Fundamenta Informaticae XX (2009) 1-29 1
I0S Press

Performance Evaluation of Distributed Systems Based on
a Discrete Real- and Stochastic-Time Process Algebra

J. Markovski and E.P. de Vink

Formal Methods Group, Department of Mathematics and Coergstience

Eindhoven University of Technology, Den Dolech 2, 5612 Axikdven, The Netherlands
tel: +31 40 247 3360, fax: +31 40 247 5361

j.markovski@tue.nl, evink@uin. tue.nl

Abstract. We present a process-algebraic framework for performavaiation of discrete-time
discrete-event systems. The modeling of the system buildsprocess algebra with conditionally-
distributed discrete-time delays and generally-distatistochastic delays. In the general case, the
performance analysis is done with the toolset of the modééinguagey by means of discrete-event
simulation. The process-algebraic setting allows for esjn laws for the parallel composition and
the maximal progress operator, so one can directly martipdle process terms and transform
the specification in a required form. This approach is iflastd by specifying and solving the
recursive specification of the/G /1 /oo queue, as well as by specifying a variant of the concurrent
alternating bit protocol with generally-distributed ulimble channels. In a specific situation when
all delays are assumed deterministic, we turn to performanalysis of probabilistic timed systems.
This work employs discrete-time probabilistic reward drapwhich comprise deterministic delays
and immediate probabilistic choices. Here, we extend prtevinvestigations on the topic, which
only touched long-run analysis, to tackle transient ansigs well. The theoretical results obtained
allow us to extend thg-toolset. For illustrative purposes, we analyze the cameuralternating bit
protocol in the extended environment of thdoolset using discrete-event simulation for generally-
distributed channels, the developed analytical methodl&erministic channels, and Markovian
analysis for exponentially-distributed delays.

1. Introduction

Over the past decade stochastic process algebras have emergetpasitional modeling formalisms
for systems that not only require functional verification, but perforreaanalysis as well. Many Marko-
vian process algebras are developed like EMPA [9], PEPA [27], IRET], [etc. exploiting the memoryless
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property of the exponential distribution. Before long, the need for ig¢mistributions arose, as expo-
nential delays are not sufficient to model, for example, fixed timeouts ahiett@rotocols or heavy-tail
distributions present in media streaming services. Prominent stochastsprgebras and calculi with
general distributions include TIPP [26], GSMPA [13], SPADES [2BSMP [12], NMSPA [31], and
MODEST [10].

Despite the greater expressiveness, compositional modeling with geistrddutions proved to be
challenging, as the memoryless property cannot be relied on [29, 1dically, the underlying perfor-
mance model is a generalized semi-Markov process that exploits clocks torrpempast behavior in
order to retain the Markov property of history independence [23]. Silpildre semantics of stochastic
process algebras is given using clocks that represent the stochalatis dt the symbolic level. Such a
symbolic representation allows for the manipulation of finite structures, e.ghagtic automata or ex-
tensions of generalized semi-Markov processes. The concretetiexetwdel is subsequently obtained
by sampling the clocks, frequently yielding infinite probabilistic timed transitiotesys.

For the sampling of the clock two execution policies can be adopted: (1roachtion [26, 20, 31,
10], which enables the action transitions guarded by the clocks that dipiteand (2) pre-selection
policy [13, 12], which preselects the clocks by a probabilistic choice. éepkirack of past behavior,
the clock samples have to be updated after each stochastic delay transitienca®@uo this in two
equivalent ways: (1) by keeping track of residual lifetimes [20, 10], itee time left up to expiration,
or (2) by keeping track of the spent lifetimes [26, 13, 12, 31], i.e., the tinssguhsince activation. The
former manner is more suitable for discrete-event simulation, whereas thadatt&knowledged for its
correspondence to real-time semantics [29, 14].

In this paper we consider the race condition with spent-lifetime semantics. udowee do not use
clocks to implement the race condition and to determine the winning stochasti¢sjedfyhe race.
Rather, we rely on an interpretation that uses conditional random vagiahtk makes a probabilistic
assumption on the winners followed by conditioning of the distributions of therdasn the time spent
for the winning samples [28]. Thus, we no longer speak of clocks asoneotikeep track of sample
lifetimes, but we only cater for the ages of the conditional distributions [8&].refer to the samples as
stochastic delays, a naming resembling standard timed delays.

The relation between real and stochastic time has been studied in variougssettgtructural trans-
lation from stochastic to timed automata with deadlines is given in [19]. This apprimund its way
into MODEST, where timed automata with deadlines are merged with stochastic suiorsa-called
stochastic timed automata as a means to introduce real and stochastic timeate sepatructs. Also, a
translation from IGSMP into pure real-time models called interactive timed automafadded in [12].
The interplay between standard timed delays and discrete stochastic deddysam studied in [34, 35].
An axiomatization for a process algebra that embeds real-time delays withlled-context-sensitive
interpolation into a restricted form of discrete stochastic time is given in [35].

The paper presents a performance evaluation framework based aespralgebraic specifications
and their analysis in an extended environment ofititeolset [8, 38]. The contribution of the paper is
twofold. As a first contribution, a sound and ground-complete prodgebia is provided that accom-
modates timed delays in a racing context, extending the work of [34, 35]thEleey provides an explicit
maximal progress operator and a non-trivial expansion law for thdlglacamposition. Differently
from other approaches, we derive stochastic delays as time-delaysgspes with explicit information
about the winners and the losers that induced the delay. We représedéisl real-time as stochastic
time inducing a trivial race condition in which the shortest sample is alwayibigth by the same set
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of delays and moreover has a fixed duration. The algebra also prahielgmssibility of specifying a

partial race of stochastic delays, e.g., that one delay has alwaystarskqual, or longer sample than
the other delay. This is required when modeling timed systems whose coglentibr depends on the
relative ordering of the timed delays, e.g., in a time dependent controller.n \Wieetimed delays are

simply replaced by stochastic delays, the total order of the samples is, imgdast, unless it can be
specified which delays are the winners or losers of the imposed race.

We illustrate the process theory by revisiting tH¢G /1 /00 queue from [34], treating it more ele-
gantly now and providing a solution for the recursive specification by nudattipg process terms using
the proposed axiomatization. We also specify a variant of the concaitemating bit protocol that has
fixed timeouts (represented by timed delays) and faulty generally-distrilchgethels (represented by
stochastic delays), stressing the interplay of real-time and stochastic time.

Our second contribution concerns automated performance analysigelt ismown that only a small
number of restricted classes of models of general distributions are aa#jysolvable. Preliminary
research on model checking of stochastic automata is reported in [18]@ogosal for model checking
probabilistic timed systems is given in [39]. However, at the moment, perfarenanalysts turn to
discrete-event simulation when it comes to analyzing models with generallibdistt delays. For
analysis of the concurrent alternating bit protocol we depend on thestaiflthey-language [8, 38, 11,
2]. At the start,y was used to model discrete-event systems only, not supported by laitegmantics.
However, recently, it has been turned into a formal specification lamgsagup as a hybrid process
algebra with data [8, 38].

The connection between the timed discrete-event subsetanfd standard timed process algebras
in vein of [4] is straightforward. In [42], a proposal was given to extg with a probabilistic choice
to enable long-run performance analysis of probabilistic timed specificatitere, we rely on this ex-
tension to provide a connection with the stochastic part of our processralgs well. At this point,
the co-existence of real and stochastic time in the same model plays a coleialinich underlines the
key position of the process algebra in the framework. The performancelnsogtrmed discrete-time
probabilistic reward graph and it comprises deterministic delays and immedadtaiplistic choices. It
is suitable as an underlying performance model for stochastic delays viiéhsiipport set as used in the
case study (even though the theory does not have such a limitation).])r{g@&ete-time probabilistic
reward graphs were employed for long-run analysis of industrial systélere, we extend the perfor-
mance evaluation framework of [42] to cater for transient analysis as Wellaccordingly augment the
x-toolset and apply it to the concurrent alternating bit protocol. The dasly dlustrates the new ap-
proach when the channel distributions are deterministic. Finally, we contpaanalytical results with
the ones obtained from discrete-event simulation and Markovian anakigig the same specification
in x. We visualize the proposed framework in Figure 1. We note that we relyeo@ADP toolset [21]
as a solver for the underlying/intermediate Markov reward processes.

The rest of this paper is organized as follows: Section 2 discussegroackli material and design
choices. Section 3 introduces the process theory and revisits f#6g1 /oo queue example. Section 4
discusses transient analysis of discrete-time probabilistic reward graple iperformance evaluation
framework. Section 5 analyzes the concurrent alternating bit proteotigpl and discusses its specifi-
cation in the proposed process algebra and the langua8ection 6 wraps up with concluding remarks.
Due to substantial technical overhead, we do not give the operatiemargics of the process-algebraic
theory here. Instead, we focus on the axiomatization to illustrate its suitabiliprétocol specification.
The complete structural operational semantics and formal treatment of tirg #re available in [32].
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Figure 1. The proposed process-algebraic performanceai@h framework

2. Timed and Stochastic Delays

In this section we introduce a number of notions in process theory thatsatehelow. We refer the
interested reader for more technical detail to [32].

Preliminaries  We use discrete random variables to represent durations of stochebstys.d The
set of discrete distribution functioris such thatF(n)=0 for n < 0 is denoted byF; the set of the
corresponding random variables by We useX, Y, andZ to range ovel andFy, Fy andF, for

their respective distribution functions. Alsd/, L, V, andD range oveR”. Given a set4, by A™ we

denote vectors of size € N and by A™*"™ matrices withim rows andn columns with elements inl.

