
LTL Guided Planning: Revisiting Automatic Tool Composition in ETI

Tiziana Margaria
Chair of Service and Software Engineering

University of Potsdam
August-Bebel-Str. 89, 14482 Potsdam, Germany

margaria@cs.uni-potsdam.de

Bernhard Steffen
Chair of Programming Systems

University of Dortmund
Otto-Hahn-Str. 14, 44227 Dortmund, Germany

steffen@cs.uni-dortmund.de

Abstract

We revisit the automatic tool composition feature of the
Electronic Tool Integration platform under the perspective
of planning. It turns out that in todays terminology, ETIs
temporal logic-based synthesis of tool sequences is a form
of planning-based automated orchestration. In contrast to
AI-based planning approaches, our synthesis approach is
not restricted to compute one solution, but it may compute
all (shortest/minimal) solutions, with the intent to provide
maximum insight into the potential design space.

1 Introduction

Already 10 years ago, the Electronic Tool Integration

platform (ETI) associated to Springer’s Journal STTT of-

fered an online portal that provided interactive experimen-

tation with and service-based coordination of heteroge-

neous tools. Coordination meant in modern terms ser-

vice composition. In particular it provided a whole spec-

trum of coordination and evaluation capabilities based on

the METAFrame [?] open tool coordination environment

[?]. Complex combinations of functionalities taken from

different tools could be (semi-) automatically or interac-

tively constructed and tested by online meta-programming
in a simple, domain-level specification language tailored for

loose specification. Also the burden of data format conver-

sion needed to ensure tool interoperability was automati-

cally taken care of within the underlying ETI platform and

hidden from the users. Taken together, these features of-

fered an evaluation and coordination support even for ap-

plication experts with no programming experience.

At that time, it was the only platform offering this kind

of hands-on facilities and coordination support, in particular

on a non-in-house tools basis. It supported ETI users with

an advanced, personalized Online Service that provided sys-

tematic orientation, experimentation, and combination of all

the tool functionalities integrated into the ETI repository.

The tool coordination was drastically simplified, freed

from any programming and technicalities, so that little or

no specific knowledge was prerequisite to the use of ETI

as a coordination environment. To this aim, ETI provided

high-level task specification languages, graphical support

for specifications and user interaction, as well as automatic

support of the coordination activity by means of automatic

synthesis of complex workflows and prototype animation.

In todays’ words, it turns out that ETI provided a model

driven, service-oriented platform for the user-side orches-

tration of complex services (in the ETI application domain,

complex verification processes that used heterogeneous al-

gorithms and mediators provening from different verifica-

tion toolsets). In particular, it supported [?]

1. automatic, declarative service discovery based on on-

tologies (implemented as multifaceted taxonomies ac-

cessible and browsable via a hypertext system)

2. model based, graphical service orchestration, analo-

gous to modern BPEL editors (based on an own ex-

ecutable orchestration language called HLL),

3. an execution engine for the orchestrated services

(based on an HLL interpeter)

4. formal verification of the complex services, since the

graphical orchestration directly defined a coordination

graph, analyzable via model checking. This facility

comprises model checking-based compliance and con-

formance checking according to policies expressed as

temporal logic properties.

5. automatic synthesis of sequential orchestrations and of

mediators (data or functionality mediation) via a syn-

thesis algorithm for a semantic variant of linear time

logic (SLTL). This facility would be seen today as a

mediator discoverer and planner.

Since ETI was designed to provide a web-based exper-

imentation platform with remote tools, the tool functional-

ities are in fact remote services accessible via the internet,

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

and the coordination tasks are orchestration/chaoreography

specifications for their automated composition.

The five sections following the introduction of the ap-

plication example describe these five contributions of ETI

in terms of the modern, service-oriented terminology just

listed. Subsequently Sect. 9 summarizes our conclusions so

far and issues to be dealt with for the future development.

2 Application Example: Orchestrating
CADP Activities as ETI Services

Tab. 1 summarizes a small excerpt of the basic services

offered by the CADP tool suite [7]. It is the same exam-

ple used in [18] to illustrate an ETI user session, and it is

still valid today: the CADP toolsuite evolved and matured

over the past decade to become a reference environment for

the verification of distributed processes [4]. CADP is one of

the tools that are being integrated right now in the new, Web

service-based jETI environment that constitutes the techni-

cal platform for the jETI-FMICS community [9].

