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In order to achieve the highest safety integrity levels, ISO26262 recommends the use of formal methods
for various verification activities, throughout the lifecycle of safety-related embedded systems for road
vehicles. Since formal methods are known to be difficult to use, one of the main challenges raised by
these ISO26262 requirements is to find cost-effective approaches for being compliant with them. This
paper proposes an approach for requirements formal verification where formal methods, languages,
and tools are only minimally exposed to the user, and are integrated into one of the commonly used sys-
tem modeling environments based on SysML. This approach does not require particular expertise in for-
mal methods still allowing to apply them. Hence, personnel training costs and development costs should
be kept limited. The proposed approach has been implemented as a plugin of the Topcased environment.
Although it is limited to discrete system models, it has been successfully experimented on an industrial
use case.
� 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The ever-increasing complexity of automotive systems is rais-
ing new challenges in the area of system safety engineering. This
statement is confirmed by our everyday life, where we continu-
ously interact with electrical and/or electronic (E/E) systems,
whose possible failures could have enormous safety consequences
and implications (car airbag and cruise control are just two repre-
sentative examples). Starting from these considerations, ISO 26262
[1] is a standard that was developed to meet the specific needs of
safety critical systems within road vehicles and it applies to a com-
plete automotive safety lifecycle: management, development, pro-
duction, operation, service, decommissioning. It provides an
automotive-specific risk-based approach to determine the Auto-
motive Safety Integrity Levels (ASIL), a risk classification scheme
defined in the standard to analyze and classify the impact of a par-
ticular potential hazard. The V model described in part 6 of the ISO
26262 standard (Fig. 1) is very similar to a standard V model for
software development. The main differences are the initial focus
on safety, and the increased number of upwards design phase ver-
ification stages. This software V model is included into a broader V
model that refers to the whole product development and that is
articulated into system, software and hardware development
phases.

During the various product development phases, ISO26262 rec-
ommends the use of various specification and verification tech-
niques. When dealing with items classified at the highest ASIL
levels, formal and semi-formal methods are recommended. The
most relevant recommendations about formal methods refer to
the left-hand side of the V models, where formal specification is
recommended for the specification of safety requirements and sys-
tem designs at different abstraction levels, while formal verifica-
tion is recommended for upwards design phase verifications. For
example, the compliance and consistency of the software safety
requirements with the technical safety requirements (expressing
the output requirements of the system level development process)
has to be verified, and formal verification is among the recom-
mended techniques to be used for this purpose.

While the key role of formal verification techniques in the con-
text of ISO 26262 is generally well understood, its application con-
tinues to appear a bit obscure and people with industrial
background are often still reluctant in leveraging formal methods
as they are known to be hard-to-use and very time consuming
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Fig. 1. The ISO-26262 SW V model.

1 The plugin is available for download at https://github.com/netgroup-polito
VeTeSS-Topcased-Verification-Plugin.
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(therefore onerous, from an economic standpoint) [2]. All these
observations lead us to the intuition that more user-friendly tools
are needed to help people not familiar with formal methods, to
approach and profitably use modern tools to formally model and
verify the systems they are actually designing and implementing.
Another feasible approach could be that of training personnel by
spreading the necessary knowledge and skills to autonomously
implement and complete verification tasks. While more appealing
in the long-term, this solution would not be easily practicable from
a cost perspective since it would require training time and associ-
ated costs, not to mention the initial learning curve which many
companies may not be able to afford.

This paper addresses these issues by proposing techniques and
tools that can contribute to remove the main obstacles to the use of
formal methods in ISO26262-compliant development processes.
Especially, our aim is to aid in the design phase verifications
expected in the left-hand side of the V models, where the ability
to compare models at varying levels of abstraction (going back
up the abstraction levels) is required, and in the requirements-
based testing activities that are required in the right-hand side of
the V models.

More specifically, our work tries to cope with the above men-
tioned challenges, by proposing a modeling approach which does
not require sophisticated skills in formal methods and is tailored
on concepts that industry people are already aware of and familiar
with: state machines, activity diagrams and sequence diagrams are
palpable examples of ‘‘languages” already known to both academic
and industry people that can be leveraged to model system behav-
iors. In particular, these languages are already part of UML-based
semi-formal notations, such as for example SysML [3], which is
widely known and accepted in the automotive industry [4,5]. A
valuable feature of SysML is that it includes the possibility to spec-
ify hierarchical requirements with associated behavioral models
expressed in the user-friendly languages mentioned above. This
enables the management of safety requirements according to the
recommendations of ISO26262 and at the same time the formal
specification of requirements through such behavioral models.
Although SysML is known to be a semi-formal notation, its behav-
ioral notations are quite close to fully formal models, and they can
be converted into fully formal models by resolving the few varia-
tion points left in the definition of these languages.

Having created formal models of the requirements and the sys-
tem at various levels of abstraction raises the question of how
these models relate to each other. Does a model at a lower level
of abstraction actually comply with a higher level one, by adding
more detail while preserving the coarser behavior of the higher
level one? In order to answer this question in a formal way, it is
possible to use refinement checking, i.e. a formal check of whether
a more abstract formal artifact is correctly refined into a less
abstract one. The main advantage of refinement checking, com-
pared to other formal verification techniques such as model check-
ing, is that it does not require the user to specify formal properties
in temporal logics, which is known to be challenging [2], but it can
be applied directly to the models developed by the user with the
more user-friendly notations. In particular, we propose the appli-
cation of refinement checking to the behavioral models extracted
from a SysML model, which is a novel approach in the ISO26262
context, as discussed in the Related Work Section.

One last ingredient of our work is a technique for automatic
generation of test cases from the formal requirements specifica-
tions expressed by means of behavioral models. These automati-
cally generated test cases can be used for requirements-based
testing, which is one of the testing methods recommended by
ISO26262 in the right-hand side of the V models, and also as an
alternative to refinement checking for upwards design-time verifi-
cations, when refinement checking is not feasible because of the
excessive complexity of the formal models. While the automatic
generation of test cases from formal behavioral specifications is
not new in itself, this way of using it, made possible by the pro-
posed approach is new.

