
CTRL: Extension of CTL with Regular Expressions and

Fairness Operators to Verify Genetic Regulatory

Networks

Radu Mateescua, Pedro T. Monteiroa,b, Estelle Dumasa, Hidde de Jonga

aINRIA Grenoble – Rhône-Alpes, Inovallée, Montbonnot, 38334 St Ismier Cedex, France
bIST/INESC-ID, 9 Rua Alves Redol, 1000-029 Lisbon, Portugal

Abstract

Model checking has proven to be a useful analysis technique not only for
concurrent systems, but also for genetic regulatory networks (Grns). Ap-
plications of model checking in systems biology have revealed that temporal
logics should be able to capture both branching-time and fairness properties
(needed for specifying multistability and oscillation properties, respectively).
At the same time, they should have a user-friendly syntax easy to employ
by non-experts. In this paper, we define Computation Tree Regular Logic
(Ctrl), an extension of Ctl with regular expressions and fairness operators
that attempts to match these criteria. Ctrl subsumes both Ctl and Ltl,
and has a reduced set of temporal operators indexed by regular expressions.
We also develop a translation of Ctrl into Hennessy-Milner Logic with Re-
cursion (HmlR), an equational variant of the modal µ-calculus. This has
allowed us to obtain an on-the-fly model checker with diagnostic for Ctrl
by directly reusing the verification technology available in the Cadp toolbox.
We illustrate the application of the Ctrl model checker by analyzing the
Grn controlling the carbon starvation response of Escherichia coli.

Key words:
genetic regulatory networks, model checking, systems biology, temporal
logic, verification

NOTICE: this is the author’s version of a work that was accepted for publication by Else-
vier. Changes resulting from the publishing process, such as peer review, editing, correc-
tions, structural formatting, and other quality control mechanisms may not be reflected in
this document. Changes may have been made to this work since it was submitted for pub-
lication. A definitive version was subsequently published in Theoretical Computer Science,
Volume 412, Issue 26, 10 June 2011, Pages 2854-2883. doi:10.1016/j.tcs.2010.05.009

1. Introduction

Formal verification has been mostly applied to the analysis of concurrent
systems in engineering. Recently, however, biological regulatory networks
have been recognized as special cases of concurrent systems as well, which
has opened the way for the application of formal verification technology in
the emerging field of systems biology (see [40, 72] for reviews). Genetic regu-
latory networks (Grns) consist of genes, proteins, small molecules, and their
mutual interactions, which are involved in the control of cellular functions.
Most of these networks are large and complex, thus defying our capacity to
understand how the dynamic behaviour of the cell emerges from the struc-
ture of interactions. A large number of mathematical formalisms have been
proposed to describe Grns (see [32] for a survey), giving rise to models that
can be mapped to Kripke structures. In the case of discrete models the
mapping is usually direct, but for continuous models appropriately chosen
discrete abstractions are required [4].

The representation of the dynamics of biological regulatory networks by
means of Kripke structures enables the application of formal verification tech-
niques to the analysis of properties of the networks. In particular, such prop-
erties can be formulated as queries in temporal logic, and verified by means
of model checking algorithms on the Kripke structures. Examples of the kind
of properties that biologists are interested in include the following:

• Is the basal glycerol production level combined with rapid closure of
Fps1 sufficient to explain an initial glycerol accumulation after osmotic
shock? [59]

• Once a cell has executed Start, does it slip back into G1 phase and re-
peat Start? Or rather, must it execute a Finish to return to G1? [25]

• Does Shc phosphorylation exhibit a relative acceleration with decreas-
ing Egf concentration and show a decline over time? [74]

Several applications of model checking exist in the bioinformatics and
systems biology literature, e.g., [5, 7, 8, 12, 13, 16, 18, 21, 22, 41, 42, 76].

In our previous work [10, 12], we have developed Genetic Network Ana-
lyzer (Gna), a tool for the qualitative simulation of Grns, and connected it
to state-of-the-art model checkers like NuSmv [27] and Cadp [44].

Most of the above approaches express the properties of interest in clas-
sical temporal logics like Ctl [28] and Ltl [65]. The application to actual

2

biological systems brought a few properties of the network dynamics to the
fore that are not easily expressed in these logics. For instance, questions
about multistability are important in the analysis of biological regulatory
networks [35, 79], but difficult (or impossible) to express in Ltl. Ctl is ca-
pable of dealing with branching time, important for multistability and other
properties of non-deterministic models. However, it does not do a good job
when faced with questions about cycles in a Kripke structure. Such cycles
may correspond to sustained or damped oscillations in the concentration of
molecular species, underlying cellular rhythms [25, 64]. Ctl is not expres-
sive enough to specify the occurrence of oscillations of indefinite length, a
special kind of fairness property [12]. An obvious solution would be to con-
sider Ctl∗ [36] or the propositional µ-calculus [60], both of which subsume
Ctl and Ltl; however, these powerful branching-time logics are complex to
understand and use by non-experts. More generally, temporal logics have dif-
ficulties in expressing experimental observations, which often take the form
of patterns of events corresponding to variations of system parameters (pro-
tein concentrations, their derivatives, etc.). Observations are conveniently
and concisely formulated in terms of regular expressions, but these are not
provided by standard temporal logics such as Ctl and Ltl.

In this paper, we aim at providing a temporal specification language that
allows expressing properties of biological interest and strikes a suitable com-
promise between expressive power, user-friendliness, and complexity of model
checking. In order to achieve this objective, we propose a specification lan-
guage named Ctrl (Computation Tree Regular Logic), which extends Ctl
with regular expressions and fairness operators. Ctrl is more expressive
than previous extensions of Ctl with regular expressions, such as Rctl [15]
and RegCtl [19], whilst having a simpler syntax due to a different choice
of primitive temporal operators, inspired from dynamic logics like Pdl [39].
Ctrl also subsumes Ctl, Ltl, and Pdl-∆ [77], allowing in particular the
concise expression of bistability and oscillation properties by using potential-
ity and fairness operators, respectively. The characterization of oscillations
motivated the introduction of fairness operators in Ctrl at the same level
as the other temporal operators of the logic. These operators, derived from
the infinite looping operator of Pdl-∆, provide a more direct description of
the complex cycles underlying oscillations than the operators of other logics
equipped with fairness, such as fair Ctl [38]. Although Ctrl was primarily
designed for describing properties of regulatory networks in systems biology,
it also enables a succinct formulation of typical safety, liveness, and fairness

3

properties useful for the verification of concurrent systems in other domains.
As regards the evaluation of Ctrl formulas on Kripke structures, we at-

tempt to avoid the effort of building a model checker from scratch by reusing
as much as possible existing verification technology. We adopt as verifica-
tion engine Cadp [44], a state-of-the-art verification toolbox for concurrent
asynchronous systems that provides, among other functionalities, on-the-fly
model checking and diagnostic generation for µ-calculus formulas on labeled
transition systems (Ltss). In order to reuse this technology, we have to move
from the state-based setting (Ctrl and Kripke structures) to the action-
based setting (µ-calculus and Ltss). The translation from Kripke structures
to Ltss is done in the standard way [28], simply by migrating information
from states to transition labels without changing the structure of the model,
i.e., keeping the same states and transition relations. The translation from
Ctrl to an action-based logic is carried out by considering as target language
HmlR [63], an alternative equational representation of the modal µ-calculus.
Since HmlR is accepted as input by the Evaluator 3.6 [69] model checker
of Cadp, the development of a translator from Ctrl to HmlR results in
the immediate availability of an on-the-fly model checker equipped with full
diagnostic features (generation of examples and counterexamples).

The Ctrl model checking procedure obtained in this way has a linear-
time complexity w.r.t. the size of the formula and the Kripke structure for a
significant part of the logic. This part notably subsumes Pdl-∆ and allows
the multistability and oscillation properties to be captured. The inevitabil-
ity operator of Ctrl and its infinitary version (inevitable looping) has an
exponential worst-case complexity w.r.t. the size of its regular subformula.
This complexity becomes linear, however, when the regular subformula is
“deterministic” in a way similar to finite automata. In practice, the usage
of Ctrl and the model checker reveals that properties of biological interest
can be expressed and verified efficiently.

We illustrate this point by analyzing a model of the Grn involved in the
carbon starvation response of E. coli. The network consists of key global
regulators of transcription that control each other’s expression as well as
the expression of a large number of other stress response genes. We use
a qualitative model of this network in the form of nine coupled piecewise-
linear differential equations developed in Gna [71, 73]. This model has been
shown to have interesting stability and oscillation properties that are diffi-
cult to analyze by hand though, as the Kripke structures corresponding to
the model simulations consist of 104-1010 states. We formulate increasingly

4

precise Ctrl queries which clearly bring out the utility of the regular ex-
pressions and fairness operators of the language. The queries are verified by
exporting the Kripke structure from Gna to Cadp and invoking the Ctrl
model checker.

Paper outline. Section 2 defines the syntax and semantics of Ctrl and dis-
cusses its expressiveness w.r.t. existing widely-used logics. Section 3.1 de-
fines the regular equation systems (Ress), an intermediate equational form
into which Ctrl formulas will be translated. Sections 3.2 and 3.3 present
the translations from Ctrl to Ress and then to modal equation systems
(Mess). Section 4 describes the on-the-fly model checking procedure for
Ctrl, indicates its complexity, and shows its implementation in connection
with Gna and Cadp. Section 5 illustrates its application on the example
of E. coli. Section 6 provides some concluding remarks and directions for
future work. Proofs of the translation from Ctrl to Mess can be found in
the supplementary material available online.

