
Information Technology and Control 2019/2/48278

Model Checking Based Approach
for Compliance Checking

ITC 2/48
Journal of Information Technology
and Control
Vol. 48 / No. 2 / 2019
pp. 278-298
DOI 10.5755/j01.itc.48.2.21724

Model Checking Based Approach for Compliance Checking

Received 2018/09/27 Accepted after revision 2019/05/11

 http://dx.doi.org/10.5755/j01.itc.48.2.21724

Corresponding author: vnardone@unisannio.it

Fabio Martinelli
Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy, e-mail: fabio.martinelli@iit.cnr.it

Francesco Mercaldo
Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy Department of Bioscience
and Territory, University of Molise, Pesche (IS), Italy, e-mail: francesco.mercaldo@iit.cnr.it,
francesco.mercaldo@unimol.it

Vittoria Nardone
Department of Engineering, University of Sannio, Benevento, Italy, e-mail: vnardone@unisannio.it

Albina Orlando
Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Napoli, Italy,
e-mail: a.orlando@iac.cnr.it

Antonella Santone
Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy,
e-mail: antonella.santone@unimol.it

Gigliola Vaglini
Department of Information Engineering, University of Pisa, Pisa, Italy, e-mail: gigliola.vaglini@unipi.it

Process mining is the set of techniques to retrieve a process model starting from available logging data. The dis-
covered process model has to be analyzed to verify whether it respects the defined properties, i.e., the so-called
compliance checking. Our aim is to use a model checking based approach to verify compliance. First, we propose
an integrated-tool approach using existing tools as ProM (a framework supporting process mining techniques)
and CADP (a formal verification environment). More precisely, the execution traces from a software system
are extracted. Then, using the “Mine Transition System” plugin in ProM, we obtain a labelled transition sys-
tem, that can be easily used to verify formal properties through CADP. However, this choice presents the “state
explosion” problem, i.e., models discovered through the classical process mining techniques tend to be large

mailto:obodovskiy58@gmail.com

279Information Technology and Control 2019/2/48

and complex. In order to solve this problem, another custom-made approach is shown, which accomplishes a
pre-processing on the traces to obtain abstract traces, where abstraction is based on the set of temporal logic
formulae specifying the system properties. Then, from the set of abstracted traces, we discover a system de-
scribed in Lotos, a process algebra specification language; in this way we do not build an operational model for
the system, but we produce only a language description from which a model checking environment will auto-
matically obtain the reduced corresponding transition system. Real systems have been used as case studies to
evaluate the proposed methodologies.
KEYWORDS: Model discovery; process mining; model checking; compliance checking.

1. Introduction
The general idea of process mining techniques is to
discover real processes by extracting knowledge from
event logs readily available in information systems.
These techniques assume that it is possible to re-
cord events. Each event e has a set of properties, i.e.,
resource information (e was executed by John), ac-
tivity (e corresponds to a particular procedure), and
various data elements. Events are ordered (i.e., no ex-
plicit time-stamp is needed) and each event belongs
to a particular class (i.e., an activity name). An event
refers to a process instance and each process instance
is described by a sequence of events referred to as a
trace. If we consider activity names, then the trace
corresponds to a sequence of such names. An event
log is a multi-set of traces, i.e., a collection of traces
where some traces may appear multiple times.
Process mining has some disadvantages. One of them
is that discovered models tend to be large and com-
plex, especially on flexible scenarios where process
execution involves multiple alternatives. In fact, try-
ing to consider every possible process behavior, we
can obtain highly complex and incomprehensible
models; two typical categories of complex process
models are called “lasagna” and “spaghetti” processes
because of their intertwined appearance. The reduc-
tion of complexity is a major challenge and subject to
recent research; abstraction techniques can be useful-
ly employed to obtain simpler processes. Other prob-
lems are caused by the (essentially, the high quantity
of) additional constraints that have to be imposed on
the system to guarantee the needed properties. How
such constraints can be included in the model may be
very hard to be defined. Compliance checking [25] is
an important part of the process mining methodolo-
gy and it is a relatively novel field of research in that
context. Compliance refers to the adherence of the
discovered process to internal or external rules and

then deals with verification issues. External rules
primarily include laws and regulations but can also
reflect industry standards or other external require-
ments. Internal rules include management directives,
policies and standards. Moreover, compliance check-
ing is a strong requirement in the context of internal
or external audits.
In the light of the above, our aim is to verify compli-
ance through the model checking technique. Accord-
ing to process mining technique, our idea is to build
the formal model of system starting from its exe-
cution traces. In particular, we have developed two
different kinds of approaches: the first one reusing
existing tools, named integrated-tool approach, and
the second one, called custom-made approach, aims
to discover a process using process algebra language.
This custom-made approach aims to fix the main lim-
itation of the integrated-tool approach.
More precisely, first we propose the integrated-tool
approach using existing tools as ProM1 (a framework
that support a variety of process mining techniques)
and CADP [10, 4, 27] (a formal verification environ-
ment). In this case, the execution traces from a soft-
ware system are extracted. Then, using the “Mine
Transition System” plugin in ProM, we obtain a la-
belled transition system, that can be easily used to
verify formal properties through CADP, as shown in
[19]. However, we demonstrated that this choice pres-
ents the well-known “state explosion” problem: the
models discovered through classical process mining
techniques are large and complex.
In order to solve this problem, another custom-made
approach has been proposed, where instead of using
ProM, we have defined an algorithm producing ab-

1 http://www.promtools.org/doku.php

Information Technology and Control 2019/2/48280

stracted model from execution traces. Compliance
checking is performed through the model checking of
the logic formulae representing the internal or exter-
nal rules imposed to the system on its model discov-
ered in the form of an abstract Lotos process.
More precisely, we consider that the log refers to the
behavior of a distributed system and we can process it
to produce distinct traces, each one regarding the be-
havior of one device in the system (they have the same
resource information); moreover sub-traces repre-
senting simple loops (we suppose the use of known
methods, for example the α+-algorithm [9]) can be in-
dividuated. The description of the possible synchro-
nization points, taken from the event properties (i.e.,
the activity) are used to express the communication
among devices. To represent constraints that express
particular system requirements, we can use the same
formalism and define new traces, not included in the
log, but containing existing names connected to activ-
ities of the devices. Finally, to address the problem of
coping with the high complexity of models obtained
by means of automatic process mining, we accom-
plish a further pre-processing on the traces to obtain
abstract traces. Abstraction is seen as an effective ap-
proach to represent readable models, showing aggre-
gated activities and hiding irrelevant details.
In our custom-made approach, abstraction is based
on the set of temporal logic formulae specifying the
system properties. These formulae can be seen also
as the declarative representation of the internal and
external rules different from the operational ones giv-
en by the traces representing the system constraints.
From the set of abstracted traces, we discover a sys-
tem described in Lotos [10], a process algebra speci-
fication language; in this way we do not build an op-
erational model for the system, like as a Petri net or
a transition system, but we produce only a language
description from which the model checking environ-
ment will automatically obtain the corresponding
transition system. Finally, compliance is established
through the model checking of the formulae express-
ing the compliance rules on the discovered system:
any discovered process satisfying the formulae is
compliant with the given rules. In this way, we can use
existing very efficient model checking environments
to establish the compliance of the discovered process
without introducing additional concepts or ad hoc
model checkers.

A very preliminary work has been presented as poster
at ICSOFT 2016 [28].
The remainder of this paper is organized as follows.
Section 2 presents a short description of the theoreti-
cal background of the work; Section 3 depicts an inte-
grated-tool approach able to construct formal models
starting from execution traces of a program. Section
4 improves the integrated-tool approach introducing
and describing a custom-made approach able to build
reduced formal models, also a simple working exam-
ple is presented. Moreover, the section illustrates the
technique for model discovery and gives the results
of the model checking of some properties. Section 5
shows the experimental results achieved during the
evaluation of the custom-made approach. Section 6
elicits the limitations of our approach. Section 7 dis-
cusses some related work and Section 8 presents the
conclusions.

2. Background
Some basic concepts of process algebra specifications
and model checking of temporal logic formulae are re-
called in this section.

2.1. Basic Lotos

Let us now recall the main concepts of Basic Lotos
[10], which is widely used in the specification of con-
current and distributed systems. A Basic Lotos pro-
gram is defined as:

process ProcName := P
where Env

endproc,

where P is a process, process ProcName := P is a pro-
cess declaration and is a Env process environment, i.e.,
a set of process declarations. A process is the com-
position, by means of a set of operators, of a finite set
E = {i, a, b,...} of atomic events (or actions). Each oc-
currence of an action in E represents an event of the
system. An occurrence of an event a ∈ E – {i} rep-
resents a communication on the gate a. Event i does
not correspond to a communication and it is called
the unobservable event. The operational semantics
of a process P is a labeled transition system, denoted

281Information Technology and Control 2019/2/48

as S(P), i.e., an automaton whose states correspond
to processes (the initial state corresponds to P) and
whose transitions (arcs) are labeled by events in E.
Reader unfamiliar with Lotos process syntax can re-
fer to [11].

2.2. Model Checking Selective Mu-Calculus
Formulae
In the model checking framework [6], systems are
modelled as transition systems and requirements
are expressed as formulae in a temporal logic. Model
checkers accept two inputs, a transition system and a
temporal formula, and return “true” if the system sat-
isfies the formula and “false” otherwise. We consider
formulae expressed in the selective mu-calculus tem-
poral logic [2]. The basic characteristic of the selective
mu-calculus is that the actions relevant for checking
a formula are those ones explicitly mentioned in the
modal operators used in the formula itself.

(1)

The syntax of the selective mu-calculus is the fol-
lowing: where K, R are sets of events in Ε, while Z
ranges over a set of variable names; μZ.ϕ is the least
fix-point of the recursive equation Z=ϕ, while νZ.ϕ is
the greatest one.
The selective modal operators 〈K〉Rϕ and [K]Rϕ substi-
tute the standard modal operators 〈K〉ϕ and [K]ϕ:
 _ [K]Rϕ is satisfied by a state which, for every

performance of a sequence of actions not belonging
to R∪K, followed by an action inK, evolves to a state
obeying ϕ.

 _ 〈K〉Rϕ is satisfied by a state which can evolve to a
state obeying ϕ by performing a sequence of actions
not belonging to R∪K, followed by an action in K.

A transition system T satisfies a formula ϕ, written
T⊨ϕ, if and only if p⊨ϕ, where p is the initial state of
T. Moreover, a process P satisfies ϕ if S(P) satisfies ϕ.
The precise and formal definition of satisfaction of
selective mu-calculus formulae can be found in [2].
The basic characteristic of the selective mu-calculus
is that the actions relevant for checking a formula ϕ
are those ones explicitly mentioned in the modal op-
erators used in the formula itself. Thus we define the
set O(ϕ) of occurring actions of a formula ϕ as the

union of all sets K and R appearing in the modal oper-
ators ([K]Rψ, 〈K〉Rψ) occurring in ϕ. A ρ - bisimulation
can be defined, formally characterizing the notion of
“the same behavior with respect to a set ρ of actions”:
 two transition systems are ρ - equivalent if a ρ - bisi-
mulation relating their initial states exists.
The definition of ρ -bisimulation is based on the
concept of α - ending path: an α - ending path is a
sequence of transitions, labelled by events not in ρ,
and followed by a transition labelled by the event α
in ρ. Two states S1 and S2 are ρ - bisimilar if and only
if for each α -ending path starting from S1 and end-
ing into S1', there exists an α - ending path starting
from S2 and ending into a state ρ - bisimilar to S1', and
vice-versa. If a ρ -bisimulation relating the initial
states of two transition systems exists, then the two
systems are ρ - equivalent. As conclusion, in [2] the
following theorem is proved:
Theorem 1. Two transition systems are ρ - equivalent
if and only if they satisfy the same set of formulae with
occurring events in ρ.
The interesting consequence of the theorem is that a
formula of the selective mu-calculus with occurring
events in a set ρ can be checked on any transition sys-
tem ρ - equivalent to the standard one, in particular on
the system with the lowest number of states.

3. Integrated-Tool Approach
In order to link model checking verification closer to
real implementation allowing to perform compliance
checking an approach integrating existing tools has
been proposed in this section.
Figure 1 shows the work-flow of the integrated-tool
approach able to model and verify a system starting
from its execution traces. It is mainly based on three
steps:
 _ First step (see Figure 1 (1)): It starts from the

execution traces of a program obtained from the
execution of a software system. Traces are usually
stored in text files and they contain both static and
dynamic information retrieved during software
execution. Static information regards, for instance,
class structure in terms of methods and fields.
Dynamic information refers to method calls, field
access in read or write mode and synchronization

Information Technology and Control 2019/2/48282

on objects. Starting from this textual format traces
an eXtensible Event Stream format (XES) is
generated. XES is an IEEE XML-based standard
for event logs. During this conversion process the
traces are filtered removing all the unnecessary
information.

 _ Second step (see Figure 1 (2)): It creates the
model from the XES traces using Process Mining
Workbench (ProM)2. ProM is an extensible
framework that supports a wide variety of process
mining techniques in the form of plug-ins. It is
an independent platform as it is implemented in
Java, and can be downloaded free of charge. From
the XES Event Log, using the “Mine Transition
System” plugin in ProM developed by H.M.W.
Verbeek, a labelled transition system is obtained.
The transitions correspond to the events in the
log, whereas a state corresponds to a situation in
between two events.

