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Process mining is the set of techniques to retrieve a process model starting from available logging data. The dis-
covered process model has to be analyzed to verify whether it respects the defined properties, i.e., the so-called 
compliance checking. Our aim is to use a model checking based approach to verify compliance. First, we propose 
an integrated-tool approach using existing tools as ProM (a framework supporting process mining techniques) 
and CADP (a formal verification environment). More precisely, the execution traces from a software system 
are extracted. Then, using the “Mine Transition System” plugin in ProM, we obtain a labelled transition sys-
tem, that can be easily used to verify formal properties through CADP. However, this choice presents the “state 
explosion” problem, i.e., models discovered through the classical process mining techniques tend to be large 
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and complex. In order to solve this problem, another custom-made approach is shown, which accomplishes a 
pre-processing on the traces to obtain abstract traces, where abstraction is based on the set of temporal logic 
formulae specifying the system properties. Then, from the set of abstracted traces, we discover a system de-
scribed in Lotos, a process algebra specification language; in this way we do not build an operational model for 
the system, but we produce only a language description from which a model checking environment will auto-
matically obtain the reduced corresponding transition system. Real systems have been used as case studies to 
evaluate the proposed methodologies. 
KEYWORDS: Model discovery; process mining; model checking; compliance checking.  

1. Introduction
The general idea of process mining techniques is to 
discover real processes by extracting knowledge from 
event logs readily available in information systems. 
These techniques assume that it is possible to re-
cord events. Each event e has a set of properties, i.e., 
resource information (e was executed by John), ac-
tivity (e corresponds to a particular procedure), and 
various data elements. Events are ordered (i.e., no ex-
plicit time-stamp is needed) and each event belongs 
to a particular class (i.e., an activity name). An event 
refers to a process instance and each process instance 
is described by a sequence of events referred to as a 
trace. If we consider activity names, then the trace 
corresponds to a sequence of such names. An event 
log is a multi-set of traces, i.e., a collection of traces 
where some traces may appear multiple times.
Process mining has some disadvantages. One of them 
is that discovered models tend to be large and com-
plex, especially on flexible scenarios where process 
execution involves multiple alternatives. In fact, try-
ing to consider every possible process behavior, we 
can obtain highly complex and incomprehensible 
models; two typical categories of complex process 
models are called “lasagna” and “spaghetti” processes 
because of their intertwined appearance. The reduc-
tion of complexity is a major challenge and subject to 
recent research; abstraction techniques can be useful-
ly employed to obtain simpler processes. Other prob-
lems are caused by the (essentially, the high quantity 
of ) additional constraints that have to be imposed on 
the system to guarantee the needed properties. How 
such constraints can be included in the model may be 
very hard to be defined. Compliance checking [25] is 
an important part of the process mining methodolo-
gy and it is a relatively novel field of research in that 
context. Compliance refers to the adherence of the 
discovered process to internal or external rules and 

then deals with verification issues. External rules 
primarily include laws and regulations but can also 
reflect industry standards or other external require-
ments. Internal rules include management directives, 
policies and standards. Moreover, compliance check-
ing is a strong requirement in the context of internal 
or external audits.
In the light of the above, our aim is to verify compli-
ance through the model checking technique. Accord-
ing to process mining technique, our idea is to build 
the formal model of system starting from its exe-
cution traces. In particular, we have developed two 
different kinds of approaches: the first one reusing 
existing tools, named integrated-tool approach, and 
the second one, called custom-made approach, aims 
to discover a process using process algebra language. 
This custom-made approach aims to fix the main lim-
itation of the integrated-tool approach.
More precisely, first we propose the integrated-tool 
approach using existing tools as ProM1 (a framework 
that support a variety of process mining techniques) 
and CADP [10, 4, 27] (a formal verification environ-
ment). In this case, the execution traces from a soft-
ware system are extracted. Then, using the “Mine 
Transition System” plugin in ProM, we obtain a la-
belled transition system, that can be easily used to 
verify formal properties through CADP, as shown in 
[19]. However, we demonstrated that this choice pres-
ents the well-known “state explosion” problem: the 
models discovered through classical process mining 
techniques are large and complex.
In order to solve this problem, another custom-made 
approach has been proposed, where instead of using 
ProM, we have defined an algorithm producing ab-

1 http://www.promtools.org/doku.php
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stracted model from execution traces. Compliance 
checking is performed through the model checking of 
the logic formulae representing the internal or exter-
nal rules imposed to the system on its model discov-
ered in the form of an abstract Lotos process.
More precisely, we consider that the log refers to the 
behavior of a distributed system and we can process it 
to produce distinct traces, each one regarding the be-
havior of one device in the system (they have the same 
resource information); moreover sub-traces repre-
senting simple loops (we suppose the use of known 
methods, for example the α+-algorithm [9]) can be in-
dividuated. The description of the possible synchro-
nization points, taken from the event properties (i.e., 
the activity) are used to express the communication 
among devices. To represent constraints that express 
particular system requirements, we can use the same 
formalism and define new traces, not included in the 
log, but containing existing names connected to activ-
ities of the devices. Finally, to address the problem of 
coping with the high complexity of models obtained 
by means of automatic process mining, we accom-
plish a further pre-processing on the traces to obtain 
abstract traces. Abstraction is seen as an effective ap-
proach to represent readable models, showing aggre-
gated activities and hiding irrelevant details.
In our custom-made approach, abstraction is based 
on the set of temporal logic formulae specifying the 
system properties. These formulae can be seen also 
as the declarative representation of the internal and 
external rules different from the operational ones giv-
en by the traces representing the system constraints. 
From the set of abstracted traces, we discover a sys-
tem described in Lotos [10], a process algebra speci-
fication language; in this way we do not build an op-
erational model for the system, like as a Petri net or 
a transition system, but we produce only a language 
description from which the model checking environ-
ment will automatically obtain the corresponding 
transition system. Finally, compliance is established 
through the model checking of the formulae express-
ing the compliance rules on the discovered system: 
any discovered process satisfying the formulae is 
compliant with the given rules. In this way, we can use 
existing very efficient model checking environments 
to establish the compliance of the discovered process 
without introducing additional concepts or ad hoc 
model checkers.

A very preliminary work has been presented as poster 
at ICSOFT 2016 [28].
The remainder of this paper is organized as follows. 
Section 2 presents a short description of the theoreti-
cal background of the work; Section 3 depicts an inte-
grated-tool approach able to construct formal models 
starting from execution traces of a program. Section 
4 improves the integrated-tool approach introducing 
and describing a custom-made approach able to build 
reduced formal models, also a simple working exam-
ple is presented. Moreover, the section illustrates the 
technique for model discovery and gives the results 
of the model checking of some properties. Section 5 
shows the experimental results achieved during the 
evaluation of the custom-made approach. Section 6 
elicits the limitations of our approach. Section 7 dis-
cusses some related work and Section 8 presents the 
conclusions.

2. Background
Some basic concepts of process algebra specifications 
and model checking of temporal logic formulae are re-
called in this section.

2.1. Basic Lotos

Let us now recall the main concepts of Basic Lotos 
[10], which is widely used in the specification of con-
current and distributed systems. A Basic Lotos pro-
gram is defined as:

process ProcName := P
where Env

endproc,

where P is a process,  process ProcName := P is a  pro-
cess declaration and is a Env process environment, i.e., 
a set of process declarations. A process is the com-
position, by means of a set of operators, of a finite set  
E = {i, a, b,...} of atomic events (or  actions). Each oc-
currence of an action in E represents an event of the 
system. An occurrence of an event a ∈ E – {i} rep-
resents a communication on the gate a. Event i does 
not correspond to a communication and it is called 
the unobservable event. The operational semantics 
of a process P is a labeled transition system, denoted 



281Information Technology and Control 2019/2/48

as S(P), i.e., an automaton whose states correspond 
to processes (the initial state corresponds to P) and 
whose transitions (arcs) are labeled by events in E. 
Reader unfamiliar with Lotos process syntax can re-
fer to [11].

2.2.  Model Checking Selective Mu-Calculus 
Formulae
In the model checking framework [6], systems are 
modelled as transition systems and requirements 
are expressed as formulae in a temporal logic. Model 
checkers accept two inputs, a transition system and a 
temporal formula, and return “true” if the system sat-
isfies the formula and “false” otherwise. We consider 
formulae expressed in the selective mu-calculus tem-
poral logic [2]. The basic characteristic of the selective 
mu-calculus is that the actions relevant for checking 
a formula are those ones explicitly mentioned in the 
modal operators used in the formula itself.

(1)

The syntax of the selective mu-calculus is the fol-
lowing:  where K, R are sets of events in Ε, while Z 
ranges over a set of variable names; μZ.ϕ is the least 
fix-point of the recursive equation Z=ϕ, while νZ.ϕ is 
the greatest one.
The selective modal operators 〈K〉Rϕ and [K]Rϕ substi-
tute the standard modal operators 〈K〉ϕ and [K]ϕ: 
 _ [K]Rϕ is satisfied by a state which, for every 

performance of a sequence of actions not belonging 
to R∪K, followed by an action inK, evolves to a state 
obeying ϕ.

 _ 〈K〉Rϕ is satisfied by a state which can evolve to a 
state obeying ϕ by performing a sequence of actions 
not belonging to R∪K, followed by an action in K. 

A transition system T satisfies a formula ϕ, written 
T⊨ϕ, if and only if p⊨ϕ, where p is the initial state of 
T. Moreover, a process  P satisfies ϕ if S(P) satisfies ϕ. 
The precise and formal definition of satisfaction of 
selective mu-calculus formulae can be found in [2].
The basic characteristic of the selective mu-calculus 
is that the actions relevant for checking a formula ϕ 
are those ones explicitly mentioned in the modal op-
erators used in the formula itself. Thus we define the 
set O(ϕ) of occurring actions of a formula ϕ as the 

union of all sets K and R appearing in the modal oper-
ators ([K]Rψ, 〈K〉Rψ) occurring in ϕ. A ρ - bisimulation 
can be defined, formally characterizing the notion of  
“the same behavior with respect to a set ρ of actions”:
 two transition systems are ρ - equivalent if a ρ - bisi-
mulation relating their initial states exists.
The definition of ρ -bisimulation is based on the 
concept of  α - ending path: an α - ending path is a 
sequence of transitions, labelled by events not in ρ, 
and followed by a transition labelled by the event α 
in ρ. Two states S1 and S2 are ρ - bisimilar if and only 
if for each α -ending path starting from S1 and end-
ing into S1', there exists an α - ending path starting 
from S2 and ending into a state ρ - bisimilar to S1', and 
vice-versa. If a ρ -bisimulation relating the initial 
states of two transition systems exists, then the two 
systems are ρ - equivalent. As conclusion, in [2] the 
following theorem is proved:
Theorem 1. Two transition systems are  ρ - equivalent 
if and only if they satisfy the same set of formulae with 
occurring events in ρ.
The interesting consequence of the theorem is that a 
formula of the selective mu-calculus with occurring 
events in a set ρ can be checked on any transition sys-
tem ρ - equivalent to the standard one, in particular on 
the system with the lowest number of states.

3. Integrated-Tool Approach
In order to link model checking verification closer to 
real implementation allowing to perform compliance 
checking an approach integrating existing tools has 
been proposed in this section.
Figure 1 shows the work-flow of the integrated-tool 
approach able to model and verify a system starting 
from its execution traces. It is mainly based on three 
steps:  
 _ First step (see Figure 1 (1)): It starts from the 

execution traces of a program obtained from the 
execution of a software system. Traces are usually 
stored in text files and they contain both static and 
dynamic information retrieved during software 
execution. Static information regards, for instance, 
class structure in terms of methods and fields. 
Dynamic information refers to method calls, field 
access in read or write mode and synchronization 
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on objects. Starting from this textual format traces 
an eXtensible Event Stream format (XES) is 
generated. XES is an IEEE XML-based standard 
for event logs. During this conversion process the 
traces are filtered removing all the unnecessary 
information. 

 _ Second step (see Figure 1 (2)): It creates the 
model from the XES traces using Process Mining 
Workbench (ProM)2. ProM is an extensible 
framework that supports a wide variety of process 
mining techniques in the form of plug-ins. It is 
an independent platform as it is implemented in 
Java, and can be downloaded free of charge. From 
the XES Event Log, using the “Mine Transition 
System” plugin in ProM developed by H.M.W. 
Verbeek, a labelled transition system is obtained. 
The transitions correspond to the events in the 
log, whereas a state corresponds to a situation in 
between two events. 

 _ Third step (see Figure 1 (3)): It applies the 
model checking technique. Once the formal 
model has been retrieved, it is easily used to 
verify properties using a model checker tool. This 
step checks the sets of logic properties against 
the formal model obtained starting from the 
feature set, as described above. In our approach, 
the Construction and Analysis of Distributed 
Processes (CADP) tool [10] is invoked as formal 

2  http://www.promtools.org/

Figure 1
The work-flow of the integrated approach

  two transition systems are 𝜌𝜌𝜌𝜌 - equivalent if a 𝜌𝜌𝜌𝜌 -bisimulation relating their initial states exists. 
  

   The definition of 𝜌𝜌𝜌𝜌 -bisimulation is based on the concept of  𝛼𝛼𝛼𝛼 -ending path: an 𝛼𝛼𝛼𝛼 -ending 
path is a sequence of transitions, labelled by events not in 𝜌𝜌𝜌𝜌, and followed by a transition labelled by the 
event 𝛼𝛼𝛼𝛼 in 𝜌𝜌𝜌𝜌. Two states 𝑆𝑆𝑆𝑆1 and 𝑆𝑆𝑆𝑆2 are 𝜌𝜌𝜌𝜌 -bisimilar if and only if for each 𝛼𝛼𝛼𝛼 -ending path starting 
from 𝑆𝑆𝑆𝑆1 and ending into 𝑆𝑆𝑆𝑆1′ , there exists an 𝛼𝛼𝛼𝛼 -ending path starting from 𝑆𝑆𝑆𝑆2 and ending into a state 𝜌𝜌𝜌𝜌 -
bisimilar to 𝑆𝑆𝑆𝑆1′ , and vice-versa. If a 𝜌𝜌𝜌𝜌 -bisimulation relating the initial states of two transition systems 
exists, then the two systems are 𝜌𝜌𝜌𝜌 - equivalent. As conclusion, in [2] the following theorem is proved: 

 
Theorem 1. Two transition systems are 𝜌𝜌𝜌𝜌 -equivalent if and only if they satisfy the same set of 

formulae with occurring events in 𝜌𝜌𝜌𝜌. 
 
