
Mapping UML to Labeled Transition Systems

for Test-Case Generation

A Translation via Object-Oriented Action Systems�

Willibald Krenn1, Rupert Schlick2, and Bernhard K. Aichernig1

1 Institute for Software Technology, Graz University of Technology, Austria
{wkrenn,aichernig}@ist.tugraz.at

2 Austrian Institute of Technology, Vienna, Austria
Rupert.Schlick@ait.ac.at

Abstract. The Unified Modeling Language (UML) is a well known and
widely used standard for building software models. While it is familiar
to many software engineers, it lacks standardized formal semantics. In
this paper, we extend on the formalism of object-oriented action systems
(OOAS) and describe a mapping of a selected UML-subset to OOAS by
choosing one of the several possible semantics of UML. This mapping,
together with the introduction of a trace semantics for OOAS, paves
the way for applying tools for and theory of labeled transition systems
to UML-models. As a running example, we use a car alarm system in
the context of model-based test-case generation and show how the UML
mapping is done.

1 Introduction

Today, embedded computer systems constitute an integral part of almost all
technology surrounding us. They are increasingly integrated in safety-relevant
systems, either in any kind of vehicles, medical equipment, or industrial or public
control systems. Evidently, any possible measure has to be taken to ensure the
dependability of such systems, from early planning and design to final installation
and maintenance.

The standards EN 50128 and IEC 61508 recommend the use of formal meth-
ods, especially at higher Safety Integrity Levels (SILs). However, despite the
decades of research dedicated to formal methods, most engineers still lack ex-
perience and confidence in this field. Techniques like theorem proving or model
checking are rarely applied to large and complex systems.

Therefore, testing remains the preferred method of verification, despite the
fact that it is very expensive. In general, about half of the overall effort of a
project is dedicated to testing, and for safety-relevant projects the amount of
time spent on testing is even higher. Consequently, there is a huge demand for

� Research herein was funded by the EU FP7 project ICT-216679, Model-based Gen-
eration of Tests for Dependable Embedded Systems (MOGENTES).

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 186–207, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Mapping UML to Labeled Transition Systems for Test-Case Generation 187

reliable automatic test case generation tools grounded on solid foundations. The
European FP7 project MOGENTES serves these demands.

MOGENTES stands for Model-based Generation of Tests for Dependable Em-
bedded Systems and its goal is to significantly enhance testing and verification
of dependable embedded systems by means of automated generation of efficient
test cases relying on development of new approaches as well as innovative inte-
gration of state-of-the-art techniques. In particular, MOGENTES aims at the
application of these technologies in large industrial systems, simultaneously en-
abling application domain experts (with rather little knowledge and experience
in usage of formal methods) to use them with minimal learning effort.

The industrial partners in the project identified UML as their future modeling
paradigm and hence, require test case generation tools to process UML models.
This need conflicts with the requirement that our test case generation technique
has to be build on solid foundations, because UML lacks a standard formal
semantics. However, a formal semantics is essential for our testing techniques
based on precise fault-models and formal notions of conformance. Therefore, we
decided to treat UML as a front-end modeling language and translate it to a
formal back-end formalism on which our test case generators will work on.

In this paper, we give insights into this translation process. A car alarm system
serves as a running example. Section 2 presents the UML model of the car alarm
system including the technique to express the testing interface in UML class dia-
grams. Then, Section 3 presents and motivates our back-end formalism, namely
Object-Oriented Action Systems (OOAS), a formalism well-suited for expressing
object-oriented models of embedded systems. This section also presents a further
level of semantic mapping: the behavior of state-rich OOAS is interpreted as a
series of controllable and observable events. It is this event-level on which our test
case generators work. This gives us the advantage that we can base our formal
testing approach on the existing testing theory on labeled-transition systems.
Next, in Section 4 we discuss our semantic mapping, including the translation
of non-trivial UML state charts with nested states, parallel regions and time
triggers. In Section 5 we discuss the case study. Finally, in Section 6 we draw
our conclusion and give an outlook on future and related work.

2 A UML-Model

We use a very simplified car alarm system as an example for discussing the
concepts and issues of the transformation of UML models to action systems.
The example is taken from Ford’s automotive demonstrator within MOGENTES
and the main purpose of this rather simple example within the project is to test
and validate the test-case generation work flow on a basic level. Notice that we
are dealing with black-box testing here, as, e.g., Ford wants to test components
provided by an external partner based on the requirements that were given to
this company.

Before we can generate any test-cases, we need to build a model from the
requirements. For our simplified car alarm system (CAS), we were given the
following three textual requirements.

188 W. Krenn, R. Schlick, and B.K. Aichernig

Requirement 1: Arming. The system is armed 20 seconds after the vehicle is
locked and the bonnet, luggage compartment and all doors are closed.

Requirement 2: Alarm. The alarm sounds for 30 seconds if an unauthorized
person opens the door, the luggage compartment or the bonnet. The hazard
flasher lights will flash for five minutes.

Requirement 3: Deactivation. The anti-theft alarm system can be deactivated
at any time, even when the alarm is sounding, by unlocking the vehicle from
outside.

When trying to construct an animated model based on textual requirements it is
often the case that conflicts or underspecified situations become apparent. One
might think that the simplistic car alarm system is sufficiently described by these
three textual requirements – the contrary is the case. What is left unspecified is
the case of what happens when an alarm is ended by the five minute timeout:
does the system go back to armed directly, or does it need to wait for all doors
to be closed again before returning to armed?

2.1 Testing Interface and Instantiation

The UML model of the car alarm system comprises four classes and four signals,
as shown in Fig. 1. The class AlarmSystem is marked as system under test (SUT)
and may receive any of the Lock, Unlock, Close, or Open signals. At the same
time, the SUT calls methods of the classes AlarmArmed, AcousticAlarm, and
OpticalAlarm – all of them marked as being part of the environment.

Notice that the context diagram specifies the observations (all calls to methods
being part of the environment) we can make and the stimuli the system under
test can take (all signals). In effect, this diagram specifies our testing interface.