 _ Third step (see Figure 1 (3)): It applies the
model checking technique. Once the formal
model has been retrieved, it is easily used to
verify properties using a model checker tool. This
step checks the sets of logic properties against
the formal model obtained starting from the
feature set, as described above. In our approach,
the Construction and Analysis of Distributed
Processes (CADP) tool [10] is invoked as formal

2 http://www.promtools.org/

Figure 1
The work-flow of the integrated approach

 two transition systems are 𝜌𝜌𝜌𝜌 - equivalent if a 𝜌𝜌𝜌𝜌 -bisimulation relating their initial states exists.

 The definition of 𝜌𝜌𝜌𝜌 -bisimulation is based on the concept of 𝛼𝛼𝛼𝛼 -ending path: an 𝛼𝛼𝛼𝛼 -ending
path is a sequence of transitions, labelled by events not in 𝜌𝜌𝜌𝜌, and followed by a transition labelled by the
event 𝛼𝛼𝛼𝛼 in 𝜌𝜌𝜌𝜌. Two states 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆2 are 𝜌𝜌𝜌𝜌 -bisimilar if and only if for each 𝛼𝛼𝛼𝛼 -ending path starting
from 𝑆𝑆𝑆𝑆1 and ending into 𝑆𝑆𝑆𝑆1′ , there exists an 𝛼𝛼𝛼𝛼 -ending path starting from 𝑆𝑆𝑆𝑆2 and ending into a state 𝜌𝜌𝜌𝜌 -
bisimilar to 𝑆𝑆𝑆𝑆1′ , and vice-versa. If a 𝜌𝜌𝜌𝜌 -bisimulation relating the initial states of two transition systems
exists, then the two systems are 𝜌𝜌𝜌𝜌 - equivalent. As conclusion, in [2] the following theorem is proved:

Theorem 1. Two transition systems are 𝜌𝜌𝜌𝜌 -equivalent if and only if they satisfy the same set of

formulae with occurring events in 𝜌𝜌𝜌𝜌.

The interesting consequence of the theorem is that a formula of the selective mu-calculus with

occurring events in a set 𝜌𝜌𝜌𝜌 can be checked on any transition system 𝜌𝜌𝜌𝜌 -equivalent to the standard one,
in particular on the system with the lowest number of states.

3 Integrated-Tool Approach

In order to link model checking verification closer to real implementation allowing to perform

compliance checking an approach integrating existing tools has been proposed in this section.

Figure 1. The work-flow of the integrated approach

Figure 1 shows the work-flow of the integrated-tool approach able to model and verify a system

starting from its execution traces. It is mainly based on three steps:
• First step (see Figure 1 (1)): It starts from the execution traces of a program obtained from the

execution of a software system. Traces are usually stored in text files and they contain both
static and dynamic information retrieved during software execution. Static information regards,
for instance, class structure in terms of methods and fields. Dynamic information refers to
method calls, field access in read or write mode and synchronization on objects. Starting from
this textual format traces an eXtensible Event Stream format (XES) is generated. XES is an
IEEE XML-based standard for event logs. During this conversion process the traces are filtered
removing all the unnecessary information.

• Second step (see Figure 1 (2)): It creates the model from the XES traces using Process Mining

verification environment. In order to apply CADP,
the transition system obtained is converted into
the input format of CADP, parsing the automaton
ProM file. Moreover, the property, written in
selective mu-calculus, can be equivalently
transformed in the syntax of the logic used by the
CADP environment.

3.1. Result Using the Integrated-Tool Approach
In order to evaluate the integrated-tool approach,
an example of a real system obtained from the ProM
website3 has been considered. It describes a realis-
tic transaction process within a banking context.
In the integrated-tool approach evaluation, the first
step has been skipped because the considered real
case study has already developed and made available
from the repository of the ProM database. The ana-
lysed process contains all sort of monetary checks,
authority notifications, and logging mechanisms
responding to the new degree of responsibility and
accountability that current economic environments
demand. As stated in [22], “the banking regulation
states that serial numbers must be compared with
an external database governed by a recognized inter-
national authority (“Check Authority Serial Num-
bers CASN”). In addition, the bank of the case study
decided to incorporate two complementary checks
to its policy: an internal bank check (“Check Bank
Serial Numbers CBSN”), and a check among the da-
tabases of the bank consortium this bank belongs
to (“Check Inter-Bank Serial Numbers CIBSN”).
At a given point, due to technical reasons (i.e., peak
hour network congestion, malfunction of the soft-
ware, deliberated blocking attack, etc.), the external
check CASN is no longer performed, contradicting
the modeled process, i.e., all the running instances
of the process involving cash payment can proceed
without the required check”.
According with our preliminary approach, we formu-
late the above anomaly in mu-calculus logic formulae
using the following pattern:
The formula φ means that for each action a not pre-
ceded by b and c and for each action b not preceded by
c, eventually the action c will be performed.

3 http://data.4tu.nl/repository/uuid:c1d1fdbb-72df-470d-
9315-d6f97e1d7c7c

283Information Technology and Control 2019/2/48

The formula φ expresses the above anomalous situ-
ation that the external check CASN is no longer per-
formed.

involving cash payment can proceed without the required check”.
According with our preliminary approach, we formulate the above anomaly in mu-calculus

logic formulae using the following pattern:
The formula means that for each action a not preceded by b and c and for each action b not

preceded by c, eventually the action c will be performed.
The formula expresses the above anomalous situation that the external check CASN is no

longer performed.

.

(2)

The model checker returns “false” when evaluating , stating that the anomalous situation is
immediately detected, identifying the anomalous subprocess (process cash payment), and eventually
taking the necessary countermeasures. The advantage is that it is better to discover the error as soon as
possible. It is worth noting that when a property does not hold, the model checking algorithm generates
a counter-example, i.e., an execution trace leading to a state in which the property is violated. This
ability to generate counter-examples, which can be exploited to pinpoint the cause of an error, is the
main advantage of model checking, as compared to other well-known techniques for software
verification, as abstract interpretation-based static analysis.

In the used dataset there are six different scenarios: (i) 2000-all-noise; (ii) 2000-all-nonoise; (iii)
2000-scen1; (iv) 2000-scen2; (v) 10000-all-noise; and (vi) 10000-all-nonoise.

Table 1. Property Results

Traces

Formulae

2000-all-noise 2000-all-nonoise2000-scen1 2000-scen210000-all-noise10000-all-nonoise

𝜑𝜑 FALSE TRUE FALSE TRUE FALSE TRUE





1  [CASN]{CIBSN ,CBSN }[CIBSN]{CBSN } 1

 1  (X .  A tt  [CBSN]A X)
2  [CASN]{CIBSN ,CBSN }[CBSN]{CIBSN } 2

 2  (X .  A tt  [CIBSN]A X)
3  [CIBSN]{CASN ,CBSN }[CASN]{CBSN } 3

 3  (X .  A tt  [CBSN]A X)
4  [CIBSN]{CASN ,CBSN }[CBSN]{CASN } 4

 4  (X .  A tt  [CASN]A X)
5  [CBSN]{CASN ,CIBSN }[CASN]{CIBSN } 5

 5  (X .  A tt  [CIBSN]A X)
6  [CBSN]{CASN ,CIBSN }[CIBSN]{CASN } 6

 6  (X .  A tt  [CASN]A X)
 1 2 3 4 5 6





(2)

The model checker returns “false” when evaluating
φ, stating that the anomalous situation is immedi-
ately detected, identifying the anomalous subprocess
(process cash payment), and eventually taking the
necessary countermeasures. The advantage is that it
is better to discover the error as soon as possible. It
is worth noting that when a property does not hold,
the model checking algorithm generates a count-
er-example, i.e., an execution trace leading to a state
in which the property is violated. This ability to gen-
erate counter-examples, which can be exploited to
pinpoint the cause of an error, is the main advantage
of model checking, as compared to other well-known

techniques for software verification, as abstract in-
terpretation-based static analysis.
In the used dataset there are six different scenarios:
(i) 2000-all-noise; (ii) 2000-all-nonoise; (iii) 2000-
scen1; (iv) 2000-scen2; (v) 10000-all-noise; and (vi)
10000-all-nonoise.
The first item of the string is the number of traces in
the XES event stream file. “noise” (resp. “nonoise”)
specifies if the considered traces are (resp. are not)
affected by the noise. Furthermore, there are two
files used in [22] which present two possible scenar-
ios: Serial Number Check and Receiver Preliminary
Profiling, i.e., “scen1” and “scen2”, respectively. The
results of the verification of φ formula are: “True” in
2000-all-nonoise, 2000-scen2 and 1000-all-nonoise,
“False” in the other cases.
Table 1 shows the results achieved by φ formula. As
pointed out from the results, φ is false in some scenar-
ios stating that anomalous traces occur. In particular,
anomalous situations are detected in the presence of
noise which could be due for different reasons, i.e., de-
liberate blocking attack, peak hour network conges-
tion or malfunction of the software.
The sizes of models used in the experimental evalu-
ation are shown in Table 2. The size of a model is ex-
pressed in terms of states and transitions. As shown
in Table 2 the number of states and transitions grows
dramatically according to the growing of number of
traces. As a simple example the reader can refer the
last two rows of Table 2. This means that our pre-
liminary approach suffers of the well-known states
explosion problem. To fix this weakness we propose
another solution able to directly build a reduced mod-
el starting from the execution traces. This model is
presented in Section 4.

Table 1
φ Property results

 Traces

Formulae
2000-all-noise 2000-all-nonoise 2000-scen1 2000-scen2 10000-all-noise 10000-all-nonoise

φ FALSE TRUE FALSE TRUE FALSE TRUE

Information Technology and Control 2019/2/48284

In order to better analyze the results obtained by the
φ formula, we defined additional eight formulae able
to check every single trace belonging to a specific sce-
nario. In particular, these formulae investigate the
cause of φ failure. The specified properties are ex-
pressed by the following selective mu-calculus:

The first item of the string is the number of traces in the XES event stream file. “noise” (resp.
“nonoise”) specifies if the considered traces are (resp. are not) affected by the noise. Furthermore, there
are two files used in [22] which present two possible scenarios: Serial Number Check and Receiver
Preliminary Profiling, i.e., “scen1” and “scen2”, respectively. The results of the verification of
formula are: “True” in 2000-all-nonoise, 2000-scen2 and 1000-all-nonoise, “False” in the other cases.
Table 1 shows the results achieved by formula. As pointed out from the results, is false in
some scenarios stating that anomalous traces occur. In particular, anomalous situations are detected in
the presence of noise which could be due for different reasons, i.e., deliberate blocking attack, peak
hour network congestion or malfunction of the software.

The sizes of models used in the experimental evaluation are shown in Table 2. The size of a
model is expressed in terms of states and transitions. As shown in Table 2 the number of states and
transitions grows dramatically according to the growing of number of traces. As a simple example the
reader can refer the last two rows of Table 2. This means that our preliminary approach suffers of the
well-known states explosion problem. To fix this weakness we propose another solution able to directly
build a reduced model starting from the execution traces. This model is presented in Section 4.

Table 2. Model Size

Size
Model

 States Transition

2000-all-noise 94803 96801
2000-all-nonoise 89810 91808
2000-scen1 88863 90861
2000-scen2 81792 83790
10000-all-noise 480361 490359
10000-all-nonoise 434073 444071

In order to better analyze the results obtained by the formula, we defined additional eight

formulae able to check every single trace belonging to a specific scenario. In particular, these formulae
investigate the cause of failure. The specified properties are expressed by the following selective
mu-calculus:

(3)



 







1  CASN


tt  CIBSN


tt  CBSN


tt

2  CASN  ff  CIBSN


ff  CBSN


ff

3  CIBSN


tt  CBSN


tt  CASN  ff

4  CASN


tt  CBSN


tt  CIBSN  ff

5  CASN


tt  CIBSN


tt  CBSN  ff

6  CASN


tt  CIBSN  ff  CBSN  ff

7  CIBSN


tt  CASN  ff  CBSN  ff

8  CBSN


tt  CASN  ff  CIBSN  ff

(3)

Table 2
φ Model and size

 Size
 Model States Transition

2000-all-noise 94803 96801

2000-all-nonoise 89810 91808

2000-scen1 88863 90861

2000-scen2 81792 83790

10000-all-noise 480361 490359

10000-all-nonoise 434073 444071

Roughly speaking, the formulae have the following
meaning:
 _ φ1 checks if all the three actions (CASN, CIBSN and

CBSN) are performed.
 _ φ2 checks if all CASN, CIBSN and CBSN are not

performed.
 _ φ3 checks if CIBSN and CBSN actions are

performed and the CASN action is not performed.
 _ φ4 checks if CASN and CBSN actions are performed

and the CIBSN action is not performed.
 _ φ5 checks if CIBSN and CASN actions are

performed and the CBSN action is not performed.
 _ φ6 checks if CIBSN and CBSN actions are not

performed and the CASN action is performed.
 _ φ7 checks if CBSN and CASN actions are not

performed and the CIBSN action is performed.
 _ φ8 checks if CIBSN and CASN actions are not

performed and the CBSN action is performed.

