
A Tutorial on ADT semantics for LOTOS users

Part I: Fundamental Concepts

José A. Mañas

Dept. Ingenieŕıa Telemática
E.T.S.I. Telecomunicación

Ciudad Universitaria

E-28040 MADRID
SPAIN

jmanas@dit.upm.es

14 November, 1988

The limits of my language mean the limits of my world
Ludwig Wittgenstein

Abstract

An informal presentation of the semantics of Abstract Data Types as they are
used in the specification language LOTOS. This paper covers the fundamentals,
while a separate Part II covers the available operations.

1 Introduction

This tutorial intends to cover the usually big gap between normal specifiers and algebri-
cians. The question to answer is

what are the abstract data types of LOTOS?

1

LOTOS syntax is used, but not introduced in detail. Readers are referred to the standard
definition [ISO, 88]. This tutorial is mostly dealing with semantics.

The author is not a mathematician, nor an algebrician, but a plain computer scientist,
with a very pragmatic interest on abstract data types. That helps making this paper
introductory, but be sure it will not be very useful for mathematicians.

The magic word in this world is ABSTRACT. There are several reasons to say abstract.
Some people say ADTs are implementation independent, and put as a counter example
concrete data types as those in the language Ada. It is true that you can describe data
without giving algorithms, thus providing an implementation-free specification, but it is
also true that you can specify algorithms as ADTs too. In fact, most people specify
ADTs by giving and evaluation algorithm in the style that is usualy referred to as a
rewrite system.

Other people say ADTs are representation independent, as opposed to cluttering repre-
sentation issues as in old FORTRAN. Ok, that’s true as for any language where types may
be defined by means of symbolic names, that is, for most modern programming languages.
But be aware you can also describe bytes and bits as ADTs.

We prefer to say ADTs are a methodology to describe objects by itemizing the properties
your data must have. It’s up to specifiers which properties are described. You may wish
to specify algorithms or even bit representations. Those are perfectly legal items to be
specified. You may wish to specify the axioms of group theory, and that is perfectly legal
too.

With respect to the contents of this paper, the presentation will be straightforward,
introducing only those theoretical concepts that are strictly required. Many examples
will be presented, not big ones, but meaningful ones.

A note of warning about the universality of what is exposed in the following pages. The
theory of abstract data types is not a single theory, but there are as many as ADT
languages. We shall concentrate on ACT ONE, the language used in LOTOS. When
there are several choices, they will be briefly presented, but only the one followed by ACT
ONE is carried on. When there are differences between ACT ONE and LOTOS, the last
one is preferred.

2 ADTs in LOTOS

In order to make clear what do LOTOS specifiers need from ADTs, let’s start by revising
LOTOS constructions.

2

2.1 Synchronization

Basic LOTOS activity is to synchronize on action denotations. There are three basic
kinds of synchronization:

1. synchronization:

g !E1 |[g]| g !E2

where expressions E1 and E2 must belong to the same sort.1 It will succeed iff we
can prove E1 = E2 from the specification of the common type.

2. value passing:

g !E |[g]| g ?x:S

where expression E must belong to the sort S. It will succeed, becoming x = E.

3. negotiation:

g ?x:S |[g]| g ?y:S

It will succeed, becoming x = y for some value in sort S.

Cases 2 and 3 can be regarded as trivial with respect to the use of data type specifications.
Case 1 introduces the notion of proving. It must be proved if two expressions are equal
or not, in order to know whether the synchronization may succeed.

2.2 Guarded Behaviours

The behaviour

[E1 = E2] → B

is equivalent to stop or B, depending on E1 being equal to E2 or not. Again, it must be
proved. There is a shorthand for boolean expressions: [E1] stands for [E1 = true].

2.2.1 Predicates

The action denotation

a[E1 = E2]; B

will allow a to synchronize or not depending on the result of proving if E1 is equal to E2
or not. There is a shorthand for boolean expressions: [E1] stands for [E1 = true].

1Precise definitions are given below. For the time being, think of sorts as Pascal types.