Our focus in this paper is on discrete systems and related
requirements. While the approach we are proposing could be
extended to deal also with continuous-time systems or require-
ments involving quantitative time, such extensions are outside
the scope of this paper.

The approach we are proposing exploits a number of techniques
already developed in the past by other researchers: the extraction
of formal models from UML/SysML behavioral diagrams, the verifi-
cation of refinement on formal models, and the automatic genera-
tion of test cases from formal models. Our main contribution is the
way they are joined together so as to comply with the recommen-
dations of the ISO26262 standard about the use of formal methods
(especially for design-time verification), while at the same time
hiding most of the complexity of formal methods from the final
user, thus achieving a toolset that can be used even by users with-
out specific expertise in formal methods. While there are alterna-
tive proposals for achieving this kind of hiding, none of them
achieves all the goals we do.

For demonstrative purposes, our ideas have been developed and
integrated, in plugin form, into Topcased, an Eclipse based model-
ing environment that supports SysML, where all the details related
to the formal verification processes are kept, as much as possible,
behind the scenes and automatically handled by the tool.1 It is
important to note, however, that the proposed tool-chain is not
intended as a full replacement of all ISO-26262-related activities,
rather as a possible way to support some of the formal-method-
related parts. It can be considered as a core functionality that needs
/
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to be then combined with other toolsets in order to achieve a full
ISO-26262-compliant process.

In the rest of the paper we cover all these aspects with the fol-
lowing agenda: Section II presents the proposed way for specifying
safety requirements in the SysML context. Section III shows how
refinement can be formally verified at design time when develop-
ing new safety requirements, according to the recommendations of
ISO 26262, while section IV shows the proposed technique for
automated generation of tests based on safety requirements. Some
results about the application of the proposed approach to an indus-
trial use case are presented in section V. Section VI discusses
related work and, finally, section VII concludes the paper.
Fig. 2. A possible way of using SysML for specifying ISO26262 requirements.
2. Safety requirements formalization

Formal verification is possible as far as formal specifications are
available. In our case, the starting point for obtaining formal spec-
ifications is the SysML modeling notation, already in use in vast
areas of the automotive industry. SysML is a UML-based semi-
formal notation. It inherits from UML several features, and extends
UML with other features that are specific for systemmodeling. One
of the key extensions of SysML with respect to UML is the possibil-
ity to model requirements and their relationships. In SysML, the
system structure is described by means of structural diagrams.
The main ones are block diagrams, describing a system or part of
it as interconnected blocks. Behavioral diagrams complete system
models by allowing the specification of system behavior by means
of various formalisms. All behavioral diagrams are inherited from
UML: activity diagrams use a formalism similar to Petri nets,
sequence diagrams use message sequence charts, state machines
are based on hierarchical extended state machines, while use case
diagrams are a way to represent interfaces and use cases. Finally,
requirement diagrams are a way to represent system requirements
and their relationships. Both requirement-to-requirement relation-
ships and relationships between requirements and system model
elements are possible. The main relationships that can be defined
are:

� The derive relationship relates a derived requirement to one of
its source requirements;

� The satisfy relationship relates a model element to a require-
ment that is intended to be satisfied by that element;

� The refine relationship relates a model element and a require-
ment where one of the two refines with greater detail the other.
The refine relationship allows, among the other things, to asso-
ciate behavioral models with requirements;

� The verify relationship relates a requirement to a test case that
can be used to verify whether the requirement is satisfied.

Note that a requirement can derive from one or more source
requirements and more requirements can derive from the same
source requirement and a similar consideration holds for the other
relationships.

A possible alternative to SysML is EAST-ADL [6], which is a rich
framework designed specifically for the automotive systems and
with ISO-26262 in mind. As the key language features, we exploit
are present in both SysML and EAST-ADL, the method proposed
here can be cast to use EAST-ADL instead of SysML. Despite the bet-
ter specificity of EAST-ADL for automotive systems, it has still less
tool support and diffusion. For this reason, we preferred using
SysML for our proof of concept.

The way we propose for using SysML modeling for specifying
system-level safety requirements in an ISO26262 project is shown
in Fig. 2, where the yellow arrows represent derive relationships
(e.g. technical safety requirements are derived from functional
safety requirements) and red arrows represent satisfy relation-
ships. On the system modeling side, decomposition relationships
(the blue ones in Fig. 2) are used for representing the hierarchical
decomposition of a system, and refine relationships (green) for
connecting corresponding system blocks at different abstraction
levels (for example, functional blocks to corresponding physical
components). Note that here we propose to use the same refine
relationship also used for binding a requirement to its correspond-
ing system element or behavioral model, but to relate system
models.

The key point of our proposal is that engineers in charge of
defining safety requirements should specify them as SysML
requirements, and, for each requirement that needs a formal spec-
ification, they have to provide an associated behavioral diagram
that specifies the intended behavior of the system according to
the requirement.

An example of an airbag requirement specification expressed at
high abstraction level is shown in Fig. 3, in its textual form (left)
and in the form of a behavioral diagram (state machine) that spec-
ifies the expected behavior of the system according to this require-
ment (right). In the sample of Fig. 3 a state machine with two
events is used to express the requirement: start_cc represents
the start of a critical collision while deploy represents the deploy-
ment of the airbag. The fact that the airbag must not deploy if no
critical collision started can be represented by a machine with
two states: one state represents the behavior of the system before
the start of a critical collision while the second state represents the
behavior of the system after that event. The fact that the deploy
event is possible only in the second state and not in the first one
captures the requirement.