Table 3 shows the results obtained during the verifica-
tion of the formulae specified above. In particular, Ta-
ble 3 is organized as follow: the above specified formu-
lae are described in the rows, while the scenarios in the
columns. Each single model represents a single realis-
tic banking transaction trace. The first four sets have
2000 different traces, so 2000 formal models. The last
two have 10000 traces corresponding to 10000 differ-
ent formal models. The last row is the total number of
the analyzed traces resulting true to the formulae. This
value is obtained by adding to each other the values in
the corresponding column. The table shows the num-

Table 3
Detailed properties

Formulae
Traces

 all-noise all-nonoise scen1 scen2 all-noise all-nonoise

φ1 531 708 327 701 2478 3326
φ2 1293 1292 1348 1299 6678 6674
φ3 67 0 325 0 249 0
φ4 50 0 0 0 259 0
φ5 49 0 0 0 260 0
φ6 5 0 0 0 28 0
φ7 3 0 0 0 18 0
φ8 2 0 0 0 30 0

of Traces 2000 2000 2000 2000 10000 10000

285Information Technology and Control 2019/2/48

ber of true achieved by every type of analyzed model.
As the results shown and according to the “True” val-
ues of the φ formula, the files with no noise and the files
of second scenario have all the traces of transactions
correct, i.e., whenever a client executed a payment in
cash, the three required actions have been performed.
This result is highlighted by positive values of φ1 and φ2
and the values equal to zero achieved by the other for-
mulae. In the “False” cases the anomalous situations
are caused by several reasons. In the “scen1” scenario
bad and unsafe transactions occur because only the
action CASN has not been performed. Finally, in the
scenarios affected by noise the causes of failure occur
because one or two required actions are not performed
during a payment in cash.

4. Custom-Made Approach
As stated in Section 3 the integrated-tool approach at-
tempt suffers of the state explosion problem. In order
to address this limitation we have developed another
approach able to fix the state explosion problem.
The basic steps of the new methodology that we are
going to propose are summarized in Figure 2. In this

section, we assume that the log is pre-processed so
that the traces are rearranged to obtain separate trac-
es for each device in a distributed system exploiting
the source of each activity. Further, we give each ac-
tivity a different name; moreover simple loops are
solved using α+-algorithm; after this pre-processing,
we consider that it is now possible to describe the
traces derived from the log by means of the simple
language defined in the next subsection. Successively,
names corresponding to activities performing equal
communication among devices are given a new equal
name and, finally, system constraints may be included
in the specification by means of new traces. Proper-
ty-driven reductions can be performed on the result-
ing traces to obtain an abstract model of the system in
the process algebra Lotos. This model will be model
checked against the required properties to verify its
compliance.

4.1. Trace-Based System Specification

A specification as we will use in the following can
be derived from the log of a physical system or from
the instrumentation of a software system. The lan-
guage we assume be used to define the traces obtained
through the log pre-processing is the following.

Figure 2
The methodology

Figure 2. The methodology

4.1 Trace-Based System Specification

A specification as we will use in the following can be derived from the log of a physical system

or from the instrumentation of a software system. The language we assume be used to define the traces
obtained through the log pre-processing is the following.

Definition 1 (Trace) Let Ε = {𝑒𝑒𝑒𝑒1, 𝑒𝑒𝑒𝑒2, … } be a set of activity names, a trace of such names can be built
up by the following syntax:

 𝑡𝑡𝑡𝑡 ∷= 𝑒𝑒𝑒𝑒|𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡|〈𝑡𝑡𝑡𝑡〉∗|𝜆𝜆𝜆𝜆, (4)

 where 𝑒𝑒𝑒𝑒 ∈ Ε and 𝜆𝜆𝜆𝜆 is the empty sequence.

The operator “ .” represents trace concatenation: usually it is omitted. The operator “ * ” represents
the iteration of a trace and it turns out that 〈〈𝑡𝑡𝑡𝑡〉∗〉∗ is equivalent to 〈𝑡𝑡𝑡𝑡〉∗. Moreover, 〈𝜆𝜆𝜆𝜆〉∗ is equivalent to
𝜆𝜆𝜆𝜆. The following definitions are of interest.

Definition 2 (Alphabet, Branching names) Let 𝑇𝑇𝑇𝑇 be a set of traces:

• 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇 is the alphabet of 𝑇𝑇𝑇𝑇, and
• 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇) is the set of pairs defined as follows:

𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇) = {(𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒′)|𝑡𝑡𝑡𝑡1 = 𝑠𝑠𝑠𝑠. 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2 = 𝑠𝑠𝑠𝑠. 𝑒𝑒𝑒𝑒′. 𝑡𝑡𝑡𝑡′ ∈ 𝑇𝑇𝑇𝑇, 𝑒𝑒𝑒𝑒 ≠ 𝑒𝑒𝑒𝑒′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′ ∈ Ε′}

For example, given 𝑇𝑇𝑇𝑇 = {𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏. 𝑐𝑐𝑐𝑐. 𝑎𝑎𝑎𝑎. 𝑒𝑒𝑒𝑒, 𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑔𝑔𝑔𝑔.ℎ },

Information Technology and Control 2019/2/48286

Definition 1 (Trace). Let E = {e1, e2,…} be a set of activ-
ity names, a trace of such names can be built up by the
following syntax:

4.1 Trace-Based System Specification

A specification as we will use in the following can be derived from the log of a physical system

or from the instrumentation of a software system. The language we assume be used to define the traces
obtained through the log pre-processing is the following.

Definition 1 (Trace) Let be a set of activity names, a trace of such names can be built
up by the following syntax:

 (4)

 where and is the empty sequence.
The operator “ .” represents trace concatenation: usually it is omitted. The operator “ * ”

represents the iteration of a trace and it turns out that is equivalent to . Moreover, is
equivalent to . The following definitions are of interest.

Definition 2 (Alphabet, Branching names) Let be a set of traces:

• is the alphabet of , and
• is the set of pairs defined as follows:

For example, given ,

• ;
• .

After having obtained from the log the set of traces of activity names, our aim is to obtain from
the model of the distributed system as Lotos processes composed in parallel. The first step of our
method is:

1. Individuation of the traces of each component of the distributed system in isolation (the layout)
We give the following definition.
Definition 3 (Layout Specification) Given a set of traces of activity names derived from a log, the

Layout Specification of a distributed system is , where each has a distinct alphabet

, and each activity in has the same source, different from that of each other .
The second step consists in the representation in the traces of communications performed

among devices; the activity definitions in the log allows the individuation of corresponding
communication activities. This step is called:

 {e1,e2 ,...}

t :: e | t.t | t
*

|

e 

t
* *

t
*


*



T
T T
Be(T)

Be(T) {(e,e1) | t1  s.e.t s.e' .t ' T ,e  e' and s,t,t '  '}

T {a.b.c.d.e, a.b.g.h}

T {a,b,c,d,e,g,h}
Be(T) {(c,g)}

T T

LS {T1,...,Tn} Ti

Ti Ti
Tj

(4)

where e ∈ E and λ is the empty sequence.
The operator “. ” represents trace concatenation: usu-
ally it is omitted. The operator “ ” represents the itera-
tion of a trace and it turns out that 〈〈t〉*〉* is equivalent
to 〈t〉*. Moreover, 〈λ〉* is equivalent to λ. The following
definitions are of interest.
Definition 2 (Alphabet, Branching names). Let T be a
set of traces:
 _ αT is the alphabet of T, and
 _ Be(T) is the set of pairs defined as follows:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇)={(𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶′)|𝑡𝑡𝑡𝑡1=𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2= 𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶′. 𝑡𝑡𝑡𝑡′∈ 𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶 ≠𝐶𝐶𝐶𝐶′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′∈ Ε′}
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇)={(𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶′)|𝑡𝑡𝑡𝑡1=𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2= 𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶′. 𝑡𝑡𝑡𝑡′∈ 𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶 ≠𝐶𝐶𝐶𝐶′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′∈ Ε′}

For example, given T= {a.b.c.d.e, a.b.g.h},
 _ αT = {a, b, c, d, e, g, h };
 _ Be(T) = {(c, g)}.

After having obtained from the log the set T of trac-
es of activity names, our aim is to obtain from T the
model of the distributed system as Lotos processes
composed in parallel. The first step of our method is:
1 Individuation of the traces of each component of

the distributed system in isolation (the layout)
We give the following definition.
Definition 3 (Layout Specification). Given a set
of traces of activity names derived from a log, the
Layout Specification of a distributed system is LS =
{T1, …, Tn}, where each Ti has a distinct alphabet
αTi, and each activity in Ti has the same source, dif-
ferent from that of each other Tj.
The second step consists in the representation in
the traces of communications performed among
devices; the activity definitions in the log allows
the individuation of corresponding communica-
tion activities. This step is called:

2 Specification of the synchronization between
components (the flow)
Definition 4 (Flow Specification. Renaming func-
tion ⇝). Consider the Layout Specification LS and
the set C = {c1, …, cm}, where cj = {cj1

, …, cjk
}, 1 ≤ j ≤ m,

where the names in the same tuple individuate cor-
responding communication activities in the log.

The renaming function S is such that ∀j, s∈[1..m],
S(cj) = ej, and ej ∉ αLS, moreover, for j ≠ s it is S(cj)
≠ S(cs). The Flow Specification is FS = LS⇝S(C),
which is the result of the renaming. From now on
we will use S(C) for {S(c1), …, S(cm)}.
S renames all elements of C using the same new
name for all elements of the same tuple of C; obvi-
ously the new name given to each tuple is different
from those chosen for the other tuples and from all
other names in the traces. Table 5 shows an exam-
ple of renaming function.
The third (possibly not present) step consists in the
definition of specific requirements for the system.
They are expressed as traces that are built using
the alphabet of the Flow specification. This step is:

3 Construction of the traces that model con-
straints (the control)
Definition 5 (Control specification). Consider the
Flow specification FS, CS = {t1, …, tc} is a unique set
of finite traces on αFS (also called control traces)
with a unique activity source different from any
other in FS. CS is the Control Specification of the
system. CS is a set of traces not retrieved from the
log; note that, all events in the Control Specifica-
tion result in communication events. A wide class
of constraints can be expressed by means of such
kind of traces, also binding the behavior of several
system components. Obviously a Control Specifi-
cation expresses system requirements that are due,
but that the system does not necessarily respect;
actually, imposing such constraints can cause
deadlocks in the system. The trace-based System
Specification (SS for short) is defined as follows.
Definition 6 (System Specification). A System
Specification SS can be either a Flow Specification
only, SS = (LS ⇝ S(C)), or a Flow Specification plus
a Control Specification in the same language, SS =
(LS ⇝ S(C))∪CS.

4.2. The Working Example
The example we use to describe the approach is a sim-
ple automated manufacturing system (called MS in
the following) depicted in Figure 3. The layout con-
sists of two machines M1 and M2, one robot R, and an
assembly station AS. The machines and the assem-
bly station are cells provided with buffering areas of
limited storage capacity. Obviously, this very simple
example permits a log containing perfect information.

287Information Technology and Control 2019/2/48

The machine M1 (M2) performs an operation op1
(op2) on a raw part of type t1 (t2). After the operation
op1 (op2) is performed, the part is available in the out-
put buffering area B11 (B12) and is picked up by the
robot R to be moved into the input buffering area B21
(B22) of the assembly station. The finished product
must be assembled from two parts of type t1 and one
part of type t2; the assembly station must wait for the
robot having moved a second part of type t2 in its in-
put buffering area after it is set free from the station
itself. To guarantee this result, the control may spec-
ify that the non-deterministic behavior of the robot
(on choice between a part of type t1 and t2, when both
are available) must be restricted to always move two
parts of type t1 for each part of type t2. This control
specification supplies a bit of further information
with respect to the abstract requirement on the cor-
rect assembling of the finished products: it also con-
strains the free behavior of the system to perform a
subset of the acceptable computations.
The traces of the components of the working example
are very simple and self-explaining and we just report
them in Table 4 (machines and buffers are indexed).
We have considered buffers of one position only, but
the specification can be easily extended.
Table 5 shows the renaming function S which defines
the flow of the parts; the events in αLS that are not
present in the table are assumed unchanged and rep-
resent the internal behavior of each component. The
derived Flow Specification, FS, is shown in Table 6.
The constraints to be imposed over the system can be
expressed by the Control Specification, CS, in Table 6.
The trace C1 requires that at least one occurrence of
the event part2_load happens after two occurrences
of the event part1_mov, whereas C2 requires that at

Figure 3
Plant of the system

Figure 3. Plant of the system

Table 4. Layout Specification, LS

Machines , with

Buffering areas , with

Robot

Assembly Station 𝐴𝐴𝑆𝑆

 The machine M1 (M2) performs an operation op1 (op2) on a raw part of type t1 (t2). After

the operation op1 (op2) is performed, the part is available in the output buffering area 11B (12B) and
is picked up by the robot R to be moved into the input buffering area 21B (22B) of the assembly
station. The finished product must be assembled from two parts of type t1 and one part of type t2; the
assembly station must wait for the robot having moved a second part of type t2 in its input buffering
area after it is set free from the station itself. To guarantee this result, the control may specify that the
non-deterministic behavior of the robot (on choice between a part of type t1 and t2, when both are
available) must be restricted to always move two parts of type t1 for each part of type t2. This control
specification supplies a bit of further information with respect to the abstract requirement on the correct
assembling of the finished products: it also constrains the free behavior of the system to perform a
subset of the acceptable computations.

 The traces of the components of the working example are very simple and self-explaining
and we just report them in Table 4 (machines and buffers are indexed).

 We have considered buffers of one position only, but the specification can be easily
extended.

 Table 5 shows the renaming function which defines the flow of the parts; the events in
 that are not present in the table are assumed unchanged and represent the internal behavior of

each component. The derived Flow Specification, FS, is shown in Table 6.

