
Fundamenta Informaticae XX (2009) 1–29 1

IOS Press

Performance Evaluation of Distributed Systems Based on
a Discrete Real- and Stochastic-Time Process Algebra

J. Markovski and E.P. de Vink

Formal Methods Group, Department of Mathematics and Computer Science

Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

tel: +31 40 247 3360, fax: +31 40 247 5361

j.markovski@tue.nl, evink@win.tue.nl

Abstract. We present a process-algebraic framework for performance evaluation of discrete-time
discrete-event systems. The modeling of the system builds on a process algebra with conditionally-
distributed discrete-time delays and generally-distributed stochastic delays. In the general case, the
performance analysis is done with the toolset of the modeling languageχ by means of discrete-event
simulation. The process-algebraic setting allows for expansion laws for the parallel composition and
the maximal progress operator, so one can directly manipulate the process terms and transform
the specification in a required form. This approach is illustrated by specifying and solving the
recursive specification of theG/G/1/∞ queue, as well as by specifying a variant of the concurrent
alternating bit protocol with generally-distributed unreliable channels. In a specific situation when
all delays are assumed deterministic, we turn to performance analysis of probabilistic timed systems.
This work employs discrete-time probabilistic reward graphs, which comprise deterministic delays
and immediate probabilistic choices. Here, we extend previous investigations on the topic, which
only touched long-run analysis, to tackle transient analysis as well. The theoretical results obtained
allow us to extend theχ-toolset. For illustrative purposes, we analyze the concurrent alternating bit
protocol in the extended environment of theχ-toolset using discrete-event simulation for generally-
distributed channels, the developed analytical method fordeterministic channels, and Markovian
analysis for exponentially-distributed delays.

1. Introduction

Over the past decade stochastic process algebras have emerged as compositional modeling formalisms
for systems that not only require functional verification, but performance analysis as well. Many Marko-
vian process algebras are developed like EMPA [9], PEPA [27], IMC [25], etc. exploiting the memoryless

Address for correspondence: J. Markovski, TU/e, P.O. Box 513,5600 MB, Eindhoven, The Netherlands

2 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

property of the exponential distribution. Before long, the need for general distributions arose, as expo-
nential delays are not sufficient to model, for example, fixed timeouts of Internet protocols or heavy-tail
distributions present in media streaming services. Prominent stochastic process algebras and calculi with
general distributions include TIPP [26], GSMPA [13], SPADES [20], IGSMP [12], NMSPA [31], and
MODEST [10].

Despite the greater expressiveness, compositional modeling with generaldistributions proved to be
challenging, as the memoryless property cannot be relied on [29, 14]. Typically, the underlying perfor-
mance model is a generalized semi-Markov process that exploits clocks to memorize past behavior in
order to retain the Markov property of history independence [23]. Similarly, the semantics of stochastic
process algebras is given using clocks that represent the stochastic delays at the symbolic level. Such a
symbolic representation allows for the manipulation of finite structures, e.g., stochastic automata or ex-
tensions of generalized semi-Markov processes. The concrete execution model is subsequently obtained
by sampling the clocks, frequently yielding infinite probabilistic timed transition systems.

For the sampling of the clock two execution policies can be adopted: (1) racecondition [26, 20, 31,
10], which enables the action transitions guarded by the clocks that expirefirst, and (2) pre-selection
policy [13, 12], which preselects the clocks by a probabilistic choice. To keep track of past behavior,
the clock samples have to be updated after each stochastic delay transition. One can do this in two
equivalent ways: (1) by keeping track of residual lifetimes [20, 10], i.e., the time left up to expiration,
or (2) by keeping track of the spent lifetimes [26, 13, 12, 31], i.e., the time passed since activation. The
former manner is more suitable for discrete-event simulation, whereas the latter is acknowledged for its
correspondence to real-time semantics [29, 14].

In this paper we consider the race condition with spent-lifetime semantics. However, we do not use
clocks to implement the race condition and to determine the winning stochastic delay(s) of the race.
Rather, we rely on an interpretation that uses conditional random variables and makes a probabilistic
assumption on the winners followed by conditioning of the distributions of the losers on the time spent
for the winning samples [28]. Thus, we no longer speak of clocks as we do not keep track of sample
lifetimes, but we only cater for the ages of the conditional distributions [35].We refer to the samples as
stochastic delays, a naming resembling standard timed delays.

The relation between real and stochastic time has been studied in various settings: a structural trans-
lation from stochastic to timed automata with deadlines is given in [19]. This approach found its way
into MODEST, where timed automata with deadlines are merged with stochastic automata in so-called
stochastic timed automata as a means to introduce real and stochastic time as separate constructs. Also, a
translation from IGSMP into pure real-time models called interactive timed automata isreported in [12].
The interplay between standard timed delays and discrete stochastic delays has been studied in [34, 35].
An axiomatization for a process algebra that embeds real-time delays with so-called context-sensitive
interpolation into a restricted form of discrete stochastic time is given in [35].

The paper presents a performance evaluation framework based on process algebraic specifications
and their analysis in an extended environment of theχ-toolset [8, 38]. The contribution of the paper is
twofold. As a first contribution, a sound and ground-complete process algebra is provided that accom-
modates timed delays in a racing context, extending the work of [34, 35]. Thetheory provides an explicit
maximal progress operator and a non-trivial expansion law for the parallel composition. Differently
from other approaches, we derive stochastic delays as time-delayed processes with explicit information
about the winners and the losers that induced the delay. We represent standard real-time as stochastic
time inducing a trivial race condition in which the shortest sample is always exhibited by the same set

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 3

of delays and moreover has a fixed duration. The algebra also providesthe possibility of specifying a
partial race of stochastic delays, e.g., that one delay has always a shorter, equal, or longer sample than
the other delay. This is required when modeling timed systems whose correct behavior depends on the
relative ordering of the timed delays, e.g., in a time dependent controller. When the timed delays are
simply replaced by stochastic delays, the total order of the samples is, in general, lost, unless it can be
specified which delays are the winners or losers of the imposed race.

We illustrate the process theory by revisiting theG/G/1/∞ queue from [34], treating it more ele-
gantly now and providing a solution for the recursive specification by manipulating process terms using
the proposed axiomatization. We also specify a variant of the concurrentalternating bit protocol that has
fixed timeouts (represented by timed delays) and faulty generally-distributedchannels (represented by
stochastic delays), stressing the interplay of real-time and stochastic time.

Our second contribution concerns automated performance analysis. It iswell known that only a small
number of restricted classes of models of general distributions are analytically solvable. Preliminary
research on model checking of stochastic automata is reported in [15] anda proposal for model checking
probabilistic timed systems is given in [39]. However, at the moment, performance analysts turn to
discrete-event simulation when it comes to analyzing models with generally-distributed delays. For
analysis of the concurrent alternating bit protocol we depend on the toolset of theχ-language [8, 38, 11,
2]. At the start,χ was used to model discrete-event systems only, not supported by an explicit semantics.
However, recently, it has been turned into a formal specification language set up as a hybrid process
algebra with data [8, 38].

The connection between the timed discrete-event subset ofχ and standard timed process algebras
in vein of [4] is straightforward. In [42], a proposal was given to extend χ with a probabilistic choice
to enable long-run performance analysis of probabilistic timed specifications. Here, we rely on this ex-
tension to provide a connection with the stochastic part of our process algebra as well. At this point,
the co-existence of real and stochastic time in the same model plays a crucial role, which underlines the
key position of the process algebra in the framework. The performance model is termed discrete-time
probabilistic reward graph and it comprises deterministic delays and immediate probabilistic choices. It
is suitable as an underlying performance model for stochastic delays with finite support set as used in the
case study (even though the theory does not have such a limitation). In [42], discrete-time probabilistic
reward graphs were employed for long-run analysis of industrial systems. Here, we extend the perfor-
mance evaluation framework of [42] to cater for transient analysis as well.We accordingly augment the
χ-toolset and apply it to the concurrent alternating bit protocol. The case study illustrates the new ap-
proach when the channel distributions are deterministic. Finally, we comparethe analytical results with
the ones obtained from discrete-event simulation and Markovian analysis using the same specification
in χ. We visualize the proposed framework in Figure 1. We note that we rely on the CADP toolset [21]
as a solver for the underlying/intermediate Markov reward processes.

The rest of this paper is organized as follows: Section 2 discusses background material and design
choices. Section 3 introduces the process theory and revisits theG/G/1/∞ queue example. Section 4
discusses transient analysis of discrete-time probabilistic reward graph inthe performance evaluation
framework. Section 5 analyzes the concurrent alternating bit protocol protocol and discusses its specifi-
cation in the proposed process algebra and the languageχ. Section 6 wraps up with concluding remarks.
Due to substantial technical overhead, we do not give the operational semantics of the process-algebraic
theory here. Instead, we focus on the axiomatization to illustrate its suitability forprotocol specification.
The complete structural operational semantics and formal treatment of the theory are available in [32].

4 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

Manipulation of processes with

discrete timed and generally-

distributed stochastic delays:

Process algebra TCPdst

Performance evaluation of

generally-distributed

processes:

Chi-simulator

Performance evaluation of

probabilistic timed processes:

Timed Chi to Discrete-time

probabilistic reward graphs +

CADP toolset

Performance evaluation of

geometrically/ exponentially-

distributed processes:

Markovian extension of Chi

Figure 1. The proposed process-algebraic performance evaluation framework

2. Timed and Stochastic Delays

In this section we introduce a number of notions in process theory that are used below. We refer the
interested reader for more technical detail to [32].

Preliminaries We use discrete random variables to represent durations of stochastic delays. The
set of discrete distribution functionsF such thatF(n)=0 for n ≤ 0 is denoted byF ; the set of the
corresponding random variables byV. We useX, Y , andZ to range overV andFX , FY andFZ for
their respective distribution functions. Also,W , L, V , andD range over2V . Given a setA, by An we
denote vectors of sizen ∈ N and byAm×n matrices withm rows andn columns with elements inA.
By 0 and1 we denote vectors that consist of0s and1s.

Racing stochastic delays A stochastic delay is a timed delay of a duration guided by a random
variable. We observe simultaneous passage of time for a number of stochastic delays until one or some
of them expire. This phenomenon is referred to as therace conditionand the setting as therace. For
multiple racing stochastic delays, different stochastic delays may be observed simultaneously as being
the shortest. The ones that have the shortest duration are called thewinnersand the others are referred
to as thelosers. The outcome of a race is completely determined by the winners and the losers and their
distributions. So, we can explicitly represent the outcome of the race by a pair of setsW, L of stochastic
delays. We write[WL] in caseW is the set of winners andL is the set of losers. We have occasion to
write [W] instead of[W∅] and omit the set brackets when clear from the context. Thus,[X] represents a
stochastic delay guided by the random variableX.

To express a race, we will use the operator+ . So, [X] + [Y] represents the race between the
stochastic delaysX andY . There are three possible outcomes of this race: (1)[XY], (2) [X, Y

∅], and (3)[YX].
Thus, we can also write[XY] + [X, Y

∅] + [YX] instead of[X] + [Y], as both expressions represent the same
final outcomes of a race. If an additional racing delayZ is added, this also leads to equal outcomes, i.e.,
[X] + [Y] + [Z] and[XY] + [X, Y

∅] + [YX] + [Z] will yield the same behaviour. For example, the outcome of
[XY] + [Z] is either (1)[Z

X, Y], (2) [X, Z
Y], or (3) [X

Y, Z]. As outcomes of races may be involved in other races,
we generalize the notion of a stochastic delay and refer to an arbitrary outcome[WL] as a stochastic delay
induced by the winnersW and the losersL, or byW andL for short. Here, we decide not to dwell on

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 5

the formal semantics because of a substantial technical overhead to formalize the notion of dependencies
of losers on the samples of the winners. The basis for the semantics is givenin [34, 35] and subsequently
extended in [32] to allow the explicit specification of the winners and the losers of a race.

