
Formal Validation of Probabilistic Collision Risk Estimation
for Autonomous Driving

Philippe Ledent, Anshul Paigwar, Alessandro Renzaglia, Radu Mateescu and Christian Laugier

Abstract— Autonomous driving technology is rapidly advanc-
ing towards level 5 autonomy along with claims of increasing
safety on roads. However, a proper validation of such safety-
critical, complex systems and of their reliability still needs to be
addressed adequately. To this end, standard exhaustive methods
are inappropriate to validate the probabilistic algorithms widely
used in this field and new solutions need to be adopted. In this
work, we present a new approach where formal verification
is employed to validate systems with probabilistic predictions.
In particular, we focus on the risk assessment generated by a
probabilistic perception system, the Conditional Monte Carlo
Dense Occupancy Tracker (CMCDOT). This framework provides
an environment representation through Bayesian probabilistic
occupancy grids and estimates Time-to-Collision probabilities
for every static and dynamic part of the grid in near future.
Focusing on the validation of the probabilistic collision risk
estimation, we adopt the CARLA simulator to generate a large
number of realistic intersection crossing scenarios with two
vehicles. The formal verification is then performed using the
XTL model checker of the CADP toolbox, based on the definition
of appropriate Key Performance Indicators (KPIs). Finally, a
quantitative analysis that goes beyond classical temporal logic
verification is provided.

I. INTRODUCTION

The use of formal methods for verification and certification
of algorithms and mathematical logic of software is a long
standing research [1]. While our software are continuously
evolving, becoming more capable and complex, the methods
to verify software need to evolve simultaneously. Physical
and software components are getting deeply intertwined, each
operating on different spatial and temporal scales. Verification
of such automated cyber-physical systems (ACPS) is still an
open research challenge.

Autonomous vehicles represent a critical ACPS that re-
quire meticulous attention in validation. Moreover, there are
increasing demands on regulating and validating intelligent
vehicle systems to build public trust in their use. Formal
methods have already had several successful deployments in
fields like aerospace and railways [2], but autonomous driving
remains a challenging field because of the complexity of
its key components, such as: perception of the environment,
scene interpretation, decision making and undertaking actions.
Considering the fact that intelligent vehicles are supposed to
be driven on existing roads, along with other vehicles with
human drivers, a higher level of uncertainties need to be taken
into account [3]. In these scenarios, the use of probabilistic
approaches for perception and prediction become essential to

Univ. Grenoble Alpes, Inria, 38000, Grenoble, France; e-mail:
firstname.lastname@inria.fr

accurately confront the uncertainties in the environment [4].
The stochasticity of these algorithms, involving multiple states
and complex transitions between them, makes the validation
through standard approaches often unviable.

Most of the existing literature revolves around the for-
mal verification of decision algorithms [5], [6]. Researchers
are exploring formal verification techniques for Probabilistic
Model Checking [7]. Compared to conventional systems (e.g.,
discrete-time Markov models), where the formal model accu-
rately reflects the actual behaviour of the real-world system
[8], verification through formal model is fairly accurate but
it becomes more challenging for autonomous systems in
dynamic environments. In the context of intelligent vehicle
systems, where states (e.g., estimation of collisions) change
and evolve at every time step, exhaustively checking such
properties is usually not affordable in many scenarios because
of time, complexity and costs constraints.

The main contribution of this paper is a methodology
to validate perception systems based on a combination of
simulation, formal verification, and statistical analysis. The
simulation framework must comprise a realistic description
of the dynamic physical environment (e.g., urban landscape
and vehicles), the perception system under study, and a set of
relevant scenarios (e.g., leading to collisions). We consider
here the validation of the Conditional Monte Carlo Dense
Occupancy Tracker (CMCDOT) [9], in particular its collision
risk estimation functionality. Executing the simulation scenar-
ios yields traces of events containing the suitable data for
validation (timestamp, estimated probabilities of collision, po-
sition and velocities of the vehicles, etc.). Then, on each trace
obtained, a number of typical temporal properties (invariants,
safety, liveness) are verified using the XTL [10] model checker
of the CADP toolbox [11], producing quantitative verdicts
(sets of events violating the properties, with their diagnostic
information). Finally, a statistical analysis of the verdicts
is carried out, by defining an appropriate Key Performance
Indicator (KPI) for each property, using it to compute a grade
for each trace, and aggregating the results in analysis reports
using R-studio. The whole methodology has been automated
and can be instantiated in other contexts as well.