Mi i [1,2]

Mi { Mi_ start.Mi _ op  Mi _ end *}
Bij i, j [1,2]

Bij { Bij _ in.Bij _ out *}
R

R { R _ init.R _ start1 R _ op.R _ end1*, R _ init.R _ start2.R _ op2.R_ end2 *}

AS { AS _ start.AS _ load1.AS _ load2.AS _ op.AS _ end *,

 AS _ start.AS _ load1.AS _ load2.AS _ op.AS _ end *}

S
LS

Table 5
Renaming function, S

∀i ∈ [1..n]:

S(Mi_end, B1i_in) = parti_aval

(B1i_out, R_starti) = parti_mov

S(R_endi, B2i_in) = parti_load

S(B2i_out, AS_loadi) = parti_work

Table 6
Trace-based System Specification, SS

Flow Specification (FS)

Machines Mi, with i ∈ [1,2]

Mi= {〈Mi_start.Mi_op.parti_aval〉* }

Machines’ buffering areas B1i, with i ∈ [1,2]

B1i = {〈parti_aval.parti_mov〉* }

Assembly station’s buffering area B2i, with i ∈ [1,2]

B1i = {〈parti_load.parti_work〉*}

Robot R

R {〈R_init.part1_mov.R_op1.part1_load〉*,

〈R_init.part2_mov.R_op2.part2_load〉*}

Assembly Station AS

AS = {〈AS_start.part1_work.part2_work.AS_op.AS_end〉*,

〈AS_start.part2_work.part1_work.AS_op.AS_end〉*}

Control Specification (CS)

C= {〈part1_mov.part1_mov.part2_load〉*,

〈part2_mov.part1_mov.part1_load〉*}

Table 4
Layout Specification, LS

Machines Mi, with i∈ [1,2]

Mi = {〈Mi_start.Mi_op.Mi_end〉*}

Buffering areas Bij, with i, j∈[1, 2]

Bij = {〈Bij_in.Bij_out〉*}

Robot R

R = {〈R_init.R_start1.R_op.R_end1〉*,
 〈R_init.R_start2.R_op2.R_end2〉*}

Assembly Station AS

AS = {〈AS_start.AS_load1.AS_load2.AS_op.AS_end〉*,

 〈AS_start.AS_load1.AS_load2.AS_op.AS_end〉}

Information Technology and Control 2019/2/48288

least two occurrences of the event part1_load hap-
pen after one occurrence of the event part2_mov. The
property expressed by the formula ϕ in the following
section represents the logic version of the behav-
ior imposed on the system by the control traces; it is
worth noting that the specification of the assembly
station does not appear to be consistent with this re-
quirement; in fact, the event AS_load1 (representing
the input of the part of type t1) does not appear two
times in the traces of AS.

4.3. Formula-Based Reduction of the System
Specification
The approach we present is based on the reduction of
the system specification: the function below removes
events from a generic trace.
Definition 7 (delI(t)). Given a trace t on the alphabet
Ε and the set I ⊆ Ε, we define the function delI : Ε* →
Ε* as follows:

The approach we present is based on the reduction of the system specification: the function

below removes events from a generic trace.
Definition 7 (𝑑𝑑𝑑𝑑𝑑𝑑�(𝑡𝑡)). Given a trace on the alphabet and the set , we define the function

 as follows:

 * *

=
=

(). () = .
() = .

< () > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t



 


 

   
  



The function can be extended to any set of traces as follows:

 (5)

According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡 is of the form “e``two

cases may occur: 1) e represents an interesting activity: we cannot delete e 2) e does not represent an

interesting activity: we delete e and the empty trace is returned; If the trace is of the form ,
we apply the delete function on and on , while if the trace is of the form , we apply the
delete function on , keeping the recursion. The function terminates when the empty trace is

encountered. After having applied on the sets of traces belonging to a system specification, we
expect that the new set of traces describes a behavior equivalent to the old one with respect to .
Consequently, there are several problems to be taken into account: when a synchronization event does
not belong to , its elimination can avoid the possible deadlock of the system. Also the elimination of
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the
problem is: what is a suitable set that can be used to reduce a system specification without altering
the behavior of the system? We use as a guide to build the property to be verified, since its
satisfaction must be preserved by the reduction.
Definition 8 (). Consider the system specification and the selective
mu-calculus formula , the set

is the set of names of activities that cannot be cancelled from .

Consider again the specification of Table 4, interesting properties to prove are: “the assembly
station cannot produce the final result after obtaining only one piece from and only one piece
from ”:

 (6)

t  I  
delI :* *

delI T

delI (T) {delI (t) | t T

 t t ' .t ''

t ' t '' t  t ' *

t '

delI

I

I

I
I 

I(SS,) SS  (LS  S(C))CS


I (SS ,)  O() Be(LS  S(C)) S(C)
SS

M1
M 2

  [M1_ op]{ M 2_ op}[M 2_ op]{ M1_ op}

The function delI can be extended to any set of traces
T as follows:

The approach we present is based on the reduction of the system specification: the function

below removes events from a generic trace.
Definition 7 (𝑑𝑑𝑑𝑑𝑑𝑑�(𝑡𝑡)). Given a trace on the alphabet and the set , we define the function

 as follows:

 * *

=
=

(). () = .
() = .

< () > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t



 


 

   
  




The function can be extended to any set of traces as follows:

 (5)

According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡 is of the form “e``two

cases may occur: 1) e represents an interesting activity: we cannot delete e 2) e does not represent an

interesting activity: we delete e and the empty trace is returned; If the trace is of the form ,
we apply the delete function on and on , while if the trace is of the form , we apply the
delete function on , keeping the recursion. The function terminates when the empty trace is

encountered. After having applied on the sets of traces belonging to a system specification, we
expect that the new set of traces describes a behavior equivalent to the old one with respect to .
Consequently, there are several problems to be taken into account: when a synchronization event does
not belong to , its elimination can avoid the possible deadlock of the system. Also the elimination of
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the
problem is: what is a suitable set that can be used to reduce a system specification without altering
the behavior of the system? We use as a guide to build the property to be verified, since its
satisfaction must be preserved by the reduction.
Definition 8 (). Consider the system specification and the selective
mu-calculus formula , the set

is the set of names of activities that cannot be cancelled from .

Consider again the specification of Table 4, interesting properties to prove are: “the assembly
station cannot produce the final result after obtaining only one piece from and only one piece
from ”:

 (6)

t  I  
delI :* *

delI T

delI (T) {delI (t) | t T

 t t ' .t ''

t ' t '' t  t ' *

t '

delI

I

I

I
I 

I(SS,) SS  (LS  S(C))CS


I (SS ,)  O() Be(LS  S(C)) S(C)
SS

M1
M 2

  [M1_ op]{ M 2_ op}[M 2_ op]{ M1_ op}

(5)

According to the syntax of a trace given in Definition
4.1, if the trace t is of the form "e'' two cases may oc-
cur: 1) e represents an interesting activity: we can-
not delete e 2) e does not represent an interesting ac-
tivity: we delete e and the empty trace λ is returned;
If the trace t is of the form t'.t'', we apply the delete
function on t' and on t'', while if the trace t is of the
form 〈t' 〉*, we apply the delete function on t', keep-
ing the recursion. The function terminates when the
empty trace is encountered. After having applied delI
on the sets of traces belonging to a system specifica-
tion, we expect that the new set of traces describes a
behavior equivalent to the old one with respect to I.
Consequently, there are several problems to be tak-
en into account: when a synchronization event does
not belong to I, its elimination can avoid the possible

deadlock of the system. Also the elimination of one
branching name could avoid the feasibility of alter-
native behaviours of the system. Then, the problem
is: what is a suitable set I that can be used to reduce
a system specification without altering the behavior
of the system? We use as a guide to build I the prop-
erty φ to be verified, since its satisfaction must be
preserved by the reduction.
Definition 8 (I(SS, φ)). Consider the system specifi-
cation SS = (LS ⇝ S(C))∪CS and the selective mu-cal-
culus formula φ, the set

removes events from a generic trace.
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows:

 * *

=
=

(). () = .
() = .

< () > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t

λ

λ λ

∈
 ∈

′ ′′ ′ ′′
 ′ ′




The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5)

According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′,
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 .
Consequently, there are several problems to be taken into account: when a synchronization event does
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be
preserved by the reduction.
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective
mu-calculus formula 𝜑𝜑𝜑𝜑, the set

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.

Consider again the specification of Table 4, interesting properties to prove are: “the assembly
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from
𝑀𝑀𝑀𝑀2”:
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(6)

“it is possible that the assembly station provides the final product”

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7)

is the set of names of activities that cannot be can-
celled from SS.
Consider again the specification of Table 4, interest-
ing properties to prove are: “the assembly station can-
not produce the final result after obtaining only one
piece from M1 and only one piece from M2”:

removes events from a generic trace.
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows:

 * *

=
=

(). () = .
() = .

< () > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t

λ

λ λ

∈
 ∈

′ ′′ ′ ′′
 ′ ′




The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5)

According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′,
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 .
Consequently, there are several problems to be taken into account: when a synchronization event does
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be
preserved by the reduction.
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective
mu-calculus formula 𝜑𝜑𝜑𝜑, the set

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.

Consider again the specification of Table 4, interesting properties to prove are: “the assembly
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from
𝑀𝑀𝑀𝑀2”:
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(6)

“it is possible that the assembly station provides the final product”

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7)

(6)

“it is possible that the assembly station provides the
final product”

removes events from a generic trace.
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows:

 * *

=
=

(). () = .
() = .

< () > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t

λ

λ λ

∈
 ∈

′ ′′ ′ ′′
 ′ ′




The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5)

According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′,
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 .
Consequently, there are several problems to be taken into account: when a synchronization event does
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be
preserved by the reduction.
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective
mu-calculus formula 𝜑𝜑𝜑𝜑, the set

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.

Consider again the specification of Table 4, interesting properties to prove are: “the assembly
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from
𝑀𝑀𝑀𝑀2”:
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

(6)

“it is possible that the assembly station provides the final product”

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7) (7)

“the system is deadlock-free”

“the system is deadlock-free”

 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8)

In the following we shall consider only the property φ , then:

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]}

where

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝};

𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7.

Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙

Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 = {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}
 REDUCTION: 1 event
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}
 REDUCTION: 0 event
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}
 REDUCTION: 0 event
Robot 𝑅𝑅𝑅𝑅

R_𝑅𝑅𝑅𝑅 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 4 events (2 events for each trace)
Assembly Station AS

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}

 REDUCTION: 4 events (2 events for each trace)
Control Traces

𝐶𝐶𝐶𝐶= {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 0 event

Since the reduction is formula-based, we will prove, in the following section, that the complete
and reduced systems satisfy the same set of formulae.

 It is worth noting that 𝜓𝜓𝜓𝜓 can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸.

4.4 Model Discovery

(8)

In the following we shall consider only the property
φ , then:

“the system is deadlock-free”

 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8)

In the following we shall consider only the property φ , then:

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]}

where

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝};

𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7.

Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙

Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 = {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}
 REDUCTION: 1 event
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}
 REDUCTION: 0 event
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}
 REDUCTION: 0 event
Robot 𝑅𝑅𝑅𝑅

R_𝑅𝑅𝑅𝑅 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 4 events (2 events for each trace)
Assembly Station AS

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}

 REDUCTION: 4 events (2 events for each trace)
Control Traces

𝐶𝐶𝐶𝐶= {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 0 event

Since the reduction is formula-based, we will prove, in the following section, that the complete
and reduced systems satisfy the same set of formulae.

 It is worth noting that 𝜓𝜓𝜓𝜓 can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸.

4.4 Model Discovery

“the system is deadlock-free”

 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8)

In the following we shall consider only the property φ , then:

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]}

where

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝};

𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7.

Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙

Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 = {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}
 REDUCTION: 1 event
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}
 REDUCTION: 0 event
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}
 REDUCTION: 0 event
Robot 𝑅𝑅𝑅𝑅

R_𝑅𝑅𝑅𝑅 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 4 events (2 events for each trace)
Assembly Station AS

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}

 REDUCTION: 4 events (2 events for each trace)
Control Traces

𝐶𝐶𝐶𝐶= {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 0 event

Since the reduction is formula-based, we will prove, in the following section, that the complete
and reduced systems satisfy the same set of formulae.

 It is worth noting that 𝜓𝜓𝜓𝜓 can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸.

4.4 Model Discovery

where

“the system is deadlock-free”

 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8)

In the following we shall consider only the property φ , then:

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]}

where

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝};

𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7.

Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙

Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 = {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}
 REDUCTION: 1 event
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}
 REDUCTION: 0 event
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}
 REDUCTION: 0 event
Robot 𝑅𝑅𝑅𝑅

R_𝑅𝑅𝑅𝑅 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 4 events (2 events for each trace)
Assembly Station AS

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}

 REDUCTION: 4 events (2 events for each trace)
Control Traces

𝐶𝐶𝐶𝐶= {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}

 REDUCTION: 0 event

Since the reduction is formula-based, we will prove, in the following section, that the complete
and reduced systems satisfy the same set of formulae.

 It is worth noting that 𝜓𝜓𝜓𝜓 can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸.

4.4 Model Discovery

delI(SS) obtains the reduced traces shown in Table 7.
Since the reduction is formula-based, we will prove,
in the following section, that the complete and re-
duced systems satisfy the same set of formulae.

.

.