The interesting consequence of the theorem is that a formula of the selective mu-calculus with 

occurring events in a set 𝜌𝜌𝜌𝜌 can be checked on any transition system 𝜌𝜌𝜌𝜌 -equivalent to the standard one, 
in particular on the system with the lowest number of states. 

 
3  Integrated-Tool Approach 
   
In order to link model checking verification closer to real implementation allowing to perform 

compliance checking an approach integrating existing tools has been proposed in this section. 
 

 
Figure 1. The work-flow of the integrated approach 

   
Figure 1 shows the work-flow of the integrated-tool approach able to model and verify a system 

starting from its execution traces. It is mainly based on three steps:   
• First step (see Figure 1 (1)): It starts from the execution traces of a program obtained from the 

execution of a software system. Traces are usually stored in text files and they contain both 
static and dynamic information retrieved during software execution. Static information regards, 
for instance, class structure in terms of methods and fields. Dynamic information refers to 
method calls, field access in read or write mode and synchronization on objects. Starting from 
this textual format traces an eXtensible Event Stream format (XES) is generated. XES is an 
IEEE XML-based standard for event logs. During this conversion process the traces are filtered 
removing all the unnecessary information.  

• Second step (see Figure 1 (2)): It creates the model from the XES traces using Process Mining 

verification environment. In order to apply CADP, 
the transition system obtained is converted into 
the input format of CADP, parsing the automaton 
ProM file. Moreover, the property, written in 
selective mu-calculus, can be equivalently 
transformed in the syntax of the logic used by the 
CADP environment. 

3.1. Result Using the Integrated-Tool Approach
In order to evaluate the integrated-tool approach, 
an example of a real system obtained from the ProM 
website3 has been considered. It describes a realis-
tic transaction process within a banking context. 
In the integrated-tool approach evaluation, the first 
step has been skipped because the considered real 
case study has already developed and made available 
from the repository of the ProM database. The ana-
lysed process contains all sort of monetary checks, 
authority notifications, and logging mechanisms 
responding to the new degree of responsibility and 
accountability that current economic environments 
demand. As stated in [22], “the banking regulation 
states that serial numbers must be compared with 
an external database governed by a recognized inter-
national authority (“Check Authority Serial Num-
bers CASN”). In addition, the bank of the case study 
decided to incorporate two complementary checks 
to its policy: an internal bank check (“Check Bank 
Serial Numbers CBSN”), and a check among the da-
tabases of the bank consortium this bank belongs 
to (“Check Inter-Bank Serial Numbers CIBSN”). 
At a given point, due to technical reasons (i.e., peak 
hour network congestion, malfunction of the soft-
ware, deliberated blocking attack, etc.), the external 
check CASN is no longer performed, contradicting 
the modeled process, i.e., all the running instances 
of the process involving cash payment can proceed 
without the required check”.
According with our preliminary approach, we formu-
late the above anomaly in mu-calculus logic formulae 
using the following pattern: 
The formula φ means that for each action a not pre-
ceded by b and c and for each action b not preceded by 
c, eventually the action c will be performed.

3 http://data.4tu.nl/repository/uuid:c1d1fdbb-72df-470d-
9315-d6f97e1d7c7c
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The formula φ expresses the above anomalous situ-
ation that the external check CASN is no longer per-
formed. 

involving cash payment can proceed without the required check”. 
According with our preliminary approach, we formulate the above anomaly in mu-calculus 

logic formulae using the following pattern:  
The formula  means that for each action a not preceded by b and c and for each action b not 

preceded by c, eventually the action c will be performed. 
The formula  expresses the above anomalous situation that the external check CASN is no 

longer performed.  
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The model checker returns “false” when evaluating , stating that the anomalous situation is 
immediately detected, identifying the anomalous subprocess (process cash payment), and eventually 
taking the necessary countermeasures. The advantage is that it is better to discover the error as soon as 
possible. It is worth noting that when a property does not hold, the model checking algorithm generates 
a counter-example, i.e., an execution trace leading to a state in which the property is violated. This 
ability to generate counter-examples, which can be exploited to pinpoint the cause of an error, is the 
main advantage of model checking, as compared to other well-known techniques for software 
verification, as abstract interpretation-based static analysis. 

In the used dataset there are six different scenarios: (i) 2000-all-noise; (ii) 2000-all-nonoise; (iii) 
2000-scen1; (iv) 2000-scen2; (v) 10000-all-noise; and (vi) 10000-all-nonoise. 

   
Table 1.  Property Results 

Traces
 
Formulae   

2000-all-noise 2000-all-nonoise2000-scen1 2000-scen210000-all-noise10000-all-nonoise 

𝜑𝜑  FALSE   TRUE   FALSE  TRUE   FALSE   TRUE  
  





1  [CASN ]{CIBSN ,CBSN }[CIBSN ]{CBSN } 1

 1  (X .  A tt  [CBSN ]A X )
2  [CASN ]{CIBSN ,CBSN }[CBSN ]{CIBSN } 2

 2  (X .  A tt  [CIBSN ]A X )
3  [CIBSN ]{CASN ,CBSN }[CASN ]{CBSN } 3

 3  (X .  A tt  [CBSN ]A X )
4  [CIBSN ]{CASN ,CBSN }[CBSN ]{CASN } 4

 4  (X .  A tt  [CASN ]A X )
5  [CBSN ]{CASN ,CIBSN }[CASN ]{CIBSN } 5

 5  (X .  A tt  [CIBSN ]A X )
6  [CBSN ]{CASN ,CIBSN }[CIBSN ]{CASN } 6

 6  (X .  A tt  [CASN ]A X )
 1 2 3 4 5 6





(2)

The model checker returns “false” when evaluating  
φ, stating that the anomalous situation is immedi-
ately detected, identifying the anomalous subprocess 
(process cash payment), and eventually taking the 
necessary countermeasures. The advantage is that it 
is better to discover the error as soon as possible. It 
is worth noting that when a property does not hold, 
the model checking algorithm generates a count-
er-example, i.e., an execution trace leading to a state 
in which the property is violated. This ability to gen-
erate counter-examples, which can be exploited to 
pinpoint the cause of an error, is the main advantage 
of model checking, as compared to other well-known 

techniques for software verification, as abstract in-
terpretation-based static analysis.
In the used dataset there are six different scenarios: 
(i) 2000-all-noise; (ii) 2000-all-nonoise; (iii) 2000-
scen1; (iv) 2000-scen2; (v) 10000-all-noise; and (vi) 
10000-all-nonoise.
The first item of the string is the number of traces in 
the XES event stream file. “noise” (resp. “nonoise”) 
specifies if the considered traces are (resp. are not) 
affected by the noise. Furthermore, there are two 
files used in [22] which present two possible scenar-
ios: Serial Number Check and Receiver Preliminary 
Profiling, i.e., “scen1” and “scen2”, respectively. The 
results of the verification of φ formula are: “True” in 
2000-all-nonoise, 2000-scen2 and 1000-all-nonoise, 
“False” in the other cases. 
Table 1 shows the results achieved by φ formula. As 
pointed out from the results, φ is false in some scenar-
ios stating that anomalous traces occur. In particular, 
anomalous situations are detected in the presence of 
noise which could be due for different reasons, i.e., de-
liberate blocking attack, peak hour network conges-
tion or malfunction of the software.
The sizes of models used in the experimental evalu-
ation are shown in Table 2. The size of a model is ex-
pressed in terms of states and transitions. As shown 
in Table 2 the number of states and transitions grows 
dramatically according to the growing of number of 
traces. As a simple example the reader can refer the 
last two rows of Table 2. This means that our pre-
liminary approach suffers of the well-known states 
explosion problem. To fix this weakness we propose 
another solution able to directly build a reduced mod-
el starting from the execution traces. This model is 
presented in Section 4.

Table 1 
φ Property results

             Traces 

Formulae     
2000-all-noise 2000-all-nonoise 2000-scen1 2000-scen2 10000-all-noise 10000-all-nonoise

φ FALSE TRUE FALSE TRUE FALSE TRUE 
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In order to better analyze the results obtained by the 
φ formula, we defined additional eight formulae able 
to check every single trace belonging to a specific sce-
nario. In particular, these formulae investigate the 
cause of φ failure. The specified properties are ex-
pressed by the following selective mu-calculus: 

The first item of the string is the number of traces in the XES event stream file. “noise” (resp. 
“nonoise”) specifies if the considered traces are (resp. are not) affected by the noise. Furthermore, there 
are two files used in [22] which present two possible scenarios: Serial Number Check and Receiver 
Preliminary Profiling, i.e., “scen1” and “scen2”, respectively. The results of the verification of  
formula are: “True” in 2000-all-nonoise, 2000-scen2 and 1000-all-nonoise, “False” in the other cases. 
Table 1 shows the results achieved by  formula. As pointed out from the results,  is false in 
some scenarios stating that anomalous traces occur. In particular, anomalous situations are detected in 
the presence of noise which could be due for different reasons, i.e., deliberate blocking attack, peak 
hour network congestion or malfunction of the software. 

The sizes of models used in the experimental evaluation are shown in Table 2. The size of a 
model is expressed in terms of states and transitions. As shown in Table 2 the number of states and 
transitions grows dramatically according to the growing of number of traces. As a simple example the 
reader can refer the last two rows of Table 2. This means that our preliminary approach suffers of the 
well-known states explosion problem. To fix this weakness we propose another solution able to directly 
build a reduced model starting from the execution traces. This model is presented in Section 4. 
    

Table 2.  Model Size 
   

Size 
Model  

 States Transition 

2000-all-noise  94803 96801 
2000-all-nonoise  89810 91808 
2000-scen1  88863 90861 
2000-scen2  81792 83790 
10000-all-noise  480361 490359 
10000-all-nonoise 434073 444071 
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investigate the cause of failure. The specified properties are expressed by the following selective 
mu-calculus:  
 
 

 

 

 

 

 

 

 

 

(3) 



 







1  CASN


tt  CIBSN


tt  CBSN


tt

2  CASN  ff  CIBSN


ff  CBSN


ff

3  CIBSN


tt  CBSN


tt  CASN  ff

4  CASN


tt  CBSN


tt  CIBSN  ff

5  CASN


tt  CIBSN


tt  CBSN  ff

6  CASN


tt  CIBSN  ff  CBSN  ff

7  CIBSN


tt  CASN  ff  CBSN  ff

8  CBSN


tt  CASN  ff  CIBSN  ff

(3)

Table 2
φ Model and size

                 Size
   Model  States Transition 

2000-all-noise 94803 96801

2000-all-nonoise 89810 91808

2000-scen1 88863 90861

2000-scen2 81792 83790

10000-all-noise 480361 490359

10000-all-nonoise 434073 444071

Roughly speaking, the formulae have the following 
meaning:  
 _ φ1 checks if all the three actions (CASN, CIBSN and 

CBSN) are performed.
 _ φ2 checks if all CASN, CIBSN and CBSN are not 

performed.
 _ φ3 checks if CIBSN and CBSN actions are 

performed and the CASN action is not performed.
 _ φ4 checks if CASN and CBSN actions are performed 

and the CIBSN action is not performed.
 _ φ5 checks if CIBSN and CASN actions are 

performed and the CBSN action is not performed.
 _ φ6 checks if CIBSN and CBSN actions are not 

performed and the CASN action is performed.
 _ φ7 checks if CBSN and CASN actions are not 

performed and the CIBSN action is performed.
 _ φ8 checks if CIBSN and CASN actions are not 

performed and the CBSN action is performed. 

Table 3 shows the results obtained during the verifica-
tion of the formulae specified above. In particular, Ta-
ble 3 is organized as follow: the above specified formu-
lae are described in the rows, while the scenarios in the 
columns. Each single model represents a single realis-
tic banking transaction trace. The first four sets have 
2000 different traces, so 2000 formal models. The last 
two have 10000 traces corresponding to 10000 differ-
ent formal models. The last row is the total number of 
the analyzed traces resulting true to the formulae. This 
value is obtained by adding to each other the values in 
the corresponding column. The table shows the num-

Table 3 
Detailed properties

Formulae 
Traces 

 all-noise  all-nonoise  scen1  scen2  all-noise  all-nonoise 

φ1 531 708 327 701 2478 3326
φ2 1293 1292 1348 1299 6678 6674
φ3 67 0 325 0 249 0
φ4 50 0 0 0 259 0
φ5 49 0 0 0 260 0
φ6 5 0 0 0 28 0
φ7 3 0 0 0 18 0
φ8 2 0 0 0 30 0

# of Traces 2000 2000 2000 2000 10000 10000
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ber of true achieved by every type of analyzed model. 
As the results shown and according to the “True” val-
ues of the φ formula, the files with no noise and the files 
of second scenario have all the traces of transactions 
correct, i.e., whenever a client executed a payment in 
cash, the three required actions have been performed. 
This result is highlighted by positive values of φ1  and φ2 
and the values equal to zero achieved by the other for-
mulae. In the “False” cases the anomalous situations 
are caused by several reasons. In the “scen1” scenario 
bad and unsafe transactions occur because only the 
action CASN has not been performed. Finally, in the 
scenarios affected by noise the causes of failure occur 
because one or two required actions are not performed 
during a payment in cash.
 

4. Custom-Made Approach
As stated in Section 3 the integrated-tool approach at-
tempt suffers of the state explosion problem. In order 
to address this limitation we have developed another 
approach able to fix the state explosion problem.
The basic steps of the new methodology that we are 
going to propose are summarized in Figure 2. In this 

section, we assume that the log is pre-processed so 
that the traces are rearranged to obtain separate trac-
es for each device in a distributed system exploiting 
the source of each activity. Further, we give each ac-
tivity a different name; moreover simple loops are 
solved using α+-algorithm; after this pre-processing, 
we consider that it is now possible to describe the 
traces derived from the log by means of the simple 
language defined in the next subsection. Successively, 
names corresponding to activities performing equal 
communication among devices are given a new equal 
name and, finally, system constraints may be included 
in the specification by means of new traces. Proper-
ty-driven reductions can be performed on the result-
ing traces to obtain an abstract model of the system in 
the process algebra Lotos. This model will be model 
checked against the required properties to verify its 
compliance.