«environment»

AcousticAlarm

 SetOn()
 SetOff()

«system_under_test»

AlarmSystem

 Lock
 Unlock
 Closed
 Opened

«environment»

AlarmArmed

 SetOn()
 SetOff()

«environment»

OpticalAlarm

 SetOn()
 SetOff()

«signal»
Lock

«signal»
Unlock

«signal»
Open

«signal»
Close

 + acousticAlarm

 [1]

 + opticalAlarm

 [1]
 + alarmArmed

 [1]

Fig. 1. Car Alarm System - Testing Interface

We use an initialization diagram (not shown) to specify the system configu-
ration: we create a singleton object for each of the classes.

2.2 State Machine

Fig. 2 shows the CAS state-machine diagram. From the state OpenAndUnlocked
one can traverse to ClosedAndLocked by closing all doors and locking the car.

Mapping UML to Labeled Transition Systems for Test-Case Generation 189

AlarmSystem_StateMachine

Alarm

Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenAndUnlocked

ClosedAndUnlocked OpenAndLocked

SilentAndOpen

Unlock

30 / Deactivate Sound

300

Open

Unlock

20

Close

Unlock OpenLock Close

Close LockOpen Unlock

Fig. 2. Car Alarm System - State Machine

Actions of closing, opening, locking, and unlocking are modeled by corresponding
signals Close, Open, Lock, and Unlock. As specified in the first requirement, the
alarm system is armed after 20 seconds in ClosedAndLocked. Upon entry of the
Armed state, the model calls the method AlarmArmed.SetOn. Upon leaving
the state, which can be done by either unlocking the car or opening a door,
AlarmArmed.SetOff is called. Similar, when entering the Alarm state, the optical
and acoustic alarms are enabled. When leaving the alarm state, either via a
timeout or via unlocking the car, both acoustic and optical alarm are turned
off. When leaving the alarm state after a timeout (cf. second requirement) we
decided to interpret the requirements in a way that the system returns to an
armed state only in case it receives a close signal. Turning off the acoustic alarm
after 30 seconds, as specified in the second requirement, is reflected in the time-
triggered transition leading to the Flash sub-state of the Alarm state.

2.3 Semantic Variation Points

Despite being machine readable, the presented UML model lacks precise seman-
tics. As an example, the event processing-machinery within a state machine is
not fully specified within the UML standard:

No assumptions are made about the time intervals between event occur-
rence, event dispatching, and consumption. This leaves open the possi-
bility of different semantic variations such as zero-time semantics. It is
a semantic variation whether an event is discarded if there is no appro-
priate trigger defined for them. [1], Trigger, p. 456

These intentionally underspecified areas in the UML standard are called “se-
mantic variation points” and are used within the UML specification to provide
leeway for domain-specific refinements of the general UML semantics ([1], p. 17).
Other semantic variation points affect, e.g., time events and signal events. When

190 W. Krenn, R. Schlick, and B.K. Aichernig

we discuss the mapping of UML to object-oriented action systems in Section 4,
we will make use of these semantic variation points and define one particular
behavior of our models. Note that these choices may form the basis for semantic
tests: when creating test cases from UML models we may want to find imple-
mentations that violate our chosen interpretation of a semantic variation point!
Note also that in addition to semantic variation points, there are other sources
of non-determinism in the UML specification, e.g., transition firing (cf. [1], State
Machine, p. 566).

3 Object-Oriented Action Systems

In this section we present object-oriented action systems, our intermediate-level
modeling language that we use for giving UML models precise semantics. Object-
oriented action systems are an extension to the action system formalism initially
proposed by Back et al. in [2,3]. The object-oriented extension presented here is
based on the work of Bonsangue et al., published in [4]. We also use a prioritized
composition operator that has already been introduced by Sekerinski et al. in [5].
Notice, however, that our work is the first to combine object-oriented action
systems (with custom extensions), prioritized composition, complex data types,
and a trace semantics of action systems. We start our description of object-
oriented action systems with the introduction of normal (non-object-oriented)
action systems.

3.1 Action Systems

Syntactically, we may represent an action system AS comprising m functions, a
named actions, d non-deterministically composed anonymous actions, and a set
FI of imported functions syntactically as follows.

AS =df |[var V : T = I
functions F 1

n = F 1
b ; . . . ; Fm

n = Fm
b

actions N1
n = N1

b ; . . . ; Na
n = Na

b

do A1 � ... � Ad od
]| : FI

Notice that functions have a name, a body and may return a value. Named
actions are similar to functions but may not have a return value. In the remainder
of this paper, we assume that named actions may only be called from within the
do od-block (that is, not from within named actions or functions), and that
function-calls may not be recursively nested. We also demand that each named
action has the form of a guarded command. Relying on these assumptions, we
are allowed to re-write the action system in a more classical form, where only
the actions within the do od-block are left:

AS =df |[var V : T = I
do A1 � ... � Ad od

]| : Z

Mapping UML to Labeled Transition Systems for Test-Case Generation 191

Within this representation, V is a vector of variables of types T , initialized with
values I, all Ai (1 ≤ i ≤ d) are actions, and � stands for non-deterministic,
demonic choice. Demonic choice of actions means that when an aborting action
is enabled, this action is chosen. Notice that after “inline’ning” all imported
functions ∈ FI , Z denotes the set of imported variables of the environment that
was accessed by the imported functions.

After eliminating all function calls, the action system consists of basic actions
only (cf. Table 1) and all actions are part of the do od-block, also known as
Dijkstra’s guarded iteration statement [6]. The guarded iteration statement can
be thought of as being a loop that selects one enabled action Ai for execution in
each iteration. In case there is no action enabled, execution of the action system
ceases as execution of the loop terminates.

We can determine the enabledness of an action Ai by computing the enabled-
ness guard: Because we do not want an action Ai to be enabled for states in which
it is guaranteed to establish any postcondition, i.e. behave miraculously, the en-
abledness guard is defined as g.A =df ¬wp(A, false), where wp : Action×(State �→
Bool) �→ (State �→ Bool) is the weakest precondition predicate transformer. For
example, the precondition of a guarded command is given by

wp(requires guard : A end, q) ≡ guard ⇒ wp(A, q)

with “⇒” denoting logical implication. Table 1 lists the weakest preconditions
of all actions for any given predicate q.

