
© Guy Leduc
Université de Liège ILR

ULg 4.1

Chapter 4: Theoretical basis of LOTOS

• Translation of LOTOS behaviour expressions into a mathematical model

• The Labelled Transition System (LTS) model

• Operational semantic rules

• Concept of an equivalence (bisimulation) over LOTOS processes

• Algebraic data type

• Equational theory, congruence of terms

• Operational semantics of (full) LOTOS

© Guy Leduc
Université de Liège ILR

ULg 4.2

Translation into a LTS model

P1 := a; (b; d; stop [] c; stop)

Labelled Transition System

The LOTOS operational semantics is defined by

axioms and inference rules for all LOTOS operators.

LOTOS behaviour expression
i.e. instantiation of a LOTOS process

translation

translation

P2 := a; b; d; stop [] a; c; stop translation

by using
the semantics

by using
the semantics

by using
the semantics

a
b c

P1

d

c

a

b

a

P2

d

© Guy Leduc
Université de Liège ILR

ULg 4.3
Labelled Transition System

A Labelled Transition System Sys is a 4-tuple <S, A, T, s0 > where

(i) S is a non-empty set of states ,

(ii) A is a set of actions ,

(iii) T is a set of transition relations Ta ⊆ S × S, one for each a ∈ A;

Ta is a set of transitions of the form: cur → next, where cur, next ∈ S

(iv) s0 ∈ S is the initial state of Sys.

a

A state is unambiguously identified by a behaviour expression

An action is of the form gv1…vn where g is a gate name and the vi are values of some sort

We define: name (gv1…vn) = g

There is a distinguished (internal) action: i, which has no associated value.

There is a distinguished (terminating) gate name: δ

But we will consider first Basic LOTOS (without data types)

© Guy Leduc
Université de Liège ILR

ULg 4.4
Operational semantic rules for Basic LOTOS

P →a P'

P [] Q →a P'
a;P →a P

P →a P', Q →a Q'

P |[Γ]| Q →a P' |[Γ]| Q'
 (a ∈ Γ ∪ {δ})

P →a P'

P |[Γ]| Q →a P' |[Γ]| Q
 (a ∉ Γ ∪ {δ})

P →a P'

hide Γ in P →a hide Γ in P'
 (a ∉ Γ)

P →a P'

hide Γ in P →i hide Γ in P'
 (a ∈ Γ)

P →a P'

P >> Q →a P' >> Q
 (a ≠ δ)

P →δ P'

P >> Q →i Q

P →a P'

P [> Q →a P' [> Q
 (a ≠ δ)

P →δ P'

P [> Q →δ P'

Q →a Q'

P [> Q →a Q'

P[g1/h1,…gn/hn]→a P',Q[h1,…hn]:=P

Q [g1, …gn] →a P'

exit →δ stop

© Guy Leduc
Université de Liège ILR

ULg 4.5

Derivation of the LTS associated with a (closed) LOTOS behaviour expression

The given system of axioms and inference rules (denoted D) is used to build a LTS
<S, A, T, s0> associated with any closed behaviour expression B as follows:

s0 = B

S = Der (B) where Der (B) is the set of derivatives of B,

i.e. the smallest set satisfying

(a) B ∈ Der (B)

(b) if B’ ∈ Der (B) and D |– B’ → B” for some a, then B” ∈ Der (B).

Intuitively, S is the set of states reachable from the initial state B.

A = G ∪ {i, δ} where G is the set of gates of B,

A is the alphabet of the transition system, i.e. all the possible actions.

T = { → a ∈ A} where → = { < B1, B2 > D |– B1 → B2 }

T is the set of transitions derived from D.

a

a a a

No free variables

© Guy Leduc
Université de Liège ILR

ULg 4.6

Derivation tree

A derivation tree (of B) is of the form

B

B1

B2

B11

B12
a1

a2

a11

a12

where the outgoing arcs from each non-leaf node are all the actions of the expression

at that node.