2. Syntax and semantics

2.1. Computation Tree Regular Logic

Ctrl is interpreted on Kripke structures, which provide a natural formal
description of concurrent systems, including biological regulatory networks.
A Kripke structure is a tuple K = 〈S, P, L, T, s0〉, where: S is the set of
states; P is a set of atomic propositions (predicates over states); L : S → 2P

is the state labeling (each state s is associated with the atomic propositions
satisfied by s); T ⊆ S × S is the transition relation; and s0 ∈ S is the initial
state. Transitions (s1, s2) ∈ T are also noted s1 →T s2 (the subscript T is
omitted if it is clear from the context). The transition relation T is assumed
to be total, i.e., for each state s1 ∈ S, there exists a transition s1 →T s2. A
path π = s0s1 . . . sk . . . is an infinite sequence of states such that si →T si+1

for every i ≥ 0. The i-th state of a path π is noted πi. The interval going
from the i-th state of a path π to the j-th state of π inclusively (where i ≤ j)
is noted πi,j . An interval π0,i is called prefix of π. For each state s ∈ S,
Path(s) denotes the set of all paths going out of s, i.e., the paths π such
that π0 = s. In the sequel, we assume the existence of a Kripke structure
K = 〈S, P, L, T, s0〉, on which all formulas will be interpreted.

The syntax and semantics of Ctrl are defined in Figure 1. The logic
contains two kinds of entities: state formulas (noted ϕ) and regular formulas

5

(noted ρ), which characterize properties of states and intervals, respectively.
State formulas are built from atomic propositions p ∈ P by using standard
boolean operators and the EF, AF, EF∞, AF∞ temporal operators indexed by
regular formulas ρ. Regular formulas are built from state formulas by using
standard regular expression operators.

Syntax
State formulas:

ϕ ::= p (atomic proposition)
| ¬ϕ | ϕ1 ∨ ϕ2 (boolean connectors)
| EFρϕ (potentiality)
| AFρϕ (inevitability)
| EF∞

ρ (potential looping)

| AF∞
ρ (inevitable looping)

Regular formulas:
ρ ::= ϕ (one-step interval)

| ρ1.ρ2 (concatenation)
| ρ1|ρ2 (choice)
| ρ∗ (iteration 0 or more times)

Semantics
State formulas:

[[p]]K = {s ∈ S | p ∈ L(s)}
[[¬ϕ]]K = S \ [[ϕ]]K

[[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K
[[EFρϕ]]K = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[AFρϕ]]K = {s ∈ S | ∀π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ [[ϕ]]K}
[[EF∞

ρ]]K = {s ∈ S | ∃π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
[[AF∞

ρ]]K = {s ∈ S | ∀π ∈ PathK(s).∀j ≥ 0.∃i ≥ 0.π0,i |=K ρj}
Regular formulas:

πi,j |=K ϕ iff j = i + 1 ∧ πi |=K ϕ
πi,j |=K ρ1.ρ2 iff ∃k ∈ [i, j].πi,k |=K ρ1 ∧ πk,j |=K ρ2

πi,j |=K ρ1|ρ2 iff πi,j |=K ρ1 ∨ πi,j |=K ρ2

πi,j |=K ρ∗ iff ∃k ≥ 0.πi,j |=K ρk

Figure 1: Syntax and semantics of Ctrl

The interpretation [[ϕ]]K of a state formula denotes the set of states of the
Kripke structure K that satisfy ϕ. The interpretation of regular formulas is

6

defined by the satisfaction relation |=K , which indicates whether an interval
πi,j of a path in a Kripke structure K satisfies a regular formula ρ (notation
πi,j |=K ρ). The notation ρj (where j ≥ 0) stands for the concatenation
ρ . . . ρ, where ρ occurs j times. The semantics of boolean operators is defined
in the standard way. A state satisfies the potentiality formula EFρϕ (resp.
inevitability formula AFρϕ) iff some (resp. all) of its outgoing paths contain
a prefix satisfying ρ and lead to a state satisfying ϕ. A state satisfies the
potential looping formula EF

∞
ρ (resp. the inevitable looping formula AF

∞
ρ) iff

some (resp. all) of its outgoing paths consist of an infinite concatenation of
intervals satisfying ρ. An interval satisfies the one-step interval formula ϕ iff
it consists of two states, the first of which satisfies ϕ. An interval satisfies the
concatenation formula ρ1.ρ2 if it is the concatenation of two subintervals, the
first one satisfying ρ1 and the second one satisfying ρ2. An interval satisfies
the choice formula ρ1|ρ2 iff it satisfies either ρ1, or ρ2. An interval satisfies
the iteration formula ρ∗ iff it is the concatenation of (0 or more) subintervals
satisfying ρ. By definition, an empty interval πi,i satisfies ρ0 for any regular
formula ρ. A Kripke structure K satisfies a state formula ϕ (notationK |= ϕ)
iff s0 ∈ [[ϕ]]K .

Figure 2 shows several derived operators on states and intervals defined
in order to facilitate the specification of properties. The trajectory operator
EGρϕ and the invariance operator AGρϕ are defined as duals of inevitability
and potentiality operators, respectively, similarly to the their Ctl counter-
parts (obtained by dropping the ρ formulas). They express that for some
(resp. each) path going out of a state, all of its prefixes satisfying ρ lead to
states satisfying ϕ. The potential saturation operator EG⊣

ρ and the inevitable
saturation operator AG⊣

ρ express that some (resp. each) path going out of a
state contains a prefix satisfying ρ∗ such that no other larger prefix satisfies
ρ∗; in other words, only a finite number of intervals satisfying ρ can be con-
catenated at the beginning of the path. The empty interval operator nil is
defined as the iteration (0 or more times) of the false proposition; an interval
satisfies the formula nil iff it contains a single state. The iteration (1 or more
times) operator ‘+’ is defined in the standard way; an interval satisfies ρ+ iff
it is the concatenation of (1 or more) intervals satisfying ρ.

To facilitate the manipulation of Ctrl state formulas, we transform them
in positive normal form (Pnf) by propagating the negations downwards,
using the rules in Figure 2, until they reach the atomic propositions p. For
convenience, we also include in the set P the negations of all propositions p,
as well as the boolean constants true and false. State formulas in Pnf are

7

true = p ∨ ¬p (true, p ∈ P)
false = ¬true (false)

ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2) (conjunction)
ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2 (implication)
ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1) (equivalence)

EGρϕ = ¬AFρ¬ϕ (trajectory)
AGρϕ = ¬EFρ¬ϕ (invariance)
EG⊣

ρ = ¬AF∞
ρ (potential saturation)

AG⊣
ρ = ¬EF∞

ρ (inevitable saturation)

nil = false
∗ (empty interval)

ρ+ = ρ.ρ∗ (iteration 1 or more times)

Figure 2: Derived (boolean, temporal, and regular) operators of Ctrl

thus composed of atomic propositions, disjunctions and conjunctions, and all
primitive and derived Ctrl temporal operators defined in Figures 1 and 2.

2.2. Examples of temporal properties

We illustrate below the use of Ctrl operators for specifying typical tem-
poral properties of biological regulatory networks. The analogy with prop-
erties of communication protocols and concurrent systems is made explicit
through the terminology of safety, liveness and fairness.

Safety properties. Informally, these properties specify that “something bad
never happens” during the functioning of the system. They can be expressed
in Ctrl by identifying the sequences of states corresponding to violations of
the safe progression of execution, characterizing them using a regular formula
ρ, and forbidding their existence in the Kripke structure by checking the
formula AGρfalse. For example, the Ctrl formula below states that it is
impossible to express cell cycle genes g1 and g2 in response to an external
stress signal:

AGtrue∗.sig+.(g1|g2)false

where the atomic proposition sig indicates the presence of the external signal,
and g1 and g2 the expression of the cell cycle genes. This property can also
be specified in Ctl using two nested temporal operators:

AG(sig ⇒ ¬E[sig U (g1 ∨ g2)])

where AG ϕ = ¬E[true U ¬ϕ] is the invariance operator of Ctl.

8

Liveness properties. Informally, these properties specify that “something
good eventually happens” during the functioning of the system. They can
be expressed in Ctrl by capturing the desirable sequences of states, char-
acterizing them using a regular formula ρ, and expressing their potential or
inevitable presence in the Kripke structure using the EFρ and AFρ opera-
tors, respectively. For instance, the Ctrl formula below states that every
time a particular nutrient nut is present in the medium, it will eventually be
taken up and consumed by the cell, as witnessed by the expression of gene
gnut coding for an appropriate transporter. This may be preceded by the
expression of one or more genes in the set G, responsible for the uptake and
consumption of other nutrients:

AGtrue∗.nutAF(true∗.G)∗.gnut
true

where the atomic proposition G indicates that one or more genes in the
corresponding set are expressed. This property cannot be specified in Ctl
because of the two nested ∗ operators in the regular subformula of AF.

Fairness properties. Informally, these properties specify the progression of
certain concurrent processes in the system, which are possibly antagonistic.
In Ctrl, fairness properties can be expressed by identifying the infinite
sequences of events denoting the proper progression of a certain process,
characterizing them using the EF∞

ρ operator, and requiring their presence
in the Kripke structure. The Ctrl formula below captures the oscillatory
expression patterns of two genes g1 and g2 involved in the circadian rhythm:

EFtrue∗EF
∞
inc g1.true∗.inc g2.true∗.dec g1.true∗.dec g2.true∗

where the atomic propositions inc g1, dec g1, inc g2, dec g2 indicate the in-
creasing and decreasing expression of genes g1 and g2, respectively. This
property is unexpressible in Ctl because of the repeated alternation of inc g i
and dec g i, but it can be stated in Ltl using five temporal operators:

¬G((inc g1 ∧ ¬Finc g2) ∨ (inc g2 ∧ ¬Fdec g1)

∨ (dec g1 ∧ ¬Fdec g2) ∨ (dec g2 ∧ ¬Finc g1))

Ctrl was designed such that fairness operators (EF∞
ρ and AF∞

ρ) are at the
same level as the other temporal operators of the logic. Compared to other
logics, such as fair Ctl [38], in which fairness constraints are added as side

9

formulas modifying the interpretation of the temporal operators, we believe
that an explicit presence of infinite looping operators in the logic allows a
more direct and intuitive description of complex cycles (e.g., matching regular
expressions containing nested iteration operators) present in the behaviour
of genetic regulatory networks.