,

289Information Technology and Control 2019/2/48

Table 7
Reduced traces for checking the formula ϕ, SS_ϕ

Machines Mi, with i ∈ [1,2]

R_Mi = {〈Mi_op.parti_avl〉*}

 REDUCTION: 1 event

Machines’ buffering areas B1i, with i ∈ [1,2]

R_B1i = {〈parti_avl.parti_mov〉*}

 REDUCTION: 0 event

Assembly station’s buffering area B2i, with i ∈ [1,2]

R_B2i = {〈parti_load.parti_work〉*}

 REDUCTION: 0 event

Robot R

R_R= ({〈part1_mov.part1_load〉*,
〈part2_mov.part2_load〉*})

 REDUCTION: 4 events (2 events for each trace)

Assembly Station AS

R_AS = ({〈part1_work.part2_work.AS_op*,
〈part2_work.part1_work.AS_op*})

REDUCTION: 4 events (2 events for each trace)

Control Traces

C = ({〈part1_mov.part1_mov.part2_load*,
〈part2_mov.part1_load.part1_load〉*})

 REDUCTION: 0 event

It is worth noting that ψ can be checked on the same
reduced system as ϕ, but a better reduction could
be made; on the contrary, χ can be more efficiently
checked on the system reduced on the basis of ϕ, for
example, since deadlock-freeness is preserved by the
reduction while I(SS, χ)= E.

4.4. Model Discovery
Now we define a general syntactic transformation
function T which transforms a trace-based system
specification into a Lotos program by means of the
auxiliary functions defined below. The model de-
scribed by the Lotos program is simpler and more
compact than one directly given as a transition sys-
tem; moreover, all model checking environments can
easily obtain the transition system corresponding to
the Lotos program.
Let t be a trace and T a set of traces. First(t) and Rest(t)
are inductively defined as follows::

First(λ) = λ
First(e) = e
First(t1.t2) = First(t1)
First(〈t〉*) = First(t)

Moreover, it holds that First(T) = {First(t)|t ∈ T}.
Rest(λ) = λ
Rest(e) = λ
Rest(t1.t2) = Rest(t1).t2

Rest(〈t〉*) = Rest(t).〈t〉*

Moreover, it holds that Rest(T) = {Rest(t)|t ∈ T}.

Cont(T) = {t2 |〈t1 〉*.t2 ∈ T}
First(T) returns the set of all the first names of the
traces in T, while Rest(T) defines how a trace may go
on after its first activity has been performed; Cont(T)
describes what happens when a loop is skipped. For
example, the trace 〈e.t〉*.t' describes a behavior that
becomes t.〈e.t〉*.t' after the execution of e , while it be-
comes t' when the loop terminates..
Definition 9 (Function Split). Consider a set of traces
T, Split(T) = T1,…,Tk where each subset Ti is such that
 _ Ti = {ti1

, …, tin
 |n ≥ 1, ti1

, …, tin
)∈Ti, First({ti1

}) =⋯
= First({tin

}), ∀i ∈ [1…k];
 _ T = T1∪ … ∪Tk;
 _ Ti ∩ Tj = 0 and First(Ti) ≠ First(Tj ),∀i, j ∈ [1…k] and

i ≠ j.

Intuitively, Split(T) divides T in k ≥ 1 distinct sub-sets
such that all traces having the same first event are put
in the same sub-set. For example, let

T = {〈a, b, c, d〉, 〈a, d〉, 〈c, h〉,〈c, k〉,〈b〉}.
Split(T) produces the following three sub-sets:

T1 = {〈a, b, c, d〉, 〈a, d〉};
T2 = {〈c, h〉,〈c, k〉};
T3 = {〈b〉}.

Now we are ready to define the syntactic transforma-
tion function

 Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based
system specification into a Lotos program by means of the auxiliary functions defined below. The model
described by the Lotos program is simpler and more compact than one directly given as a transition
system; moreover, all model checking environments can easily obtain the transition system
corresponding to the Lotos program.

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1)
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)

Moreover, it holds that () = { () | }First T First t t T∈ .

𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗

Moreover, it holds that () = { () | }Rest T Rest t t T∈ .

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇}

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ after the
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates.
Definition 9 (Function Split). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
is such that

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤];
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘;
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗.

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first
event are put in the same sub-set. For example, let

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}.

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets:

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉};
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉};
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}.

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯.

Definition 10 (𝒯𝒯𝒯𝒯) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛} the

.
Definition 10 (

 Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based
system specification into a Lotos program by means of the auxiliary functions defined below. The model
described by the Lotos program is simpler and more compact than one directly given as a transition
system; moreover, all model checking environments can easily obtain the transition system
corresponding to the Lotos program.

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1)
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)

Moreover, it holds that () = { () | }First T First t t T∈ .

𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗

Moreover, it holds that () = { () | }Rest T Rest t t T∈ .

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇}

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ after the
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates.
Definition 9 (Function Split). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
is such that

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤];
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘;
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗.

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first
event are put in the same sub-set. For example, let

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}.

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets:

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉};
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉};
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}.

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯.

Definition 10 (𝒯𝒯𝒯𝒯) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛} the

). Consider the system specification
SS = ((LS ⇝ S(C))∪CS) = {T1, …, Tn} the Lotos process-
es Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function

𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

 can be obtained by ap-
plying the transformation function

 Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based
system specification into a Lotos program by means of the auxiliary functions defined below. The model
described by the Lotos program is simpler and more compact than one directly given as a transition
system; moreover, all model checking environments can easily obtain the transition system
corresponding to the Lotos program.

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows:

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1)
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡)

Moreover, it holds that () = { () | }First T First t t T∈ .

𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗

Moreover, it holds that () = { () | }Rest T Rest t t T∈ .

𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇}

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ after the
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates.
Definition 9 (Function Split). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖
is such that

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤];
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘;
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗.

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first
event are put in the same sub-set. For example, let

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}.

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets:

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉};
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉};
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}.

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯.

Definition 10 (𝒯𝒯𝒯𝒯) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛} the

 defined below
to each subset Ti, 1 ≤ i ≤ n, of SS:

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

Information Technology and Control 2019/2/48290

with

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1
𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

and

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and

𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4 ,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏. 𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

where NC is a new constant. As a first simple example,
consider the set of traces of Figure 4, T = {b.e, b.f}, and
the LTS of the Lotos process P resulting from the ap-
plication of

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

, where P is:

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

Now consider the following two traces with loops, i.e.,

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏. 𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

Figure 4
Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏. 𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

Figure 5 shows the LTS of the Lotos process P '
resulting from the application of

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

, where P ' is:

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

In the cases above it is Split(T) = T and Split(T ') = T '.
Now, let us consider the following set of traces:

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

Figure 5

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows

The application of

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) if Ti = 𝑡𝑡𝑡𝑡
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 []𝐶𝐶𝐶𝐶1)[]

…
[](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒

with
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)

=
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠]

and
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

⎩
⎪
⎨

⎪
⎧

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[]
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′

where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏; (𝑒𝑒𝑒𝑒; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [] 𝑓𝑓𝑓𝑓; 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠

Now consider the following two traces with loops, i.e.,

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛}

 as long as possible produc-
es the following Lotos processes. Obviously the tool
implementing the transformation functions above
performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if
an existing one has the same declaration part or it is
composed of one event; moreover, the branches con-
taining only an exit command are eliminated. The op-
timized program is the following:

Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃))

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 []𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌)[]𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶= 𝑎𝑎𝑎𝑎; 𝑏𝑏𝑏𝑏; 𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶= 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠; 𝑌𝑌𝑌𝑌 []𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′.

Now, let us consider the following set of traces:

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗}

Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′))

The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool
implementing the transformation functions above performs some optimizations of their behaviour; for
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The
optimized program is the following:

𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎; (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) []𝑎𝑎𝑎𝑎; 𝑤𝑤𝑤𝑤[]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦)
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 []𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧

Finally, the complete Lotos program corresponding to a System Specification is obtained as follows Finally, the complete Lotos program corresponding to

a System Specification is obtained as follows
Definition 11. Consider the system specification SS =
((LS ⇝ S(C))∪CS) = {T1, …,Tn}, the corresponding Lo-
tos process is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥∶= (𝑥𝑥𝑥𝑥_1 |[𝑆𝑆𝑆𝑆_1]| (𝑥𝑥𝑥𝑥_2 |[𝑆𝑆𝑆𝑆_2]| …
(𝑥𝑥𝑥𝑥_{𝑛𝑛𝑛𝑛−1}|[𝑆𝑆𝑆𝑆_{𝑛𝑛𝑛𝑛 −1}|] 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛) …))

𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1≔ 𝑤𝑤𝑤𝑤1 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 …
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛≔ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

with 𝑤𝑤𝑤𝑤_1 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), and 𝑤𝑤𝑤𝑤_𝑛𝑛𝑛𝑛 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛).

.

.

.

,

,

291Information Technology and Control 2019/2/48

Moreover, each Si,∀i ∈ [1…n–1] is the set αTi ∩ (αTi+1

∪… ∪αTn).
The correctness of our method is stated by the follow-
ing theorem.
Theorem 2. Let SS be a System Specification, ψ a se-
lective formula and ρ = I(SS,ψ):

𝑆𝑆𝑆𝑆 �𝒯𝒯𝒯𝒯�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�� 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 𝜌𝜌𝜌𝜌 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Proof. First of all we need some notations and defi-
nitions. We define a transition relation which ig-
nores a given set of actions: given a transition system
T = (S, A,⟶, p) and a set of actions ρ ⊆ A, we define the
relation ⟶ρ⊆ S × ρ × S such that, for each α ∈ ρ, ρ∈S:

By 𝑝𝑝 ���→� 𝑞𝑞 we express the fact that it is possible to pass
from 𝑝𝑝 to 𝑞𝑞 by performing a (possibly empty) sequence
of actions not belonging to 𝜌𝜌 and then the action 𝛼𝛼 in 𝜌𝜌.
Note that ⟶�=⟶.
The notions of 𝜌𝜌 -bisimulation and 𝜌𝜌 -equivalence
between transition systems are given as follows.
Informally, two transition systems are 𝜌𝜌 -equivalent iff
they behave in the same way with respect to the actions
in 𝜌𝜌.
Let 𝑇𝑇� = (𝑆𝑆�, 𝐴𝐴,⟶, 𝑝𝑝�) and 𝑇𝑇� = (𝑆𝑆�, 𝐴𝐴,⟶, 𝑝𝑝�) be
transition systems and 𝜌𝜌 𝜌 𝐴𝐴.

Definition 11. Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛} , the
corresponding Lotos process is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥 ∶= (𝑥𝑥𝑥𝑥_1 |[𝑆𝑆𝑆𝑆_1]| (𝑥𝑥𝑥𝑥_2 |[𝑆𝑆𝑆𝑆_2]| … (𝑥𝑥𝑥𝑥_{𝑛𝑛𝑛𝑛 − 1}|[𝑆𝑆𝑆𝑆_{𝑛𝑛𝑛𝑛 − 1}|] 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛) …))
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 ≔ 𝑤𝑤𝑤𝑤1 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 …
 𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

with 𝑤𝑤𝑤𝑤_1 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), and 𝑤𝑤𝑤𝑤_𝑛𝑛𝑛𝑛 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛).

Moreover, each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,∀𝑖𝑖𝑖𝑖 ∈ [1 …𝑛𝑛𝑛𝑛 − 1] is the set 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ (𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖+1 ∪ …∪ 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛).
The correctness of our method is stated by the following theorem.
Theorem 2. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = I(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆 �𝒯𝒯𝒯𝒯 �𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�� 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜌𝜌𝜌𝜌 − 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Proof. First of all we need some notations and definitions. We define a transition relation which ignores
a given set of actions: given a transition system 𝑇𝑇𝑇𝑇 = (𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶,⟶,𝑝𝑝𝑝𝑝) and a set of actions 𝜌𝜌𝜌𝜌 ⊆ 𝐶𝐶𝐶𝐶, we define
the relation ⟶𝜌𝜌𝜌𝜌⊆ 𝑆𝑆𝑆𝑆 × 𝜌𝜌𝜌𝜌 × 𝑆𝑆𝑆𝑆 such that, for each 𝛼𝛼𝛼𝛼 ∈ 𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌 ∈ 𝑆𝑆𝑆𝑆:

𝑝𝑝𝑝𝑝
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒 ≡ 𝑝𝑝𝑝𝑝

 𝛿𝛿𝛿𝛿𝛼𝛼𝛼𝛼
�⎯⎯�𝑒𝑒𝑒𝑒,𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿 ∈ (𝐶𝐶𝐶𝐶 − 𝜌𝜌𝜌𝜌)∗

By 𝑝𝑝𝑝𝑝
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒 we express the fact that it is possible to pass from 𝑝𝑝𝑝𝑝 to 𝑒𝑒𝑒𝑒 by performing a (possibly empty)

sequence of actions not belonging to 𝜌𝜌𝜌𝜌 and then the action 𝛼𝛼𝛼𝛼 in 𝜌𝜌𝜌𝜌. Note that ⟶𝐴𝐴𝐴𝐴=⟶.
The notions of 𝜌𝜌𝜌𝜌 -bisimulation and 𝜌𝜌𝜌𝜌 -equivalence between transition systems are given as

follows. Informally, two transition systems are 𝜌𝜌𝜌𝜌 -equivalent iff they behave in the same way with
respect to the actions in 𝜌𝜌𝜌𝜌.
Let 𝑇𝑇𝑇𝑇1 = (𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶,⟶,𝑝𝑝𝑝𝑝1) and 𝑇𝑇𝑇𝑇2 = (𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶,⟶, 𝑝𝑝𝑝𝑝2) be transition systems and 𝜌𝜌𝜌𝜌 ⊆ 𝐶𝐶𝐶𝐶.

