
VBPMN: Automated Verification of BPMN

Processes

Ajay Krishna1, Pascal Poizat2,3, and Gwen Salaün1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble, France
2 Université Paris Lumières, Univ Paris Nanterre, Nanterre, France

3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR7606, Paris, France

Abstract. Business process modeling is an important concern in enter-
prise. Formal analysis techniques are crucial to detect semantic issues in
the corresponding models, or to help with their refactoring and evolution.
However, business process development frameworks often fall short when
it comes to go beyond simulation or syntactic checking of the models.
In this paper, we present our VBPMN verification framework. It features
several techniques for the automatic analysis of business processes mod-
eled using BPMN, the de facto standard for business process modeling.
As such, it supports a more robust development of business processes.

Keywords: business processes, BPMN, verification, evolution, tool, pro-
cess algebra, LNT, labelled transition system, model transformation.

1 Introduction

Mastering business processes has become a central concern in companies and or-
ganizations. The modeling of these processes is the first step in order to refine, op-
timize, or make them evolve while reducing costs and increasing incomes. BPMN
is a workflow-based notation that has been published as an ISO standard [11,9],
and thus is used widely for business process modeling. Several frameworks have
been developed in order to support the development of BPMN processes. They
mostly provide modeling, simulation, or execution features. However, but for
syntactic checking, these frameworks do not provide any advanced, i.e., behav-
ioral semantics-related, support for analyzing the process models.

In this paper, we present a verification framework, VBPMN, that is freely
available for download [1]. It enables one to verify several properties of inter-
est on BPMN processes. VBPMN relies on an intermediate process meta-model
called PIF (Process Intermediate Format). This pivot meta-model, and its XML
representation, open the way to the use of different process modeling notations
as front-end. They also enable us to develop back-end connections to the input
languages of several verification tools, and as a consequence to several kinds of
verification. For now, we have focused on BPMN as a front-end, and on connec-
tion to the CADP verification toolbox [7] using one of the input languages it
supports, LNT [3], and the SVL verification scripting language [6]. It is worth

2 Ajay Krishna, Pascal Poizat, and Gwen Salaün

PIF

PIF

business process v 1.0

p
ro

c
e

s
s
 d

e
s
ig

n

business process v 2.0

p
ro

c
e

s
s
 e

v
o

lu
ti
o

n PIF

B
P

M
N

 t
o

 P
IF

m
o

d
e

l
to

 m
o

d
e

l
tr

a
n

s
fo

rm
a

ti
o

n

B
P

M
N

 t
o

 P
IF

m
o

d
e

l
to

 m
o

d
e

l
tr

a
n

s
fo

rm
a

ti
o

n

BPMN front-end

VBPMN Framework

Web App User Interface

VBPMN Framework

Web App Verification Process
BPMN Designer

Activity, Bonita BPM, ...

CADP back-end

CADP
property

verification

tools

SVL

SVL

LNT

LNT

LNT

v
e

ri
fi
c
a

ti
o

n

s
c
ri
p

t
g

e
n

e
ra

to
r

P
IF

 t
o

 L
N

T

m
o

d
e

l
to

 t
e

x
t
tr

a
n

s
fo

rm
a

ti
o

n

P
IF

 t
o

 L
N

T

m
o

d
e

l
to

 t
e

x
t
tr

a
n

s
fo

rm
a

ti
o

n

CADP
equivalence

checking

tools

Y verification toolbox

property verification

equivalence checking

formal proof

testing

PIF
model

Y back-end

model to text transformation

from PIF to Y input languages

X front-end

model to model transformation

from X to PIF

X
model

Y
model

Y
script

VBPMN architecture

workflow-based languages:

BPMN, UML activity diagrams, EPC, ...

VBPMN / verification of properties

VBPMN / evolution checking and model comparison

Fig. 1. Overview of VBPMN.

emphasizing that other modeling notations can be connected to PIF, e.g., Event-
driven Process Chains (EPC) or UML activity diagrams, since they share an im-
portant subset of concepts and associated semantics. Complementary back-ends
are already under development, concretely, a transformation from PIF to the
input language of an SMT solver to support data-flows and data contraints in
processes, and a transformation from PIF to Maude to support the quantitative
analysis of timed processes.