The rest of the paper is organized as follows. Section II
briefly introduces the main properties of CMCDOT, with a
particular focus on the collision risk estimation. Section III
discusses the principles of formal validation and how it is
employed on the considering problem. In Section IV the
results obtained with the analysis of intersection crossing
scenarios are finally presented and discussed.



Fig. 1: (Top) Real environment around the car and as observed
using a 64 layered lidar. (Bottom) Representation of the
environment as dense probabilistic occupancy grid output from
CMCDOT framework. Colors represents different state of each
cell in the grid: occupied static (blue), occupied dynamic
(green), empty (black), unknown area (red).

Fig. 2: The CMCDOT represents the environment as a grid,
to whose cells are associated static, dynamic, empty and
unknown coefficients. Weighted particles, which sample the
velocity space, are then associated to the dynamic part.

II. COLLISION RISK ESTIMATION

The CMCDOT framework [9] is a perception system which
provides a dense and generic representation of the environment
[12], [13] as a probabilistic occupancy grid (see Fig. 1), based
on Bayesian fusion, filtering of sensor data and Bayesian infer-
ence [14]. By exploiting specific sensor models, the gathered
data are converted in probabilistic estimations which represent
the environments as static and dynamic occupied regions, free
spaces and unknown areas (Fig. 2). This differentiation enables
the use of state-specific models, such as classic occupancy
grids for static components and sets of moving particles for
dynamic occupancy, as well as confidence estimation and
management of areas with no information.

The resulting approach is particularly suitable in situations
where incomplete or even contradictory data come from
different sensors (camera, lidars, radars, etc.). The estimation

Fig. 3: Collision risk estimation of a specific cell. Both
the future cell and the ego-vehicle positions are predicted
according to their estimated velocity. The risk of every cell
is used to integrate over time the total collision risk.

for each cell over time can be obtained from various sensors
data, whose specific uncertainty (noise, measurement errors)
is taken into consideration. Filtered cell estimations are thus
much more robust, leading to a more reliable global occupancy
of the environment, reducing false detection.

Additionally, an important feature of the CMCDOT, and the
main subject of study of this paper, is the estimation of the
collision risk for each cell of the grid. Most of the existing risk
estimation methods consist in detecting and tracking dynamic
objects in the scene [15], [16]. The simplest solution is then
to estimate a Time to Collision (TTC) by projecting the ego-
vehicle and the trajectories of other moving object in the future
[17]. Detection of moving objects requires to pre-define shape
of objects and involves fitting of object models in pointcloud to
find the location of objects in environment. As the number and
types of objects increase, the detection and tracking becomes
difficult and costly problem to solve.

The grid-based approach used in the CMCDOT framework,
instead of detecting objects, directly computes estimations
of the position of every static and dynamic cell of the grid
by linearly projecting them in near future based upon their
estimated velocity as well as the trajectory of the ego-vehicle.
These estimations are iteratively computed over short-time
periods, until a potential collision is detected. In this case a
TTC is associated to the cell from which the colliding element
came from (Fig. 3). The probabilistic estimation for different
TTCs (e.g, 1, 2 and 3 seconds) are then associated to every
cell to obtain a collision risk profile. This strategy, originally
presented in [18], presents the advantage of being model free,
avoids solving the complex problem of multi-object detection
and tracking, while integrating the totality of the available
information and providing a probabilistic estimation of the
risk associated to each part of the scene. The result of this
estimation can then be used as the starting point for any control
and decision-making system.

A. Simulation for perception

In this work, the simulation relies on the use of two
frameworks: CARLA, an open urban driving simulator [19],



Fig. 4: Simulated scenario in Carla (top) and output of
CMCDOT (bottom).

and Robot Operating System (ROS). CARLA simulation en-
vironment consists of complex urban layouts, buildings and
vehicles rendered in high quality, allowing for a realistic
representation of real-world scenarios. The ego-vehicle and
its sensors, as well as other moving vehicles, as depicted in
Figure 4, can be configured in the simulation to match with
the actual system. The provided CARLA-ROS bridge enables
data acquisition from the simulation in native ROS message
formats, where the data can be recorded, stored, and processed
by the same code running on the actual vehicle.

In order to establish the ground truth, a grid indicating the
position of all simulated objects is needed. This grid must
reflect CMCDOT’s occupation grid in the following aspects:
origin position, grid direction, cell size and velocities. The
bounding box and velocity information provided by CARLA
simulator is translated into occupancy grid at each time step
to generate the ground truth.