4.1. Trace-Based System Specification

A specification as we will use in the following can 
be derived from the log of a physical system or from 
the instrumentation of a software system. The lan-
guage we assume be used to define the traces obtained 
through the log pre-processing is the following.

Figure 2 
The methodology
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4.1  Trace-Based System Specification 
 
A specification as we will use in the following can be derived from the log of a physical system 

or from the instrumentation of a software system. The language we assume be used to define the traces 
obtained through the log pre-processing is the following. 
 
Definition 1 (Trace)  Let Ε = {𝑒𝑒𝑒𝑒1, 𝑒𝑒𝑒𝑒2, … } be a set of activity names, a trace of such names can be built 
up by the following syntax:  

  
 𝑡𝑡𝑡𝑡 ∷= 𝑒𝑒𝑒𝑒|𝑡𝑡𝑡𝑡. 𝑡𝑡𝑡𝑡|〈𝑡𝑡𝑡𝑡〉∗|𝜆𝜆𝜆𝜆, (4) 

  
 where 𝑒𝑒𝑒𝑒 ∈ Ε and 𝜆𝜆𝜆𝜆 is the empty sequence.  

The operator “ .” represents trace concatenation: usually it is omitted. The operator “ * ” represents 
the iteration of a trace and it turns out that 〈〈𝑡𝑡𝑡𝑡〉∗〉∗ is equivalent to 〈𝑡𝑡𝑡𝑡〉∗. Moreover, 〈𝜆𝜆𝜆𝜆〉∗ is equivalent to 
𝜆𝜆𝜆𝜆. The following definitions are of interest. 

  
Definition 2 (Alphabet, Branching names) Let 𝑇𝑇𝑇𝑇 be a set of traces:   

• 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇 is the alphabet of 𝑇𝑇𝑇𝑇, and  
• 𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇) is the set of pairs defined as follows:  

 
𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒(𝑇𝑇𝑇𝑇) = {(𝑒𝑒𝑒𝑒, 𝑒𝑒𝑒𝑒′)|𝑡𝑡𝑡𝑡1 = 𝑠𝑠𝑠𝑠. 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2 = 𝑠𝑠𝑠𝑠. 𝑒𝑒𝑒𝑒′. 𝑡𝑡𝑡𝑡′ ∈ 𝑇𝑇𝑇𝑇, 𝑒𝑒𝑒𝑒 ≠ 𝑒𝑒𝑒𝑒′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′ ∈ Ε′}  

  
For example, given 𝑇𝑇𝑇𝑇 = {𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏. 𝑐𝑐𝑐𝑐. 𝑎𝑎𝑎𝑎. 𝑒𝑒𝑒𝑒, 𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑔𝑔𝑔𝑔.ℎ }, 
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Definition 1 (Trace).  Let E = {e1, e2,…} be a set of activ-
ity names, a trace of such names can be built up by the 
following syntax:

4.1  Trace-Based System Specification 
 
A specification as we will use in the following can be derived from the log of a physical system 

or from the instrumentation of a software system. The language we assume be used to define the traces 
obtained through the log pre-processing is the following. 
 

Definition 1 (Trace)  Let  be a set of activity names, a trace of such names can be built 
up by the following syntax:  

  
 

 (4) 
  

 where  and  is the empty sequence.  
The operator “ .” represents trace concatenation: usually it is omitted. The operator “ * ” 

represents the iteration of a trace and it turns out that  is equivalent to . Moreover, is 
equivalent to . The following definitions are of interest. 

  
Definition 2 (Alphabet, Branching names) Let  be a set of traces:   

•  is the alphabet of , and  
•  is the set of pairs defined as follows:  

 

 
  

For example, given , 
  

• ;  
• . 

 
After having obtained from the log the set  of traces of activity names, our aim is to obtain from  
the model of the distributed system as Lotos processes composed in parallel. The first step of our 
method is: 
 
1. Individuation of the traces of each component of the distributed system in isolation (the layout)  
We give the following definition. 
Definition 3 (Layout Specification) Given a set of traces of activity names derived from a log, the 

Layout Specification of a distributed system is , where each  has a distinct alphabet 

, and each activity in  has the same source, different from that of each other .  
The second step consists in the representation in the traces of communications performed 

among devices; the activity definitions in the log allows the individuation of corresponding 
communication activities. This step is called: 

 {e1,e2 ,...}

t :: e | t.t | t
*

|

e 

t
* *

t
*


*



T
T T
Be(T )

Be(T ) {(e,e1) | t1  s.e.t s.e' .t ' T ,e  e' and s,t,t '  '}

T {a.b.c.d.e, a.b.g.h}

T {a,b,c,d,e,g,h}
Be(T ) {(c,g)}

T T

LS {T1,...,Tn} Ti

Ti Ti
Tj

(4)

where e ∈ E and λ is the empty sequence. 
The operator “. ” represents trace concatenation: usu-
ally it is omitted. The operator “ ” represents the itera-
tion of a trace and it turns out that 〈〈t〉*〉* is equivalent 
to 〈t〉*. Moreover, 〈λ〉* is equivalent to λ. The following 
definitions are of interest.
Definition 2 (Alphabet, Branching names). Let T be a 
set of traces:  
 _ αT is the alphabet of T, and 
 _ Be(T) is the set of pairs defined as follows:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇)={(𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶′)|𝑡𝑡𝑡𝑡1=𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2= 𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶′. 𝑡𝑡𝑡𝑡′∈ 𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶 ≠𝐶𝐶𝐶𝐶′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′∈ Ε′}  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇)={(𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶′)|𝑡𝑡𝑡𝑡1=𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶. 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇, 𝑡𝑡𝑡𝑡2= 𝑠𝑠𝑠𝑠. 𝐶𝐶𝐶𝐶′. 𝑡𝑡𝑡𝑡′∈ 𝑇𝑇𝑇𝑇, 𝐶𝐶𝐶𝐶 ≠𝐶𝐶𝐶𝐶′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡′∈ Ε′}  

For example, given T= {a.b.c.d.e, a.b.g.h},
 _ αT = {a, b, c, d, e, g, h }; 
 _ Be(T) = {(c, g)}.

After having obtained from the log the set T of trac-
es of activity names, our aim is to obtain from T the 
model of the distributed system as Lotos processes 
composed in parallel. The first step of our method is:
1 Individuation of the traces of each component of 

the distributed system in isolation (the layout) 
We give the following definition.
Definition 3 (Layout Specification). Given a set 
of traces of activity names derived from a log, the 
Layout Specification of a distributed system is LS =  
{T1, …, Tn}, where each Ti has a distinct alphabet 
αTi, and each activity in Ti has the same source, dif-
ferent from that of each other Tj. 
The second step consists in the representation in 
the traces of communications performed among 
devices; the activity definitions in the log allows 
the individuation of corresponding communica-
tion activities. This step is called:

2 Specification of the synchronization between 
components (the flow) 
Definition 4 (Flow Specification. Renaming func-
tion ⇝). Consider the Layout Specification LS and 
the set C = {c1, …, cm}, where cj = {cj1

, …, cjk
}, 1 ≤ j ≤ m, 

where the names in the same tuple individuate cor-
responding communication activities in the log. 

The renaming function S is such that ∀j, s∈[1..m], 
S(cj) = ej, and ej ∉ αLS, moreover, for j ≠ s it is S(cj) 
≠ S(cs). The Flow Specification is FS = LS⇝S(C), 
which is the result of the renaming. From now on 
we will use S(C) for {S(c1), …, S(cm)}.
S renames all elements of C using the same new 
name for all elements of the same tuple of C; obvi-
ously the new name given to each tuple is different 
from those chosen for the other tuples and from all 
other names in the traces. Table 5 shows an exam-
ple of renaming function.
The third (possibly not present) step consists in the 
definition of specific requirements for the system. 
They are expressed as traces that are built using 
the alphabet of the Flow specification. This step is:

3 Construction of the traces that model con-
straints (the control) 
Definition 5 (Control specification). Consider the 
Flow specification FS, CS = {t1, …, tc} is a unique set 
of finite traces on αFS (also called control traces) 
with a unique activity source different from any 
other in FS. CS is the Control Specification of the 
system. CS is a set of traces not retrieved from the 
log; note that, all events in the Control Specifica-
tion result in communication events. A wide class 
of constraints can be expressed by means of such 
kind of traces, also binding the behavior of several 
system components. Obviously a Control Specifi-
cation expresses system requirements that are due, 
but that the system does not necessarily respect; 
actually, imposing such constraints can cause 
deadlocks in the system. The trace-based System 
Specification (SS for short) is defined as follows.
Definition 6 (System Specification). A System 
Specification SS can be either a Flow Specification 
only, SS = (LS ⇝ S(C)), or a Flow Specification plus 
a Control Specification in the same language, SS = 
(LS ⇝ S(C))∪CS. 

4.2. The Working Example
The example we use to describe the approach is a sim-
ple automated manufacturing system (called MS in 
the following) depicted in Figure 3. The layout con-
sists of two machines M1 and M2, one robot R, and an 
assembly station AS. The machines and the assem-
bly station are cells provided with buffering areas of 
limited storage capacity. Obviously, this very simple 
example permits a log containing perfect information.
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The machine M1 (M2) performs an operation op1 
(op2) on a raw part of type t1 (t2). After the operation 
op1 (op2) is performed, the part is available in the out-
put buffering area B11 (B12) and is picked up by the 
robot R to be moved into the input buffering area B21 
(B22) of the assembly station. The finished product 
must be assembled from two parts of type t1 and one 
part of type t2; the assembly station must wait for the 
robot having moved a second part of type t2 in its in-
put buffering area after it is set free from the station 
itself. To guarantee this result, the control may spec-
ify that the non-deterministic behavior of the robot 
(on choice between a part of type t1 and t2, when both 
are available) must be restricted to always move two 
parts of type t1 for each part of type t2. This control 
specification supplies a bit of further information 
with respect to the abstract requirement on the cor-
rect assembling of the finished products: it also con-
strains the free behavior of the system to perform a 
subset of the acceptable computations.
The traces of the components of the working example 
are very simple and self-explaining and we just report 
them in Table 4 (machines and buffers are indexed).
We have considered buffers of one position only, but 
the specification can be easily extended.
Table 5 shows the renaming function S which defines 
the flow of the parts; the events in αLS that are not 
present in the table are assumed unchanged and rep-
resent the internal behavior of each component. The 
derived Flow Specification, FS, is shown in Table 6.
The constraints to be imposed over the system can be 
expressed by the Control Specification, CS, in Table 6. 
The trace C1 requires that at least one occurrence of 
the event part2_load happens after two occurrences 
of the event part1_mov, whereas C2 requires that at 

Figure 3
Plant of the system

 
Figure 3. Plant of the system 
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Machines , with  

 
Buffering areas , with  
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  The machine M1 (M2) performs an operation op1 (op2) on a raw part of type t1 (t2). After 

the operation op1 (op2) is performed, the part is available in the output buffering area 11B  ( 12B ) and 
is picked up by the robot R to be moved into the input buffering area 21B  ( 22B ) of the assembly 
station. The finished product must be assembled from two parts of type t1 and one part of type t2; the 
assembly station must wait for the robot having moved a second part of type t2 in its input buffering 
area after it is set free from the station itself. To guarantee this result, the control may specify that the 
non-deterministic behavior of the robot (on choice between a part of type t1 and t2, when both are 
available) must be restricted to always move two parts of type t1 for each part of type t2. This control 
specification supplies a bit of further information with respect to the abstract requirement on the correct 
assembling of the finished products: it also constrains the free behavior of the system to perform a 
subset of the acceptable computations. 

  The traces of the components of the working example are very simple and self-explaining 
and we just report them in Table 4 (machines and buffers are indexed). 

  We have considered buffers of one position only, but the specification can be easily 
extended. 

  Table 5 shows the renaming function  which defines the flow of the parts; the events in 
 that are not present in the table are assumed unchanged and represent the internal behavior of 

each component. The derived Flow Specification, FS, is shown in Table 6. 

Mi i [1,2]

Mi { Mi_ start.Mi _ op  Mi _ end *}
Bij i, j [1,2]

Bij { Bij _ in.Bij _ out *}
R

R { R _ init.R _ start1 R _ op.R _ end1*, R _ init.R _ start2.R _ op2.R_ end2 *}

AS { AS _ start.AS _ load1.AS _ load2.AS _ op.AS _ end *,

 AS _ start.AS _ load1.AS _ load2.AS _ op.AS _ end *}

S
LS

Table 5 
Renaming function, S

∀i ∈ [1..n]:

S(Mi_end, B1i_in) = parti_aval

(B1i_out, R_starti) = parti_mov

S(R_endi, B2i_in) = parti_load

S(B2i_out, AS_loadi) = parti_work

Table 6 
Trace-based System Specification, SS  

Flow Specification (FS)

Machines Mi, with i ∈ [1,2]

Mi= {〈Mi_start.Mi_op.parti_aval〉* }

Machines’ buffering areas B1i, with i ∈ [1,2]

B1i = {〈parti_aval.parti_mov〉* }

Assembly station’s buffering area B2i, with i ∈ [1,2] 

B1i = {〈parti_load.parti_work〉*} 

Robot R

R           {〈R_init.part1_mov.R_op1.part1_load〉*,

〈R_init.part2_mov.R_op2.part2_load〉*}

Assembly Station AS

AS = {〈AS_start.part1_work.part2_work.AS_op.AS_end〉*,

〈AS_start.part2_work.part1_work.AS_op.AS_end〉*}

Control Specification (CS)

C=  {〈part1_mov.part1_mov.part2_load〉*,

〈part2_mov.part1_mov.part1_load〉*}

Table 4 
Layout Specification, LS

Machines Mi, with i∈ [1,2]

Mi = {〈Mi_start.Mi_op.Mi_end〉*}

Buffering areas Bij, with i, j∈[1, 2]

Bij = {〈Bij_in.Bij_out〉*}

Robot R 

R = {〈R_init.R_start1.R_op.R_end1〉*,  
         〈R_init.R_start2.R_op2.R_end2〉*} 

Assembly Station AS

AS = {〈AS_start.AS_load1.AS_load2.AS_op.AS_end〉*, 

         〈AS_start.AS_load1.AS_load2.AS_op.AS_end〉}
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least two occurrences of the event part1_load hap-
pen after one occurrence of the event part2_mov. The 
property expressed by the formula ϕ in the following 
section represents the logic version of the behav-
ior imposed on the system by the control traces; it is 
worth noting that the specification of the assembly 
station does not appear to be consistent with this re-
quirement; in fact, the event AS_load1 (representing 
the input of the part of type t1) does not appear two 
times in the traces of AS. 