By 0 and1 we denote vectors that consist(s andls.

Racing stochastic delays A stochastic delay is a timed delay of a duration guided by a random
variable. We observe simultaneous passage of time for a number of stod®ays until one or some
of them expire. This phenomenon is referred to asrétoe conditionand the setting as thace For
multiple racing stochastic delays, different stochastic delays may be edssimultaneously as being
the shortest. The ones that have the shortest duration are calledhtiersand the others are referred
to as thdosers The outcome of a race is completely determined by the winners and the logdise#
distributions. So, we can explicitly represent the outcome of the race by afjg@tsi¥, L of stochastic
delays. We writd"/] in caseWV is the set of winners and is the set of losers. We have occasion to
write [W] instead off';] and omit the set brackets when clear from the context. ThUsrepresents a
stochastic delay guided by the random variakile

To express a race, we will use the operator _. So,[X]| + [Y] represents the race between the
stochastic delayX andY. There are three possible outcomes of this race5{1)2) [*;"], and (3)[X].
Thus, we can also writg] + [%)"] + [X] instead of X] + [Y], as both expressions represent the same
final outcomes of a race. If an additional racing defais added, this also leads to equal outcomes, i.e.,
[X]+ Y]+ [Z] and[¥] + [*»"] + [X] + [Z] will yield the same behaviour. For example, the outcome of
[¥] + [Z] is either (1)[x%], (2) [%7], or (3) [y*2]. As outcomes of races may be involved in other races,
we generalize the notion of a stochastic delay and refer to an arbitragmoeit | as a stochastic delay
induced by the winner8/” and the loserd., or by W and L for short. Here, we decide not to dwell on
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the formal semantics because of a substantial technical overhead tdifertha notion of dependencies
of losers on the samples of the winners. The basis for the semantics iSg[@dn 35] and subsequently
extended in [32] to allow the explicit specification of the winners and the $asfeat race.

To summarize, there are three possible combinations that give the relatiozeietive winners and
the losers: (1)1 N W5 # (), which means that the race must be wonly and lost byL; U W5 U Lo,
(2) Wy N Wy # (), which means that the race must be woniy U 15 together and lost by.; U Lo,
and (3)I; N Ly # (0, which means that the race must be W&h and lost byil; U L1 U Ly. Obviously,
these ‘restrictions’ are disjoint and cannot be applied together. If maredhe restriction holds, then
they lead to ill-defined outcomes. For example, if both (1) and (2) hold atite sime, therl.; ands
must exhibit the same sample and dlBp andWW, must exhibit the same sample. Théfi andL; must
exhibit the same sample, which is a contradiction.

If at least two restrictions apply, then the outcomes cannot be combine@aseftresent disjoint
events. In this case we say the race between the défaysnd[72] with W, U Ly = Wa U Lo, is
resolved The extra condition ensures that the outcomes stem from the same rabeyileave the same
racing delays. For examplg;] and[*y”] cannot form a joint outcome. The delays do not stem from the
same race, which renders their combination inconsistent. Resolved tagesmpmportant role as they
enumerate every possible outcome of the race. We define a predigafe, [72]) that checks whether
two delayg?}] and[72] are in a resolved race. Itis satisfiedlif, UL; = WU Ly and at least two of the
following three restrictions from above hold: (L) N W5 # 0, (2) W1 N Wy # 0, and (3)W1 N Lo # (.

Naming of stochastic delays Consider the process tefdi|.p; || [X].p2, where[ X]._ denotes stochastic
delay prefixing,. || - denotes the parallel composition, gndandp, are arbitrary process terms. We note
that the alternative and the parallel composition impose the same race coniditéostandard way, the
race is performed on two stochastic delays with the same distribbtiore 7. However, both delays
will not necessarily exhibit the same sample, unlEgsis Dirac. Intuitively, the process given by the
above term is equivalent to process given[&y.p; || [Y].p2 with Fx = Fy leading to three possible
outcomes.

However, in real-time semantics, timed delays (denotedbfor a durationn € N) with the same
duration are merged together. For exampl&,p, || o™ .ps is equivalent tar™.(p; || p2). This parallel
composition represents components that should delay together. Note thatribisobtained above in
the stochastic setting. Previous investigation in this matter [34, 35, 32] pointeaiuboth dependent
and independent stochastic delays are indispensable. The formér anaxpansion law for the parallel
composition; the latter support compositional modeling.

Dependent stochastic delays always exhibit the same duration in the saengh@an guided by the
same random variable. In contrast, independent stochastic delays wihrtfeename have the same
distribution, but not necessarily the same duration. As an exarfiplé,+ [] is the same race 4§ /]
if we treat X as a dependent stochastic delay, wheféps [X] = [/5] + [*4"] + [x 2], provided that
Fx = Fy, whenX is treated as an independent one.

We introduce an operator to specify dependent delays, denotedi, hyin which scope the stochastic
delays inD are treated as dependent. Thus, in the previous exaripi€]|,, denotes thatX is a
dependent stochastic delay, @itand Z are independent. By default, every delay is considered as
dependent. Hencéf] actually meang[7]|,,, - Multiple scope operators intersect and, &gy
denotes the independent delgy becausg X} N {Y'} = 0.

The dependence scope plays an important role in giving operationahesna the terms. Recall

Ixly
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that the stochastic delay preft¥].p denotes an outcome of a race between the stochastic deldjs in
where the winners are given By and the losers are given dy. Moreover, it denotes that there was
passage of time for the losing delays/inthat may continue to persist jn This means that the losers do
not have their original distribution in the resulting procgssd that their distributions must be ‘aged’ by
the duration of the sample exhibited by the winnBfs Therefore, the names of the losing delays must
be protected i, i.e., they become dependent. This is achieved by wriing as the remaining term
after the expiration of the delay given BY/]. Thus,[7].p is actually equivalent t97].|p|, as only the
names inL must be preserved in Consequently, the stochastic delays noLibecome independent.
To support this interpretation of process terms, the stochastic delays¢habvtaencompassed by any
dependence scope are considered as dependerjt;J.gis equivalent td[*].p| ;. ;-

Timed delays in a racing context We first give an example of an execution of a stochastic delay.
Suppose thak is a random variable such thatX=1) = J andP(X=2), P(X=4), P(X=5) = 3.
We observe what happens afteunit of time. Then, either the stochastic delay expires with probabil-
ity % or it is aged byl time unit and it allows a passage of time as the random variabevhere
P(X'=1), P(X'=3), P(X'=4) = L. After one more time unit, the delay can either expire with proba-
bility that X did not expire in the first time unit multiplied by the probability th&at expired in the first
time unit, i.e.,P(X > 1)-P(X'=1) = - { = 1 = P(X=2). We can proceed in the same fashion until
we reachb time units with probability%.
Although being a simple exercise in probability, the example illustrates how to dipalbhoderive
a stochastic delay using a timed delay of one unit of time. We denot€"blye event where the delay
expires in one time unit, i.e., the stochastic delayins a race in combination with a unit timed delay
and there are no losers. By, we denote the event where the delay does not expire in one time unit, i.e.,
the stochastic delayX loses the race to a unit time delay and there are no additional winners. athen,
each pointin time we have two possibilities: either the delay expires, or it ddexpire and itis aged by
one time unit. Intuitively, a stochastic delay prefi].p can then be specified &88|.p = o\ .p+0%.[X].p
for a given process term Note that the race ef, ando?, is resolved. In a generalized context, following
the same reasoning, we specify a stochastic delay gtefix as

Llp=o0"p+on..[7T]p.

Here,o)” denotes the stochastic delaysiinto be winning after one time unit delay with the stochastic
delays inL losing. We will refer tos,” as a timed delay in a racing context, or simply timed delay for
short. Note that timed delays impose the same race condition as racing stode&sti specified in
their context. It turns out that in the process theory, it is sufficient tdkwaty with timed delays and
retrieve stochastic delays via guarded recursive specifications. Wehai a timed delay of one time
unit can be specified ag’. We omit the empty sets when clear from the context and we also write
for n > 1 subsequent timed delays. We have to extend the resolved races conditimertohe situation
when the set of winners is empty. So, we define that)", o}2) holds ifrr([}], [%2]) holds, orlW; = ()
andWy N Ly # 0, or Wy = () andWy N Ly # 0.

Design choices The processes specified in our theory can perform timed delays, bytezéorm
immediate actions as well, i.e., actions that do not allow any passage of time arnchroadiately
(successfully) terminate. The choice between several actions is noniettic and depends on the
environment as in standard process algebra. We favor time-determinisrthe.prjnciple that passage
of time alone cannot make a choice [4]. Also, we favor weak choice betiwemediate actions and
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passage of time, i.e., we impose a nondeterministic choice on the immediate actiadhe padsage of
time in the vein of the timed process algebras of [4]. To support maximal gsegr.e., to prioritize
immediate actions over passage of time, we include a maximal progress opetawtheory together
with encapsulation of actions, thereby disabling undesired actions. \iVe detayable actions, similarly
to stochastic delays, as recursive processes that can perform aniatevadion at any point in time.

These design choices stem from timed process theory [4] as we aim tmpligio stochastic-time
process theory as a conservative extension of real-time procesy. tliberconservative extension is an
important prerequisite for co-existence of real- and stochastic-time dagaypsherwise, one must intro-
duce them as separate constructs, e.g., similarly to the approach taken iB$Qiath the introduction
of stochastic timed automata [10].

3. Process Theory

In this section we introduce the process the®yP®! of communicating processes with discrete real
and stochastic time for race-complete process specifications that indesenith all possible outcomes.
We refer the reader to [34, 35, 32] for the formal semantics. Here jweesgveral examples to guide the
reader’s intuition. To illustrate the theory we give ti¢G /1 /00 queue example.