To summarize, there are three possible combinations that give the relation between the winners and
the losers: (1)L1 ∩ W2 6= ∅, which means that the race must be won byW1 and lost byL1 ∪ W2 ∪ L2,
(2) W1 ∩ W2 6= ∅, which means that the race must be won byW1 ∪ W2 together and lost byL1 ∪ L2,
and (3)W1 ∩L2 6= ∅, which means that the race must be wonW2 and lost byW1 ∪L1 ∪L2. Obviously,
these ‘restrictions’ are disjoint and cannot be applied together. If more than one restriction holds, then
they lead to ill-defined outcomes. For example, if both (1) and (2) hold at the same time, thenL1 andW2

must exhibit the same sample and alsoW1 andW2 must exhibit the same sample. ThenW1 andL1 must
exhibit the same sample, which is a contradiction.

If at least two restrictions apply, then the outcomes cannot be combined as they represent disjoint
events. In this case we say the race between the delays[W1

L1
] and [W2

L2
] with W1 ∪ L1 = W2 ∪ L2, is

resolved. The extra condition ensures that the outcomes stem from the same race, i.e,they have the same
racing delays. For example,[XY] and[Y, Z

X] cannot form a joint outcome. The delays do not stem from the
same race, which renders their combination inconsistent. Resolved races play an important role as they
enumerate every possible outcome of the race. We define a predicaterr([W1

L1
], [W2

L2
]) that checks whether

two delays[W1
L1

] and[W2
L2

] are in a resolved race. It is satisfied ifW1∪L1 = W2∪L2 and at least two of the
following three restrictions from above hold: (1)L1 ∩W2 6= ∅, (2) W1 ∩W2 6= ∅, and (3)W1 ∩L2 6= ∅.

Naming of stochastic delays Consider the process term[X].p1‖[X].p2, where[X]. denotes stochastic
delay prefixing, ‖ denotes the parallel composition, andp1 andp2 are arbitrary process terms. We note
that the alternative and the parallel composition impose the same race condition.In a standard way, the
race is performed on two stochastic delays with the same distributionFX ∈ F . However, both delays
will not necessarily exhibit the same sample, unlessFX is Dirac. Intuitively, the process given by the
above term is equivalent to process given by[X].p1 ‖ [Y].p2 with FX = FY leading to three possible
outcomes.

However, in real-time semantics, timed delays (denoted byσn for a durationn ∈ N) with the same
duration are merged together. For example,σm.p1 ‖ σm.p2 is equivalent toσm.(p1 ‖ p2). This parallel
composition represents components that should delay together. Note that thisis not obtained above in
the stochastic setting. Previous investigation in this matter [34, 35, 32] points outthat both dependent
and independent stochastic delays are indispensable. The former enable an expansion law for the parallel
composition; the latter support compositional modeling.

Dependent stochastic delays always exhibit the same duration in the same race when guided by the
same random variable. In contrast, independent stochastic delays with thesame name have the same
distribution, but not necessarily the same duration. As an example,[X, Y

Z] + [XU] is the same race as[X, Y
Z, U]

if we treatX as a dependent stochastic delay, whereas[XZ] + [X] = [X
Z, Y] + [X, Y

Z] + [Y
X, Z], provided that

FX = FY , whenX is treated as an independent one.
We introduce an operator to specify dependent delays, denoted by| |

D
, in which scope the stochastic

delays inD are treated as dependent. Thus, in the previous example,|[X, Y
Z]|

X
denotes thatX is a

dependent stochastic delay, butY and Z are independent. By default, every delay is considered as
dependent. Hence,[WL] actually means|[WL]|

W∪L
. Multiple scope operators intersect and, e.g.,||[XY]|

X
|
Y

denotes the independent delay[XY] because{X} ∩ {Y } = ∅.
The dependence scope plays an important role in giving operational semantics to the terms. Recall

6 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

that the stochastic delay prefix[WL].p denotes an outcome of a race between the stochastic delays inW∪L,
where the winners are given byW and the losers are given byL. Moreover, it denotes that there was
passage of time for the losing delays inL that may continue to persist inp. This means that the losers do
not have their original distribution in the resulting processp and that their distributions must be ‘aged’ by
the duration of the sample exhibited by the winnersW . Therefore, the names of the losing delays must
be protected inp, i.e., they become dependent. This is achieved by writing|p|

L
as the remaining term

after the expiration of the delay given by[WL]. Thus,[WL].p is actually equivalent to[WL].|p|
L

as only the
names inL must be preserved inp. Consequently, the stochastic delays not inL become independent.
To support this interpretation of process terms, the stochastic delays that are not encompassed by any
dependence scope are considered as dependent, i.e.,[WL].p is equivalent to|[WL].p|

W∪L
.

Timed delays in a racing context We first give an example of an execution of a stochastic delay.
Suppose thatX is a random variable such thatP(X=1) = 1

2 andP(X=2), P(X=4), P(X=5) = 1
6 .

We observe what happens after1 unit of time. Then, either the stochastic delay expires with probabil-
ity 1

2 or it is aged by1 time unit and it allows a passage of time as the random variableX ′, where
P(X ′=1), P(X ′=3), P(X ′=4) = 1

3 . After one more time unit, the delay can either expire with proba-
bility that X did not expire in the first time unit multiplied by the probability thatX ′ expired in the first
time unit, i.e.,P(X > 1) ·P(X ′=1) = 1

2 ·
1
3 = 1

6 = P(X=2). We can proceed in the same fashion until
we reach5 time units with probability1

6 .
Although being a simple exercise in probability, the example illustrates how to symbolically derive

a stochastic delay using a timed delay of one unit of time. We denote byσX

∅
the event where the delay

expires in one time unit, i.e., the stochastic delayX wins a race in combination with a unit timed delay
and there are no losers. Byσ∅

X
, we denote the event where the delay does not expire in one time unit, i.e.,

the stochastic delayX loses the race to a unit time delay and there are no additional winners. Then,at
each point in time we have two possibilities: either the delay expires, or it does not expire and it is aged by
one time unit. Intuitively, a stochastic delay prefix[X].p can then be specified as[X].p = σX

∅
.p+σ∅

X
.[X].p

for a given process termp. Note that the race ofσX

∅
andσ∅

X
is resolved. In a generalized context, following

the same reasoning, we specify a stochastic delay prefix[WL].p as

[WL].p = σW

L
.p + σ∅

W∪L
.[WL] .p .

Here,σW

L
denotes the stochastic delays inW to be winning after one time unit delay with the stochastic

delays inL losing. We will refer toσW

L
as a timed delay in a racing context, or simply timed delay for

short. Note that timed delays impose the same race condition as racing stochasticdelays specified in
their context. It turns out that in the process theory, it is sufficient to work only with timed delays and
retrieve stochastic delays via guarded recursive specifications. We note that a timed delay of one time
unit can be specified asσ∅

∅
. We omit the empty sets when clear from the context and we also writeσn

for n ≥ 1 subsequent timed delays. We have to extend the resolved races condition tocover the situation
when the set of winners is empty. So, we define thatrr(σW1

L1
, σW2

L2
) holds if rr([W1

L1
], [W2

L2
]) holds, orW1 = ∅

andW2 ∩ L1 6= ∅, or W2 = ∅ andW1 ∩ L2 6= ∅.

Design choices The processes specified in our theory can perform timed delays, but can perform
immediate actions as well, i.e., actions that do not allow any passage of time and canimmediately
(successfully) terminate. The choice between several actions is nondeterministic and depends on the
environment as in standard process algebra. We favor time-determinism, i.e.,the principle that passage
of time alone cannot make a choice [4]. Also, we favor weak choice between immediate actions and

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 7

passage of time, i.e., we impose a nondeterministic choice on the immediate actions andthe passage of
time in the vein of the timed process algebras of [4]. To support maximal progress, i.e., to prioritize
immediate actions over passage of time, we include a maximal progress operatorin the theory together
with encapsulation of actions, thereby disabling undesired actions. We derive delayable actions, similarly
to stochastic delays, as recursive processes that can perform an immediate action at any point in time.

These design choices stem from timed process theory [4] as we aim to accomplish stochastic-time
process theory as a conservative extension of real-time process theory. The conservative extension is an
important prerequisite for co-existence of real- and stochastic-time delaysas, otherwise, one must intro-
duce them as separate constructs, e.g., similarly to the approach taken in MODEST with the introduction
of stochastic timed automata [10].

3. Process Theory

In this section we introduce the process theoryTCPdst of communicating processes with discrete real
and stochastic time for race-complete process specifications that induce races with all possible outcomes.
We refer the reader to [34, 35, 32] for the formal semantics. Here, we give several examples to guide the
reader’s intuition. To illustrate the theory we give theG/G/1/∞ queue example.

Signature We continue by introducing the signature of the process theoryTCPdst. The deadlocked
process is denoted byδ; successful termination byǫ. Action prefixing is a unary operator schemea. ,
for everya ∈ A, whereA is the set of all possible actions. Similarly, timed delay prefixing is of the
form σW

L
. for W, L ⊆ V disjoint. The dependent delays scope operator scheme is given by| |

D
, for

D ⊆ V. The encapsulation operator scheme∂H() for H ⊆ A suppresses the actions inH, whereas
the maximal time progress operator schemeθH() gives priority to the actions inH ⊆ A over passage
of time. The alternative composition is given by+ , at the same time representing a nondeterministic
choice between actions and termination, a weak choice between action and timeddelays and a race
condition for the timed delays. Parallel composition is given by‖ . It allows passage of time only if
both components do so. Finally, we introduce guarded recursive variables as constantsR ∈ R.

The signature ofTCPdst is given by

P ::= δ | ǫ | a.P | σW

L
.P | |P |

D
| ∂H(P) | θI(P) | P + P | P ‖ P | R,

wherea ∈ A, W, L, D ⊆ V with W ∩ L = ∅, H, I ⊆ A, andR ∈ R. We writeC for the closed terms.

Dependent and independent delays Before we present the process theory itself, we need some
auxiliary operations to extract dependent and independent stochastic delays. ByD(p) we denote the
set of dependent delays of the termp ∈ C, by I(p,V) (I(p) for short) its set of independent delays. The
racing delays of a term are denoted byR(p) = D(p) ∪ I(p). The functionsD(p) andI(p) are given by

D(ǫ) = D(δ) = D(a.p) = ∅, D(|p|
D

) = D(p) ∩ D, D(σW

L
.p) = W ∪ L,

D(∂H(p)) = D(θH(p)) = D(p), D(p1 + p2) = D(p1 ‖ p2) = D(p1) ∪ D(p2);

I(ǫ, D) = I(δ, D) = I(a.p, D) = ∅, I(σW

L
.p, D) = (W ∪ L) \ D, I(|p|

D
, D′) = I(p, D ∩ D′),

I(∂H(p), D) = I(θH(p), D) = I(p, D), I(p1 + p2, D) = I(p1 ‖ p2, D) = I(p1, D) ∪ I(p2, D).

The dependent delays are computed as the delays connected by the outermost alternative or parallel
composition that are not encapsulated by the scope operator. The delaysthat are in the scope operator

8 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

must be in the intersection of all dependence binding sets. For the independent delays we need an
auxiliary set as a second parameter to keep track of this intersection [32].We illustrate the situation by an
example. Letp = ||σX

Y, Z
.δ |

X,Z
|
X,Y

. ThenD(p) = {X} andI(p) = {Y, Z} as{X, Z}∩{X, Y } = {X}.