Table 1. Semantics of Basic Actions

Action Notation wp(Action, q)

Sequential Composition S1; . . . ; Sn wp(S1, wp(. . . , wp(Sn, q)))
Nondeterministic Composition S1 � S2 wp(S1, q) ∧ wp(S2, q)
Prioritizing Composition S1//S2 wp(S1, q)∧

(¬g.S1 ⇒ wp(S2, q))
Guarded Command requires p: S1 end p ⇒ wp(S1, q)
Multiple Assignment y := e q[y := e]
Nondeterministic Assignment z := z′ with Q (∀z′ ∈ Q.z · q[z := z′])
Local Variables var ∀x1 . . . xn : wp(S, q)

x1 : T1; . . . ; xn : Tn : S

Skip skip q
Abort abort false

In Table 1, S1, S2 each denote an action, y lists of variables, z, z′ variables, e
is a list of expressions, p is a predicate over the state of the action system, g.S1

is the enabledness guard of action S1, and Q is a predicate over z, z′ (and the
state). The nondeterministic assignment assigns to variable z the value of z′ for
which Q holds. The statement aborts if this is not possible [3]. Notice that an
action will terminate if the termination guard t.A = wp(A, true) holds.

192 W. Krenn, R. Schlick, and B.K. Aichernig

For any of the defined actions, the monotonicity (1) and conjunctivity (2)
properties hold:

(p ⇒ q) =⇒ (wp(A, p) ⇒ wp(A, q)) (1)
wp(A, P) ∧ wp(A, Q) ≡ wp(A, P ∧ Q) (2)

In addition, we require an action to be bounded non-deterministic. The parallel
composition of two action systems is done by joining all actions and variables.
(Some variables may be shared between the systems.) As an example, the parallel
composition AS1 ‖ AS2 of two action systems

AS1 = |[var X : T 1 = I1;

do A1
1 � . . . � A1

m od]| : u1

AS2 = |[var Z : T 2 = I2;

do A2
1 � . . . � A2

n od]| : u2

yields AS1‖2:
AS1‖2 = |[var X : T 1 = I1; Z : T 2 = I2;

do A1
1 � . . . � A1

m

� A2
1 � . . . � A2

n od

]| : (u1 ∪ u2) \ (v1 ∪ v2)

where vi denotes all variables used (exported) from action system ASi.

3.2 Object Orientation

We use the work of Bonsangue et al. [4] as the basis for object-oriented action
systems: in particular we share the transformation step from object-oriented
action systems to action systems. We differ in the notion of named actions and
procedures and we add the ability to prioritize objects of a particular class
with respect to objects of another class. Within our methodology, we use a very
simple form of inheritance: A class C2 is a valid subclass of C1 if and only if the
(syntactic) superposition (cf. [7]) refinement holds between the classes. Roughly
speaking this means that C2 may introduce additional variables and actions.
However, none of the additional actions may have any effect on the variables of
C1, it must be guaranteed that when only considering the new actions and the
initial state the system terminates, and the exit condition of C2 must imply the
exit condition of C1. The subclass C2 may override (refine) actions of C1 in a
way that the guard is strengthened and values to the additional variables are
assigned.

Like most object-oriented programming languages, objects are constructed at
runtime from classes with the help of a constructor statement o := new(C),
where o represents the instance (object) and C stands for some class. Similar
to [4], a class C is a named type and can be represented as tuple C =df (Cn, Cb)

Mapping UML to Labeled Transition Systems for Test-Case Generation 193

where Cn ∈ CN is a class name from the set of class-names CN and Cb is the
body of the type definition:

Cb =df |[var V : T = I
methods M1

n = M1
b ; . . . ; Mm

n = Mm
b

actions N1
n = N1

b ; . . . ; Na
n = Na

b

do A od
]| : MI

Similar to our definition of action systems, V denotes a vector of state-variables
of types T , initialized with a value of I. A class may have m methods, each one
having a name and a body: M i =df (M i

n, M i
b) (1 ≤ i ≤ m). As in action systems,

the class may import a set of methods MI from other classes. Like before, we do
not allow for recursive calls of methods (so we can easily in-line the calls), and
named actions may only be called from within the do od-block. Notice that this
implies that methods are “public”, as they can be called by any other method
or action. Again, methods are free to return a value while named actions may
only take input parameters.

We restrict an object-oriented action system to a finite set of classes C =df

{C1, . . . , Ck} and a finite set of objects. Practically, this means that we allow
object-instantiation only during state-variable initialization, which permits us a
rather easy check of finiteness. When a class in an object-oriented action system
is marked as autocons, one instance of the class will be created automatically at
system start and is called a “root object”.

We assume that all objects of one class have the same priority. Between objects
of different classes, however, we allow ordering with the help of the prioritized
composition operator: we introduce a so-called system assembling block (SAB).
The SAB, which is an extension to the work of [4], specifies the ordering of
priorities between objects of different classes. We rely extensively on this feature
in order to model, e.g., event broadcasting, as is discussed in Section 4.4. The
syntax of the system assembling block is defined by the following grammar.

SAB ::= Cn ((� | //) SAB)?

Notice that the non-deterministic choice operator denotes parallel composition
and the prioritizing composition operator expresses a prioritizing composition of
objects. As an example, C1// C2 means that only if there is no action enabled
in any of the C1 objects, actions of any of the C2 objects will be looked at.

Hence, we define an object-oriented action system as a 3-tuple (C,R,SAB),
where C is a finite set of classes {C1, . . . Ck}, R ⊆ C is a set of classes that
need to be instantiated once at system start, and SAB is the system assembling
block. Within the system assembling block, each class-name Ci

n ∈ C must be
listed once, and all listed names must be from CN .

The semantics of object-oriented action systems are given by a mapping to
action systems which is based on the work presented in [4]. The main idea of the
mapping is to create one action system per object and join all action systems as
specified in the system assembling block.

194 W. Krenn, R. Schlick, and B.K. Aichernig

After generating the set of all object names ON =df ∪Ci∈CONCi , in a first
step every action of a class Ci is translated into an action of an action system.
During this step, method calls are transformed into function calls of action sys-
tems. Because a function call in an action system needs to statically specify the
target action system name and the function name, i.e. looks like ActionSystem-
Name.FunctionName(. . .), and the name of the target object (action system) is
not known until runtime, the translation needs to split the method call into a
non-deterministic choice over calls to all possible action systems (objects) created
for the target type. Notice that an implementation may do this more efficiently:
here we only show how an object-oriented action system could be directly spec-
ified using the action system syntax. Also notice that during the transformation
of an object-oriented action system all named actions and methods get renamed
so that the names are unique.

