
μCRL: A Computer Science based Approach for
Specification and Verification of Hardware Circuits

K.L. Man
Centre for Efficiency-Oriented Languages (CEOL)

Department of Computer Science, University College Cork, Ireland
Email: pafesd@gmail.com

URL:http://digilander.libero.it/systemcfl/pafesd

Abstract— μCRL is a process algebraic language for the formal
specification and analysis of the behaviour of distributed systems.
The toolset of μCRL is the result of software engineering research
with a very strong foundation in formal theories/methods, which
supports the analysis and manipulation of μCRL specifications.
This paper investigates a Computer Science based approach for
specification and verification of hardware circuits using μCRL
and its toolset. Two standard benchmark circuits are described
in μCRL and analysed by the μCRL toolset together with the
software tools CADP and SPIN, which are well-equipped with
the μCRL toolset.

I. INTRODUCTION

Formal methods provide a set of notations that can be
used to build mathematical models of systems; and techniques
for automatic verification of such models. Over the years,
formal methods have been widely and successfully used in
a wide range of problems and in practical applications in
both academia and industry for the specification and analysis
of many different systems. Formal verification is intended
to prove some properties (e.g. expressed in temporal logic)
hold in the system (i.e. a mathematical model) under analysis.
Although formal verification has shown to be very useful for
analysis of various systems (e.g. hardware circuits), its power
is still limited by the complexity of the analysis that grows
very large as the size of the systems increases (namely state
space explosion problem).

On the other hand, Formal languages with a semantics
formally (i.e. mathematically) defined in Computer Science
increase understanding of systems, increase clarity of specifi-
cations and help solving problems and remove errors. Over
the years, several flavours of formal languages have been
gaining industrial acceptance. Process algebras [1] are formal
languages that have formal syntax and semantics for specifying
and reasoning about different systems. They are also useful
tools for verification of various systems. Generally speaking,
process algebras describe the behaviour of processes and
provide operations that allow to compose systems in order
to obtain more complex systems. Moreover, the analysis and
verification of systems described using process algebras can
be partially or completely carried out by mathematical proofs
using equational theory.

In addition, the strength of the field of process algebras
lies in the ability to use Algebraic reasoning (also known
as equational reasoning) that allows rewriting processes using

axioms (e.g. for commutativity and associativity) to a simpler
form. By using axioms, we can also perform calculations
with processes. These can be advantageous for many forms
of analysis. Process algebras have also helped to achieve a
deeper understanding of the nature of concepts like observable
behaviour in the presence of non-determinism, system com-
position by interconnection of system components modelled
as processes in a parallel context, and notions of behavioural
equivalence (e.g. bisimulation [1]) of such systems.

On the other hand, in order to efficiently model systems
of ever increasing complexity and size, and to effectively
analyse them, powerful techniques or approaches are needed.
In process algebras, Linearisation [2], [3] is a transformation
of a recursive specification into a linear representation (without
parallelism), i.e., a kind of normal form that is convenient for
many forms of analysis. Note that these linear representations
are expressed as recursive specifications as well, but they use
only a small subset of the full process algebra. In general, such
linear representations can also be considered very compact
representations of a possibly infinite state space. The original
recursive specification and its transformation are required to
be bisimilar, which ensures that the relevant specification
properties are preserved. Furthermore, complex systems can
be constructed containing lots of parallelism and it is quite dif-
ficult to analyse such complex systems. Therefore, it is always
useful to transform complex systems to linear representations
for analysis.

To formally specify complex hardware circuits and effec-
tively analyse them, in this paper, we propose a Computer
Science based approach to use the μCRL language [4] as
the specification formalism to formally describe the behaviour
of hardware circuits and to apply μCRL toolset [4] (possibly
together with other back-end verification tools for μCRL) to
analyse them. For the use in this paper, the above choices
(using the μCRL language and its toolset) are made, because
of the following:

1) the μCRL language comprises mathematical specifica-
tions for hardware circuits;

2) the μCRL language allows for description and (syntax-
based) analysis of hardware circuits in a compositional
fashion;

3) the μCRL language offers the possibility to apply al-
gebraic reasoning on specifications (e.g. to refine the