Another example of how a more complex requirement can be
modeled is demonstrated in Fig. 4. Starting from such require-
ments, more detailed requirements can then be developed, in order
to specify the technical means by which the original requirements
can be satisfied. The new, more detailed, requirements must refine
the original abstract ones, and this refinement relationship can be
checked, as discussed in the Section 3.

In our view, the behavioral diagram associated with a require-
ment is its authoritative specification, while the text is just its
explanation. We assign a formal semantics to the UML behavioral
diagrams associated with SysML requirements by translating them
to CSP (Communicating Sequential Processes) [7,8], a language for
the formal description of discrete-event sequential processes that
run concurrently and that can communicate with one another. This
way of assigning formal semantics to UML behavioral models is not
new [9]: translation algorithms from behavioral diagrams to CSP
already exist that resolve the few variation points left with those



Fig. 3. Requirement modeling example.

Fig. 4. Another requirement modeling example.
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diagrams by the UML semantics (e.g., the way events are dis-
patched to a state machine). The main limitation of this CSP-
based approach is that CSP cannot be used to express quantitative
time and continuous-time models (e.g, we cannot express formally
the requirement that the time that elapses between two given
events is less than 1 ms).
3. Formal verification of safety requirements derivation

3.1. The proposed refinement checking method

The basic idea of the verification approach we propose is that
derived requirements have to refine their source requirements. If
each requirement is associated with a behavioral model that spec-
ifies the intended behavior of the system according to that require-
ment, the behavioral models of requirements bound by the derive
relationship can be compared, in order to check that the behavior
of source requirements is correctly refined by the behavior of
derived requirements. As in our approach SysML requirements
are formally represented by CSP processes, and CSP has a refine-
ment theory, this theory can be exploited to check refinement rela-
tionships. The formal verification of refinement relationships is
called refinement checking [7] and it is a well-known formal veri-
fication technique in CSP.

Generally speaking, a refinement relationship can be any rela-
tionship that formalizes the concept of refinement, which ideally
should hold between a specification and its implementation. If
the specification is a requirement, and its implementation is a
model of the system that should fulfil the requirement or a set of
(more detailed) derived requirements, refinement checking can
be used to verify that the system model or the derived require-
ments satisfy the original requirement.

For example, traces refinement between a more concrete model
M and a more abstract one MA holds if each execution trace (i.e.
sequence of events) of M is also an execution trace of MA. Instead,
the relationship does not hold if M can have sequences of events
that cannot occur in MA.

Traces refinement is known to preserve all safety properties, i.e.
all properties specifying that something unwanted will never
occur. This means that if M is a traces refinement ofMA, then M sat-
isfies all the safety properties satisfied by MA. Another relationship
that could be considered is simulation refinement. M is a simula-
tion refinement of MA if M simulates MA step by step, i.e. if each
possible step in M always corresponds to a possible step in MA

and the steps in M and in MA lead to states again related by the
same relationship. As it can be argued, simulation refinement is
stronger than traces refinement, and traces refinement is implied
by simulation refinement. Simulation refinement is known to pre-
serve all linear temporal logic (LTL) properties (not only safety
properties) and a large subset of all computational tree logic
(CTL*) properties. Often, weakened versions of these relationships
are also considered. For example, weak simulation refinement
requires that only some of the steps (the observable ones) have a
match in the other model. In this way, it is possible to correctly
relate cases where one step in the abstract model corresponds to
a sequence of steps in the refined model. Of course, in this case
only properties that do not involve non-observable steps can be
preserved.

As we are mostly interested in safety properties, traces refine-
ment is enough for our purposes. Moreover, as we have to relate
models at different levels of abstraction, we use weak traces refine-
ment, which disregards the events classified as unobservable. In
our case, events are considered observable only if they belong to
the alphabet of the abstract model, while events occurring only
in the refined model are considered unobservable, unless they
are explicitly declared to match a corresponding different event
in the abstract model, in which case the corresponding events
are renamed to become the same event. In this way, a refined
model is allowed to generate a number of unobservable events
between any two observable events matching the abstract model.

As we allow that more requirements derive from an abstract
requirement, in general we need to check that a collection of



Fig. 5. The refinement plugin verification workflow.
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requirements R1,. . .,Rn correctly refines an abstract requirement Ra.
The refinement checking problem can be formulated by checking
that a CSP process I is a weak traces refinement of another CSP pro-
cess Pa, where Pa represents the system behavior required by Ra
and I represents the system behavior jointly required by R1,. . .,Rn,
with the events that do not correspond to events of Pa hidden. Pro-
cess I is computed as I=(Q1\a1)||. . .(Qn\an), where || is the parallel
composition operator of CSP, which implies synchronization on
all shared events, Qi is the process that represents the system
behavior required by Ri, with the events that should be mapped
to Pa’s events properly renamed, ai is the set of events of Qi that
should be hidden because they have no corresponding event in
Pa, and \ai is the operator that hides the events in ai.

3.2. Integrating the proposed method into an ISO 26262 process

Because of its mentioned meaning, refinement checking can be
used as a way to perform what ISO 26262 calls design-time verifi-
cation of compliance. For example, ISO 26262 part 6 clause 6.4.7
specifies that the software safety requirements shall be verified
to provide evidence for their compliance and consistency with
the technical safety requirements. These design-time verifications
can be done using formal methods (formal verification is recom-
mended for the highest ASIL levels), provided the requirements
or system models to be compared are formally specified. Let us
assume that formal specification of requirements is done using
SysML behavioral diagrams, as shown in Section 3.1, possibly add-
ing a specification that some pairs of different events should be
considered the same. Having these specifications, formal verifica-
tion can be done by refinement checking, using weak traces refine-
ment, and the classification of events into observable and
unobservable ones as specified above.