3

2.3 Conclusion

The use of an ADT specification in LOTOS is basically finding out if two expressions are
equal or not. Of course, valid expressions are only those constructed using the operations
of specified types, with the standard rules. This is typical of every programming language,
and we shall not say much more.

3 Very Basic Remind

Since readers are not expected to be working algebricians, we shall copy here some very
very basic notions. To simplify the notation, where no confusion arise, we shall use the
Pascal typing mechanism, writing x : S for x ∈ S.

3.1 Functions

A function is a deterministic criterion to relate EVERY combination of elements of a
domain of sets, into just one element of a range set. The standard notation is used:

f : s1 . . . sn → sr

where the domain is (s1 . . . sn), and the range is sr. Notice we say ”. . . every . . . ”, that
is, we are dealing with total functions, those defined over the whole domain.

3.2 Surjective

A function is surjective if and only if for every element of sr there exists a combination
of elements in the domain whose image is that element in the range. The whole range set
is covered. Formally,

∀xr : sr, ∃x1 : s1 . . . xn : sn such that f(x1 . . . xn) = xr

3.3 Injective

A function is injective iff different combinations of elements in the domain are mapped
into different elements of the range. Informally, it means that from the result we can infer
the arguments.

4

f(a) = f(b) ⇒ a = b

For injective and total functions f there exists an inverse function f ′ such that

f ◦ f ′ = I

f ′ ◦ f = I

where ◦ is the composition of functions

(f1 ◦ f2)(x) = f1(f2(x))

and I is the identity function

I(x) = x

3.4 Bijective

A total function that is both surjective and injective is then bijective.

4 Fundamental Concepts

Although we shall try to keep to a minimum, we need some formalism to proceed. ACT
ONE is a language for specifying by means of algebras.

• ALGEBRA:

An algebra is a set of elements with operations and properties between them.

This is very informal. Let’s refine the concept.

4.1 Sort

• SORT:

A sort is a set of elements with a name.

5

There are algebras with just one sort2. For instance, that of Bool. And there are algebras
with more than one sort3. For instance, the algebra of the stacks of integers, where at
least we have the sort of integers and the sort of stacks.

What we here call sorts, corresponds to the concept of type in most programming lan-
guages (e.g. in Pascal). But readers must be careful because later on we shall call types
to algebras. But let’s go step by step.

4.2 Operation

• OPERATION:

An operation is a function with a domain and a range

op : s1, s2, . . . sn → sr

where < s1 . . . sn > is the domain4, over which the operation is defined; and sr is the
range, the sort of the result. We shall restrict ourselves to total functions. That is,
operations must be defined for EVERY possible combination of input arguments. They
must be defined over the whole domain.

Formally, let op : Sx → Sy

∀x ∈ Sx, ∃y ∈ Sy such that op(x) = y

There are ADT languages able to specify partial operations, but that is not the case for
ACT ONE in LOTOS. There are languages with nondeterministic operations, but their
algebraic support is extremely complicated. It is not the case for LOTOS too.

4.3 Ground Terms

• GROUND TERMS:

The elements in the sorts are called ground terms5

2one-sorted algebras, homogeneous.
3many-sorted algebras, heterogeneous.
4Cartesian product of sorts.
5Some authors call them carriers, but the terminology is not common to everybody.

6

In an algebra A, including a sort s, we shall denote by |A|s the set of ground terms in
sort s. Sometimes we shall abuse of the notation and write |A| to denote all the sets of
ground terms of sorts belonging to |A|.

There is a simple procedure to construct all the terms in a sort:

1. seed: nullary operations

∀op :→ s, op ∈ |A|s

2. rest: operations on ground terms generate new ground terms

Let x1 ∈ |A|s1, . . . , xn ∈ |A|sn

and op : S1 . . . Sn → S

then op(x1 . . . xn) ∈ |A|s

Example. Let’s consider the Booleans, with one sort bool and three operations

T : → bool

F : → bool

not : bool → bool

the following are ground terms

T , F , not(T), not(F), not(not(T)), not(not(F)), . . .

Notice the set of ground terms |Booleans|bool is infinite. This is a very typical situation.