Signature We continue by introducing the signature of the process th&ap®'. The deadlocked
process is denoted by successful termination by Action prefixing is a unary operator scheme ,
for everya € A, whereA is the set of all possible actions. Similarly, timed delay prefixing is of the
form o}*._ for W, L C V disjoint. The dependent delays scope operator scheme is giverj hyfor
D C V. The encapsulation operator schethg( -) for H C A suppresses the actions #h, whereas
the maximal time progress operator scheip€ _) gives priority to the actions if C A over passage
of time. The alternative composition is given by _, at the same time representing a nondeterministic
choice between actions and termination, a weak choice between action anddtihagd and a race
condition for the timed delays. Parallel composition is given ljy_. It allows passage of time only if
both components do so. Finally, we introduce guarded recursive iegiab constant® € R.

The signature o' CP%* is given by

P:=5|c|aP|c".P||P|,|0u(P)|6:/(P)| P+P|P|P|R,

wherea €¢ A, W,L,D CVwithWNL=0,H,IC A, andR € R. We writeC for the closed terms.

Dependent and independent delays Before we present the process theory itself, we need some
auxiliary operations to extract dependent and independent stochaktitsd ByD(p) we denote the

set of dependent delays of the tepn& C, by I(p, V) (I(p) for short) its set of independent delays. The
racing delays of a term are denotedfp) = D(p) U I(p). The functionsD(p) andI(p) are given by

D(e) = D(6) = D(a-p) D(lplp) =D() N D, D(o".p) =W UL,

D(0u(p)) =D (p)) = D( ), D(p1+p2) = D(p1 || p2) = D(p1) UD(p2);

I(e, D) =1(6, D) = I(a.p, D) = 0, 1(0,".p,D) = (WUL)\ D, Iply, D) =1(p, DN D),
1(0u(p), D) =1(0u(p), D) =1(p, D), L(p1+p2, D) =1(p1 || p2, D) = L(p1, D) UL(p2, D).

The dependent delays are computed as the delays connected by thmeosttalternative or parallel
composition that are not encapsulated by the scope operator. The thedtigse in the scope operator



8 J. Markovski, E.P. de Vink/ A Discrete-Time Process Algebraic Freonlefor Performance Evaluation

must be in the intersection of all dependence binding sets. For the indeypetelays we need an
auxiliary set as a second parameter to keep track of this intersectiony82jlustrate the situation by an
example. Lep = [|o* z"”x,z’x,y- ThenD(p) = {X}andI(p) = {Y, Z} as{X, Z}n{X,Y} = {X}.
Renaming of independent delays The general idea of having both dependent and independent delays
available is the following: For specification one can use multiple instances@hpaanent using inde-
pendent delays. As the delays are independent, there is no need yoalvout the actual samples. For
analysis however, it is advantageous to deal with dependent delaysx&ople, given the simple com-
ponentoy.o".a.6|,, we can use itas a building block of the systefio".a.d|, || |07.0™.a.d|,. However,
for analysis we revert to the systéiv;".o".a.0) || (0.0".a.5) |, whereF xy=Fy andFy =Fy, in order

to resolve the race condition. Note that proper resolution of the racdtimmnoequires uniqueness of
names of the racing delays (cf. [34, 35]). It is clear that naming confiietg arise when one puts the
entire process under one scope operator, as in the example aboxefofdndt has to be checked whether
there are independent delays with the same names. If such conflicts thesuthe independent delays
introducing the clash must be renamed. Care has to be taken, that losipg alelaenamed consistently
as their names have been bound by the first race in which they participbdetiis end, we define a
renaming operatiop[Y/x] for p € C, that consistently renames the stochastic défapto Y. We have

(0-p)[¥/x] = 0"p it X ¢ WuUL
(0" p)[V/x] = o, if X ew 1l plM/x] = p[/x]lp if X ¢ D
(0" P)Y/x] = 0 xpory-PlY/x] i X €L ‘p|D[Y/X] = |p[Y/XH(D\{X})U{y} if X eD

where the other cases are straightforward.

Operational semantics We use a construct, called amvironmentto keep track of the ages of the
racing delays. Recally})” denotes a unit delay after which a race was wonlyand lost byL, for
W, L C V. However, because of time determinism, time passes equally for all racingsdeld” U L
aging them by units of time. To denote that after a d¢fdythe same time that passed for the winriéfs
has also passed for the losdrswe use an environment: ¥V — N. For eachX € V, a(X) represents
the amount of time thaX has raced. We writé&; for the set of all environments.

For example, the process tew}*.c..p has a racing timed transition in whick andY” are the
winners and” is the loser. In the resulting process p, the variableZ must be made dependent on the
amount of time that has passed. This is denoted(#) = 1, provided that originallyx(Z) = 0. As Z
again loses a race, this timelg the transition induced by_ updatesy(Z) to 2.

The environment does not affect the outgoing transitions. It is useddolage the correct distribu-
tion of the racing delays. The distribution &f, provided thatF'x (a(X)) < 1, at that point in time is
given byFx (n) = FX(”J;‘f(F)Q();@(X))(a(X)) for n € N. Thus, in order to compute the updated distribution
of a racing delayX, one has to know its age.

The semantics of process terms is given by racing timed transition schemage A the transition
scheme in an environmentis given by the paifs,«) € S x &. The functionI(s) gives the set of
independent delays of the stateEvery state may have a termination option, denoted by the predicate
There are two types of transitions: (1}, immediate action transitions labeled by A, that do not
allow passage of time and model undelayable action prefixes; an@éZIresolved) racing timed delay
transitions, driven by the winnei& and the loserg,, that model racing timed delay prefixes. The timed

delay transitions must be well-defined: for evelryf_> u', the set of winner$l” and the set of losets are
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disjoint. Moreover, every two different transitions originating from theneatate are in a resolved race.
More precisely, ifu % u # u % uz, thenrr(o}"s, 0}*2) holds, implying that¥, U Ly = W5 U Ls.
Thus, for every state there exists a set of racmg delaRgs) satisfyingR(s) = W U L for every
(s, ) % (s',a’). Then, the set of dependent delays is givelfy) = R(s) \ I(s).

We define a strong bisimulation relation on racing timed transition schemesuitesgacing timed
delays to have the same age modulo names of the independent delays.stings ¢imat the induced races
have the same probabilistic behavior. As usual, bisimilar terms are requiradegdhe same termination
options, action and timed transitions [37, 4].

A symmetric relation? on S x & is a bisimulation if, for every two states , us such thatR(uy, us),
it holds that: (1) ifu;| thenusl; (2) if uy —* u} for someu’1 € S x &, thenuy % ), for some
uy € S x &; and (3) ifuy .—>u1 for someu) € S x &, thenus HuQ for someu), € S x &. Moreover,

u) andul, in (2)—(3) are again related by. In (3) W, andL; dlffer from W5 and Lo, respectively, only
in the names of the independent racing delays, while comprising delays wisatie distributions and
ages. Also, an additional condition is imposed to ensure that the ages o$#ns tu; that are racing
as dependent delays i is preserved in/ as well. Two states; anduy are bisimilar if there exists a
bisimulation relationR that relates them. The complete technical details can be found in [32].

Axiomatization By now, we have gathered all the prerequisites to present the axiomgfopéhnators,
exceptfor_ || - andfy (- ). (These operators will be dealt with using the expansion laws discustaa b
for normal forms in which races are resolved.) Table 1 displays the axiontsd sequential processes.
Axioms Al, A2, and A3 are standard. Axiom A4 states that there is no digmee of stochastic delays
arising from an action. Axiom A5 states that all delays are treated as depeby default. Axiom A6
states that the losers of a timed delay retain their names in the remaining prdxiess.A7 states that
multiple scope operators intersect. Axiom A8 states that independent widalags can be renamed
into fresh names with the same distribution. Axiom A9 is similar but now the renansedylstochastic
delay must be consistently renamed in the remainder too. Axiom A10 puts staof@ays in the same
name space under the condition that there are no naming conflicts.

The standard axioms for associativity, commutativity, deadlock as the helatngent for the alterna-
tive composition, and the idempotence of the termination are given by the axibirs?d4. Axiom A15
shows that a choice between the same alternatives is not a choice. Axidr& 28 show how races
are resolved. In the case of A16 the winners have common variablegysmtist win together provided
that the joint stochastic delay is well-defined, i.e., there are no common dticatielays between the
winners and the losers. Note that in the remaining proggesly the names of its losets; need to be
preserved. Axiom Al7 states that if the losers of the first timed delay haeenanon delay with the
winners of the second, then all delays of the second delay are loseesrgstliting delay. The last axiom
states the result of a race in which there are no common variables betweentiees and the losers of
both timed delays. In that case, all outcomes of the race are possible. Rimalakioms A19-A21 give
the standard axioms for the encapsulation operator that suppressesdhs i H .