The tree can be infinite in depth and in width (e.g. in presence of recursion).

It can be seen as the unfolding of the LTS associated with B.

© Guy Leduc
Université de Liège ILR

ULg 4.7

Equivalence over processes

We seek an appropriate equivalence relation over processes, which gives no special
status to the silent i-action.

There are of course other weaker equivalences which reflect the idea that the i-action
should indeed be silent, i.e. unobservable.

Perhaps the most obvious equivalence of processes is one which requires merely that
they should possess the same traces (or sequences of transitions). More exactly, we
might declare P and Q to be equivalent just when, for all trace σ = a1.a2…an ∈ A*,

P → iff Q →.

But consideration of deadlock leads to the rejection of this proposal. For P and Q would
be equivalent if they have the following derivation trees:

σ σ

P
a b

Q
a

b

a
But in this case, after performing a, P will always be able to perform b while Q may not.

Thus, in an "environment" which demands b after a, P will not deadlock while Q may.

So, apparently this equivalence is too large.

© Guy Leduc
Université de Liège ILR

ULg 4.8

Equivalence over processes (2)

On the other hand we may be too restrictive; we may take P and Q to be equivalent just
when their derivation trees are isomorphic. This would deny the equivalence of P and
Q with trees like

P
a b Q

a
b

a
b

b
even though, at each stage, the same actions are possible.

We therefore seek an intermediate notion, with the following property:

P and Q are equivalent iff

for all a ∈ A, each a-successor of P is equivalent to some a-successor of Q,

and conversely

where an a-successor of P is any P' such that P → P'
a

Such an equivalence (denoted ~) exists, is a congruence, and has useful algebraic properties.

© Guy Leduc
Université de Liège ILR

ULg 4.9

Towards a definition of ~

This property can be expressed more formally as follows:

P ~ Q iff, for all a ∈ A, (*)

(i) whenever P → P' then ∃ Q' • Q → Q' and P' ~ Q';

(ii) whenever Q → Q' then ∃ P' • P → P' and P' ~ Q'

However, it is not a definition , since there are many relations ~ which satisfy it
(including the empty relation).

What we really want is the largest (or weakest, or more generous) relation ~ which
satisfies the above property (*).

But is there a largest such relation ?

To see that there is, we adopt an approach which may seem indirect, but which gives us
more than a positive answer to the question; it gives us a natural and powerful proof
technique.

aa

aa

© Guy Leduc
Université de Liège ILR

ULg 4.10

Strong bisimulation and strong equivalence

Definition

Let F be a function over binary relations R ⊆ S × S defined as follows:

<P, Q> ∈ F (R) iff, for all a ∈ A,

(i) whenever P → P' then ∃ Q' • Q → Q' and <P', Q'> ∈ R;

(ii) whenever Q → Q' then ∃ P' • P → P' and <P', Q'> ∈ R

Note that F is monotone, i.e. R1 ⊆ R2 implies F (R1) ⊆ F (R2).

Definition

R ⊆ S × S is a strong bisimulation iff R ⊆ F (R)

Definition

P and Q are strongly equivalent (or strongly bisimilar), written P ~ Q,

if there exists a strong bisimulation R such that <P, Q> ∈ R.

This may be equivalently expressed as follows: ~ = ∪ {R R is a strong bisimulation}

aa

aa
i i

a

A

a

B

i

a

An example of a
strong bisimulation:

R is composed of all the
pairs of states of the
same colour

The empty relation, the identity relation, and the union
of two strong bisimulations are strong bisimulations

© Guy Leduc
Université de Liège ILR

ULg 4.11
Properties of ~

1. ~ is the largest strong bisimulation

Because it is the union of all strong bisimulations, which is still a strong bisimulation

2 ~ is an equivalence

Because it is reflexive, symmetric and transitive (The identity relation, the converse of a
strong bisimulation and the composition of two strong bisimulations are strong
bisimulations)

3. ~ is a fixed point of F, i.e. ~ = F (~)

We know that ~ ⊆ F (~) because ~ is a strong bisimulation. We show that F (~) ⊆ ~.
From ~ ⊆ F (~) and the monotonicity of F, we derive F (~) ⊆ F (F (~)). So F (~) is a
strong bisimulation, and then F (~) ⊆ ~ because ~ is the largest one.

