

 24
International Journal of Research and Reviews in Computer Science (IJRRCS), Vol. 1, No. 1

TEPAWSN: A Formal Analysis Tool for Wireless Sensor Networks

K.L. Man1, T. Krilavičius2, Th. Vallee3 and H.L Leung3

1Xi'an Jiaotong-Liverpool University (XJTLU), ka.man@xjtlu.edu.cn, China
2Vytautas Magnus University, t.krilavicius@if.vdu.lt, Lithuania
3Solari, vallee_th@yahoo.fr and sales@solari-hk.com, Honk Kong

Correspondence should be addressed to K.L. Man (ka.man@xjtlu.edu.cn)

Abstract

Growing safety, correctness, reliability and performance requirements for Wireless Sensor Networks (WSN) have increased
demand for advanced design and development techniques. Formal methods provide basic means to achieve these goals. We
propose a formal language PAWSN and an umbrella tool environment TEPAWSN that combines different formal techniques for
modeling, analysis and development of power aware WSNs.

1. Introduction

A wireless sensor network (WSN) consists of spatially
distributed devices that monitor their environment and
communicate with each other wirelessly. Application areas of
WSNs range from battlefield surveillance, industrial process
monitoring and control, machine health monitoring,
environment and habitat monitoring, healthcare applications,
home automation and traffic control. Such working conditions
set high requirements on the reliability, correctness and,
especially, power consumption of the devices, as well as of the
whole network. Formal methods can be used as methodological
means for the development of such systems in an efficient way.

Indeed, formal methods provide languages with strict
semantics and syntax, corresponding techniques for the
construction of models of systems under development, and
verification (automatic or semi-automatic) of these models
against selected requirements. As a consequence, quantitative
and qualitative properties, such as required throughput or
absence of deadlocks, can be checked.

Different formal methods and tools were recently applied in
modeling and analysis of WSNs [1], [2]. These examples show
how to deal with non determinism, timed and probabilistic
aspects of WSNs. However, these approaches only deal with
selected aspects, while neglecting power consumption issues.

Power consumption can be analyzed at several abstraction
levels: instruction level [3], control algorithm level [4],
hardware level [5], etc. However, currently, only simulation is
applied for power consumption analysis [6], [7].

TinyOS (www.tinyos.net) and nesC (nescc.sourceforge.net)
are, respectively, a well-known operating system and a

well-known programming language for WSN development. A
software is developed as a highly concurrent collection of
processes and tasks. Simulation of the TinyOS application can
be performed using ns-2 (see www.isi.edu/nsnam/ns),
TOSSIM, PowerTOSSIM [7] and VMNet [6].

We propose a methodology for modeling, analysis and
development of WSNs: a formal language PAWSN (Process
Algebra for WSNs) and a corresponding tool environment
TEPAWSN. PAWSN is the classical process algebra extended
with time, probabilistic and, specifically, power consumption
aspects. TEPAWSN is the related tool environment which
facilitates the design, analysis and transformation of PAWSN
specifications. It allows both qualitative and quantitative
analysis by translating PAWSN specifications to other (formal)
languages with tool support.

2. Process Algebra for WSN and Tool Environment

2.1 Process Algebra for Wireless Sensor Network

We introduce process algebra for wireless sensor network
modeling (PAWSN). It combines classical process algebra
(e.g., CCS) features, such as parallel and sequential
composition, with time, probabilistic and power consumption
behaviors. Its semantics allows formal analysis and provides a
solid basis for the tool development. The relevant rationales
behind the development of PAWSN are as follow:

• Orthogonality: timing, non deterministic, probabilistic
and power aspects can easily be added or omitted from a
specification when such aspects are unimportant.

 25
International Journal of Research and Reviews in Computer Science (IJRRCS), Vol. 1, No. 1

• Usability: the syntax and language constructs of
PAWSN have to be close to common languages used for
WSNs (e.g. nesC), making PAWSN intuitive for the
engineers.

• Mapping to automata: Different extensions of automata
are widely used for formal modeling, including the
analysis of WSNs with power issues [5]. We aim at
transforming PAWSN specifications to the equivalent
Power Probabilistic Timed Automata (PPTA) (a type of
timed automata embedded with probabilistic and power
issues). That will allow us to describe a very large
spectrum such as timed, stochastic, probabilistic and
power features. PAWSN semantics should allow
relevant properties of any PAWSN specification to be
preserved through the translation/mapping to the
corresponding PPTA.