978-1-4244-2599-0/08/$25.00 ©2008 IEEE 2008 International SoC Design Conference

I-387

I-387

specifications);
4) the μCRL toolset has a lineariser which automatically

converts a μCRL specification into a linear representa-
tion (to reduce complexity and to ease analysis);

5) the μCRL toolset offers the possibilities for both simu-
lation and model checking on μCRL specifications;

6) the μCRL toolset is also well-equipped with several tools
(e.g. CADP [5], [6] and SPIN [7], [8]) to analyse models
of complex systems;

7) the μCRL language can be reasonable easily translated to
other formalisms (e.g. petri-nets and theory of automa-
ton) and this leads to ease of verification using existing
formal verification tools;

8) the μCRL toolset is free in distribution, well maintained
and well documented.

Related Work. Serious efforts have been made in the past
to deal with systems (e.g. real-time systems [9], [10] and
hybrid systems [11], [12], [13], [14]) in a process algebraic
way. Over the years, also several process algebraic theories
(e.g. [15], [16], [17], [18]) were applied in the context of the
formal specification and analysis of hardware circuits. How-
ever, no linearisation algorithms have been developed for such
process algebraic theories. As shown in [19], [2], linearisation
algorithms are the key of success to analyse complex systems
described in process algebra based formalisms.

In this paper, we show the practicability of our Computer
Science based approach by means of two standard benchmark
hardware circuits. To the best of our knowledge, this is the
first article to present the application of μCRL and its toolset
(as well as its back-end verification tools) to formally specify
and to analyse hardware circuits.

Structure. The structure of the paper is as follows. sec-
tion II presents μCRL including the syntax, its toolset, veri-
fication/proof techniques, etc. For the use in this paper, the
tool CADP, the SPIN model checker, μ-calculus [20] and
PROMELA [7] are briefly introduced in section III. The
application of μCRL and its toolset (together also with the
tool CADP and the SPIN model checker) to formally specify
and to analyse two standard benchmark hardware circuits is
presented in sections IV and V. Finally, concluding remarks
are made in section VI and the direction of future work is
pointed out in the same section.

II. μCRL

μCRL (micro Common Representation Language) is an
algebraic specification language that can be used to formally
specify and to analyse the behaviour of distributed systems.
In principal, μCRL is based on the Algebra of Communicating
Processes (ACP) [1] extended with equational abstract data
types to interwine processes, actions and recursion variables
that can be parameterised with data types. In addition, a condi-
tional construct (if-then-else can be used to have data elements
influence the course of a process, and alternative quantification
(also known as choice quantification) is introduced to sum over
possibly infinite data domains.

Data types and Actions. In a μCRL specification, any
data type (e.g. natural numbers) can be defined. However, one
has to define the boolean type in each μCRL specification.
Distinct data types are characterised by their sets of data
constructors. Moreover, operations can be defined over data
by means of rewrite rules. In μCRL, actions/communication
actions with or without parameters can be declared in each
specification. When parameters are used the data types of such
parameters needed to be given (see the below syntax of μCRL
and section V for details and examples).

Syntax and Semantics As in many process algebras, the
basic ways of combining processes in μCRL are alternative
composition, sequential composition, parallel composition,
etc. The μCRL language has a clear syntax and well-defined
semantics. However, presenting the syntax and semantics of
μCRL is far beyond the scope of this paper, we refer to [21]
for a complete description (i.e. syntax and semantics) of the
μCRL language.

μCRL Toolset. The μCRL toolset is the result of software
engineering research with a very strong foundation in formal
theories/methods, which supports the analysis and manipu-
lation of μCRL specifications. Also, μCRL toolset is well-
equipped with several tools (e.g. CADP and SPIN) to analyse
models of complex systems. The μCRL toolset comprises a
lineariser which can transform a μCRL specification into a
corresponding linear process equation (LPE) which is a linear
representation (as already explained in Section I). All other
tools in the μCRL toolset use LPEs as their starting point. The
μCRL simulator can simulate interactively the behaviour of a
LPE. The μCRL state space generator can be used to generate
a state space from a LPE. There are several tools that allow
analysis and optimisations on the level of LPEs expressed
as so-called “.aut” format. Furthermore, the generated state
space of a LPE (in the aut format) can be read, visualised and
analysed by CADP.