4.3. Formula-Based Reduction of the System 
Specification
The approach we present is based on the reduction of 
the system specification: the function below removes 
events from a generic trace.
Definition 7 (delI(t)). Given a trace t on the alphabet 
Ε and the set I ⊆  Ε, we define the function delI : Ε* → 
Ε* as follows:

 
The approach we present is based on the reduction of the system specification: the function 

below removes events from a generic trace. 
Definition 7 (𝑑𝑑𝑑𝑑𝑑𝑑�(𝑡𝑡)). Given a trace  on the alphabet  and the set , we define the function 

 as follows: 
 

 * *

=
=

( ). ( ) = .
( ) = .

< ( ) > =< >
=

I I
I

I

e if t e and e I
if t e and e I

del t del t if t t t
del t

del t if t t
if t



 


 

   
  



 

 

The function  can be extended to any set of traces  as follows:  
  

 
 (5) 

 
According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡 is of the form “e``two 

cases may occur: 1) e represents an interesting activity: we cannot delete e 2) e does not represent an 

interesting activity: we delete e and the empty trace  is returned; If the trace  is of the form , 
we apply the delete function on  and on , while if the trace  is of the form , we apply the 
delete function on , keeping the recursion. The function terminates when the empty trace is 

encountered. After having applied  on the sets of traces belonging to a system specification, we 
expect that the new set of traces describes a behavior equivalent to the old one with respect to . 
Consequently, there are several problems to be taken into account: when a synchronization event does 
not belong to , its elimination can avoid the possible deadlock of the system. Also the elimination of 
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the 
problem is: what is a suitable set  that can be used to reduce a system specification without altering 
the behavior of the system? We use as a guide to build  the property  to be verified, since its 
satisfaction must be preserved by the reduction. 
Definition 8 ( ). Consider the system specification  and the selective 
mu-calculus formula , the set  

 
is the set of names of activities that cannot be cancelled from .  

Consider again the specification of Table 4, interesting properties to prove are: “the assembly 
station cannot produce the final result after obtaining only one piece from  and only one piece 
from ”:  
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The function delI can be extended to any set of traces  
T as follows: 

 
The approach we present is based on the reduction of the system specification: the function 

below removes events from a generic trace. 
Definition 7 (𝑑𝑑𝑑𝑑𝑑𝑑�(𝑡𝑡)). Given a trace  on the alphabet  and the set , we define the function 
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The function  can be extended to any set of traces  as follows:  
  

 
 (5) 

 
According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡 is of the form “e``two 

cases may occur: 1) e represents an interesting activity: we cannot delete e 2) e does not represent an 

interesting activity: we delete e and the empty trace  is returned; If the trace  is of the form , 
we apply the delete function on  and on , while if the trace  is of the form , we apply the 
delete function on , keeping the recursion. The function terminates when the empty trace is 

encountered. After having applied  on the sets of traces belonging to a system specification, we 
expect that the new set of traces describes a behavior equivalent to the old one with respect to . 
Consequently, there are several problems to be taken into account: when a synchronization event does 
not belong to , its elimination can avoid the possible deadlock of the system. Also the elimination of 
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the 
problem is: what is a suitable set  that can be used to reduce a system specification without altering 
the behavior of the system? We use as a guide to build  the property  to be verified, since its 
satisfaction must be preserved by the reduction. 
Definition 8 ( ). Consider the system specification  and the selective 
mu-calculus formula , the set  

 
is the set of names of activities that cannot be cancelled from .  

Consider again the specification of Table 4, interesting properties to prove are: “the assembly 
station cannot produce the final result after obtaining only one piece from  and only one piece 
from ”:  
 

 (6) 

t  I  
delI :* *

delI T

delI (T ) {delI (t) | t T

 t t ' .t ''
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I(SS, ) SS  (LS  S(C))CS


I (SS , )  O() Be(LS  S(C)) S(C)
SS

M1
M 2

  [M1_ op]{ M 2_ op}[M 2_ op]{ M1_ op}

(5)

According to the syntax of a trace given in Definition 
4.1, if the trace t is of the form "e'' two cases may oc-
cur: 1) e represents an interesting activity: we can-
not delete e 2) e does not represent an interesting ac-
tivity: we delete e and the empty trace λ is returned; 
If the trace t is of the form t'.t'', we apply the delete 
function on t' and on t'', while if the trace t is of the 
form 〈t' 〉*, we apply the delete function on t', keep-
ing the recursion. The function terminates when the 
empty trace is encountered. After having applied delI 
on the sets of traces belonging to a system specifica-
tion, we expect that the new set of traces describes a 
behavior equivalent to the old one with respect to I. 
Consequently, there are several problems to be tak-
en into account: when a synchronization event does 
not belong to I, its elimination can avoid the possible 

deadlock of the system. Also the elimination of one 
branching name could avoid the feasibility of alter-
native behaviours of the system. Then, the problem 
is: what is a suitable set I that can be used to reduce 
a system specification without altering the behavior 
of the system? We use as a guide to build I the prop-
erty φ to be verified, since its satisfaction must be 
preserved by the reduction.
Definition 8 (I(SS, φ)). Consider the system specifi-
cation SS = (LS ⇝ S(C))∪CS and the selective mu-cal-
culus formula φ, the set 

removes events from a generic trace. 
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows: 
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The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:  
  

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5) 
 
According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two 

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an 
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′, 
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the 
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is 
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we 
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 . 
Consequently, there are several problems to be taken into account: when a synchronization event does 
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of 
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem 
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior 
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be 
preserved by the reduction. 
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective 
mu-calculus formula 𝜑𝜑𝜑𝜑, the set  

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶) 
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  

Consider again the specification of Table 4, interesting properties to prove are: “the assembly 
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from 
𝑀𝑀𝑀𝑀2”:  
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧ 
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
 

(6) 

“it is possible that the assembly station provides the final product”  
 
  

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7) 

is the set of names of activities that cannot be can-
celled from SS. 
Consider again the specification of Table 4, interest-
ing properties to prove are: “the assembly station can-
not produce the final result after obtaining only one 
piece from M1 and only one piece from M2”: 

removes events from a generic trace. 
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows: 
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The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:  
  

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5) 
 
According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two 

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an 
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′, 
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the 
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is 
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we 
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 . 
Consequently, there are several problems to be taken into account: when a synchronization event does 
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of 
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem 
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior 
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be 
preserved by the reduction. 
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective 
mu-calculus formula 𝜑𝜑𝜑𝜑, the set  

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶) 
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  

Consider again the specification of Table 4, interesting properties to prove are: “the assembly 
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from 
𝑀𝑀𝑀𝑀2”:  
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧ 
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
 

(6) 

“it is possible that the assembly station provides the final product”  
 
  

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7) 

(6)

“it is possible that the assembly station provides the 
final product” 

removes events from a generic trace. 
Definition 7 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)). Given a trace 𝑡𝑡𝑡𝑡 on the alphabet Ε and the set 𝐶𝐶𝐶𝐶 ⊆ Ε, we define the function 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶:Ε∗ → Ε∗ as follows: 
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The function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 can be extended to any set of traces 𝑇𝑇𝑇𝑇 as follows:  
  

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇) = {𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (5) 
 
According to the syntax of a trace given in Definition 4.1, if the trace 𝑡𝑡𝑡𝑡 is of the form "𝑎𝑎𝑎𝑎′′ two 

cases may occur: 1) 𝑎𝑎𝑎𝑎 represents an interesting activity: we cannot delete 𝑎𝑎𝑎𝑎 2) 𝑎𝑎𝑎𝑎 does not represent an 
interesting activity: we delete 𝑎𝑎𝑎𝑎 and the empty trace 𝜆𝜆𝜆𝜆 is returned; If the trace 𝑡𝑡𝑡𝑡 is of the form 𝑡𝑡𝑡𝑡′. 𝑡𝑡𝑡𝑡′′, 
we apply the delete function on 𝑡𝑡𝑡𝑡′ and on 𝑡𝑡𝑡𝑡′′, while if the trace 𝑡𝑡𝑡𝑡 is of the form 〈𝑡𝑡𝑡𝑡′〉∗, we apply the 
delete function on 𝑡𝑡𝑡𝑡′ , keeping the recursion. The function terminates when the empty trace is 
encountered. After having applied 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶 on the sets of traces belonging to a system specification, we 
expect that the new set of traces describes a behavior equivalent to the old one with respect to 𝐶𝐶𝐶𝐶 . 
Consequently, there are several problems to be taken into account: when a synchronization event does 
not belong to 𝐶𝐶𝐶𝐶, its elimination can avoid the possible deadlock of the system. Also the elimination of 
one branching name could avoid the feasibility of alternative behaviours of the system. Then, the problem 
is: what is a suitable set 𝐶𝐶𝐶𝐶 that can be used to reduce a system specification without altering the behavior 
of the system? We use as a guide to build 𝐶𝐶𝐶𝐶 the property 𝜑𝜑𝜑𝜑 to be verified, since its satisfaction must be 
preserved by the reduction. 
Definition 8 (𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑)). Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)) ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 and the selective 
mu-calculus formula 𝜑𝜑𝜑𝜑, the set  

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜑𝜑𝜑𝜑) = 𝒪𝒪𝒪𝒪(𝜑𝜑𝜑𝜑) ∪ ℬ𝑎𝑎𝑎𝑎�𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶) 
is the set of names of activities that cannot be cancelled from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆.  

Consider again the specification of Table 4, interesting properties to prove are: “the assembly 
station cannot produce the final result after obtaining only one piece from 𝑀𝑀𝑀𝑀1 and only one piece from 
𝑀𝑀𝑀𝑀2”:  
 ∅ = [𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 

[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∧ 
[𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}[𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 
[𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝]{𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
 

(6) 

“it is possible that the assembly station provides the final product”  
 
  

 𝜓𝜓𝜓𝜓 = 〈𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (7) (7)

“the system is deadlock-free”
  
“the system is deadlock-free” 
  
 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8) 

  
In the following we shall consider only the property φ , then: 

  
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]} 

 
where  

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝}; 
 
𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7. 

  
Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙  

   
Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]  

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 =  {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}  
      REDUCTION: 1 event 
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2] 

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}   
      REDUCTION: 0 event 
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2] 

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}  
      REDUCTION: 0 event 
Robot 𝑅𝑅𝑅𝑅  

R_𝑅𝑅𝑅𝑅 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}  

      REDUCTION: 4 events (2 events for each trace) 
Assembly Station AS  

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}  

      REDUCTION: 4 events (2 events for each trace) 
Control Traces 

𝐶𝐶𝐶𝐶=  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗} 

      REDUCTION: 0 event 
  

Since the reduction is formula-based, we will prove, in the following section, that the complete 
and reduced systems satisfy the same set of formulae. 

  It is worth noting that 𝜓𝜓𝜓𝜓  can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better 
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on 
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸. 

4.4  Model Discovery 
  

(8)

In the following we shall consider only the property 
φ , then:

  
“the system is deadlock-free” 
  
 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8) 

  
In the following we shall consider only the property φ , then: 

  
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]} 

 
where  

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝}; 
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Since the reduction is formula-based, we will prove, in the following section, that the complete 
and reduced systems satisfy the same set of formulae. 

  It is worth noting that 𝜓𝜓𝜓𝜓  can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better 
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on 
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸. 

4.4  Model Discovery 
  

  
“the system is deadlock-free” 
  
 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8) 

  
In the following we shall consider only the property φ , then: 

  
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]} 
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〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗} 

      REDUCTION: 0 event 
  

Since the reduction is formula-based, we will prove, in the following section, that the complete 
and reduced systems satisfy the same set of formulae. 

  It is worth noting that 𝜓𝜓𝜓𝜓  can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better 
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on 
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸. 

4.4  Model Discovery 
  

where 

  
“the system is deadlock-free” 
  
 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍 (8) 

  
In the following we shall consider only the property φ , then: 

  
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜙𝜙𝜙𝜙) = Ι = 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) ∪ {𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜,𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤, 𝑎𝑎𝑎𝑎 ∈ [1,2]} 

 
where  

 𝒪𝒪𝒪𝒪(𝜙𝜙𝜙𝜙) = {𝑀𝑀𝑀𝑀1_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝑀𝑀𝑀𝑀2_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝}; 
 
𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) obtains the reduced traces shown in Table 7. 

  
Table 7. Reduced traces for checking the formula 𝜙𝜙𝜙𝜙, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙  

   
Machines 𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2]  

𝑅𝑅𝑅𝑅_𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎 =  {〈𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙〉∗}  
      REDUCTION: 1 event 
Machines’ buffering areas 𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2] 

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶1𝑎𝑎𝑎𝑎 = {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∗}   
      REDUCTION: 0 event 
Assembly station’s buffering area 𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎, with 𝑎𝑎𝑎𝑎 ∈ [1,2] 

𝑅𝑅𝑅𝑅_𝐶𝐶𝐶𝐶2𝑎𝑎𝑎𝑎 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤〉∗}  
      REDUCTION: 0 event 
Robot 𝑅𝑅𝑅𝑅  

R_𝑅𝑅𝑅𝑅 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗}  

      REDUCTION: 4 events (2 events for each trace) 
Assembly Station AS  

R_𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 =  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤. 𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑤𝑤𝑤𝑤𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑤𝑤𝑤𝑤.𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆_𝑜𝑜𝑜𝑜𝑝𝑝𝑝𝑝〉∗}  

      REDUCTION: 4 events (2 events for each trace) 
Control Traces 

𝐶𝐶𝐶𝐶=  {〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗,
〈𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡2_𝑚𝑚𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜.𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡1_𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜〉∗} 

      REDUCTION: 0 event 
  

Since the reduction is formula-based, we will prove, in the following section, that the complete 
and reduced systems satisfy the same set of formulae. 

  It is worth noting that 𝜓𝜓𝜓𝜓  can be checked on the same reduced system as 𝜙𝜙𝜙𝜙 , but a better 
reduction could be made; on the contrary, 𝜒𝜒𝜒𝜒 can be more efficiently checked on the system reduced on 
the basis of 𝜙𝜙𝜙𝜙, for example, since deadlock-freeness is preserved by the reduction while 𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝜒𝜒𝜒𝜒) = 𝐸𝐸𝐸𝐸. 