2.3. Expressiveness

Ctrl is a natural extension of Ctl [28], whose main temporal operators
can be described using the EF and AF operators of Ctrl as follows:

E[ϕ1 U ϕ2] = EFϕ∗

1
ϕ2 A[ϕ1 U ϕ2] = AFϕ∗

1
ϕ2

The until operator U of Ctl is not primitive in Ctrl; this is a difference
w.r.t. other extensions of Ctl, such as Rctl [15] and RegCtl [19], which
keep the U operator primitive as in the original logic.

Ctrl also subsumes Ltl [65], because the potential looping operator
EF∞ is able to capture the acceptance condition of Büchi automata. As-
suming that the atomic proposition p characterizes the accepting states in a
Büchi automaton (represented as a Kripke structure), the formula below ex-
presses the existence of an infinite sequence passing infinitely often through
an accepting state:

EF
∞
true∗.p.true+

The + operator is necessary in order to avoid empty sequences consisting of a
single state satisfying p. Of course, the EF∞ operator does not allow a direct
encoding of Ltl operators, but may serve as an intermediate form for Ltl
model checking; in this respect, EF∞ is similar to the “never claims” used for
specifying properties in the early versions of the Spin model checker [51].

Thus, Ctrl subsumes both Ctl and Ltl. This subsumption is strict,
since these two logics are uncomparable w.r.t. their expressive power (i.e.,
each one can describe properties unexpressible in the other one) [28]. In fact,
the Ctrl fragment containing the boolean connectors and the temporal op-
erators EF and EF∞ can be seen as a state-based variant of Pdl-∆ [77]. It
was shown that this logic subsumes Ctl∗, whose operators can be encoded
(although not in a succinct way) in Pdl-∆ by means of the translation pro-
posed first in [85] and reconsidered later in [30]. This subsumption is strict,
because Pdl-∆ can characterize sequences that match regular expressions

10

containing nested iteration operators, such as (a.b)∗.c, which cannot be ex-
pressed in Ctl∗ [37]. Since Ctrl syntactically subsumes (a state-based vari-
ant of) Pdl-∆, it follows from the above expressiveness results that Ctrl
also subsumes Ctl∗.

As regards other existing extensions of Ctl with regular operators, Ctrl
also subsumes RegCtl, whose U operator indexed by a regular formula can
be expressed using the EF operator of Ctrl as follows:

E[ϕ1 U
ρ ϕ2] = EFρ & ϕ∗

1
ϕ2

The & operator stands for the intersection of regular formulas; although this
operator is not present in Ctrl, its occurrence above can be expanded in
terms of the regular operators available in Ctrl by applying the rules below:

ϕ′ & ϕ∗ = ϕ′ & ϕ (ρ1.ρ2) & ϕ∗ = (ρ1 & ϕ∗).(ρ2 & ϕ∗)
(ρ1|ρ2) & ϕ∗ = (ρ1 & ϕ∗)|(ρ2 & ϕ∗) (ρ1

∗) & ϕ∗ = (ρ1 & ϕ∗)∗

The subsumption of RegCtl is strict because the U operator of RegCtl
cannot describe an infinite concatenation of intervals satisfying a regular
formula ρ, which is specified in Ctrl using the EF∞

ρ operator. In [19] it is
shown that RegCtl is more expressive than Rctl [15], the extension of Ctl
with regular expressions underlying the Sugar [14] specification language;
consequently, Ctrl also subsumes Rctl.

3. Translation from CTRL to modal equation systems

Building an efficient model checker for a branching-time temporal logic
equipped with regular expressions, such as Ctrl, is a complex and time-
consuming task. Here we aim at facilitating this task by reusing as much as
possible existing verification technology available in the field of concurrent
systems, namely the Cadp toolbox [44]. A model checker for Ctrl can
thus be obtained by translating this logic into HmlR [63], one of the input
languages accepted by Cadp.

This technical section is devoted to the translation of Ctrl state formulas
into modal equation systems (Mess), which are the state-based counterpart
of HmlR. Using such a translation to obtain a model checking procedure for
a temporal logic with regular constructs is not common practice, most of the
existing procedures for this kind of logics being based on automata [15, 19].
Therefore, we describe this translation in sufficient detail and we illustrate

11

it with examples. Readers from the systems biology field that are not nec-
essarily interested in the technical details of temporal logic translations can
safely skip this section and go directly to Section 4, which provides an overall
view of the Ctrl model checker and its application to the analysis of genetic
regulatory networks.

The translation of a Ctrl state formula ϕ into a Mes involves two steps:
first the formula is translated into a regular equation system (Res), and then
the Res is transformed into a Mes. These two steps are purely syntactic,
i.e., they do not depend upon the Kripke structure on which the formulas
and the equation systems are interpreted. We first define the syntax and
semantics of Ress and Mess, and then we detail the two translation steps.

3.1. Regular and modal equation systems

To apply our model checking method, we need to translate Ctrl state
formulas into an equational representation, which is more suitable than the
tree-like representation underlying the syntax definition in Figure 1. To
achieve this, we first need to extend the grammar of Ctrl state formulas
with propositional variables X ∈ X , which denote sets of states:

ϕ ::= X | p | . . .

Propositional variables are interpreted w.r.t. a Kripke structure K by an
environment δ : X → 2S, which is a partial function mapping propositional
variables to state sets. The interpretation of state formulas must be extended
to handle propositional variables: [[ϕ]]Kδ denotes the set of states satisfying
ϕ in the context of δ, which must map every variable occurring in ϕ to a
state set. The interpretation of propositional variables is defined as follows:
[[X]]Kδ = δ(X). The interpretation of the other state formulas defined in
Figure 1 remains unchanged, except that an extra parameter δ is added to
the interpretation [[]]. The translation to Mess ensures that all occurrences
of propositional variables in state formulas are positive, i.e., they fall under
an even number of negations. This syntactic monotonicity condition was
proposed initially to ensure the well-definedness of propositional µ-calculus
formulas [60].

As intermediate language for translating Ctrl state formulas, we use
regular equation systems (Ress), which are the propositional counterpart
of the PdlR (Pdl with recursion) specifications introduced in [69]. The
syntax and semantics of Ress are defined in Figure 3. Equation blocks B

12

are sets of fixed point equations having propositional variables X ∈ X in the
left-hand sides and Ctrl state formulas (possibly containing propositional
variables) in the right-hand sides. All equations of a block have the same
fixed point sign σ ∈ {µ, ν}, where µ and ν denote minimal and maximal
fixed points, respectively. The free and bound variables in an equation block
list are defined as follows:

fv(ε) = ∅ bv(ε) = ∅
fv(B.BL) = (fv(B) \ bv(BL)) ∪ fv(BL) bv(B.BL) = bv(B) ∪ bv(BL)

fv({Xi
σ
= ϕi}1≤i≤n) =

⋃n
i=1 fv(ϕi) bv({Xi

σ
= ϕi}1≤i≤n) = {X1, ..., Xn}

Syntax
R ::= 〈X,BL〉 (regular equation system)

BL ::= ε | B.BL (equation block list)

B ::= {Xi
σ
= ϕi}1≤i≤n (equation block)

Semantics
[[〈X,BL〉]]K = ([[BL]]K)(X)

[[ε]]Kδ = []
[[B.BL]]Kδ = [[B]]K(δ ⊘ [[BL]]Kδ) ⊘ [[BL]]Kδ

[[{Xi
σ
= ϕi}1≤i≤n]]Kδ = [(σΦδ)1/X1, ..., (σΦδ)n/Xn]

Φδ : (2S)n → (2S)n, Φδ(U1, ..., Un) = 〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

Figure 3: Syntax and semantics of regular equation systems

The set fv(ϕi) contains all propositional variables occurring in ϕi. A
block list BL is closed if fv(BL) = ∅. We consider that all nonempty block
lists B.BL satisfy the following conditions: bv(B) ∩ bv(BL) = ∅ (normal
form) and fv(B) ⊆ bv(B)∪ bv(BL) (alternation-free). In a block list B.BL,
block B depends upon another block B′ of BL if fv(B)∩ bv(B′) 6= ∅, i.e., B
contains a free variable bound in B′. The alternation-free condition means
that there are no cyclic dependencies between equation blocks, and block B
depends only upon the blocks of BL, placed at his right in the list B.BL. In
a Res R = 〈X,BL〉, BL is assumed to be nonempty and closed. X is called
the main variable and must be bound in the first block of BL.

The interpretation of a Res R = 〈X,BL〉 on a Kripke structure K =
〈S, P, L, T, s0〉 is the value of variable X as obtained by solving the block

13

list BL. The interpretation [[BL]]Kδ of a block list in the context of an
environment δ is another environment assigning state sets to all variables
bound in BL. Since the blocks of BL depend upon each other from left to
right, the interpretation of BL can be defined inductively, by solving the
blocks from right to left. The notation δ⊘ [U1/X1, ..., Un/Xn] stands for the
extension of δ with [U1/X1, ..., Un/Xn], i.e., an environment identical to δ
except for variables X1, ..., Xn, which are mapped to the state sets U1, ..., Un,
respectively. The empty environment is noted []. The interpretation of
an equation block B is the environment mapping the variables bound in B
to the state sets given by the corresponding fixed point of the functional
associated to the block. When BL is closed, the δ environment is omitted.
The state formulas in the right-hand sides of equations are assumed to be
syntactically monotonic, which according to Tarski’s theorem [78] ensures
the well-definedness of the functionals associated to blocks.

A modal equation system (Mes) M = 〈X,BL〉 is a Res where all Ctrl
temporal operators occurring in the right-hand sides of equations contain
only atomic regular formulas, i.e., without any regular operator (‘.’, ‘|’, ‘∗’).
Mess are the propositional counterpart of the HmlR (Hml with recursion)
specifications, proposed in [63] as an equational form of the modal µ-calculus.