Currently, each lidar is simulated with the appropriate
position on the ego vehicle, the same sampling frequency and
the same data format as the physical sensor. To match the
sensing uncertainty, a Gaussian noise can be added.

In order to be able to efficiently generate a large number
of simulated environments, we have perfected a parameter-
based approach which streamlines the process through which
the dimensions and initial position and velocity of non-ego
vehicles are specified.

III. FORMAL VALIDATION

One of the main assets of CMCDOT is the possibility to
estimate the probability of collision for each cell in the grid.

The validation focuses on checking the reliability of this risk
estimation by performing a rigorous formal verification on
execution traces, and then by analyzing the output of the veri-
fication using well defined KPI in order to obtain a quantitative
evaluation of CMCDOT as grades. Three properties will be
checked: coherence, safe prediction (safety), and prediction
progress (reactivity).

These properties are defined on execution traces where
each line in the trace file is called an event. Each event
has a timestamp, the speeds of both vehicles, the probability
of collision within 1, 2, and 3 seconds, the positions of
both vehicles, and a collision indication. All data are real
numbers except the collision indication which is Boolean. We
denote P i

col(e) where i ∈ {1, 2, 3} the probability of collision
within i seconds read on event e. We denote Pcol(e) =
(P 1

col(e), P
2
col(e), P

3
col(e)) the triple that contains all three

probabilities of collision for e.
The verification consists in checking that for every trace T ,

the set of events e in T that violate each property P is empty:

∀T, T � P ⇐⇒ {e ∈ T | e 2 P} = ∅

Each trace receives a verdict file indicating for each property if
the property holds. When it does not, the verdict contains for
each property the list of violating events along with evidence
of why the event is a violation of P .

The verification is carried out using the XTL [10] model
checker of the CADP toolbox [11] dedicated to the formal
modelling and analysis of asynchronous concurrent systems.
The underlying behavioural models used within CADP are
state spaces, i.e., state-transition graphs in which transitions
are labeled by events (channel names and data values ex-
changed) executed by communicating concurrent processes.
XTL is both a language and a tool for querying state spaces.
It enables the expression of temporal logic operators, observer
automata, and to perform more general computations over
(sets of) states and transitions, also involving the data values
carried by the events. To apply these tools for CMCDOT, we
consider the execution traces as particular cases of state spaces
consisting of a single finite sequence of transitions, each one
being labeled by an event of the trace.

At time t CMCDOT’s risk grid indicates for each cell c
the probability for c to collide with the ego-vehicle within
t+1, t+2, and t+3 seconds. To proceed with our analysis,
the probabilities are abstracted into three interpretation classes:
low, transitioning and high. For simplicity’s sake, these classes
are represented by 0, 0.5, and 1 respectively. The thresholds
that separate the three classes have been fixed at 0.1 and 0.9.

A. Coherence of the risk probabilities

The three probabilities give overlapping information. In
particular, for some event e, Pcol(e) = (0, 0.5, 1) indicates
that no collision should occur during the first second following
e but one must occur before the end of the third second
following e. This collision may occur during the second
second or the third second. However certian configurations
like Pcol(e) = (1, 0.5, 0) are incoherent because they give



Interpretation of Pcol(e) Meaning in English
(0, 0, 0) Not before 3
(0, 0, 0.5) Not before 2
(0, 0, 1) Between 2 and 3
(0, 0.5, 1) Between 1 and 3
(0, 1, 1) Between 1 and 2
(0.5, 1, 1) Before 2
(1, 1, 1) Before 1

(0, 0.5, 0.5) Not before 1
(0.5, 0.5, 1) Before 3
(0.5, 0.5, 0.5) Uncertain

TABLE I: Table of coherent combinations of Pcol(e) (left)
and their meaning in English (right) given in terms of the
predicted collision. For example, “Between 2 and 3” means
that the collision should occur between two and three seconds.

contradictory indications, i.e., there should be no collision
within the next three seconds and there must be one within the
first second. Altogether there are 33 = 27 combinations for
Pcol(e) where seventeen are incoherent and ten are coherent.
In fact, the coherent combinations are only those where the
probabilities follow an order relation. Table I lists the ten
coherent configurations along with their interpretations. The
seven first are good configurations while the three last are
coherent but not very useful. In particular the last one does
not give any meaningful information for decision.

The coherence property consists in asserting for every event
e in a trace T , that the triple Pcol(e) has one of the ten
coherent configurations. This is an invariant assertion that
can be checked on every event individually regardless of the
information on other events.