A typical development process in the automotive industry is to
use SysML for safety requirements specification and for expressing
the initial system architecture, Then, a more detailed Simulink sys-
tem model is developed. In order to extend our approach to per-
form refinement checking between the requirements and the
Simulink model, one should extract a formal CSP model out of
the Simulink model. An alternative, enabled by our approach, is
to verify refinement by testing. In particular, it is possible to use
a form of ‘‘back-to-back comparison testing”: test cases are derived
from the SysML safety requirements and then applied to the Simu-
link model (after having converted them into a form accepted by
Simulink). At a later stage, when C code is generated from the
Simulink model, the same test cases can be applied to test the C
code, after proper conversion of the involved events. This is a form
of requirements-based testing, one of the test methods recom-
mended by ISO26262.

3.3. Implementation of the proposed refinement checking method

Several refinement checkers based on CSP theory exist. In our
Topcased plugin, verification is implemented by the tools provided
by PAT (Process Analysis Toolkit) [10], which efficiently imple-
ments refinement checking according to this theory and also pro-
vides algorithms for automatic generation of CSP processes from
UML behavioral diagrams.

The procedure followed by the plugin that we implemented is
shown in Fig. 5. It works as follows:

� Derive relationships are identified in the model, and state
machines (or other behavioral models) associated with the
requirements bound by derive relationships are extracted from
the model, by an XSLT transformation of the XML representa-
tion of the model.
� A corresponding CSP process is automatically generated from
each extracted behavioral model. This is done by exploiting
the algorithms provided by PAT to create CSP processes from
UML behavioral diagrams.

� For each group of behavioral models bound by the derive rela-
tionship for which refinement has to be checked, a CSP verifica-
tion model is built which includes the specification of the weak
traces refinement relationship to be checked and of the involved
CSP processes, built as explained in Section 3.1.

� PAT is invoked on the CSP verification model in order to perform
refinement checking between the corresponding CSP
specifications.

� Verification results (including counterexamples in case of errors
found) are converted back to the SysML world and reported to
the user by the plugin.

Considering refinement checking as part of our formal verifica-
tion approach, the concrete toolchain needed to run a complete
verification task (starting from the modeling phase and ending
up with a verification outcome) is depicted in Fig. 6 (the boxes with
blue background represent tools specifically developed for our pur-
poses while the other boxes are already existing tools; the part
about test case generation is not included in the picture but it will
be discussed in Section 4).

As SysML is used for the specification of requirements and their
associated behavioral models, any modelling tool that supports
SysML and that can export models in XMI format can be used.
SysML is also used to express the derivation relationships that bind
requirements (in this way the user can specify how new require-
ments have been derived from the previous ones) and satisfy rela-
tionships that bind requirements to the system model elements
that implement them. The derivation relationships also enable
requirements tracing, which is also required by ISO26262. The
information about the mapping of the events occurring in the
requirements bound by a derive relationship can be added to the
derive relationship itself as an attribute in SysML (it is specified
as a collection of event pairs).

The tool chain, which was described preliminarily in [11], is
integrated in the Topcased environment where a specialized plugin
is used to drive the whole verification process. More precisely, the
plugin analyzes the SysML model and automatically extracts
derivation relationships binding requirements.

The user can interactively decide for which of such relations
refinement should be checked, by selecting the requirements
involved in the verification. Then, for each selected derivation rela-
tionship, the plugin automatically extracts the behavioral models
associated with the requirements bound by the relationship, trans-
lates them into CSP, and generates the input for PAT as already



Fig. 6. Formal verification toolchain using state machines and refinement checking.

Fig. 8. The state machine attached to the more concrete requirement.
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explained. Finally, PAT is automatically invoked and refinement is
checked. The results (including counterexamples in case of failure)
are finally reported to the user through the plugin itself.

The other possibility provided by the tool is to use testing in
order to verify refinement checking. In this case, the tool automat-
ically performs test case generation (more on this is presented in
Section 4) from the behavioral model of the more abstract require-
ment and then executes the generated tests on the behavioral
model of the more concrete requirement.

The screenshot in Fig. 11 shows how the GUI of the plugin
appears. In this screenshot it is possible to see the panel where
hierarchical requirements and their relationships are graphically
modeled and the view of the Verification plugin in the lower pane
with the Refinement Checking tab where the plugin shows the
extracted derive relationships. In this tab, the user can make selec-
tions and start refinement checking verification. In the example
shown in Fig. 11, about an airbag system use case, it is possible
to see two requirements bound by the DeriveReqt relationship.
The two requirements shown in the example have behavioral mod-
els, expressed as state machines attached to them. Each state
machine is specified in a separate diagram, using the same model-
ing environment.

Fig. 9 shows the state machine diagram of the more abstract
requirement (Deploy_should_be_preceded_by_critical_collision),
which expresses a precedence relationship: the deploy event must
always be preceded by the critical_ collision event. The more con-
crete requirement (Deploy_ within_two_time_ticks_after_colli
sion) has a state machine shown in Fig. 8.

In order to verify that the refinement relationship holds
between the two requirements (i.e. that Deploy_within_two_tim
e_ticks_after_collision correctly refines Deploy_should_be_prece
ded_by_critical_collision) we have to select the Deploy_should_b
e_preceded_by_critical_collision abstract requirement in the list
Fig. 7. The verification report with a faile
of relationships, as shown in Fig. 11, and push the Start verification
button (the Refresh button is used to create the list of relationships
or to update it after modifications to the model).

Fig. 7 shows the verification report, indicating that the refine-
ment relationship does not hold. In order to understand why
refinement does not hold it is possible to look at the counterexam-
ple (init -> [start] -> [collision] -> deploy) which is a sequence of
events that may occur in the concrete behavior but not in the
abstract one, thus invalidating refinement. Events enclosed in
square brackets in the counterexample represent hidden events,
i.e. events that are not considered because they are not shared by
the two behavioral models. In this particular case, it is possible
to see that deploy can occur without being preceded by critical_-
collision (it is preceded by collision, which is a hidden event).
The problem arises because in the descriptions of the two require-
ments two different events have been used to represent a collision
(collision in one case, critical_collision in the other case). The prob-
lem can be fixed by using the same collision event in the two
requirements or by specifying that these two events should be con-
sidered the same in the verification of refinement. This can be done
by selecting the refinement relationship and by adding the map-
ping of the two events. After this fix, if we repeat refinement check-
ing, we get the result that the relationship holds (valid).