4.4  Model Discovery 
  

delI(SS) obtains the reduced traces shown in Table 7.
Since the reduction is formula-based, we will prove, 
in the following section, that the complete and re-
duced systems satisfy the same set of formulae.

.

.

,
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Table 7 
Reduced traces for checking the formula ϕ, SS_ϕ 

Machines Mi, with i ∈ [1,2]

R_Mi = {〈Mi_op.parti_avl〉*} 

   REDUCTION: 1 event

Machines’ buffering areas B1i, with i ∈ [1,2]

R_B1i = {〈parti_avl.parti_mov〉*}  

   REDUCTION: 0 event

Assembly station’s buffering area B2i, with i ∈ [1,2] 

R_B2i = {〈parti_load.parti_work〉*} 

   REDUCTION: 0 event

Robot R 

R_R= ({〈part1_mov.part1_load〉*, 
〈part2_mov.part2_load〉*})

   REDUCTION: 4 events (2 events for each trace)

Assembly Station  AS

R_AS = ({〈part1_work.part2_work.AS_op*, 
〈part2_work.part1_work.AS_op*})

REDUCTION: 4 events (2 events for each trace)

Control Traces

C = ({〈part1_mov.part1_mov.part2_load*,
〈part2_mov.part1_load.part1_load〉*})

   REDUCTION: 0 event

It is worth noting that ψ can be checked on the same 
reduced system as ϕ, but a better reduction could 
be made; on the contrary, χ can be more efficiently 
checked on the system reduced on the basis of ϕ, for 
example, since deadlock-freeness is preserved by the 
reduction while I(SS, χ)= E.

4.4.  Model Discovery
Now we define a general syntactic transformation 
function T which transforms a trace-based system 
specification into a Lotos program by means of the 
auxiliary functions defined below. The model de-
scribed by the Lotos program is simpler and more 
compact than one directly given as a transition sys-
tem; moreover, all model checking environments can 
easily obtain the transition system corresponding to 
the Lotos program.
Let t be a trace and T a set of traces. First(t) and Rest(t) 
are inductively defined as follows::

First(λ) = λ
First(e) = e
First(t1.t2) = First(t1)
First(〈t〉*) = First(t)

Moreover, it holds that First(T) = {First(t)|t ∈ T}.
Rest(λ) = λ
Rest(e) = λ
Rest(t1.t2) = Rest(t1).t2

Rest(〈t〉*) = Rest(t).〈t〉*

Moreover, it holds that Rest(T) = {Rest(t)|t ∈ T}. 

Cont(T) = {t2 |〈t1 〉*.t2 ∈ T}
First(T) returns the set of all the first names of the 
traces in T, while Rest(T) defines how a trace may go 
on after its first activity has been performed; Cont(T) 
describes what happens when a loop is skipped. For 
example, the trace 〈e.t〉*.t' describes a behavior that 
becomes t.〈e.t〉*.t' after the execution of e , while it be-
comes t' when the loop terminates..
Definition 9 (Function Split ). Consider a set of traces 
T, Split(T) = T1,…,Tk  where each subset Ti is such that
 _ Ti = {ti1

, …, tin
 |n ≥ 1, ti1

, …, tin
)∈Ti, First({ti1

}) =⋯ 
= First({tin

}), ∀i ∈ [1…k];
 _ T = T1∪ … ∪Tk;
 _ Ti ∩ Tj = 0 and First(Ti) ≠ First(Tj ),∀i, j ∈ [1…k] and 

i ≠ j.

Intuitively, Split(T) divides T in k ≥ 1 distinct sub-sets 
such that all traces having the same first event are put 
in the same sub-set. For example, let

T = {〈a, b, c, d〉, 〈a, d〉, 〈c, h〉,〈c, k〉,〈b〉}.
Split(T) produces the following three sub-sets:

T1 = {〈a, b, c, d〉, 〈a, d〉};
T2 = {〈c, h〉,〈c, k〉};
T3 = {〈b〉}.

Now we are ready to define the syntactic transforma-
tion function 

  Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based 
system specification into a Lotos program by means of the auxiliary functions defined below. The model 
described by the Lotos program is simpler and more compact than one directly given as a transition 
system; moreover, all model checking environments can easily obtain the transition system 
corresponding to the Lotos program. 

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows: 
 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1) 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) 

 
Moreover, it holds that ( ) = { ( ) | }First T First t t T∈ . 

  
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗ 

 
Moreover, it holds that ( ) = { ( ) | }Rest T Rest t t T∈ . 

  
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇} 

 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may 
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is 
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′  after the 
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates. 
Definition 9 (Function Split ). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘  where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 
is such that 

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤]; 
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘; 
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. 

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first 
event are put in the same sub-set. For example, let 
 

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}. 
 
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets: 
 

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉}; 
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉}; 
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}. 

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯. 
 
Definition 10 (𝒯𝒯𝒯𝒯 ) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛}  the 

.
Definition 10 (

  Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based 
system specification into a Lotos program by means of the auxiliary functions defined below. The model 
described by the Lotos program is simpler and more compact than one directly given as a transition 
system; moreover, all model checking environments can easily obtain the transition system 
corresponding to the Lotos program. 

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows: 
 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1) 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) 

 
Moreover, it holds that ( ) = { ( ) | }First T First t t T∈ . 

  
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗ 

 
Moreover, it holds that ( ) = { ( ) | }Rest T Rest t t T∈ . 

  
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇} 

 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may 
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is 
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′  after the 
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates. 
Definition 9 (Function Split ). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘  where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 
is such that 

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤]; 
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘; 
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. 

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first 
event are put in the same sub-set. For example, let 
 

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}. 
 
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets: 
 

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉}; 
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉}; 
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}. 

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯. 
 
Definition 10 (𝒯𝒯𝒯𝒯 ) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛}  the 

). Consider the system specification 
SS = ((LS ⇝ S(C))∪CS) = {T1, …, Tn} the Lotos process-
es  Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 

𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

   can be obtained by ap-
plying the transformation function 

  Now we define a general syntactic transformation function 𝑇𝑇𝑇𝑇 which transforms a trace-based 
system specification into a Lotos program by means of the auxiliary functions defined below. The model 
described by the Lotos program is simpler and more compact than one directly given as a transition 
system; moreover, all model checking environments can easily obtain the transition system 
corresponding to the Lotos program. 

Let 𝑡𝑡𝑡𝑡 be a trace and 𝑇𝑇𝑇𝑇 a set of traces. 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) are inductively defined as follows: 
 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝑒𝑒𝑒𝑒 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1) 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡) 

 
Moreover, it holds that ( ) = { ( ) | }First T First t t T∈ . 

  
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝜆𝜆𝜆𝜆) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑒𝑒𝑒𝑒) = 𝜆𝜆𝜆𝜆 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1. 𝑡𝑡𝑡𝑡2) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡1). 𝑡𝑡𝑡𝑡_2 
𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(〈𝑡𝑡𝑡𝑡〉∗) = 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑡𝑡𝑡𝑡). 〈𝑡𝑡𝑡𝑡〉∗ 

 
Moreover, it holds that ( ) = { ( ) | }Rest T Rest t t T∈ . 

  
𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = {𝑡𝑡𝑡𝑡2|〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 ∈ 𝑇𝑇𝑇𝑇} 

 
𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) returns the set of all the first names of the traces in 𝑇𝑇𝑇𝑇, while 𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) defines how a trace may 
go on after its first activity has been performed; 𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) describes what happens when a loop is 
skipped. For example, the trace 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′ describes a behavior that becomes 𝑡𝑡𝑡𝑡. 〈𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡〉∗. 𝑡𝑡𝑡𝑡′  after the 
execution of e , while it becomes 𝑡𝑡𝑡𝑡′ when the loop terminates. 
Definition 9 (Function Split ). Consider a set of traces 𝑇𝑇𝑇𝑇, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘  where each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 
is such that 

• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = {𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛|𝑜𝑜𝑜𝑜 ≥ 1, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1 , … , 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 ∈ 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖,𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1�� = ⋯ = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡��𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛��,∀𝑖𝑖𝑖𝑖 ∈ [1 … 𝑤𝑤𝑤𝑤]; 
• 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇1 ∪ …∪ 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘; 
• 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ 𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) ≠ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡�𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗�,∀𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 ∈ [1 … 𝑤𝑤𝑤𝑤] 𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗𝑗𝑗. 

Intuitively, 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) divides 𝑇𝑇𝑇𝑇 in 𝑤𝑤𝑤𝑤 ≥ 1 distinct sub-sets such that all traces having the same first 
event are put in the same sub-set. For example, let 
 

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉, 〈𝑐𝑐𝑐𝑐, ℎ〉, 〈𝑐𝑐𝑐𝑐,𝑤𝑤𝑤𝑤〉, 〈𝑏𝑏𝑏𝑏〉}. 
 
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇) produces the following three sub-sets: 
 

𝑇𝑇𝑇𝑇1 = {〈𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎〉, 〈𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎〉}; 
𝑇𝑇𝑇𝑇2 = {〈𝑐𝑐𝑐𝑐,ℎ〉, 〈𝑐𝑐𝑐𝑐, 𝑤𝑤𝑤𝑤〉}; 
𝑇𝑇𝑇𝑇3 = {〈𝑏𝑏𝑏𝑏〉}. 

Now we are ready to define the syntactic transformation function 𝒯𝒯𝒯𝒯. 
 
Definition 10 (𝒯𝒯𝒯𝒯 ) Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛}  the 

 defined below 
to each subset Ti, 1 ≤ i ≤ n, of SS:

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
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with 

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  = 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  
𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

and 

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  

𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =

    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider  the set of traces of Figure 4 ,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏. 𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)  𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

where NC is a new constant. As a first simple example, 
consider the set of traces of Figure 4, T = {b.e, b.f}, and 
the LTS of the Lotos process P resulting from the ap-
plication of 

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

, where P is: 

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

Now consider the following two traces with loops, i.e.,

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨

⎪
⎧

 
 
 
 
 
 
 

 

𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏. 𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

Figure 4  
Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃)) 

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is: 
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔  𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏;  𝜇𝜇𝜇𝜇 [ ]𝑠𝑠𝑠𝑠;  𝑌𝑌𝑌𝑌)[ ]𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶=  𝑎𝑎𝑎𝑎;  𝑏𝑏𝑏𝑏;  𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶=  𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠;  𝑌𝑌𝑌𝑌 [ ]𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′. 
 
Now, let us consider the following set of traces: 
 

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗} 
  

 
Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′)) 

 
The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool 
implementing the transformation functions above performs some optimizations of their behaviour; for 
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is 
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The 
optimized program is the following: 
 
𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[ ]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) [ ]𝑎𝑎𝑎𝑎;  𝑤𝑤𝑤𝑤[ ]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦 ) 
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦  
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 [ ]𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤  
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧   
 
Finally, the complete Lotos program corresponding to a System Specification is obtained as follows 
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𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔  𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏;  𝜇𝜇𝜇𝜇 [ ]𝑠𝑠𝑠𝑠;  𝑌𝑌𝑌𝑌)[ ]𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
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𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗} 
  

 
Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′)) 

 
The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool 
implementing the transformation functions above performs some optimizations of their behaviour; for 
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is 
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The 
optimized program is the following: 
 
𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[ ]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) [ ]𝑎𝑎𝑎𝑎;  𝑤𝑤𝑤𝑤[ ]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦 ) 
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦  
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 [ ]𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤  
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧   
 
Finally, the complete Lotos program corresponding to a System Specification is obtained as follows 
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The application of 

Lotos processes 𝑥𝑥𝑥𝑥1 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛) can be obtained by applying the transformation function 
𝒯𝒯𝒯𝒯 defined below to each subset 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 
 

𝒯𝒯𝒯𝒯(T𝑖𝑖𝑖𝑖) = �

𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡, 𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡)           if Ti = 𝑡𝑡𝑡𝑡   
(𝐹𝐹𝐹𝐹1 ≫ 𝑅𝑅𝑅𝑅1 [ ]𝐶𝐶𝐶𝐶1)[ ]              

…                            
[ ](𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟 ≫ 𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟[ ]𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟     𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒 

  

 
  

with  
𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)  

= 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 , … ,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟 , 𝑠𝑠𝑠𝑠 ≥ 1  

𝐹𝐹𝐹𝐹𝑗𝑗𝑗𝑗 : = 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗� exit; 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝑅𝑅𝑅𝑅𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

𝐶𝐶𝐶𝐶𝑗𝑗𝑗𝑗 : = 𝒯𝒯𝒯𝒯 �𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 �𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗�� 𝑗𝑗𝑗𝑗 ∈ [1. . 𝑠𝑠𝑠𝑠] 

 
  

and  
𝒯𝒯𝒯𝒯(𝑡𝑡𝑡𝑡,𝐶𝐶𝐶𝐶) =    
 

⎩
⎪
⎨
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𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈 〉 
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒  
 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ≔ 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡1,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)[ ]  
 𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡2,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 〈𝑡𝑡𝑡𝑡1〉∗. 𝑡𝑡𝑡𝑡2 
 𝑒𝑒𝑒𝑒;𝒯𝒯𝒯𝒯′(𝑡𝑡𝑡𝑡′,𝐶𝐶𝐶𝐶) 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒. 𝑡𝑡𝑡𝑡′ 

   
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is a new constant. As a first simple example, consider the set of traces of Figure 4,  
𝑇𝑇𝑇𝑇 = {𝑏𝑏𝑏𝑏. 𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓}, and the LTS of the Lotos process P resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇), where 𝑃𝑃𝑃𝑃 is:  
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃 ≔ 𝑏𝑏𝑏𝑏;  (𝑒𝑒𝑒𝑒;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 [ ] 𝑓𝑓𝑓𝑓;  𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡) 𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 

  
Now consider the following two traces with loops, i.e., 
  

𝑇𝑇𝑇𝑇′ = {〈𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏〉∗, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗. 𝑛𝑛𝑛𝑛} 
 

 
 
 
 
 
 

 as long as possible produc-
es the following Lotos processes. Obviously the tool 
implementing the transformation functions above 
performs some optimizations of their behaviour; for 
example, the introduction of constants is avoided, if 
an existing one has the same declaration part or it is 
composed of one event; moreover, the branches con-
taining only an exit command are eliminated. The op-
timized program is the following:

 
Figure 4. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃)) 

Figure 5 shows the LTS of the Lotos process P’ resulting from the application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇′), where 𝑃𝑃𝑃𝑃′ is: 
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑃𝑃𝑃𝑃′ ≔  𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏;  𝜇𝜇𝜇𝜇 [ ]𝑠𝑠𝑠𝑠;  𝑌𝑌𝑌𝑌)[ ]𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇𝜇𝜇 ∶=  𝑎𝑎𝑎𝑎;  𝑏𝑏𝑏𝑏;  𝜇𝜇𝜇𝜇 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑌𝑌𝑌𝑌 ∶=  𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠;  𝑌𝑌𝑌𝑌 [ ]𝑎𝑎𝑎𝑎;  𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
In the cases above it is 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇) = 𝑇𝑇𝑇𝑇 and 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑇𝑇𝑇𝑇′) = 𝑇𝑇𝑇𝑇′. 
 