III. CADP, μ-CALCULUS, SPIN MODEL CHECKER AND

PROMELA

For the use in this paper, in this section, we shortly introduce
CADP, μ-calculus, SPIN Model Checker and PROMELA.

CADP and μ-calculus. CADP (CAESAR/ALDEBARAN De-
velopment Package) is a very popular toolbox for the design
of communication protocols and distributed systems. CADP
offers a wide set of functionalities, ranging from step-by-step
simulation to massively parallel model-checking. In particular,
using this tool, one can express properties in the regular
alternation-free μ-calculus for model checking on the state
space generated from the model.

SPIN Model Checker and PROMELA. SPIN is a software
package that allows the simulation of a specification written
in the language PROMELA. It accepts correctness claims
specified in the syntax of standard Linear Temporal Logic
(LTL) [7]. SPIN can be applied to the verification of several
types of properties, such as model checking of LTL formulas,
verification of state properties, unreachable code, etc.

2008 International SoC Design Conference

I-388

I-388

client−1

client−2

a
c

arbiter

b

Fig. 1. An asynchronous arbiter.

PROMELA is a modelling language to describe finite-
state systems. It resembles the programming language C with
Communicating Sequential Processes (CSP) [22] features.
For a complete description of the syntax and semantics of
PROMELA, we refer the reader to [7].

IV. AN ASYNCHRONOUS ARBITER

Asynchronous arbiter circuits are standard hardware ver-
ification benchmark circuits. An arbiter circuit controls the
exclusive access of one out of a number possibly competing
processes to a shared resource. Figure 1 shows an (untimed)
asynchronous arbiter (taken from [18]) such that two clients
(client-1 and client-2) complete for a shared resource. Each
client sends a request (a number 1 for client-1 and a number
2 for client-2) for the resource to the arbiter via an individual
channel (a and b). The arbiter chooses non-deterministically
between clients with pending requests, and then sends the
number of the selected client-(1 or 2) via another channel (c)
to the environment.

Due to reason of space, the specification of the asyn-
chronous arbiter in μCRL is given below without a detailed
description1.

act sa, sb, sc, ra, rb, ca, cb : Δ
comm sa | ra = ca

sb | rb = cb

proc C1 = sa(1).C1

C2 = sb(2).C2

A = ∑d:Δ(ra(d) + rb(d)).sc(d).A

Where C1 denotes client-1, C2 denotes client-2 and A
represents the behaviour of the asynchronous arbiter and such
an arbiter initially (as specified by the keyword init) consists
of C1, C2 and A in a parallel context (defined by means of the
operator ‖), which is described as follows:

init (C1 ‖ C2 ‖ A)

A. Verification

Using the μCRL toolset, the asynchronous arbiter spec-
ification in μCRL was first linearised (this step serves to
obtain a smaller size for representation) and then its state
space was generated in “.aut” format (consisting of 3 states

1However, a detailed account of the description of the asynchronous arbiter
in μCRL, the hazardous circuit in μCRL presented in Section V and its
translation to PROMELA as well as verification runs on such specifications
in μCRL using various verification tools can be found at [23].

and 14 transitions only), which is one of the input formats
of the CADP tool. The following properties were verified
successfully in few seconds using the CADP tool and a modern
PC:

• Deadlock free. The absence of deadlock (in the state space
generated for the asynchronous arbiter specification in
μCRL) was verified which is the built-in functionality of
the CADP tool.

• Liveness properties. If the client-1 sends a number 1 via
channel a, the number 1 will be eventually sent to the
environment via channel c. Similarly, if the client-2 sends
a number 2 via channel b, the number 2 will be eventually
sent to the environment via channel c.

V. A HAZARDOUS CIRCUIT
By means of an example: a hazardous (combinational)

circuit, this section shows that SPIN (another well-equipped
tool with the μCRL toolset) can also be reasonable easily used
as a verification engine for μCRL specifications by translating
them to the corresponding models in PROMELA that are the
input formats of SPIN.

c̄ k1

k2

b

d

ā
z

Fig. 2. A hazardous circuit.