3.2. Translation to regular equation systems

The translation of a Ctrl state formula ϕ into a Res is defined by the
syntactic function t(ϕ) = 〈tX(ϕ), tBL(ϕ)〉 given in Figure 4. The two com-
ponents tX(ϕ) and tBL(ϕ) denote the main variable and the equation block
list produced by t(ϕ), respectively. For each translation rule, X denotes
a “fresh” propositional variable, different from all the other variables con-
tained in ϕ and in t(ϕ). The notation BL1;BL2 indicates the concatenation
of two equation block lists BL1, BL2 and is defined inductively as follows:
ε;BL2 = BL2, and (B.BL1);BL2 = B.(BL1;BL2).

For simplicity, in the translation of propositional constants we omitted
the empty block list, i.e., we wrote {X

µ
= p} instead of {X

µ
= p}.ε. If ϕ

is closed, then the block list produced by the translation is also closed, i.e.,
bv(tBL(ϕ)) = ∅. The translation given in Figure 4 preserves the interpreta-
tion of formulas, as stated by the proposition below.

Proposition 1 (Translation from CTRL to RESs). Let K be a Kripke
structure and ϕ a state formula of Ctrl. Then:

[[ϕ]]Kδ = [[t(ϕ)]]Kδ

14

for any propositional environment δ.

t(p) = 〈X, {X
µ
= p}〉

t(ϕ1 ∨ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(ϕ1 ∧ ϕ2) = 〈X, {X
µ
= tX(ϕ1) ∧ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉

t(EFρϕ) = 〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉

t(AFρϕ) = 〈X, {X
µ
= AFρtX(ϕ)}.tBL(ϕ)〉

t(EGρϕ) = 〈X, {X
ν
= EGρtX(ϕ)}.tBL(ϕ)〉

t(AGρϕ) = 〈X, {X
ν
= AGρtX(ϕ)}.tBL(ϕ)〉

t(EF∞
ρ) = 〈X, {X

ν
= EFρX}〉

t(AF∞
ρ) = 〈X, {X

ν
= AFρX}〉

t(EG⊣
ρ) = 〈X, {X

µ
= EGρX}〉

t(AG⊣
ρ) = 〈X, {X

µ
= AGρX}〉

Figure 4: Translation of Ctrl state formulas into Ress

To illustrate the translation of Ctrl formulas into Ress, we consider the
bistability property [80, 35], which specifies that after an initial state, two
different equilibrium states can be potentially reached. This branching-time
property can be expressed in Ctrl as follows:

AGtrue∗.init(EFtrue∗eql1 ∧ EFtrue∗eql2)

where the atomic propositions init , eql1, and eql2 denote the initial state and
the two equilibrium states, respectively. By applying the translation defined
in Figure 4 to this formula, we obtain the Res below:

〈X, {X
ν
= AGtrue∗.initY }.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= EFtrue∗U1}.{U1

µ
= eql1}.{Z2

µ
= EFtrue∗U2}.{U2

µ
= eql2}.ε〉

The ‘;’ operator produced by translating EFtrue∗eql1∧EFtrue∗eql2 was expanded
in terms of the ‘.’ operator using the definition of ‘;’.

The size (number of variables and operators) of the Res t(ϕ) produced
by the translation is linear in the size (number of operators) of the formula
ϕ, because every rule in Figure 4 creates, for each operator present in ϕ, one
block containing a single equation with one operator in its right-hand side.

15

For simplicity, the translation of a state formula ϕ given in Figure 4
does not take care of the state subformulas ψ that may occur inside the
regular formulas ρ. However, these subformulas must also be translated
into Ress in order to be evaluated on a Kripke structure K by the model
checking procedure. This is done by applying the translation recursively
on every subformula ψ of a regular formula ρ, yielding an additional Res
t(ψ) = 〈tX(ψ), tBL(ψ)〉. In practice, the block list tBL(ψ) of each additional
Res t(ψ) is concatenated to the block list tBL(ϕ) of the Res t(ϕ), and the
main variable tX(ψ) replaces the occurrence of the corresponding subformula
ψ, as illustrated by the formula EF(AGtrue∗p)

∗q, whose translation yields the Res

〈X, {X
µ
= EFY ∗Z}.{Z

µ
= q}.{Y

ν
= AGtrue∗U}.{U

ν
= p}.ε〉.

However, in order to simplify notations, we can exploit the fact that the
Ress produced by translating the subformulas ψ are closed, and hence their
main variables can be evaluated independently from the Res t(ϕ). This
allows to safely replace each subformula ψ by a “fresh” atomic proposition
pψ, whose interpretation on K is obtained by evaluating the main variable

tX(ψ) of the Res t(ψ). On the example above, the Res becomes 〈X, {X
µ
=

EFr∗Z}.{Z
µ
= q}.ε〉, where r has the same interpretation as the variable Y of

the additional Res 〈Y, {Y
ν
= AGtrue∗U}.{U

ν
= p}.ε〉. Therefore, in the sequel

we will restrict ourselves to Ress in which the regular formulas occurring in
the right-hand sides of equations are built only upon atomic propositions.

3.3. Translation to modal equation systems

Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block. An equation block {Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m is suitable for the substitution of equation Xn

σ
= ϕn if

fv(ψn) ∪
⋃m
j=n+1 fv(ψj) = fv(ϕn) and

⋃n
i=1 fv(ϕi) ∩ {Yn+1, ..., Ym} = ∅. The

notation {Xi
σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
= ψn, Yj

σ
= ψj}n<j≤m] represents

the syntactic substitution of the equation Xn
σ
= ϕn by the equations {Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m in B. This definition of substitution, which allows to

replace only the last equation of a block, is general enough: since all equations
of a block have the same fixed point sign, their order does not influence the
values of the variables defined in the block, and therefore any equation of the
block can be substituted by bringing it in the last position.

The translation of a Res equation block into a corresponding Mes equa-
tion block is performed by repeatedly applying various transformations, most
of them being substitutions of equations.

16

3.3.1. Operators EFρ and AGρ

In order to translate the equation blocks of the form {X
µ
= EFρY } and

{X
ν
= AGρY } into Mess, we eliminate the regular expressions ρ by repeatedly

applying appropriate substitutions. Each equation containing an EFρ or AGρ

operator in its right-hand side is substituted with a suitable equation block
containing simpler regular formulas, as defined in Figure 5 (Z and U are
“fresh” propositional variables). The application of any substitution given
in Figure 5 preserves the interpretation of equation blocks, as stated by the
proposition below.

Equation Substitution block

X
µ
= EFρ1.ρ2Y {X

µ
= EFρ1Z,Z

µ
= EFρ2Y }

X
µ
= EFρ1|ρ2Y {X

µ
= Z ∨ U,Z

µ
= EFρ1Y,U

µ
= EFρ2Y }

X
µ
= EFρ∗Y {X

µ
= Y ∨ Z,Z

µ
= EFρX}

X
ν
= AGρ1.ρ2Y {X

ν
= AGρ1Z,Z

ν
= AGρ2Y }

X
ν
= AGρ1|ρ2Y {X

ν
= Z ∧ U,Z

ν
= AGρ1Y,U

ν
= AGρ2Y }

X
ν
= AGρ∗Y {X

ν
= Y ∧ Z,Z

ν
= AGρX}

Figure 5: Substitutions for the EFρ and AGρ operators

Proposition 2 (Substitution of EF and AG). Let K be a Kripke struc-

ture and B1 = {Xi
µ
= ϕi}1≤i≤n, B2 = {Xi

ν
= ϕi}1≤i≤n be two equation blocks.

Then, for any propositional environment δ, the interpretation of B1 (resp.
B2) w.r.t. δ does not change when a substitution given in the upper part
(resp. the lower part) of Figure 5 is applied.

By repeatedly applying these substitutions, all occurrences of regular op-
erators in the right-hand sides of the equations can be eliminated. For the
Res of the bistability property, this translation yields the following Mes:

〈X, {X
ν
= Y1 ∧ Y2, Y1

ν
= AGinitY, Y2

ν
= AGtrueX}.{Y

µ
= Z1 ∧ Z2}.

{Z1
µ
= U1 ∨ Z3, Z3

µ
= EFtrueZ1}.{U1

µ
= eql1}.

{Z2
µ
= U2 ∨ Z4, Z4

µ
= EFtrueZ2}.{U2

µ
= eql2}.ε〉

The equation block {X
ν
= AGtrue∗.initY } was translated by successively ap-

plying the first and the third substitutions in the lower part of Figure 5.

17

The size of the Mes equation block resulting from the translation of a
Res equation block B of the form {X

µ
= EFρY } (resp. {X

ν
= AGρY }) remains

linear w.r.t. the size of B (and hence linear w.r.t. the size of the initial Ctrl
formula ϕ), since each substitution in Figure 5 replaces a regular operator
by at most two variables and two temporal operators EF (resp. AG).

3.3.2. Operators AFρ and EGρ

The translation of the equation blocks {X
µ
= AFρY } and {X

ν
= EGρY }

into Mess is more complicated than the translation of their EFρ and AGρ

counterparts, because the substitutions given in Figure 5 to eliminate the
regular expressions ρ are no longer valid for the AFρ and EGρ operators. We

consider below only blocks of the form {X
µ
= AFρY }, the processing of their

EGρ counterparts being dual.

The translation of the {X
µ
= AFρY } equation blocks into Mess consists

of three steps. First, the Res is temporarily transformed in potentiality form
{X

µ
= EFρY } and subsequently translated into a potentiality Mes by elimi-

nating the regular expression ρ using the substitutions given in Section 3.3.1.
Then, the resulting Mes is transformed in guarded form, by eliminating
all unguarded (i.e., not preceded by a temporal operator) occurrences of
variables in the right-hand sides of equations. Finally, the guarded Mes is
determinized, by replacing all occurrences of EF operators in the right-hand
sides of equations by appropriate occurrences of AF operators in order to
retrieve the interpretation of the initial equation block {X

µ
= AFρY }. We

will illustrate each step of the translation on the following equation block:

{X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }.