Figure 1 gives an overview of VBPMN. It comes with a Web application that
takes as input BPMN-2.0-compliant business processes. The processes are first
transformed into PIF. Then, from the PIF descriptions, models in LNT and
model-specific verification scripts in SVL are generated. In the end, CADP is
used to check either for functional properties of a given business process or for
the correctness of the evolution of a business process into another one. This later
kind of verification being supported by VBPMN is particularly helpful in order
to improve a process wrt. certain optimization criterion.

The rest of this paper is organized as follows. Section 2 introduces the models
and languages supported by VBPMN. Section 3 gives an overview of the VBPMN

Web application. In Section 4, we focus on the CADP back-end, on the properties
it allows one to check, and we present experimental results. Section 5 concludes
the presentation and sketches some perspectives for our work.

VBPMN: Automated Verification of BPMN Processes 3

2 Models and Languages

VBPMN relies on an intermediate format, PIF. It allows one to support several
modeling languages, e.g., BPMN, and to target several verification tools, e.g.,
the CADP toolbox using LNT and LTS formal descriptions. We present here the
main models and languages currently supported in the framework.

BPMN. BPMN is an ISO/IEC standard since 2013 [11,9]. It is a workflow-
based graphical notation (and an XML-based language) for modeling business
processes whose development is supported by many designers and execution
frameworks, e.g., Activiti, Bonita BPM, or jBPM. In our work, we focus on
the behavioral subset of BPMN which consists of start/end events, tasks, and
gateways (exclusive, inclusive, and parallel). We support looping behaviors and
unbalanced workflows, that is, gateways without an exact correspondence be-
tween split and merge gateways. We only require that BPMN processes are
syntactically correct, which is enforced by the aforementioned BPMN designers.

PIF. PIF stands for Process Intermediate Format. We use it as a pivot meta-
model and language in order to make our approach generic and extensible. PIF
is based on the common constructs one finds in a workflow-based modeling lan-
guage. The interest of such a pivot language is that several modeling languages
can be used as input, e.g., BPMN (that is supported by now), UML, or Event-
driven Process Chains. Moreover, several verification techniques and tools can be
connected to it as a back-end, e.g., to deal with behavioral properties of models,
or with extensions of such properties to time and data-related aspects.

LNT and LTS. We have focused so far on purely behavioral properties. Ver-
ification operates on Labelled Transition Systems (LTSs). This low-level model
is especially convenient because there are many verification tools accepting this
format as input, in particular in the model checking area. A translational se-
mantics from PIF to LTSs was obtained indirectly using a model transformation
from PIF to the LNT process algebra. LNT [3] is expressive enough to encode
the expressiveness of the PIF constructs and LNT operational semantics maps
to LTSs. Further, LNT is the input formalism of the CADP toolbox [7], which
provides various kinds of analysis we reuse for formally analyzing the PIF de-
scriptions resulting from our BPMN to PIF model transformation.

Transformations. VBPMN works thanks to several model transformations, as
depicted in the generic architecture on the bottom of Figure 1. We first use a
model-to-model transformation in order to transform BPMN processes into PIF
models. Then, we use a model-to-text transformation for generating from PIF
models corresponding LNT specifications as well as CADP verification scripts
in the SVL language [6]. These scripts automate the verification selected in the
VBPMN Web interface (see Sect. 3 below for more details). Note that when one
of the verification steps described in the SVL scripts fails, one gets a witness
(i.e., a counter-example) that is presented back in the Web interface so that the
designer can use it to modify the erroneous process model.

4 Ajay Krishna, Pascal Poizat, and Gwen Salaün

3 Web Application

Business processes are usually designed by business analysts that may not be
familiar with formal verification techniques and tools. Our goal is to enable one to
take benefit from formal verification without having to deal with a steep learning
curve. The VBPMN Web Application has been developed in this direction. It
hides the underlying transformation and verification process, it provides the
users with simple interaction mechanisms, and it generates analysis results that
are easily relatable to the input process model(s). There are numerous tools
supporting the modeling of business processes. Extending a specific one, e.g. the
Eclipse BPMN designer, would limit the community that could use VBPMN.
Therefore, we have decided to architecture it as a Web application.