Now, let us consider the following set of traces: 
 

𝑇𝑇𝑇𝑇 = {〈𝑎𝑎𝑎𝑎. 〈𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠〉∗.𝑎𝑎𝑎𝑎〉∗,𝑎𝑎𝑎𝑎. 𝑏𝑏𝑏𝑏.𝑓𝑓𝑓𝑓, 〈𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠〉∗} 
  

 
Figure 5. 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑃𝑃𝑃𝑃′)) 

 
The application of 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇) as long as possible produces the following Lotos processes. Obviously the tool 
implementing the transformation functions above performs some optimizations of their behaviour; for 
example, the introduction of constants is avoided, if an existing one has the same declaration part or it is 
composed of one event; moreover, the branches containing only an 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 command are eliminated. The 
optimized program is the following: 
 
𝑥𝑥𝑥𝑥 ≔ 𝑎𝑎𝑎𝑎;  (𝑏𝑏𝑏𝑏; (𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧[ ]𝑓𝑓𝑓𝑓; 𝑠𝑠𝑠𝑠𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) [ ]𝑎𝑎𝑎𝑎;  𝑤𝑤𝑤𝑤[ ]𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦 ) 
𝑦𝑦𝑦𝑦 ≔ 𝑎𝑎𝑎𝑎; 𝑠𝑠𝑠𝑠;𝑦𝑦𝑦𝑦  
𝑧𝑧𝑧𝑧 ≔ 𝑏𝑏𝑏𝑏; 𝑠𝑠𝑠𝑠; 𝑧𝑧𝑧𝑧 [ ]𝑎𝑎𝑎𝑎;𝑤𝑤𝑤𝑤  
𝑤𝑤𝑤𝑤 ≔ 𝑎𝑎𝑎𝑎; 𝑧𝑧𝑧𝑧   
 
Finally, the complete Lotos program corresponding to a System Specification is obtained as follows Finally, the complete Lotos program corresponding to 

a System Specification is obtained as follows
Definition 11. Consider the system specification SS = 
((LS ⇝ S(C))∪CS) = {T1, …,Tn}, the corresponding Lo-
tos process is:

𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥∶=  (𝑥𝑥𝑥𝑥_1 |[𝑆𝑆𝑆𝑆_1]| (𝑥𝑥𝑥𝑥_2 |[𝑆𝑆𝑆𝑆_2]| … 
(𝑥𝑥𝑥𝑥_{𝑛𝑛𝑛𝑛−1}|[ 𝑆𝑆𝑆𝑆_{𝑛𝑛𝑛𝑛 −1}|] 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛) … )) 

𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1≔ 𝑤𝑤𝑤𝑤1 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  …  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛≔ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
with 𝑤𝑤𝑤𝑤_1 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), and 𝑤𝑤𝑤𝑤_𝑛𝑛𝑛𝑛 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛). 

.

.

.

,

,
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Moreover, each Si,∀i ∈ [1…n–1] is the set αTi ∩ (αTi+1 

∪… ∪αTn ). 
The correctness of our method is stated by the follow-
ing theorem.
Theorem 2. Let  SS be a System Specification, ψ a se-
lective formula and ρ = I(SS,ψ):

𝑆𝑆𝑆𝑆 �𝒯𝒯𝒯𝒯�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)��  𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  𝜌𝜌𝜌𝜌 − 𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

Proof. First of all we need some notations and defi-
nitions. We define a transition relation which ig-
nores a given set of actions: given a transition system  
T = (S, A,⟶, p) and a set of actions ρ ⊆ A, we define the 
relation ⟶ρ⊆ S × ρ × S such that, for each α ∈ ρ, ρ∈S:

By 𝑝𝑝 ���→� 𝑞𝑞 we express the fact that it is possible to pass 
from 𝑝𝑝 to 𝑞𝑞 by performing a (possibly empty) sequence 
of actions not belonging to 𝜌𝜌 and then the action 𝛼𝛼 in 𝜌𝜌. 
Note that ⟶�=⟶. 
The notions of 𝜌𝜌 -bisimulation and 𝜌𝜌 -equivalence 
between transition systems are given as follows. 
Informally, two transition systems are 𝜌𝜌 -equivalent iff 
they behave in the same way with respect to the actions 
in 𝜌𝜌. 
Let 𝑇𝑇� = (𝑆𝑆�, 𝐴𝐴,⟶, 𝑝𝑝�) and 𝑇𝑇� = (𝑆𝑆�, 𝐴𝐴,⟶, 𝑝𝑝�) be 
transition systems and 𝜌𝜌 𝜌 𝐴𝐴. 
 

 

 

 

 

 
  

 
Definition 11. Consider the system specification 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ��𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆 ⇝ 𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶)� ∪ 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆� = {𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛} , the 
corresponding Lotos process is: 
 
𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥 ∶=  (𝑥𝑥𝑥𝑥_1 |[𝑆𝑆𝑆𝑆_1]| (𝑥𝑥𝑥𝑥_2 |[𝑆𝑆𝑆𝑆_2]| … (𝑥𝑥𝑥𝑥_{𝑛𝑛𝑛𝑛 − 1}|[ 𝑆𝑆𝑆𝑆_{𝑛𝑛𝑛𝑛 − 1}|] 𝑥𝑥𝑥𝑥_𝑛𝑛𝑛𝑛) … ))  
𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥1 ≔ 𝑤𝑤𝑤𝑤1 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
  …  
  𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 ≔ 𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
with 𝑤𝑤𝑤𝑤_1 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇1), and 𝑤𝑤𝑤𝑤_𝑛𝑛𝑛𝑛 = 𝒯𝒯𝒯𝒯(𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛). 
 
Moreover, each 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,∀𝑖𝑖𝑖𝑖 ∈ [1 …𝑛𝑛𝑛𝑛 − 1] is the set 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 ∩ (𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖+1 ∪ …∪ 𝛼𝛼𝛼𝛼𝑇𝑇𝑇𝑇𝑛𝑛𝑛𝑛).  
The correctness of our method is stated by the following theorem. 
Theorem 2. Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = I(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓): 
 

𝑆𝑆𝑆𝑆 �𝒯𝒯𝒯𝒯 �𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)��  𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜌𝜌𝜌𝜌 − 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
  

Proof. First of all we need some notations and definitions. We define a transition relation which ignores 
a given set of actions: given a transition system 𝑇𝑇𝑇𝑇 = (𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶,⟶,𝑝𝑝𝑝𝑝) and a set of actions 𝜌𝜌𝜌𝜌 ⊆ 𝐶𝐶𝐶𝐶, we define 
the relation ⟶𝜌𝜌𝜌𝜌⊆ 𝑆𝑆𝑆𝑆 × 𝜌𝜌𝜌𝜌 × 𝑆𝑆𝑆𝑆  such that, for each 𝛼𝛼𝛼𝛼 ∈ 𝜌𝜌𝜌𝜌,𝜌𝜌𝜌𝜌 ∈ 𝑆𝑆𝑆𝑆: 

𝑝𝑝𝑝𝑝
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒 ≡ 𝑝𝑝𝑝𝑝

 𝛿𝛿𝛿𝛿𝛼𝛼𝛼𝛼 
�⎯⎯�𝑒𝑒𝑒𝑒,𝑤𝑤𝑤𝑤ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿 ∈ (𝐶𝐶𝐶𝐶 − 𝜌𝜌𝜌𝜌)∗ 

By 𝑝𝑝𝑝𝑝
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒 we express the fact that it is possible to pass from 𝑝𝑝𝑝𝑝 to 𝑒𝑒𝑒𝑒 by performing a (possibly empty) 

sequence of actions not belonging to 𝜌𝜌𝜌𝜌 and then the action 𝛼𝛼𝛼𝛼 in 𝜌𝜌𝜌𝜌. Note that ⟶𝐴𝐴𝐴𝐴=⟶. 
The notions of 𝜌𝜌𝜌𝜌  -bisimulation and 𝜌𝜌𝜌𝜌  -equivalence between transition systems are given as 

follows. Informally, two transition systems are 𝜌𝜌𝜌𝜌 -equivalent iff they behave in the same way with 
respect to the actions in 𝜌𝜌𝜌𝜌. 
Let 𝑇𝑇𝑇𝑇1 = (𝑆𝑆𝑆𝑆1,𝐶𝐶𝐶𝐶,⟶,𝑝𝑝𝑝𝑝1) and 𝑇𝑇𝑇𝑇2 = (𝑆𝑆𝑆𝑆2,𝐶𝐶𝐶𝐶,⟶, 𝑝𝑝𝑝𝑝2) be transition systems and 𝜌𝜌𝜌𝜌 ⊆ 𝐶𝐶𝐶𝐶. 

⁃ A  𝜌𝜌𝜌𝜌 -bisimulation, 𝐶𝐶𝐶𝐶, is a binary relation on 𝑆𝑆𝑆𝑆1 × 𝑆𝑆𝑆𝑆2 such that 𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒 implies:  
(i)  𝑠𝑠𝑠𝑠

 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑠𝑠𝑠𝑠′ implies 𝑒𝑒𝑒𝑒

 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒

′ with 𝑠𝑠𝑠𝑠′𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒′; and  

(ii) 𝑒𝑒𝑒𝑒
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒

′ implies 𝑠𝑠𝑠𝑠
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑠𝑠𝑠𝑠′ with 𝑠𝑠𝑠𝑠′𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒′  

⁃ 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇2 are  𝜌𝜌𝜌𝜌 -equivalent (𝑇𝑇𝑇𝑇1 ≈𝜌𝜌𝜌𝜌 𝑇𝑇𝑇𝑇2) iff there exists a 𝜌𝜌𝜌𝜌 -bisimulation 𝐶𝐶𝐶𝐶 containing the 
pair (𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝2).  
 
For each 1 ≤ 𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛, let 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 be the Lotos process obtained by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 and let 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 be the Lotos process 

obtained by 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 after deleting the actions not in 𝜌𝜌𝜌𝜌 (i.e., 𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖)). We show that 𝐶𝐶𝐶𝐶 = {(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖)} is a 𝜌𝜌𝜌𝜌 -
bisimulation. 
The proof is carried out by structural induction on Lotos processes. 

 
We consider the case 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝛼𝛼𝛼𝛼;𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. All the other cases can be proved similarly. If 𝛼𝛼𝛼𝛼 belongs to 𝜌𝜌𝜌𝜌, 

Corollary 1. Let SS be a System Specification, ψ a 
selective formula and ρ = (SS, ψ): 

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and 

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching 

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis 

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered. 
The corollaries below express important consequences on the system requirements of the reduction 
method. 
 
Corollary 1.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
 

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓 
  

  Proof. The proof follows immediately by Theorems 1 and 2. 
 
Corollary 2.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
  

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒 
 

  Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)). 

  For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the 
specification in Table 6 (which is defined in the following section and can be obtained from the tool used 
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table 
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform 
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the 
verification time. 

  
Table 8. Reduction results 

   
  𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆)   𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)  

states   transitions   states   transitions   state space  
reduction %   
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Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction 
obtained with our methodology for this purpose. 

  
Table 9. Verification time for the property 𝜙𝜙𝜙𝜙 

   

Proof. The proof follows immediately by Theorems 1 
and 2.
Corollary 2. Let SS be a System Specification, χ = 
νZ.〈Ε〉Ε tt ∧ [Ε]Ε Z, ψ any selective formula, and ρ = 
I(SS, ψ):

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and 

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching 

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis 

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered. 
The corollaries below express important consequences on the system requirements of the reduction 
method. 
 
Corollary 1.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
 

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓 
  

  Proof. The proof follows immediately by Theorems 1 and 2. 
 
Corollary 2.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
  

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒 
 

  Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)). 

  For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the 
specification in Table 6 (which is defined in the following section and can be obtained from the tool used 
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table 
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform 
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the 
verification time. 

  
Table 8. Reduction results 

   
  𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆)   𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)  

states   transitions   states   transitions   state space  
reduction %   
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Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction 
obtained with our methodology for this purpose. 

  
Table 9. Verification time for the property 𝜙𝜙𝜙𝜙 

   

Proof. The proof follows immediately by Theorem 2 
and by Definition 8, since Be(SS) = Be(delρ (SS)).
For the experiment we used the CADP [10] tool. 
CADP is a popular toolbox that supports high-level 
descriptions written in Lotos. In Table 8, 

it means that all the traces in 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 start with 𝛼𝛼𝛼𝛼, so 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

′ and 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 is equal to 𝛼𝛼𝛼𝛼; 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′, thus 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛼𝛼𝛼𝛼 
�⎯�𝜌𝜌𝜌𝜌 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖

′ and 

by inductive hypothesis (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. If 𝛼𝛼𝛼𝛼 does not belong to 𝜌𝜌𝜌𝜌, 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′. Since 𝛼𝛼𝛼𝛼 is not a branching 

action, then 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 cannot be of the form 𝛼𝛼𝛼𝛼. 𝑠𝑠𝑠𝑠 + 𝑠𝑠𝑠𝑠, so it holds that 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖
 𝛽𝛽𝛽𝛽 
�⎯� 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′ and by inductive hypothesis 

(𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖′, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖′) ∈ 𝐶𝐶𝐶𝐶. To complete the proof also the actions that 𝑒𝑒𝑒𝑒 can perform have been considered. 
The corollaries below express important consequences on the system requirements of the reduction 
method. 
 
Corollary 1.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜓𝜓𝜓𝜓 a selective formula and 𝜌𝜌𝜌𝜌 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
 

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜓𝜓𝜓𝜓 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜓𝜓𝜓𝜓 
  

  Proof. The proof follows immediately by Theorems 1 and 2. 
 