FMICS, the ERCIM Working Group on Formal Meth-

ods for Industrial Critical Systems (FMICS) [8], transfers

and promotes the use formal methods technology in in-

dustry. The ongoing Verified Software Repository Grand

Challenge [11] offers a great opportunity to reach this goal,

resulting in a more robust and solid software industry in

Europe. The FMICS-jETI platform [9] is a collaborative

demonstrator based on the jETI technology [14, ?]. It pro-

vides as repository a collection of verification tools stem-

ming from the activities of the FMICS working group and

facilities to orchestrate them in a remote and simple way

[1, ?]. At the same time FMICS-jETI itself is a contribution

to the VSR repository and thus to the Grand Challenge.

We are going to illustrate the ETI working style on the

same example used 10 years ago to introduce ETI.

3 Ontology-based Service Discovery and
Browsing

As in modern SO environments, the service description,

management, and retrieval was based on an abstract classifi-

cation according to behavioural and interfacing criteria. In-

terfacing criteria correspond to modern WSDL descriptions,

while behavioural descriptions correspond to semantic an-

notations, similar to the modern SAWSDL style. In modern

terms, we use an ontology as specification of a conceptual-

ization. In ETI we applied the same principle (see Tab. 1):

each CADP tool functionality was provided as a basic ETI

service, and abstractly described and published as an ac-
tivity that transforms a (typed) input into the correspond-

ing (typed) output. This way, each functionality offered

by the CÆSAR/ALDÉBARAN Toolset [7] toolsuite corre-

sponded directly to an activity in ETI, as shown in Table 1,

and was equipped with a conceptualization that linked the

interface (static, view as a component) and behavioural as-

pects (dynamic, view as a function or as a transformer), and

their relation within an abstract conceptualization scheme.

This uniform view on services is essential for interdo-

main applications, one of the major goals of the STTT/ETI

venture: it allows us to reuse functionalities across appli-

cation domains simply by modifying or extending their ab-

stract semantic description (Sect. 3.1).

Both the interfacing and the behavioural descriptions

were structured and presented in ETI by means of what

we called multifaceted, multicriterial taxonomies, which is

a common way of implementing ontologies [?].

3.1 The ETI Taxonomies

The collection of available functionalities is taxonomi-

cally classified for ease of retrieval according to behavioural

and interfacing criteria in the activity and type taxonomy [?]

respectively. Since the ETI taxonomies can be accessed and

browsed online, as shown in Fig.1, it is easy to explore the

platform’s repository, and to orient oneself even in a new

application domain.

Activities and types have an associated abstract descrip-

tion in terms of a taxonomic classification which establishes

their (coarse) application profile. Far from capturing the

complete semantics of the underlying tool functionalities

(like e.g. algebraic specification approaches), taxonomic

specifications are intended to provide abstract, application-

specific characteristics based on a collection of predicates.

Formally, taxonomies are directed acyclic graphs, where

sinks represent concrete activities/types, the atomic enti-

ties of the taxonomy, and where intermediate nodes rep-

resent groups, i.e., sets of activities/types with a partic-

ular profile. Edges reflect an is-a relation between their

target and source node. E.g. in the full ETI type taxon-

omy shown in Fig. 1(top), the Graph type is an abstract

characterization standing for any of the CADPGraph,
RealTimeGraph types, or equivalently, each type in

{CADPGraph, RealTimeGraph}, like for example the

concrete CADP AUTFile format, is-a Graph type.

The same classification principle applies to functional-

ities too. The portion of the ETI activity taxonomy of

Fig. 1 illustrates in the pure CADP view of the ontology

for the portions contributed by the CÆSAR/ALDÉBARAN

Toolset [7]. In fact, all the types and functionalities inte-

grated in the ETI are classified in exactly this fashion.

The type and activity taxonomies are of vital importance

for users’ orientation within the data formats and function-

alities offered in ETI. As shown in Fig. 1, they are easily

reachable from the Toolbar: the Show Activity Taxonomy

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

activity name input type output type description

Caesar compiles and verifies LOTOS specifications

caesarAUT LOTOSFile AUTFile transforms LOTOS programs into LTS in the .aut format

caesarBCG LOTOSFile BCGFile same as above, but output in BCG format

Aldebaran minimizes and compares LTS

aldebaranDET AUTFile AUTFile determinizes an LTS given in .aut format

aldebaranDEAD AUTFile CADPStateSet computes the deadlock states of an LTS in .aut format

aldebaranLIVE AUTFile CADPStateSet same, for livelock states (tau circuits)

aldebaranMIN STD B AUTFile AUTFile minimizes an LTS wrt. strong bisimulation equivalence