Technology stack. The VBPMN Web application is hosted on a Tomcat ap-
plication server. Its responsive UI invokes a RESTful API to trigger the trans-
formation from BPMN to PIF and the verification of the process models. The
use of such an API makes the platform more extensible – other people could
build custom UIs using them. Internally, the API is built using the Jersey JAX-
RS implementation. The model-to-model transformation from BPMN to PIF is
realized at the XML level (both BPMN and PIF have XML representations) us-
ing a combination of JAXB and of the Woodstox Streaming XML API (StAX),
which implements a pull parsing technique and offers better performance for
large XML models. The model-to-text transformation from PIF to LNT and
SVL is achieved using a Python script that can also be used independently from
the Web application as a command-line interface tool.

User interface. One can choose either to verify some property or to check
process evolution correctness. In the first case (Fig. 2, left), one has to upload
the BPMN process model and specify the temporal logic formula for the property.
In the later case (Fig. 2, right), one has to upload two BPMN processes, specify
the evolution relation, and optionally give tasks to hide or to rename in the
comparison (see [12] for the formal definition of the evolution relations). As a
result one can visualize the LTS models that have been generated for the BPMN
processes. Further, in case the verification fails, i.e., either the property does not
yield or the evolution is not correct, one gets a counter-example model.

4 CADP Back-End

The CADP back-end addresses business process verification using available model-
checking and equivalence checking techniques in the CADP toolbox. This is
achieved by transforming PIF models into LNT process algebraic descriptions,
and by generating specific SVL verification scripts from UI inputs.

From PIF to LNT and SVL. The principle of the PIF to LNT transfor-
mation is to encode into LNT processes all the BPMN elements involved in a
process model behavioral semantics, that is, all nodes (initial/end events, tasks,
and gateways) and all sequences flows between nodes. This gives us a set of

VBPMN: Automated Verification of BPMN Processes 5

formula

"task5 will not be done"

input process model (one)

BPMN file

result

formula does not yield

counter example
task1 . task2 . task5 is a run

input process models (two)

BPMN files

evolution relation (try #1)
conservative

result (try #1)

evolution is not correct

result (try #2)
evolution is correct

counter example (try #1)
model2 has four more runs

rvative

evolution relation (try #2)
inclusive + hiding task4 + renaming

input LTS option
see the LTSs for the BPMN models

Fig. 2. VBPMN Web application in use.

LNT processes that are then composed in parallel and synchronized accordingly
to the BPMN execution semantics. For instance, after execution of a node, the
corresponding LNT process synchronizes with the process encoding the outgo-
ing sequence flow, which then synchronizes with the process encoding the node
appearing at the end of this flow, and so on. More details on this encoding can
be found in [12], which however applied only to balanced process workflows, i.e.,
workflows where every split gateway of some kind (exclusive, parallel, inclusive)
has a corresponding merge gateway of the same kind. This limitation is no longer
present in VBPMN that now supports also unbalanced process workflows. This
has been achieved by implementing in LNT a scheduler that runs in parallel with
all other processes, keeps track of active flows, and interacts with some specific
node processes, e.g., those for inclusive merge gateways, in order to indicate
them whether they have to expect synchronization with more processes or not.

Verification using CADP. The operational semantics of the LNT process
algebra enables us to generate LTSs corresponding to the BPMN process model
given in the VBPMN UI. These LTSs may then be analyzed using CADP. VBPMN

currently provides two kinds of formal analysis: functional verification using
model checking and process comparison using equivalence checking. As far as
functional verification is concerned, one can for example use reachability analysis
to search, e.g., for deadlock or livelock states. Another option is to use the CADP
model checker for verifying the satisfaction of safety and liveness properties.

6 Ajay Krishna, Pascal Poizat, and Gwen Salaün

In these cases, since the properties depend on the input process, they have to
be provided in the UI by the analyst, who can reuse well-known patterns for
properties such as those presented in [4].