4. ~ is the largest fixed point of F

Let R be a fixed point. Then R is a strong bisimulation as any fixed point. Then R ⊆ ~
because ~ is the largest strong bisimulation. So ~ being a fixed point is the largest one.

So ~ can be defined as the largest relation ~ that satisfies the following property:

P ~ Q iff, for all a ∈ A, (i) whenever P → P' then ∃ Q' • Q → Q' and P' ~ Q';

(ii) whenever Q → Q' then ∃ P' • P → P' and P' ~ Q'

aa

aa

© Guy Leduc
Université de Liège ILR

ULg 4.12

Simpler definition of a strong bisimulation

A relation R ⊆ S × S is a strong bisimulation iff:

If <P, Q> ∈ R then , for all a ∈ A,

(i) whenever P → P' then ∃ Q' • Q → Q' and <P', Q'> ∈ R;

(ii) whenever Q → Q' then ∃ P' • P → P' and <P', Q'> ∈ R

Here F is not defined explicitly, and the inclusion R ⊆ F (R) is implicit in

the if-then-else construct:

<P, Q> ∈ R implies <P, Q> ∈ F (R),

and <P, Q> ∈ F (R) iff, for all a ∈ A, (i) and (ii) hold.

This definition is the standard definition of the strong bisimulation.

aa

aa

© Guy Leduc
Université de Liège ILR

ULg 4.13

Proof technique for ~

Problem

Given two processes P and Q. Prove that P ~ Q.

Method (= exhibit an appropriate strong bisimulation containing the pair <P, Q>)

Find a relation R such that <P, Q> ∈ R. This is like finding an invariant.

Prove that R is a strong bisimulation.

Example

Prove that P [] P ~ P. Note that P is not defined explicitly ! This is an open beh. expr.

Let R = Id ∪ {<P [] P, P> P ∈ S }.

First case: let P [] P → P'. It is enough to find P" such that P → P" and <P', P"> ∈ R.

But P [] P → P' must be inferred from the choice rule, so P → P' (premise of the rule).

Therefore, it suffices to take P" = P' because Id ⊆ R.

The other cases are similar.

a

aa

a

© Guy Leduc
Université de Liège ILR

ULg 4.14

Proof of the strong equivalence of two closed behaviour expressions

When the two behaviour expressions are closed and the associated LTS are
finite-state , there are algorithms to prove the strong equivalence of the LTS in
polynomial time (with respect to the size of the LTS, not the size of the LOTOS
expression).

Example of a LOTOS expression that generates an infinite LTS:

B := a; stop ||| B

However, it is strongly equivalent to the LTS of a; B1 where B1 := a; B1 which is finite.

This is because (stop ||| (stop ||| P)) ~ (stop ||| P).

Therefore by using some strong equivalence laws, it is possible to extend the class of
behaviour expressions that have associated finite LTS.

We will give some of them. Note that no sound and complete set of laws for ~ can exist
because Basic LOTOS is Turing powerful.

© Guy Leduc
Université de Liège ILR

ULg 4.15

Equational properties of ~

Monoid laws:

P [] Q ~ Q [] P P [] (Q [] R) ~ (P [] Q) [] R

P [] P ~ P P [] stop ~ P

Note that the distributive law: a; (P [] Q) ~ a; P [] a; Q is not satisfied.

