which must be created manually. There

is no automated translation routine from a high level language

(UML,...) and thus the creation of the automata turns out to

be error prone.

[21] provides means for formal and simulation based eval-

uation of UML/SysML models for performance analysis of

Systems On Chip. UML Sequence diagrams constitute the

starting point for the functional description. They are subse-

quently transformed into so-called communication dependency

graphs (CDGs) which thus capture the control flow, synchro-

nization dependencies and timing information. CDGs are in

turn amenable to static analysis in order to determine key

performance parameters like best case response times, worst

case response times and I/O data rates. A drawback of this

approach is that data flow independence has to be kept, thus

preventing case distinctions and loops with variable bounds to

be part of the application model.

[22] presents a framework for computation and communication

refinement for multiprocessor Soc Design. Stochastic automata

networks represent the application behavior and the authors

claim that this formalism allows for fast analytical perfor-

mance evaluations. When it comes to mapping an application

on an architecture, transitions and states have to be added

to the application model. Hence, application and architecture

matters and not strictly handled in an orthogonal fashion. Due

to a lack of data abstraction, the modeling of memory elements

can quickly lead to state space explosion problem.

The PUMA [23] framework is a unified approach to software

modeling. It provides an interface between high level input

models (such as UML diagrams) and performance oriented

models. For that purpose, input models are first translated

into an intermediate format called CSM so as to filter out

irrelevant information for performance evaluations. In a second

step, CSM can be converted to Petri Nets, Markov models,

etc and the resulting performance figures and design advice

is fed back to the initial model. However, this framework

concentrates on the modeling of software and thus does not

yield a mapping where functionality is associated to software

or hardware elements.

DIPLODOCUS offers a very clear separation between applica-

tions and architectures, and includes a high level of abstraction.

Indeed, DIPLODOCUS is focused on control rather than on

data, i.e., only abstract samples of data can be manipulated in

the profile. Samples are untyped and carry no value: only their

size is a relevant attribute. This high level of abstraction greatly

reduces simulation times and makes formal proof techniques

usable. In this paper, we apply these formal proof techniques to

safety, performance and schedulability analysis purpose using

the LOTOS process algebra. While LOTOS has already been

successfully experimented for property proofs on hardware

[24], we propose its use to more generic platforms (SoCs).

III. THE DIPLODOCUS UML PROFILE

A UML profile customizes the UML language [25] for a

given domain of systems. It may extend the UML meta-model,

according to semantic variation points, and may provide a

methodology. The DIPLODOCUS UML profile targets the

modeling and Design Space Exploration of system-on-chip at

a high level of abstraction [1]. The DIPLODOCUS methodol-

ogy, depicted in Figure 1, comprises three main steps described

below.

A. Application modeling

At first, the application is modeled using UML class and

activity diagrams. Tasks are modeled as classes interconnected

with channels, events, or requests to communicate. Data

abstraction is a key point: channels do not convey values, but

only a number of samples (data abstraction). Events are used

for synchronization purpose, and requests are used to spawn

tasks.

All tasks have a behavior modeled with UML-DIPLODOCUS

activity diagrams. These diagrams come with usual control op-

erators, complexity operators, operators to use communication

medium (e.g., channels), and time operators.

B. Architecture modeling

Second, a candidate architecture is modeled in terms of

interconnected hardware components (or nodes) using UML

components placed in UML deployment diagrams. Three kinds

of nodes are available in DIPLODOCUS: Execution nodes
(CPUs), Communication nodes (buses, bridges) and Storage
nodes (e.g., memories). Each node has its own set of param-

eters such as pipeline depth, miss-branching prediction rate,

cache-miss rate, etc. Also, all nodes - except buses - may be

connected to one or several buses using UML links. For the

time being, DMAs and hardware accelerators are represented

by adequately parametrized CPU nodes.

C. Mapping

The mapping is meant to study whether a given architecture

can execute a given application according to constraints.

Application tasks and channels may be distributed over hard-

ware nodes. A UML deployment diagram is used for that

-2-

purpose. A given task may be mapped only on one execution

node. Channels may be mapped on paths built upon links,

communications nodes, and storage nodes.