The CSP verification model generated by the plugin for this ver-
ification task is shown in Listing 1. In it, the Implementation pro-
cess corresponds to the process indicated as I in Section 3.1
while the first two defined processes are the ones automatically
generated from the two state machines.
4. Automated generation of requirements-based test cases

Testing is the main verification technique recommended by ISO
26262. Fig. 10 illustrates the process for testing a system under test
(SUT) against a set of requirements (requirements-based testing):
d verification (and counter example).



Fig. 9. The state machine attached to the more abstract requirement.

Listing 1. The CSP model for the sample refinement checking.

Fig. 10. Requirements-based testing.
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first, a test suite, i.e. a set of test cases covering all the safety
requirements, is created. A test case consists of input stimuli and
the expected outcome. Test execution runs the SUT feeding it with
the inputs specified by each test case and compares the SUT output
against the expected one. Coverage measurement assesses
whether the test suite is sufficiently complete; if not, further test
cases have to be created so as to reach the target coverage. As an
alternative to manual test case generation, Model-Based Testing
(MBT) consists of deriving test cases from an abstract model (for
requirements-based testing, a model of the requirements has to
be used). This section shows how the formal behavioral models
derived from SysML models (and associated to safety require-
ments) are used in our approach for automatic generation of test
cases that can be used for requirements-based testing and for ver-
ifying software safety requirements according to ISO 26262. The
size of the set of generated test cases can be subsequently opti-
mized by means of simulation-based algorithms that prune redun-
dant test cases. Note that requirements-based testing is just one of
the several test methods recommended by ISO-26262. The use of a
variety of test methods contributes to greater diversity and better
opportunity to catch errors.

Most of the existing literature about MBT of reactive systems
starting from formal models is based on Finite State Machine
(FSM) and Labeled Transition System (LTS) models [12]. As these
models are very general, many other specification formalisms
(e.g. process algebras, petri nets, extended/hierarchical state
machine models), including the ones supported by SysML, can be
interpreted according to these two basic models. This opens the
possibility to apply the same MBT techniques to a variety of mod-
eling languages. As already mentioned, even if we consider UML
and UML-based specification languages, which are semi-formal, it
is possible to derive corresponding formal models from some parts
of the UML models, provided the semantic variation points in the
UML models are resolved in some way. For example, using this
approach, it is possible to give a formal semantics to UML state
machines, which enables their interpretation in terms of LTSs.

One limitation of FSM based methods is that they typically con-
sider only deterministic machines. Of course, nondeterministic
machines can be turned into deterministic machines, but at the
cost of state explosion. This feature makes FSM-based methods
inadequate for large nondeterministic models. One good point of



Fig. 12. An example of I/O LTS.

Fig. 11. The GUI of the plugin.
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FSM-based methods, however, is that they have been highly opti-
mized with the search for minimal tests [13]. LTS methods are
more general in that they deal with nondeterministic and
infinite-state systems. With large or infinite-state systems, lazy
(on-the-fly) evaluation is typically used. Because of their ability
to deal with nondeterministic and infinite-state systems, LTS-
based methods seem more appropriate for our context. In particu-
lar, one of the LTS-based theories that seems most appropriate is
the one that deals with I/O LTSs (chapter 7 of [12]). This theory
includes the definition of several implementation relationships
and methods to build test suites.
4.1. MBT with I/O LTSs

According to the theory of MBT with I/O LTSs, the behavioral
model of the SUT associated with a safety requirement (i.e. the
specification) is converted into an I/O LTS (an LTS with labels
divided into input, output and internal). The model must be such
that it does never refuse inputs (all inputs are available in all
states; this can be obtained by completing an incomplete specifica-
tion by saying, for example, that non-specified inputs are ignored,
i.e. by adding self-loops for non-specified inputs in all states). If the
model has quiescent states (i.e. states where no outputs can occur)
these are marked by adding a self-loop to that state, labeled with a
special d label (this could be interpreted as the expiration of a
timeout in case the environment is waiting for an output).
Fig. 12 shows an example of an I/O LTS that does never refuse
inputs, with two inputs (?c and ?nc) and two outputs (!as and
!ar), and the additional d events already added.
Test generation can target one or many different implementa-
tion relationships. The simplest relationship is traces refinement
(see Section 3). The most used relationship is ioco (input-output
conformance) [14]. This relationship is defined considering the
traces of the specification (with the inclusion of the special event
d). If, after one of these traces, the outputs that the implementation
can perform are a subset of the outputs that the specification can
perform after the same trace, the relationship holds. This relation-
ship is weaker than traces refinement (traces refinement implies
ioco) because ioco does not constrain the implementation in any
way after the traces that the specification cannot execute. How-
ever, if both the implementation and the specification have the
same alphabet of events, do never refuse inputs, and are completed
with events, then the two relationships coincide. Each test case
generated from a model is again an I/O LTS with final states that
are labeled as success, fail (and inconclusive). This LTS has inputs
and outputs reversed w.r.t. the specification. In each state it can
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either emit exactly one output (i.e. an input to the system) or
receive any input (i.e. any output from the system) or the special
event that corresponds to d (the timeout that indicates quiescence
of the system). Applying a test case means executing it step by step
until a final state is reached. The label of the final state determines
the result of the test case. If the system is nondeterministic, each
test case should be repeated several times and we can say that
the test case has been passed only if all runs end up with the pass
result.
Fig. 13. The toolchain for performing MBT.
4.2. Toolchain for MBT

In our approach, MBT is supported by performing test case gen-
eration from the behavioral models associated with safety require-
ments. These models are automatically completed with inputs (so
that they can never refuse to perform inputs) and with d events.
When using MBT for testing refinement, the SUT model is also
completed in the same way, and events that occur only in the
implementation are considered as internal (i.e. nor input neither
output). In this way, we make sure ioco and traces refinement
coincide.