Renaming of independent delays The general idea of having both dependent and independent delays
available is the following: For specification one can use multiple instances of a component using inde-
pendent delays. As the delays are independent, there is no need to worry about the actual samples. For
analysis however, it is advantageous to deal with dependent delays. For example, given the simple com-
ponent|σX

Y
.σY.a.δ|

∅
, we can use it as a building block of the system|σX

Y
.σY.a.δ|

∅
‖ |σX

Y
.σY.a.δ|

∅
. However,

for analysis we revert to the system|(σX

Y
.σY.a.δ) ‖ (σU

V
.σV.a.δ) |

∅
, whereFX=FU andFY =FV , in order

to resolve the race condition. Note that proper resolution of the race condition requires uniqueness of
names of the racing delays (cf. [34, 35]). It is clear that naming conflictsmay arise when one puts the
entire process under one scope operator, as in the example above. Therefore, it has to be checked whether
there are independent delays with the same names. If such conflicts occur, then the independent delays
introducing the clash must be renamed. Care has to be taken, that losing delays are renamed consistently
as their names have been bound by the first race in which they participated.To this end, we define a
renaming operationp[Y/X] for p ∈ C, that consistently renames the stochastic delayX into Y . We have

(σW

L
.p)[Y/X] = σW

L
.p if X 6∈ W ∪ L

(σW

L
.p)[Y/X] = σ(W\{X})∪{Y }

L
.p if X ∈ W |p|

D
[Y/X] = |p[Y/X]|

D
if X 6∈ D

(σW

L
.p)[Y/X] = σW

(L\{X})∪{Y }
.p[Y/X] if X ∈ L |p|

D
[Y/X] = |p[Y/X]|

(D\{X})∪{Y }
if X ∈ D

where the other cases are straightforward.

Operational semantics We use a construct, called anenvironment, to keep track of the ages of the
racing delays. Recall,σW

L
denotes a unit delay after which a race was won byW and lost byL, for

W, L ⊆ V. However, because of time determinism, time passes equally for all racing delays in W ∪ L
aging them by units of time. To denote that after a delay[WL], the same time that passed for the winnersW
has also passed for the losersL, we use an environmentα : V → N. For eachX ∈ V, α(X) represents
the amount of time thatX has raced. We writeEs for the set of all environments.

For example, the process termσX,Y

Z
.σU

Z
.p has a racing timed transition in whichX andY are the

winners andZ is the loser. In the resulting processσU

Z
.p, the variableZ must be made dependent on the

amount of time that has passed. This is denoted byα(Z) = 1, provided that originallyα(Z) = 0. As Z
again loses a race, this time toU , the transition induced byσU

Z
updatesα(Z) to 2.

The environment does not affect the outgoing transitions. It is used to calculate the correct distribu-
tion of the racing delays. The distribution ofX, provided thatFX(α(X)) < 1, at that point in time is
given byFX(n) = FX(n+α(X))−FX(α(X))

1−FX(α(X)) for n ∈ N. Thus, in order to compute the updated distribution
of a racing delayX, one has to know its age.

The semantics of process terms is given by racing timed transition schemes. A states of the transition
scheme in an environmentα is given by the pair〈s, α〉 ∈ S × Es. The functionI(s) gives the set of
independent delays of the states. Every state may have a termination option, denoted by the predicate↓.
There are two types of transitions: (1)

a
−→, immediate action transitions labeled bya ∈ A, that do not

allow passage of time and model undelayable action prefixes; and (2)W
7−→

L
, (resolved) racing timed delay

transitions, driven by the winnersW and the losersL, that model racing timed delay prefixes. The timed
delay transitions must be well-defined: for everyu W

7−→
L

u′, the set of winnersW and the set of losersL are

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 9

disjoint. Moreover, every two different transitions originating from the same state are in a resolved race.
More precisely, ifu W17−→

L1

u1 6= u
W27−→
L2

u2, thenrr(σW1
L1

, σW2
L2

) holds, implying thatW1 ∪ L1 = W2 ∪ L2.

Thus, for every states there exists a set of racing delaysR(s) satisfyingR(s) = W ∪ L for every
〈s, α〉 W

7−→
L

〈s′, α′〉. Then, the set of dependent delays is given byD(s) = R(s) \ I(s).
We define a strong bisimulation relation on racing timed transition schemes. It requires racing timed

delays to have the same age modulo names of the independent delays. This ensures that the induced races
have the same probabilistic behavior. As usual, bisimilar terms are required to have the same termination
options, action and timed transitions [37, 4].

A symmetric relationR onS×Es is a bisimulation if, for every two statesu1, u2 such thatR(u1, u2),
it holds that: (1) ifu1↓ thenu2↓; (2) if u1

a
−→ u′

1 for someu′
1 ∈ S × Es, thenu2

a
−→ u′

2 for some

u′
2 ∈ S×Es; and (3) ifu1

W17−→
L1

u′
1 for someu′

1 ∈ S×Es, thenu2
W27−→
L2

u′
2 for someu′

2 ∈ S×Es. Moreover,

u′
1 andu′

2 in (2)–(3) are again related byR. In (3) W1 andL1 differ from W2 andL2, respectively, only
in the names of the independent racing delays, while comprising delays with thesame distributions and
ages. Also, an additional condition is imposed to ensure that the ages of the losers ofu1 that are racing
as dependent delays inu′

1 is preserved inu′
1 as well. Two statesu1 andu2 are bisimilar if there exists a

bisimulation relationR that relates them. The complete technical details can be found in [32].

Axiomatization By now, we have gathered all the prerequisites to present the axioms for the operators,
except for ‖ andθH(). (These operators will be dealt with using the expansion laws discussed below
for normal forms in which races are resolved.) Table 1 displays the axioms for the sequential processes.
Axioms A1, A2, and A3 are standard. Axiom A4 states that there is no dependence of stochastic delays
arising from an action. Axiom A5 states that all delays are treated as dependent by default. Axiom A6
states that the losers of a timed delay retain their names in the remaining process.Axiom A7 states that
multiple scope operators intersect. Axiom A8 states that independent winningdelays can be renamed
into fresh names with the same distribution. Axiom A9 is similar but now the renamed losing stochastic
delay must be consistently renamed in the remainder too. Axiom A10 puts stochastic delays in the same
name space under the condition that there are no naming conflicts.

The standard axioms for associativity, commutativity, deadlock as the neutral element for the alterna-
tive composition, and the idempotence of the termination are given by the axioms A11–A14. Axiom A15
shows that a choice between the same alternatives is not a choice. Axioms A16–A18 show how races
are resolved. In the case of A16 the winners have common variables, so they must win together provided
that the joint stochastic delay is well-defined, i.e., there are no common stochastic delays between the
winners and the losers. Note that in the remaining processpi only the names of its losersLi need to be
preserved. Axiom A17 states that if the losers of the first timed delay have acommon delay with the
winners of the second, then all delays of the second delay are losers in the resulting delay. The last axiom
states the result of a race in which there are no common variables between thewinners and the losers of
both timed delays. In that case, all outcomes of the race are possible. Finally, the axioms A19–A21 give
the standard axioms for the encapsulation operator that suppresses the actions inH.

Head normal form Using the axioms, we can represent every termp ∈ C as|p′|
B

, whereB ⊆ D(p),
andp′ has the following head normal form

∑m
i=1 ai.|pi|∅ +

∑n
j=1 σWj

Lj

.|qj |Dj
(+ ǫ) ,

with rr(σ
Wk
Lk

, σ
Wℓ
Lℓ

) for 1 ≤ k < ℓ ≤ n andDj ⊆ Lj ∩ D(qj), andpi andqj for 1 ≤ i ≤ m, 1 ≤ j ≤ n
are again in head normal form; the summandǫ is optional and

∑m
i=1 pi is shorthand forp1 + . . . + pm

10 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

|δ|
D

= δ A1, |ǫ|
D

= ǫ A2, |a.p|
D

= a.p A3, a.p = a.|p|
∅

A4

σW

L
.p = |σW

L
.p|

W∪L
A5, σW

L
.p = σW

L
.|p|

L
A6, ||p|

D1
|
D2

= |p|
D1∩D2

A7

|σW∪{X}

L
.p|

D
= |σW∪{Y }

L
.p|

D
if X, Y 6∈ W ∪ D andFX = FY A8

|σW

L∪{X}
.p|

D
= |σW

L∪{Y }
.p[Y/X]|

D
if X, Y 6∈ L ∪ D andFX = FY A9

|p1 + p2|D = |p1|D + |p2|D if I(|p1|D) ∩ R(|p2|D) = R(|p1|D) ∩ I(|p2|D) = ∅ A10

(p + q) + r = p + (q + r) A11, p + q = q + p A12

p + δ = p A13, ǫ + ǫ = ǫ A14, a.p + a.p = a.p A15

σW1
L1

.p1 + σW2
L2

.p2 = σW1∪W2
L1∪L2

.(|p1|L1
+ |p2|L2

) if W1∩W2 6= ∅ andW1∩L2 = L1∩W2 = ∅ A16

σW1
L1

.p1 + σW2
L2

.p2 = σW1
L1∪W2∪L2

.(|p1|L1
+ |p2|L2

) if L1∩W2 6= ∅ andW1∩W2 = W1∩L2 = ∅ A17

σW1
L1

.p1 + σW2
L2

.p2 = σW1
W2∪L2∪L1

.(|p1|L1
+ |p2|L2

) + σW1∪W2
L1∪L2

.(|p1|L1
+ |p2|L2

) +

σW2
L2∪W1∪L1

.(|p1|L1
+ |p2|L2

) if W1 ∩ W2 = L1 ∩ W2 = W1 ∩ L2 = ∅ A18

∂H(δ) = δ A19, ∂H(ǫ) = ǫ A20, ∂H(p1 + p2) = ∂H(p1) + ∂H(p2) A21

∂H(σW

L
.p) = σW

L
.∂H(p) A22, ∂H(a.p) = δ if a ∈ H A23, ∂H(a.p) = a.∂H(p) if a /∈ H A24

Table 1. Axioms for sequential processes

if m > 0, or δ otherwise. The availability of a head normal form is technically important. On theone
hand, it shows the possible outcomes of the race explicitly. On the other hand, it is instrumental for the
uniqueness of guarded recursive specifications in the term model [5].Below, we use it to provide an
expansion law for the parallel composition and the maximal progress operator.