Head normal form  Using the axioms, we can represent every teranC as|p’| ;, whereB C D(p),
andp’ has the following head normal form

D iy | pily + D05 1‘7 |qJ|D (+e),

with rr(o, % 0, for1 <k < ¢ <nandD; C L; N D(qj), andp; andg; for1 <i<m,1<j<n
are again in head normal form; the summaris optional and " , p; is shorthand fop; + ... + py,
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6], =6 A1, lel, =€ A2, la.p|, =a.p A3, a.p = a-|p\@ A4
oV.p= |0LW.p|WuL A5, o.p= ULW-|P|L A6, HP|D1’D2 = |p’DmD2 AT
o p| = o) if X,Y ¢ WuUDandFy =Fy AS
o ooplp = 0% 0Pk, XY ¢LUD andFx =Fy A9

Ip1 +p2|p, = [p1l ) + P2l if I([p1],) N R(Ip2| ) = Rllp1l ) N1(|p2l,) =0 A10

p+aq)+r=p+(qg+r) All, p+qg=q+p Al2

p+d=p A13, e+e=€¢ Al4, a.p+ap=ap Al5
olLpy +02pe = azvlluuLVZ2.(|p1|Ll+ |p2|L2) if WinWsy # @ andWiNLs = LinWy =0  A16
O'lel.pl + O’LW;.pQ = UzvlluwzuLz.ﬂpl‘Ll—i— ‘pQ‘LQ) if LiNWs #* 0 andWiNWy =WiNLy =0 A17

O-Zvll'pl + O-ZV;'pQ = O‘x;ULQULl'(|p1|L1 + |p2|L2) + O-KIUUL‘ZQ'(|p1|L1 + ‘p2|L2) +

O'ZV;UVVIULI.(‘]?l’Ll—i—‘pg‘LQ) fWiNWe=L1NWe=W1NLy=10 A18
On(6) =0 A19,  Om(e)=€¢ A20, Ou(p1+p2) =0u(p1)+0u(p2) A21

Ou(o).p) =0".0u(p) A22, Op(ap)=difac H A23, Oy(a.p)=a.du(p)ifa¢ H A24

Table 1. Axioms for sequential processes

if m > 0, or § otherwise. The availability of a head normal form is technically important. Omtige
hand, it shows the possible outcomes of the race explicitly. On the othey ih@ohstrumental for the
uniqueness of guarded recursive specifications in the term modeBfEbw, we use it to provide an
expansion law for the parallel composition and the maximal progress operato

Expansion laws Let p1 = |p|, andpz = [p'|,,, whereD C D(p), D' € D(p'), andI(py) N
R(p2)=R(p1) N1(p2)=0, and assume that ferandp’ we have the head normal forms= 3" | a;.p; +
W ! ! w) . N ~ ~
Z?:l 0..q;(+e€)andp’ = D700 ap.pp + >, O’L['qé( +€), with p; = [pily, ¢; = ’qj|Dj’p;c = [Dilgs
andq, = |g, The expansion of the parallel compositipn || p2 of p; and p, is then given by

by
P12 =1p | 2| p,p» Where

plle =20 a1 9) + ks (P 0h) + 2o (ar,ap) der. V(@i @) (i | ) (+€) +
W, uwW)
2 winwyowynLy=Lewi=o Ouor, (451, Iael ) +
W
ZijWﬁé@,WjﬁWe’:ijL;:m O-LquéuLé'(‘qj‘Lj | ‘QHL;{) +
w

’
ZWjﬁLﬁé@,WéﬂWj:WéﬂLj:(D UwfuLjuLg(|€Ij|Lj | |QZ‘L2) +
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W
ijmwgzwij’g:ijwg:@ (UL Juwéuy-( QJ|L | |QZ‘L/) +

o 0ol 11de] ) + oty Clail | \qe!y))

and the optionat summand exists only if it exists in bothandp’.
The expansion law of the maximal progrés¢p) [4] is given by6;(p) = |0:(p')| ,, where

S ai0r(pi)( +e), if a; € H for somei
Sty ai0r(pi) + Y5 00701(q5)(+€), otherwise,

and the optionad summand exists if it exists in.

Guarded recursion and delayable actions We introduce recursive specifications by means of sets
of recursive equations. We only consider guarded recursivefigagions. So, every recursive variable
must be prefixed by either an action or by a timed delay in the specification. specifications have
unique solutions in the so-called term model, relying on the existence of tdenoemal form [5, 32].

We define a set of delayable actiopg | « € A} by takinga.p to be the solution of the guarded
recursive equation® = a.p + o.R. Thus,a(p) = a.p + o.a(p).

Stochastic delays We specify stochastic delays similarly to delayable actions above. We put

0r(p') =

[VV

T1(p) =0 p+0o,.,.[T](D),

and defind'/].p as the solution of the above equation.

An example illustrates how to specify the desired stochastic behavior in thi®fasWe consider
the processeR; = [X](p) + [Y](¢) and Ry = [](|pl, + [Y](q)) + [X, Y](p + ) + [X]([X]() + lgly)-
The solutions of?; and R, are

Ry = oX(Iply + [Y1(@) + 0% ".(p + @) + oX.([X](p) + ldly) + oy - R1

Ry = oX(Iply + [Y](9) + 0" .(p+ q) + o ([X](p) + laly) + 0 ,-Ra.
In absence of timed delays, we can manipulate the stochastic delays directhytwitiving to resort
to the recursive specifications at all (as it was originally proposed in33ftand ground-completely
axiomatized in [32]). For example,
[2:](p1) + [22](p2) = [TCE2) (P, + [P2lp,) if WiNWy#0andWiN Ly =LiNnWy =10
(p1) + [ 21(p2) = [oowhoro|(Ipaly, + [22](p2))  if LinWa # 0 andWinWy = WinLy = 0
[waZaonJ(Ipal g, + [22](p2) + 0221 (Pl + p2lp,) +
[oowion (20 (p1) + [p2ly,) TFWiNWe=LinWe=WiNLy=0

—~
=
=
S—
+
==
Nw
—
3
DO
~—
Il

reflects how to deal with stochastic delay prefixes in the vein of the axiomsAU&

G/G/1/oo queue We proceed by specifying and solving th¢G/1/00 queue, also discussed in [34].
The queue is specified &= 0;(0n (A || Qo || S)), where

A=[X](s1.4), S=ry([Y](53.9)), Qo=r1(Q1), Qri1=r1(Qrs2)+59(Qx) ifk>0
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andH = {81, 1,592, 7’2} and] = {Cl, co, 83}.

Let us first see how a stochastic delay synchronizes with a delayable bygtgplving the equation
C =01(0u(A| Qo)). We substitute the recursive specifications[f¥i(s;.A) andr, (Q1) and expand
the parallel composition. We havé = 0*.¢;.C + 0,.¢;.C, i.e.,01(0u (A || Qo)) = [X](c1.01(0u (A ||
Q@1))). By using this result and the equations from above for handling stochiedéigs, we obtain

Q=5 = [X] (01.02.81), S = [é](61.5k+1) + [X@YKCl.Sg.CQ.Sk + 83.61.62.Sk> + [§](83.CQ.S}€,1),

for k > 0 as the solution for thé//G/1/o00 queue wheres, = 0;(0u (A || Qk || [Y](s3.5))). We note,
however, that although the process terms specifying the queue are legaatethe underlying racing
timed transition system is similar to the transition system in [34] and retains the sagheflegmplexity.

4. Performance Evaluation

For the purpose of performance analysis, we choose the framewdhe ddnguagey. It provides a
means for Markovian analysis and discrete-event simulation from the gagoiication.

The languagex The languagey is a modeling language for control and analysis of industrial sys-
tems [8, 38]. It has been successfully applied to a large number of ifelustses, such as a car assembly
line, a multi-product multi-process wafer fab [16], a fruit juice blending packaging plant [22], and
process industry factories [7]. Initially, came equipped with features for the modeling of discrete-event
systems only, and was not supported by a formal semantics. Later, iedesigned and converted to a
formal timed specification language [11]. At preseptcan be characterized as a process algebra with
data. In addition, it was extended to handle both discrete-event and womsiaspects, allowing for the
modeling of hybrid systems [8].

Performance analysis of @ model can be carried out either by simulation, or by analysis of the
underlying continuous-time Markov (reward) chain. Simulation is a powentthod for performance
analysis, but its disadvantages in comparison to analytical methods areneelitf6]. The approach
based on Markov chains turnsinto a powerful Markovian process algebra in the vein of [25, 27]. It
is analytical, and builds on a vast and well-established theory. Howewegeheration of a Markov
chain from ay model requires that all delays in the system are exponentially distributet. isTh
serious drawback since in industrial systems, particularly in controllefaysl are often closer to being
deterministic. Although it is possible to approximate deterministic delays by seegsi®f exponential
delays, i.e., to model them by so-called phase-type distributions [36], thisagh suffers from the state
explosion problem. Many states are needed to approximate these deligiergiyf closely, and the
generated Markov chain becomes large due to the full interleaving ofesttictiransitions in parallel
contexts.

Discrete-time probabilistic reward graphs In this paper, we build on an extension of the environment
of timedy proposed in [42] that employs discrete-time probabilistic reward graphsrfg-run analysis

of industrial systems. Here, we employ two methods introduced in [42] fg-tan analysis of discrete-
time probabilistic reward graphs by translation to discrete-time Markov regvegiths [30]. The first one
uses the notion of an unfolding that transforms each timed transition with duratibthe discrete-time
probabilistic reward graph as a sequence dine steps with probability in the discrete-time Markov
reward chain. The other one optimizes the former approach by replaeitigid delays with geometric
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delays with the same mean. The former approach clearly increases thepataeby introducing extra
transitions, albeit in a specific manner, which can be exploited in the relegamtutations. The latter
translation does not increase the number of states, but as we discugsugable for transient analysis.
In order to overcome this, we show how to obtain transient performanceumesafor ‘unfoldings’ of
discrete-time probabilistic reward graphs by relating the transient measfuhesobtained discrete-time
Markov reward chain back to the original process.