⁃ A 𝜌𝜌𝜌𝜌 -bisimulation, 𝐶𝐶𝐶𝐶, is a binary relation on 𝑆𝑆𝑆𝑆1 × 𝑆𝑆𝑆𝑆2 such that 𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 implies:
(i) 𝑠𝑠𝑠𝑠

 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑠𝑠𝑠𝑠′ implies 𝑒𝑒𝑒𝑒

 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒

′ with 𝑠𝑠𝑠𝑠′𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒′; and

(ii) 𝑒𝑒𝑒𝑒
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒

′ implies 𝑠𝑠𝑠𝑠
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑠𝑠𝑠𝑠′ with 𝑠𝑠𝑠𝑠′𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒′

⁃ 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2 are 𝜌𝜌𝜌𝜌 -equivalent (𝑇𝑇𝑇𝑇1 ≈𝜌𝜌𝜌𝜌 𝑇𝑇𝑇𝑇2) iff there exists a 𝜌𝜌𝜌𝜌 -bisimulation 𝐶𝐶𝐶𝐶 containing the
pair (𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝2).

For each 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, let 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 be the Lotos process obtained by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 and let 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 be the Lotos process

obtained by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 after deleting the actions not in 𝜌𝜌𝜌𝜌 (i.e., 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)). We show that 𝐶𝐶𝐶𝐶 = {(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖)} is a 𝜌𝜌𝜌𝜌 -
bisimulation.
The proof is carried out by structural induction on Lotos processes.

We consider the case 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼;𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. All the other cases can be proved similarly. If 𝛼𝛼𝛼𝛼 belongs to 𝜌𝜌𝜌𝜌,

Corollary 1. Let SS be a System Specification, ψ a
selective formula and ρ = (SS, ψ):

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered.
The corollaries below express important consequences on the system requirements of the reduction
method.

Corollary 1.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓

 Proof. The proof follows immediately by Theorems 1 and 2.

Corollary 2.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒

 Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)).

 For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the
specification in Table 6 (which is defined in the following section and can be obtained from the tool used
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the
verification time.

Table 8. Reduction results

 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)

states transitions states transitions state space
reduction %

62208 230688 9504 30384 86.3 %

Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction
obtained with our methodology for this purpose.

Table 9. Verification time for the property 𝜙𝜙𝜙𝜙

Proof. The proof follows immediately by Theorems 1
and 2.
Corollary 2. Let SS be a System Specification, χ =
νZ.〈Ε〉Ε tt ∧ [Ε]Ε Z, ψ any selective formula, and ρ =
I(SS, ψ):

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered.
The corollaries below express important consequences on the system requirements of the reduction
method.

Corollary 1.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓

 Proof. The proof follows immediately by Theorems 1 and 2.

Corollary 2.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒

 Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)).

 For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the
specification in Table 6 (which is defined in the following section and can be obtained from the tool used
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the
verification time.

Table 8. Reduction results

 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)

states transitions states transitions state space
reduction %

62208 230688 9504 30384 86.3 %

Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction
obtained with our methodology for this purpose.

Table 9. Verification time for the property 𝜙𝜙𝜙𝜙

Proof. The proof follows immediately by Theorem 2
and by Definition 8, since Be(SS) = Be(delρ (SS)).
For the experiment we used the CADP [10] tool.
CADP is a popular toolbox that supports high-level
descriptions written in Lotos. In Table 8,

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered.
The corollaries below express important consequences on the system requirements of the reduction
method.

Corollary 1.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓

 Proof. The proof follows immediately by Theorems 1 and 2.

Corollary 2.
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒

 Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)).

 For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the
specification in Table 6 (which is defined in the following section and can be obtained from the tool used
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the
verification time.

Table 8. Reduction results

 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)

states transitions states transitions state space
reduction %

62208 230688 9504 30384 86.3 %

Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction
obtained with our methodology for this purpose.

Table 9. Verification time for the property 𝜙𝜙𝜙𝜙

is the program obtained from the specification in Ta-
ble 6 (which is defined in the following section and
can be obtained from the tool used to implement the
methodology), while S(MS) represents the transi-
tion system for this process; the table compares the
size of S(MS) with the size of the transition systems
S(MS_ϕ): the reduction we perform is significant, in
terms of both states and transitions, and thus it im-
plies a corresponding reduction of the verification
time.

A 𝜌𝜌 -bisimulation, 𝐵𝐵, is a binary relation on 𝑆𝑆� × 𝑆𝑆�
such that 𝑟𝑟𝐵𝐵𝑟𝑟 implies:
(i) 𝑟𝑟 ���→� 𝑟𝑟� implies 𝑟𝑟 ���→� 𝑟𝑟� with 𝑟𝑟�𝐵𝐵𝑟𝑟�; and

(ii) 𝑟𝑟 ���→� 𝑟𝑟� implies 𝑟𝑟 ���→� 𝑟𝑟� with 𝑟𝑟�𝐵𝐵𝑟𝑟�
𝑇𝑇� and 𝑇𝑇� are 𝜌𝜌 -equivalent (𝑇𝑇� ≈� 𝑇𝑇�) iff there exists
a 𝜌𝜌 -bisimulation 𝐵𝐵 containing the pair (𝑝𝑝�, 𝑝𝑝�).

 _

 _

For each 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖, let 𝑞𝑞� be the Lotos process obtained
by 𝑇𝑇� and let 𝑝𝑝� be the Lotos process obtained by 𝑇𝑇� after
deleting the actions not in 𝜌𝜌 (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑�(𝑇𝑇�)). We show
that 𝐵𝐵 𝐵 𝐵(𝑝𝑝�, 𝑞𝑞�)} is a 𝜌𝜌 -bisimulation.

The proof is carried out by structural induction on
Lotos processes.

We consider the case 𝑝𝑝� 𝐵 𝛼𝛼𝛼 𝑝𝑝��. All the other cases can
be proved similarly. If 𝛼𝛼 belongs to 𝜌𝜌, it means that all
the traces in 𝑇𝑇� start with 𝛼𝛼, so 𝑝𝑝�

���→� 𝑝𝑝�� and 𝑞𝑞� is equal to

𝛼𝛼𝛼 𝑞𝑞��, thus 𝑞𝑞�
���→� 𝑞𝑞�� and by inductive hypothesis

(𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. If 𝛼𝛼 does not belong to 𝜌𝜌, 𝑝𝑝�
���→ 𝑝𝑝��. Since 𝛼𝛼 is

not a branching action, then 𝑞𝑞� cannot be of the form

𝛼𝛼𝛼 𝛼𝛼 𝛼 𝛼𝛼, so it holds that 𝑞𝑞�
���→ 𝑞𝑞�� and by inductive

hypothesis (𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. To complete the proof also the
actions that 𝑞𝑞 can perform have been considered.

The corollaries below express important consequences
on the system requirements of the reduction method.

For each 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖, let 𝑞𝑞� be the Lotos process obtained
by 𝑇𝑇� and let 𝑝𝑝� be the Lotos process obtained by 𝑇𝑇� after
deleting the actions not in 𝜌𝜌 (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑�(𝑇𝑇�)). We show
that 𝐵𝐵 𝐵 𝐵(𝑝𝑝�, 𝑞𝑞�)} is a 𝜌𝜌 -bisimulation.

The proof is carried out by structural induction on
Lotos processes.

We consider the case 𝑝𝑝� 𝐵 𝛼𝛼𝛼 𝑝𝑝��. All the other cases can
be proved similarly. If 𝛼𝛼 belongs to 𝜌𝜌, it means that all
the traces in 𝑇𝑇� start with 𝛼𝛼, so 𝑝𝑝�

���→� 𝑝𝑝�� and 𝑞𝑞� is equal to

𝛼𝛼𝛼 𝑞𝑞��, thus 𝑞𝑞�
���→� 𝑞𝑞�� and by inductive hypothesis

(𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. If 𝛼𝛼 does not belong to 𝜌𝜌, 𝑝𝑝�
���→ 𝑝𝑝��. Since 𝛼𝛼 is

not a branching action, then 𝑞𝑞� cannot be of the form

𝛼𝛼𝛼 𝛼𝛼 𝛼 𝛼𝛼, so it holds that 𝑞𝑞�
���→ 𝑞𝑞�� and by inductive

hypothesis (𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. To complete the proof also the
actions that 𝑞𝑞 can perform have been considered.

The corollaries below express important consequences
on the system requirements of the reduction method.

Table 8
Reduction results

S(MS) S(MS_ϕ)

states transitions states transitions state space
reduction %

62208 230688 9504 30384 86.3 %

Information Technology and Control 2019/2/48292

Table 9 shows the time employed by the CADP to
check ϕ on both specifications and the time reduction
obtained with our methodology for this purpose.

Table 9
Verification time for the property ϕ

standard
transition system

reduced
 transition system

time
 reduction %

203.2s 18.8s 90.7 %

5 Experimental Evaluation Using the
Custom-Made Approach
The methodology presented in the previous section
has been exploited for the implementation of a pro-
totype, whose architecture is shown in Figure 6. The
prototype is implemented in Java, for portability and
reusability. Moreover, OpenXES for managing event
log data has been used. The parsed traces are trans-
lated into Lotos processes following the methodology
described in the previous section; the part of the tool
performing the trace reduction can be skipped and, in
this case, the produced Lotos program corresponds to
the complete model representing the system traces.
In any case, the produced Lotos process can be sup-

Figure 6
The Architecture of our Prototype

plied to the CADP formal verification environment to
check the properties.
The aim is to evaluate the performance of the ap-
proach presented in this paper. Experiments were ex-
ecuted on a 32 bit, 2.5 GHz Intel Core i7 CPU equipped
with 2 GB of RAM and running Ubuntu 15.10 Linux.
First of all we consider again the example of Section
3. Table 10 shows the state space reduction obtained
using the custom-made approach. In particular, the
table shows:
 _ in the column “custom-made approach”, sub-

column “time”, the time to produce the Lotos
specification RP starting from the reduced traces
is reported. Moreover, the table shows also the
number of states (sub-column “states”) and of the
transitions (sub-column “trans”) of the automaton
corresponding to the Lotos process RP obtained
using our approach. Note that the reduction has
been applied according to the property that we
have to prove for each case study. In this case we
consider the φ property explained in Section 3.

 _ in the column “reduction”, the state space reduction
is reported.

As the results show, our custom-made approach is
able to achieve a state space reduction that is great-
er than or equal to 96% in all of considered cases. It

 standard
 transition system

 reduced
 transition system

 time
 reduction %

203.2s 18.8s 90.7 %

5 Experimental Evaluation Using the Custom-Made Approach

The methodology presented in the previous section has been exploited for the implementation of

a prototype, whose architecture is shown in Figure 6. The prototype is implemented in Java, for
portability and reusability. Moreover, OpenXES for managing event log data has been used. The parsed
traces are translated into Lotos processes following the methodology described in the previous section;
the part of the tool performing the trace reduction can be skipped and, in this case, the produced Lotos
program corresponds to the complete model representing the system traces. In any case, the produced
Lotos process can be supplied to the CADP formal verification environment to check the properties.

Figure 6. The Architecture of our Prototype.

The aim is to evaluate the performance of the approach presented in this paper. Experiments were

executed on a 32 bit, 2.5 GHz Intel Core i7 CPU equipped with 2 GB of RAM and running Ubuntu 15.10
Linux.

First of all we consider again the example of Section 3. Table 10 shows the state space reduction
obtained using the custom-made approach. In particular, the table shows:

• in the column “custom-made approach”, sub-column “time”, the time to produce the Lotos
specification 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 starting from the reduced traces is reported. Moreover, the table shows also
the number of states (sub-column “states”) and of the transitions (sub-column “trans”) of the
automaton corresponding to the Lotos process 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 obtained using our approach. Note that the
reduction has been applied according to the property that we have to prove for each case study.
In this case we consider the 𝜑𝜑𝜑𝜑 property explained in Section 3.

• in the column “reduction”, the state space reduction is reported.
As the results show, our custom-made approach is able to achieve a state space reduction that is

greater than or equal to 96% in all of considered cases. It should be underlined that this reduction of the
state space has also led to a considerable reduction of verification time. For example, for “10000-all-
nonoise” the custom-made approach has employed 134.080 sec, while the integrated-tool ones has

293Information Technology and Control 2019/2/48

Table 10
Results for the reduced bank example - state space

Case study
custom-made approach reduction

time (s) states trans. state space
reduction %

2000-all-noise 0.219 3264 4495 96%

2000-all-nonoise 0.326 787 1081 99%

2000-scen1 0.275 998 1377 98%

2000-scen2 0.258 754 1074 99%

10000-all-noise 1.148 10659 14487 97%

10000-all-nonoise 1.487 902 1203 99%

should be underlined that this reduction of the state
space has also led to a considerable reduction of ver-
ification time. For example, for “10000-all-nonoise”
the custom-made approach has employed 134.080
sec, while the integrated-tool ones has employed
31686.372 sec with a reduction equal to 99%.
To better complete evaluation, also other samples of
real systems were selected. Moreover, we report also
the property that we have checked on each case study.
Repair Telephones: this example is taken from the
ProM website4 and considers a process to repair tele-
phones in a company. The company can fix 3 different
types of phones.
Property: “It is not possible to archive the case if
the user has not been informed”. This property is ex-
pressed by the following selective mu-calculus:

employed 31686.372 sec with a reduction equal to 99%.

Table 10. Results for the reduced bank example - state space

Case study custom-made approach reduction
 time (s) states trans. state space

reduction %
2000-all-noise 0.219 3264 4495 96%

2000-all-nonoise 0.326 787 1081 99%
2000-scen1 0.275 998 1377 98%
2000-scen2 0.258 754 1074 99%

10000-all-noise 1.148 10659 14487 97%
10000-all-nonoise 1.487 902 1203 99%

To better complete evaluation, also other samples of real systems were selected. Moreover, we

report also the property that we have checked on each case study.