Corollary 2.  
Let 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be a System Specification, 𝜒𝜒𝜒𝜒 = 𝜈𝜈𝜈𝜈𝑍𝑍𝑍𝑍. 〈Ε〉Ε𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∧ [Ε]Ε𝑍𝑍𝑍𝑍,𝜓𝜓𝜓𝜓 any selective formula, and 𝜌𝜌𝜌𝜌 =
𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝜓𝜓𝜓𝜓):  
  

𝑆𝑆𝑆𝑆�𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)� ⊨ 𝜒𝜒𝜒𝜒 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆(𝒯𝒯𝒯𝒯 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)�) ⊨ 𝜒𝜒𝜒𝜒 
 

  Proof. The proof follows immediately by Theorem 2 and by Definition 8, since 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝜌𝜌𝜌𝜌(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)). 

  For the experiment we used the CADP [10] tool. CADP is a popular toolbox that supports high-
level descriptions written in Lotos. In Table 8, 𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 𝒯𝒯𝒯𝒯(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) is the program obtained from the 
specification in Table 6 (which is defined in the following section and can be obtained from the tool used 
to implement the methodology), while 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) represents the transition system for this process; the table 
compares the size of 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆) with the size of the transition systems 𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙): the reduction we perform 
is significant, in terms of both states and transitions, and thus it implies a corresponding reduction of the 
verification time. 

  
Table 8. Reduction results 

   
  𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆)   𝑆𝑆𝑆𝑆(𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆_𝜙𝜙𝜙𝜙)  

states   transitions   states   transitions   state space  
reduction %   

62208  230688   9504   30384   86.3 %  
   
Table 9 shows the time employed by the CADP to check 𝜙𝜙𝜙𝜙 on both specifications and the time reduction 
obtained with our methodology for this purpose. 

  
Table 9. Verification time for the property 𝜙𝜙𝜙𝜙 

   

is the program obtained from the specification in Ta-
ble 6 (which is defined in the following section and 
can be obtained from the tool used to implement the 
methodology), while S(MS) represents the transi-
tion system for this process; the table compares the 
size of S(MS)  with the size of the transition systems 
S(MS_ϕ): the reduction we perform is significant, in 
terms of both states and transitions, and thus it im-
plies a corresponding reduction of the verification 
time.

A  𝜌𝜌 -bisimulation, 𝐵𝐵, is a binary relation on 𝑆𝑆� × 𝑆𝑆� 
such that 𝑟𝑟𝐵𝐵𝑟𝑟 implies:  
(i)  𝑟𝑟 ���→� 𝑟𝑟� implies 𝑟𝑟 ���→� 𝑟𝑟� with 𝑟𝑟�𝐵𝐵𝑟𝑟�; and  

(ii) 𝑟𝑟 ���→� 𝑟𝑟� implies 𝑟𝑟 ���→� 𝑟𝑟� with 𝑟𝑟�𝐵𝐵𝑟𝑟�  
𝑇𝑇� and 𝑇𝑇� are  𝜌𝜌 -equivalent (𝑇𝑇� ≈� 𝑇𝑇�) iff there exists 
a 𝜌𝜌 -bisimulation 𝐵𝐵 containing the pair (𝑝𝑝�, 𝑝𝑝�). 

 

 

 

 

 
  

 _

 _

For each 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖, let 𝑞𝑞�  be the Lotos process obtained 
by 𝑇𝑇�  and let 𝑝𝑝�  be the Lotos process obtained by 𝑇𝑇�  after 
deleting the actions not in 𝜌𝜌 (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑�(𝑇𝑇�)). We show 
that 𝐵𝐵 𝐵 𝐵(𝑝𝑝�, 𝑞𝑞�)} is a 𝜌𝜌 -bisimulation. 

The proof is carried out by structural induction on 
Lotos processes. 

We consider the case 𝑝𝑝� 𝐵 𝛼𝛼𝛼 𝑝𝑝��. All the other cases can 
be proved similarly. If 𝛼𝛼 belongs to 𝜌𝜌, it means that all 
the traces in 𝑇𝑇�  start with 𝛼𝛼, so 𝑝𝑝�

���→� 𝑝𝑝�� and 𝑞𝑞�  is equal to 

𝛼𝛼𝛼 𝑞𝑞��, thus 𝑞𝑞�
���→� 𝑞𝑞�� and by inductive hypothesis 

(𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. If 𝛼𝛼 does not belong to 𝜌𝜌, 𝑝𝑝�
���→ 𝑝𝑝��. Since 𝛼𝛼 is 

not a branching action, then 𝑞𝑞�  cannot be of the form 

𝛼𝛼𝛼 𝛼𝛼 𝛼 𝛼𝛼, so it holds that 𝑞𝑞�
���→ 𝑞𝑞�� and by inductive 

hypothesis (𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. To complete the proof also the 
actions that 𝑞𝑞 can perform have been considered. 

The corollaries below express important consequences 
on the system requirements of the reduction method. 

 

 

 

 

 
  

For each 1 ≤ 𝑖𝑖 ≤ 𝑖𝑖, let 𝑞𝑞�  be the Lotos process obtained 
by 𝑇𝑇�  and let 𝑝𝑝�  be the Lotos process obtained by 𝑇𝑇�  after 
deleting the actions not in 𝜌𝜌 (i.e., 𝑑𝑑𝑑𝑑𝑑𝑑�(𝑇𝑇�)). We show 
that 𝐵𝐵 𝐵 𝐵(𝑝𝑝�, 𝑞𝑞�)} is a 𝜌𝜌 -bisimulation. 

The proof is carried out by structural induction on 
Lotos processes. 

We consider the case 𝑝𝑝� 𝐵 𝛼𝛼𝛼 𝑝𝑝��. All the other cases can 
be proved similarly. If 𝛼𝛼 belongs to 𝜌𝜌, it means that all 
the traces in 𝑇𝑇�  start with 𝛼𝛼, so 𝑝𝑝�

���→� 𝑝𝑝�� and 𝑞𝑞�  is equal to 

𝛼𝛼𝛼 𝑞𝑞��, thus 𝑞𝑞�
���→� 𝑞𝑞�� and by inductive hypothesis 

(𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. If 𝛼𝛼 does not belong to 𝜌𝜌, 𝑝𝑝�
���→ 𝑝𝑝��. Since 𝛼𝛼 is 

not a branching action, then 𝑞𝑞�  cannot be of the form 

𝛼𝛼𝛼 𝛼𝛼 𝛼 𝛼𝛼, so it holds that 𝑞𝑞�
���→ 𝑞𝑞�� and by inductive 

hypothesis (𝑝𝑝��, 𝑞𝑞��) ∈ 𝐵𝐵. To complete the proof also the 
actions that 𝑞𝑞 can perform have been considered. 

The corollaries below express important consequences 
on the system requirements of the reduction method. 

 

 

 

 

 
  

Table 8
Reduction results

S(MS)  S(MS_ϕ)

states  transitions  states  transitions  state space  
reduction % 

62208  230688  9504  30384  86.3 %
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Table 9 shows the time employed by the CADP to 
check ϕ on both specifications and the time reduction 
obtained with our methodology for this purpose.

Table 9 
Verification time for the property ϕ

standard 
transition system 

reduced 
 transition system 

time 
 reduction %

203.2s  18.8s 90.7 %

5  Experimental Evaluation Using the 
Custom-Made Approach
The methodology presented in the previous section 
has been exploited for the implementation of a pro-
totype, whose architecture is shown in Figure 6. The 
prototype is implemented in Java, for portability and 
reusability. Moreover, OpenXES for managing event 
log data has been used. The parsed traces are trans-
lated into Lotos processes following the methodology 
described in the previous section; the part of the tool 
performing the trace reduction can be skipped and, in 
this case, the produced Lotos program corresponds to 
the complete model representing the system traces. 
In any case, the produced Lotos process can be sup-

Figure 6 
The Architecture of our Prototype

plied to the CADP formal verification environment to 
check the properties.
The aim is to evaluate the performance of the ap-
proach presented in this paper. Experiments were ex-
ecuted on a 32 bit, 2.5 GHz Intel Core i7 CPU equipped 
with 2 GB of RAM and running Ubuntu 15.10 Linux.
First of all we consider again the example of Section 
3. Table 10 shows the state space reduction obtained 
using the custom-made approach. In particular, the 
table shows:
 _ in the column “custom-made approach”, sub-

column “time”, the time to produce the Lotos 
specification RP starting from the reduced traces 
is reported. Moreover, the table shows also the 
number of states (sub-column “states”) and of the 
transitions (sub-column “trans”) of the automaton 
corresponding to the Lotos process RP obtained 
using our approach. Note that the reduction has 
been applied according to the property that we 
have to prove for each case study. In this case we 
consider the φ property explained in Section 3. 

 _ in the column “reduction”, the state space reduction 
is reported. 

As the results show, our custom-made approach is 
able to achieve a state space reduction that is great-
er than or equal to 96% in all of considered cases. It 
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  transition system  

 reduced  
 transition system  

 time  
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a prototype, whose architecture is shown in Figure 6. The prototype is implemented in Java, for 
portability and reusability. Moreover, OpenXES for managing event log data has been used. The parsed 
traces are translated into Lotos processes following the methodology described in the previous section; 
the part of the tool performing the trace reduction can be skipped and, in this case, the produced Lotos 
program corresponds to the complete model representing the system traces. In any case, the produced 
Lotos process can be supplied to the CADP formal verification environment to check the properties. 

 

 
Figure 6. The Architecture of our Prototype. 

   
The aim is to evaluate the performance of the approach presented in this paper. Experiments were 

executed on a 32 bit, 2.5 GHz Intel Core i7 CPU equipped with 2 GB of RAM and running Ubuntu 15.10 
Linux. 

First of all we consider again the example of Section 3. Table 10 shows the state space reduction 
obtained using the custom-made approach. In particular, the table shows: 

• in the column “custom-made approach”, sub-column “time”, the time to produce the Lotos 
specification 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 starting from the reduced traces is reported. Moreover, the table shows also 
the number of states (sub-column “states”) and of the transitions (sub-column “trans”) of the 
automaton corresponding to the Lotos process 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃 obtained using our approach. Note that the 
reduction has been applied according to the property that we have to prove for each case study. 
In this case we consider the 𝜑𝜑𝜑𝜑 property explained in Section 3.  

• in the column “reduction”, the state space reduction is reported.  
As the results show, our custom-made approach is able to achieve a state space reduction that is 

greater than or equal to 96% in all of considered cases. It should be underlined that this reduction of the 
state space has also led to a considerable reduction of verification time. For example, for “10000-all-
nonoise” the custom-made approach has employed 134.080 sec, while the integrated-tool ones has 



293Information Technology and Control 2019/2/48

Table 10 
Results for the reduced bank example - state space

Case study
custom-made approach reduction

time (s) states trans. state space
reduction %

2000-all-noise  0.219  3264  4495  96% 

2000-all-nonoise  0.326  787  1081  99% 

2000-scen1  0.275  998  1377  98% 

2000-scen2  0.258  754  1074  99% 

10000-all-noise 1.148 10659 14487  97% 

10000-all-nonoise  1.487  902  1203  99% 

should be underlined that this reduction of the state 
space has also led to a considerable reduction of ver-
ification time. For example, for “10000-all-nonoise” 
the custom-made approach has employed 134.080 
sec, while the integrated-tool ones has employed 
31686.372 sec with a reduction equal to 99%.
To better complete evaluation, also other samples of 
real systems were selected. Moreover, we report also 
the property that we have checked on each case study.
Repair Telephones: this example is taken from the 
ProM website4 and considers a process to repair tele-
phones in a company. The company can fix 3 different 
types of phones.  
Property: “It is not possible to archive the case if 
the user has not been informed”. This property is ex-
pressed by the following selective mu-calculus: 

employed 31686.372 sec with a reduction equal to 99%. 
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Case study custom-made approach reduction 
 time (s) states trans. state space 

reduction %  
2000-all-noise   0.219   3264   4495   96%  

2000-all-nonoise   0.326   787   1081   99%  
2000-scen1   0.275   998   1377   98%  
2000-scen2   0.258   754   1074   99%  

10000-all-noise   1.148   10659   14487   97%  
10000-all-nonoise   1.487   902   1203   99%  

 
To better complete evaluation, also other samples of real systems were selected. Moreover, we 

report also the property that we have checked on each case study. 
 
Repair Telephones: this example is taken from the ProM website4 and considers a process to repair 
telephones in a company. The company can fix 3 different types of phones.   
Property: “It is not possible to archive the case if the user has not been informed”. This property is 
expressed by the following selective mu-calculus:  

  
 𝜑𝜑𝜑𝜑 = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�{𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜_𝑈𝑈𝑈𝑈𝑠𝑠𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (9) 

 
The property is true on both the reduced and the complete models.  
University of Pisa: the careers of the students of the Bachelor Degree in Computer Engineering have 
been examined to evaluate the level of compliance of these students with a set of rules that, if followed, 
lead to the best performance in time and results. The rules specifying the correct behavior are expressed 
as constraints on the order in which the marks for some courses can be obtained. For example the 
following constraint can be set  
Property: “It is possible to obtain marks for Computer Architecture first and then for Digital Logic 
Design”. This property is expressed by the following selective mu-calculus formula:  
 
 𝜑𝜑𝜑𝜑 = 〈𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶_𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒〉∅〈𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶_𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎〉∅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (10) 

 
Property 𝜑𝜑𝜑𝜑 is false in a correct behavior and it is false on both the reduced and the complete models, 
since Digital Logic Design is a bridging course for Computer Architecture. 
 