Discrete-time probabilistic reward graphs have been proposed in [42]nazdel for performance
evaluation of industrial systems in which time delays are discrete and deterministerandom behav-
ior is expressed in terms of immediate probabilistic choices. Discrete-time plistialbeward graphs
are transition systems with two types of states: (1) probabilistic, which hatelyfimany probabilistic
outgoing transitions and (2) timed, which have only one outgoing transition.dlecaete-time proba-
bilistic reward graph, time itself does not decide a choice and, as such,isho interleaving of timed
transitions as in typical timed process algebras [3]. This is in contrast witagheach of Marko-
vian process algebras, where all exponential delays are interleAgedconsequence, compared to the
Markovian approach which produces continuous-time Markov rewhaihs, the discrete-time proba-
bilistic reward graph generated fromyamodel is considerably smaller (more than threefold for our case
study). For our needs, we work with the following definition.

Definition 4.1. A discrete-time probabilistic reward graph is a tufle= (o, S, --+,—, p), where (1)
o € RISl is aninitial state probability row vectowith o > 0 ando1 = 1; (2) S = S, U S, whereS,,
andS; are the disjoint sets of probabilistic and timed states, respectively:-¢3% S, x (0,1] x S'is
an (immediateprobabilistic transition relationwith Z(sm’s,)e_qp = 1foreverys € Sp; (4)— C

S; x Nt x S is atimed transition relatiorsuch thats —— s’ ands — s” (in infix notation) implies
thatn = m ands’ = s”; and (5)p € RISI*! is astate reward rate vector

The interpretation of a discrete-time probabilistic reward graph is as follbwgrobabilistic states the
process spends no time, and it jumps to another state according to theilsbbatansition relation.
In a timed state the process spends as many time units as specified by the timiddrtrasation, and
jumps to the unique subsequent state. The uniqueness requirement ipaot e time-determinism
property [37, 4, 3]. Areward is gained per time unit, as determined by t&rderate assigning function.
Although we allow reward rates to be assigned also to probabilistic statestabesp actually gains
no reward as it spends no time in them. The aggregation method is capablaliofydeith multiple
subsequent and loops of probabilistic states, see Figure 2a. Thisgsdoida better expressivity and
modeling convenience [33]. These statements will also be supported bgdhegation method used
below (cf. also [18, 41, 42]).

We visualize a discrete-time probabilistic reward graph as in Figure 2a., blatesl, 2, and3 are
timed, whereas statelsand5 are probabilistic. The reward rates are put in sans-serif at the top right
corner of each state; the reward rate of the stige;, for 1 <7 < 5.

Translation to discrete-time Markov reward chains  To obtain the performance measures of a
discrete-time probabilistic reward graph we exploit their relation with disdiete-Markov reward
chains, which are well-established performance models. The discreteriahdistic reward graph is
represented as an equivalent discrete-time Markov reward chaimy vglticen analyzed, and the results
are interpreted back in the discrete-time probabilistic reward graph settigtrdnslation is performed
in two steps: (1) the discrete-time probabilistic reward graph is transformedrmsition system to
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Figure 2. a) A discrete-time probabilistic reward graphjts)unfolding, c) aggregated unfolding, and d) ge-
ometrization of a)

be interpreted as a discrete-time Markov reward chain, and (2) the téitoree Markov reward chain
is aggregated to truthfully represent the semantics of the discrete-timebgistiareward graph as the
immediate probabilistic transitions have to be eliminated. We need to interchantreablyiscrete-time
Markov reward chains both as transition systems and in matrix terms. Hermrmally set up this

framework and begin by defining a discrete-time Markov reward chain msteif transition systems.

Definition 4.2. A discrete-time Markov reward chaM = (o, S, —, p) is a tuple where (1 € RIS
is the initial state probability row vector; (2 is a finite set of states; (3)~C S x (0,1] x S is the
probabilistic transition relationand (4)p € RISI*1 s the state reward vector.

Operationally, a discrete-time Markov reward chain waits one time unit in a gaites the reward for
this state determined by the reward vegtpand immediately jumps to another state with a probability
specified by the relatior—.

When required by the context, we will represent a discrete-time Markwearcechain as a triple
(o, P, p), whereP is the probability transition matrix, i.e., the matrix representation of the probability
transition relation, ang is the state reward vector. It is known tHagn), the transition probabilities
aftern > 0 time steps are given bi(n) = P™. Also, the long-run probability vector € RIS,
i.e., the average probability that the process resides in a given state afsgrstem stabilizes, satisfies
P =« [30, 17].

The main idea behind the translation from a discrete-time probabilistic rewapth Grto a discrete-
time Markov reward chaiiM is to represent a timed transition of duratianof G as a sequence of
n states inM, connected by probabilistic transitions with probabilityall having the same reward. The
immediate probabilistic transitions & remain unchanged by this transformation. Thus, the immediate
probabilistic transitions o6 are ‘wrongly’ transformed to probabilistic transitions idf that last one
time unit. We come back to this problem later. First, we recall the naive tranafmn to a discrete-time
Markov reward chain, which is referred to as thdoldingof a discrete-time probabilistic reward graph.

Definition 4.3. LetG = (og, S, --»,—, pg) be a discrete-time probabilistic reward graph with=
{s1,...,sn}. Associate with every state € Sg a numberm; € N7 as follows: ifs; is a probabilistic



J. Markovski, E.P. de Vink/ A Discrete-Time Process Algebraic Freoniefor Performance Evaluation 15

state, thenn; = 1; if s; is a timed state, them; = m for the uniquen such thats; — s, for some
s € Sg. Then, theunfoldingof G is the discrete-time Markov reward chdih= (oy, Sy, —, pu)
WhereSU = {Sij | 1 <1 < n,l < j < mz} and (1)Uu<8i1) = O’G(SZ') andau<8ij) = 0 for

1 <5 <my; (2) Sij # Sij+1 for1 < 7 <m;—1, andsimi L> Sk1 if S; s Sk Or s;1 L, Sk1 if

s ==> sy and (Rpu(siy) = po(s:) for 1 < j < m;.

The set of probabilistic states bfis given bySy, = {si1 | s; € Sg,} and the set of timed states

is given bySy; = Sy \ Su,. Theunfolding sebf s; is given byUS(s;) = {s;5 | 1 < j < m;}. The
starting state of the unfolding 6f is given by the functioms(US(s;)), which returnss;;.

Remark 4.1. The states of the unfolding can be partitioned to probabilistic and timed state®a#fi-in
nition 4.3. In the matrix representatiéh= (oy, P, py), the transition matrix? induces two transition
matricesP; and B,. The matrixP; represents the unfolded timed transitions originating from timed
states ofSg ¢, whereasP;, holds the translated immediate probabilistic transitions of the probabilistic
states 0fSg ,. To obtain these matrices, the transition maffixs first split to? = P; + P according

to the timed and probabilistic transitions, respectively. The matitesnd P, are adapted to transition
matrices by addings on the diagonal of the zero rows, where the other type of transitions isxguiss

We illustrate the situation by an example.

Example 4.1. The unfolding of the discrete-time probabilistic reward graph from Figares Zjiven by
the discrete-time Markov reward chain depicted in Figure 2b. The unfdailched delays originating from
statesl and2 introduce the new staté&sand?7, respectively. Here the set of timed state$lis2, 3,6, 7}
and the set of probabilistic ones{i$,5}. The timed and probabilistic transition matrices are given by

0000010 1000000
0000001 0100000
0000100 0010000

Pp=10001000 P,=12000200
0000100 020000
0001000 0000010
0010000 0000001

As hinted above, the discrete-time Markov reward chain obtained by tloddingd, in general, does not
truthfully represent the semantics of the original discrete-time probabilistiarcegraph, in the sense
that probabilistic states are immediate in the discrete-time probabilistic reward, gvhpreas they last
one unit of time in the discrete-time Markov reward chain. For example, in thestiistime probabilistic

reward graph in Figure 2a, staiecan be reached from statewith probability% after a delay o2 time

units (vial 24 —lﬁ 5). However, in the unfolding this cannot be done in less thadime units
(required for a sojourn in statés6, and4).

The solution to this problem is to eliminate the immediate probabilistic states appropri&tedy
elimination is achieved by the reduction-based aggregation method of [182}1suitably adapted
for the discrete-time setting [42]. Intuitively, in the new setting the method corapliéeaccumulative
probability of reaching one timed state from another and adjusts the delays.ddecifically, the process
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of aggregation is as follows: In an unfolditg= (o, P, p) the transition probability matrix is split to

the transition matrices of the timed and probabilistic transitignend P, respectively. Next, the Cesaro

. L. . . Py+P2+..+P7 . .
sum of the transition matrix induced W, given byIl = lim,, o, ———>——=", is computed and its

canonical product decomposition, R) is found (cf. [18, 41]). The canonical product decomposition is
formally defined as follows.

Definition 4.4. Given a Markov chaiM = (o, P, p), such that®? = P, + P, for P € R"*" as defined

2 n
above, we definél = lim,,_, w. Supposeank(I) = M. Then, a canonical decompo-

sition of IT is a pair of matricegL, R) with L € RM*" and R € R™M such thatl, > 0, R > 0,
rank(L) = rank(R) = M, L x 1 =1, andIl = RL.

Finally, theaggregatedorocess is given bl = (R, LP,R, Lp) as in [18, 41].

Remark 4.2. The Cesaro sufl plays the role of the ergodic projection for the discrete-time case [30].
It represents the ergodic projection at one of the transition m&jyiand it satisfied1P = PII = II.
This property is exploited for efficient computation. In [33] we also disdh® relationship between
this approach and other approaches that eliminate immediate probabilistic $fateamishing states in
Petri net theory [1]. There, we show that both methods converge in the lintiise when all immediate
probabilistic states are eliminated, with the method employed in the setting of this ipgipgrmore
general as there are no structural restrictions on the probabilistic trassitio

The next definition is adapted from [42].