aldebaranMIN STD I AUTFile AUTFile minimizes an LTS wrt. τ∗a bisimulation equivalence

aldebaranMIN STD O AUTFile AUTFile minimizes an LTS wrt. observational equivalence

exp2aut EXPFile AUTFile computes the LTS of a network of communicating LTS

Bcg io converts graphs from and into the BCG format

autF2bcgF AUTFile BCGFile transforms files in .aut format into BCG format

bcgF2autF BCGFile AUTFile transforms files in BCG format into .aut format

Bcg open executes OPEN/CAESAR applic. programs on BCG graphs

bcgTERM BCGFile CADPStateSet Terminator: a deadlock detection tool

bcgEXEC RANDOM BCGFile SEQFile Executor: produces a random exec. sequence on an LTS

· · · · · · · · · · · ·

Table 1. Some of the CÆSAR/ALDÉBARAN Activities

and Show Type Taxonomy commands let ETI load the re-

spective graphical representations in separate windows.

The Type Taxonomy is partially shown in Fig. 1 (top).

Here we see the concrete realization of the (application do-

main independent) distinction between Graph types and

File types, and their further, application-oriented subdivi-

sion. The type ETIInfo is the generic ETI standard output.

The Activity Taxonomy portion of Fig. 1 (middle) illus-

trates the classification policy for the tools and functionali-

ties available in the platform. The combinable functional-

ities are the basis for the coordination. They are classified

at the level of single activities. Already in this snapshot

we see that classification criteria can be behavioural (e.g.

interfaces), application dependent (e.g. tool activities),

and architectural (e.g. cadp activities), allowing multi-

dimensional semantic characterizations of the activities.

The classification scheme depends on the needs of the

whole ETI repository, and evolves with the addition of new

tools and application domains.

Developing adequate taxonomies is a crucial part of do-

main modelling within the ETI instantiation process. Ex-

actly as in ontologies, the automatic orchestration synthesis

component uses the taxonomies for discovery and media-

tion. Thus it relies on an appropriate classification of the

activities according to their role in the considered domain,

in order to provide users with an application-specific handle

to the integrated functionalities. The taxonomies must be

extended not only when new functionalities are integrated,

but also whenever one wants to establish an ’application-

specific view’ on the so far integrated functionalities: the

same tool may well be taxonomically classified completely

differently in different application domains. E.g. a compiler

may be regarded just as a transformer in one application

area, whereas it may constitute the central component in

another application area. The corresponding extensions of

the ’access language’ are essential for inter-domain appli-

cations and thus for the technology transfer characterizing

STTT’s goals: they allow in fact the exchange of function-

alities between application domains in a ’symbolic’ fashion.

Constructing the taxonomies for this classification can

be considered as a meta-integration step, requiring specific

knowledge about the considered application domain and its

abstraction into ontologies.

4 Model Based Service Orchestration

Model based, graphical service orchestration, analogous to

modern BPEL editors, was based on HLL, an own exe-

cutable imperative orchestration language. We called this

mode of defining orchestrations Exact Coordination [?] .

Exact Coordinations could be graphically constructed

by drag and drop of activities from the activity taxonomy.

Since each activity was also associated at integration time

with an executable HLL call, similar to the Web service

technology. The resulting orchestrations were displayed

as workflows, as shown in Fig.2, within the Service Logic

Graph editor (SLG editor) of METAFrame, the application

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

Figure 1. The CADP Type and Activity Taxonomies

development environment underlying ETI. SLGs were in-

terpreted in the underlying runtime environment as HLL

processes, thus immediately executable.

As for BPEL, next to the graphical orchestration there

was a programming-level representation. ETI coordination

could be directly programmed in the interpreted, imperative

language HLL (High–Level Language) [5]. As extensible,

statically typed language, HLL reflects our policy of sepa-

ration between integration and coordination. It offers at the

ETI user level a uniform view on all the tool functionalities,

that abstracts from any specific technical details like data

formats or invocation modalities. After their integration at

the adapter abstraction level, similar to the production of a

WSDL description and service invocation, tool functional-

ity invocations are simply HLL function calls.

5 The Execution Engine

In analogy to BPEL engines, HLL programs can be di-

rectly executed via the HLL interpreter [?, 3] embedded in

the ETI environment, bringing (complex) combinations of

functionalities to execution. As we see in Figs. 1 and 2,

single tools in the taxonomy and coordination sequences

are immediately executable by pressing the Exec button.