B. Safe Prediction

In Table I, the interpretations (left) show that the triple
Pcol(e) is a prediction of where a collision should occur or not
during the three seconds following e. Safety properties specify
intuitively that “something bad will never happen” [20]. A
bad prediction is when Pcol(e) predicts no collision yet one
occurs or when Pcol(e) does not predict a collision yet one
occurs. Safety properties are classic in temporal logic. They
will be evaluated with an observer automaton [21], illustrated
on Figure 5. For every event e in a trace T , the observer is
synchronized with the trace taking as parameter the prediction
Pcol(e). It parses the trace during three seconds following e
observing whether a collision occurs or not as predicted. If the
automaton decides that all events of T are safe predictions
(always ending in the accepting state 4 and never in the
rejecting state 5) then T satisfies the safe prediction property
because “nothing bad happened”. This automaton, encoded in
XTL and executed on each event of T , computes the set of
events that violate this property and produces a verdict for
each of them.

C. Prediction Progress

The prediction of collision should progress in two ways as
a collision approaches. First, each one of the P i

col(e) (i ∈
{1, 2, 3}) should follow the class progression 0, then 0.5, then

Fig. 5: Safety automaton checking for each event if it is a good
or bad prediction. It is a mix between a deciding automaton
and a timed automaton. State 1 is the initial state, state 4 is the
accepting state, and state 5 is the rejecting state. For a given
event e in the trace, the automaton parses the events covering
the next three seconds. In state 1 it checks that the collision
indication during the first second corresponds to P 1

col(e). If
so, it moves to state 2, if not it moves to state 5.

1. Second, considering the triple Pcol(e) altogether, P 1
col(e)

should reach the value 1 first, then P 2
col(e), and then P 3

col(e).
A collision should only happen after this progression. However
this progression can be interrupted by a change of velocity of
one of the vehicles. If no collision is ever predicted, Pcol(e)
should remain at (0, 0, 0) for all events.

The prediction progress can be stated “once a collision starts
being predicted, the prediction will eventually progress until
a collision or a change of velocity occur”. This is a response
property, in which if no collision is predicted, Pcol(e) should
remain at (0, 0, 0) as default behavior, however it adopts a
progressing behavior in reaction to a collision starting to be
predicted. This property expresses that the only valid reason
for the prediction not to progress once it started, is a change of
velocity. This property is the intersection of a safety property
in that it waits for the collision to be predicted, and a liveness
property in that is ensures the order of the progression up to
a collision or a change of velocity.

Once again this temporal property is verified using an
observer automaton, which will reveal every evolution of the
prediction that goes against the expected progression and no
change of velocity was observed.

IV. EXPERIMENTS & RESULTS

A. Scenario description and trace details

Our simulation scenario aims at checking the behavior
of cars at a four-way crossroad and validating the Time-to-
Collision (TTC) estimated by CMCDOT. For simplification,
we bound our simulation with a rule stating that at any given
moment in time, a maximum of one simulated non-ego vehicle
is present on the crossroad. As shown in Figure 6, the ego-
vehicle (white) and non-ego vehicle (red) both start at the
same time from a given location in the Carla environment. A
PID controller maintains constant velocity for both vehicles
and the steering angle is fixed. For simplicity, we only
consider the case when both vehicles collide at a 90-degree
angle. A scenario ends when the cars collide or the ego-
vehicle completes its track, passing the intersection without



Fig. 6: Intersection Crossing scenario and CMCDOT grid.

any collision. For our study, a total of 800 traces have been
considered to generate the results reported here.

To simulate different cases, we rely on the random gener-
ation of parameters defining: the non-ego vehicle class (cars
or motorcycles), initial positions and initial speeds of the ego
and non-ego vehicles. The test cases are then run, and their
results (perception output of CMCDOT, as in Fig. 4) are stored
with a frequency of 10 Hz alongside the parameter sets. The
analysis of these datasets allows us to accurately measure the
efficiency of our perception and estimation solution.

The strong advantage of this approach is the ease with
which a large number of simulated scenarios can be generated,
ran, and analyzed.

B. Validation Results

To assess the validity of CMCDOT’s collision prediction,
the verification verdicts are analyzed using KPI in order to
produce grades as quantitative results. The KPI need metrics,
ideal grades, and evaluation functions to give grades to traces
w.r.t the metrics and the ideal values. For every property P ,
each event e in a trace T receives a grade GP (e) ∈ [0, 1]. The
ideal grade is 1 and GP (e) = 1 if e satisfies P . Each property
is given metrics to determine the severity of the violations.
Upon violation, GP (e) is reduced by a penalty factor. The
grade of a trace is the average of the grades of all its events.