Expansion laws Let p̄1 = |p|
D

and p̄2 = |p′|
D′ , whereD ⊆ D(p), D′ ⊆ D(p′), and I(p̄1) ∩

R(p̄2)=R(p̄1)∩ I(p̄2)=∅, and assume that forp andp′ we have the head normal formsp =
∑m

i=1 ai.pi +
∑n

j=1 σ
Wj

Lj
.qj(+ ǫ) andp′ =

∑m′

k=1 a′k.p
′
k +

∑n′

ℓ=1 σ
W ′

ℓ

L′
ℓ
.q′ℓ(+ ǫ), with pi = |p̂i|∅, qj = |q̂j |Dj

, p′k = |p̂′k|∅,

and q′ℓ = |q̂′ℓ|D′
ℓ
. The expansion of the parallel compositionp̄1 ‖ p̄2 of p̄1 and p̄2 is then given by

p̄1 ‖ p̄2 = |p ‖ p′|
D∪D′ , where

p ‖ p′ =
∑m

i=1 ai.(pi ‖ p′) +
∑n

k=1 a′k.(p ‖ p′k) +
∑

γ(ai,a′
k) def.γ(ai, a

′
k).(pi ‖ p′k)(+ ǫ) +

∑

Wj∩W ′
ℓ 6=∅,Wj∩L′

ℓ=Lj∩W ′
ℓ=∅ σ

Wj∪W ′
ℓ

Lj∪L′
ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
) +

∑

Lj∩W ′
ℓ 6=∅,Wj∩W ′

ℓ=Wj∩L′
ℓ=∅ σ

Wj

Lj∪W ′
ℓ
∪L′

ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
) +

∑

Wj∩L′
ℓ 6=∅,W ′

ℓ∩Wj=W ′
ℓ∩Lj=∅ σ

W ′
ℓ

Wj∪Lj∪L′
ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
) +

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 11

∑

Wj∩W ′
ℓ=Wj∩L′

ℓ=Lj∩W ′
ℓ=∅

(

σ
Wj

Lj∪W ′
ℓ
∪L′

ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
) +

σ
Wj∪W ′

ℓ

Lj∪L′
ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
) + σ

W ′
ℓ

Wj∪Lj∪L′
ℓ
.(|qj |Lj

‖ |q′ℓ|L′
ℓ
)
)

and the optionalǫ summand exists only if it exists in bothp andp′.
The expansion law of the maximal progressθI(p) [4] is given byθI(p) = |θI(p

′)|
D

, where

θI(p
′) =

{

∑m
i=1 ai.θI(pi)(+ ǫ), if ai ∈ H for somei

∑m
i=1 ai.θI(pi) +

∑n
j=1 σ

Wj

Lj
.θI(qj)(+ ǫ), otherwise,

and the optionalǫ summand exists if it exists inp.

Guarded recursion and delayable actions We introduce recursive specifications by means of sets
of recursive equations. We only consider guarded recursive specifications. So, every recursive variable
must be prefixed by either an action or by a timed delay in the specification. Suchspecifications have
unique solutions in the so-called term model, relying on the existence of the head normal form [5, 32].

We define a set of delayable actions{ a | a ∈ A} by takinga.p to be the solution of the guarded
recursive equation:R = a.p + σ.R. Thus,a(p) = a.p + σ.a(p).

Stochastic delays We specify stochastic delays similarly to delayable actions above. We put

[WL](p) = σW

L
.p + σ

W∪L
.[WL](p) ,

and define[WL].p as the solution of the above equation.
An example illustrates how to specify the desired stochastic behavior in this fashion. We consider

the processesR1 = [X](p) + [Y](q) andR2 = [XY](|p|
∅
+ [Y](q)) + [X, Y](p + q) + [YX]([X](p) + |q|

∅
).

The solutions ofR1 andR2 are

R1 = σX

Y
.(|p|

∅
+ [Y](q)) + σX, Y.(p + q) + σY

X
.([X](p) + |q|

∅
) + σ

X, Y
.R1

R2 = σX

Y
.(|p|

∅
+ [Y](q)) + σX, Y.(p + q) + σY

X
.([X](p) + |q|

∅
) + σ

X, Y
.R2.

In absence of timed delays, we can manipulate the stochastic delays directly without having to resort
to the recursive specifications at all (as it was originally proposed in [34, 35] and ground-completely
axiomatized in [32]). For example,

[W1
L1

](p1) + [W2
L2

](p2) = [W1∪W2
L1∪L2

](|p1|L1
+ |p2|L2

) if W1 ∩ W2 6= ∅ andW1 ∩ L2 = L1 ∩ W2 = ∅

[W1
L1

](p1) + [W2
L2

](p2) = [W1
L1∪W2∪L2

](|p1|L1
+ [W2

L2
](p2)) if L1∩W2 6= ∅ andW1∩W2 = W1∩L2 = ∅

[W1
L1

](p1) + [W2
L2

](p2) = [W1
W2∪L2∪L1

](|p1|L1
+ [W2

L2
](p2)) + [W1∪W2

L1∪L2
](|p1|L1

+ |p2|L2
) +

[W2
L2∪W1∪L1

]([W1
L1

](p1)+ |p2|L2
) if W1 ∩ W2 = L1 ∩ W2 = W1 ∩ L2 = ∅

reflects how to deal with stochastic delay prefixes in the vein of the axioms A16–A18.

G/G/1/∞ queue We proceed by specifying and solving theG/G/1/∞ queue, also discussed in [34].
The queue is specified asQ = θI(∂H(A ‖ Q0 ‖ S)), where

A = [X](s1.A), S = r2([Y](s3.S)), Q0 = r1(Q1), Qk+1 = r1(Qk+2) + s2(Qk) if k ≥ 0

12 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

andH = {s1, r1, s2, r2} andI = {c1, c2, s3}.
Let us first see how a stochastic delay synchronizes with a delayable action by solving the equation

C = θI(∂H(A ‖ Q0)). We substitute the recursive specifications for[X](s1.A) andr1(Q1) and expand
the parallel composition. We haveC = σX.c1.C + σ

X
.c1.C, i.e.,θI(∂H(A ‖ Q0)) = [X](c1.θI(∂H(A ‖

Q1))). By using this result and the equations from above for handling stochasticdelays, we obtain

Q = S0 = [X](c1.c2.S1), Sk = [XY](c1.Sk+1) + [X, Y
∅](c1.s3.c2.Sk + s3.c1.c2.Sk) + [YX](s3.c2.Sk−1),

for k > 0 as the solution for theG/G/1/∞ queue whereSk = θI(∂H(A ‖ Qk ‖ [Y](s3.S))). We note,
however, that although the process terms specifying the queue are more elegant, the underlying racing
timed transition system is similar to the transition system in [34] and retains the same level of complexity.

4. Performance Evaluation

For the purpose of performance analysis, we choose the framework ofthe languageχ. It provides a
means for Markovian analysis and discrete-event simulation from the same specification.

The languageχ The languageχ is a modeling language for control and analysis of industrial sys-
tems [8, 38]. It has been successfully applied to a large number of industrial cases, such as a car assembly
line, a multi-product multi-process wafer fab [16], a fruit juice blending and packaging plant [22], and
process industry factories [7]. Initially,χ came equipped with features for the modeling of discrete-event
systems only, and was not supported by a formal semantics. Later, it was redesigned and converted to a
formal timed specification language [11]. At present,χ can be characterized as a process algebra with
data. In addition, it was extended to handle both discrete-event and continuous aspects, allowing for the
modeling of hybrid systems [8].

Performance analysis of aχ model can be carried out either by simulation, or by analysis of the
underlying continuous-time Markov (reward) chain. Simulation is a powerfulmethod for performance
analysis, but its disadvantages in comparison to analytical methods are well-known [6]. The approach
based on Markov chains turnsχ into a powerful Markovian process algebra in the vein of [25, 27]. It
is analytical, and builds on a vast and well-established theory. However, the generation of a Markov
chain from aχ model requires that all delays in the system are exponentially distributed. This is a
serious drawback since in industrial systems, particularly in controllers, delays are often closer to being
deterministic. Although it is possible to approximate deterministic delays by sequences of exponential
delays, i.e., to model them by so-called phase-type distributions [36], this approach suffers from the state
explosion problem. Many states are needed to approximate these delays sufficiently closely, and the
generated Markov chain becomes large due to the full interleaving of stochastic transitions in parallel
contexts.

Discrete-time probabilistic reward graphs In this paper, we build on an extension of the environment
of timedχ proposed in [42] that employs discrete-time probabilistic reward graphs for long-run analysis
of industrial systems. Here, we employ two methods introduced in [42] for long-run analysis of discrete-
time probabilistic reward graphs by translation to discrete-time Markov rewardchains [30]. The first one
uses the notion of an unfolding that transforms each timed transition with duration n of the discrete-time
probabilistic reward graph as a sequence ofn time steps with probability1 in the discrete-time Markov
reward chain. The other one optimizes the former approach by replacing the timed delays with geometric

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 13

delays with the same mean. The former approach clearly increases the state space by introducing extra
transitions, albeit in a specific manner, which can be exploited in the relevantcomputations. The latter
translation does not increase the number of states, but as we discuss, is not suitable for transient analysis.
In order to overcome this, we show how to obtain transient performance measures for ‘unfoldings’ of
discrete-time probabilistic reward graphs by relating the transient measuresof the obtained discrete-time
Markov reward chain back to the original process.

Discrete-time probabilistic reward graphs have been proposed in [42] asa model for performance
evaluation of industrial systems in which time delays are discrete and deterministic, while random behav-
ior is expressed in terms of immediate probabilistic choices. Discrete-time probabilistic reward graphs
are transition systems with two types of states: (1) probabilistic, which have finitely many probabilistic
outgoing transitions and (2) timed, which have only one outgoing transition. In adiscrete-time proba-
bilistic reward graph, time itself does not decide a choice and, as such, there is no interleaving of timed
transitions as in typical timed process algebras [3]. This is in contrast with theapproach of Marko-
vian process algebras, where all exponential delays are interleaved.As a consequence, compared to the
Markovian approach which produces continuous-time Markov reward chains, the discrete-time proba-
bilistic reward graph generated from aχ-model is considerably smaller (more than threefold for our case
study). For our needs, we work with the following definition.

Definition 4.1. A discrete-time probabilistic reward graph is a tupleG = (σ, S, 99K, 7−→, ρ), where (1)
σ ∈ R

1×|S| is aninitial state probability row vectorwith σ ≥ 0 andσ1 = 1; (2) S = Sp ∪ St, whereSp

andSt are the disjoint sets of probabilistic and timed states, respectively; (3)99K ⊆ Sp × (0, 1] × S is
an (immediate)probabilistic transition relationwith

∑

(s,p,s′)∈99K
p = 1 for everys ∈ Sp; (4) 7−→ ⊆

St × N
+ × S is a timed transition relationsuch thats

n
7−→ s′ ands

m
7−→ s′′ (in infix notation) implies

thatn = m ands′ = s′′; and (5)ρ ∈ R
|S|×1 is astate reward rate vector.

The interpretation of a discrete-time probabilistic reward graph is as follows.In probabilistic states the
process spends no time, and it jumps to another state according to the probabilistic transition relation.
In a timed state the process spends as many time units as specified by the timed transition relation, and
jumps to the unique subsequent state. The uniqueness requirement is to support the time-determinism
property [37, 4, 3]. A reward is gained per time unit, as determined by the reward rate assigning function.
Although we allow reward rates to be assigned also to probabilistic states, the process actually gains
no reward as it spends no time in them. The aggregation method is capable of dealing with multiple
subsequent and loops of probabilistic states, see Figure 2a. This provides for a better expressivity and
modeling convenience [33]. These statements will also be supported by the aggregation method used
below (cf. also [18, 41, 42]).

We visualize a discrete-time probabilistic reward graph as in Figure 2a. Here, states1, 2, and3 are
timed, whereas states4 and5 are probabilistic. The reward rates are put in sans-serif at the top right
corner of each state; the reward rate of the statei is ri, for 1 ≤ i ≤ 5.