This form of animation and rapid prototyping allows ETI

users to immediately experience the potential not only of

single tools, but even of tool combinations. New tool coor-

dinations with a new application profile may be ‘stuck to-

gether’ in order to investigate the interplay between differ-

ent methodologies in the context of one’s own applications.

As in modern service oriented execution platforms, any

computation takes place within the coordinated tools. The

HLL interpreter simply delegates the computational aspects

to the tool level, via the tool functionality adapters. Accord-

ingly, it differs from conventional interpreters for impera-

tive programming languages in the implementation of the

mechanisms dealing with HLL data types, data values and

functions. In fact, the HLL interpreter implements a (sin-

gle) generic wrapper for tool data, which is instantiated by

each adapter for its own tool data type during delegation.1

1Such specific instances can be added at runtime, thus enlarging the

language ‘on-the-fly’.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

Figure 2. BPEL-style Orchestration: Uppaal
and CADP

6 Formal Verification and Compliance

Since ETI orchestration models are in particular SLGs,

they can be analyzed with all the means offered by

METAFrame [?] and its successors, like the jABC [?, 13].

Besides very local requirements, which only relate to par-

ticular parts of a coordination model, there are also global

requirements which are associated with the entire model.

These requirements are often very intuitive, are independent

of the concrete model, often are part of the rules of the game

for an application domain, and can be easily expressed by

the application expert.

Model checking is an established approach to automatic

verification of systems. It provides an effective way to de-

termine whether a given system is consistent with a speci-

fied property. The underlying framework incorporates this

technique via a core model checking facility. Intuitively,

any system modelled as SLG can be verified with this tech-

nique, independently of the concrete interpretation of the

SLG. We see for this purpose SLGs as graphs (in particular,

as Kripke Transition Systems) consisting of nodes holding

HLL Program

Synthesis
Tool

Coordination
Graph

Loose
Coordination

Exact
Coordination

Coordination
Sequence

HLL
Instruction

Selection

Sequence
Interpreter

HLL Interpreter

Delegated
Execution

Ordering
Constraint

Modal
Logic

Formula

Graphical
Constraint
Depiction

Coordination
Specification

Integrated
Components

Figure 3. Overview of the Tool Coordination
Environment

labels that the model checker interprets as atomic propo-

sitions (for example the type names), and edges annotated

with action names that for the model checker represent ac-

tions in the specification logic. Fig. 2 shows a simple se-

quential example of such a coordination model. Properties

of such a model can be specified using temporal logics, for

example CTL (Computation Tree Logic) or the modal mu-

calculus [16]. The user can add and describe properties,

check properties for a particular model, and interactively

investigate the error diagnosis information via error views.

The foreseen use was an a posteriori verification of prop-

erties for the coordination models resulting from the ex-

act coordination described above, in terms of compliance

to certain rules of the game. For example, constraints that

express reachability of certain types or activities.

Model checking was all the time present in the ETI envi-

ronment through the underlying development environment,

but it has not been used in practice. It was used extensively

in the METAFrame and in the jABC environment, where

it was essential part of the Service Development process in

the Intelligent Network application [?, ?], and later in the

design of automatically executable test suites for Computer-

Telephony Integrated systems [10, 12].

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

The central use of temporal logic in the ETI environment

concerned in contrast the automatic generation of orches-

tration from loose temporal logic specifications, which we

discuss in the following.

7 Automatic Synthesis of Sequential Orches-
trations

ETI featured the construction of directly executable tool

coordination sequences on the basis of 1) the repository of

functionalities and transformers, 2) of the taxonomies, and

of 3) a loose coordination specification language to express

abstract constraints on the desired sequences.

The way the synthesis is built closely resembles a plan-

ning engine that solves loosely specified and LTL-guided

planning problems.

7.1 Loose Coordination: Specifying Ab-
stract Constraints

Loose coordination languages characterize adequate co-

ordination sequences in terms of abstract constraints. Ade-

quacy of the desired sequences is expressed via a collection

of global liveness and safety properties on the activity and

type descriptions contained in the taxonomies. Looseness

is thus supported in two orthogonal dimensions:

• local characterization of single types, functionalities or

transformers at the abstract level of the taxonomies -

similar to the specification of a planning problem, and

• whole characterization of whole coordination se-

quences in terms of abstract constraints specifying

precedences, eventuality, and conditional occurrence

of single taxonomy objects - the LTL guidance for the

planning engine.

Local Constraints: pre- and post assertions and Goals
Local constraints express selection criteria for single types

and activities on the basis of the respective taxonomic clas-

sification. We have

• Type constraints describing the ‘neighbourhood’ of

components. Here we consider type compatibility as

the only criterion.