We shall be mainly concerned with ground terms, but the definition may be slightly
extended to cover variables. Let X be a set of variables of sort s. We call terms of the
sort s to the set formed by ground terms, as previously defined, and the elements of X.
Notice that previous rule (2.) generates more new terms than before.

For Pascal educated readers, nullary operations are CONSTANTS, and ground terms are
valid expressions formed according to the Pascal type compatibility. Terms are similar,
including variables of the appropriate sorts.

4.4 Signature

• SIGNATURE:

We shall call signature of an algebra to the pair formed by the set of sorts and the
set of operations.

7

SIG = < S, F >

S = {sorts}
F = {operations} = {op : S∗ → S}

For those who know Modula-2, a signature is quite similar to a DEFINITION module.
It says how functions are called, and which are their parameters and result. The whole
syntax is known, but nobody knows what those functions do when called. There is no
semantics in a signature, but its value should not be disminished. All the elements of
the game are in the signature. The rules of the game come later, but there is no further
opportunity to introduce more elements. Even more, the names of the elements of the
game are extremely interesting for the reader: the intuition works fine. To put an example,
while every body will have a quick idea of an operation named plus may do, the intuition
will not help at all if the operation is named opn27, and it will work against normal
understanding if named minus. Intuition works despite any correct semantics that are
provided later on. While machines are very good with statements, despite concrete names;
humans are much better with names.

4.5 Morphisms

• MORPHISM:

We shall relate signatures by means of morphisms. Morphisms are mappings
between signatures.

Given SIG1 and SIG2, we may define a mapping

g : SIG1 → SIG2

that maps every sort in S1 into some sort of S2, and every operation in F1, into some
operation of F2. We shall put a minimal requirement on morphisms: they must preserve
functionality, that is, the mapping of operations must be such that

if op : s1 . . . sn → sr

then g(op) : g(s1) . . . g(sn) → g(sr)

4.6 Algebra

The signature gives all the syntactic knowledge. We just need to add semantics to have
an algebra.

8

• ALGEBRA:

algebra =< signature, semantics >=< S, F, semantics >

An ABSTRACT DATA TYPE is an algebra.

The semantics is needed for proving if two expressions (ground terms) are equal or not.
That is the reason for many languages to describe the semantics in terms of = and 6=.

We shall use the following notation to denote reasoning with algebras: A ` t1 = t2 that is
read as: from (the semantics of) algebra A we can prove that terms t1 and t2

6 are equal.

Semantics breaks sorts into equivalence classes

∀x ∈ CEi and ∀y ∈ CEj

i = j ⇒ x = y

i 6= j ⇒ x 6= y

If two (ground) terms belong to the same equivalence class, then they are equal. If two
(ground) terms belong to different equivalence classes, then they are unequal. There is
no exception. Each equivalence class groups equal terms, by definition.

Let us present a simple example. We shall start using LOTOS notation, but readers are
referred to the LOTOS definition for a precise and concise syntax definition. It is not our
concern.

4.6.1 Naturals modulo 2

type Mod2 is

sorts

bit

opns

0, 1 : -> bit

_ + _ : bit, bit -> bit

semantics

+ | 0 1

---+-----

0 | 0 1

1 | 1 0

endtype

6Obviously, (ground) terms, i.e. generated from A’s signature.

9

There is just one sort, bit, and three operations, 0, 1 and +. The ground terms are 0, 1,
0 + 0, 0 + 1, 1 + 0, 1 + 1, (0 + 0) + 0, (0 + 0) + 1, (0 + 1) + 0, . . . and there are just two
equivalence classes, as may be easily proved

class 0 class 1
0 1
0 + 0 0 + 1
1 + 1 1 + 0
(0 + 0) + 0 (0 + 0) + 1
(0 + 1) + 1 (0 + 1) + 0
.

4.7 Models

There may be many algebras with the same signature. That implies that given a signature,
we may think of many algebras. We shall indistincticly speak of models as a synonym for
algebras. We shall denote by Alg(SIG, semantics) the collection of models of a signature
SIG that comply with a certain semantics. The whole collection of models for a signature,
no semantics, are denoted as Alg(SIG, ∅), or just Alg(SIG) for short.