One of the strengths of DIPLODOCUS relies on its ability to

perform simulation and formal verification both at application

and mapping stages. Formal verification at mapping stage

is further discussed in the next section. Although common

functional properties are usually studied at application level,

performance properties are investigated after mapping, e.g.,

resource sharing, that is, the scheduling on CPUs (can the

architecture execute tasks on time), bus load (can a bus

transmit the required amount of data), and properties related

to power consumption and silicon area.

Fig. 1. Methodology for Design Space Exploration

IV. FORMAL SEMANTICS AND ABSTRACTIONS

A. Formal support: LOTOS and UPPAAL

LOTOS [5] is an ISO-based Formal Description Technique

for distributed system specification and design. A LOTOS

specification, being itself a process, is structured into pro-

cesses. A LOTOS process is a black box that communicates

with its environment through gates using a multiway ren-

dezvous offer. Values can be exchanged at synchronization

time. That exchange can be mono- or bi-directional. LOTOS

specifications may be formally verified with the CADP tool-

kit [26] using model-checking or reachability graph analysis

techniques

The semantics of DIPLODOCUS is also defined in UPPAAL,

but the latter is out of scope of this paper.

B. Semantics at application level

1) Tasks operators: As described in previous section, an

application is composed of a set of communicating tasks.

Operators used to describe task behavior are of four types:

• Communication operators: read from a channel, write
a sample to a channel, notify an event, wait for an event,

know whether an event has been sent (notified), request
a task.

• Control operators: usual control operators, such as

variable modifications, loops and tests.

• Complexity operators: operators to model a number

of operations on integers (EXECI), floats (EXECF) or

custom (EXECC).

• Temporal operators: operators to model deterministic

and non-deterministic physical delay.

This set of operators makes it possible to describe applications’

communications and algorithms whilst forcing the modeler to

abstract data, thanks to channels that merely account for the

amount of transmitted data.

The LOTOS semantics of all task operators is further described

in Table I, column “LOTOS Semantics before mapping”.
2) Communications between tasks: Tasks communicate

using channels, events and requests. While channels are used

to model data stream between tasks - i.e., channels carry

unvalued samples -, events and requests are meant to model

synchronization schemes.

Three channel types have been defined: BR-NBW (Blocking

Read - Non-Blocking Write, i.e., infinite FIFO), BR-BW
(Blocking Read - Blocking Write, i.e., finite FIFO), NBR-
NBW (Non-blocking Read - Non-Blocking Write, i.e., a set

of elements, that is a memory).

The semantics of these channels is quite obvious to describe

in LOTOS: since channels convey no value, but only a number

of samples, the two first channels can easily be translated

into a simple process (see Figure 2) sharing a natural value

(which represents the number of elements in the FIFO)

between two processes using two gates: one gate to add a

sample (wr ch), another one to remove a sample (rd ch).

The last channel type (NBR-NBW) is also translated into a

similar LOTOS process apart from the fact that no counter is

necessary - since its is always possible to read and write -,

and so no guards ([] operator) are used before the actions on

gates wr ch and rd ch.

Events are meant to model synchronization between
tasks. They can carry up to three parameters. Event com-

munication semantics are the following: infinite FIFO, fi-

nite blocking FIFO, and non-blocking FIFO. The two first

semantics have been selected because they reflect common

synchronization schemes of embedded systems. The last one

(Non-blocking finite FIFO) is particularly useful to model sig-

nal exchanges between tasks: indeed, software and hardware

signals usually erase the previous one (e.g., Programmable

Interrupt Controller, or UNIX signals). A separate LOTOS

process accounts for each of the three semantics using the

Queue nat algebraic type. Figure 3 illustrates a non-blocking

finite FIFO (the most complex case) for an event carrying

only one natural parameter. Five cases have been taken into

account:

1) The FIFO is not empty, and so, a wait action can be

performed on the FIFO.

2) The FIFO is not full, and so, an event can be added to

the FIFO (notify).

3) The FIFO is full, and so, an event can be added to the

FIFO (notify) after the oldest one has been removed.

4) The FIFO is not empty, the notified action returns the

value 1.

5) The FIFO is empty, the notified action returns the value

0.