The toolchain for performing MBT in our demonstrative Top-
cased plugin is based on CADP/TGV [15], an already existing tool
which can generate test cases for testing the ioco relationship on
I/O LTS models automatically. The output of TGV is a collection
of test cases, each one represented by an I/O LTS with three sets
of trap states: Pass, Fail and Inconclusive, that represent the ver-
dict. The input of TGV consists of two I/O LTSs: a specification
and a test purpose. The specification is a model of the expected
behavior of the SUT. A test purpose is the representation of the part
of behavior of the SUT that must be taken into consideration for
test generation. This can be used, for example, in order to limit
the size of each resulting test case. A test purpose must be com-
plete, i.e. it must be such that all events must be possible in all
states, and it must include two sets of special states called trap
states: the set of accept states and the set of refuse states. Each
accept or refuse state must include self-loops for all the events
(this is why it is called a trap state). The meaning of an accept state
is that, when it is reached, the behavior we are interested in has
been observed. Instead, a refuse state is one that, when reached,
means the observed behavior is not relevant for the test. In both
cases the test must be stopped. If an accept state is reached and
all outputs from the SUT have been among the expected ones (as
specified in the specification), an accept verdict is generated.
Otherwise, if a refuse state is reached and all outputs from the
SUT have been among the expected ones, an inconclusive verdict
is emitted. Finally, a fail verdict is generated if the SUT generates
unexpected outputs, but this remains implicit in the output I/O
LTS (if the output is not present, this means fail). TGV includes
the possibility to complete incomplete test purposes, by adding
self-loops for all the missing events. Moreover, TGV automatically
adds d events as necessary. The generation of d events is performed
by TGV when it combines the specification and the test purpose
into a single I/O LTS. For test case generation, TGV uses a lazy eval-
uation technique that lets it limit the amount of memory con-
sumed. TGV can take inputs specified in several input languages
and convert them into the I/O LTS form. Unfortunately, TGV cannot
take CSP as input. However, it can take LOTOS2 [16], which is
another formal specification language similar to CSP. As LOTOS
was inspired by CSP, its process algebra is very similar to CSP. Note
that TGV was selected as the best fit to our problem, as we didn’t find
2 LOTOS is a specification language that has been specifically developed for the
formal description of the OSI (Open Systems Interconnection) architecture, although
it is applicable to distributed, concurrent systems in general.
MBT tools capable of performing test case generation based on the
ioco relationship that can take directly CSP as input.

As we already have CSP models generated from SysML behav-
ioral models, we created a conversion tool from CSP to LOTOS, in
order to enable the use of CADP TGV for MBT test case generation.
As in LOTOS the distinction between input and output events may
not be possible, a separate file is used by TGV in order to give this
specification (i.e. whether each event has to be considered as input
or output). This is also generated automatically by the converter.
Finally, in order to limit the manual work of the user as much as
possible, an automatic test purpose generator has been created.
Test purposes can then be edited by the user if necessary. The com-
plete MBT toolchain resulting from this approach is shown in
Fig. 13.

This basic method has been integrated into our plugin for the
Topcased [17] environment along with the refinement checking
tool. Having these two tools in the same plugin makes code re-
use straightforward and provides a single environment where
users can develop software safety requirement models in SysML,
check refinement relationships among requirements using the
refinement checking tool and generate test cases starting from
the safety requirements models.
5. Experimental results

An evaluation of the approach has been done by means of the
demonstrative toolchain on a use case proposed by CRF (Centro
Ricerche Fiat), the FCA (Fiat Chrysler Automobiles) Research Cen-
ter, within the VeTeSS (Verification and Testing to Support Func-
tional Safety Standards) European Project (https://artemis-ia.eu/
project/43-vetess.html).

VeTeSS developed standardized tools and methods to verify the
robustness of safety-relevant systems, particularly against tran-
sient common-cause faults. CRF’s use case selected for the project
was an electric gear selector for HEV/EV (e-shift [18]): the system
provides mechanical locking or unlocking of the transmission
when the parking mode is selected (by the driver or automatically),
avoiding unwanted movement of the vehicle when stopped.

The electric gear selector is composed of a Vehicle Control Unit
(implementing the control strategies), a number of switches (sens-
ing of Parking, Drive, Rear and Neutral buttons) and a parking lock
actuator (actuating the command to a park pawl motor). Two of
the identified safety goals were analyzed in the project: avoiding
an unwanted unlocking of the parking brake (SG#1) and avoiding
an unwanted activation of the parking brake when the car is mov-
ing (SG#2). Starting from an already existing model of the e-shift
system and a natural language expression of its safety require-
ments, a corresponding SysML model has been created, including
the formalization of safety requirements according to the proposed
approach. This work has been done by a team of CRF’s engineers
having background in SysML but not in formal methods, with
the support of the tool developers from the Turin Polytechnic.

https://artemis-ia.eu/project/43-vetess.html
https://artemis-ia.eu/project/43-vetess.html


Table 1
Events meaning for requirement #011.