2.2 Tool Environment for PAWSN

Instead of developing a new tool, our intention is to provide an
umbrella tool that allows to specify the behavior of WSNs,
including power issues, using PAWSN, and then to translate or to
adapt the specification in such a manner that the analysis can be
carried out by third party tools, e.g. PowerTOSSIM, VMNet,
Prism (see www.prism modelchecker.org), MRMC, Bhave
simulator [9], Uppaal (see www.uppaal.org) or CADP
(www.inrialpes.fr/vasy/cadp/) according to the different purposes,
e.g. simulation, verification or power analysis. This approach was
inspired by MOTOR [10] that advocates the so-called single
formalism and multi-solution approach. The usual practice is to
build multiple models, one for each of the different aspect or
group of aspects of the system, and then to analyze them.
However, this usual approach does not guarantee any property
consistency among the models. Indeed, it misses a formal
semantics relating the models. Consequently, analysis results hold
only for particular models, models which are not completely
equivalent to the whole system. Our approach allows the analyze
of certain aspects/properties of the same model in such a way that
the consistency of analysis/verification is guaranteed. The
reference TESPAWN architecture is depicted in Figure 1.

Figure 1. TEPAWSN architecture

3 Application of TEPAWSN

System development using TEPAWSN consists of several
components, namely: visualization, simulation, verification and
implementation. The procedure is clearly visible from the
reference architecture depicted in Figure 1. Three groups of
conversion tools are defined for the different purposes.

3.1 PAWSN2Sim Converters and Simulation

PAWSN2Sim converters translate PAWSN specifications to
the corresponding models specified by several languages.
These models allow simulating PAWSN specifications using
different oriented simulators. For instance, PAWSN2nesC
converts PAWSN specifications to nesC models in a way
allowing simulation and implementation of such models within
the TinyOS environment. Also, PAWSN2BHPC allows to
employ the toolset BHave (bhpc-simulator.sourceforge.net)
for simulation and certain analysis of power consumptions
aspects (as a part of simulation).

3.2 PAWSN2Ver Converters and Verification

For the purpose of simulation, verification and implementation
of WSNs described in PAWSN, the PAWSN2PPTA,
PAWSN2nesC and PAWSN2PRISM tools will be developed.
Any PAWSN specification will be mapped to the
corresponding PPTA by means of PAWSN2PPTA. The
translator PAWSN2nesC converts PAWSN specifications into
the corresponding models in nesC for simulation and
implementation in TinyOS.

For verification of WSNs, we focus on Model Checking,
which is a formal verification technique. The basic idea is to
create a mathematical model for the system under scrutiny. The
model typically abstracts from everything that is not relevant for
the proof of its correctness. Verifying correctness of the model,
and thereby of the system, is reduced to a set of requirements
that are translated into system properties. These properties are
then formalized by expressing them in a property specification
language, e.g. temporal logics. Model checking is the (often
automated) analysis of whether the constructed model satisfies
all formalized properties.

Probabilistic model checking concerns systems with
behavior is subject to chance. All events or actions occur with a
certain probability. This feature is formalized by constructing a
probabilistic model. Properties can refer to the probabilities and
are formalized in probabilistic property specification
languages. The added value of probabilistic model checking is
that it can be used to do quantitative analysis of systems.

PRISM is a probabilistic model checker, that is, a tool for
probabilistic modeling and analysis. Models are formulated in
the PRISM language that contains three types of models based
on discrete Markov chains (DTMC), Markov decision

 26
International Journal of Research and Reviews in Computer Science (IJRRCS), Vol. 1, No. 1

processes (MDP), and continuous-time Markov chains
(CTMC). Properties are formulated in the PRISM property
specification language containing: probabilistic computation
tree logic (for DTMCs and MDPs) and continuous stochastic
logic (for CTMCs). The tool itself can be used for automated
analysis by discrete event simulation or formal verification
based on numeric computation.

Extreme resource constraints and unreliability are inherent
to WSNs, leading to different trade-offs. For instance, power
consumption versus sensor detection reliability. We typically
want to explore different solutions which may have very
different power consumption characteristics and different
probabilities of detecting a new sensor. Comparing solutions
taking into account both the detection reliability and power
consumption requires quantitative analysis. Probabilistic model
checking allows us to perform this analysis. To this end we
create a requirement on the detection probability of a solution.
We are interested in all solutions with a detection probability of
at least 50%. We construct probabilistic models of WSNs for
each solution and analyze whether each model satisfies this
property. The models that satisfy the property can be ranked
according to power consumption; from which we can choose
the best solution.