Unlike channels and events which are one-to-one communi-

cations, requests are many-to-one communications. They

-3-

Type Task operators LOTOS Semantics before mapping LOTOS Semantics after mapping

Channel Write n samples
to a channel

n Write operations in FIFO, i.e., n times
action on gate wr ch, see Figure 2

n cycles, and a request on a bus.

Read n samples
from a channel

n read operations from FIFO, i.e., n times
action on gate rd ch, see Figure 2

n cycles and a request on a bus.

Event
Notify an event Adds an event to the corresponding

FIFO, i.e., performs an action on gate
notify evt, see Figure 3

Same as before mapping.

Wait for an event Tries to get an event from a FIFO, i.e.,
performs an action on gate wait evt, see
Figure 3

Same as before mapping.

Notified Returns the number of event in a FIFO using
action notified evt, see Figure 3

Same as before mapping.

Request Send a request
(operator is
called “request”)

FIFO management is similar to the one used
for events

Same as before mapping.

Control loop, variable
modifications,
tests

Direct translation in LOTOS with corre-
sponding LOTOS operators

Direct translation. Operators are executed in 0-cycle.

Complexity EXECx n,m
i.e., between n
and m integer
instructions

No semantics before mapping, i.e., this op-
erator is ignored

The task executes between n ∗ perf and m ∗ perf cycles
with perf being a constant value depending on the hardware
performance on which the task is mapped.

Temporal Delay
dmindmax

unit

No semantics before mapping, i.e., this op-
erator is ignored

The task is blocked for Between n and m cycles with n =
dmin ∗ frequency and m = dmax ∗ frequency.

TABLE I
TASK OPERATORS

p r o c e s s ChannelBRBW ch [rd ch , wr ch] (samples : n a t) : e x i t := (
[samples < 8] −> (wr ch ; ChannelBRBW ch [rd ch , wr ch] (samples + 1))
[]
[s amples > 0] −> (rd ch ; ChannelBRBW ch [rd ch , wr ch] (samples − 1)))

Fig. 2. Application-level LOTOS semantics for a BR-BW channel

rely on n-to-one infinite FIFO. The translation of requests is

similar to the one of FIFO for events, apart from the fact that

notification gates are instantiated n times, e.g., notify i with

i ∈ 1 . . . n.

C. Semantics at mapping level
A mapping involves an application (i.e., a set of tasks and

communications between those tasks), an architecture (i.e., a

set of hardware nodes), a distribution of tasks onto hardware

nodes (e.g., map the task task1 onto the CPU cpu1), and a

mapping of communication channels onto buses / memories.

We have therefore defined a transformation function tf()
that takes as argument all above mentioned elements and

generates a LOTOS specification (see Figure 4).

1) Mapping issues: The mapping phase is meant to an-

swer whether a system made of an application executed on

a given architecture satisfies a set of constraints, or not.

More precisely, a mapping shall resolve contentions on shared

resources (typically, a CPU, a bus, etc.) and therefore answer

whether the computational and communication power offered

by the architecture can execute the desired application, i.e.,

respect deadlines, etc. The LOTOS semantics is first defined

with those issues in mind. As a consequence, the LOTOS

specification of a mapping should take into account:

• The access control to shared resources, e.g., for tasks:

access to CPUs, and for communication: access to buses.

To take into account those accesses, we explicitly take

into account operating systems’ scheduling policies as

well as arbitration policies of buses.

• The time taken by tasks to execute operators, and the

time taken by communications, e.g., bus and memory

latencies.

Fig. 4. General approach

2) The Mapping-to-LOTOS transformation: All task oper-

ators and hardware nodes parameters are taken into account

by the Mapping-to-LOTOS transformation (tf()). However,

we still do not take into account most recent proposals

on resource sharing in DIPLODOCUS, e.g., we do not yet

support hierarchical scheduling and virtual nodes [27] but no

technical limitation has been identified which could hamper

-4-

p r o c e s s E v e n t e v t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (f i f o 1 : Queue nat , f i f o v a l 1 : na t , nb : na t , maxs : n a t) : e x i t :=
[n o t (Empty (f i f o 1))] −> w a i t e v t ! F i r s t (f i f o 1) ; p 0 Even t ev t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (Dequeue (f i f o 1) ,

f i f o v a l 1 , nb−1, maxs)
[] [nb<maxs] −> n o t i f y e v t ? f i f o v a l 1 : n a t ; p 0 Even t ev t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (

Enqueue (f i f o v a l 1 , f i f o 1) , f i f o v a l 1 , nb +1 , maxs)
[] [nb == maxs] −> n o t i f y e v t ? f i f o v a l 1 : n a t ; p 0 Even t ev t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (

Enqueue (f i f o v a l 1 , Dequeue (f i f o 1)) , f i f o v a l 1 , nb , maxs)
[] [n o t (Empty (f i f o 1))] −> n o t i f i e d e v t ! 1 ; p 0 Even t ev t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (

f i f o 1 , f i f o v a l 1 , nb , maxs)
[] [Empty (f i f o 1)] −> n o t i f i e d e v t ! 0 ; p 0 Even t ev t [n o t i f y e v t , w a i t e v t , n o t i f i e d e v t] (

f i f o 1 , f i f o v a l 1 , nb , maxs)
endproc

Fig. 3. Application-level LOTOS semantics for a Non-blocking Finite FIFO

their integration.

Basically, the LOTOS specification is built upon four func-

tional blocks:

• The Scheduling manager schedules tasks on each CPU.

tf() transforms each task into a state machine modeled

in LOTOS: preemption can occur when a task is blocked

in a state, but never when a task performs a transition

from one state to another.

• The Communication manager handles channel-based

communication between tasks running on the same CPU,

or on different CPUs. Events and requests are assumed

not to take communication resources. Indeed, the amount

of data represented by those two synchronization features

are assumed to be negligible with regards to channel-

based communications. Similar assumptions were made

for the simulation semantics [2] (which is less abstract

and more tailored to simulation runtime issues).

• The Task execution manager handles operators to exe-

cute in each task that is transitions between task states.

• The Clock manager handles clock cycles on hardware

nodes, i.e., it activates necessary hardware nodes when a

new cycle begins.

The main process of the LOTOS specification works as

follows:

1) At first, an initialization phase is used to settle various

data structures, for each CPU (e.g., all tasks of a CPU

are put in ”ready” state), and for the communication

manager: data structures related to channels, queues

related to events, and so on.

2) A main loop on clock cycles is started: The system waits

for the next tick (tick is a LOTOS action). Then, each

CPU plus its operating system are considered one after

another. Basically, a CPU is meant to interpret DIPLO-

DOCUS application-level operators of the selected task:

a) Depending on its clock rate, the CPU is activated

or not by the Clock manager.

b) If it is activated, then a first test is performed to

see whether one task is in running state, or not.

c) If one task is in running state, then, the running

state is activated from its former state. The task

executes until either (i) it blocks (for example, it

tries to receive one given event, and that event is

not available): in that case, the scheduler is called,

or (ii) it can perform an instruction consuming cy-

cles (e.g., writing a sample to a non-full channel).

d) When the scheduler is called, it first checks

whether at least one task is runnable. If no task is

runnable, the CPU goes idle. Otherwise, a schedul-

ing algorithm - implemented in LOTOS - is called

to select another task. Then, the state machine of

that task may be called, and so on.

3) Once all CPUs have been selected, a communication

manager resolves all inter-CPUs communication, i.e., all

communications set-up by tasks in previous cycle (i.e.,

all read, write, notify events, etc.) are really performed

only when all CPUs have terminated that cycle. This

ensures (i) that a sample written on a CPU during a cycle

may not be read by another CPU in the same cycle, and

(ii) that the order of CPU evaluation has no impact on

results.

The tf() function may also generate debug information in

the form of LOTOS actions performed at well-chosen points:

actions to show scheduler data structures (e.g., list of runnable

or blocked tasks), actions to monitor tasks states, actions to

monitor the communication manager, etc.