In a second step, each single class Ci of an object-oriented action system is
translated into an action system: for the class Ci itself and for each object of Ci

an action system is constructed. Remember that the methods have already been
translated in the previous step. All action systems that were built in this step are
then parallel composed and form the action system A(Ci) describing class Ci.

Finally composing all action systems A(Ci) as specified in the system assembly
block completes the mapping of the object-oriented action system OO to an
action system A(OO).

3.3 Prioritizing Composition

Given two actions S1 and S2, then the prioritizing composition S1 // S2 can be
re-written using non-deterministic choice and the enabledness guard as follows
(cf. Table 1).

S1 // S2 ≡ S1 � (requires ¬g.S1 : S2 end)

Hence, in case the enabledness guard of action S1 does not hold, the system
will deterministically choose action S2 provided S2 is enabled. However, if S1 is
enabled, the system will only choose S1 because action S2 is guarded by ¬g.S1.

When prioritizing composition is applied to action systems AS1 and AS2 (as
in the SAB), it is defined such that priority is given to the actions of AS1 over
the actions of AS2. As an example, the prioritized composition AS1 // AS2 of
two action systems

AS1 = |[var X : T 1 = I1
0 ;

do A1
1 � . . . � A1

m od]| : u1

AS2 = |[var Z : T 2 = I2
0 ;

do A2
1 � . . . � A2

n od]| : u2

yields AS1 // 2:
A1 // 2 = |[var X : T 1 = I1

0 ; Z : T 2 = I2
0 ;

do (A1
1 � . . . � A1

m)

Mapping UML to Labeled Transition Systems for Test-Case Generation 195

// (A2
1 � . . . � A2

n) od

]| : (u1 ∪ u2) \ (v1 ∪ v2)

where vi denotes all variables exported from action system ASi.
Like on actions, prioritizing composition is associative on action systems. How-

ever, it does not in general distribute over parallel composition to the right when
used on action systems. This is due to local variables that would be duplicated.

3.4 Complex Data Types

Finally we add complex data types, such as maps, lists, and tuples (besides ob-
jects) to our language of OOAS. Most operators on these complex types were
taken from the set of operators defined in the Vienna Development Method
(VDM) [8,9] and include domain/range restrictions, and distributed union/in-
tersection among other standard operators. We also allow array-like access of
list elements and set operators to be working on lists.

3.5 Trace Semantics

For black-box test-case generation purposes, we are interested in the abstract
computation sequences, i.e. traces, of an action system. In [2] the computation of
an action system starting from an initial state γ0 is defined as a possibly infinite
sequence t of the form

t =df γ0
Si−→ γ1 · · ·

with each g.Si enabled in the transition’s initial state.
We will use the concept of named actions to define more abstract computation

traces: we extend the name of named actions to include markers for observable
and controllable actions. All methods and all unmarked actions are considered
internal. Hence, any name N i

n of a named action is built according to the fol-
lowing grammar.

N i
n ::= (’obs’ | ’ctr’ |’ ’)’ ’ Identifier

Informally, an abstract computation sequence starting from an initial state γ0 is
a possibly empty or infinite sequence tabs of the form

tabs =df γ0
Ni

n−→ γ1 · · ·

where
Ni

n−→ means the application (call) of the action body N i
b of action N i when

g.N i
b holds at the transition’s initial state or there is some sequence of basic

actions (including method calls) γj
Si−→ · · · starting at the current state γj and

leading to a state where g.N i
b holds.

Notice that the concept of labeled actions can already be found in [2] and
that in [10] a similar event-based view of action systems is taken.

196 W. Krenn, R. Schlick, and B.K. Aichernig

4 Chosen UML Semantics

Since many UML constructs represent rather complex behavior, mapping to
OOAS means also implementing these constructs in OOAS. Because of the size
of UML, not only would full feature support be a major effort, but many elements
simply are not useful in the context of behavioral test models. Therefore, we limit
the transformation tool to a subset of UML.

In the following subsections, we describe the selected subset along with some
motivation and then four of the more interesting aspects of the transformation
are discussed, along with the taken decisions regarding semantic interpretation.

4.1 Used UML Subset

In the context of embedded and safety critical systems, modeling with state
machines is quite common and fits the needs of the domain. The UML subset
supported by the transformation therefore comprises class diagrams, state ma-
chines and a subset of OCL. The selection is mainly based on the needs of the
demonstrator applications within MOGENTES; some state-machine concepts
that were intentionally left out, like deferred triggers and history states, could
be added when needed. Table 2 summarizes all supported UML elements. In the
table, “Simple” Inheritance means that we do not support any polymorphism
or late-binding. It is set in brackets as our tool-support for inheritance is not
yet complete. Also, while the transformation in principle supports the float data
type, we do not use it currently. Method and effect opaque behavior bodies are
filled using a minimal custom language that can be used to express signal send-
ing/broadcasting, method calling and assignment. If needed, this small language
can easily be replaced by another one, e.g., the Object Action Language (OAL).

In the transformation, we strive for following UML v2.2 Standard. Nonetheless
we have made some design choices, aside from the selected elements: object

Table 2. Supported UML Elements

“
T

y
p
es

”

Class
Enums
Signal
Bool
Int
(Float)

C
la

ss
es

Active/Passive
Associations
(“Simple” Inheritance)
Member Fields
Methods Def. + Body
Signal Reception

O
C

L

and, or, not, implies
=, <, >, <=, >=
union, intersect
select, collect
exists, forall, oclIsInState
Literals (Numbers, Bool)

S
ta

te
M

a
ch

in
es

Substate Machine
Orthogonal Regions
(Final-, Initial-, Pseudo-) State
Entry, Exit Action
Transitions with Effects
Trigger with Change/Signal/Call/Time Events
Constraints (OCL)
Junctions, Choice

Mapping UML to Labeled Transition Systems for Test-Case Generation 197

instantiation is limited to the initialization phase while destruction of objects
is not used at all. This fits well into the current practice in embedded systems
design, where a constant, limited and predictable memory footprint is wanted.
This also avoids some of the semantic variation points on deletion/creation in
context of composition and aggregation relations between classes.