Static laws:

P |[Γ]| Q ~ Q |[Γ]| P

P |[Γ]| (Q |[Γ]| R) ~ (P |[Γ]| Q) |[Γ]| R Note that the gate sets Γ must be equa l

stop >> P ~ stop exit >> P ~ i; P

P >> (Q >> R) ~ (P >> Q) >> R

Note that P >> stop ~ P and P ||| stop ~ P are not satisfied. Why ?

P [> (Q [> R) ~ (P [> Q) [> R P [> stop ~ P

(P [> Q) [] Q ~ P [> Q stop [> P ~ P

exit [> P ~ exit [] P

They can all be proved by exhibiting an appropriate strong bisimulation

© Guy Leduc
Université de Liège ILR

ULg 4.16

Expansion laws (or expansion theorems)

The purpose of these laws is to expand behaviour expressions by pushing the parallel
composition, the disabling and the hiding operators deeper in the process structure.

Let P = Σ {aj; Pj j ∈ J} and Q = Σ {bk; Qk k ∈ K }

where Σ {Bj j ∈ Nat} denotes B0 [] B1 [] B2 [] B3 [] …

These expressions of P and Q can be seen as derivation trees.

Expansion laws:

P |[Γ]| Q ~ Σ {aj; (Pj |[Γ]| Q) j ∈ J, aj ∉ Γ ∪ {δ}}

[] Σ {bk; (P |[Γ]| Qk) k ∈ K, bk ∉ Γ ∪ {δ}}

[] Σ {c; (Pj |[Γ]| Qk) j ∈ J, k ∈ K, c = aj = bk ∈ Γ ∪ {δ}}

P [> Q ~ Q [] Σ {aj; (Pj [> Q) j ∈ J, aj ≠ δ} [] Σ {aj; Pj j ∈ J, aj = δ }

hide Γ in P ~ Σ {aj; hide Γ in Pj j ∈ J, aj ∉ Γ} [] Σ {i; hide Γ in Pj j ∈ J, aj ∈ Γ}

© Guy Leduc
Université de Liège ILR

ULg 4.17
Congruence

Definition

A LOTOS context C [•] is a LOTOS behaviour expression with a formal process parameter [•]
called a hole.

For example, C [•] := hide a in (P ||| •) is a LOTOS context.

If C [•] is a context and P is a behaviour expression, then C [P] is the behaviour expression
that is the result of replacing the • occurrence by P.

In the example above, C [Q] := hide a in (P ||| Q)

Definition

An equivalence relation R is a congruence in LOTOS iff, for all P, Q and LOTOS context C [•],

<P, Q> ∈ R implies <C[P], C[Q]> ∈ R

Theorem: ~ is a congruence in LOTOS

This allows the substitution of a process by a strongly equivalent one in any LOTOS context.

Note that the definition of a congruence is language dependent.

© Guy Leduc
Université de Liège ILR

ULg 4.18

Conclusion on ~

Strong equivalence (congruence) ~ provides a tractable notion of equality of processes.

It allows many nontrivial equalities to be derived.

However, it is deficient in a vital respect: it treats the internal action i on the same basis
as all other actions, and properties which we would expect to hold if i is
unobservable, such as a; i; P = a; P, do not hold if '=' is taken to mean strong
equivalence.

This defect can be removed by defining a weaker equivalence based on the concept of
a weak bisimulation. Refer to chapter on equivalence relations.

However, as ~ is the strongest meaningful equivalence, all the equivalence laws that
we have presented will remain valid when weaker equivalences are used in the
sequel.

© Guy Leduc
Université de Liège ILR

ULg 4.19

Algebraic data types

• Notion of algebraic data type

• ACT ONE semantics

(equational theory, congruence of terms, quotient algebra, initial algebra)

• Operational semantics of (full) LOTOS

• (Free) constructor, semi-constructor, function

• Completeness and consistency

© Guy Leduc
Université de Liège ILR

ULg 4.20

Algebraic data types

Data type: (It is not a set of values)

Characterized by one or more sets of values AND by the allowed operations on the
values

Abstract data type :

Data are treated as abstract objects and the semantics of functions operating on data
are described by properties

Algebraic data type :

When properties are given in the form of axioms (logical formulas)

Equational algebraic data type:

When the axioms are restricted to equations

Positive conditional algebraic data type:

When the axioms are restricted to implications from conjonctions of equations to
one equation (Horn Clause with equality)

E.g. : X = Z & Z = Y ⇒ X = Y

ACT ONE is a positive conditional algebraic data type language.