Definition 4.5. Let G be a discrete-time probabilistic reward graph &he- (o, P, p) be its unfolding

2 n
whereP inducesP; andP,. LetIl = lim, Dotlypt Py The translation by unfolding d§ is the

discrete-time Markov reward chaM = (7, P, p), gi\7en by = oR, P = LPR, andp = Lp, where
(L, R) is a canonical product decompositionIof

The translation preserves the unfolding sets of the timed transitiosaofl their starting states. Only
the probabilistic states are eliminated and the transitions of the final states infohdingnof the timed
transitions inU are adjusted. Note that the unfolding has more states than the originakpiiacihe
order of the sum of the duration of all timed transitions. We illustrate the translagi@an example.

Example 4.2. The discrete-time Markov reward chain in Figure 2c is the aggregated oh#ie one

in Figure 2b. The aggregation eliminates the probabilistic staesd5 and splits the incoming timed
transitions from the stateésand3. The splitting is according to the accumulative (trapping) probabilities
of 4 and5 to the timed state$ and2 (which represent ergodic classes in the terminology of [18, 41]).
Thus, in the aggregated chain there are two outgoing transitions from teg6séad3 to 1 and2 (instead

of a single one in the unfolding). The aggregation methods conform to thkkoMian semantics that after

a delay of one time unit there is an immediate probabilistic choice, which in the imddklexplicitly
stated by the immediate probabilistic transitions. It is straightforwardly cheitla@dhe discrete-time
Markov reward chain in Figure 2c models the same system as the discretertibabitistic reward
graph in Figure 2a when the discrete-time probabilistic reward graph isvaluse the states, 2, and3.
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Remark 4.3. An alternative and more obvious, but possibly analytically and computatianédictable
approach would be to translate and analyze discrete-time probabilisticdrgagshs as deterministic
semi-Markov reward chains [28]. However, to obtain the form of a semildgl reward chain, the ag-
gregation by reduction still has to be applied to eliminate subsequent probalifissitions and prob-
abilistic transitions must be introduced between subsequent timed transitioosntiRea recurrence-
relation-based tailored analysis approach for discrete-time semi-Markocegses has been proposed
in [40].

The following lemma, adapted from [43], gives an important property ofchg-run probability vector
of the unfolding in terms of a relation between the states that belong to the sdoddinmset. The
result supports the assignment of the same reward to all states in an ugfoi@itimed transition as in
Definition 4.3.

Lemma 4.1. Let 7 be the long-run probability vector of the translation of a discrete-time pititad
reward graplG. Then for every staté € Sg; andi, j € US(k) it holds thatr[i] = «[j].

Next, we recall how to relate the long-run performance measures of tgdti@an back to the original
process. Additionally, we show how to do the same in the transient case.

Performance metrics With the transformation to a discrete-time Markov reward chain in place, one
can use the standard theory to compute performance measures. Weridbesexpected reward rate at
time stepn or in the long-run.

If the resulting discrete-time Markov reward chain is ergodic, the expeetsdrd at time step
is standardly computed d%(n) = oP(n)p and the long-run reward aB> = 7p, where(o, P, p) is
the translated discrete-time Markov reward chéify) is its transition probability matrix, and is its
long-run probability vector [30]. In case the resulting process is matdic, one can always partition the
original discrete-time probabilistic reward graph into subgraphs thatupmédrgodic and transient (or
absorbing) processes, which themselves lead to ergodic procasdesadyze them separately. So, we
do not consider the ergodicity condition as restrictive to our analysisrandriow on we assume that we
work only with ergodic processes when doing stationary analysis. Aétarehining the performance
metric, the obtained result has to be interpreted back in the discrete-timebpisilzareward graph
setting.

This approach enables us to reason about the original discrete-timabgistic reward graplt as
we provide a backward relation between the discrete-time probabilisticdeyaphG and its transla-
tion M. This is implemented by means of specially adapted distributor and collector rsadetieed
below (originally introduced as means to specify lumpings [30]). In our ggtthrey are employed as
means to define the partition that is induced by the unfolded time transitions. Tdésitefold back
the unfolded timed transitions and restore the effect of the probabilisticticarssin G by multiply-
ing the transition matrix oM with these matrices. In that way, one can obtain the transition matrix
of G and, consequently, its expected reward. As follows is the definition of thisxeend the required
prerequisites. The approach is illustrated below in Example 4.3.

First we define the notions of a distributor and the collector (matrix). Giyeartitioning of the state
space of a discrete-time Markov chait,,...,Cx} say, we distinguish the following matrices. The
collector matrixV” defined ad/[i, j| = 1if i € C}, Vi, j| = 0 otherwise. Theg-th column ofV" has an
entry 1 for elements corresponding to statesCin A matrix U such thatU' > 0 andUV = I, with T
denoting the identity matrix, is a distributor matrix for. It can be readily seen théat is actually any
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matrix of which the elements of thieth row that correspond to elementsdh sum up tol, while the
other elements of the row afe

The folding collector matrix of the unfolding of G is defined as the collector of the partition
induced by the unfolding sets. Due to the reduction-based aggregdtiprglzbilistic states have been
eliminated to obtain the translatidvi. Consequently, the folding distributor and collectotbfiave too
many states, as they also account for the already eliminated probabilistitidras)sand they have to
be shrunk. Therefore, the rows and columns corresponding to the efédipeobabilistic transitions are
omitted to obtain the folding distributor and collectordf

The multiplication of the transition matrix &fl with its folding collector produces the accumulative
probability of residing in each unfolded timed stateMfper unfolding set. So, the probabilities of
residing in a timed state in the discrete-time probabilistic reward gé&apdn be extracted as the folded
probability of the starting state of the unfolded timed transition. To carry thisooethas to multiply the
folded transition matrix with the folding distributor to extract only the probabilitiethe starting states.
The folding distributor and collector matrices of the unfoldidgnd the translatioM are defined as
follows.

Definition 4.6. Let G be a discrete-time probabilistic reward graphits unfolding, andM its translation.
The folding collector matridy, of U is given byVy i, j] = 1iff j € US(i) andWy|i, j] = 0 otherwise,
fori,j € Sy. The folding distributoi/y is given byUyli, j| = 1 iff j = us(US(7)) andUy[i, 5] = 0
otherwise. The folding distributor and collector mattix,; andVj, of M are obtained by omitting the
rows and columns of/y andVy, respectively, that correspond to the probabilistic statek)ip.

The folding collecto} has the following property, which is a corollary of Lemma 4.1.

Corollary 4.1. Let G be a discrete-time probabilistic reward graph amdks translation. Letr be the
long-run probability vector oM, V) the folding collector ofM, andU some distributor corresponding
to Vm. Then,m = nVyU.

Intuitively, the corollary states that folding the long-run probabilities of thilded timed states in the
translation can be done using the folding collector and an arbitrary distribBt) we can reconstruct
the behavior of the timed states in the original prodes$lowever, the folding distributor and collec-
tor matrices cannot restore the behavior of the probabilistic states. Remal¢hused the canonical
decompositior{ L, R) of the Cesaro surfl to obtain the translatioM from the unfoldingU. To prop-
erly eliminate the effect of the probabilistic transitions the folding distribdfgrhas to be multiplied
by R to the right, obtaining?y = Uy R, whereas the folding collectdry is multiplied by L to the left
obtainingLy = LVy.

Now, we have all prerequisites to propose a definitiol®gfn), the transition matrix aften time
steps of the discrete-time probabilistic reward gr&ph

Definition 4.7. Let G be a discrete-time probabilistic reward graph, the discrete-time Markowdewa
chainU its unfolding and the discrete-time Markov reward chints translation by unfolding. Let
(L, R) be the canonical decomposition of the transition matrix of probabilistic transitiblisand Uy
andVy the folding distributor and collector matrix. Then,

P(;(n) = RMPM(n)Lm,
whereRy = UyR andLy, = LV, andn € N.
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Notice that the matriceby, and Ry, no longer have the form of a distributor and a collector, unless every
timed transition ofG has a unit duration.

The following theorem gives the relation between the transient and langeward rate of a discrete-
time probabilistic reward graph as induced by Definition 4.7 and the rewéed od its translation by
unfolding. It supports Definition 4.7 and validates the calculatioRgfn).

Theorem 4.1. Let G be a discrete-time Markov reward chain dvidts translation by unfolding. Then
Rg(n) = Rm(n) and RZ = Ry.

Proof:
We haveoy = ogRm andpy = Lvpg, as can be seen from the definitions. By Corollary 4.1 we have
for the long-run probability vectorg thatmg = mw L. We obtain

M = T™pm = TmLmpc = Tepe = RE .
Similarly, for the reward at time step < N we have
Rm(n) = omPm(n)pm = ocUmPMm(n)Vmpe = o6Pg(n)pc = Rg(n) .
This completes the proof. O

We illustrate the above by an example.

Example 4.3. The initial probability and reward vector of the discrete-time probabilistic réwgaaph
depicted in Figure 2 are:

JG:(OO()Ol) pG=<7’1 T2 T3 T4 7’5>T

The folding distributor and collector matrix of the unfolditigin Figure 2b of the discrete-time prob-
abilistic reward graptG in Figure 2a are given by/y and Vy below with the canonical decomposi-
tion (L, R) of the Cesaro sum of the transition matrix of the immediate probabilistic transitions.

10000 10000

1000000 01000 1000000 01000

0100000 00100 0100000 00100

Uy=[(0010000 Ww=|00010 L=]10010000 R:%%OOO.