Classes, member-fields and method definitions map easily to the respective
counterparts in the OOAS as described in the previous section. Mapping of in-
heritance is also straight forward, provided the subclass is a valid superposition-
refinement of the superclass. Behavioral aspects are mainly expressed with state
machines in the selected UML subset; while there is a similarity between state
machine transitions and guarded actions, some of the features of UML state
machines need some more thought on how to implement them in OOAS.

4.2 Events

Transitions in UML state machines are triggered by events. There are four trig-
ger types: signal triggers, call triggers, change triggers and time triggers. All
events concerning an object are stored in the object’s event pool until they are
consumed, e.g., by transitions. Although we assume that there is always only one
external input event at a time, multiple objects might be interested in an event,
e.g., a signal reception event, and processing the event might produce further
events before the initial events are consumed in the other objects. Hence the
need to implement an event-management logic.

Most models are developed with an assumption of in order processing of
events, therefore we decided to use event queues, implemented as lists in OOAS.
The event distribution logic of the respective event type adds the event at the
end of the list. State machine transitions consume events from the front of
the list. Providing real pool behavior with OOAS can be easily done by non-
deterministically choosing the event to process next, at the cost of increased
non-determinism.

A transition path (one direct transition between states or a series of transitions
connected by choice pseudo-states) is implemented as a named action of the
following form:
1 transit ion OpenAndLocked to ClosedAndLocked =
2 requires (s t a t e = OpenAndLocked) and
3 (events <> [n i l]) and
4 (hd events) [0] = rece ived AlarmSystem Close) :
5 s t a t e := ClosedAndLocked
6 end ;
7 /� . . other t r an s i t i on s . . �/
8 dequeue =
9 requires events <> [n i l] :

10 events := t l s e l f . events
11 end

The requires expression (guard) of the transition tests if the object is in the
source state, and whether the first event in the event queue is one of the trigger
events of the transition. In case the transition has a guard, it is also checked.
All actions modeling transitions are combined by non-deterministic choice as
follows.

198 W. Krenn, R. Schlick, and B.K. Aichernig

1 do
2 ((t rans i t ion Armed to Alarm ;
3 cal l AlarmArmed SetOff ;
4 ca l l Opt i ca lAlarm SetOn ;
5 ca l l Acoust i cAlarm SetOn)
6 [] transit ion OpenAndLocked to ClosedAndLocked
7 [] /� . . other t r an s i t i on s . . �/
8) // dequeue ()
9 od

As can be seen, entry and exit actions, e.g., call AlarmArmed SetOff, are se-
quentially composed with the transition action. Transition effects, if present,
are treated in the same manner. Dequeuing of the event is done in the dequeue
action by removing the head-element of the event-list. The dequeue action is
enabled only if there is no enabled transition left. This allows modeling of events
triggering multiple transitions as well as events that enable no transition, as re-
quired by the standard (cf. [1], State Machine, p.566). We discuss the handling
of multiple transitions for one event in detail in Subsection 4.3.

Calls and Signals. After an object has received a signal or a method of the object
was called, the corresponding events are added to the object’s event queue.
(Currently, there is no support for handling synchronous method calls.) We
represent these events in the OOAS as data-tuples, hence the event queue is
a list of tuples, and is initially empty.
1 types
2 t eventname AlarmSystem = { rece ived AlarmSystem Close ,

rece ived AlarmSystem Lock , . . . } ; /�enumeration�/
3 t event AlarmSystem = (t eventname AlarmSystem) /� tup l e �/
4 var
5 /� ob je c t event queue �/
6 events : l i s t [7] of t event AlarmSystem = [n i l]
7

8 methods
9 /� add a lock event to queue �/

10 r c v Lock =
11 events := events ˆ [t event AlarmSystem (

rece ived AlarmSystem Lock)]
12 end ;

If there are call parameters and signal properties, the event-type has to be
extended to provide place for the event name itself and all parameters. In the ex-
ample above, there are no properties or parameters, hence t event Alarmsystem
is a 1-tuple.

According to the UML standard, signal transmission might be lossy, out of or-
der, or even allow duplication of signals. As a practical example we may consider
a distributed embedded system using the CAN bus: there, message transmission
is based on priorities. If we want to model this kind of behavior, we need to ex-
plicitly represent it in the UML-model as our transformation guarantees in-order
message processing.

4.3 Object Concurrency and Regions

There are two different sources of concurrency in UML models. One source are
active classes, the other one are orthogonal regions in state machines. Since the

Mapping UML to Labeled Transition Systems for Test-Case Generation 199

AlarmSystem_StateMachine
 Region_0

Alarm

Activate Alarms /entry
Deactivate Alarms /exit

Flash

FlashAndSound

Armed

Show Armed /entry
Show Unarmed /exit

ClosedAndLocked

OpenOrUnlocked

SilentAndOpen

 Region_1

Closed

IsOpen

 Region_2

Unlocked

Locked

when oclIsInState(Unlocked)

30 / Deactivate Sound

300

when oclIsInState(IsOpen)

when oclIsInState(Closed)

20

when oclIsInState(Closed)
and oclIsInState(Locked)

OpenClose

Lock Unlock

when oclIsInState(IsOpen)

Fig. 3. Car Alarm System - State machine implemented using orthogonal regions

UML standard does not request true parallel execution we decided to use the
interleaving semantics provided by the non-deterministic choice operator. There-
fore, concurrent execution of active classes can be trivially mapped to a parallel
composition of classes of an OOAS (cf. Section 3). The resulting interleavings of
the active objects represent all possible “sequentializations”.

The second source of concurrency are orthogonal regions of state machines.
State machines and states may be split into two or more parallel active regions, so
called orthogonal regions. To discuss our support of orthogonal regions, we extend
the testing-model presented in Section 2. Instead of permitting an input signal,
e.g., Open, only at certain places, we take a more realistic view and add two or-
thogonal regions. Each of the new regions has two states and the state machine
may flip between these states when encountering a matching input signal. This
may happen at any time and “runs” in parallel with the main-logic of the car-
alarm-system. Fig. 3 shows the resulting state machine that includes all behavior
that was possible in our first CAS-version. Notice that the UML standard does
not specify the order in which parallel enabled and selected transitions have to
fire (cf. [1], State Machine, p. 566). Hence we are allowed to map this type of con-
currency to non-deterministic choice over enabled transitions again.