Fig. 2 shows a (combinational) circuit that contains a hazard.
The output of the circuit has the logical function z = āc̄d +bcd.
Depending on the delays of the inverter and wires, during a
transition on signal or wire/port c, a spike may occur. For
instance, while c̄ is changing from “T (true)” to “F(false)”,
the other input signals are still constant. Hence, this leads a
hazard at the output z.

The μCRL specification of the hazardous circuit consists of
two process definitions Circuit and Stimulus as follows:

proc
Circuit(ā, b, c̄, d, k1, k2, z, newsp : Bool) =
∑{ā,b,c̄,d,k1,k2,z,newsp:Bool}((
rā(ā).rc̄(c̄).rd(d).(sk1(T) � and(and(ā, c̄), d) � sk1(F))
+
rc̄(c̄).sc(not(c̄)).rd(d).rb(b).
(sk2(T) � and(and(not(c̄), d), b) � sk2(F))
+
rk1(k1).rk2(k2).(sz(T) � or(k1, k2) � sz(F))).
snewsp(aF(newsp))
).Circuit(ā, b, c̄, d, k1, k2, z, newsp)

Stimulus(ā, b, c̄, d, newsp, oldz : Bool) =
∑{ā,b,c̄,d,k1,k2,z,newsp,oldz:Bool}(
snewsp(aT(newsp)).soldz(z).(sā(not(ā)) + sc̄(not(c̄))+
sb(not(b)) + sd(not(d)))
).Stimulus(ā, b, c̄, d, newsp, oldz)

2008 International SoC Design Conference

I-389

I-389

Whole System. Since the process definitions Circuit and
Stimulus execute concurrently, the parallel composition is used
to model the complete system. The complete system with
appropriated initial values for variables is given below:

init τ{cā(∗),cb(∗),cc̄(∗),cd(∗)|∗∈Bool}(
∂{sā(∗),sb(∗),sc̄(∗),sd(∗),rā(∗),rb(∗),rc̄(∗),rd(∗)|∗∈Bool}(
Circuit(T, F, c̄, F, k1, k2, z, T) ‖
Stimulus(T, F, c̄, F, T, oldz))
)

Again, we refer to [23] for a detailed description of the
hazardous circuit in μCRL and its translation to PROMELA.

A. Verification

A crucial details of the translation from a subset of μCRL
to PROMELA was given in [24]. After having translated
the hazardous circuit μCRL to the corresponding PROMELA
model, such a model in PROMELA was tested using SPIN
and a modern PC; and a hazard was found in few seconds
(see also [23] for details).

VI. CONCLUDING REMARKS AND FUTURE WORK

As we have seen in this paper, μCRL and its toolset
(together with different well-equipped back-end verification
tools) can efficiently and effectively be used to formally
specify and to analyse asynchronous circuits as well as com-
binational circuits. Also, we believe that the use of μCRL and
its toolset (together with various back-end verification tools) is
generally applicable to many other types of hardware circuits
(e.g. sequential and arithmetic circuits). However, it is not
clear yet whether μCRL and its toolset are useful for the
formal specification and analysis of larger hardware circuits
than examples considered in this paper.

Recently, the formal specification language mCRL2 [25] has
been defined, which is the successor of μCRL and extends
the μCRL language with new features and improvements
(e.g. multi-actions, local communication, higher-order function
types, etc).

As future work, we plan to make use of the linearisation
algorithms and verification/proof techniques of μCRL and
mCRL2 to analysis large hardware circuits described in μCRL
and mCRL2.

ACKNOWLEDGEMENT

K.L. Man would like to thank Anton Wijs and Jens Calame
for analysis of the properties of the asynchronous circuit
(in resulting .aut format) using CADP. He wishes to thank
Michel Reniers, Pieter Cuijpers, Muck van Weerdenburg and
Yaroslav Usenko for many stimulating and helpful discussions
on the linearisation algorithms for HyPA [12] and μCRL. He
is grateful to have been able to attend the teaching course in
μCRL from Jan Friso Groote.