Repair Telephones: this example is taken from the ProM website4 and considers a process to repair
telephones in a company. The company can fix 3 different types of phones.
Property: “It is not possible to archive the case if the user has not been informed”. This property is
expressed by the following selective mu-calculus:

 𝜑𝜑𝜑𝜑 = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜_𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (9)

The property is true on both the reduced and the complete models.
University of Pisa: the careers of the students of the Bachelor Degree in Computer Engineering have
been examined to evaluate the level of compliance of these students with a set of rules that, if followed,
lead to the best performance in time and results. The rules specifying the correct behavior are expressed
as constraints on the order in which the marks for some courses can be obtained. For example the
following constraint can be set
Property: “It is possible to obtain marks for Computer Architecture first and then for Digital Logic
Design”. This property is expressed by the following selective mu-calculus formula:

 𝜑𝜑𝜑𝜑 = 〈𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶_𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒〉∅〈𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎〉∅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (10)

Property 𝜑𝜑𝜑𝜑 is false in a correct behavior and it is false on both the reduced and the complete models,
since Digital Logic Design is a bridging course for Computer Architecture.

WABO: this example is taken from the ProM website5. This data originates from the CoSeLoG project
executed under NWO project number 638.001.211. This event log contains the records of the execution
of the receiving phase of the building permit application process in an anonymous municipality.
Property: “activity “T10 Determine necessity to stop indication” which determines whether the process
should be stopped cannot be performed if activity “T06 Determine necessity of stop advice” has not been

4 http://www.processmining.org/logs/start
5 http://www.processmining.org/logs/start

(9)

The property is true on both the reduced and the com-
plete models.
University of Pisa: the careers of the students of
the Bachelor Degree in Computer Engineering have
been examined to evaluate the level of compliance
of these students with a set of rules that, if followed,
lead to the best performance in time and results. The
rules specifying the correct behavior are expressed as
constraints on the order in which the marks for some
courses can be obtained. For example the following
constraint can be set

4 http://www.processmining.org/logs/start

Property: “It is possible to obtain marks for Com-
puter Architecture first and then for Digital Logic
Design”. This property is expressed by the following
selective mu-calculus formula:

𝜑𝜑𝜑𝜑=〈𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∅〈𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎〉∅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
(10)

Property φ is false in a correct behavior and it is false
on both the reduced and the complete models, since
Digital Logic Design is a bridging course for Comput-
er Architecture.
WABO: this example is taken from the ProM web-
site5. This data originates from the CoSeLoG project
executed under NWO project number 638.001.211.
This event log contains the records of the execution of
the receiving phase of the building permit application
process in an anonymous municipality.
Property: “activity “T10 Determine necessity to stop
indication” which determines whether the process
should be stopped cannot be performed if activity
“T06 Determine necessity of stop advice” has not
been performed”.
This property is expressed by the following selective
mu-calculus:

performed”.
This property is expressed by the following selective mu-calculus:

 𝜑𝜑𝜑𝜑 = [𝑎𝑎𝑎𝑎]{𝑏𝑏𝑏𝑏}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11)

where

 = 10_ _ _ _ _a T Determine necessity to stop indication
 = 06_ _ _ _ _b T Determine necessity of stop advice

The property is true in both in the reduced and in the standard models.

Table 11 has the same structure of Table 10. It shows the state space reduction obtained using
our custom-made approach. In these case we also report the data related to the standard model obtained
using the integrated-tool approach.

In all the experiments we obtain good results (for example, for the WABO case study, 99% of
reduction is obtained). Table 11 shows that the time required for the translation to a Lotos specification
of the distributed systems is very low and is even lower when compared with the high efficiency of a
general purpose model checker verifying the compliance rules.

Table 11. Results for the analysed data sets - state space

 Case study custom-made integrated-tool reduction
 time (s) states trans. time (s) states trans. state space

reduction %
Repair Telephones 0.016 4 5 1.43 389 464 98 %
University of Pisa 0.01 142 372 0.262 480 820 60 %

WABO 0.034 17 26 2.445 474 588 99 %

6 Limitations

Analyzing data gathered from a running program provides a definite image of a software system,

especially when the source code is not provided. Thus, to perform dynamic analysis, the data are collected
through instrumentation and execution of a system into one or more execution traces. In order to produce
an accurate picture of the system many execution traces have to be collected and this lead to retrieve a
large amount of data. This leads to a time-consuming activity, typical of a dynamic analysis. In fact, the
main disadvantage of this kind of approach is related to the large amount of data that is collected at run-
time. Furthermore, to cope with the space complexity problem, these collected data have to be pre-
processed in order to generate models with a reduced size acceptable by formal verification tools. For
this purpose, we have used the selective mu-calculus logic, which induces an abstraction using a set of
actions O. Obviously on this model it is possible only to verify properties with occurring actions in O.
Thus, if from one side our approach provides a solution able to solve the scalability problem, from the
other one we are able to only verify behaviours represented in the abstracted model.

Considering that the model is built from traces, another weakness is represented by the
impossibility to exactly localize at source-code level the vulnerability. This leads to more time required
to fix the problem in the source code. Thus, the proposed method suffers from typical weaknesses of
dynamic approaches i.e., the vulnerability can be found only after it happened.

(11)

where

= 10_ _ _ _ _a T Determine necessity to stop indication
= 06_ _ _ _ _b T Determine necessity of stop advice

The property is true in both in the reduced and in the
standard models.
Table 11 has the same structure of Table 10. It shows
the state space reduction obtained using our cus-
tom-made approach. In these case we also report the
data related to the standard model obtained using the
integrated-tool approach.
In all the experiments we obtain good results (for ex-
ample, for the WABO case study, 99% of reduction is
obtained). Table 11 shows that the time required for
the translation to a Lotos specification of the distrib-
uted systems is very low and is even lower when com-
pared with the high efficiency of a general purpose
model checker verifying the compliance rules.

5 http://www.processmining.org/logs/start

.

.

.

Information Technology and Control 2019/2/48294

6. Limitations
Analyzing data gathered from a running program pro-
vides a definite image of a software system, especially
when the source code is not provided. Thus, to per-
form dynamic analysis, the data are collected through
instrumentation and execution of a system into one
or more execution traces. In order to produce an ac-
curate picture of the system many execution traces
have to be collected and this lead to retrieve a large
amount of data. This leads to a time-consuming ac-
tivity, typical of a dynamic analysis. In fact, the main
disadvantage of this kind of approach is related to the
large amount of data that is collected at run-time. Fur-
thermore, to cope with the space complexity problem,
these collected data have to be pre-processed in order
to generate models with a reduced size acceptable by
formal verification tools. For this purpose, we have
used the selective mu-calculus logic, which induces
an abstraction using a set of actions O. Obviously on
this model it is possible only to verify properties with
occurring actions in O. Thus, if from one side our ap-
proach provides a solution able to solve the scalability
problem, from the other one we are able to only verify
behaviours represented in the abstracted model.
Considering that the model is built from traces, an-
other weakness is represented by the impossibility to
exactly localize at source-code level the vulnerability.
This leads to more time required to fix the problem in
the source code. Thus, the proposed method suffers
from typical weaknesses of dynamic approaches i.e.,
the vulnerability can be found only after it happened.
Another issue is related to the temporal logic formu-
lae that are generated with the help of domain experts,
for this reason the proposed approach is not fully au-
tomatic.

Table 11
Results for the analysed data sets - state space

Case study
custom-made integrated-tool reduction

time (s) states trans. time (s) states trans. state space reduction %

Repair Telephones 0.016 4 5 1.43 389 464 98 %

University of Pisa 0.01 142 372 0.262 480 820 60 %

WABO 0.034 17 26 2.445 474 588 99 %

Generally speaking, we consider a dynamic approach
because dynamic analysis is able of exposing a subtle
flaw or vulnerability too complicated for static analy-
sis alone to reveal and can also be the more expedient
method of testing [21]. From the other side, dynamic
analysis is able to find defects only in the part of the
trace that is actually collected.

7. Related Work
Process mining from execution traces is an interest-
ing and challenging research problem in many areas
of computer science. In the information systems
context, this is referred to workflow mining, aiming
at retrieving business process models from the anal-
ysis of event logs recorded in one or more informa-
tion systems used to support those processes. Quite
a lot of research has been done in this setting ([12, 5,
24] to name just a few). The reached results focused
on different problems, such as log analysis through
clustering, data cleaning from noise, or recognition of
particular workflow patterns. Most of them build the
workflow models by using the Petri Net formalism
and apply analysis techniques on such models.
 Model Checking is a verification technique to estab-
lish whether a system model complies with a spec-
ification described in a formal language. Typically,
system models are given by non-deterministic or
probabilistic automata. Several works aiming to ver-
ify the system development have been proposed. For
example, authors in [31] propose ConTEA, a tool in-
tegrating the UPPAAL model checker with ConData
model based test generator and Conformance and

295Information Technology and Control 2019/2/48

Fault Injection (ConFI) methodology. The main aim
of this work is to improve the quality of the formal
model and robustness of the system under analysis.
This purpose is reached using a single state machine
derived using both ConFI and UPPAAL. Differently,
the focus of the proposed method is on the abstraction
more than on the quality and robustness of the built
models. Boucherit et al. in [3] verify both model and
implementation of a software system using an hybrid
approach combining property base testing and model
checking technique. They propose an approach based
on Petri Nets and illustrate its functioning through a
simple example related to an access control system. A
Formal Quality of Service Assurances Method which
relies on stochastic Markov models is proposed in
[15] with the aim to facilitate the decision-making
process. They consider probabilistic model check-
ing with a set of user-related metric to automatical-
ly generate a probabilistic model. The focus of this
study is related to the deployment phase, when the
software engineer has to select an appropriate cloud
offer and deploy the application or one of its parts,
such as a microservice. While the probabilistic model
checking can not provide counterexample, in the non
probabilistic setting counterexamples represent one
of the key reasons for the success of model checking
[16]. They provide, in the case where model checking
shows a property to be false, evidence of this viola-
tion, typically in the form of a trace through the mod-
el. The method we proposed, considering the model
checking technique, offers the counterexample show-
ing the reason why a trace is marked as false from the
model checker.
According with the above works, the models used in
model checking are manually constructed. However,
such model-construction can be extremely time-con-
suming, or even infeasible in the case of insufficient
documentation for an existing system, thus there is an
increasing interest in model learning (or specification
mining) for formal verification. For example, in [18] a
learning algorithm has been proposed for probabilis-
tic systems. More precisely, in [18] AAlergia has been
presented which is a state merging algorithm that ex-
clusively learns deterministic models. Given a sam-
ple of traces, the algorithm generates a Deterministic
Labeled Markov Chain (DLMC) model. A limit of this
approach is that the algorithm might not converge to
a good model in general. Only with a sufficiently big

sample set of traces it is ensured that a given property
will hold on the original and the learned model with
the same probability. Researchers in [1, 20] propose
a fuzzy model aimed to provide security for sensi-
tive data/information in web applications exploiting
fuzzy classifiers. Their model is automatically de-
veloped to detect vulnerability in web applications
and state threat or penetration level. As discussed in
literature, when classification models built with ma-
chine learning algorithms fail in instance prediction,
it is not easy for the analysis to detect and understand
what happened [23]. Differently, the adoption of the
model checking techniques with the adoption of the
counterexample provides to the analyst a reasoning
technique to deep understand the model and its be-
haviour.
Authors in [8, 17] propose TLA+, a specification lan-
guage for concurrent and reactive systems combin-
ing the temporal logic TLA with the full first-order
logic and set theory. Proving TLA+ properties needs
theorem proof system requiring human expertise in
the proof checkers. On the contrary, our method uses
a model-checking based verification tool that allows
to automatically check the properties, saving a lot of
efforts.
On the other hand, learning models is also useful in
the compliance checking field, which has a growing
importance for the businsess process management
and auditing communities. It refers to the adher-
ence of the discovered process to internal or external
rules and then deals with verification issues. Many
efforts have been taken in the research of business
process compliance checking. The first comprehen-
sive compliance checking approach based on Petri
net patterns and alignments was proposed in [25] by
Ramezani, Fahland, and van der Aalst. Colored Petri
Nets have been used in [11] to perform a backward
compliance checking to verify whether executions of
business processes are complying with certain nor-
mative constraints. They principally focused on the
formal theories of normative systems. In [14] compli-
ance checking has been conducted using an abstract
process model and abstract compliance rules. In this
way state explosion arising from control flow and data
dimension is avoided.
 In this paper, we derive an abstract model, defined in
a process algebra, from traces obtained from the exe-
cution log; process mining techniques are supposed

Information Technology and Control 2019/2/48296

to be used to obtain a model for which compliance
checking can be performed to find commonalities
and discrepancies between the modeled behavior
and the observed behavior [30]. In our case compli-
ance rules can be represented both directly as other
traces to be included in the model and as temporal
logic formulae; in this last case, we check compliance
using a formal verification methodology, i.e., model
checking. In this way we establish compliance in a
formal environment without introducing addition-
al concepts. Moreover, our aim is to use an existing
model checker such as CADP [10], which is a mature
verification tool with modern designs, with expres-
sive input languages and efficient analysis methods,
and not to design a custom-made model checker. In
fact, the most widely used model checkers are by now
extremely sophisticated programs that have been
crafted over many years by experts in the specific
techniques employed by the tool: any re-implemen-
tation of similar tools could likely yield worse per-
formance. We exploit CADP [10] since it is a popular
toolbox maintained, regularly improved, and used
in many industrial projects, as a verification frame-
work. Another important advantage of using CADP
is that, when a property does not hold, the model
checking algorithm generates a counter-example,
i.e., an execution trace leading to a state in which the
property is violated. This ability to generate count-
er-examples can be exploited to pinpoint the cause of
an error and possibly correct it. By automating a te-
dious task that must otherwise be done manually, our
approach reduces the cost associated with analysing
process models for compliance. A typical problem
of the model checking context is present also in our
context, since the process discovered from the log
can be much too complex; then we use abstraction
techniques to discover abstract processes after pre-
processing the traces derived from the log, so directly
building a reduced model; the method is completely
automatable since it is based on the syntactic struc-
ture of the formulae to be verified.
 The model checking approach has been already used
in [13] where the authors propose to map BPMN
models directly to finite state machines (i.e., Kripke
structures) and to express the compliance rules in a
graphical language for better understandability. Sub-
sequently, these are translated into linear temporal
logic formulae to be integrated.