The coherence property verifies the order relation within
the Pcol(e) triple for every event e in a trace. When the order
is violated (P i

col(e) > P j
col(e)), the penalty for coherence is

P i
col(e)− P j

col(e) with i, j ∈ {1, 2, 3} and i < j.
Figure 7 shows the grades for the coherence property. 95%

of the traces have only coherent predictions. In the remaining
traces, none have contradicting predictions. The incoherences
that are identified by this property are events similar to a
situation with P 1

col(e) = 1 and P 2
col(e) = 0.99. Though the

order relation is violated, the impact is minimal. Globally
CMCDOT is coherent in its predictions.

For the safe prediction property, a bad prediction occurring
on an event three seconds before a collision has time to
be corrected on the following events but a bad prediction
occurring during the last second is dangerous for driving. The
metrics take this severity scale into account. When an event e
violates the safe prediction property, the safe prediction grade

Fig. 7: Coherence results: 95% of the traces have only coherent
predictions. 5% of the traces are slightly less coherent. The
minimal grade is 0.95.

Fig. 8: Safe prediction results: 40% of the traces have safe
predictions, 45% generally have safe predictions with the
exception of a few events, 15% of the traces have low grades.

is 1 − 1/i, where i designates which of the P i
col(e) violated

the property.
Figure 8 shows the corresponding grades. The high grades

represent 85% of traces. The grades that are in [0.9, 1) come
from executions where the predictions are accurate but one
or two events late. The other grades are due to the fact
that we are stressing CMCDOT with situations where the
vehicles nearly miss or barely touch. The traces with low
grades correspond to cases where the collision is predicted
but the trace did not indicate a collision, thus giving a bad
grade to all the events within three seconds of a collision.
This revealed that the bounding boxes that are used in the
simulator to determine collisions did not completely fit the
vehicle. There were also some very particular scenarios where
the vehicles were so close that CMCDOT took longer than
usual to predict collisions. In these situations, a human driver
would never let vehicles be so close.

Based on these results, we can conclude that CMCDOT
satisfies or almost satisfies the safe prediction property 85%
of the time when confronted to corner cases.

The verdict of the prediction progress property lists all
the events where the prediction evolved against the intended
progression. The penalty for this property is proportional to



Fig. 9: Prediction progress results: The prediction evolved
as expected in 80% of the traces. In some traces CMCDOT
hesitated on the progression of the predictions.

how severe the reverse progression is.
Figure 9 shows that for 80% of the traces the predictions

progress as intended. In the scenarios there are no changes in
the velocities, so the expected behavior is for the predictions
to always progress towards a collision. In 80% of the traces,
the prediction progresses as expected. The worst grade begins
at 0.9, indicating that the traces where the prediction evolves
in the reverse order contain punctual fluctuations where CM-
CDOT hesitates on some predictions. The impact of these
hesitations is not significant in the overall evolution of the
progression when a collision approaches.

V. CONCLUSIONS

We presented a methodology for validating perception sys-
tems based on a combination of simulation, formal verification
on simulation traces, and statistical analysis of the verification
results according to KPIs associated to each property of
interest. We instantiated this methodology for validating the
collision risk prediction feature of CMCDOT for a set of
relevant scenarios involving collisions between vehicles, but
also corner cases (near misses or bare touches). Our validation
framework, which integrates the CARLA simulator, the CADP
verification toolbox, and the RStudio statistical computing
environment, enabled us to assess the accurate behaviour of
CMCDOT w.r.t. collision risk prediction.

As future work, we plan to take into account the changes of
vehicle velocities (variable speeds and changes in direction).
Our methodology can be readily leveraged to achieve this, by
first pre-cutting the traces into intervals of constant/transient
velocities, and then applying the analysis as discussed in
Section III. We also plan to consider some more frequent
and realistic urban situations, such as stopping behind another
vehicle at a stop light or driving for hours to see if CMCDOT
still performs well after long executions.

ACKNOWLEDGMENT

This work has also been conducted within the ENABLE-S3
project of the ECSEL joint undertaking under grant agreement
NO 692455. This joint undertaking receives support from
the European Union’s Horizon 2020 research and innovation

program and Austria, Denmark, Germany, Finland, Czech
Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium,
France, Netherlands, United Kingdom, Slovakia, Norway.