Translation to discrete-time Markov reward chains To obtain the performance measures of a
discrete-time probabilistic reward graph we exploit their relation with discrete-time Markov reward
chains, which are well-established performance models. The discrete-time probabilistic reward graph is
represented as an equivalent discrete-time Markov reward chain, which is then analyzed, and the results
are interpreted back in the discrete-time probabilistic reward graph setting. The translation is performed
in two steps: (1) the discrete-time probabilistic reward graph is transformed toa transition system to

14 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

a) ?>=<89:;4
r4

3
5

44W _ g

2
5

��

�
�
�
�
!
#
%

?>=<89:;5
1 r5

1
3tt W_g

2
3

��

�
�
�
�
!
#
%

?>=<89:;3
r3

d
1

]]

?>=<89:;1
r1

Y

2

RR

?>=<89:;2
r2

A
2

LL

b) ?>=<89:;4
r4

3
5

44

2
5

��

?>=<89:;5
1 r5

1
3

uu

2
3

��

?>=<89:;3
r3

1
ee

?>=<89:;6
r1

1

OO

?>=<89:;7
r2

1

OO

?>=<89:;1
r1

1

OO

?>=<89:;2
r2 1

II

c) ?>=<89:;6
r1

1
2

��

1
2

��

?>=<89:;3
r3

1
6

��

5
6

��

?>=<89:;7
r3

1

OO

?>=<89:;1
1

6

r1

1

OO

?>=<89:;2
5

6

r2

1

OO

d) ?>=<89:;4
r4

3
5

44

2
5

��

?>=<89:;5
1 r5

1
3tt

2
3

��

?>=<89:;3
r3

1

]]

?>=<89:;1
r1

1
2

JJ

1
2

RR

?>=<89:;2
r2

1
2

JJ

1
2

LL

Figure 2. a) A discrete-time probabilistic reward graph, b)its unfolding, c) aggregated unfolding, and d) ge-
ometrization of a)

be interpreted as a discrete-time Markov reward chain, and (2) the discrete-time Markov reward chain
is aggregated to truthfully represent the semantics of the discrete-time probabilistic reward graph as the
immediate probabilistic transitions have to be eliminated. We need to interchangeablytreat discrete-time
Markov reward chains both as transition systems and in matrix terms. Here, weformally set up this
framework and begin by defining a discrete-time Markov reward chain in terms of transition systems.

Definition 4.2. A discrete-time Markov reward chainM = (σ, S,−→, ρ) is a tuple where (1)σ ∈ R
1×|S|

is the initial state probability row vector; (2)S is a finite set of states; (3)−→⊆ S × (0, 1] × S is the
probabilistic transition relation; and (4)ρ ∈ R

|S|×1 is the state reward vector.

Operationally, a discrete-time Markov reward chain waits one time unit in a state,gains the reward for
this state determined by the reward vectorρ, and immediately jumps to another state with a probability
specified by the relation−→.

When required by the context, we will represent a discrete-time Markov reward chain as a triple
(σ, P, ρ), whereP is the probability transition matrix, i.e., the matrix representation of the probability
transition relation, andρ is the state reward vector. It is known thatP(n), the transition probabilities
after n > 0 time steps are given byP(n) = Pn. Also, the long-run probability vectorπ ∈ R

|S|,
i.e., the average probability that the process resides in a given state after the system stabilizes, satisfies
πP = π [30, 17].

The main idea behind the translation from a discrete-time probabilistic reward graphG to a discrete-
time Markov reward chainM is to represent a timed transition of durationn of G as a sequence of
n states inM, connected by probabilistic transitions with probability1, all having the same reward. The
immediate probabilistic transitions ofG remain unchanged by this transformation. Thus, the immediate
probabilistic transitions ofG are ‘wrongly’ transformed to probabilistic transitions ofM that last one
time unit. We come back to this problem later. First, we recall the naive transformation to a discrete-time
Markov reward chain, which is referred to as theunfoldingof a discrete-time probabilistic reward graph.

Definition 4.3. Let G = (σG, SG, 99K, 7−→, ρG) be a discrete-time probabilistic reward graph withSG =
{s1, . . . , sn}. Associate with every statesi ∈ SG a numbermi ∈ N

+ as follows: ifsi is a probabilistic

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 15

state, thenmi = 1; if si is a timed state, thenmi = m for the uniquem such thatsi
m
7−→ sk, for some

sk ∈ SG. Then, theunfoldingof G is the discrete-time Markov reward chainU = (σU, SU,−→, ρU)
whereSU = { sij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi } and (1)σU(si1) = σG(si) and σU(sij) = 0 for

1 < j ≤ mi; (2) sij
1

−→ sij+1 for 1 ≤ j ≤ mi − 1, andsimi

1
−→ sk1 if si

m
7−→ sk or si1

p
−→ sk1 if

si
p

99K sk; and (3)ρU(sij) = ρG(si) for 1 ≤ j ≤ mi.
The set of probabilistic states ofU is given bySU,p = {si1 | si ∈ SG,p} and the set of timed states

is given bySU,t = SU \ SU,p. Theunfolding setof si is given byUS(si) = { sij | 1 ≤ j ≤ mi }. The
starting state of the unfolding ofsi is given by the functionus(US(si)), which returnssi1.

Remark 4.1. The states of the unfolding can be partitioned to probabilistic and timed states as inDefi-
nition 4.3. In the matrix representationU = (σU, P, ρU), the transition matrixP induces two transition
matricesPt andPp. The matrixPt represents the unfolded timed transitions originating from timed
states ofSG,t, whereasPp holds the translated immediate probabilistic transitions of the probabilistic
states ofSG,p. To obtain these matrices, the transition matrixP is first split toP = P ′

t + P ′
p according

to the timed and probabilistic transitions, respectively. The matricesP ′
t andP ′

p are adapted to transition
matrices by adding1s on the diagonal of the zero rows, where the other type of transitions is missing.

We illustrate the situation by an example.

Example 4.1. The unfolding of the discrete-time probabilistic reward graph from Figure 2a is given by
the discrete-time Markov reward chain depicted in Figure 2b. The unfoldedtimed delays originating from
states1 and2 introduce the new states6 and7, respectively. Here the set of timed states is{1, 2, 3, 6, 7}
and the set of probabilistic ones is{4, 5}. The timed and probabilistic transition matrices are given by

Pt =

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

Pp =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0
2
5 0 0 0 3

5 0 0

0 2
3 0 1

3 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

.

As hinted above, the discrete-time Markov reward chain obtained by the unfolding, in general, does not
truthfully represent the semantics of the original discrete-time probabilistic reward graph, in the sense
that probabilistic states are immediate in the discrete-time probabilistic reward graph, whereas they last
one unit of time in the discrete-time Markov reward chain. For example, in the discrete-time probabilistic
reward graph in Figure 2a, state5 can be reached from state1 with probability 1

2 after a delay of2 time

units (via1
2

7−→ 4
1/2
99K 5). However, in the unfolding this cannot be done in less than3 time units

(required for a sojourn in states1, 6, and4).
The solution to this problem is to eliminate the immediate probabilistic states appropriately. The

elimination is achieved by the reduction-based aggregation method of [18, 41, 42], suitably adapted
for the discrete-time setting [42]. Intuitively, in the new setting the method computes the accumulative
probability of reaching one timed state from another and adjusts the delays. More specifically, the process

16 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

of aggregation is as follows: In an unfoldingU = (σ, P, ρ) the transition probability matrixP is split to
the transition matrices of the timed and probabilistic transitionsPt andPp, respectively. Next, the Cesaro

sum of the transition matrix induced byPp, given byΠ = limn→∞
Pp+P 2

p+...+P n
p

n , is computed and its
canonical product decomposition(L, R) is found (cf. [18, 41]). The canonical product decomposition is
formally defined as follows.

Definition 4.4. Given a Markov chainM = (σ, P, ρ), such thatP = Pt + Pp for P ∈ R
n×n as defined

above, we defineΠ = limn→∞
Pp+P 2

p+...+P n
p

n . Supposerank(Π) = M . Then, a canonical decompo-
sition of Π is a pair of matrices(L, R) with L ∈ R

M×n andR ∈ R
n×M such thatL ≥ 0, R ≥ 0,

rank(L) = rank(R) = M , L × 1 = 1, andΠ = RL.

Finally, theaggregatedprocess is given byM = (σR, LPtR, Lρ) as in [18, 41].

Remark 4.2. The Cesaro sumΠ plays the role of the ergodic projection for the discrete-time case [30].
It represents the ergodic projection at one of the transition matrixPp and it satisfiesΠP = PΠ = Π.
This property is exploited for efficient computation. In [33] we also discuss the relationship between
this approach and other approaches that eliminate immediate probabilistic state, e.g., vanishing states in
Petri net theory [1]. There, we show that both methods converge in the limiting case when all immediate
probabilistic states are eliminated, with the method employed in the setting of this paperbeing more
general as there are no structural restrictions on the probabilistic transitions.

The next definition is adapted from [42].

Definition 4.5. Let G be a discrete-time probabilistic reward graph andU = (σ, P, ρ) be its unfolding

whereP inducesPt andPp. Let Π = limn→∞
Pp+P 2

p+...+P n
p

n . The translation by unfolding ofG is the
discrete-time Markov reward chainM = (σ, P , ρ), given byσ = σR, P = LPR, andρ = Lρ, where
(L, R) is a canonical product decomposition ofΠ.

The translation preserves the unfolding sets of the timed transitions ofG and their starting states. Only
the probabilistic states are eliminated and the transitions of the final states in the unfolding of the timed
transitions inU are adjusted. Note that the unfolding has more states than the original process in the
order of the sum of the duration of all timed transitions. We illustrate the translation by an example.

Example 4.2. The discrete-time Markov reward chain in Figure 2c is the aggregated chainof the one
in Figure 2b. The aggregation eliminates the probabilistic states4 and5 and splits the incoming timed
transitions from the states6 and3. The splitting is according to the accumulative (trapping) probabilities
of 4 and5 to the timed states1 and2 (which represent ergodic classes in the terminology of [18, 41]).
Thus, in the aggregated chain there are two outgoing transitions from the states6 and3 to 1 and2 (instead
of a single one in the unfolding). The aggregation methods conform to the Markovian semantics that after
a delay of one time unit there is an immediate probabilistic choice, which in the unfolding is explicitly
stated by the immediate probabilistic transitions. It is straightforwardly checkedthat the discrete-time
Markov reward chain in Figure 2c models the same system as the discrete-time probabilistic reward
graph in Figure 2a when the discrete-time probabilistic reward graph is observed in the states1, 2, and3.

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 17

Remark 4.3. An alternative and more obvious, but possibly analytically and computationallyintractable
approach would be to translate and analyze discrete-time probabilistic reward graphs as deterministic
semi-Markov reward chains [28]. However, to obtain the form of a semi-Markov reward chain, the ag-
gregation by reduction still has to be applied to eliminate subsequent probabilistic transitions and prob-
abilistic transitions must be introduced between subsequent timed transitions. Recently, a recurrence-
relation-based tailored analysis approach for discrete-time semi-Markov processes has been proposed
in [40].

The following lemma, adapted from [43], gives an important property of thelong-run probability vector
of the unfolding in terms of a relation between the states that belong to the same unfolding set. The
result supports the assignment of the same reward to all states in an unfolding of a timed transition as in
Definition 4.3.

Lemma 4.1. Let π be the long-run probability vector of the translation of a discrete-time probabilistic
reward graphG. Then for every statek ∈ SG,t andi, j ∈ US(k) it holds thatπ[i] = π[j].

Next, we recall how to relate the long-run performance measures of the translation back to the original
process. Additionally, we show how to do the same in the transient case.

Performance metrics With the transformation to a discrete-time Markov reward chain in place, one
can use the standard theory to compute performance measures. We focuson the expected reward rate at
time stepn or in the long-run.

If the resulting discrete-time Markov reward chain is ergodic, the expectedreward at time stepn
is standardly computed asR(n) = σP(n)ρ and the long-run reward asR∞ = πρ, where(σ, P, ρ) is
the translated discrete-time Markov reward chain,P(n) is its transition probability matrix, andπ is its
long-run probability vector [30]. In case the resulting process is not ergodic, one can always partition the
original discrete-time probabilistic reward graph into subgraphs that produce ergodic and transient (or
absorbing) processes, which themselves lead to ergodic processes, and analyze them separately. So, we
do not consider the ergodicity condition as restrictive to our analysis and from now on we assume that we
work only with ergodic processes when doing stationary analysis. After determining the performance
metric, the obtained result has to be interpreted back in the discrete-time probabilistic reward graph
setting.