There are some very simple models. So simple that they exist for every signature.

• WORD algebra.

Every (ground) term is different from any other. Equivalence classes are one-element
sets.

• BOTTOM.

All the terms are equal. There is just ONE equivalence class encompassing ALL the
(ground) terms.

We do not argue if these algebras are useful or not. We just state their existence. We can
even find a third trivial model when variables are considered

• FREE algebra.

Every term is different from any other. It is a generalization of the word algebra.

4.7.1 Example: bottom algebra

The bottom algebra is a nice model for some stupid programs as

10

program nut (input, output);

begin

while true do

begin

readln;

writeln ("Ha!");

end

end.

4.7.2 Example: word algebra

The word algebra is the normal model for simple specifications of natural numbers:

type Naturals

sorts

nat

opns

0 : -> nat (* zero *)

s : nat -> nat (* successor *)

endtype

Where the ground terms are 0, s(0), s(s(0)), s(s(s(0))), . . . and every ground term is
different from each other.

4.8 Homomorphisms

Informally speaking, the semantics of an algebra allows us to evaluate terms, meaning
that given a complex term we are able to find a simpler one that is equal in some sense.
For instance, in type Mod2,

Mod2 ` (0 + 1) + 1 = 0

There may exist different algebras, with different signatures and different semantics, but
such that similar evaluations may be performed on any of them.

Suppose there is a morphism f : A1 → A2 with the property that if we evaluate a term t

in A1 and get α, then moving into A2 and evaluating there, will yield f(α).

A1 ` t = α

A2 ` f(t) = f(α)

11

We are looking for relations between algebras. And obviously we are thinking of mor-
phisms. But not any morphism. We need, we wish, to preserve some properties. We
introduce the homomorphisms.

• HOMORPHISM:

An homomorphism is a morphism between (signatures of) algebras such that two
terms of the same equivalence class in the original algebra are mapped into terms
of the same equivalence class in the image algebra.

Since operations are proper functions (i.e. deterministic), it is enough to require for every
operation that the result of applying it here and then mapping there is the same as first
mapping arguments and then applying it there. Formally,

Let A1 =< SIG1, SEM1 >, A2 =< SIG2, SEM2 >,

h : SIG1 → SIG2 is an homomorphism iff ∀t1, t2 ∈ |A1|,

A1 ` t1 = t2 ⇒ A2 ` h(t1) = h(t2)

and ∀(op : s1 . . . sn → sr) ∈ F1, t1 : s1, . . . , tn : sn,

h(op(t1 . . . tn)) = h(op)(h(t1) . . . h(tn))

We shall usually write h : A1 → A2. In the previous (long) definition, please notice that
the implication goes from left to right. That is, NOBODY requires an homomorphism to
guarantee that

A1 ` t1 = t2 ⇐ A2 ` h(t1) = h(t2)

Let’s put a familiar example. The most widely used homomorphism I know of is the
KERMIT7. At my institution I have a VAX and a SUN. Let mine.p be a pascal program.
Let us have two evaluation functions8

VAX: pascal-program → result in algebra VAX
SUN: pascal-program → result in algebra SUN

7Kermit is a widely used program to transfer data from one computer to another.
8Compile + link + execute.

12

The KERMIT is a morphism, kermit : V AX → SUN , that allows me to evaluate in the
VAX and bring the result to the SUN, kermit(V AX(mine.p)) or bring it to the SUN and
evaluate in this last system SUN(kermit(mine.p)). kermit is an homomorphism because

kermit(V AX(mine.p)) = SUN(kermit(mine.p))

The property of kermit is that any program that runs in the VAX, will run in the SUN
too, and we obtain the same result everywhere.

At my institution, the Pascal version in the SUN is a superset of the version in the VAX.
So, it is guaranteed that any program that runs in the VAX will run in the SUN, but not
the other way round. If it were too in both directions, we would have a nice isomorphism.

4.8.1 Properties

• Identity.

∀A =< SIG, sem >, ∃ homomorphism I,

I : SIG → SIG

that maps every (ground) term on itself.

∀t ∈ |A|, I(t) = t

• Transitivity.