• Activity constraints characterizing the set of activities

which may appear in the solution.

Type and activity constraints are accordingly formulated

as simple propositional logic formulas over the respective

taxonomies, which are regarded as definitions of sets of ba-

sic predicates (atoms).

Definition 7.1 (Taxonomy expressions)
Let TAX be a taxonomy over some set. Then we can con-

struct the corresponding set of taxonomy expressions by:

TE ::= A | ¬ TE | TE ∧ TE | TE ∨ TE

where nodes A ∈ TAX are taken as atomic propositions.

The taxonomies are in general directed acyclic graphs,

where concepts can be described along different facets.

Facets can characterize both the functionality and also non-

functional properties of an activity or type. The CADP tax-

onomies of Fig. 1 are thus trees by coincidence.

As an example, in an activity taxonomy for graphics tools

the activity constraint

filter ∧ ¬(scale ∨ reduce)

characterizes the set of all filter commands in the ac-

tivity taxonomy that perform neither scaling nor reducing

manipulations.

7.2 Temporal Constraints: SLTL

Temporal logics have been successfully introduced in vari-

ous other areas of computer science to capture global prop-

erties of finite state systems. The temporal logics consid-

ered here capture

• general ordering properties, like

this activity/type must be executed/reached some
time before another activity,

• abstract liveness properties, like

a certain activity/type is required to be exe-
cuted/reached eventually, and

• abstract safety properties, like

two certain activities/types must never be exe-
cuted/ reached simultaneously.

This way users can specify elaborate requirements concern-

ing (some of) the activities (tools and transformations) and

types constituting a desirable coordination sequence.

ETI’s loose coordination specification language was the

Semantic Linear-time Temporal Logic (SLTL) [?, ?], a tem-

poral (modal) logic comprising taxonomic specifications of

types and activities as embedded semantical element.

Definition 7.2 (SLTL)

The syntax of Semantic Linear-time Temporal Logic (SLTL)
is given in BNF format by:

Φ ::= type(tc) | ¬Φ | (Φ ∧ Φ) | <ac> Φ | G(Φ) | (ΦUΦ)

where tc and ac represent type and activity constraints for-
mulated as taxonomy expressions over the respective tax-
onomies.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

SLTL formulas are interpreted over the set of all legal coor-
dination sequences, i.e. alternating type correct sequences

of types and activities2, which start and end with types. In-

tuitively,3

• type(tc) is satisfied by coordination sequences whose

first element (a type) satisfies the type constraint tc.

• Negation ¬ and conjunction ∧ are interpreted as usual.

• Next-time operator <> :

<ac> Φ is satisfied by coordination sequences whose

second element (the first activity) satisfies ac and

whose continuation4 satisfies Φ. In particular, <tt> Φ
is satisfied by every coordination sequence whose con-

tinuation satisfies Φ.

• Generally operator G:

G(Φ) requires that Φ is satisfied for every suffix5.

• Until operator U:

(ΦUΨ) expresses that the property Φ holds at all

type elements of the sequence, until a position is

reached where the corresponding continuation satisfies

the property Ψ. Note that ΦUΨ guarantees that the

property Ψ holds eventually (strong until).

The definitions of continuation and suffix may seem com-

plicated at first. However, thinking in terms of path rep-

resentations clarifies the situation: a subpath always starts

with a node (type) again. Users should not worry about

these details: they may simply think in terms of pure activ-

ity compositions and not care about the types, unless they

explicitely want to specify type constraints.

The online introduction of derived operators and pat-
terns supports a modular and intuitive formulation of com-

plex properties. This eases defining the dual operators:

False : ff =df ¬tt
Disjunction : Φ ∨ Ψ =df ¬ (¬Φ ∧ ¬Ψ)
Box : [ac]Φ =df ¬ <ac > (¬Φ)
Eventually : F(Φ) =df ¬G(¬Φ) = (tt U Φ)

The following two simple examples illustrate typical loose

sequencing constraints, conveniently specified in SLTL:

• F(< display > tt)
which means ‘A display activity will occur eventu-
ally, i.e. now or at a later point of time’.

2During the description of the semantics, types and activities will be

called elements of the coordination sequence.
3A formal definition of the semantics can be found in [?].
4This continuation is the coordination sequence starting from the third

element.
5According to the difference between activity and type components, a

suffix of a coordination sequence is any subsequence which arises from

deleting the first 2n elements (n any natural number).