This approach enables us to reason about the original discrete-time probabilistic reward graphG as
we provide a backward relation between the discrete-time probabilistic reward graphG and its transla-
tion M. This is implemented by means of specially adapted distributor and collector matrices defined
below (originally introduced as means to specify lumpings [30]). In our setting, they are employed as
means to define the partition that is induced by the unfolded time transitions. The idea is to fold back
the unfolded timed transitions and restore the effect of the probabilistic transitions in G by multiply-
ing the transition matrix ofM with these matrices. In that way, one can obtain the transition matrix
of G and, consequently, its expected reward. As follows is the definition of this matrix and the required
prerequisites. The approach is illustrated below in Example 4.3.

First we define the notions of a distributor and the collector (matrix). Given apartitioning of the state
space of a discrete-time Markov chain,{C1, . . . , CN} say, we distinguish the following matrices. The
collector matrixV defined asV [i, j] = 1 if i ∈ Cj , V [i, j] = 0 otherwise. Thej-th column ofV has an
entry1 for elements corresponding to states inCj . A matrix U such thatU ≥ 0 andUV = I, with I
denoting the identity matrix, is a distributor matrix forV . It can be readily seen thatU is actually any

18 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

matrix of which the elements of thei-th row that correspond to elements inCi sum up to1, while the
other elements of the row are0.

The folding collector matrix of the unfoldingU of G is defined as the collector of the partition
induced by the unfolding sets. Due to the reduction-based aggregation, all probabilistic states have been
eliminated to obtain the translationM. Consequently, the folding distributor and collector ofU have too
many states, as they also account for the already eliminated probabilistic transitions, and they have to
be shrunk. Therefore, the rows and columns corresponding to the eliminated probabilistic transitions are
omitted to obtain the folding distributor and collector ofM.

The multiplication of the transition matrix ofM with its folding collector produces the accumulative
probability of residing in each unfolded timed state ofM per unfolding set. So, the probabilities of
residing in a timed state in the discrete-time probabilistic reward graphG can be extracted as the folded
probability of the starting state of the unfolded timed transition. To carry this out,one has to multiply the
folded transition matrix with the folding distributor to extract only the probabilities of the starting states.
The folding distributor and collector matrices of the unfoldingU and the translationM are defined as
follows.

Definition 4.6. LetG be a discrete-time probabilistic reward graph,U its unfolding, andM its translation.
The folding collector matrixVU of U is given byVU[i, j] = 1 iff j ∈ US(i) andVU[i, j] = 0 otherwise,
for i, j ∈ SU. The folding distributorUU is given byUU[i, j] = 1 iff j = us(US(i)) andUU[i, j] = 0
otherwise. The folding distributor and collector matrixUM andVM of M are obtained by omitting the
rows and columns ofUU andVU, respectively, that correspond to the probabilistic states inSU,p.

The folding collectorVM has the following property, which is a corollary of Lemma 4.1.

Corollary 4.1. Let G be a discrete-time probabilistic reward graph andM its translation. Letπ be the
long-run probability vector ofM, VM the folding collector ofM, andU some distributor corresponding
to VM. Then,π = πVMU .

Intuitively, the corollary states that folding the long-run probabilities of the unfolded timed states in the
translation can be done using the folding collector and an arbitrary distributor. So, we can reconstruct
the behavior of the timed states in the original processG. However, the folding distributor and collec-
tor matrices cannot restore the behavior of the probabilistic states. Recall that we used the canonical
decomposition(L, R) of the Cesaro sumΠ to obtain the translationM from the unfoldingU. To prop-
erly eliminate the effect of the probabilistic transitions the folding distributorUU has to be multiplied
by R to the right, obtainingRM = UUR, whereas the folding collectorVU is multiplied byL to the left
obtainingLM = LVU.

Now, we have all prerequisites to propose a definition ofPG(n), the transition matrix aftern time
steps of the discrete-time probabilistic reward graphG.

Definition 4.7. Let G be a discrete-time probabilistic reward graph, the discrete-time Markov reward
chainU its unfolding and the discrete-time Markov reward chainM its translation by unfolding. Let
(L, R) be the canonical decomposition of the transition matrix of probabilistic transitionsof U andUU

andVU the folding distributor and collector matrix. Then,

PG(n) = RMPM(n)LM,

whereRM = UUR andLM = LVU andn ∈ N.

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 19

Notice that the matricesLM andRM no longer have the form of a distributor and a collector, unless every
timed transition ofG has a unit duration.

The following theorem gives the relation between the transient and long-run reward rate of a discrete-
time probabilistic reward graph as induced by Definition 4.7 and the reward rates of its translation by
unfolding. It supports Definition 4.7 and validates the calculation ofPG(n).

Theorem 4.1. Let G be a discrete-time Markov reward chain andM its translation by unfolding. Then

RG(n) = RM(n) and R∞
G = R∞

M .

Proof:
We haveσM = σGRM andρM = LMρG, as can be seen from the definitions. By Corollary 4.1 we have
for the long-run probability vectorπG thatπG = πMLM. We obtain

R∞
M = πMρM = πMLMρG = πGρG = R∞

G .

Similarly, for the reward at time stepn ∈ N we have

RM(n) = σMPM(n)ρM = σGUMPM(n)VMρG = σGPG(n)ρG = RG(n) .

This completes the proof. ⊓⊔

We illustrate the above by an example.

Example 4.3. The initial probability and reward vector of the discrete-time probabilistic reward graph
depicted in Figure 2 are:

σG =
(

0 0 0 0 1
)

ρG =
(

r1 r2 r3 r4 r5

)T

The folding distributor and collector matrix of the unfoldingU in Figure 2b of the discrete-time prob-
abilistic reward graphG in Figure 2a are given byUU andVU below with the canonical decomposi-
tion (L, R) of the Cesaro sum of the transition matrix of the immediate probabilistic transitions.

UU =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

VU =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

L =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

R =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
1
2

1
2 0 0 0

1
6

5
6 0 0 0

0 0 0 1 0

0 0 0 0 1

.

The folding distributor and collector matrices of the translationM depicted in Figure 2c are given byUM

andVM and their adapted versions byRM andLM as follows:

UM =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

VM =

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

RM =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
1
2

1
2 0 0 0

1
6

5
6 0 0 0

LM =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

.

20 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

The initial probability vectorσM, the transition matrixPM(3) at time step3, and the reward vectorρM

are given by

σM = σGRM =
(

1
6

5
6 0 0 0

)

PM(3) =

0 0 0 1
2

1
2

1
6

5
6 0 0 0

1
12

1
12

5
6 0 0

1
4

1
4

1
2 0 0

0 1
6

5
6 0

ρM = LMρG =

r1

r2

r3

r1

r2

.

For example, the probability transition matrix ofG after1, 2, and3 time units is given by

PG(1)=

1 0 0 0 0

0 1 0 0 0
1
2

1
2 1 0 0

1
2

1
2 0 0 0

1
6

5
6 0 0 0

PG(2)=

1
6

5
6 0 0 0

0 0 1 0 0
1
2

1
2 0 0 0

1
12

5
12

1
2 0 0

1
36

5
36

5
6 0 0

PG(3)=

1
6

5
6 0 0 0

1
2

1
2 0 0 0

1
12

5
12

1
2 0 0

1
3

2
3 0 0 0

4
9

5
9 0 0 0

.

We can directly check the correspondence with the execution of the discrete-time probabilistic reward
graph depicted in Figure 2. Note that the process never resides in the probabilistic states4 and5.

The long-run expected reward rate of the discrete-time probabilistic reward graph depicted in Fig-
ure 2a is obtained from the long-run probability vectorπM of its translation of Figure 2c. This vector
is

πG = πMLM =
(

1
11

3
11

3
11

1
11

3
11

)

LM =
(

2
11

6
11

3
11 0 0

)

.

Note that the long-run probability vector ofG has0s for the places of the probabilistic states. The
long-run expected reward rate ofG is

R∞
G = πGρG =

(

2
11

6
11

3
11 0 0

) (

r1 r2 r3 r4 r5

)T

=
2

11
r1 +

6

11
r2 +

3

11
r3.

It is the same as the long-run probability vector ofM, i.e.,

R∞
M = πMρM =

(

1
11

3
11

3
11

1
11

3
11

) (

r1 r2 r3 r1 r2

)T

=
2

11
r1 +

6

11
r2 +

3

11
r3.

The expected reward at time step3 is

σMPM(3)ρM =
1

6
(
1

2
r1 +

1

2
r2) +

5

6
(
1

6
r1 +

5

6
r2) =

4

9
r1 +

5

9
r2 = σGPG(3)ρG.

We can visualize the full process of obtaining the performance measures of a discrete-time probabilistic
reward graph by means of translation by unfolding in the left branch in Figure 3. In the figure we also
depict the relation between the unfolded Markov reward chain and the original discrete-time probabilistic
reward graph.

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 21

Discrete-time
probabilistic reward graph

Translation
by unfolding

uu

Translation
by geometrization

LLLLL

&&LLL
LLL

Discrete-time
Markov reward chain

Transient analysis

��

Long-run analysis
VVVVVVVVVVVV

++VVVVVVVVVVVVVVV

Transition matrix
by folding

66

Discrete-time
Markov reward chain

Long-run analysis

��
Transient metrics Long-run metrics

Figure 3. Performance measuring for discrete-time probabilistic reward graphs

The analysis of a discrete-time probabilistic reward graph by its translation to adiscrete-time Markov
reward chain using the approach described above introduces extra states that are required for the unfold-
ing of the timed transitions. In the following section we give a brief overview ofan optimized translation
tailored for long-run analysis only.

Optimization by geometrization As discussed above the unfolding may have, in general, substan-
tially more states than the original discrete-time probabilistic reward graph, as every delay of durationn
introducesn − 1 new states. To optimize the computation of long-run measures, a ‘geometrization’ of
time delays is proposed in [42] to obtain a discrete-time Markov reward chain of, at most, the size of
the original graph. The main idea is to replace discrete delays by geometricallydistributed ones with the
same mean instead of unfolding them.

The geometrization of a timed transition inG replaces the timed transitions
n

7−→ s′ in G by two

transitionss
1/n
−→s′ ands

(n−1)/n
−→ s. This transformation induces a geometric sojourn time in the state with

mean equal to the duration of the timed transition. As before, to obtain the final discrete-time Markov
reward chain it is required to eliminate the probabilistic transitions. However, this translation is not
adequate for transient analysis as it does not truthfully depict the semantics of G. Still, it was shown
that the long-run expected reward of the discrete-time Markov reward chains obtained by translating the
same discrete-time probabilistic reward graph by unfolding and geometrizationis the same.

As an example, consider again the discrete-time probabilistic reward graph from Figure 2a. The
discrete-time Markov reward chain in Figure 2d depicts its geometrization. Thetranslation by ge-
ometrization is depicted by the right branch in Figure 3. The following theoremfrom [42] states that
the two translations indeed commute, i.e., they give rise to discrete-time Markov reward chains with the
same long-run performance measure.

Theorem 4.2. Let G be a discrete-time probabilistic reward graph,M1 its translation by unfolding, and
M2 its translation by geometrization. ThenR∞

M1
= R∞

M2
.

22 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

5. The Concurrent Alternating Bit Protocol

In this section, we specify the concurrent alternating bit protocol both in the process theoryTCPdst and
in the specification languageχ. Our case study of the concurrent alternating bit protocol combines the
process-algebraic setup of Section 2 and Section 3, on the one hand, and the performance evaluation
framework of Section 4, on the other. By restricting to deterministic timed delays,we show how to
analytically obtain transient performance measures. For the rest, we exploit discrete-event simulation
in χ. For comparison purposes, we perform Markovian analysis using an extension of theχ toolset by
turning all delays into exponential ones with mean values equal to the durationof the timed delays.