Finally, tf() has been defined with combinatory explosion

in mind. Hence, tf() tries to precompute possible syn-

chronization between LOTOS processes: if possible, these

synchronization are removed, and resulting processes put in

sequence. Combinatory explosion may also be due to (i) non-

deterministic elements: for example random, choice and tem-

poral operators of tasks; (ii) Non-determinism in scheduling

models: for example, in the round-robin scheduling policy,

the possible indexes of tasks, in the tasks list. Abstraction is

a key factor to reduce combinatory explosion. The main idea

behind abstractions is to remove all software and hardware-

related concerns that have no or little impact on evaluated

properties (e.g., load on CPUs and buses). The next subsection

is dedicated to abstractions.

D. Abstractions

1) Task abstraction (see Table I, column “LOTOS Seman-
tics after mapping”):

• Communication operators. These operations are given a

cost (in clock cycles), and are executed by the execution

manager along with the communication manager, to make

-5-

request on related buses. The cost in cycle depends of

the hardware platform. For example, writing an 8-byte

sample on a 32-bit processor takes two cycles. Also, the

communication manager is involved for storing output

samples, and for providing data to input operations.

Note that these operations may be blocking, and so, the

scheduling manager may also be involved.

• Cost operators are abstracted with a number of cycles

depending on the hardware platform.

• Other operators: choice, loop, variable manipulation,

etc. These operations are executed by the task execution

manager. They take no cycle since there are used for

control modeling only, i.e., the execution cost in DIPLO-

DOCUS is modeled only with EXECx operations.

• Temporal operators: They are abstracted with a number

of cycles.

2) CPU abstractions:

• Parameters of CPU: Data size (used for communication

in channels), size of default integer and floating point

data (used for EXEC operations), cost for each EXECx

instructions, pipeline size (used for calculating the penalty

induced by miss branching), miss branching rate, data

cache-miss ratio and penalty, time to enter/leave the idle

mode, clock ratio.

• The Operating System is taken into account with

scheduling algorithms (e.g., Preemptive priority-based,

round-robin), switching time, synchronization manage-

ment (events, requests) and communication delay (buffer-

ing for handling channels).

3) Communication abstractions (buses, memories): Buses

are meant to carry data samples with an arbitration policy

between requests. The time a given transfer takes depends on

the width of the bus. Bus arbitration is done on each cycle.

Memory delays are modeled throughout bus latencies and

cache-miss rates at CPU level, as proposed for the simulation

semantics [2].

E. Formal verification

LOTOS specifications may be derived either from an ap-

plication modeling, or from a mapping of applications onto a

given architecture (Figure 1).

At application level, tasks have a maximum concurrency

between themselves, concurrency which is reduced when the

mapping phase occurs: buses and CPUs are shared resources.

For example, two tasks mapped on the same CPU do not

execute in parallel any more. An interesting property would

be that formal traces obtained after mapping are a subset of

formal traces obtained before mapping, that is, a mapping only

constrains possible application-level traces, without violating

application-level safety properties (e.g., absence of deadlock).

One of our ongoing work is to prove that scheduling and

arbitration policies we have defined preserve safety properties

proved at application level, that is a mapping is always correct-
by-construction with regards to safety properties.

V. TOOLKIT

A. General overview

TTool [4] is an open-source toolkit initially developed

for the TURTLE UML profile [28]. It now supports several

other UML profiles such as the CTTool profile [29] and

DIPLODOCUS [1]. TTool includes diagramming facilities,

code generators (LOTOS, etc.) and graph analysis tools.

TTool includes a Graphical User Interface for drawing DIPLO-

DOCUS UML diagrams. From those diagrams, simulation or

formal analysis (see Figure 5) may be performed. Underlying

simulation and validation languages (e.g., LOTOS) are totally

hidden to DIPLODOCUS users. From LOTOS specification,

TTool relies on CADP [26] to generate a reachability graph

than can be analyzed directly in TTool (in particular, to detect

deadlock situations), to minimize it, and to compare it with

other graphs (bisimulations). UPPAAL offers simulation and

model-checking capabilities. Furthermore, TTool has very fast

simulation capabilities [2].

Fig. 5. TTool for DIPLODOCUS: code generation capabilities

B. Property analysis with TTool and CADP

1) At first, an application is modeled (e.g., MPEG2 decod-

ing, see next section). From that modeling a reachability

graph is generated (let us call it rga), and model-

checking techniques are used to prove a set P of

properties on the application itself.