Similarly, for verification purpose, PAWSN2PRISM
translates PAWSN specifications into the equivalent reactive
modules which are the input format of the probabilistic model
checker PRISM. Also, it is evident that popular automaton
based model checkers (e.g. UPPAAL) can be used, with some
adaptation on PPTA, to verify properties of WSNs described in
PAWSN via the translations to PPTA.

3.3 PAWSN2Pow and Power Consumption Visualization

In addition to simulation tools, we aim to establish a visual
connection between a WSN design and its power consumption.
This will be achieved by annotating power consumption
information from simulation as TinyOS applications (e.g. using
PowerTOSSIM/VMNet) onto a PPTA of the WSN design. This
visual connection helps:

• to address power consumption and to identify possible
design flaws at an earlier stage;

• to uncover more opportunities for application of
existing low-power design techniques;

• to find such opportunities more quickly than in
traditional manual/iterative approaches.

The completing part of the full environment is a visualization
tool for power analysis. The main goal of involving a
visualization tool is to provide a visual connection between a
WSN design and its power consumption. The large amount of
nodes in WSN and the invisible communication topology ask
inherently for a graphical interpretation of the design algorithm.
Such a tool provides quick overview of the simulation results
and speeds up the evaluation phase. Further, a visual
presentation allows designers to have more opportunities to

uncover existing low-power designs. Last, but not least, it offers
an elegant way to compare individual designs among them.

We propose to use a WSN Simulator and Visualize
NetTopo in order to visualize power consumption. This will be
achieved by annotating power consumption information from
simulation as TinyOS applications (e.g. using
PowerTOSSIM/VMNet) onto a PPTA of the WSN design.

4. Conclusions

The TEPAWSN tool environment for WSNs has been
presented. We expect that TEPAWSN will make a relevant
contribution to the WSN research and development by
facilitating the design and analysis of power aware WSNs. The
development will be performed step-wise, i.e. selected
converters will be implemented and tested with simple case
studies. Depending on the results further actions will be taken.

The development of TEPAWSN will be funded by Solari,
Hong-Kong (official sales agent of Sanyo LCD camera modules
- http://www.solari-hk.com) starting from September 2009; and
in cooperation with engineers from industrial entities as well as
researchers from academic research institutes.

References
[1] P. Olveczky and S. Thorvaldsen, “Formal Modeling and Analysis of

Wireless Sensor Network Algorithms in Real-Time Maude,” in the 20th
IEEE International Parallel &Distributed Processing Symposium, 2006.

[2] A. Demaille, T. Herault, and S. Peyronnet, “Probabilistic verification of

sensor networks,” in International Conference on Research, Innovation
and Vision for the Future, 2006.

[3] H. Joe, J. Park, C. L. Dukkyun Woo and H. Kim, “Instruction-level
power estimator for sensor networks,” ETRI Journal, vol. 30, no. 1, 2008,
pp. 47–58.

[4] B. Z. Ares, P. Park, C. F. A. Speranzon, and K. H. Johansson, “On Power
Control for Wireless Sensor Networks: System Model, Middleware
Component and Experimental Evaluation,” in IFAC European Control
Conference (ECC’07), 2007.

[5] F. Maraninchi, L. Samper, K. Baradon, and A. Vasseur, “Lustre as a
System Modeling Language: Lussensor, a Case-study with Sensor
Networks,” in ETAPS’07, Satellite Workshop on Model-driven
High-level Programming of Embedded Systems, 2007.

[6] H. Wu, Q. Luo, P. Zheng, and L. M. Ni, “VMNet: Realistic emulation of
wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18,
no. 2, 2007, pp. 277–288.

[7] V. Shnayder, M. Hempstead, B. Chen and M. Welsh, “Power-TOSSIM:
Efficient Power Simulation for TinyOS Applications,” in the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys04),
2004.

[8] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns and D. N. Jansen,
“The Ins and Outs of The Probabilistic Model Checker MRMC,” QEST,
www.mrmc-tool.org, 2007.

[9] T.Krilavičius, “Hybrid Techniques for Hybrid Systems“, Enschede,
2006.

[10] H. Bohnenkamp, H. Hermanns, and J.-P. Katoen, “Motor: The MoDeST
Tool Environment,” in Proceedings of the 13th International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS’07), LNCS vol. 4424, 2007, pp. 500–504.