© Guy Leduc
Université de Liège ILR

ULg 4.21

Specification of an ADT in ACT ONE

An ADT in ACT ONE is specified by sorts , operations and (conditional) equations

I. Specification of sorts

sorts Nat

II. Specification of operations

opns 0 : -> Nat
succ : Nat -> Nat
+ : Nat, Nat -> Nat

III. Specification of equations

eqns forall x, y : Nat
ofsort Nat
x + 0 = x ;
x + succ(y) = succ(x+y) ;

sorts + operations (over these sorts) = a signature

Combining operations yields terms
= representations of values contained in the sorts.

E.g.: 0, succ(0), 0+0, 0+succ(0), succ(0+0)…

© Guy Leduc
Université de Liège ILR

ULg 4.22
Equational theory

Let E be a set of equations over a set of terms.

The equational theory, Th (E), is the set of equations that can be obtained by taking

• all instances of equations in E as axioms , and

• reflexivity, symmetry, transitivity and context applications as inference rules.

For example, the following equations belong to the equational theory associated with the
two equations given for _+_:

0 + 0 = 0 instance of first equation

0 + succ(0) = succ(0+0) instance of second equation

0 = 0 reflexivity

succ(0+0) = 0 + succ(0) symmetric of 0 + succ(0) = succ(0+0)

succ(0+0) = succ(0) by application of context succ(.) to 0 + 0 = 0

0 + succ(0) = succ(0) transitivity of 0 + succ(0) = succ(0+0) and succ(0+0) = succ(0)

In LOTOS, one uses the concept of derivation system instead of an equational theory.
The derivation system associated with an ACT ONE specification is composed of the set of
axioms and the set of inference rules enumerated in the definition of the equational theory.

© Guy Leduc
Université de Liège ILR

ULg 4.23
Congruence and congruence class

Let <S,OP,E> be an ACT ONE specification (S = Sorts, OP = OPerations, E = Equations)
and DS the derivation system generated from it.

Two ground terms s and t are called E-congruent iff DS |— s = t or simply E |— s = t

That is if s=t ∈ Th (E)

Other notation: s = t

The E-congruence class [t] of a ground term t is the set of all terms E-congruent to t.

[t] = {t' | E |— t' = t}

Ground terms denote values. Congruent ground terms are different denotations for the
same value. E.g. '2', '1'+'1', '0' + '2', …

Each value will be represented by the set of all its denotations. This leads to the
concept of a quotient term algebra.

E

© Guy Leduc
Université de Liège ILR

ULg 4.24
Quotient term algebra or initial algebra

The quotient term algebra (or initial algebra) Q(E) of a set of equations E is a model in
which the universe consists of one element for each E-congruence class of ground
terms.

It is initial in the sense that the E-congruence classes are the smallest ones:

two terms are in the same class if this can be proved, otherwise they are considered
distinct (no additional properties are considered)

Positive conditional algebraic data types constitute the largest class of algebraic data
types for which an initial algebra always exists .

(e.g. a (non-positive conditional) axiom like a=b ∨ b=c has no initial algebra)

The semantical interpretation of an ACT ONE specification <S,OP,E> is the many-sorted
algebra <Dq, Oq>, called the quotient term algebra , where

• Dq is the set {Q(s) | s ∈ S} where Q(s) = { [t] | t is a ground term of sort s} for each s ∈ S

• Oq is the set of operations {Q(op) | op ∈ OP}, where the Q(op) are defined by

Q(op) ([t1], … [tn]) = [op(t1, … tn)]

The arguments and result of Q(op) are "classes of terms".