Since we need to memorize the state of each region of the state machine
(notice that sub-states of a state automatically lie in a separate region) we need
to introduce a state variable for every region in the OOAS. Below we sketch the
state variable definitions for the CAS with regions.
1 types
2 /� enumeration types for c l a s s s t a t e v a r i a b l e s �/
3 AlarmSystem Region 2 = {AlarmSystem Region 2 Unlocked , . . . } ;
4 AlarmSystem Region 0 Alarm Region 0 = {

AlarmSystem Region 0 Alarm Region 0 In i t ia l 0 , . . . } ;
5 AlarmSystem Region 0 = {AlarmSystem Region 0 In i t ia l 0 , . . . } ;
6 AlarmSystem Region 1 = {AlarmSystem Region 1 In i t ia l 0 ,

AlarmSystem Region 1 IsOpen , AlarmSystem Region 1 Closed}
7 var
8 /� c l a s s s t a t e v a r i a b l e s �/
9 Region 2 : AlarmSystem Region 2 = Ala rmSys t em Reg i on 2 In i t i a l 0 ;

10 Region 0 Alarm Region 0 : AlarmSystem Region 0 Alarm Region 0
= . . . ;

11 Region 0 : AlarmSystem Region 0 = . . . ;
12 Region 1 : AlarmSystem Region 1 = . . . ;

200 W. Krenn, R. Schlick, and B.K. Aichernig

The state of the object is made up from all region states with an active parent
region. Sub regions of inactive states are ignored for the moment, but can be
used to support history pseudo states. The transitions from Locked to Unlocked
and from FlashAndSound to Flash in the CAS are translated to the following:

1 t r an s i t i on Locked to Un l ocked Tran s i t i on 0 =
2 requires ((Region 2 = AlarmSystem Region 2 Locked)
3 and (not consumed Region 2) and (events <> [n i l])
4 and ((hd events) [0] = rece ived AlarmSystem Unlock)) :
5 Region 2 := AlarmSystem Region 2 Unlocked ;
6 /� se t consumed f l a g s �/
7 consumed Region 2 := true
8 end ;
9 t r an s i t i on F l a shAndSound to F la sh Tran s i t i on 0 =

10 requires ((Reg ion 0 Alarm Region 0 =
11 AlarmSystem Region 0 Alarm Region 0 FlashAndSound)
12 and (Region 0 = AlarmSystem Region 0 Alarm)
13 and (not consumed Region 0 Alarm Region 0)
14 and (events <> [n i l])
15 and ((hd events) [0] = t ime tr igge r F lashAndSound 30 Flash)) :
16 Region 0 Alarm Region 0 :=

AlarmSystem Region 0 Alarm Region 0 Flash ;
17 /� se t consumed f l a g s �/
18 consumed Region 0 Alarm Region 0 := true
19 end

The consumed flags in the OOAS-code are necessary to guarantee standard-
conforming behavior of transitions in orthogonal regions that are triggered by the
same event. When the consumed flag for a region is set, it means that the event has
already been processed by the region. Hence the transitions of the region depend-
ing on events must not fire as long as the flag is set: each transition tests for its
region’s consumed flag being false and sets it when it is done. The dequeue action
then resets all flags. Transitions in sub-states may also consume events for the re-
gion and in fact have priority over transitions with the same trigger in higher level
regions. To ensure this behavior, before processing the next transition, the con-
sumed flags for regions whose child regions have the flag set, are set. Furthermore,
transitions within sub-state machines are put first in a prioritized composition to
mirror the priority of transitions given by the standard, as can be seen below.

1 actions
2 mark Region 0 cond i t iona l consumed =
3 requires consumed Region 0 = fa l se
4 and (consumed Region 0 Alarm Region 0) :
5 consumed Region 0 := true
6 end ;
7 /� other ac t ions �/
8 do
9 (t r an s i t i on F l a shAndSound to F la sh Tran s i t i on 0 ;

10 ca l l Acou s t i cA la rm Se tOf f)
11 //
12 mark Region 0 cond i t iona l consumed ()
13 //
14 (
15 t r an s i t i on Un l ocked to Locked Tran s i t i on 0 =
16 [] /� other t rans i t ion paths �/
17)
18 // dequeue ()
19 od

Mapping UML to Labeled Transition Systems for Test-Case Generation 201

4.4 Input / Output

There is no canonical form to express borders of a system and I/O across these
borders in UML. For our purposes, we use a self-defined, minimal UML profile,
providing the class stereotypes <<system under test>> and <<environment>>
as we have already shown in Fig. 1. Classes without one of these stereotypes are
considered to be part of the SUT.

There are several ways of communication between the SUT and its environ-
ment classes:

Incoming signals. In UML, incoming signals are modeled by signal receptions
either in the SUT class or in an interface implemented by the SUT class. The
latter is used for signals not directly handled by the SUT class but delegated
to another class. In the OOAS code, this is modeled by a controllable action
that puts the signal event into the event queues of all objects registered as
listeners on this signal.

Outgoing signals. Outgoing signals are modeled as signal receptions in the
environment classes in the UML model. In the OOAS code, this is mapped
to an observable action that is called when the signal sending occurs.

Outgoing calls. In UML, outgoing calls are modeled as methods of environ-
ment classes (like the setOn/setOff methods in the Car Alarm System). In
the OOAS this is mapped to a call of an observable action. If the callee has
a return value, the observable action is directly followed by a controllable
action.

Incoming calls. Incoming calls are modeled as method invocations of the SUT
class in UML. In the OOAS this is reflected by a call of a controllable action.
If the callee has a return value, the controllable action is directly followed
by an observable action.

The classes in the OOAS directly derived from classes in the UML model are
accompanied by two additional classes: model and environment. The model
class is put before the SUT class in a prioritized composition and provides house-
keeping functionality like distributing broadcast signals and time triggers (see
next subsection). The environment class is put after the SUT class in a priori-
tized composition in the SAB and contains all the controllable actions like signal
receptions. The system assembling block for the CAS is shown below.
1 /� a l l d e f i n i t i on s be fore �/
2 system
3 model // AlarmSystem // env i ronment

External inputs are put last in the OOAS execution because internal opera-
tions are assumed to happen in zero time steps and therefore would always be
completed before the next input can happen - resulting in a run-to-completion
behavior.