0001000 00001 0000010 %%000

0000100 10000 0000001 00010

01000 00001

The folding distributor and collector matrices of the translatibdepicted in Figure 2c are given i,

andV); and their adapted versions I, and L\, as follows:

10000 100 10000 10000
01000 010 01000 01000
Ua=100100 "Ww=1001 Ry=]100100 Lmy=100100
00000 100 $3000 10000
00000 010 %%ooo 01000
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The initial probability vectow, the transition matriXPy(3) at time step, and the reward vectgny
are given by

00031 21

3000 ro

om=ochu=(52000) Pu@)=|% L E00[ pu=Lupc=|rs
P10 g

0t 20 ro

For example, the probability transition matrix @fafter1, 2, and3 time units is given by

10000 L2000 s 3000
01000 00100 2000
Pe()=|33100| Ps=|2 3 000| Ps@)=|4 & Lool
33000 1300 12000
8000 % 36 6 00 45000

We can directly check the correspondence with the execution of the wdidoree probabilistic reward
graph depicted in Figure 2. Note that the process never resides in theydistic stateqd and5.

The long-run expected reward rate of the discrete-time probabilistic degraph depicted in Fig-
ure 2a is obtained from the long-run probability vectqy of its translation of Figure 2c. This vector
is

— — 1 3 3 1 3 — (2 6 3
”G—WMLM—(ﬁ i1 1 ﬁ)LM_<ﬁ i1 1 0 0)-
Note that the long-run probability vector & has0s for the places of the probabilistic states. The
long-run expected reward rate Gfis

T 2 6 3
RE =mepe = (% g &0 0) <7"1 T2 T3 T4 7“5) =gttt

It is the same as the long-run probability vectombfi.e.,

T 2 6 3
Ry = mvpm = (ﬁ T & %) (?”1 Ty T3 T1 7"2) = qn et T
The expected reward at time st@fs
1.1 1 5,1 ) 4 )
omPm(3)pm = 6(57’1 + 57“2) + 6(67’1 + 67’2) = §7’1 + §7‘2 = o6Ps(3)pc.

We can visualize the full process of obtaining the performance meadunetistrete-time probabilistic
reward graph by means of translation by unfolding in the left branch inr€igu In the figure we also
depict the relation between the unfolded Markov reward chain and thealrdjscrete-time probabilistic
reward graph.
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Discrete-time
probabilistic reward graph

Transition matrix

by folding Translation
Translation by geometrization
by unfolding
Discrete-time Discrete-time
Markov reward chain Markov reward chain
Transient analysis Long-run analysis Long-run analysis
Transient metrics Long-run metrics

Figure 3. Performance measuring for discrete-time prdiséibireward graphs

The analysis of a discrete-time probabilistic reward graph by its translatiodisor@te-time Markov
reward chain using the approach described above introduces exéstsia are required for the unfold-
ing of the timed transitions. In the following section we give a brief overviearobptimized translation
tailored for long-run analysis only.

Optimization by geometrization As discussed above the unfolding may have, in general, substan-
tially more states than the original discrete-time probabilistic reward grapkeag delay of duratiom
introducesn — 1 new states. To optimize the computation of long-run measures, a ‘geometrizdtion
time delays is proposed in [42] to obtain a discrete-time Markov reward cligat most, the size of

the original graph. The main idea is to replace discrete delays by geometdisatiputed ones with the
same mean instead of unfolding them.

The geometrization of a timed transition @replaces the timed transition— s’ in G by two
transitionss—%s’ ands"—X"s. This transformation induces a geometric sojourn time in the state with
mean equal to the duration of the timed transition. As before, to obtain the fswaetk-time Markov
reward chain it is required to eliminate the probabilistic transitions. However tridinslation is not
adequate for transient analysis as it does not truthfully depict the semantic Still, it was shown
that the long-run expected reward of the discrete-time Markov rewaiti€lobtained by translating the
same discrete-time probabilistic reward graph by unfolding and geometrizsition same.

As an example, consider again the discrete-time probabilistic reward graphHigure 2a. The
discrete-time Markov reward chain in Figure 2d depicts its geometrization. tréhelation by ge-
ometrization is depicted by the right branch in Figure 3. The following thedrem [42] states that
the two translations indeed commute, i.e., they give rise to discrete-time Marskavdrehains with the
same long-run performance measure.

Theorem 4.2. Let G be a discrete-time probabilistic reward graph, its translation by unfolding, and
M its translation by geometrization. Thétf; = Ry, .
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5. The Concurrent Alternating Bit Protocol

In this section, we specify the concurrent alternating bit protocol botheipthcess theory CP%* and

in the specification language Our case study of the concurrent alternating bit protocol combines the
process-algebraic setup of Section 2 and Section 3, on the one hahtheaperformance evaluation
framework of Section 4, on the other. By restricting to deterministic timed delagsshow how to
analytically obtain transient performance measures. For the rest, watakptete-event simulation

in . For comparison purposes, we perform Markovian analysis usingtanson of they toolset by
turning all delays into exponential ones with mean values equal to the duddtibe timed delays.

Protocol description The concurrent alternating bit protocol is used for communicating data alon
an unreliable channel with a guarantee that no information is lost relyingteamsmission of data. An
overview of the concurrent alternating bit protocol is depicted in Figure 4

sender ( c1, c3, c8: chan ) =

44£4><:>4ii4>[]§:}—£—><:>4—%—> | [ altbit: bool = false, data: nat, ack: bool,

tp: nat = 1, ts: nat = 10
8 5 | cl?data; delay tp; c3!<data,altbit>;
( delay ts; c3!<data,altbit> |
@@ c87ack; altbit := not altbit:
cl?data; delay tp; c3!<data,altbit>
)*; deadlock
11

Figure 4. Scheme of the concurrent alternat-

. . Fi . Th i
ing bit protocol igure 5 e sender processyn

The arrival process sends the data at pdd the sender process The sender adds an alternating
bit to the data and sends the package to recddeia the channeK using port3. It keeps re-sending
the same package with a fixed timeout, waiting for the acknowledgement thattthkak been correctly
received. The channdl has some probability of failure and it transfers the data with a generally-
distributed delay to the pod. If the data is successfully received B then it is unpacked and the
data is sent to the exit process via pRrt The alternating bit is sent as an acknowledgement back to
the sender using the acknowledgement serderThe receivelR communicates withd.S using ports.

The acknowledgement is sent via the unreliable chafnasing port6. Similarly to .S, the acknow-
ledgement process re-sends data after a fixed timeout. The acknomiemlgis communicated to the
acknowledgement receiver proce$®. If the received acknowledgement is the one expected, #7en
informs the sende$ that it can start with the transmission of the next data package.

Process-algebraic specification We can specify, in the setup of Section 2 and 3, the concurrent alter-
nating bit protocol as below for a data 9t Recall that the process theory does not contain an explicit
probabilistic choice operator. To specify probabilistic behavior of thachlk we introduce timeouts to
the channelds and L with durationt;, andt,, respectively. Thus, the messages are sent via the chan-
nels K and L before the timeout expires with a delay distributed according to the conditiandbm
variables( X | X < t;)and(Y |Y < t;), respectively, or they get lost with probability— F x (¢),

and1 — Fy(t,), respectively. Notably, to eliminate a possible nondeterministic choice in the tiraéou
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the channels (between two transitions labeled, lsge specification & and L), it must be the case that
P(X =t;)=0andP(Y =t,) = 0. The concurrent alternating bit protocol is specified as

CABP=0;(0u(S || K| R| AS || L[| AR))
with
S =S, Sy = > gep r1(d).o'.s5(d, b). Ty, Typ = 0's.55(d,b). Typ + rg(ack).S1-
K =3 cepxqory rs(€)-0i([X].i.s4(e). K + o'ki. K)
R = Ry, Ry =Y 4ep rald,b).o'.s5(ack).so(d).Ri-b + Y yep 74(d,1-b).Ry
AS = ASy, ASyy = r5(ack).sg(1-b).AS1-p + ola.s4(b). AS),
L=3peqo1y r5(b)0i([Y]-is6(b).L + o'i.L)
AR = ARy, ARy = 1r7(b).sg(ack). AR1-p + r7(1-b). ARy,

where the recursion variables are parameterized &yD andb € {0, 1},

I = {ri(d),sa(d)|de D} U{ecs(d,b),ca(d,b) | be {0,1},de D} U
{ce(b),c7(b) | be{0,1} } U{es(ack), cs(ack) }, and

H = {s3(d,b),s4(d,b),r3(d,b),r4(d,b) | b€ {0,1},d € D} U
{re(b),r7(b), s(b), s7(b) | b€ {0,1} } U {rs(ack),rs(ack), ss(ack), ss(ack) }.

The deterministic timed delays with duration ¢, tx, ¢, t,, andt, represent the processing time of the
sender, the timeout of the sender, the timeout of the data channel, thegingcéme of the receiver, the
timeout of the acknowledgement sender, and the timeout of the acknowledgehannel. The internal
actioni enables the probabilistic choices induced by the timeouts as discussed above

Specification and analysis iny ~ We illustrate some features of the languagdéy discussing the
x specification of the sender process given in Figure 5. It is based aethion of timedy of [11].

The processender communicates with the other processes via three chaneels:3,c8 (see
Figure 4). The alternating bit is defined as a boolean variable and theadataassumed to be the set
of natural numbers. The sender waits for an arrival of a new data atemvhich it packs intp time
units. Afterwards, a frame with the data and the alternating bit is sent viaehe® Here, the process
enters the iterative construct represented by. ) * and it either resubmits the data everytime units
or it waits for an acknowledgement at chananelfrom the acknowledgement receiver process. If the
acknowledgement is received before the timeout expires, the proipssth# alternating bit, packs the
new data intp time units, and sends it again via chann@! Note that in the example, the processing
time tp = 1 and the timeouts = 10 time units.