8. Conclusion
This paper presents an approach to compliance
checking through model checking. The approach
aims at discovering a process described by means of a
process algebra language, while the compliance rules
are defined through temporal logic properties.
The main characteristics of the method are:
 _ the traces obtained from the logs are pre-processed

to obtain a suitable representation of a distributed
system;

 _ pre-processed traces are reduced on the basis of the
logic properties; so it is avoided the state explosion
arising when starting from big sets of traces;

 _ reduction rules directly apply to the traces, without
building the corresponding LTSs before; the rules
are based on the traces syntax and are completely
automatable, no semantic information is required
and an easy implementation is possible;

 _ compliance between the discovered process and
the rules is performed through model checking of a
set of temporal logic properties defining the rules;
existing model checking environments can be used
and ad-hoc checkers do not need; the semantics
of the system is obtained as a transition system
automatically generated by the model checking
environment;

 _ the proof method can easily include compositional
techniques too, like as, for example, [7, 8, 26],
so proving the properties for single devices it is
possible to obtain the proof of the properties for
the whole system.

In this paper, we present a formal approach and pre-
suppose perfect information. However, real logs are
rarely complete and/or noise free. We are consider-
ing how to modify the truth value of each formula on
the basis of the fact that such value is true on all be-
haviours except some with very low probability of oc-
currence, or this value is false on all behaviors except
those with very low probability of occurrence, or it is
false because of the incompleteness of the behavior.

Acknowledgment
This work has been partially supported by H2020
EU-funded projects SPARTA contract 830892 and
C3ISP and EIT-Digital Project HII and PRIN “Gov-
erning Adaptive and Unplanned Systems of Systems”
and the EU project CyberSure 734815.

297Information Technology and Control 2019/2/48

References
1. Alhassan, J. K., Misra, S., Umar, A., Maskeliūnas, R.,

Damaševi ius, R., Adewumi, A. A Fuzzy Classifier-Based
Penetration Testing for Web Applications. In Interna-
tional Conference on Information Theoretic Security,
Springer, 2018, 95-104. https://doi.org/10.1007/978-3-
319-73450-7_10

2. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G. Se-
lective Mu-Calculus and Formula-Based Equivalence
of Transition Systems. Journal of Computing System
Sciences, 1999, 59(3), 537-556. https://doi.org/10.1006/
jcss.1999.1660

3. Boucherit, A., Castro, L. M., Khababa, A., Hasan, O.
Towards the Formal Development of Software Based
Systems: Access Control System as a Case Study. Infor-
mation Technology and Control, 2018, 47(3), 393-405.
https://doi.org/10.5755/j01.itc.47.3.20330

4. Ceccarelli, M., Cerulo, L., Santone, A. De Novo Re-
construction of Gene Regulatory Networks from
Time Series Data, an Approach Based on Formal
Methods. Methods, 2014, 69(3), 298-305. https://doi.
org/10.1016/j.ymeth.2014.06.005

5. Chan, N. N., Yongsiriwit, K., Gaaloul, W., Mendling, J.
Mining Event Logs to Assist the Development of Execut-
able Process Variants. In Advanced Information Systems
Engineering - 26th International Conference, CAiSE
2014, Thessaloniki, Greece, June 16-20, 2014, 548-563.
https://doi.org/10.1007/978-3-319-07881-6_37

6. Clarke, E. M., Lerda, F. Model Checking: Software and
Beyond. Journal of Universal Computer Science, 2007,
13(5), 639-649.

7. Clarke, E. M., Long, D. E., McMillan, K. L. Composition-
al Model Checking. In IEEE Computer Society, LICS,
1989, 353-362.

8. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Rick-
etts, D., Vanzetto, H. Tla+ Proofs. In International Sym-
posium on Formal Methods, Springer, 2012, 147-154.
https://doi.org/10.1007/978-3-642-32759-9_14

9. de Medeiros, A. K. A., van Dongen, B. F., van der Aalst,
W. M. P., Weijters, A. J. M. M.. Process Mining: Extend-
ing the Ī-Algorithm to Mine Short Loops. In Eindhoven
University of Technology, Eindhoven, 2004.

10. Garavel, H., Lang, F., Mateescu, R., Serwe, W. CADP
2011: A Toolbox for the Construction and Analysis
of Distributed Processes. STTT, 2013, 15(2), 89-107.
https://doi.org/10.1007/s10009-012-0244-z

11. Jiang, J., Aldewereld, H., Dignum,V., Tan, Y-H. Com-
pliance Checking of Organizational Interactions. AC-
MTransactions on Management Information System,
2015, 5(4), 23:1-23:24. https://doi.org/10.1145/2629630

12. Kalenkova, A., Lomazova, I. A., van der Aalst, W. M. P.
Process Model Discovery: A Method Based on Transi-
tion System Decomposition. In Application and Theo-
ry of Petri Nets and Concurrency - 35th International
Conference, PETRI NETS 2014, Tunis, Tunisia, June
23-27, 2014, 71-90. https://doi.org/10.1007/978-3-319-
07734-5_5

13. Kherbouche, O. M., Ahmad, A., Basson, H. Formal
Approach for Compliance Rules Checking in Busi-
ness Process Models, 2013. https://doi.org/10.1109/
ICET.2013.6743500

14. Knuplesch, D., Ly, L. T., Rinderle-Ma, S., Pfeifer, H., Dad-
am, P. On Enabling Data-Aware Compliance Checking
of Business Process Models. In Conceptual Modeling -
ER 2010, 29th International Conference on Conceptual
Modeling, Vancouver, BC, Canada, November 1-4, 2010,
6412, LNCS, 332-346. https://doi.org/10.1007/978-3-
642-16373-9_24

15. Kochovski, P., Drobintsev, P. D., Stankovski, V. Formal
Quality of Service Assurances, Ranking and Verifica-
tion of Cloud Deployment Options with a Probabilistic
Model Checking Method. Information and Software
Technology, 2019, 109, 14-25. https://doi.org/10.1016/j.
infsof.2019.01.003

16. Kwiatkowska, M., Norman, G., Parker, D. Advanc-
es and Challenges of Probabilistic Model Checking.
In 2010 48th IEEE Annual Allerton Conference on
Communication, Control, and Computing (Allerton),
2010, 1691-1698. https://doi.org/10.1109/ALLER-
TON.2010.5707120

17. Lamport, L. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addi-
son-Wesley Longman Publishing Co., Inc., 2002.

18. Mao, H., Chen, Y., Jaeger, M., Nielsen, T. D., Larsen, K.
G., Nielsen, B. Learning Probabilistic Automata for
Model Checking. In 8th International IEEE Computer
Society Conference on Quantitative Evaluation of Sys-
tems, QEST 2011, Aachen, Germany, 5-8 September,
2011, 111-120. https://doi.org/10.1109/QEST.2011.21

19. Martinelli, F., Mercaldo, F., Nardone, V., Orlando, A.,
Santone, A, Vaglini, G. Safety Critical Systems Formal
Verification Using Execution Traces. In Proceedings of

https://doi.org/10.1007/978-3-319-73450-7_10
https://doi.org/10.1007/978-3-319-73450-7_10
https://doi.org/10.1006/jcss.1999.1660
https://doi.org/10.1006/jcss.1999.1660
https://doi.org/10.5755/j01.itc.47.3.20330
https://doi.org/10.1016/j.ymeth.2014.06.005
https://doi.org/10.1016/j.ymeth.2014.06.005
https://doi.org/10.1007/978-3-319-07881-6_37
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1145/2629630
https://doi.org/10.1007/978-3-319-07734-5_5
https://doi.org/10.1007/978-3-319-07734-5_5
https://doi.org/10.1109/ICET.2013.6743500
https://doi.org/10.1109/ICET.2013.6743500
https://doi.org/10.1007/978-3-642-16373-9_24
https://doi.org/10.1007/978-3-642-16373-9_24
https://doi.org/10.1016/j.infsof.2019.01.003
https://doi.org/10.1016/j.infsof.2019.01.003
https://doi.org/10.1109/ALLERTON.2010.5707120
https://doi.org/10.1109/ALLERTON.2010.5707120
https://doi.org/10.1109/QEST.2011.21

Information Technology and Control 2019/2/48298

the 27th IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), 2018. https://doi.org/10.1109/WET-
ICE.2018.00054

20. Martinelli, F., Mercaldo, F., Nardone, V., Santone,
A.. Car Hacking Identification Through Fuzzy Log-
ic Algorithms. IEEE International Conference on
Fuzzy Systems, 2017. https://doi.org/10.1109/FUZZ-
IEEE.2017.8015464

21. Moser, A., Kruegel, C., Kirda, E. Limits of Static Analysis
for Malware Detection. In IEEE 23rd Annual Computer
Security Applications Conference (ACSAC 2007), 2007,
421-430. https://doi.org/10.1109/ACSAC.2007.4413008

22. Munoz-Gama, J. Conformance Checking and Diag-
nosis in Process Mining - Comparing Observed and
Modeled Processes. Springer Lecture Notes in Busi-
ness Information Processing, 270, 2016. https://doi.
org/10.1007/978-3-319-49451-7

23. Parnas, D. L. The Real Risks of Artificial Intelligence.
Communications of the ACM, 2017, 60(10), 27-31.
https://doi.org/10.1145/3132724

24. Partington, A., Wynn, M. T., Suriadi, S., Ouyang, C, Kar-
non, J. Process Mining for Clinical Processes: A Com-
parative Analysis of four Australian Hospitals. ACM
Transactions on Management Information Systems,
2015, 5(4),19:1-19:18. https://doi.org/10.1145/2629446

25. Ramezani, E., Fahland, D., van der Aalst, W. M. P. Where
Did I Misbehave? Diagnostic Information in Compli-
ance Checking. In Business Process Management - 10th

International Conference, BPM 2012, Tallinn, Estonia,
September 3-6, Springer, 2012, 748, LNCS, 262-278.
https://doi.org/10.1007/978-3-642-32885-5_21

26. Santone, A. Automatic Verification of Concurrent Sys-
tems Using a Formula-Based Compositional Approach.
Acta Informatica, 2002, 38(8), 531-564. https://doi.
org/10.1007/s00236-002-0084-5

27. Santone, A., Vaglini, G. Abstract Reduction in Direct-
ed Model Checking CCS Processes. Acta Informatica,
2012, 49(5), 313-341. https://doi.org/10.1007/s00236-
012-0161-3

28. Santone, A., Vaglini, G. Conformance Checking Using
Formal Methods. In Proceedings of the 11th Interna-
tional Joint Conference on Software Technologies (IC-
SOFT 2016), 2016, 1: ICSOFT-EA, 258-263. https://doi.
org/10.5220/0005993402580263

29. Santone, A., Vaglini, G., Villani, M. L. Incremental Con-
struction of Systems: An Efficient Characterization of
the lacking sub-system. Science of Computer Program-
ming, 2013, 78(9), 1346-1367. https://doi.org/10.1016/j.
scico.2012.07.015

30. van der Aalst, W. M. P. Process Mining - Discovery, Con-
formance and Enhancement of Business Processes.
Springer, 2011.

31. Villani, E., Pontes, R. P., Coracini, G. K., Ambrosio, A. M.
Integrating Model Checking and Model Based Testing
for Industrial Software Development. Computers in
Industry, 2019, 104, 88-102. https://doi.org/10.1016/j.
compind.2018.08.003

https://doi.org/10.1109/WETICE.2018.00054
https://doi.org/10.1109/WETICE.2018.00054
https://doi.org/10.1109/FUZZ-IEEE.2017.8015464
https://doi.org/10.1109/FUZZ-IEEE.2017.8015464
https://doi.org/10.1109/ACSAC.2007.4413008
https://doi.org/10.1007/978-3-319-49451-7
https://doi.org/10.1007/978-3-319-49451-7
https://doi.org/10.1145/3132724
https://doi.org/10.1145/2629446
https://doi.org/10.1007/978-3-642-32885-5_21
https://doi.org/10.1007/s00236-002-0084-5
https://doi.org/10.1007/s00236-002-0084-5
https://doi.org/10.1007/s00236-012-0161-3
https://doi.org/10.1007/s00236-012-0161-3
https://doi.org/10.5220/0005993402580263
https://doi.org/10.5220/0005993402580263
https://doi.org/10.1016/j.scico.2012.07.015
https://doi.org/10.1016/j.scico.2012.07.015
https://doi.org/10.1016/j.compind.2018.08.003
https://doi.org/10.1016/j.compind.2018.08.003