One important semantical difference between the behavior of the OOAS- and
the UML model concerns the handling of input events that do not enable any
transition in the current state of the state-machine. In the UML standard for
state-machines (this is a semantic variation point for protocol state-machines)

202 W. Krenn, R. Schlick, and B.K. Aichernig

it is requested that these inputs are ignored (cf. [1], State Machine, p. 566).
We deviate from the behavior specified in the UML standard and only allow
inputs that enable transitions. The reasons for this design choice are among the
following.

– Firstly, we use the input-output conformance relation (IOCO [11]) for test-
ing. This conformance relation enables us to work with partial models, which
is an advantage we want to preserve. Allowing all input events at all times
would make the testing model input complete and disallow the use of several
partial models working on the same inputs for test-case generation. Notice
that IOCO assumes the implementation to be input-enabled.

– Secondly, disallowing inputs that are ignored also has the benefit of shrinking
the state-space, which is an advantage during test-case generation: models of
other demonstrators within the MOGENTES project are significantly more
complex than the car alarm system.

Hence, we limit the OOAS to a non-input-enabled system. Within the OOAS-
code, enabling and disabling of controllables is controlled via flags that are
managed by the model class.

4.5 Time Triggers

A time triggered transition fires a given amount of time after entering the source
state if the state has not been left before. Object-oriented action systems, as
described, have no notion of time, hence we need to emulate it. We also need to
say that our support of time is restricted to cases of observable, variable delay:
we do not control the SUT via timeouts.

We use an additional action after(t), which is non-deterministically composed
with the actions representing input from the environment, to mark the observa-
tion of passing time. Notice that we do not allow the waiting time to be split:
two consecutive after(t) may not occur without either the first causing a time
trigger to fire or a controllable action is used between them. This avoids series
of after(t) actions which can be represented by one having a larger t parameter.

The time trigger functionality is realized by managing an ordered list of active
timers. When a state with a leaving time triggered transition is entered, the timer
is registered with the value of the time trigger.

The occurrence of after(t) reduces all timers in the list by the value of t. When
a timer value is reduced to zero this way, the corresponding time trigger event
is added to the event queue of the registered object. To simplify the implemen-
tation, we limit the allowed value of t to the minimum value of all registered
timers. The following pseudo-code sketches the after action.
1 obs after (c wai t t ime : t t ime) =
2 requires c wai t t ime > 0 and wait a l lowed and
3 (len m. ge t t ime r s () > 0) and (t = min timeout (m. ge t t ime r s ())) :
4 /�update timers and event queue�/
5 end
6

7 do

Mapping UML to Labeled Transition Systems for Test-Case Generation 203

8 var t : t t ime : after (t)
9 []

10 r e c e i v e e x t e r n a l s i g n a l C l o s e ()
11 /� fu r the r recept ions �/
12 od

Always taking the minimum time of the next timer due as a waiting time disal-
lows certain behaviors, as is demonstrated in Fig. 4.

StateMachine_0

State_0 State_1 State_2

State_3

State_4

Signal_1

[else] / send_Signal_2

[oclIsInState(State_3)] / send_Signal_3

5 Signal_0

2

Fig. 4. Simple State Machine Example with Interdependent Time Triggers

In the example, due to the restriction to move to the next timer firing, a trace
like

ctr Signal_1, obs after(4), ctr Signal_0 ,after(1), obs Signal_3

cannot be taken any longer. Therefore we lose the observation Signal 3 in the
example. In order to mitigate this shortcoming without the need to enumerate
every time value that is smaller than the time value of the next timer firing, we
propose to add non-deterministic transitions in the UML model that explicate
these additional interleavings. Notice that this might be done on the fly by a
tool that over-approximates such situations and adds the relevant transitions.

5 Results

We have implemented the presented transformations in a tool chain compris-
ing two applications. The first utility takes a UML model and generates the
object-oriented action system code. The second tool (“Argos”) then converts
the OOAS to an action system that is the input for our test-case generator
called “Ulysses” [12,13]. As a second option, Argos is able to generate an im-
plicit labeled-transition system in CADP-style (cf. [14]). All figures in this section
were produced using this second back-end of Argos and the CADP tools.

Table 3 shows some basic figures for three different models of the car alarm
system. The two one-region-only models are branching bisimilar [15] and in-
cluded (modulo branching equivalence) in the multi-region model. Within the
table, B-Min. stands for a minimization using strong bisimulation [16], while
W-Min. stands for a sequence of weak-trace minimization that eliminates all

204 W. Krenn, R. Schlick, and B.K. Aichernig

Table 3. Comparison of CAS Models

One Region Mult. Regions

LoC UML [#] – 263 273
LoC OOAS [#] 105 720 790
LoC impl. LTS [#] 2880 13 420 14 430

States [#] 28 167 503
B-Min. States [#] 22 58 159
W-Min. States [#] 18 18 26

Transitions (hidden) [#] 37 (7) 202 (140) 742 (662)
B-Min. Transitions (hidden)[#] 31 (4) 67 (39) 178 (134)
W-Min. Transitions [#] 27 27 42

Time Gen./Compile [sec] 0.1/1.0 0.3/2.5 0.4/2.5

internal transitions followed by a minimization using strong bisimulation. The
lines-of-code (LoC) figures as well as the time figures are reproduced only in
order to give a hint on the complexity and performance. The experiments were
carried out within a virtual machine running Ubuntu 9.04 on a Lenovo T400
laptop running Windows Vista. During the development of the models (and
tools), we extensively used the animation, model-checking, minimization, and
bisimulation capabilities offered by the CADP toolbox.

The first (left-to-right) model in the table is a hand-crafted OOAS model of
our one-region car alarm system. It serves the purpose of showing the minimal
number of lines necessary to model the CAS behavior. The second model is
the UML-model presented in Fig. 2, and the third one is the multiple-regions
CAS-model that was presented in Fig. 3.

Because the first model omits any event-handling overhead it has significantly
less lines of code than the second model. It can also be seen that the percentage
of hidden, i.e. internal, transitions is much lower for the first model: the event
processing machinery contributes a lot of hidden transitions. These additional
transitions also blow up the non-minimized state space, as can be seen in the
table (167 vs. 28 states). Notice that the third model defines more testable
behavior, which is reflected in additional states and transitions. In particular
the third model allows for tests that send Open and Close events while being in
the alarm state. However, it can be proved that under branching bisimulation
(we are not interested in internal transitions) all the behavior specified in the
second model (Fig. 2) is still present in the third one (Fig. 3).