• G ((< tex modules > tt) ⇒ F(< display > tt))
which is a liveness property meaning ‘Whenever a
tex modules activity occurs, then a display activ-
ity is guaranteed to eventually occur as well’.

7.3 Synthesis of Coordination Sequences

Once a loose coordination specification in SLTL is en-

tered into the corresponding editor, an automatic synthesis
tool [2, ?] generates the satisfying plans (in terms of se-

quences of concrete HLL commands) according to the pro-

cess shown in Fig. 3(right).

The solution space resulting from the automatic syn-

thesis may contain quite different alternatives, each corre-

sponding to a different minimal-length sequence of func-

tionalities satisfying the specified (loose) constraints. The

potential of alternative solutions is presented as a graph and

the HLL code associated with each path of this graph can be

executed immediately in response to a selection by means

of simple mouse clicks.

This way, ETI’s coordination environment eliminates

any traditional programming: from the loose specification

of a coordination task to its execution, users are able to

work without any knowledge of the underlying coordina-

tion mechanisms, of the coordination language or even of

the available tools, which can conveniently be made famil-

iar with via taxonomy browsing.

8 Orchestration Synthesis in Practice: the
CADP Example

Practice has shown that when combining tools and tool

functionalities, the typical problem description (the coordi-

nation task) is characterized in terms of

• a number of functionalities which must be performed

at some time during the planned execution (a set of

activities),

• maybe a data format (in our modelling, a type) in

which the initial data are available

• maybe a desired format for the output data (again a

type),

• maybe some hints on desired sequencing between

some of the activities (a partial order).

This description is typically incomplete, in the sense that

• the named activities may not suffice to carry out the

task, thus one has to look for additional or missing

ones (workflow completion),

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

• the input and output data formats may not be read resp.

delivered by the named activities, thus some additional

data format conversions (transformations) are neces-

sary (data mediation),

• the given ordering, if any, is not total.

Thus many alternatives may be possible, depending on the

way the unspecified information is filled.

Type completion, the simplest form of loose coordination

introduced in [?], already covers this class of problems. Let

us see how to use it on a simple concrete example.

8.1 Type-Incomplete Sequences

We start from the following informal problem description:

Given a benchmark system in LOTOS format, we
want to compute an equivalent minimal system
and model check it.

It is easy to derive a corresponding formal specification:

with some navigation in the type and activity taxonomy we

learn that systems described in the LOTOS process algebra

are represented by the type LOTOSFile, that the mini-

mization activities are collectively classified in the taxon-

omy as minimizer, and that model checker is the activity

group which, as intuitive, groups the model checking tools.

The corresponding (formal) loose specification of the

coordination task is input via the Synthesis Editor as

shown in Fig. 4(left). Using derived operators like < for

precedes [?], we may simply write:

((LOTOSFile < minimizer) < model_checker)
This specification is both locally and globally loose:

• locally loose, because minimizer does not

uniquely determine an activity, and

• globally loose, because the specification is type in-

consistent and therefore requires the insertion of inter-

mediate transformers (mediators) in order to arrive at

executable solutions.

We wish to display all the shortest executable coordination

sequences, but ETI provides also other options: all solu-

tions, all minimal solutions or just one shortest solution [?].

8.2 Obtaining the Coordination Sequence

Pressing the Submit button, the specification is sent to

the automatic synthesis tool and a coordination graph con-

taining the desired coordination sequences is displayed in a

separate window.

Fig. 4(middle) shows that there are 12 shortest solutions,

graphically presented as paths of the displayed coordination

graph. The length 6 indicates that the problem of type com-

pletion is more intricate than one would have expected. A

quick analysis of the solutions tells us why.

1. The LOTOSFile must first be opened and converted

into a corresponding input in CADP format (of type

AUTFile). This is done via the activity caesarAUT,

with signature

(LOTOSFile, caesarAUT, AUTFile)

(see Table 1), which takes a LOTOS program and re-

turns a model in AUT format for the CADP toolset.

This activity is clearly a type transformer.

2. Any of the minimizer activities currently available in
the activity taxonomy of Fig. 1 is now applicable, since
they all accept the input type AUTFile, and are there-
fore compatible. They are all supported by ALDÉBA-
RAN [?], have signatures

(AUTFile, aldebaranMIN_STD_B, AUTFile)
(AUTFile, aldebaranMIN_STD_I,AUTFile)
(AUTFile, aldebaranMIN_STD_O, AUTFile)

and differ wrt. the notion of equivalence they imple-

ment (strong bisimulation, weak bisimulation, and ob-

servational congruence [7]). All three deliver the re-

sulting automaton as a file of type AUTFile.