2) A hardware architecture is described in terms of CPUs,

buses, etc..

3) From the mapping (tasks onto CPUs, etc.), a LOTOS

specification is generated, and from that specification,

CADP is used to obtain a reachability graph rg. The

following verification features are supported:

• Minimizing the reachability graph to tick actions.

From that minimization, the longest path of ticks

is calculated, therefore resulting in a performance

information on the application (e.g., Worst Case
Execution Time).

• Minimizing the reachability graph to tick and trans-
ferOnBusX. From that minimization, loads on buses

can be deduced. Similar techniques can be used to

compute CPU loads.

-6-

• Comparing rg and the reachability graph generated

at application level, i.e., to rga. To do so, a toolkit

integrated in TTool first modifies rg so as to make

rg action names compatible with the one of rga,

then CADP minimizes the resulting graphs: if it is

proved that rg ⊂ rga, then safety properties proved

at application level are preserved.

• Of course, other usual model-checking techniques

can be directly applied to rg (e.g., using CADP).

VI. CASE STUDY

A. MPEG2

MPEG2 video compression is based on motion estimation

between pictures, discrete cosine transforms, quantization, and

Huffman encoding. The case study initially introduced in [3]

focused on the application and architecture modeling of an

MPEG decoder. In this paper however, emphasis is put on

proofs of functional properties.

B. Application modeling

MPEG2 decoding is modeled with 6 tasks correspond-

ing to the main MPEG2 functional blocks: a main task

(MPEG Decoder), a task to decode Huffman codes (VLC),

a task to extract blocks (Zigzag), a task to perform the inverse

quantization (IQuantization), a task to perform the inverse

discrete cosine transform (IDCT) and finally a task to perform

the motion compensation (Motion Compensation). Basically,

MPEG Decoder drives all other tasks. VLC sends its results

to Zigzag which itself forwards its output to IQuantization
and then to IDCT. Pictures are then rebuilt based on Mo-
tion Compensation. Channels are used between those tasks

to exchange samples modeling pictures macroblocks - in

MPEG2, images are cut into fixed-size subparts of pictures:

those subparts are called macroblocks-, and events / requests

are used between MPEG Decoder for control purpose.

C. Architecture and mapping

Several candidate architectures are experimented. A first

basic mapping consists of one single CPU on which all tasks

are mapped. A second option is to map the MPEG Decoder,

Zigzag and Motion Compensation tasks on one CPU named

risc01, and the others on another CPU named risc02: (see

Figure 6: for space reasons, the mapping of channels, events

and requests is not shown on the figure). In this second

mapping, subsequent tasks are mapped onto different CPUs

thus allowing for overlapping executions. A task can for

instance read a few samples from memory before the previous

task has terminated its computations. This remark is not 100%

true for IDCT whose data-dependency constraints are both

block-level and sample-level.

D. Property analysis

The intended system is expected to decode 25 images

/ seconds. Images are of size 800x600. Thus, one image

decoding is expected to be performed in less than 40ms. To

Fig. 6. Using TTool to map tasks onto two CPUs

ensure that the system is schedulable with that constraint, our

testbed was the following:

• We have chosen a maximum frequency for the CPUs (200

Mhz). From this, we obtain a maximum number of cycles

for each macroblock equal to 1066 cycles.

• Then, from the LOTOS specification of each mapping,

CADP has computed a reachability graph (RG).

• Then, we have minimized each RG to tick actions: thus,

we were able to count the maximum number of cycles

taken by the system to decode one picture. To count that

number, we have used a TTool feature that searches for

the longest path on the RG.

– For the mono-processor architecture: maximum path

= 1486 cycles (i.e., at most 1486 cycles are necessary

to perform the decoding of one macroblock).

– For the two-processor architecture: maximal path =

1041 cycles.

Finally, the system is schedulable with the 2-CPU

approach, and not with only one CPU.