Many thanks also go to the industrial collaborators of
the research in this direction: International Software and
Productivity Engineering Institute (USA), Intelligent Support
Ltd. (United Kingdom), Solari (Hong Kong), Minteos (Italy)

and Department of Microelectronic Engineering, University
College Cork (Ireland)

REFERENCES

[1] J. C. M. Baeten and W. P. Weijland, Process Algebra, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge, United Kingdom:
Cambridge University Press, 1990, vol. 18.

[2] P. van de Brand, M. A. Reniers, and P. J. L. Cuijpers, “Linearization
of hybrid processes,” Eindhoven University of Technology, Department
of Computer Science, The Netherlands, Tech. Rep. CS-Report 04-29,
2004.

[3] Y. S. Usenko, “Linearization in μCRL,” Ph.D. dissertation, Eindhoven
University of Technology, 2002.

[4] μCRL, http://homepages.cwi.nl/˜mcrl/.
[5] J. C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,

and M. Sighireanu, “CADP - a protocol validation and verification
toolbox,” in Proceedings 8th Conference on Computer Aided Verification
(CAV’96), ser. Lecture Notes in Computer Science, vol. 1102, 1996, pp.
437–440.

[6] CADP, http://www.inrialpes.fr/vasy/cadp/.
[7] G. J. Holzmann, The SPIN Model Checker: Primer and Reference

Manual. Boston: Addison Wesley Professional, 2003.
[8] SPIN, www.spinroot.com/.
[9] J. C. M. Baeten and C. A. Middelburg, Process Algebra with Timing,

ser. EACTS Monographs in Theoretical Computer Science. Springer-
Verlag, 2002.

[10] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers, “Syntax and semantics of timed Chi,” Eindhoven University
of Technology, Department of Computer Science, The Netherlands,
Tech. Rep. CS-Report 05-09, 2005.

[11] K. L. Man and R. R. H. Schiffelers, “Formal specification and analysis
of hybrid systems,” Ph.D. dissertation, Eindhoven University of Tech-
nology, 2006.

[12] P. J. L. Cuijpers, “Hybrid process algebra,” Ph.D. dissertation, Eindhoven
University of Technology, 2004.

[13] J. A. Bergstra and C. A. Middelburg, “Process algebra for hybrid
systems,” Theoretical Computer Science, vol. 335, no. 2/3, pp. 215–280,
2005.

[14] T. Krilavic̆ius, “Hybrid techniques for hybrid systems,” Ph.D. disserta-
tion, University of Twente, 2006.

[15] K. L. Man and M. P. Schellekens, “Mathematical modelling of digital
hardware systems in Timed Chi,” in the 26th IASTED International
Conference on Modelling, Identification and Control, Innsbruck, Austria,
2007.

[16] SystemCFL, http://digilander.libero.it/systemcfl/.
[17] K. L. Man, M. Boubekeur, and M. P. Schellekens, “Process algebraic

approach to SystemVerilog,” in the 20th IEEE Canadian Conference on
Electrical and Computer Engineering. Columbia, Canada: IEEE, 2007.

[18] G. Salaun and W. Serwe, “Translating hardware process algebras into
standard process algebras - illustration with CHP and LOTOS,” in 5th
International Conference on Integrated Formal Methods, Eindhoven,
The Netherlands, 2005.

[19] J. C. M. Baeten, D. A. van Beek, and J. E. Rooda, “Process algebra for
dynamic system modeling,” Eindhoven University of Technology, The
Netherlands, Tech. Rep. CS-Report 06-03, 2006.

[20] R. Mateescu and M. Sighireanu, “Efficient on-the-fly model-checking
for regular alternation-free mu-calculus,” Science of Computer Program-
ming, vol. 46, pp. 255–281, 2003.

[21] J. F. Groote and A. Ponse, “The syntax and semantics of μCRL,” CWI,
The Netherlands, Tech. Rep. SEN-R9076, 1990.

[22] C. A. R. Hoare, “Communicating sequential processes,” Communica-
tions of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[23] K. Man, Draft paper, 2008, Specification and verification of hardware
circuits using μCRL.

[24] Y. S. Usenko, “A comparison of SPIN and the μCRL toolset on HAVi
leader,” CWI, The Netherlands, Tech. Rep. SEN-R9917, 1999.

[25] mCRL2, http://www.mcrl2.org.

2008 International SoC Design Conference

I-390

I-390