Protocol description The concurrent alternating bit protocol is used for communicating data along
an unreliable channel with a guarantee that no information is lost relying on retransmission of data. An
overview of the concurrent alternating bit protocol is depicted in Figure 4.

1 // ?>=<89:;S
3 //'& %$

 ! "#K
4 // ?>=<89:;R

2 //

5
��

GFED@ABCAR

8

OO

'& %$
 ! "#L

7
oo GFED@ABCAS

6
oo

Figure 4. Scheme of the concurrent alternat-
ing bit protocol

sender (c1, c3, c8: chan) =

|[altbit: bool = false, data: nat, ack: bool,

tp: nat = 1, ts: nat = 10

| c1?data; delay tp; c3!<data,altbit>;

(delay ts; c3!<data,altbit> |

c8?ack; altbit := not altbit:

c1?data; delay tp; c3!<data,altbit>

)*; deadlock

]|

Figure 5. The sender process inχ

The arrival process sends the data at port1 to the sender processS. The sender adds an alternating
bit to the data and sends the package to receiverR via the channelK using port3. It keeps re-sending
the same package with a fixed timeout, waiting for the acknowledgement that the data has been correctly
received. The channelK has some probability of failure and it transfers the data with a generally-
distributed delay to the port4. If the data is successfully received byR, then it is unpacked and the
data is sent to the exit process via port2. The alternating bit is sent as an acknowledgement back to
the sender using the acknowledgement senderAS. The receiverR communicates withAS using port5.
The acknowledgement is sent via the unreliable channelL using port6. Similarly to S, the acknow-
ledgement process re-sends data after a fixed timeout. The acknowledgement is communicated to the
acknowledgement receiver processAR. If the received acknowledgement is the one expected, thenAR
informs the senderS that it can start with the transmission of the next data package.

Process-algebraic specification We can specify, in the setup of Section 2 and 3, the concurrent alter-
nating bit protocol as below for a data setD. Recall that the process theory does not contain an explicit
probabilistic choice operator. To specify probabilistic behavior of the channel, we introduce timeouts to
the channelsK andL with durationtk andtℓ, respectively. Thus, the messages are sent via the chan-
nelsK andL before the timeout expires with a delay distributed according to the conditionalrandom
variables〈X | X < tk 〉 and〈Y | Y < tℓ 〉, respectively, or they get lost with probability1 − FX(tk),
and1 − FY (tℓ), respectively. Notably, to eliminate a possible nondeterministic choice in the timeout of

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 23

the channels (between two transitions labeled byi, see specification ofK andL), it must be the case that
P (X = tk) = 0 andP (Y = tℓ) = 0. The concurrent alternating bit protocol is specified as

CABP= θI(∂H(S ‖ K ‖ R ‖ AS ‖ L ‖ AR))

with

S = S0, Sb =
∑

d∈D r1(d).σtp.s3(d, b).Td,b, Td,b = σts.s3(d, b).Td,b + r8(ack).S1-b

K =
∑

e∈D×{0,1} r3(e).θi([X].i.s4(e).K + σtk.i.K)

R = R0, Rb =
∑

d∈D r4(d, b).σtr.s5(ack).s2(d).R1-b +
∑

d∈D r4(d, 1-b).Rb

AS = AS1, ASb = r5(ack).s6(1-b).AS1-b + σta.s6(b).ASb

L =
∑

b∈{0,1} r5(b).θi([Y].i.s6(b).L + σtℓ.i.L)

AR = AR0, ARb = r7(b).s8(ack).AR1-b + r7(1-b).ARb,

where the recursion variables are parameterized byd ∈ D andb ∈ {0, 1},

I = { r1(d), s2(d) | d ∈ D } ∪ { c3(d, b), c4(d, b) | b ∈ {0, 1}, d ∈ D } ∪

{ c6(b), c7(b) | b ∈ {0, 1} } ∪ { c5(ack), c8(ack) }, and

H = { s3(d, b), s4(d, b), r3(d, b), r4(d, b) | b ∈ {0, 1}, d ∈ D } ∪

{ r6(b), r7(b), s6(b), s7(b) | b ∈ {0, 1} } ∪ { r5(ack), r8(ack), s5(ack), s8(ack) }.

The deterministic timed delays with durationtp, ts, tk, tr, ta, andtℓ represent the processing time of the
sender, the timeout of the sender, the timeout of the data channel, the processing time of the receiver, the
timeout of the acknowledgement sender, and the timeout of the acknowledgement channel. The internal
actioni enables the probabilistic choices induced by the timeouts as discussed above.

Specification and analysis inχ We illustrate some features of the languageχ by discussing the
χ specification of the sender process given in Figure 5. It is based on theversion of timedχ of [11].

The processsender communicates with the other processes via three channels:c1,c3,c8 (see
Figure 4). The alternating bit is defined as a boolean variable and the data set is assumed to be the set
of natural numbers. The sender waits for an arrival of a new data element, which it packs intp time
units. Afterwards, a frame with the data and the alternating bit is sent via channelc3. Here, the process
enters the iterative construct represented by(...)* and it either resubmits the data everyts time units
or it waits for an acknowledgement at channelc8 from the acknowledgement receiver process. If the
acknowledgement is received before the timeout expires, the process flips the alternating bit, packs the
new data intp time units, and sends it again via channelc3. Note that in the example, the processing
timetp = 1 and the timeoutts = 10 time units.

The standard semantics of (discrete-event)χ is in terms of timed transition systems [8, 4]. The main
idea underlying the construction of a discrete-time probabilistic reward graph from a timed transition
system, as proposed here, is to hide all actions, i.e., to rename them to the special internal actionτ ,
and then use the concept of timed branching bisimulation [3, 41] to reduce thesystem while abstracting
from its internal transitions. If there is no real nondeterminism in the model, a timed transition system
without any action labeled transition is obtained, i.e., a discrete-time probabilistic reward graph with-
out probabilistic transitions. If there is one or more nondeterministic transition left, then the system is

24 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

underspecified. In that case, the resolution of the remaining nondeterministic choices depends on the
environment, so its performance cannot be measured in the standard way.At this point, one can either
revise the model to resolve the issue of underspecification or turn to performance analysis of processes
comprising nondeterministic choices like the theory of Markov decision processes [28]. However, there
the goal is to find an optimal scheduler for the nondeterministic transitions in order to achieve a given
goal, a topic which is beyond the scope of this paper.

Sinceχ has no features to model probabilistic choice, the random behavior of the data and acknow-
ledgement channel is modeled inχ by a nondeterministic choice. When the corresponding discrete-time
probabilistic reward graph is generated from theχ model these nondeterministic choices must be appro-
priately replaced by probabilistic ones. For this we slightly adjust the method described in the previous
paragraph. Instead of hiding all actions, the special actions used to indicate probabilistic branching re-
main visible. After the minimization, the probabilities that were intentionally left out are put as labels on
the nondeterministic transitions, see Figure 6 below. Again, if there is still nondeterminism remaining
in the model, we cannot proceed the performance analysis. Note that although the method is not always
sound (in case of multiple probabilistic transitions leaving from the same state) asit requests manip-
ulation on the resulting graph, it serves its purpose for this and similar examples. Of course, another
approach is to extendχ with an explicit probabilistic choice operator (e.g., the one in [24]). However,
this requires drastic changes of the language and tools, and as such goes beyond the scope of this paper.
Notably, the framework makes use of probabilistic choices, but only for simulation purposes.

The standardχ language does not directly support reward specification either. We takea similar
approach as for the absence of a probabilistic choice, and add rewards by manipulating theχ specification
(again side-stepping changes inχ), see Figure 6 below. We add, for each reward criterion, an ever
repeating parallel component to the specification. The result is that in the timedtransition system yielded,
every state has a self-loop labeled by a special action denoting the rewardrate of the state. These actions
will are not hidden by branching bisimulation reduction. As in the case for theprobabilistic choice, a
systematic technique rendering the above can in principle be incorporated into theχ environment.

Timed transition

system
(irrelevant actions are ‘s)

Minimized timed

transition system
(no ‘s left)

Reward

Process

branching

bisimulation

reduction

Discrete-time

probabilistic

reward graphdirect insertion

!
specification

(with hiding)
state space

generation

Probabilities

Figure 6. Generation of a discrete-time probabilistic reward graph from aχ specification

The complete pipeline of generating discrete-time probabilistic reward graphsfrom χ specifications
is illustrated in Figure 6. Currently, we employ scripts tweaked into theχ environment that insert prob-
abilities and rewards, in order to automatically produce the desired discrete-time probabilistic reward
graph from a givenχ specification.

Measuring utilization of the data channel K If we assume that the distributions of the channels
in the concurrent alternating bit protocol are deterministic, then we can obtain its underlying discrete-
time probabilistic reward graph as a performance model, and subsequently calculate its performance
measures. First, we give in Figure 7, the long-run utilization of the data channelK. We assume thattp =

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 25

tr = 1, ts = ta = 10, tk = 6, tℓ = 2, that the distribution of the delay of the channelK is deterministic
at 6, i.e.,P(X=6) = 1, and that the distribution of the delay of the channelL is deterministic at2, i.e.,
P(Y =2) = 1. To obtain the utilization of the data channel, we place reward1 for every state in the
unfolding of the timed delays with duration6, which is the delay of the data channelK. We note that,
although the surface is smooth in the long-run analysis, if we observe the utilization at time step200, we
see that the transient measure is not at all stable as depicted in Figure 8.

Remark 5.1. We can easily compute the utilization in the extremes for the stationary analysis, which
further validates the model. If the unreliability of any channel is1, meaning that no message is actually
sent correctly, then every10 time units the sender re-sends the message via channelK, which lasts6
time units, resulting in utilization of0.6. In case both channels are completely reliable, one needs1 time
unit to prepare the message, another6 time units to send it via channelK, and2 time units to send the
acknowledgement. This amounts to sending a message every9 time units, i.e., utilization of69 ≈ 0.67.

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.60

0.62

0.64

0.66

Utilization
of chan. K

Figure 7. Long-run utilization of the data channelK

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.2

0.4

0.6

0.8

Utilization
of chan. K

Figure 8. Utilization of the channelK at time200

When the channels are generally-distributed we resort to discrete-event simulation inχ for perfor-
mance analysis. Figure 9 gives the utilization of the data channelK, when the distribution of the delay of
the data channel is uniform between2 and10 and the distribution of the delay of the acknowledgement
channel is uniform between1 and4. Thus, the uniform distributions of the data and the acknowledgement
channels have the mean values of delay6 and2, respectively, as in the deterministic case.

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.60

0.65

0.70

0.75

Utilization

of chan. K

Figure 9. Utilization of the data channelK at time
step200 with uniformly distributed delays

0.0

0.5

1.0

Unreliability channel K

0.0

0.5

1.0

Unreliability channel L

0.4

0.5

0.6

0.7

Utilization

of chan. K

Figure 10. Utilization of the data channelK at time
step200 with exponentially distributed delays

26 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

For comparison, we also performed Markovian analysis, again by using discrete event simulation,
and the result is depicted in Figure 10. The exponential delays were chosen of the same mean values as
the corresponding delays in the deterministic case.