Let h1 : A1 → A2 and h2 : A2 → A3 be homomorphisms.

Then h1 ◦ h2 : A1 → A3 is an homomorphism too.

• Associativity.

h1 ◦ (h2 ◦ h3) = (h1 ◦ h2) ◦ h3

• Bottom.

∀A, ∃ homomorphism h,

h : A → bottom algebra.

It is the trivial homomorphism that collapses everything.

• Partial ordering.

The previous properties permits to define a partial ordering between models for a
given signature.

A1 ≥ A2 ⇔ ∃h : A1 → A2

13

4.9 Isomorphisms

Some homomorphisms are bijective. That means there is an inverse homomorphism such
that the composition of both gives the identity

h ◦ h′ = h′ ◦ h = I

Such homomorphisms with an inverse are called isomorphisms. An isomorphism i :
A1 → A2 guarantees

A1 ` t1 = t2 ⇔ A2 ` i(t1) = i(t2)

Going back to the example of the kermit, if the two systems support the same Pascal
standard, the kermit becomes an isomorphism.

4.10 Examples

Let’s put again our type Mod2.

type Mod2 is

sorts bit

opns 0, 1 : -> bit

_ + _ : bit, bit -> bit

semantics

+ | 0 1

---+-----

0 | 0 1

1 | 1 0

endtype Mod2

And let’s consider naturals modulo 4.

type Mod4 is

sorts n.4

opns 0, 1, 2, 3 : -> n.4

_ ++ _ : n.4, n.4 -> n.4

semantics

++ | 0 1 2 3

---+---------

14

0 | 0 1 2 3

1 | 1 2 3 0

2 | 2 3 0 1

3 | 3 0 1 2

endtype Mod4

We can easily find an homomorphism

h : Mod4 → Mod2

There are many of them. One of the easiest would be

h(n.4) = bit

h(0) = 0
h(1) = 1
h(2) = 0
h(3) = 1
h(++) = +

Notice the equivalence of evaluating in both algebras

Mod4 h(Mod2) Mod2
1 + +2 h(1)h(++)h(2) 1 + 0
3 h(3) 1

Notice there is no inverse homomorphism, so h is not an isomorphism.

Now, let’s consider the algebra of parities.

type Parity is

sorts parity

opns even, odd : -> parity

_ * _ : parity, parity -> parity

semantics

* | even odd

------+----------

even | even odd

odd | odd even

endtype Parity

15

Here we can easily find an homomorphism that is an isomorphism,

i : Parity → Mod2 i′ : Mod2 → Parity

i(parity) = bit i′(bit) = parity

i(even) = 0 i′(0) = even

i(odd) = 1 i′(1) = odd

i(∗) = + i′(+) = ∗

4.11 Representation Independence

Last example shows that the existence of an isomorphism between two algebras means
both algebras are very similar. In fact, the difference between them is just a matter
of names. The isomorphism is not much more than a translation cipher that preserves
semantics.

Thus, it is usual to say that two algebras related by an isomorphism are just two repre-
sentations of the same idea. Abstract data types are algebras defined up to isomorphism.
So, we say they are representation independent. That’s the reason they are tagged as
abstract.

There are many examples of isomorphic algebras:

binary decimal
arabic numerals roman numerals
ascii ebcdic
prefix notation postfix notation

4.12 Categories

As already stated, given an signature SIG, there may be many models or algebras

A =< SIG, semantics >=< S, F, semantics >

that share the same signature. These many models are related by homomorphisms that
establish a partial ordering. The collection of models and homomorphisms is known as a
category.

A model differs from others in the partition into equivalence classes.

16

4.12.1 Categories as DAGs

For the very simple type

type ST is

sorts

s

opns

A, B, C: -> s

endtype

The set of ground terms may be drawn as

A

B C

that may be partitioned in different ways

A

B C
word algebra

A

B C

A

B C

A

B C

A

B C
bottom algebra

h1

h2

Each model having different properties9:

9We shall speak in terms of = and 6= because that is what is needed in LOTOS.