P_in The P driving mode is entered
D_in The D driving mode is entered
R_in The R driving mode is entered
N_in The N driving mode is entered
B_valid_pressed the result of the acquisition/validation of the brake

pedal status is communicated and this result is valid-
pressed

B_valid_unpressed the result of the acquisition/validation of the brake
pedal status is communicated and this result is valid-
unpressed

B_invalid the result of the acquisition/validation of the brake
pedal status is communicated and this result is invalid

shifter_pos_to_D the Shifter_pos signal is set to D mode
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Unfortunately, for the time being, software safety requirements are
not available for the e-shift use case. Only system-level require-
ments are available (functional and technical safety requirements).
For this reason, the evaluation has been done using the available
requirements. This means that compliance and consistency have
been checked according to our approach between functional safety
requirements and technical safety requirements. Similarly, test
cases have been generated from technical safety requirements
rather than from software safety requirements. However, we think
this kind of experiment is still significant for demonstrating and
evaluating the approach, and it is also relevant for software, con-
sidering that the test cases derived from the technical safety
requirements can be used for software-in-the-loop testing. Even
if not all the available safety requirements have been formalized,
a significant subset of them has been formalized in SysML, with
their associated behavior. For these requirements, the plugin has
been able to check refinement relationships, and for technical
safety requirements it has been able to generate test cases, as
expected. The subset of formalized requirements includes safety
goal SG#2, 9 functional safety requirements, and the 18 technical
safety requirements derived from them. These include all the
requirements related to the D button. For one of the requirements
(TSR#008) the test cases generated by the tool have been manually
translated into Simulink-related time histories. As an example, the
test case generation for one of the technical safety requirements
(TSR#011) is presented here. The text of the requirement is: ‘‘If
the system is in P mode, VCU shall set Shifter_pos signal to D mode
only if brake pedal status is pressed and validated”. This require-
ment has been formalized using the state machine shown in
Fig. 14.

The statemachine consists of amain state (State 1), composed of
two regions (representing parallel behaviors). The lower region rep-
resents the evolution of the brake pedal status, while the upper
region represents the evolution of the driving mode. The meaning
of the events occurring in the state machine is defined in Table 1.
The lower state machine models the brake pedal status by means
of two states: PressedAndValidated and Other. Initially the state is
Other, but it can change at any time. The state machine expresses
the fact that when the brake pedal status is in the
‘‘PressedAndValidated” state the result of the acquisition/validation
Fig. 14. The formalization of TSR#
of the brake pedal status is valid-pressed (event B_valid_pressed)
while when the state is ‘‘Other”, the result can be valid-unpressed
or invalid. The upper state machine models the driving mode by
means of two states: PMode and OtherMode. Inside PMode there
are two sub-states: PState1 and PState2.

The latter state is reached only after event B_valid_pressed, i.e.
only when the result of the last acquisition/validation of the brake
pedal status has been valid-pressed. As evident from the diagram,
this machine expresses the fact that the Shifter_pos signal can be
set to D mode (i.e. event shift_pos_to_D can occur) only in PState2,
i.e. only when the result of the last acquisition/validation of the
brake pedal status has been valid-pressed. When considering this
requirement alone, the output that has to be observed is event
shift_pos_to_D, while all the other events can be considered as
inputs. Accordingly, when deriving test cases for this requirement,
shift_pos_to_D is classified as output while all the other events are
classified as inputs. The generation of the test cases with a default
test purpose set with a maximum length of the test patterns equal
to 100 produces a test case I/O LTS composed of a total of 26,900
steps (i.e., transitions of the I/O LTS). The time taken by TGV to gen-
erate the test cases (with the default test purpose set to a maxi-
mum test length of 100) is in the order of few seconds.
Considering that a maximum test length of 100 is already a fairly
high value, this result gives a positive assessment about the scala-
bility of the tool used for test generation. This experimental work
011 from the e-shift use case.
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allowed us to get a confirmation that refinement checking can be
applied with success to a realistic industrial use case. As require-
ments behavioral models are not so complex, the time taken by
refinement checking is absolutely affordable (each verification
takes seconds to complete). In the experimentation with the e-
shift use case, refinement checking proved to be a tool useful for
obtaining coherent and precise requirements models. In fact, mod-
eling errors were spotted either by performing simulation (made
possible by the integration with PAT) or by performing refinement
checking. The final models were obtained after some check-fix iter-
ations. The main issues that had to be corrected during these iter-
ations were related to wrong uses of the modeling language. The
modeling work also led to the detection of a redundancy in the
set of functional safety requirements: two of the original require-
ments were found to be equivalent, i.e. to have the same behavioral
model. The textual formulation of the e-shift requirements was not
precise enough for their formalization, and some of the implicit
underlying assumptions made by requirements engineers had to
be understood and made explicit in order to proceed with formal-
ization. The formalization work necessary as a pre-condition for
performing verification by means of refinement checking gave
the opportunity to improve the precision of safety requirements,
while refinement checking provided the confidence that deriva-
tions were sound or spotted conceptual errors or lack of necessary
assumptions in requirements formalization. One of the main limi-
tations observed by CRF’s engineers is related to the difficulty of
formalizing requirements as state machines or as one of the other
behavioral models available in SysML. However, CRF agreed, in
their final evaluation report, that although the effort for the for-
malization of requirements as state machines is considerable, it
was feasible and it made formal verification possible, thus improv-
ing the quality of the process. Without this approach and tool sup-
port, formal verification would not have been possible, because of
the lack of specific skills in formal methods. The benefits of having
performed this modeling and formal verification step that the CRF
team reported as most useful are the resulting non-ambiguity, con-
sistency, and coherence of the obtained requirements set: safety
requirements have precise meaning, and each one derives correctly
from the higher-level ones. By employing the proposed formal ver-
ification tool, this result could be achieved with acceptable effort.
Another result is that the team of engineers was able to complete
all the formal specification and verification tasks of this project
with limited support and guidance from the tool developers, which
confirms that the proposed toolchain can be used by engineers
with background in SysML. The main thing that they learned from
the process is that a formal specification and verification step can
really help to improve the quality of requirements.

6. Related work

After the publication of ISO 26262 some proposals have
appeared in the literature about how to introduce formal methods
in ISO 26262 compliant development processes. However, only in
some cases these works address the problem of making the use
of formal methods user-friendly and fully automated, by hiding
the complexity of formal notation and reasoning to the final user.