Translation to potentiality form. The difficulty of translating an equation
block {X

µ
= AFρY } into a Mes stems from the fact that all transition se-

quences going out of a state have to satisfy ρ before reaching a state satisfying
Y , whereas the substitutions in Figure 5 allow to eliminate ρ on individual
sequences only. To avoid this difficulty, we switch temporarily to the poten-
tiality form {X

µ
= EFρY }, we eliminate ρ by applying the substitutions, and

we continue working with the resulting potentiality Mes, which character-
izes the existence of individual sequences satisfying ρ. The size of this Mes
is linear w.r.t. the size of the initial block {X

µ
= AFρY }, as stated in Sec-

tion 3.3.1. Figure 6 shows the potentiality Mes obtained from the equation
block above by switching to potentiality form and applying the substitutions
in Figure 5 (all equations have the sign µ, omitted for simplicity).

18

X = EF(q|p∗)∗Z1 X = Z3 ∨ Z1 X = Z3 ∨ Z1

Z3 = EFq|p∗X Z3 = Z4 ∨ Z5 Z3 = Z4 ∨ Z5

Z5 = EFqX Z5 = EFqX
Z4 = EFp∗X Z4 = Z6 ∨ X Z4 = Z6 ∨ X

Z6 = EFpZ4 Z6 = EFpZ4

Z1 = EFqr∗Z2 Z1 = EFqZ7 Z1 = EFqZ7

Z7 = EFr∗Z2 Z7 = Z8 ∨ Z2 Z7 = Z8 ∨ Z2

Z8 = EFrZ7 Z8 = EFrZ7

Z2 = EFp∗|q∗Y Z2 = Z9 ∨ Z10 Z2 = Z9 ∨ Z10

Z9 = EFp∗Y Z9 = Z11 ∨ Y Z9 = Z11 ∨ Y
Z11 = EFpZ9 Z11 = EFpZ9

Z10 = EFq∗Y Z10 = Z12 ∨ Y Z10 = Z12 ∨ Y
Z12 = EFqZ10 Z12 = EFqZ10

Figure 6: Translation of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } to a potentiality Mes

The right-hand sides of the equations of the potentiality Mes may contain
unguarded occurrences of propositional variables (i.e., not preceded by any
EF operator), such as variable Z1 in the equation X = Z3 ∨ Z1. These
occurrences will be eliminated in the next step of the translation.

Translation to guarded form. The translation of a potentiality Mes to
guarded form eliminates all unguarded occurrences of variables in the right-
hand sides of equations using the lemma below.

Lemma 1 (Absorption). Let K be a Kripke structure and B = {Xi
µ
=

ϕi}1≤i≤n be an equation block such that ϕn = Xn ∨ϕ and Xn 6∈ fv(ϕ). Then:

[[{Xi
µ
= ϕi}1≤i≤n[Xn

µ
= Xn ∨ ϕ := Xn

µ
= ϕ]]]Kδ = [[{Xi

µ
= ϕi}1≤i≤n]]Kδ

for any propositional environment δ.

The equations of a potentiality Mes, produced by the rules in Figure 5,
have two possible forms: either unguarded (i.e., containing disjunctions of
variables in their right-hand side), or guarded (i.e., containing a single oc-
currence of an EF operator in their right-hand side). The elimination of
unguarded occurrences of variables is carried out by Algorithm 1. The first
loop of the algorithm applies the absorption lemma and the idempotency of
disjunction on each unguarded equation defining a variable X in order to

19

eliminate the unguarded occurrences of X, and afterwards expands inline all
unguarded occurrences of X in all the other equations of the Mes. After
executing the first loop on the potentiality Mes given in Figure 6, we obtain
the Mes shown in Figure 7. Upon termination of the first loop, the formulas
in the right-hand sides of equations may contain only unguarded occurrences
of Y and of variables X defined by guarded equations of the Mes. The sec-
ond loop of the algorithm expands inline those variables, thus eliminating all
unguarded occurrences except those of Y . The result of applying the second
loop on the Mes in Figure 7 yields the Mes shown in Figure 8.

Algorithm 1 Translation of a potentiality Mes to guarded form

for all unguarded equations X
µ
=
∨

j Xj do

Eliminate X among Xj by applying the absorption lemma
for all unguarded occurrences of X in the rsh of other equations do

Substitute X by
∨

j Xj

end for

end for

for all guarded equations X
µ
= EFpXj do

Substitute X by EFpXj in all unguarded equations
end for

Initial list of 1st loop of Algorithm 1
unguarded eqns. Var. Updated equations

X = Z3 ∨ Z1 X: Z4 = Z6 ∨ Z3 ∨ Z1

Z2 = Z9 ∨ Z10 Z2: Z7 = Z8 ∨ Z9 ∨ Z10

Z3 = Z4 ∨ Z5 Z3: X = Z4 ∨ Z5 ∨ Z1

Z4 = Z6 ∨ X Z4 = Z6∨Z4∨Z5 ∨ Z1

Z7 = Z8 ∨ Z2 Z4: X = Z6 ∨ Z5 ∨ Z1∨Z5∨Z1

Z9 = Z11 ∨ Y Z3 = Z1 ∨ Z5 ∨ Z6∨Z5

Z10 = Z12 ∨ Y Z9: Z2 = Z11 ∨ Y ∨ Z10

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z10

Z10: Z2 = Z11 ∨ Y ∨ Z12∨Y
Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12∨Y

Figure 7: Translation of a potentiality Mes to guarded form (1st part)

The guarded Mess obtained by applying Algorithm 1 can be further
simplified by eliminating duplicate and unreachable equations. In the Mes

20

Equations after 2nd loop of Algorithm 1
the 1st loop Var. Updated equations

X = Z6 ∨ Z5 ∨ Z1 Z1: X = Z6 ∨ Z5 ∨ EFqZ7

Z2 = Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ Z5 ∨ Z6

Z3 = Z1 ∨ Z5 ∨ Z6 Z4 = Z6 ∨ Z5 ∨ EFqZ7

Z4 = Z6 ∨ Z5 ∨ Z1 Z5: X = Z6 ∨ EFqX ∨ EFqZ7

Z7 = Z8 ∨ Z11 ∨ Y ∨ Z12 Z3 = EFqZ7 ∨ EFqX ∨ Z6

Z9 = Z11 ∨ Y Z4 = Z6 ∨ EFqX ∨ EFqZ7

Z10 = Z12 ∨ Y Z6: X = EFpZ4 ∨ EFqX ∨ EFqZ7

Z1 = EFqZ7 Z3 = EFqZ7 ∨ EFqX ∨ EFpZ4

Z5 = EFqX Z4 = EFpZ4 ∨ EFqX ∨ EFqZ7

Z6 = EFpZ4 Z8: Z7 = EFrZ7 ∨ Z11 ∨ Y ∨ Z12

Z8 = EFrZ7 Z11: Z2 = EFpZ9 ∨ Y ∨ Z12

Z11 = EFpZ9 Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ Z12

Z12 = EFqZ10 Z9 = EFpZ9 ∨ Y
Z12: Z2 = EFpZ9 ∨ Y ∨ EFqZ10

Z7 = EFrZ7 ∨ EFpZ9 ∨ Y ∨ EFqZ10

Z10 = EFqZ10 ∨ Y

Figure 8: Translation of a potentiality Mes to guarded form (2nd part)

X = EFpX ∨ EFqX ∨ EFqZ7

Z7 = EFrZ7 ∨ EFpZ9 ∨ EFqZ10 ∨ Y
Z10 = EFqZ10 ∨ Y
Z9 = EFpZ9 ∨ Y

X1 = EFpX1 ∨ EFqX1 ∨ EFqX2

X2 = EFpX4 ∨ EFqX3 ∨ EFrX2 ∨ Y
X3 = EFqX3 ∨ Y
X4 = EFpX4 ∨ Y

Figure 9: Guarded potentiality Mes after simplifications (left) and renaming (right)

shown in Figure 8, the equations defining X, Z3 and Z4 have identical right-
hand sides, and therefore variables Z4 and Z3 can be replaced by X and
their equations deleted. Also, some of the variables will no longer be refer-
enced after these substitutions, and therefore their equations can be safely
removed. Finally, variables can be renamed in order to have a proper number-
ing, leading to the Mes shown in Figure 9. This guarded Mes is equivalent
to {X

µ
= EF(q|p∗)∗.(qr∗).(p∗|q∗)Y }, the potentiality form of our running example.

Intuitively, each variable defined by this Mes denotes the suffix of a transi-
tion sequence in the Kripke structure satisfying the regular formula indexing
the EF operator. In this respect, guarded potentiality Mess are similar to

21

the equation systems defining the derivatives of regular expressions [20].
The guarded potentiality Mess produced by applying Algorithm 1 have

at most the same number of variables as the original Mess, but may present
in the worst-case a quadratic increase in the number of operators. However,
we observed in practice that the number of variables in the guarded Mess is
much smaller than in the original Mess (thanks to elimination of redundant
equations) and the number of operators remains close to linear w.r.t. the
original Mess, and hence w.r.t. the size of the initial Ctrl formula.

Determinization. The last step of the translation consists in determinizing
the guarded potentiality Mes obtained so far in order to obtain a Mes with
the same meaning as the initial Res {X

µ
= AFρY }. Consider the following

potentiality Mes in guarded form:

{

Xi
µ
=

n
∨

j=1

(hij ∧ EFpij
Xj) ∨ (hi ∧ Y)

}

1≤i≤n

where hij , hi ∈ Bool and pij ∈ P for all 1 ≤ i, j ≤ n. The coefficients
hij and hi allow to simplify notations: only the terms EFpij

Xj with their
coefficients hij equal to true (and similarly for the unguarded occurrences of
Y with their hi equal to true) are present in the right-hand sides of equations.
An equation defining variable Xi is said to have the index i. Note that the
translation to guarded potentiality form may produce equations containing
guarded occurrences of Y , e.g., formulas EFpY in their right-hand sides; in
this case, bringing the Mes to the form above requires to introduce an extra
equation Xn+1

µ
= Y and to replace by Xn+1 all guarded occurrences of Y

(but not its unguarded occurrences). The determinized Mes corresponding
to the guarded potentiality Mes above is defined as follows:

XI
µ
=

∨

∅⊂Q⊆prop(I)

AFQXvars(Q,I) ∨ (h(I) ∧ Y)

I⊆[1,n]

where:

• prop(I)
d
= {pij | i ∈ I ∧ j ∈ [1, n]∧hij} is the set of atomic propositions

occurring as subscripts of EF operators in the equations of the guarded
potentiality Mes having their index in the set I.