17

A

B C
A <> B, A <> C, B <> C

A

B C
A = B, A <> C, B <> C

A

B C
A = B, A = C, B = C

Since equality is transitive, we can just write A = B = C.

The point is that every single model can be uniquely determined by means of equalities
and unequalities.

Models are ordered by homomorphisms (the arrows in the previous picture)

h1 : h1(A) = A

h1(B) = A

h1(C) = C

h2 : h2(A) = A

h2(B) = A

h2(C) = A

So, the category of models for a signature is a dag (directed acyclic graph) where the first
node is the word algebra and the last, the bottom algebra.

Schematically, categories can be drawn as

18

word algebra

�
�

�

@
@

@
@

@
@R

�
�

�	

bottom algebra

4.12.2 Initial Algebra

For the slightly more complex type

type T is

sorts

s

opns

A, B, C, D: -> s

endtype

The set of ground terms is

A

B

CD

that may be partitioned in 15 different ways. The total set of models, without caring for
semantics, Alg(SIG)orAlg(SIG, ∅) is as follows,

19

A

B

CD

A

B

CD

A

B

CD A

B

CD A

B

CD A

B

CD A

B

CD A

B

CD

A

B

CD A

B

CD A

B

CD A

B

CD A

B

CD A

B

CD A

B

CD

This category can be reduced by means of semantics. In the previous example we showed
how to choose just one model by means of equalities and unequalities. More general
situations may be devised.

If we impose just one equality, we restrict the category to

Alg(SIG, {C = D})

20

A

B

CD

A

B

CD
A

B

CD
A

B

CD

A

B

CD

We can further reduce it by adding more equalities

Alg(SIG, {C = D, A = C})

A

B

CD

A

B

CD

Notice there is a very closed relationship between imposing equalities and moving down
along the graph of partially ordered models. The reason is obvious: an homomorphism
cannot make distinct was was equal, but may make equal what was not specified.

Thus, there is always a sub-dag of partially ordered models. That dag has always a
unique first node, by construction. That first node is called the initial model of the
sub-category.

21

The initial model is the one that makes as many equivalence classes as possible. Any
other model in the dag goes further identifying terms. In other words, in the initial model
everything is different unless explicitly stated.

Because of homomorphism transitivity, we can formally define the initial model. Given a
category Alg(SIG, sem), we say A is the initial model in the category iff for every model
B in it there exists an homomorphism h : A → B.

We can identify as well a last node in the dag. It is called the final model. For =
specified sub-categories, it is ALWAYS the bottom algebra.

word algebra

�
�

�
�

�
�

@
@

@
@

@
@

initial

�
�

�	

@
@

@R

@
@

@
@

@
@R

�
�

�
�

�
�	

bottom algebra = final algebra

4.12.3 Unequalities

Semantics can be specified by means of unequalities. The effect on the category of models
is to reduce it. For example,

Alg(SIG, {B 6= C, B 6= D, C 6= D})

A

B

CD

A

B

CD
A

B

CD
A

B

CD

22

The initial model of sub-categories selected by unequalities is ALWAYS the word algebra.

Notice there is no unique last node. In this case, there are three. So, we say there is no
final model.

word algebra = initial algebra

�
�

�
�

�
�

@
@

@
@

@
@

@
@@R

�
��	

. . .@
@

@
@

@
@R

�
�

�
�

�
�	

bottom algebra

If we use both equals and unequals to specify semantics, we reduce our dag from the top
(by =) and from the bottom (by 6=). Nevertheless, by construction, we always have a first
node, that is the initial model.

word algebra

�
�

�
�

�
�

@
@

@
@

@
@

initial

�
�

�

@
@

@
@

@@R
�

��	
. . .

@
@

@
@

@
@R

�
�

�
�

�
�	

bottom algebra

4.12.4 Positive Conditionals

It is usually of practical interest to use conditional axioms as

A = B ⇒ C = D

23

It must be read as follows: a model M agrees with this semantics if either A 6= B, or both
A = B and C = D. Notice that when A 6= B, C and D may be equal or not.

Let’s suppose we just have equalities and positive conditionals as the one shown above.
That is, there is no 6= in the semantics.