VII. CONCLUSIONS AND FUTURE WORK

The paper presents an environment - named DIPLODOCUS

- for formal functional and performance analysis of complex

embedded and distributed systems. A system is described with

communicating tasks, hardware architectures and a mapping of

tasks and channels onto a hardware architecture. A formal se-

mantics is provided to tasks, communication between tasks and

hardware architectures, making it possible to perform formal

analysis before and after mapping. Moreover, DIPLODOCUS

has been implemented in a UML-based open-source toolkit -

named TTool. Formal analysis can be performed with abso-

lutely no knowledge of formal techniques. The DIPLODOCUS

environment has been experimented within the scope of several

case studies, including an MPEG2 application, and industrial

-7-

case studies [27]. As stated in section IV, abstractions are a

key factor of our models in order to alleviate combinatory

explosion (and to greatly increase simulation speed [2]):

• Data abstraction: Only the amount of exchanged data

between functional entities is taken into account. Data

dependent behavior is made explicit within the task model

by means of non-deterministic operators.

• Control flow abtraction: Symbolic instructions (EXECx)

stand for operations to be executed on an execution device

(like CPUs).

• Hardware abstractions: Hardware device-dependent be-

havior is captured by parameters like clock frequencies

and cache miss probabilities.

Trading off accuracy against model complexity of hardware

components will remain subject to our research. For example,

instruction cache-misses and data cache-misses have been ac-

counted for by static probabilities so far. Indeed, as algorithmic

details are represented by symbolic instructions, the real code

of the application is not available thus making state of the art

cache models unsuited. Furthermore, the accuracy of bus and

memory models shall be validated against a real embedded

system. A fair comparison with a real implementation shall

therefore reveal whether a set of parameters can be found to

limit the inaccuracy to a reasonable percentage. To simplify the

modeling of systems making extensive use of DMA engines,

a specific UML stereotype could be introduced. This way, the

designer would not have to model DMA transfers explicitly

using a dedicated execution unit.

While being already operational, our environment will be

enhanced with two main features. On the one hand, we will

define a refinement process from the application modeling

step to the after-mapping step, in order to preserve properties

proved at application level. On the other hand, we intend to

assess and adapt post-mapping hardware abstractions - e.g., the

ones used for memories and buses - by confronting mapping

results with real implementations.

REFERENCES

[1] L. Apvrille et al., “A UML-based environment for system design space
exploration,” in 13th IEEE International Conference on Electronics,
Circuits and Systems (ICECS’2006), Nice, France, Dec 2006.

[2] D. Knorreck, L. Apvrille, and R. Pacalet, “Fast simulation techniques
for design space exploration,” in Objects, Components, Models and
Patterns, ser. Lecture Notes in Business Information Processing, vol. 33.
Springer Berlin Heidelberg, 2009, pp. 308–327. [Online]. Available:
http://www.springerlink.com/content/r425w073k44k5441/

[3] L. Apvrille, “Ttool for diplodocus: An environment for design space ex-
ploration,” in 8th annual international conference on New Technologies
of Distributed Systems (NOTERE’2008), Lyon, France, jun 2008.

[4] LabSoc, “The TURTLE Toolkit,” in
http://labsoc.comelec.enst.fr/turtle/ttool.html.

[5] ISO-LOTOS, “A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour,” in Draft International Standard
8807, International Organization for Standardization - Information
Processing Systems - Open Systems Interconnection, Geneva, July 1987.

[6] J. Bengtsson and W. Yi., “Timed automata: Semantics, algorithms and
tools,” in Lecture Notes on Concurrency and Petri Nets. W. Reisig and
G. Rozenberg (eds.), LNCS 3098, Springer-Verlag, 2004.

[7] W. Muhammad et al., “Abstract application modeling for system design
space exploration,” in Euromicro Conference on Digital System Design
(DSD’06), Dubrovnik, Croatia, August 2006.

[8] F. Balarin et al., Hardware-Software Co-Design of Embedded Systems,
The POLIS Approach, 5th ed. KLUWER ACADEMIC PUBLISHERS,
2003.

[9] Y. Watanabe, “Metropolis : An integrated environment for electronic
system design.” Cadence Berkeley labs, 2001.

[10] P. V. D. Wolf et al., “A methodology for architecture exploration of
heterogeneous signal processing systems,” in 1999 IEEE Workshop on
Signal Processing Systems (SiPS99), 1999.