22

• vars(Q, I)
d
= {j ∈ [1, n] | ∃i ∈ I.(hij ∧ pij ∈ Q)} is the set of indexes

of propositional variables which occur in the right-hand side of some
equation having its index in the set I and whose corresponding EF

operator is subscripted by some atomic proposition contained in the
set Q.

• h(I)
d
= ∃i ∈ I.hi is equal to true iff Y occurs unguarded in some

equation having its index in the set I.

In the AF operators of the determinized Mes, the subscript Q stands for the
conjunction of all the atomic propositions contained in the set Q.

The determinization restores the meaning of the initial equation block
{X

µ
= AFρY }, as stated by the proposition below.

Proposition 3 (Determinization correctness). Let K be a Kripke

structure, R = {X1
µ
= AFρY } an equation block, and M the Mes obtained

from R after translation in guarded potentiality form and determinization.
Then:

([[M]]Kδ)(X{1}) = ([[R]]Kδ)(X1)

for any propositional environment δ.

Figure 10 shows the determinized version of the guarded potentiality
Mes produced by the previous translation phases from the equation block
{X

µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }. For conciseness, we represent index sets just

by concatenating their elements, e.g., the set {1, 2, 3} is denoted by 123.
We observe that this Mes can be simplified by eliminating duplicate equa-
tions (e.g., the equations defining variables X12, X123, X124 and those defin-
ing X2, X23, X24, X234) and by absorbing certain operands using the identity
AFpXI∨AFpqXI = AFpXI , yielding the Mes on the left of Figure 11. Finally,
the right-hand side formulas of some equations may occur as subformulas in
other equations and can therefore be replaced by their corresponding left-
hand side variables, leading to the final determinized Mes shown on the
right of Figure 11. In practice, these simplifications can be carried out incre-
mentally as the equations are generated, avoiding the complete construction
of the determinized Mes prior to simplification. Moreover, sometimes it
is possible to determine statically whether certain atomic propositions are
mutually exclusive, which allows to remove the AF operators whose index
subformulas contain those propositions together.

23

X1
µ
=AFpX1 ∨ AFqX12 ∨ AFpqX12

X12
µ
=AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X123
µ
=AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X124
µ
=AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X14
µ
=AFpX14 ∨ AFqX12 ∨ AFpqX124 ∨ Y

X1234
µ
=AFpX14 ∨ AFqX123 ∨ AFrX2 ∨ AFpqX1234 ∨ AFprX124 ∨ AFqrX123 ∨ AFpqrX1234 ∨ Y

X2
µ
=AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X23
µ
=AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X234
µ
=AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X24
µ
=AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ AFprX24 ∨ AFqrX23 ∨ AFpqrX234 ∨ Y

X3
µ
=AFqX3 ∨ Y

X34
µ
=AFpX4 ∨ AFqX3 ∨ AFpqX34 ∨ Y

X4
µ
=AFpX4 ∨ Y

Figure 10: Determinized Mes produced from {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y }

X1
µ
= AFpX1 ∨ AFqX12

X12
µ
= AFpX14 ∨ AFqX12 ∨ AFrX2 ∨ AFprX12 ∨ Y

X14
µ
= AFpX14 ∨ AFqX12 ∨ Y

X2
µ
= AFpX4 ∨ AFqX3 ∨ AFrX2 ∨ AFpqX34 ∨ Y

X3
µ
= AFqX3 ∨ Y

X34
µ
= AFpX4 ∨ AFqX3 ∨ AFpqX34 ∨ Y

X4
µ
= AFpX4 ∨ Y

X1
µ
= AFpX1 ∨ AFqX12

X12
µ
= AFrX2 ∨ AFprX12 ∨ X14

X14
µ
= AFpX14 ∨ AFqX12 ∨ Y

X2
µ
= AFrX2 ∨ X34

X34
µ
= AFpqX34 ∨ X3 ∨ X4

X3
µ
= AFqX3 ∨ Y

X4
µ
= AFpX4 ∨ Y

Figure 11: Determinized Mes of {X
µ
= AF(q|p∗)∗.(qr∗).(p∗|q∗)Y } after simplifications

The determinization of a guarded potentiality Mes defined above is sim-
ilar to the subset construction procedure used for determinizing finite au-
tomata [2]. In the worst-case, the size of the determinized Mes resulting

from the translation of an equation block {X
µ
= AFρY } is exponential w.r.t.

the size (number of operators and atomic propositions) of the regular for-
mula ρ. However in practice, the size of determinized Mess obtained after
simplifications is close to linear w.r.t. the size of ρ, as illustrated by the
final Mes shown in Figure 11. When ρ is deterministic (i.e., each atomic
proposition occurs only once in the right-hand side of each equation of the
guarded potentiality Mes used as intermediate form, and all atomic propo-
sitions are mutually exclusive on the states of the Kripke structure), the size
of the resulting determinized Mes remains linear w.r.t. the size of ρ.

24

3.3.3. Operators EF∞
ρ , AF∞

ρ , EG⊣
ρ , and AG⊣

ρ

According to the rules given in Fig 4, the EF
∞
ρ and AF

∞
ρ operators are

translated into equation blocks of the form {X
ν
= EFρX} and {X

ν
= AFρX},

respectively. The interpretation of these equation blocks is given by νΦe and
νΦa, where the functionals Φe,Φa : 2S → 2S are defined as follows:

Φe(U) = [[EFρX]]K [U/X] = ([[{X1
µ
= EFρX}]]K [U/X])(X1)

Φa(U) = [[AFρX]]K [U/X] = ([[{X1
µ
= AFρX}]]K [U/X])(X1).

The evaluation of the EF∞
ρ and AF∞

ρ operators requires to compute the max-
imal fixed points of the functionals Φe and Φa, which are defined as the mini-
mal fixed points of the functionals associated to the RessRe = {X1

µ
= EFρX}

and Ra = {X1
µ
= AFρX}. Therefore, these operators belong to Lµ2, the

µ-calculus fragment of alternation depth 2 [37], which allows one level of
mutual recursion between minimal and maximal fixed points. The operators
EG⊣

ρ and AG⊣
ρ are handled dually w.r.t. AF∞

ρ and EF∞
ρ , respectively.

4. An on-the-fly model checker for CTRL

The translation from Ctrl to Mess presented in Section 3 provides the
basis of a model checking procedure, which was implemented by reusing
as much as possible the on-the-fly verification technology available in the
Cadp toolbox [44]. The resulting Ctrl model checker was coupled with
the qualitative simulation tool Gna [12], which was enhanced in order to
allow the specification of biological properties as temporal logic formulas.
We outline below the principles of the model checker and its interconnection
with Gna and Cadp.

4.1. General architecture

The overall approach that we propose for analyzing the dynamic be-
haviour of Grns is illustrated on Figure 12. Starting from the abstract
descriptions of a Grn and of a biological property of interest, the modeler
formally specifies, on one hand, the Grn behaviour as a system of piecewise-
linear differential equations together with its initial conditions and, on the
other hand, a temporal logic formula encoding the property. By perform-
ing a qualitative simulation of the network by means of the piecewise-linear
model, Gna produces a Kripke structure representing an abstraction of the
Grn behaviour, which is subsequently converted into an Lts. The temporal

25

(.bcg
.aut
.c)

(.aut
 .bcg)

(.dat) (.gna)
PL Model

(.ctrl)

(.prop)

(.blk) (.mcl)

Property

Initial Conditions

Model specification

Expansion

ρ expansion
Abusive

Res

Mes

Mes

Res

ρ expansion

Translation

Ctrl
Ctrl translation

Lts

Translation

Bes

Lts

AFρ/EGρ EFρ/AGρ

specification

HmlR

guarded form

Property

Qualitative simulation

Ctrl translator

Translation

Evaluator

Cadp

Ks

Conversion

Mes

Mes

Genetic regulatory network Biological property

Lµreg
1

Determinization

On-the-fly resolution

Gna

answer

Figure 12: Ctrl translator and its interconnection to Gna and Cadp

logic property is also translated automatically by Gna, taking into account
information present in the piecewise-linear model, into a Ctrl state formula.
This formula is fed to the Ctrl translator, which produces a Mes and con-
verts it into a HmlR specification. Finally, this specification and the Lts
are given as input to the Evaluator 3.6 model checker of Cadp, which car-
ries out the verification and produces a verdict accompanied by a diagnostic,
i.e., a subgraph of the Lts explaining the verification result. The modeler
can then analyze the diagnostic using Gna in order to understand the truth
value of the temporal property on the Kripke structure corresponding to the
Grn and, if needed, to change the piecewise-linear model appropriately.

4.2. Qualitative simulation of genetic regulatory networks using GNA

The method we use for analyzing the dynamic behaviour of Grns relies
upon a special class of piecewise-linear differential equation models, origi-
nally introduced by Glass and Kauffman [46]. The piecewise-linear models

26

provide a coarse-grained picture of the dynamics of Grns, well-adapted to
the current lack of quantitative information on many networks of interest.
The models associate a protein concentration variable to each of the genes
in the network, and capture the switch-like character of gene regulation by
means of step functions that change their value at a threshold concentra-
tion of the proteins. The thresholds of the concentration variables define a
hyperrectangular partition of the state space, such that in every region not
located on a threshold hyperplane, the step functions evaluate to 0 or 1,
and the piecewise-linear model reduces to an analytically solvable system of
differential equations. More precisely, in such a region D we have

dx

dt
= κD − γD x, (1)

where x ∈ R
n
+ is a vector of protein concentrations, κD ∈ R

n
+ is a vector of

(sums of) protein synthesis rate constants, and γD ∈ R
n
+ × R

n
+ is a diagonal

matrix of (sums of) degradation rate constants. It can be easily shown that
in every D the solutions of (1) monotonically converge towards a focal point
(γD)−1 κD. These convergence results can be generalized to the case of regions
located on a threshold hyperplane [11, 34].