REFERENCES

[1] J. McCarthy, Towards a Mathematical Science of Computation. Dor-
drecht: Springer Netherlands, 1993, pp. 35–56.

[2] H. Garavel and S. Graf, Formal Methods for Safe and Secure Computer
Systems - BSI Study 875. BSI German Federal Office for Information
Security, 2013.

[3] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous driving
in urban environments: Boss and the urban challenge,” Journal of Field
Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[4] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman, et al., “A perception-
driven autonomous urban vehicle,” Journal of Field Robotics, vol. 25,
no. 10, pp. 727–774, 2008.

[5] M. Kamali, L. Dennis, O. McAree, M. Fisher, and S. Veres, “Formal
verification of autonomous vehicle platooning,” Science of Computer
Programming, 02 2016.

[6] M. Barbier, A. Renzaglia, J. Quilbeuf, L. Rummelhard, A. Paigwar,
C. Laugier, A. Legay, J. Ibañez-Guzmán, and O. Simonin, “Validation
of Perception and Decision-Making Systems for Autonomous Driving
via Statistical Model Checking,” in IV 2019 - 30th IEEE Intelligent
Vehicles Symposium, 2019, pp. 1–8.

[7] X. Zhao, V. Robu, D. Flynn, F. Dinmohammadi, M. Fisher, and M. Web-
ster, “Probabilistic model checking of robots deployed in extreme
environments,” arXiv preprint arXiv:1812.04128, 2018.

[8] R. Calinescu, C. Ghezzi, K. Johnson, M. Pezzé, Y. Rafiq, and G. Tam-
burrelli, “Formal verification with confidence intervals to establish
quality of service properties of software systems,” IEEE transactions
on reliability, vol. 65, no. 1, pp. 107–125, 2016.

[9] L. Rummelhard, A. Négre, and C. Laugier, “Conditional monte carlo
dense occupancy tracker,” in IEEE 18th International Conference on
Intelligent Transportation Systems, 2015, pp. 2485–2490.

[10] R. Mateescu and H. Garavel, “XTL: A Meta-Language and Tool for
Temporal Logic Model-Checking,” in Proceedings of the International
Workshop on Software Tools for Technology Transfer (STTT’98), Aal-
borg, Denmark, T. Margaria, Ed. BRICS, July 1998, pp. 33–42.

[11] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: A
Toolbox for the Construction and Analysis of Distributed Processes,”
Springer International Journal on Software Tools for Technology Trans-
fer (STTT), vol. 15, no. 2, pp. 89–107, Apr. 2013.

[12] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, 1989.

[13] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI
magazine, vol. 9, no. 2, p. 61, 1988.

[14] P. Bessière, E. Mazer, J. Ahuactzin-Larios, and K. Mekhnacha, Bayesian
Programming. CRC Press, 2013.

[15] T. Fortmann, Y. Bar-Shalom, and M. Scheffe, “Multi-target tracking
using joint probabilistic data association,” in 19th IEEE Conference on
Decision and Control including the Symposium on Adaptive Processes,
vol. 19. IEEE, 1980, pp. 807–812.

[16] Z. Khan, T. Balch, and F. Dellaert, “An mcmc-based particle filter
for tracking multiple interacting targets,” in Computer Vision-ECCV.
Springer, 2004, pp. 279–290.

[17] N. Kaempchen, B. Schiele, and K. Dietmayer, “Situation assessment
of an autonomous emergency brake for arbitrary vehicle-to-vehicle
collision scenarios,” IEEE Transactions on Intelligent Transportation
Systems, vol. 10, no. 4, Jan 2009.

[18] L. Rummelhard, A. Nègre, M. Perrollaz, and C. Laugier, “Probabilistic
grid-based collision risk prediction for driving application,” in Interna-
tional Synposium on Experimental Robotics, Springer, Ed., 2014.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1–16.

[20] Z. Manna and A. Pnueli, “A hierarchy of temporal properties.” Pro-
ceedings of the Annual ACM Symposium on Principles of Distributed
Computing, pp. 377–410, 1990.

[21] B. Alpern and F. B. Schneider, “Verifying temporal properties without
temporal logic,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 11, pp. 147–167, 12 2001.


	Introduction
	Collision Risk Estimation
	Simulation for perception

	Formal Validation
	Coherence of the risk probabilities
	Safe Prediction
	Prediction Progress

	Experiments & Results
	Scenario description and trace details
	Validation Results

	Conclusions
	References