3. The minimized graph must now be converted into the

BCGFile format for the model checking. A second

transformer autF2bcgF, with signature

(AUTFile, autF2bcgF, BCGFile)

delivers the corresponding file, of type BCGFile.

This is a special proprietary format (Binary encoded

Graph) of CADP, which represents also large models

in a compact fashion. It is the common input format

for the model checkers of the CADP tool suite.

4. Any of the model checker activities currently avail-

able in the CADP activity taxonomy is now applica-

ble, since they all accept the input type BCGFile, and

are therefore compatible. Both bcgEVAL and the xtl
model checker are here suitable.

5. Finally, their output can be either stored in a file (of

generic type ETIFile, since different) via the activity

saveETIFile, or textually displayed on the screen

via the activity showTextFile, where ETIResult
is the final abstract type in ETI.

ETI’s conversion mechanism takes care of all this com-

pletely automatically. In fact, ETI newcomers may be sim-

ply provided with an execution button for the execution of

a default coordination sequence. This completely hides the

entire synthesis and mediation mechanism.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

Loose specification

Shortest solutions

generate select

Executable
coordination

sequence
Transformers

Figure 4. The CADP Resulting Coordination Graph

8.3 Executing a Coordination Sequence

Clicking with the mouse on an edge of a coordination se-

quence selects all the paths (solutions) to which it belongs.

If we think that an appropriate notion of equivalence is ob-

servational bisimulation, we just have to click on the edge

(AUTFile, aldebaranMIN_STD_O, AUTFile)

and similarly select the paths through the bcgEVAL model

checker and to a display of the resulting file to reach the

situation shown in Fig. 4(right): since only one path is now

selected, (the highlighted one), the corresponding solution

is immediately executable (enabled button on the bottom).

9 Conclusions

We have revisited the automatic tool composition fea-

ture of the Electronic Tool Integration platform under the

perspective of planning. In contrast to AI-based plan-

ning approaches, our LTL-based synthesis approach is not

restricted to compute one solution, but it may compute

all (shortest/minimal) solutions, with the intent to provide

maximum insight into the potential design space.

In future we plan to investigate various forms of synthe-

sis approaches in order to reveal their application profiles.

In particular, we are interested in comparing game-based

methods which work via the synthesis of winning strategies

with tableau-based methods that construct a linear model as

a result of proof construction. We also plan to enhance the

user-friendliness in terms of graphical support for the speci-

fications, for example by means of the formula Builder [15]

and by the use of patterns [6]. We also plan to apply this

approach to the mediation problem of the ongoing Semantic

Web Service Challenge [?, 17].

References

[1] A. Arenas, J. Bicarregui, T. Margaria: The FMICS View
on the Verified Software Repository, Proc. Integrated Design

and Process Technology, IDPT-2006, San Diego (USA), 26-

29.6.2006, Society for Design and Process Science, 2006.

[2] M. von der Beeck, B. Steffen, T. Margaria. A Formal Re-
quirements Engineering Method and an Environment for
Specification, Synthesis, and Verification, Proc. of SEE ’97,

8th IEEE Conference on Software Engineering Environ-

ments, Cottbus (Germany) 8-9 April 1997.

[3] V. Braun, T. Margaria, C. Weise: Integrating Tools in the
ETI Platform, Software Tools for Technology Transfer, Vol.

1, Springer Verlag, December 1997.

[4] CADP Website: www.inrialpes.fr/vasy/cadp/

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

[5] A. Claßen, B. Steffen, T. Margaria, V. Braun: Tool Coor-
dination in METAFrame, Techn. Rep. MIP-9707, Fakultät

für Mathematik und Informatik, Universität Passau, Passau

(Germany), April 1997, 25 pp.

[6] M. Dwyer, G. Avrunin, J. Corbett. Specification Patterns
Website. patterns.projects.cis.ksu.edu/.

[7] J.C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu,

L. Mounier, M. Sighireanu, Cadp: A protocol validation
and verification toolbox, Proc. CAV’96, New Brunswick,

NJ, USA, LNCS, Springer Verlag, August 1996.

[8] FMICS WG homepage:

http://www.inrialpes.fr/vasy/fmics/

[9] Homepage of the FMICS-jETI platform: http:
jeti.cs.uni-dortmund.de/fmics/index.php.