The standard semantics of (discrete-eveny in terms of timed transition systems [8, 4]. The main
idea underlying the construction of a discrete-time probabilistic rewarchdrap a timed transition
system, as proposed here, is to hide all actions, i.e., to rename them to tie spemal actionr,
and then use the concept of timed branching bisimulation [3, 41] to redusysbem while abstracting
from its internal transitions. If there is no real nondeterminism in the model, altiraasition system
without any action labeled transition is obtained, i.e., a discrete-time probabibstard graph with-
out probabilistic transitions. If there is one or more nondeterministic transitfgrithen the system is
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underspecified. In that case, the resolution of the remaining nondeteimatisices depends on the
environment, so its performance cannot be measured in the standarétiais point, one can either
revise the model to resolve the issue of underspecification or turn torpenfice analysis of processes
comprising nondeterministic choices like the theory of Markov decision pease[28]. However, there
the goal is to find an optimal scheduler for the nondeterministic transitions ar tmchchieve a given
goal, a topic which is beyond the scope of this paper.

Sincey has no features to model probabilistic choice, the random behavior oatheadd acknow-
ledgement channel is modeledyrby a nondeterministic choice. When the corresponding discrete-time
probabilistic reward graph is generated from hmodel these nondeterministic choices must be appro-
priately replaced by probabilistic ones. For this we slightly adjust the methsxtided in the previous
paragraph. Instead of hiding all actions, the special actions used tatagimbabilistic branching re-
main visible. After the minimization, the probabilities that were intentionally left ogifpart as labels on
the nondeterministic transitions, see Figure 6 below. Again, if there is stilletendinism remaining
in the model, we cannot proceed the performance analysis. Note thatgitttmumethod is not always
sound (in case of multiple probabilistic transitions leaving from the same statejemgiests manip-
ulation on the resulting graph, it serves its purpose for this and similar exam@lecourse, another
approach is to exteng with an explicit probabilistic choice operator (e.g., the one in [24]). Howeve
this requires drastic changes of the language and tools, and as ssdbhegoad the scope of this paper.
Notably, the framework makes use of probabilistic choices, but only forlation purposes.

The standardy language does not directly support reward specification either. Weatzkailar
approach as for the absence of a probabilistic choice, and add selanganipulating thg specification
(again side-stepping changesy, see Figure 6 below. We add, for each reward criterion, an ever
repeating parallel component to the specification. The resultis that in thettiamsition system yielded,
every state has a self-loop labeled by a special action denoting the natauaf the state. These actions
will are not hidden by branching bisimulation reduction. As in the case foptbbabilistic choice, a
systematic technique rendering the above can in principle be incorporétetiéry environment.

Reward Probabilities
Process
X \L Timed transition Minimized timed \L Discrete-time
specification system branchi transition system probabilistic
(with hiding) state space | (irelevant actions are 's) yranciing (no ‘s left) direct insertion | reward graph
generation bisimulation

reduction

Figure 6. Generation of a discrete-time probabilistic nelgraph from ay specification

The complete pipeline of generating discrete-time probabilistic reward gfegrhsy specifications
is illustrated in Figure 6. Currently, we employ scripts tweaked intotle@vironment that insert prob-
abilities and rewards, in order to automatically produce the desired disoretgsrobabilistic reward
graph from a givery specification.
Measuring utilization of the data channel K If we assume that the distributions of the channels
in the concurrent alternating bit protocol are deterministic, then we camalgaunderlying discrete-
time probabilistic reward graph as a performance model, and subsequaltiljate its performance
measures. First, we give in Figure 7, the long-run utilization of the dateneh&n We assume thaf, =
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t, =1,ts = t, = 10, t, = 6, t, = 2, that the distribution of the delay of the chan#élis deterministic
ate, i.e.,P(X=6) = 1, and that the distribution of the delay of the chanhé$ deterministic a2, i.e.,
P(Y=2) = 1. To obtain the utilization of the data channel, we place rewafor every state in the
unfolding of the timed delays with duratiah which is the delay of the data chand€l We note that,
although the surface is smooth in the long-run analysis, if we observe thatiifiat time step00, we
see that the transient measure is not at all stable as depicted in Figure 8.

Remark 5.1. We can easily compute the utilization in the extremes for the stationary analysid wh
further validates the model. If the unreliability of any channdl,ismeaning that no message is actually
sent correctly, then everi0 time units the sender re-sends the message via chahnehich lasts6
time units, resulting in utilization dd.6. In case both channels are completely reliable, one neddse
unit to prepare the message, anothidme units to send it via channél, and2 time units to send the
acknowledgement. This amounts to sending a message ®tiemg units, i.e., utilization og ~ 0.67.

0.0 N 0.0
Unreliability channel L

Unreliability channel L

2 Utilization
Utilization 0-64 ; 06
- c . of chan. K
0.4

0.5 0.5
Unreliability channel K 0.0 Unreliability channel K 00
Figure 7. Long-run utilization of the data chandél Figure 8. Ultilization of the channét at time200

When the channels are generally-distributed we resort to discreté-swauiiation iny for perfor-
mance analysis. Figure 9 gives the utilization of the data chaknelhen the distribution of the delay of
the data channel is uniform betwe2and10 and the distribution of the delay of the acknowledgement
channelis uniform betweenand4. Thus, the uniform distributions of the data and the acknowledgement

channels have the mean values of déland2, respectively, as in the deterministic case.

0.0

0.0
Unreliability channel L Unreliability channel L

0.5

Utilization 0.6
| of chan. K .

0.65 "
: P /J 0.5 FC - e

0.60 - ) 04 < )
1.0

Utilization g 70
of chan. K

0.5

Unreliability channel K 0.0 Unreliability channel K 00

Figure 9. Utilization of the data channé&l at time  Figure 10. Utilization of the data channkl at time
step200 with uniformly distributed delays step200 with exponentially distributed delays
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For comparison, we also performed Markovian analysis, again by uscgete event simulation,
and the result is depicted in Figure 10. The exponential delays werertlbthe same mean values as
the corresponding delays in the deterministic case.

0.8 o
M| - ff
0.6 % LB o K @ R
G w o0 © o o
s o)
= 0.4f %
S X DTPRG at 200
g | A DTPRG long—run
= 0-2f O Simulation X
= L O Markovian analysis

0.07\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.0 0.2 04 0.6 0.8 1.0

Unreliability of channel K
Figure 11. Utilization of the channél at time200 for unreliability 0.5 of the channell

To give a flavor of the results, we discuss the dependence of the utilizitibe channel on the
unreliability of the channek’ at time ste200 in Figure 11 for each approach. Note, the unreliability of
the acknowledgement channklis fixed t00.5. One sees that the long-run analysis using discrete-time
probabilistic reward graphs is close to the simulation results for the unifornthjtited channels. This
is to be expected because they have the same mean value. The Markeaisardways underestimates
the performance because the expected value of the maximum of two exipbdetays is greater than
maximum of the expected values of both delays. This slightly increases thegaveycle length of
the system in the following way. When considering the maximum of two deterministays, then
this is the greater of the two delays. However, when doing the same fonerpal distributions, the
maximum always overestimates the greater exponential delay. This hapipemsonsidering the sender
process timeouts, which in effect results in greater timeout in sending thegeessd, therefore, a lower
utilization of the data channel.

6. Conclusion

We proposed a performance evaluation framework that is based ogespriheory that enables specifi-
cation of distributed systems with discrete timed and stochastic delays. Thespitbeory axiomatizes
sequential processes comprising termination, immediate actions, and timed idedasacing context.
By construction, the theory conservatively extends standard timedgsradgebras of [4]. We provided
expansion laws for the parallel composition and the maximal progresstopevée derived delayable
action and stochastic delay using timed delay prefixes and guardediveapscifications. Using the
formalism, theG/G/1/00 queue was handled quite conveniently.

For performance evaluation of the process terms we relied on the envinbifnhe language,
employing discrete-event simulation in the case of generally-distributedsdeldg augmented the-
environment to cater for transient performance analysis of systemstedpitrobabilistic timed behav-
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ior, in addition to existing long-run analysis. The extension was suppoytedniodel termed discrete-
time probabilistic reward graph, comprising immediate probabilistic choices aadhaistic delays.

We gave transient analysis of these models by translating them to discrete-tirkeMMeward chains.
We also provided a backward translation, relating the original procese tobtiained Markov process,
by calculating the transition matrix of the discrete-time probabilistic reward graph

As a case study, we modeled the a variant of the concurrent alternatipgtaitol with generally-
distributed unreliable channels both in the process theory as well as in ¢b#icgtion language,.
We analyzed the protocol in the toolset by using discrete-event simulation when the channels were
generally distributed. By restricting to deterministic delays, we were able tgzntne protocol ana-
Iytically in the proposed framework of discrete-time probabilistic reward lggapinally, we performed
Markovian analysis by restricting to exponential delays and we compaeek#lts of the respective
analysis.

As future work, we plan to introduce the hiding operator that producesatéransitions and to
develop a notion of branching or weak bisimulation in that setting. This sh@vid {he way for bigger
case studies on Internet protocol verification and analysis as detaifedpance specification becomes
viable by using both generally-distributed stochastic delays and standaaliten&Ve can also exploit
existing real-time specification as the theory is sufficiently flexible to allow eidaref real-time with
stochastic time while retaining any imposed ordering of the original delays.
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