For example, [19] presents a methodology that includes formal
verification of refinement relationships between safety require-
ments and their software implementations. Differently from our
work, it requires that requirements are expressed directly in the
formal language of the verification tool, and the tool (a theorem
prover) is not fully automatic. Another work [20] provides support
for the verification of safety requirements by exploiting syntactic
contract conditions. The approach proposed in [20] as a way to
limit the exposure of the user to formal languages consists of
avoiding a full formalization of requirements. In this way, however,
formal verification remain possible only partially, while our
approach allows a full formalization and verification of require-
ments. Instead, [21] proposes the use of CSP-based automated ver-
ification tools in order to formally check safety requirements.
While the paper envisages the usefulness of translating safety
requirements into CSP automatically, this is left as future work.
[22] presents a tool called SESAMM which hides the complexity
of formal specifications by exploiting specification patterns. The
user specifies requirements in terms of patterns and the latter
are then translated automatically into formal notation. While the
SESAMM approach is a possible valid alternative to our approach
to create formal requirements specifications in a user-friendly
way, currently SESAMM does not address the problem of refine-
ment checking as we do, i.e. it cannot check automatically that a
derived requirement correctly implements a more abstract one.

Among the works that use formal methods and address
user-friendliness and automation in a way more similar to what
we propose, [23] presents a methodology based on expressing
requirements and system models in UML and translating them
automatically into formal notations that can then be used for ver-
ification by model checking. Although there are similarities
between our approach and the one proposed by [23], e.g. the
extraction of formal models from UML behavioral diagrams, there
are also substantial differences: we consider SysML rather than
UML, which allows us to represent requirements derivations, and
we use refinement checking rather than model checking. In this
way, we can compare requirements at different abstraction levels,
and we avoid to expose the user to a specialized formalism for
requirements (in [23], requirements have to be specified by means
of pre and post conditions). In addition, we introduce the possibil-
ity of a smooth transition from refinement checking to testing, via
automatic generation of requirements-based test cases.

Another work related to our one is [18], where the same e-shift
use case has been used for evaluation. However, this paper pro-
poses a technique for improving test coverage, which is comple-
mentary to our approach rather than alternative to it.

In the rest of this section, we give an overview of related work
in the area of refinement checking. Theories of refinement have
been developed for several formal specification languages (e.g.
[24–26]). Among these languages, CSP [7,8] has gained particular
interest and popularity, also because of the availability of wide-
spread techniques and tools for automated checking of refinement
in CSP [27,10]. The CSP theory of refinement has been used in sev-
eral fields (software, hardware and system development) with the
aim of verifying the compliance of implementations with specifica-
tions or the compliance of specifications with other corresponding
more abstract specifications. However, as CSP is typically outside
the common background of engineers, some attempts have been
made in order to hide CSP to final users. This can be achieved by
translating the models used for specification into CSP. For example,
[28] presents an approach for using CSP-based refinement check-
ing for verifying mobile phone applications: properties are
expressed as constrained English sentences that can be automati-
cally translated into CSP and another CSP model is automatically
built from the code of the application. Then refinement checking
is used in order to verify that the code fulfills the properties.
Another example is [29] where OCCAM programs are automati-
cally translated into CSP in order to apply refinement checking.
Our approach is similar to these ones, but the context (ISO 26262
safety requirements) is totally different.

Focusing on UML-based specification formalisms, some
attempts have been made to facilitate refinement checking of
UML models, by automatically deriving CSP processes from (parts
of) UML models. For example, [30] presents a CSP semantics for a
subset of UML that includes UML state machines while [31,32] deal
with automatic translation of UML state machines and UML
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activity diagrams respectively into CSP. Given the rich literature in
this field, in our work we do not provide alternative ways for gen-
erating CSP from UML behavioral diagrams but we exploit the
already existing approaches.
7. Conclusions

Starting from the observation that electronic and pro-
grammable automotive systems are becoming more and more
complex while playing an increasingly crucial role, we proposed
an automated, approach to formal modeling and verification of
requirements according to the recently issued standard ISO
26262. We acknowledge that formal verification techniques are
often seen as complex and highly sophisticated methods that
may not be easily applicable to concrete industrial use cases. In this
work we have addressed exactly this challenge by only minimally
exposing the theoretical complexity of the approach. In fact, sys-
tem models and behaviors are expressed by means of SysML, a
well-known modelling language that most people with an indus-
trial background are already familiar with. According to our
approach, demonstrated as a plugin implementation in the Top-
cased environment, formal models are extracted from the SysML
requirements specifications, by resolving variation points. These
models can then be used to formally verify, in an automated
way, that requirements, with their corresponding behavioral dia-
grams, expressed at different levels of abstraction, are related by
the correct relationships specified at system design time.
Moreover, starting from the same formal models, it is possible to
automatically generate test cases that can be used for
requirements-based testing, an alternative way to verify refine-
ment relationships.

The fact that the proposed methodology hides the complexity of
formal notations to the user is an important result about usability.
In order to also prove the validity of our solution in real world use
cases, we applied the methodology and its demonstrative tool
chain to one main example derived from industrial use cases,
which is an e-shift use case proposed by FCA. According to the
results of the experiment, in which a team of engineers from CRF
without specific training in formal methods performed safety
requirements specification and verification, the proposed approach
was evaluated feasible and user friendly enough by the engineers,
also showing adequate performance of the automated tools
employed. At the same time, it was recognized by the engineers
involved that the formalization of requirements, even with the
proposed approach based on state machines, requires considerable
effort. However, this effort permitted the achievement of a formal
verification of requirements which would not be possible to obtain
otherwise without employing personnel with specific training in
formal methods.

We leave as future work a more extensive evaluation of the pro-
posed approach and toolchain on other use cases and with other
teams of engineers.
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