[11] A. Chatelain et al., “High-level architectural co-simulation using Esterel
and C,” in Proc. of IEEE/ACM symposium on Hardware/software
codesign, April 2001.

[12] I. Assayad and S. Yovine, “A framework for modelling and performance
analysis of multiprocessor embedded systems: Models and benefits,”
in Proceedings of the 8th conference on Nouvelles Technologies de la
Distribution (NOTERE’2007), Marrakech, Marocco, June 2007.

[13] T. Schattkowsky et al., “A model-based approach for executable specifi-
cations on recon figurable hardware,” in Proc. of the Design, Automation
and Test in Europe (DATE), Nov 2005, pp. 692–697.

[14] P. Kukkala et al., “Performance Modeling and Reporting for the UML
2.0 Design of Embedded Systems,” in Proc. of the 2005 International
Symposium on System-on-Chip), Nov 2005, pp. 50–53.

[15] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet, “A co-
design approach for embedded system modeling and code generation
with uml and marte,” in Design, Automation and Test in Europe
Conference and Exhibition, 2009. DATE’09., April 2009, pp. 226–231.

[16] B. Ristau, T. Limberg, and G. Fettweis, “A mapping framework for
guided design space exploration of heterogeneous mp-socs,” Design,
Automation and Test in Europe, 2008. DATE’08, pp. 780–783, March
2008.

[17] K. Avnit and A. Sowmya, “A formal approach to design space explo-
ration of protocol converters,” in Design, Automation and Test in Europe
Conference and Exhibition, 2009. DATE’09, April 2009, pp. 129–134.

[18] A. Hamann, M. Jersak, K. Richter, and R. Ernst, “A framework for
modular analysis and exploration of heterogeneous embedded systems,”
Real-Time Syst., vol. 33, no. 1-3, pp. 101–137, 2006.

[19] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” Computers
and Digital Techniques, IEE Proceedings -, vol. 152, no. 2, pp. 148–166,
Mar 2005.

[20] M. Hendriks and M. Verhoef, “Timed automata based analysis of
embedded system architectures,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, April 2006, pp. 8
pp.–.

[21] A. Viehl, T. Schonwald, O. Bringmann, and W. Rosenstiel, “Formal
performance analysis and simulation of UML/sysml models for esl
design,” Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, vol. 1, pp. 1–6, March 2006.

[22] R. Marculescu, U. Y. Ogras, and N. H. Zamora, “Computation and
communication refinement for multiprocessor soc design: A system-level
perspective,” ACM Trans. Des. Autom. Electron. Syst., vol. 11, no. 3, pp.
564–592, 2006.

[23] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and
J. Merseguer, “Performance by unified model analysis (puma),” in WOSP
’05: Proceedings of the 5th international workshop on Software and
performance. New York, NY, USA: ACM, 2005, pp. 1–12.

[24] P. Wodey, G. Camarroque, F. Baray, R. Hersemeule, and J.-P. Cousin,
“Lotos code generation for model checking of stbus based soc: the stbus
interconnection,” This paper appears in: Formal Methods and Models
for Co-Design, 2003. MEMOCODE ’03. Proceedings. First ACM and
IEEE International Conference on, pp. 204–213, June 2003.

[25] OMG, “UML 2.0 Superstructure Specification,” in
http://www.omg.org/docs/ptc/03-08-02.pdf, Geneva, 2003.

[26] “The CADP toolkit,” http://www.inrialpes.fr/vasy/cadp.
[27] C. Jaber, A. Kanstein, L. Apvrille, A. Baghdadi, P. L. Moenner, and

R. Pacalet, “High-level system modeling for rapid hw/sw architecture
exploration,” in Proc. of the 20th IEEE/IFIP International Symposium
on Rapid System Prototyping (RSP’2009), June 2009.

[28] L. Apvrille et al., “TURTLE: A Real-Time UML Profile Supported
by a Formal Validation Toolkit,” in IEEE transactions on Software
Engineering, vol. 30, no. 7, Jul 2004, pp. 473–487.

[29] S. Ahumada et al., “Specifying Fractal and GCM components with
UML,” in XXVI International Conference of the Chilean Computer
Science Society (SCCC’07), Iquique, Chile, nov 2007.

-8-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