[10] A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, H.-

D. Ide: Efficient Regression Testing of CTI-Systems: Testing
a Complex Call-Center Solution, in Annual Review of Com-

munication, Int. Engineering Con-sortium Chicago (USA),

Vol. 55, pp.1033–1039, IEC, 2002

[11] C.A.R. Hoare, J. Misra: Verified software: theories, tools,
experiments - Vision of a Grand Challenge project, July

2005, http://vstte.inf.ethz.ch/pdfs/vstte-hoare-misra.pdf

[12] H. Hungar, T. Margaria, B. Steffen: Test-Based Model Gen-
eration for Legacy Systems, Proc. IEEE ITC’03, Charlotte,

2003, IEEE CS Press, pp.971–980.

[13] jABC Website: http://www.jabc.de.

[14] jETI Website: jabc.cs.uni-dortmund.de/
plugins/jeti en.html.

[15] S. Jörges, T. Margaria, and B. Steffen. Formulabuilder: A

tool for graph-based modelling and generation of formulae.

In Proc. ICSE’06 Shanghai, May 2006.

[16] D. Kozen. Results on the propositional mu-calculus. Theo-
retical Computer Science, 27:333–354, 1983.

[17] C. Kubczak, R. Nagel, T. Margaria, B. Steffen: The jABC
Approach to Mediation and Choreography, Semantic Web

Services Challenge 2006, Phase I and II Workshops, DERI,

Stanford University, Palo Alto, March 2006.

[18] T. Margaria, V. Braun, B. Steffen: Interacting with ETI: A
User Session, Software Tools for Technology Transfer, Vol.

1, Springer Verlag, December 1997.

[19] T. Margaria, C. Kubczak, B. Steffen, S. Naujokat: The
FMICS-jETI Platform: Status and Perspectives ISoLA

2006, 2nd IEEE-EASST Int. symp. On Leverag-ing Appli-

cations of formal methods, verification, and validation, Pa-

phos (CY), 15-19.11.06, pp. 414-418, IEEE CS Press.

[20] T. Margaria, R. Nagel, B. Steffen: Remote Integration
and Coordination of Verification Tools in JETI, Proc. IEEE

ECBS 2005, April 2005, Greenbelt (USA), IEEE CS Press,

pp. 431–436.

[21] T. Margaria, B. Steffen: Backtracking-free Design Planning
by Automatic Synthesis in METAFrame, Proc. FASE’98,

Lisbon(P), April 1998, LNCS, Springer Verlag.

[22] T. Margaria, C. Winkler, C. Kubczak, B.Steffen, M. Bram-

billa, D. C. S. Ceri, E. D. Valle, F. Facca, and C. Tziviskou.

The sws mediator with webml/webratio and jabc/jeti: A

comparison. In Proc. ICEIS’07, 9th Int. Conf. on Enterprise
Information Systems, Funchal (P), June 2007.

[23] R. Roszkiewicz: Getting Started with Controlled Vocab-
ularies, Taxonomies and Thesauri, The Seybold Report,

Analyzing Publishing Technologies, Vol.5, N.16, 2005,

Seybold Publications. www.factiva.com/press/
seybold taxonomy 2006.pdf

[24] B. Steffen, T. Margaria. METAFrame in Practice: Design

of Intelligent Network Services. In Correct System Design -
Recent Insights and Advances, LNCS N. 1710, State-of-the-

Art Survey, pp. 390–415. Springer-Verlag, 1999.

[25] B. Steffen, T. Margaria, V. Braun: The Electronic Tool Inte-
gration Platform: Concepts and Design Software Tools for

Technology Transfer, Vol. 1, Springer Verlag, Nov. 1997.

[26] B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reiten-

spieß. An Environment for the Creation of Intelligent Net-
work Services, in ”Intelligent Networks: IN/AIN Technolo-

gies, Operations, Services, and Applications – A Compre-

hensive Report”, Int. Engineering Consortium, Chicago IL,

1996, pp. 287-300.

[27] B. Steffen, T. Margaria, A. Claßen, V. Braun, M. Reiten-

spieß, H. Wendler. Service Creation: Formal Verification
and Abstract Views, 4th Int. Conf. on Intelligent Networks

(ICIN’96), Nov. 1996, Bordeaux pp. 96-101.

[28] B. Steffen, T. Margaria, R. Nagel, S. Jrges, C. Kubczak:

Model-Driven Development with the jABC, Proc. HVC’06,

IBM Haifa Verification Conference, Haifa (Israel), LNCS

4383, Springer Verlag, October 2006.

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