Process evolution takes as input two process models, an evolution relation
and possibly additional parameters for the relation. Several evolution relations
are proposed. Conservative evolution ensures that the observational behavior is
strictly preserved. Inclusive evolution ensures that a subset of a process behavior
is preserved in a new version of it. Selective evolution (that is compatible with
both conservative and inclusive evolution) allows one to focus on a subset of
the process tasks. It is also possible to have VBPMN work up-to a renaming
relation over tasks. If the two input process models do not fullfil the constraints
of the chosen evolution relation, a counter-example that indicates the source of
the violation is returned by VBPMN in the UI. This helps the process analyst in
understanding the impact of evolution and supports the refinement into a correct
evolved version of a process model. All the evolution relations are checked using
the CADP equivalence checker and SVL scripts for hiding and renaming.

Experiments. We used a Mac OS laptop running on a 2.3 GHz Intel Core i7
processor with 16 GB of memory. We carried out experiments on many exam-
ples taken from the literature or hand-crafted, and we present in Table 1 some of
these results. For each process, the table gives the number of tasks (T), flows (F),
gateways (exclusive, parallel, and inclusive, respectively), and two booleans in-
dicating the presence of loops (L) and unbalanced workflow structure (U). The
table finally presents the size of the generated LTS in terms of states and transi-
tions (before and after minimization modulo branching equivalence [13]) as well
as the computation time for obtaining the LTS model. We recall that one can
use this LTS for analysis purposes using model checking available for instance
in the CADP toolbox. All the examples presented in the table are compiled into
LTS within a few seconds. The main factor of state space increase is the presence
in the input process of parallel or inclusive gateways. Those gateways exhibit a
high degree of parallelism and the enumeration of all possible executions result in
larger LTSs. As far as the computation time is concerned, the number of parallel
and inclusive gateways is again the main factor of explosion as shown in the last
example of the table, which consists of several nested gateways. The presence
of loops can also increase the size of the resulting LTS and of the computation
time because this may induce additional executions to be explored.

5 Concluding Remarks

In this paper, we have presented VBPMN, our tool for the analysis of business
processes. VBPMN has a particular focus on BPMN since it is a standard, but
it may indeed support as input any workflow-based language that can be trans-
formed into the PIF meta-model and language. PIF is used as an intermediate
between workflow notations and back-end formal frameworks, i.e., formal mod-
els, equipped with associated verification techniques and tools. We have here
focused on a transformation from PIF to LTS, which is, in practice, achieved via

VBPMN: Automated Verification of BPMN Processes 7

Table 1. Experimental results.

Process Constructs LTS (states/transitions) Gen.

description T F L U Raw Min. time

Booking sys. 6 11 2 0 0
√

× 29/29 8/9 6s

Retry sys. 2 8 3 0 0
√ √

21/21 5/6 6s

Leave man. 6 13 3 0 0
√ √

36/36 9/11 6s

Acc. open. (1) 15 29 5 2 2 × × 469/1,002 24/34 6s

Acc. open. (2) 16 33 5 2 2
√

× 479/1,013 26/37 7s

Software dev. 6 19 7 0 0
√ √

40/42 12/16 6s

Publishing sys. 12 31 7 2 2
√ √

3,038/9,785 32/63 7s

Incident sys. 7 16 5 0 0 ×
√

39/41 11/13 6s

Travel org. 6 14 0 0 4 ×
√

4,546/6,155 51/77 9s

Lunch pay. 6 24 8 0 0
√ √

54/59 11/16 6s

Hand-craft. (1) 20 38 0 8 0 × × 577,756/3,388,390 334/1,174 26s

Hand-craft. (2) 20 43 0 6 6 × × 4,488,843/26,533,828 347/1,450 224s

a transformation to the LNT process algebra and reusing the LTS semantics of
LNT. These LTSs can then be analyzed using model and equivalence checking
techniques thanks to the CADP toolbox. The overall analysis process provided
by VBPMN is fully automated and freely available for download [1].