[0] [succ(0)] [succ(succ(0))] …
Q(+)

© Guy Leduc
Université de Liège ILR

ULg 4.25
Derivations

A substitution σ is a special kind of replacement operation, uniquely defined by a
mapping from variables to terms.

Example: Let a substitution σ be defined by {x→succ(0), y→0} and the term s =
succ(x+y). Then sσ = succ(succ(0)+0)

A context is a term with a hole. For example: succ(•).

s ↔ t iff s = u(lσ) and t = u(rσ) for some equation l=r, context u(•) and substitution σ.

One term can be obtained from the other by one replacement of equal terms

For example: succ(0+0) ↔ succ(0) with equation x+0=x, σ={x→0} and context succ(•)

s ↔ t is the reflexive-transitive closure of s ↔ t

There is a derivation between s and t

The following result holds: s ↔ t iff E |— s = t

EE

E

*

E

*

E

© Guy Leduc
Université de Liège ILR

ULg 4.26

Unification, matching and narrowing

Let E be a set of equations.

A substitution σ is an E-unifier of s = t if sσ = t σ

For example σ = {x → 0+0, y → succ(0)} is a unifier of succ(x) = y (in the Nat theory)

s and t are E-unifiable if there exists an E-unifier of s = t

t E-matches s if there exists a substitution σ such that sσ = t

The unification problem is to determine the set of all E-unifiers σ of s = t.

A narrower is an algorithm that finds E-unifiers

A complete narrower is an algorithm that solves the unification problem (i.e. that finds
all the E-unifiers)

E

E

© Guy Leduc
Université de Liège ILR

ULg 4.27

Operational semantics of full LOTOS

First phase: the flattening mapping

This phase produces a canonical LOTOS specification (CLS) where all identifiers are
made unique (by a suitable relabelling) and defined at one global level .

A canonical LOTOS specification CLS is a 2-tuple <CAS, CBS> composed of:

• CBS = <PDEFS, pdef0> : a canonical behaviour specification, i.e. a set of process
definitions PDEFS with an initial definition pdef0 ∈ PDEFS (the behaviour of the spec)

• CAS = <S,OP,E> : a canonical algebraic specification such that the signature <S, OP>
contains all sorts and operations occurring in CBS

This flattening mapping is partial since only static semantically correct specifications
have a well-defined CLS.

Second phase: buiding of the derivation system DS of CAS

The semantic interpretation of CAS is the many-sorted Quotient term algebra Q(CAS)

Third phase: mapping of CLS onto a LTS

Based on a set of operational semantic rules (see next slide)

© Guy Leduc
Université de Liège ILR

ULg 4.28

Operational semantic rules for full LOTOS

An action is of the form gv1…vn where g is a gate name and the vi are values of some sort

We define: name (gv1…vn) = g

Two examples of axioms:

Exit (E1,…En) ———→ stop provided that

vi = [Ei] if Ei is a ground term

vi ∈ Q (si) if Ei = any si

gd1 …dn [SP]; P ———→ [ty1 /y1, …tym/ym] P provided that

vi = [Ei] if di = !Ei

vi ∈ Q (si) if di = ?xi:si

{y1,…ym} = {xi | di = ?xi:si }

The tyj are term instances with [tyj] = vi if yj = xi and

DS |— [ty 1 /y1, …tym/ym] SP

δv1…vn

gv1…vn

exit (true or false) ———→ stop
δ true

This implies to find all the solutions of SP (Cf. unification problem)

g?x:nat!true [x≤1]; P ———→ [1/x] P
g 1 true

© Guy Leduc
Université de Liège ILR

ULg 4.29

Constructors and functions

There are algebraic data type languages in which the operations are clearly partitioned
into two classes: the constructors and the functions.