The qualitatively homogeneous behaviour inside regions D motivates
the use of discrete abstractions, converting the continuous dynamics of the
piecewise-linear models to discrete transition systems that are formally equiv-
alent to Kripke structures (see [4] for a review and [3, 26, 55, 82] for some
recent examples). We follow the approach developed in [11], which has been
specifically defined for the class of piecewise-linear models considered here
(see also [1, 45]). The states of the resulting Kripke structure correspond
to regions in the state space, while the transitions arise from solutions of
the piecewise-linear model that enter one region from another. The atomic
propositions describe, among other things, the concentration bounds defin-
ing a region and the trend of the variables inside the region (increasing,
decreasing, or steady).

Interestingly, it can be shown that the Kripke structure, and thus the
qualitative dynamics of the system, are completely determined by inequality
constraints imposing a total ordering on the threshold parameters and the fo-
cal parameters κDi /γ

D
i for each variable xi, 1 ≤ i ≤ n. The definition of these

constraints can generally be inferred from available data in the experimen-
tal literature or by intuitive reasoning, even in the absence of quantitative
information on parameter values. The inequality constraints are used by

27

the computer tool Gna1 (Genetic Network Analyzer) [12] to symbolically
compute the Kripke structure for a given piecewise-linear model. We call
the process of computing a Kripke structure containing the states reachable
from given initial conditions a qualitative simulation of the network. Gna
has been used for the qualitative simulation of a number of bacterial reg-
ulatory networks, such as the initiation of sporulation in Bacillus subtilis
[33], quorum sensing in Pseudomonas aeruginosa [83], the carbon starva-
tion response in Escherichia coli [73], and the onset of virulence in Erwinia
chrysanthemi [75].

In order to analyze the Kripke structures generated by qualitative sim-
ulation, Gna has been enhanced to support formal verification of biological
properties by means of Ctrl, resulting in the new version 7.0. First of all,
the Kripke structure can be exported to the Lts format of Cadp by applying
the conversion given in [28], which consists in moving the atomic proposi-
tions valid at a state s on the actions labeling the transitions going out of
s. Second, the user can specify biological properties of interest using a ded-
icated property editor, which provides pattern-based property specification
support, following the query schemes proposed in [71], based on a review of
frequently-asked questions by modelers. The translation of the patterns into
Ctrl is shown in Table 1. An alternative to the pattern-based property edi-
tor, would be to use live sequence charts [31], providing a graphical property
specification tool [61]. Expert users can also directly specify Ctrl formulas
of arbitrary complexity that are not covered by the patterns. The properties
can be exported to a file that the Ctrl translator is able to translate into
the HmlR format accepted by Cadp. In order to achieve a tighter integra-
tion between the two tools, and allow the modeler to analyze the verification
results in the Gna environment, a Web server-based connection between the
tools has been implemented (Monteiro et al., in preparation).

4.3. On-the-fly CTRL model checking using CADP

The most direct way of obtaining a model checker for Ctrl was to take
advantage of existing verification technology. As verification engine, we use
Cadp2 (Construction and Analysis of Distributed Processes) [44], a state-
of-the-art verification toolbox for concurrent asynchronous systems. Cadp

1Gna is distributed by the company Genostar and freely available for non-profit aca-
demic research purposes at http://ibis.inrialpes.fr/gna.

2http://www.inrialpes.fr/vasy/cadp

28

Pattern Ctrl formula

Occurrence/Exclusion pattern
It is possible for a state ϕ to occur EFtrue∗ϕ
It is not possible for a state ϕ to occur ¬EFtrue∗ϕ

Consequence pattern
If a state ϕ occurs, then it is possibly followed by a state ψ AGtrue∗(ϕ⇒ EFtrue∗ψ)
If a state ϕ occurs, then it is necessarily followed by a state ψ AGtrue∗(ϕ⇒ AFtrue∗ψ)

Sequence pattern
A state ψ is reachable and is possibly preceded at some time by a state ϕ EFtrue∗.ϕ.true∗ψ
A state ψ is reachable and is possibly preceded all the time by a state ϕ EFϕ∗ψ
A state ψ is reachable and is necessarily preceded at some time by a state ϕ EFtrue∗ψ ∧ ¬EF(¬ϕ)∗ψ
A state ψ is reachable and is necessarily preceded all the time by a state ϕ EFtrue∗ψ ∧ AGtrue∗(¬ϕ⇒ AGtrue∗¬ψ)

Invariance pattern
A state ϕ can persist indefinitely EGtrue∗ϕ
A state ϕ must persist indefinitely AGtrue∗ϕ

Table 1: Rules for translating the patterns (with all their variations) into Ctrl

offers a wide range of functionalities assisting the user throughout the design
process: compilation and rapid prototyping, random execution, interactive
and guided simulation, model checking and equivalence checking, test gen-
eration, and performance evaluation. The toolbox accepts as input process
algebraic descriptions in Lotos [54] or Chp [66], as well as networks of
communicating automata in the Exp language [62].

The tools of Cadp operate on labeled transition systems (Ltss), which
are represented either explicitly (by their list of transitions) as compact
binary files encoded in the Bcg (Binary Coded Graphs) format, or im-
plicitly (by their successor function) as C programs compliant with the
Open/Cæsar interface [43]. Cadp contains the on-the-fly model checker
Evaluator 3.6 [69], which evaluates regular alternation-free µ-calculus
(Lµreg

1) formulas on implicit Ltss. The tool works by translating the ver-
ification problem in terms of the local resolution of a boolean equation
system, which is performed using the algorithms available in the generic
Cæsar Solve library [67]. Evaluator 3.6 uses HmlR as intermediate lan-
guage: Lµreg

1 formulas are translated into HmlR specifications, whose eval-
uation on implicit Ltss can be straightforwardly encoded as a local boolean
equation system resolution [29, 69]. The tool also generates full diagnostics
(examples and counterexamples) illustrating the truth value of the formulas.

In order to reuse Evaluator 3.6, we had the choice of translating Ctrl
formulas either to Lµreg

1 formulas, or to HmlR specifications. We adopted
the second solution because it leads to a more succinct translation and avoids
the translation step from Lµreg

1 to HmlR present in Evaluator 3.6. This
technical choice motivated the definition of the translation from Ctrl to

29

Mess in the first place. The architecture of the Ctrl translator (about
12, 000 lines of code) is shown in Figure 12. The tool takes as input a Ctrl
state formula and translates it to a Mes following the phases described in
Section 3, which are different for the EFρ and AFρ operators and their dual
counterparts. The Mes obtained is then converted into a HmlR specification
by expanding the basic Ctrl temporal operators in terms of Hml modalities
as described in [68].

Complexity. Table 2 summarizes the complexity of our model checking pro-
cedure for Ctrl. The EFρ and EF∞

ρ operators, together with their respective
duals AGρ and AG⊣

ρ , are evaluated in linear-time w.r.t. the size of the formula
and the size of the Kripke structure by applying the boolean equation sys-
tem resolution algorithms given in [67, 70]. Moreover, the evaluation of these
operators has a memory complexity O(|ρ| · |S|), meaning that only the states
(and not the transitions) of the Kripke structure are stored. This fragment of
Ctrl is the state-based counterpart of Pdl-∆ [77], which is more expressive
than Ctl∗ [36]. Of course, this does not yield a linear-time model checking
procedure for Ctl∗ (nor for its fragment Ltl), because the translation from
Ctl∗ to Pdl-∆ is not succinct [85]. However, the linear-time evaluation of
the EF∞

ρ operator allows an efficient detection of complex cycles describing
oscillation properties [22].

Table 2: Complexity of model checking Ctrl operators on K = 〈S, P, L, T, s0〉

Operator Complexity
ρ deterministic ρ nondeterministic

EFρ AGρ O(|ρ| · (|S| + |T |))

AFρ EGρ O(|ρ| · (|S| + |T |)) O(2|ρ| · (|S| + |T |))
EF∞

ρ AG⊣
ρ O(|ρ| · (|S| + |T |))

AF∞
ρ EG⊣

ρ O(|ρ| · (|S| + |T |)) O(22|ρ| · (|S| + |T |)2)

The AFρ operator and its dual EGρ are evaluated in linear-time only when
the regular subformula ρ is deterministic. In the general case, these oper-
ators are evaluated in exponential-time w.r.t. the size of ρ (because of the
determinization phase) but still in linear-time in the size of the Kripke struc-
ture. In practice, the size of temporal formulas is much smaller than the
size of Kripke structures, which reduces the impact of the factor 2|ρ| on the

30

total cost of model checking. Finally, the AF∞
ρ operator and its dual EG⊣

ρ

are evaluated in linear-time when ρ is deterministic by applying a symmetric
version of the boolean equation system resolution algorithm in [70]; in the
general case, these operators are evaluated in doubly exponential-time w.r.t.
the size of ρ and in quadratic-time w.r.t. the size of the Kripke structure.
This complexity seems difficult to lower, since the boolean equation systems
produced by translating these operators are of alternation depth 2 and have a
general shape (arbitrary amounts of disjunctive and conjunctive equations).

5. Verification of genetic regulatory networks

5.1. Model of carbon starvation response in E. coli

To assess the applicability of Ctrl, we have analyzed a model of the car-
bon starvation response in the bacterium E. coli. In the absence of essential
carbon sources in its growth environment, an E. coli population abandons ex-
ponential growth and enters a non-growth state called stationary phase. This
growth-phase transition is accompanied by numerous physiological changes
in the bacteria [52], and controlled by a complex genetic regulatory net-
work integrating various environmental signals. A key part of this network
is shown in Figure 13.