Related work. To the best of our knowledge, the existing industrial develop-
ment frameworks for BPMN, such as Activiti or Bonita BPM, do not provide
formal techniques for verifying business processes. If we broaden the scope, we
can compare to LoLA, ProM, and VerChor.

LoLA can be used to check whether a Petri net satisfies some property, using
reduction techniques and state space explicit exploration. It has been applied in
various application domains and more specifically to the verification of the BPEL
orchestration language, of Web service choreographies, and of business process
models, see, e.g., [5]. In comparison to LoLA-based works, VBPMN proposes
specific analysis techniques for the verification of business process evolution.

ProM [2] is a platform for the development of state-of-the-art process mining
techniques and tools. Process mining can be used to extract knowledge, e.g.,
under the form of process models, from execution logs. It can also be used to
monitor processes and detect deviations. VBPMN does not address mining from
logs, and assumes models are given. The techniques we propose for evolution
checking are somehow complementary to ProM where evolution can be tackled
from a deviation point of view. BPMNDiffViz [10] combines process mining and
the concept of edit distance for providing a similarity measure between two
processes. On the contrary, VBPMN has a more qualitative vision of evolution
using bi-simulations and pre-orders. The extension to quantitative evolution is
definitely an interesting perspective for VBPMN.

8 Ajay Krishna, Pascal Poizat, and Gwen Salaün

The VerChor platform [8] aims at analyzing choreographies possibly de-
scribed using BPMN choreography diagrams. An intermediate format and a
transformation to LNT was used there too. However, the focus is complementary:
process diagrams and the verification of properties and of evolution in VBPMN,
versus choreography diagrams and the verification of choreography-specific prop-
erties (synchronizability and realizability) in VerChor. Further, VBPMN supports
unbalanced workflows, while VerChor does not.

Future work. Our main perspective is to go beyond control-flow and behavioral
analysis of BPMN, and to take into account data-flow and quantitative aspects.
We are studying extensibility features for the PIF meta-model and language.
Further, we are developing new back-ends from PIF to SMT solvers for data-
flow aspects, and to statistical model-checkers for quantitative aspects.

References

1. VBPMN Framework. https://pascalpoizat.github.io/vbpmn/.
2. R. P. Jagadeesh Chandra Bose, H. M. W. (Eric) Verbeek, and Wil M. P. van der

Aalst. Discovering Hierarchical Process Models Using ProM. In Proc. of CAISE’11,
volume 734 of CEUR Workshop Proceedings, pages 33–40. CEUR-WS.org, 2011.

3. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LNT to LOTOS
Translator, Version 6.1. INRIA/VASY, 2014.

4. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In Proc. of ICSE’99, pages 411–420. ACM, 1999.

5. D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf. Analysis
On Demand: Instantaneous Soundness Checking of Industrial Business Process
Models. Data Knowl. Eng., 70(5):448–466, 2011.

6. H. Garavel and F. Lang. SVL: A Scripting Language for Compositional Verifica-
tion. In Proc. of FORTE’01, pages 377–394, 2001.

7. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox for the
Construction and Analysis of Distributed Processes. STTT, 2(15):89–107, 2013.

8. M. Güdemann, P. Poizat, G. Salaün, and L. Ye. VerChor: A Framework for
the Design and Verification of Choreographies. IEEE Trans. Services Comput-
ing, 9(4):647–660, 2016.

9. ISO/IEC. International Standard 19510, Information technology – Business Pro-
cess Model and Notation. 2013.

10. S. Ivanov, A. A. Kalenkova, and W. M. P. van der Aalst. BPMNDiffViz: A Tool
for BPMN Models Comparison. In Proc. of BPMN’15 Demo Session, volume 1418
of CEUR Workshop Proceedings, pages 35–39. CEUR-WS.org, 2015.

11. OMG. Business Process Model and Notation (BPMN) – Version 2.0. January
2011.

12. P. Poizat, G. Salaün, and A. Krishna. Checking Business Process Evolution. In
Proc. of FACS’16, LNCS. Springer. To appear.

13. R. J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in
Bisimulation Semantics. J. ACM, 43(3):555–600, 1996.