´ ´
´

´

´

´

´
´

´

´

´

ó ó ó ó ó ó ó ó ó ó ó

á
á

á
á á

á
á á á á á

ç
ç

ç

ç ç

ç ç ç

ç
ç ç

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Unreliability of channel K

U
ti

li
za

ti
o
n

o
f

ch
an

n
el

K

ç Markovian analysis

á Simulation

ó DTPRG long-run

´ DTPRG at 200

Figure 11. Utilization of the channelK at time200 for unreliability0.5 of the channelL

To give a flavor of the results, we discuss the dependence of the utilizationof the channelK on the
unreliability of the channelK at time step200 in Figure 11 for each approach. Note, the unreliability of
the acknowledgement channelL is fixed to0.5. One sees that the long-run analysis using discrete-time
probabilistic reward graphs is close to the simulation results for the uniformly distributed channels. This
is to be expected because they have the same mean value. The Markovian analysis always underestimates
the performance because the expected value of the maximum of two exponential delays is greater than
maximum of the expected values of both delays. This slightly increases the average cycle length of
the system in the following way. When considering the maximum of two deterministic delays, then
this is the greater of the two delays. However, when doing the same for exponential distributions, the
maximum always overestimates the greater exponential delay. This happenswhen considering the sender
process timeouts, which in effect results in greater timeout in sending the message and, therefore, a lower
utilization of the data channel.

6. Conclusion

We proposed a performance evaluation framework that is based on a process theory that enables specifi-
cation of distributed systems with discrete timed and stochastic delays. The process theory axiomatizes
sequential processes comprising termination, immediate actions, and timed delaysin a racing context.
By construction, the theory conservatively extends standard timed process algebras of [4]. We provided
expansion laws for the parallel composition and the maximal progress operator. We derived delayable
action and stochastic delay using timed delay prefixes and guarded recursive specifications. Using the
formalism, theG/G/1/∞ queue was handled quite conveniently.

For performance evaluation of the process terms we relied on the environment of the languageχ,
employing discrete-event simulation in the case of generally-distributed delays. We augmented theχ-
environment to cater for transient performance analysis of systems exhibiting probabilistic timed behav-

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 27

ior, in addition to existing long-run analysis. The extension was supported by a model termed discrete-
time probabilistic reward graph, comprising immediate probabilistic choices and deterministic delays.
We gave transient analysis of these models by translating them to discrete-time Markov reward chains.
We also provided a backward translation, relating the original process to the obtained Markov process,
by calculating the transition matrix of the discrete-time probabilistic reward graph.

As a case study, we modeled the a variant of the concurrent alternating bitprotocol with generally-
distributed unreliable channels both in the process theory as well as in the specification languageχ.
We analyzed the protocol in theχ toolset by using discrete-event simulation when the channels were
generally distributed. By restricting to deterministic delays, we were able to analyze the protocol ana-
lytically in the proposed framework of discrete-time probabilistic reward graphs. Finally, we performed
Markovian analysis by restricting to exponential delays and we compared the results of the respective
analysis.

As future work, we plan to introduce the hiding operator that produces internal transitions and to
develop a notion of branching or weak bisimulation in that setting. This should pave the way for bigger
case studies on Internet protocol verification and analysis as detailed performance specification becomes
viable by using both generally-distributed stochastic delays and standard timeouts. We can also exploit
existing real-time specification as the theory is sufficiently flexible to allow extension of real-time with
stochastic time while retaining any imposed ordering of the original delays.

Acknowledgments Many thanks to Jos Baeten for fruitful discussions on the topic. We are indebted
to the reviewers for their constructive comments and suggestions.

References

[1] Ammar, H., Huang, Y., Liu, R.: Hierarchical Models for Systems Reliability, Maintainability, and Availabil-
ity, IEEE Transactions on Circuits and Systems, 34(6), 1987, 629–638.

[2] Arends, N.:A Systems Engineering Specification Formalism, Ph.D. Thesis, Eindhoven University of Tech-
nology, 1996.

[3] Baeten, J., Bergstra, J., Reniers, M.: Discrete Time Process Algebra with Silent Step, in:Proof, Language,
and Interaction: Essays in Honour of Robin Milner, MIT Press, 2000, 535–569.

[4] Baeten, J., Middelburg, C. A.:Process Algebra with Timing, Monographs in Theoretical Computer Science,
Springer, 2002.

[5] Baeten, J. C. M., Bergstra, J. A., Klop, J. W.: On the consistency of Koomen’s fair abstraction rule,Theoret-
ical Computer Science, 51(1), 1987, 129–176.

[6] Banks, J., Carson II, J., Nelson, B., Nicol, D.:Discrete-Event System Simulation, Prentice Hall, 2000.

[7] van Beek, D., van der Ham, A., Rooda, J.: Modelling and Control of Process Industry Batch Production
Systems,15th Triennial World Congress of the International Federation of Automatic Control, Barcelona,
2002.

[8] van Beek, D., Man, K. L., Reniers, M., Rooda, J., Schiffelers, R. R. H.: Syntax and Consistent Equation
Semantics of Hybrid Chi,Journal of Logic and Algebraic Programming, 68, 2006, 129–210.

[9] Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism,
priorities, probabilities and time,Theoretical Computer Science, 202(1–2), 1998, 1–54.

28 J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation

[10] Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.-P.: MODEST: A Compositional Modeling For-
malism for Hard and Softly Timed Systems,IEEE Transactions on Software Engineering, 32, 2006, 812–830.

[11] Bos, V., Kleijn, J. J. T.:Formal Specification and Analysis of Industrial Systems, Ph.D. Thesis, Eindhoven
University of Technology, 2002.

[12] Bravetti, M.: Specification and Analysis of Stochastic Real-time Systems, Ph.D. Thesis, Università di
Bologna, 2002.

[13] Bravetti, M., Bernardo, M., Gorrieri, R.: From EMPA to GSMPA: Allowing for General Distributions,Pro-
ceedings of PAPM’97, Enschede, 1997.

[14] Bravetti, M., D’Argenio, P.: Tutte le algebre insieme:Concepts, Discussions and Relations of Stochastic
Process Algebras with General Distributions, in:Validation of Stochastic Systems - A Guide to Current
Research(C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, M. Siegle, Eds.), vol. 2925 ofLecture Notes of
Computer Science, Springer, 2004, 44–88.

[15] Bryans, J., Bowman, H., Derrick, J.: Model Checking Stochastic Automata,ACM Transactions on Compu-
tational Logic, 4, 2003, 452–492.

[16] van Campen, E.:Design of a Multi-Process Multi-Product Wafer Fab, Ph.D. Thesis, Eindhoven University
of Technology, 2000.

[17] Chung, K.:Markov Chains with Stationary Probabilities, Springer, 1967.

[18] Coderch, M., Willsky, A. S., Sastry, S. S., Castanon, D.: Hierarchical Aggregation of Singularly Perturbed
Finite State Markov Processes,Stochastics, 8, 1983, 259–289.

[19] D’Argenio, P.: From Stochastic Automata to Timed Automata: Abstracting probability in a Compositional
manner,Proceedings of WAIT 2003, Buenos Aires, 2003.

[20] D’Argenio, P., Katoen, J.-P.: A Theory of Stochastic Systems, Part II: Process Algebra,Information and
Computation, 203(1), 2005, 39–74.

[21] Fernandez, J., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu, M.: CADP - a Protocol
Validation and Verification Toolbox,Proceedings 8th of CAV’96(R. Alur, T. A. Henzinger, Eds.), 1102,
1996.

[22] Fey, J. J. H.:Design of a Fruit Juice Blending and Packaging Plant, Ph.D. Thesis, Eindhoven University of
Technology, 2000.

[23] Glynn, P.: A GSMP Formalism for Discrete Event Systems,Proceedings of the IEEE, 77, 1989, 14–23.

[24] Hansson, H.:Time and Probability in Formal Design of Distributed Systems, Elsevier, 1994.

[25] Hermanns, H.:Interactive Markov Chains: The Quest for Quantified Quality, vol. 2428 ofLecture Notes in
Computer Science, Springer, 2002.

[26] Hermanns, H., Mertsiotakis, V., Rettelbach, M.: Performance Analysis of Distributed Systems Using TIPP,
Proceedings of UKPEW’94, University of Edinburgh, 1994.

[27] Hillston, J.:A Compositional Approach to Performance Modelling, Cambridge University Press, 1996.

[28] Howard, R.:Dynamic Probabilistic Systems, Wiley, 1971.

[29] Katoen, J.-P., D’Argenio, P.: General Distributions In Process Algebra, in:Lectures on Formal Methods
and Performance Analysis(E. Brinksma, H. Hermanns, J.-P. Katoen, Eds.), vol. 2090 ofLecture Notes in
Computer Science, 2001, 375–429.

[30] Kemeny, J., Snell, J.:Finite Markov Chains, Springer, 1976.

J. Markovski, E.P. de Vink / A Discrete-Time Process Algebraic Framework for Performance Evaluation 29

[31] López, N., Ńuñez, M.: NMSPA: A Non-Markovian Model for Stochastic Processes, Proceedings of ICDS
2000, IEEE Computer Society, 2000.

[32] Markovski, J.: Real and Stochastic Time in Process Algebras for Performance Evaluation, Ph.D. Thesis,
Eindhoven University of Technology, 2008.

[33] Markovski, J., Třcka, N.: Aggregation methods for Markov reward chains with fast and silent transitions,
Proceedings of MMB2008: Measurement, Modeling and Evaluation of Computer and Communication Sys-
tems, VDE Verlag, 2008.

[34] Markovski, J., de Vink, E.: Real-Time Process Algebra with Stochastic Delays,Proceedings of ACSD 2007,
IEEE, 2007.

[35] Markovski, J., de Vink, E.: Extending Timed Process Algebra with Discrete Stochastic Time, in:Proceedings
of AMAST 2008(J. Meseguer, G. Rosu, Eds.), vol. 5140 ofLecture Notes of Computer Science, 2008, 268–
283.

[36] Neuts, M.: Matrix-Geometric Solutions in Stochastic Models, an Algorithmic Approach, John Hopkins
University Press, 1981.

[37] Nicollin, X., Sifakis, J.: An Overview and Synthesis ofTimed Process Algebras, in:Real-Time: Theory in
Practice(J. W. de Bakker, C. Huizing, W. R. de Roever, G. Rozenberg, Eds.), vol. 600 ofLecture Notes of
Computer Science, 1992, 526–548.

[38] Schiffelers, R., Man, K.:Formal Specification and Analysis of Hybrid Systems, Ph.D. Thesis, Eindhoven
University of Technology, 2006.

[39] Sproston, J.: Model Checking for Probabilistic Timed Systems, in:Validation of Stochastic Systems(C. Baier,
B. Haverkort, H. Hermanns, J.-P. Katoen, M. Siegle, Eds.), vol. 2925 ofLecture Notes of Computer Science,
2004, 189–229.

[40] Tai, A., Tso, K., Sanders, W.: A Recurrence-Relation-Based Reward Model for Performability Evaluation of
Embedded Systems,Proceedings of DSN’08, IEEE Computer Society, 2008.

[41] Trčka, N.: Silent Steps in Transition Systems and Markov Chains, Ph.D. Thesis, Eindhoven University of
Technology, 2007.

[42] Trčka, N., Georgievska, S., Markovski, J., Andova, S., de Vink, E.: Performance Analysis of Chi models
using Discrete Time Probabilistic Reward Graphs,Proceedings of WODES’08(B. Lennartson, M. Fabian,
K. Åkesson, A. Giua, R. Kumar, Eds.), IEEE Computer Society, 2008.

[43] Trčka, N., Georgievska, S., Markovski, J., Andova, S., de Vink, E.: Performance Analysis ofχ Models
using Discrete-Time Probabilistic Reward Graphs, Technical Report CS 08/02, Eindhoven University of
Technology, 2008.