While for the first model only one object is instantiated, models two and
three comprise three objects each: the first object is used for event processing
and house keeping, the second one models the alarm system itself, and the last
one models the environment and it’s capabilities of sending events.

Finally, Fig. 5 shows the explored state-space (weak-trace minimized) of our
running one-region example. Notice the appearance of the observable “after”,
that models the observation of passing time.

Mapping UML to Labeled Transition Systems for Test-Case Generation 205

Fig. 5. Alarm System - Labeled Transition System

6 Conclusion

We have presented our mapping of a UML-subset to object-oriented action sys-
tems. It turns out that the mapping is relatively straight forward. In particu-
lar, we map concurrency to standard conformant non-deterministic choice, treat
event processing as in-order and loss-less, and support time triggered transitions
via timer queues. Having said that, some of our design decisions give our models
a behavior that deviates from the UML standard: In case of time triggered tran-
sitions, we have proposed a way around this limitation, while in the case of the
non-input-enabledness of the model we argue with the support of partial test-
models. It is important to say that none of these choices constitute a principal
limitation of our approach.

Other contributions of this paper are the extension of object-oriented action
systems with prioritized composition and a system assembling block, the presen-
tation of a tool chain that maps UML diagrams to labeled transition systems,
and the discussion of a case study taken from industry. We have also demon-
strated our ability to check that a refined model preserves the behavior of the
more abstract one and we have given hints on how we validate our tools.

It is out of the scope of this paper to review all UML semantics, however,
closest to our work on mapping UML to action systems is work on defining a
UML profile for action systems (cf. [17]). This work is exactly the opposite of
ours, as it aims to add a special UML profile that maps one-to-one to action
systems. There has also been work on defining a mapping of UML to B which,

206 W. Krenn, R. Schlick, and B.K. Aichernig

according to [18], did not entirely meet the expectations as schematic translations
that attempt to cover a broad class of UML models usually result in B models
that are hard to read and quite unnatural. Because we do not aim at supporting
a broad class of UML models in MOGENTES – in fact we are interested in
supporting (partial) test models that are made from the requirements – and
since the mapping to object-oriented action systems feels very natural, we do not
suffer from the problem of ’unnatural’ OOAS models. (Automatically generated
code, however, always is a pity to read.)

By giving the action systems abstract trace semantics and generating labeled
transition systems for them, we can leverage existing tools, such as the well-
known CADP toolbox: checking of model-inclusion, absence of particular prop-
erties, and test-case generation becomes the problem of invoking the right CADP
tool.

Finally, future work will concentrate on dealing with more complex models
and finishing tool support for inheritance.

References

1. OMG: OMG Unified Modeling Language (OMG UML), superstructure, Version
2.2. (2009)

2. Back, R.J., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. Distributed Computing 3(2), 73–87 (1989); Appeared previously in 2nd
ACM SIGACT-SIGOPS Symp. on Principles of Distributed Computing (1983)

3. Back, R.J., Sere, K.: Stepwise refinement of action systems. Structured Program-
ming 12, 17–30 (1991)

4. Bonsangue, M.M., Kok, J.N., Sere, K.: An approach to object-orientation in action
systems. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 68–95. Springer,
Heidelberg (1998)

5. Sekerinski, E., Sere, K.: A theory of prioritizing composition. Technical Report 5,
Turku Centre for Computer Science (1996)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Inc., Englewood Cliffs
(1976)

7. Back, R.J., Sere, K.: Superposition refinement of parallel algorithms. In: Proceed-
ings of the IFIP TC6/WG6.1 Fourth International Conference on Formal Descrip-
tion Techniques for Distributed Systems and Communication Protocols, FORTE
1991, pp. 475–493. North-Holland Publishing Co, Amsterdam (1992)

8. Fitzgerald, J., Larsen, P.G.: Modelling systems: practical tools and techniques in
software development. Cambridge University Press, New York (1998)

9. Lucas, P.: Formal semantics of programming languages: VDL. IBM J. Res.
Dev. 25(5), 549–561 (1981)

10. Butler, M., Morgan, C.: Action systems, unbounded nondeterminism, and infinite
traces. Formal Aspects of Computing 7, 37–53 (1995)

11. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

12. Brandl, H., Weiglhofer, M., Aichernig, B.K.: Automated conformance verification
of hybrid systems. In: QSIC (2010) (under review)

13. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W.: Model-based mutation testing
of hybrid systems. In: Proceedings of Formal Methods for Components and Objects
FMCO 2009 (2010) (under review)

Mapping UML to Labeled Transition Systems for Test-Case Generation 207

14. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the
construction and analysis of distributed processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

15. Glabbeek, R.v., Weijland, W.: Branching time and abstraction in bisimulation
semantics (extended abstract). In Ritter, G., ed.: Information Processing 89, Pro-
ceedings of the IFIP 11th World Computer Congress, San Fransisco 1989, North-
Holland (1989) 613–618 Full version in Jounal of the ACM 43(3), 1996, pp. 555–600.

16. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of the
5th GI-Conference on Theoretical Computer Science, London, UK, pp. 167–183.
Springer, Heidelberg (1981)

17. Westerlund, T., Seceleanu, T.: An UML profile for action systems. Technical Report
581, Turku Centre for Computing Science (December 2003)

18. Fekih, H., Ayed, L.J.B., Merz, S.: Transformation of B specifications into UML
class diagrams and state machines. In: Proceedings of the 2006 ACM Symposium
on Applied Computing, SAC 2006, pp. 1840–1844. ACM, New York (2006)

	Mapping UML to Labeled Transition Systems for Test-Case Generation A Translation via Object-Oriented Action Systems
	Introduction
	A UML-Model
	Testing Interface and Instantiation
	State Machine
	Semantic Variation Points

	Object-Oriented Action Systems
	Action Systems
	Object Orientation
	Prioritizing Composition
	Complex Data Types
	Trace Semantics

	Chosen UML Semantics
	Used UML Subset
	Events
	Object Concurrency and Regions
	Input / Output
	Time Triggers

	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