WABO: this example is taken from the ProM website5. This data originates from the CoSeLoG project 
executed under NWO project number 638.001.211. This event log contains the records of the execution 
of the receiving phase of the building permit application process in an anonymous municipality. 
Property: “activity “T10 Determine necessity to stop indication” which determines whether the process 
should be stopped cannot be performed if activity “T06 Determine necessity of stop advice” has not been 

                                                      
4 http://www.processmining.org/logs/start 
5 http://www.processmining.org/logs/start 

(9)

The property is true on both the reduced and the com-
plete models. 
University of Pisa: the careers of the students of 
the Bachelor Degree in Computer Engineering have 
been examined to evaluate the level of compliance 
of these students with a set of rules that, if followed, 
lead to the best performance in time and results. The 
rules specifying the correct behavior are expressed as 
constraints on the order in which the marks for some 
courses can be obtained. For example the following 
constraint can be set 

4  http://www.processmining.org/logs/start

Property: “It is possible to obtain marks for Com-
puter Architecture first and then for Digital Logic 
Design”. This property is expressed by the following 
selective mu-calculus formula: 

𝜑𝜑𝜑𝜑=〈𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜〉∅〈𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐_𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎〉∅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
(10)

Property φ is false in a correct behavior and it is false 
on both the reduced and the complete models, since 
Digital Logic Design is a bridging course for Comput-
er Architecture.
WABO: this example is taken from the ProM web-
site5. This data originates from the CoSeLoG project 
executed under NWO project number 638.001.211. 
This event log contains the records of the execution of 
the receiving phase of the building permit application 
process in an anonymous municipality.
Property: “activity “T10 Determine necessity to stop 
indication” which determines whether the process 
should be stopped cannot be performed if activity 
“T06 Determine necessity of stop advice” has not 
been performed”.
This property is expressed by the following selective 
mu-calculus: 

performed”. 
This property is expressed by the following selective mu-calculus:  
 
 𝜑𝜑𝜑𝜑 = [𝑎𝑎𝑎𝑎]{𝑏𝑏𝑏𝑏}𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (11) 

 
where  

 = 10_ _ _ _ _a T Determine necessity to stop indication  
 = 06_ _ _ _ _b T Determine necessity of stop advice  

The property is true in both in the reduced and in the standard models. 
 

Table 11 has the same structure of Table 10. It shows the state space reduction obtained using 
our custom-made approach. In these case we also report the data related to the standard model obtained 
using the integrated-tool approach. 

In all the experiments we obtain good results (for example, for the WABO case study, 99%  of 
reduction is obtained). Table 11 shows that the time required for the translation to a Lotos specification 
of the distributed systems is very low and is even lower when compared with the high efficiency of a 
general purpose model checker verifying the compliance rules. 
  

Table 11. Results for the analysed data sets - state space 
   

  Case study   custom-made   integrated-tool   reduction 
 time (s) states trans. time (s) states trans. state space 

reduction %  
Repair Telephones   0.016   4   5   1.43   389  464   98 %  
University of Pisa   0.01   142   372   0.262   480  820   60 %  

WABO   0.034   17   26   2.445   474  588   99 %  
 
6  Limitations 
  
Analyzing data gathered from a running program provides a definite image of a software system, 

especially when the source code is not provided. Thus, to perform dynamic analysis, the data are collected 
through instrumentation and execution of a system into one or more execution traces. In order to produce 
an accurate picture of the system many execution traces have to be collected and this lead to retrieve a 
large amount of data. This leads to a time-consuming activity, typical of a dynamic analysis. In fact, the 
main disadvantage of this kind of approach is related to the large amount of data that is collected at run-
time. Furthermore, to cope with the space complexity problem, these collected data have to be pre-
processed in order to generate models with a reduced size acceptable by formal verification tools. For 
this purpose, we have used the selective mu-calculus logic, which induces an abstraction using a set of 
actions O. Obviously on this model it is possible only to verify properties with occurring actions in O. 
Thus, if from one side our approach provides a solution able to solve the scalability problem, from the 
other one we are able to only verify behaviours represented in the abstracted model. 

Considering that the model is built from traces, another weakness is represented by the 
impossibility to exactly localize at source-code level the vulnerability. This leads to more time required 
to fix the problem in the source code. Thus, the proposed method suffers from typical weaknesses of 
dynamic approaches i.e., the vulnerability can be found only after it happened. 

(11)

where 

= 10_ _ _ _ _a T Determine necessity to stop indication
= 06_ _ _ _ _b T Determine necessity of stop advice

The property is true in both in the reduced and in the 
standard models.
Table 11 has the same structure of Table 10. It shows 
the state space reduction obtained using our cus-
tom-made approach. In these case we also report the 
data related to the standard model obtained using the 
integrated-tool approach.
In all the experiments we obtain good results (for ex-
ample, for the WABO case study, 99% of reduction is 
obtained). Table 11 shows that the time required for 
the translation to a Lotos specification of the distrib-
uted systems is very low and is even lower when com-
pared with the high efficiency of a general purpose 
model checker verifying the compliance rules.

5  http://www.processmining.org/logs/start
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6. Limitations
Analyzing data gathered from a running program pro-
vides a definite image of a software system, especially 
when the source code is not provided. Thus, to per-
form dynamic analysis, the data are collected through 
instrumentation and execution of a system into one 
or more execution traces. In order to produce an ac-
curate picture of the system many execution traces 
have to be collected and this lead to retrieve a large 
amount of data. This leads to a time-consuming ac-
tivity, typical of a dynamic analysis. In fact, the main 
disadvantage of this kind of approach is related to the 
large amount of data that is collected at run-time. Fur-
thermore, to cope with the space complexity problem, 
these collected data have to be pre-processed in order 
to generate models with a reduced size acceptable by 
formal verification tools. For this purpose, we have 
used the selective mu-calculus logic, which induces 
an abstraction using a set of actions O. Obviously on 
this model it is possible only to verify properties with 
occurring actions in O. Thus, if from one side our ap-
proach provides a solution able to solve the scalability 
problem, from the other one we are able to only verify 
behaviours represented in the abstracted model.
Considering that the model is built from traces, an-
other weakness is represented by the impossibility to 
exactly localize at source-code level the vulnerability. 
This leads to more time required to fix the problem in 
the source code. Thus, the proposed method suffers 
from typical weaknesses of dynamic approaches i.e., 
the vulnerability can be found only after it happened.
Another issue is related to the temporal logic formu-
lae that are generated with the help of domain experts, 
for this reason the proposed approach is not fully au-
tomatic.

Table 11 
Results for the analysed data sets - state space

Case study 
custom-made integrated-tool reduction

time (s) states trans. time (s) states trans. state space reduction %

Repair Telephones  0.016  4  5  1.43  389  464  98 %

University of Pisa  0.01  142  372  0.262  480  820  60 %

WABO  0.034  17  26  2.445  474  588  99 %

Generally speaking, we consider a dynamic approach 
because dynamic analysis is able of exposing a subtle 
flaw or vulnerability too complicated for static analy-
sis alone to reveal and can also be the more expedient 
method of testing [21]. From the other side, dynamic 
analysis is able to find defects only in the part of the 
trace that is actually collected.

7. Related Work
Process mining from execution traces is an interest-
ing and challenging research problem in many areas 
of computer science. In the information systems 
context, this is referred to workflow mining, aiming 
at retrieving business process models from the anal-
ysis of event logs recorded in one or more informa-
tion systems used to support those processes. Quite 
a lot of research has been done in this setting ([12, 5, 
24] to name just a few). The reached results focused 
on different problems, such as log analysis through 
clustering, data cleaning from noise, or recognition of 
particular workflow patterns. Most of them build the 
workflow models by using the Petri Net formalism 
and apply analysis techniques on such models.
  Model Checking is a verification technique to estab-
lish whether a system model complies with a spec-
ification described in a formal language. Typically, 
system models are given by non-deterministic or 
probabilistic automata. Several works aiming to ver-
ify the system development have been proposed. For 
example, authors in [31] propose ConTEA, a tool in-
tegrating the UPPAAL model checker with ConData 
model based test generator and Conformance and 
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Fault Injection (ConFI) methodology. The main aim 
of this work is to improve the quality of the formal 
model and robustness of the system under analysis. 
This purpose is reached using a single state machine 
derived using both ConFI and UPPAAL. Differently, 
the focus of the proposed method is on the abstraction 
more than on the quality and robustness of the built 
models. Boucherit et al. in [3] verify both model and 
implementation of a software system using an hybrid 
approach combining property base testing and model 
checking technique. They propose an approach based 
on Petri Nets and illustrate its functioning through a 
simple example related to an access control system. A 
Formal Quality of Service Assurances Method which 
relies on stochastic Markov models is proposed in 
[15] with the aim to facilitate the decision-making 
process. They consider probabilistic model check-
ing with a set of user-related metric to automatical-
ly generate a probabilistic model. The focus of this 
study is related to the deployment phase, when the 
software engineer has to select an appropriate cloud 
offer and deploy the application or one of its parts, 
such as a microservice. While the probabilistic model 
checking can not provide counterexample, in the non 
probabilistic setting counterexamples represent one 
of the key reasons for the success of model checking 
[16]. They provide, in the case where model checking 
shows a property to be false, evidence of this viola-
tion, typically in the form of a trace through the mod-
el. The method we proposed, considering the model 
checking technique, offers the counterexample show-
ing the reason why a trace is marked as false from the 
model checker.
According with the above works, the models used in 
model checking are manually constructed. However, 
such model-construction can be extremely time-con-
suming, or even infeasible in the case of insufficient 
documentation for an existing system, thus there is an 
increasing interest in model learning (or specification 
mining) for formal verification. For example, in [18] a 
learning algorithm has been proposed for probabilis-
tic systems. More precisely, in [18] AAlergia has been 
presented which is a state merging algorithm that ex-
clusively learns deterministic models. Given a sam-
ple of traces, the algorithm generates a Deterministic 
Labeled Markov Chain (DLMC) model. A limit of this 
approach is that the algorithm might not converge to 
a good model in general. Only with a sufficiently big 

sample set of traces it is ensured that a given property 
will hold on the original and the learned model with 
the same probability. Researchers in [1, 20] propose 
a fuzzy model aimed to provide security for sensi-
tive data/information in web applications exploiting 
fuzzy classifiers. Their model is automatically de-
veloped to detect vulnerability in web applications 
and state threat or penetration level. As discussed in 
literature, when classification models built with ma-
chine learning algorithms fail in instance prediction, 
it is not easy for the analysis to detect and understand 
what happened [23]. Differently, the adoption of the 
model checking techniques with the adoption of the 
counterexample provides to the analyst a reasoning 
technique to deep understand the model and its be-
haviour.
Authors in [8, 17] propose TLA+, a specification lan-
guage for concurrent and reactive systems combin-
ing the temporal logic TLA with the full first-order 
logic and set theory. Proving TLA+ properties needs 
theorem proof system requiring human expertise in 
the proof checkers. On the contrary, our method uses 
a model-checking based verification tool that allows 
to automatically check the properties, saving a lot of 
efforts.
On the other hand, learning models is also useful in 
the compliance checking field, which has a growing 
importance for the businsess process management 
and auditing communities. It refers to the adher-
ence of the discovered process to internal or external 
rules and then deals with verification issues. Many 
efforts have been taken in the research of business 
process compliance checking. The first comprehen-
sive compliance checking approach based on Petri 
net patterns and alignments was proposed in [25] by 
Ramezani, Fahland, and van der Aalst. Colored Petri 
Nets have been used in [11] to perform a backward 
compliance checking to verify whether executions of 
business processes are complying with certain nor-
mative constraints. They principally focused on the 
formal theories of normative systems. In [14] compli-
ance checking has been conducted using an abstract 
process model and abstract compliance rules. In this 
way state explosion arising from control flow and data 
dimension is avoided.
 In this paper, we derive an abstract model, defined in 
a process algebra, from traces obtained from the exe-
cution log; process mining techniques are supposed 
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to be used to obtain a model for which compliance 
checking can be performed to find commonalities 
and discrepancies between the modeled behavior 
and the observed behavior [30]. In our case compli-
ance rules can be represented both directly as other 
traces to be included in the model and as temporal 
logic formulae; in this last case, we check compliance 
using a formal verification methodology, i.e., model 
checking. In this way we establish compliance in a 
formal environment without introducing addition-
al concepts. Moreover, our aim is to use an existing 
model checker such as CADP [10], which is a mature 
verification tool with modern designs, with expres-
sive input languages and efficient analysis methods, 
and not to design a custom-made model checker. In 
fact, the most widely used model checkers are by now 
extremely sophisticated programs that have been 
crafted over many years by experts in the specific 
techniques employed by the tool: any re-implemen-
tation of similar tools could likely yield worse per-
formance. We exploit CADP [10] since it is a popular 
toolbox maintained, regularly improved, and used 
in many industrial projects, as a verification frame-
work. Another important advantage of using CADP 
is that, when a property does not hold, the model 
checking algorithm generates a counter-example, 
i.e., an execution trace leading to a state in which the 
property is violated. This ability to generate count-
er-examples can be exploited to pinpoint the cause of 
an error and possibly correct it. By automating a te-
dious task that must otherwise be done manually, our 
approach reduces the cost associated with analysing 
process models for compliance. A typical problem 
of the model checking context is present also in our 
context, since the process discovered from the log 
can be much too complex; then we use abstraction 
techniques to discover abstract processes after pre-
processing the traces derived from the log, so directly 
building a reduced model; the method is completely 
automatable since it is based on the syntactic struc-
ture of the formulae to be verified.
 The model checking approach has been already used 
in [13] where the authors propose to map BPMN 
models directly to finite state machines (i.e., Kripke 
structures) and to express the compliance rules in a 
graphical language for better understandability. Sub-
sequently, these are translated into linear temporal 
logic formulae to be integrated.

8. Conclusion
This paper presents an approach to compliance 
checking through model checking. The approach 
aims at discovering a process described by means of a 
process algebra language, while the compliance rules 
are defined through temporal logic properties.
The main characteristics of the method are:  
 _ the traces obtained from the logs are pre-processed 

to obtain a suitable representation of a distributed 
system; 

 _ pre-processed traces are reduced on the basis of the 
logic properties; so it is avoided the state explosion 
arising when starting from big sets of traces; 

 _ reduction rules directly apply to the traces, without 
building the corresponding LTSs before; the rules 
are based on the traces syntax and are completely 
automatable, no semantic information is required 
and an easy implementation is possible; 

 _ compliance between the discovered process and 
the rules is performed through model checking of a 
set of temporal logic properties defining the rules; 
existing model checking environments can be used 
and ad-hoc checkers do not need; the semantics 
of the system is obtained as a transition system 
automatically generated by the model checking 
environment; 

 _ the proof method can easily include compositional 
techniques too, like as, for example, [7, 8, 26], 
so proving the properties for single devices it is 
possible to obtain the proof of the properties for 
the whole system. 

In this paper, we present a formal approach and pre-
suppose perfect information. However, real logs are 
rarely complete and/or noise free. We are consider-
ing how to modify the truth value of each formula on 
the basis of the fact that such value is true on all be-
haviours except some with very low probability of oc-
currence, or this value is false on all behaviors except 
those with very low probability of occurrence, or it is 
false because of the incompleteness of the behavior.
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