The procedure to construct the sub-category is as follows. We have two kinds of rules

1. A = B

2. C = D ⇒ E = F

procedure build ();
begin
take the word algebra;
for each rule (1. A = B)

go down into the sub-dag A = B;
while ∃ (2. C = D ⇒ E = F)

if C = D is in the current initial model
go down into the sub-dag E = F ;
clear out this equation;

end;

Conditional axioms must be reconsidered every time we go into a sub-dag, because there
is a new initial model to test. At the end, there may be some equations C = D ⇒ E = F

for none of which C = D according to the current initial model. These ones are just
dropped. This construction procedure guarantees there is always an initial model.

4.12.5 Negative conditionals

Negative conditionals may yield dags without an initial model. Just let’s put an example.

Alg(SIG, {B 6= C ⇒ A = B})

The semantics may be expanded into

B = C

B 6= C and A = B

The sub-category is

24

A

B

CD
A

B

CD

A

B

CD
A

B

CD
A

B

CD
A

B

CD
A

B

CD

A

B

CD

Where there is no unique initial model.

4.13 The Model in LOTOS

In LOTOS only equalities and positive conditionals are allowed. Thus, there is always an
initial model. There is always a final model too: the bottom algebra.

In LOTOS we just choose one model for each type, the INITIAL MODEL.

Notice we have to select one single model to make precise whether two terms are equal
or not.

Sometimes we say LOTOS specifies types equationally with initial semantics. This ex-
pression is rather strange, but readers must be able to understand it so far.

5 Further Readings

[ISO, 88] is the standard reference for LOTOS, both syntax and semantics. It’s hard
to read, but it’s definitely the last word about the language. A tutorial introduction
may be found in appendix C of this document. A much better tutorial may be found in
[Bolognesi, 87].

Nearly every paper on ADTs starts with a very brief presentation of signatures, sorts, etc.
But every author has its own peculiarities and definitions, what creates lots of confusion

25

to beginners.

Pedagogic presentations can be found in [Wagner, 81] and [Burstall, 82]. They are in-
tended for beginners.

An introduction to lattices (categories) of models can be found in [Broy, 81]. After intro-
ducing the objects, the authors go into demonstrating theorems. The standard reference
for category theory is [MacLane, 72], but normal readers should not need it.

The last word on ADTs in ACT ONE10 is [Ehrig, 85], but it is not really intended for
beginners.

It has been shown in many papers, after [Majster, 77], that extra operations are usually
needed to specify an ADT with a finite number of equations. These are called hidden

operations. In LOTOS nothing is hidden, so if an extra operation is needed, it will
be visible outside the ADT. Hidden operations arise the much more general question of
overspecification: are these the minimal requirements on the ADT? or, are we imposing
more equivalences than required? The answer to these questions is far from clear, is usually
undecidable, and is definitely out of the scope of this tutorial.

References

[Bolognesi, 87] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1), pp. 25-59,
North Holland, Jan. 1987.

[Broy, 81] M. Broy, A C. Pair and M. Wirsing. A Systematic Study of Models of
Abstract Data Types. 1981.

[Burstall, 82] R.M. Burstall and J.A. Goguen. Algebras, Theories and Freeness: An
Introduction for Computer Scientists. Proc. 1981 Marktoberdorf NATO
Summer School, Reidel, 1982. pp. 329-348.

[Ehrig, 85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Part 1.
Springer Verlag, Berlin, 1985.

[ISO, 88] ISO - Information Processing Systems - Open Systems Interconnection -
LOTOS, A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour. IS 8807, 1988.

[MacLane, 72] S. MacLane. Categories for the Working Mathematician. Springer, New
York- Heidelberg- Berlin, 1972.

10The mother of LOTOS data types.

26

[Majster, 77] M.E. Majster. Limits of the ”Algebraic” Specification of Abstract Data
Types. SIGPLAN Notices, 12-10, pp. 37-42, October, 1977.

[Wagner, 81] E. Wagner. Lecture Notes on the Algebraic Specification of Data Types.
RC 9203, IBM, Thomas J. Watson Research Center, Yorktown Heights,
New York, 1981.

27