Even if it is not the case in ACT ONE (where there are just operations), it is useful to
make this distinction because most LOTOS tools are based on this distinction or
require the user to provide this extra piece of information.

Constructors are used to 'build data'.

For example: 0 and succ to define the natural numbers

Functions are all the operations that are not constructors

For example: _+_

If there exists an equation that involves constructors only , these constructors are called
semi-constructors .

This is because they are used to build data like constructors, but they also look like
functions due to the presence of these equations.

Other constructors are called free constructors.

© Guy Leduc
Université de Liège ILR

ULg 4.30

Examples of semi-constructors

sort int
opns 0: -> int (* free constructor *)

succ, pred: int -> int (* semi-constructors*)
eqns forall x:int

ofsort int
succ(pred(x)) = x
pred(succ(x)) = x

sort elem, set
opns a,b,c : -> elem (* free constructors *)

Ø: -> set (* free constructor *)
insert: elem,set -> set (* semi-constructor *)

eqns forall e1, e2: elem, s:set
ofsort set
insert (e1, insert (e1, s)) = insert (e1, s)
insert (e1, insert (e2, s)) = insert (e2, insert (e1, s))

Integers

Sets

Many tools don't like semi-constructors

© Guy Leduc
Université de Liège ILR

ULg 4.31

Removal of semi-constructors

Example : succ and pred are semi-constructors in the integer theory

ofsort int

succ (pred (x)) = x

pred (succ (x)) = x

These equations should be rewritten as follows:

succ (0) = succ' (0)

succ (succ' (x)) = succ' (succ' (x))

succ (pred' (x)) = x

pred (0) = pred' (0)

pred (pred' (x)) = pred' (pred' (x))

pred (succ' (x)) = x

succ' and pred' are constructors
succ and pred are functions

pred' (succ' (x)) ≠ x!

All terms composed of succ and pred can be rewritten into terms composed of

either succ' only, or pred' only, but not both

But terms like pred' (succ' (x))
should never appear

© Guy Leduc
Université de Liège ILR

ULg 4.32
Completeness

The specification E is sufficiently complete (or "has no junk") with respect to the set of
constructors , if every ground term t is provably equal to a constructor term (i.e. a
term that is built from constructors only).

Informally, this means that all functions are total , or totally defined.

Partial functions lead to incompleteness and introduce "junk" terms.

Example of an incomplete specification:

sort nat
opns 0: -> nat (* free constructor *)

succ: nat -> nat (* free constructor *)
pred: nat -> nat (* function *)

eqns forall x:nat
ofsort nat

pred (succ (x)) = x;

'pred (0)' cannot be proved equal to a constructor term. It is a "junk" term.

The reason is that the pred function is partial because no equation is given for 'pred (0)'.

© Guy Leduc
Université de Liège ILR

ULg 4.33
Consistency

The specification E is consistent (or "has no confusion") with respect to the set of
constructors , if for arbitrary ground constructor terms s and t,

 E |— s = t iff E |— s = t

where E is the subset of equations involving constructors only (e.g. pred(succ(int))=int)

Informally, a specification is consistent if constructor terms that cannot be equated by
means of equations in E denote distinct values (i.e. no confusion).

If all constructors are free, then E = Ø, and s = t cannot hold for constructor terms s and t.

Example of an inconsistent specification:

C

C

C

sort nat
opns 0: -> nat (* free constructor *)

error: -> nat (* semi-constructor *)
succ: nat -> nat (* semi-constructor *)
pred: nat -> nat (* function *)
*: nat, nat -> nat (* function *)

eqns forall x, y:nat
ofsort nat

succ (error) = error;
pred (succ (x)) = x; pred (0) = error; pred (error) = error
x * 0 = 0; x * error = error; x * succ (y) = …; x*y = y*x;

C

One can prove 0 = error * 0 = error but 0 = error cannot be proved from E
In other words, the function _*_ turns two distinct values into equivalent ones

This equation constitutes E
C

C