The molecular basis of the adaptation of the growth of E. coli to the nutri-
tional conditions has been the focus of extensive studies for decades [48, 50].
However, notwithstanding the enormous amount of information accumulated
on the genes, proteins, and other molecules known to be involved in the
stress adaptation process, it is currently not understood how the response of
the cell emerges from the regulatory network. Moreover, with some excep-
tions [17, 24], numerical values for the kinetic parameters and the molecular
concentrations are absent, which makes it difficult to apply traditional meth-
ods for the dynamical modeling of Grns.

This has motivated the development of a piecewise-linear model of the
carbon starvation network, using the tools presented in Section 4. More
precisely, the dynamics of the network are described by 9 coupled piecewise-
linear differential equations, and 59 inequality constraints on the parameter
values. The qualitative analysis of a network of this size and complexity gen-
erates huge Kripke structures: the entire state set consists of approximately
O(1010) states, while the subset of states that is most relevant for our pur-
pose, i.e., the states that are reachable from an initial state corresponding
to a particular growth state of the bacteria, still consists of O(104) states.

31

P2P1/P’1

P1 Px1

RssB
P

Legend

Fis Synthesis of protein Fis
P

RssB* Active form of protein RssB

Degraded protein Activation

Conversion Inhibition

Carbon

Signal
(Input)

Starvation

P1 P2

GyrI

Stable RNAs
(Output)

cAMP

Supercoiled DNARelaxed DNA

CRP

P2P1

P

Fis

ATP

TopA

P

P

σS

rpoSnlpDP1/P2
rpoSP1

RssB∗

rssB

fis from gene fis

rrn

GyrAB

cya

crp

fis

Cya

gyrI

Export/

topA

gyrAB

Figure 13: Network of key genes, proteins, and regulatory interactions involved in the
Grn controlling the carbon starvation response in E. coli [73].

It is obvious that Kripke structures of this size cannot be analyzed by visual
inspection, and that formal verification techniques are needed to get a better
insight into the transient and asymptotic dynamics of the network.

5.2. Analysis of carbon starvation response model

A first question of interest concerns the attractors of the system and their
reachability. The first attractor identified by means of Gna is a state in the
Kripke structure corresponding to an asymptotically stable steady state of
the piecewise-linear model. This state is characterized by a low basal ex-
pression level of the stable Rnas, an indicator of growth arrest and thus of
stationary phase. The second attractor corresponds to another steady state
of the piecewise-linear model, which is also stable as shown by the mathe-
matical analysis in [47]. It has a high expression level of the stable Rnas,
characteristic of the high growth rate in exponential phase. The steady state
is asymptotically reached by means of damped oscillations of the concen-
trations of some of the proteins and the stable Rnas. Under the discrete
abstraction of the piecewise-linear dynamics, the damped oscillations appear
as a terminal cycle in the Kripke structure (the eventual transition to the

32

stable steady state is ignored as it does not occur in a finite number of tran-
sitions).

We label the above attractors astat (the stationary-phase steady state)
and aexp (the damped oscillations leading to the exponential-phase steady
state) and check the following property:

AGtrue∗(EFtrue∗aexp ∨ EFtrue∗astat) (2)

The Ctrl model checker returns true, confirming that astat and aexp are
the only attractors of the system. Can they both occur for a given input,
that is, under fixed nutrient conditions? This would show that the system
is bistable. We introduce the atomic proposition sig to denote the carbon
starvation input signal, and specify the following Ctrl property:

(EFsig∗aexp ∧ EFsig∗astat) ∨ (EF¬sig∗aexp ∧ EF¬sig∗astat) (3)

Both are false, indicating that for given nutrient conditions the attractors
are mutually exclusive. More precisely, if sig is present (nutrient depletion)
then the stationary-phase attractor is inevitably reached, whereas in the
absence of sig (nutrient availability), the system necessarily evolves towards
the exponential-phase attractor. That is, the model checker returns true for
the following property:

AGtrue∗((sig ⇒ AFsig∗astat) ∧ (¬sig ⇒ AF¬sig∗aexp)) (4)

In mathematical terms, the system is therefore not bistable, but has a monos-
table steady-state response to each of the two possible inputs (nutrient de-
pletion vs. nutrient availability).

The damped oscillations predicted by the model are an unexpected and
hitherto unobserved phenomenon. It would therefore be interesting to better
characterize the predictions on the molecular level. We have computed by
means of Gna the part of the Kripke structure reachable from an initial
state corresponding to the stationary-phase steady state with the stress signal
switched off (¬sig). This initial state mimicks the physiological state of the
bacteria at the nutrient upshift. The resulting Kripke structure consists of
9603 states.

We first check which concentrations are oscillating in the terminal cycle
aexp, for each of the proteins and the stable Rnas. Let dec rrn (inc rrn)
represent a decreasing (increasing) concentration of stable Rnas (which are

33

transcribed from the rrn operons). The following Ctrl property is true,
confirming the predicted (damped) oscillations for the concentration of stable
Rnas:

EFtrue∗EF
∞
a+

exp .(inc rrn+.true∗.dec rrn+)+
(5)

A similar property is true for GyrAB and Fis, regulators of both the Dna
supercoiling level and the accumulation of stable Rnas in the cell. It points
at the role of the negative feedback loop involved in the homeostatic control
of the Dna supercoiling level in causing the damped oscillations [73].

We can check a stricter property by requiring that all paths in the Kripke
structure lead to the terminal cycle with an oscillating stable Rna concen-
tration:

AGtrue∗EF
∞
a+

exp.(inc rrn+.true∗.dec rrn+)+
(6)

Property (7) is false, confirming that some paths do not end up in this cycle.
This can be explained by the fact that the Kripke structure contains several
nonterminal cycles in addition to the terminal cycle aexp. However, we can
impose a path restriction on the AG operator to guide the model checker
towards the terminal cycle:

AGtrue∗.aexp
EF

∞
a+

exp.(inc rrn+.true∗.dec rrn+)+
(7)

The Ctrl model checker returns true for property (8), proving that all paths
satisfying the restriction reach the terminal cycle where the concentration of
stable Rnas continues to oscillate. Interestingly, the following property is
also true:

AGtrue∗.dec Crp+.aexp
EF

∞
a+

exp.(inc rrn+.true∗.dec rrn+)+
(8)

This suggests that the decrease of the concentration of Crp drives the system
towards the terminal cycle.

The Ctrl formulas above illustrate the usefulness of regular expressions
for characterizing sequences of states in a concise manner. The nested it-
eration operators present in the regular formulas make the Ctrl formulas
unexpressible using standard temporal logics such as Ctl or Ltl. In addi-
tion, the EF∞

ρ operator enables a natural formulation of infinite repetitions of
sequences defined by ρ, such as those corresponding to (damped) oscillations
in the E. coli example.

34

6. Conclusions and future work

Applications of model checking in systems biology have demonstrated
its usefulness for understanding the dynamic behaviour of regulatory net-
works in living cells, but also outlined certain limitations in expressiveness
and user-friendliness. Our work aims at alleviating these limitations in or-
der to promote the practical usage of model checking in the bioinformatics
and systems biology communities. The temporal logic Ctrl that we pro-
posed, an extension of Ctl with regular expressions and fairness operators,
allows a natural and concise description of typical properties of biological
interest, such as the presence of multistability or oscillations in the concen-
trations of molecular species. We were able to obtain an on-the-fly model
checker for Ctrl by defining and implementing a translation from Ctrl to
HmlR, and by reusing the verification and diagnostic generation features of
the Evaluator 3.6 model checker of Cadp. This modular architecture al-
lowed us to reduce the development effort and to take advantage of existing,
robust model checking technology.

The extension of classical temporal logics with regular language con-
structs to increase their expressiveness and user-friendliness is a long-standing
line of research. One of the first proposals in this direction was Etl [86],
an extension of Ltl with regular grammars, which is strictly more expres-
sive than Ltl while still having the same complexity of evaluation on Kripke
structures. Another manner of increasing expressiveness is to enhance tem-
poral operators with automata on infinite sequences; this was attempted for
Ctl [49] and Ctl∗ [81]. Despite their expressive power, these extensions are
difficult to implement and use in practice because of their complex syntax.

A more user-friendly approach, which led to successful implementations,
is to index temporal operators by regular expressions instead of automata.
ForSpec [6] and Eagle [9] are extensions of Ltl with regular expressions
and data handling mechanisms, dedicated respectively to hardware and run-
time verification. Rctl [15] is an extension of Ctl with regular expressions,
which served subsequently as basis for the Sugar [14] and Psl [53] spec-
ification languages used for hardware verification. RegCtl [19] is another
extension of Ctl with regular expressions, more expressive than Rctl, ob-
tained by indexing the Until operator of Ctl with regular expressions. Our
proposal is in line with these latter approaches, but focuses on the transla-
tion of Ctrl to the modal µ-calculus, which among other things allows us to
reuse the on-the-fly verification technology available for the latter formalism.

35

This contrasts with the model checking approaches proposed for the other
extensions of Ctl, which are most of the time based on automata.

In this paper, we have employed Ctrl for the verification of dynamic
properties of Grns modeled by piecewise-linear differential equations. The
continuous dynamics of these models can be converted into discrete state
transition graphs that are formally equivalent to Kripke structures. The
computer tool Gna is able to generate the state transition graphs and export
them as Kripke structures to Cadp. This allows the use of Cadp for verifying
Ctrl properties on Grns, as illustrated on the carbon starvation network
in E. coli.

The application of Ctrl in systems biology and bioinformatics is not re-
stricted to the class of models considered in this paper though. Ctrl is inter-
preted on Kripke structures, which provide a general description of dynamical
systems that implicitly or explicitly underlie many of the existing discrete
formalisms used for the modeling of regulatory networks in the cell, such
as Boolean networks and their generalizations, Petri nets, and process alge-
bras [23, 40]. In addition, other types of continuous models of regulatory net-
works, by defining appropriate discrete abstractions, can possibly be mapped
to Kripke structures as well. As a consequence, Ctrl can be combined with
many of the other approaches proposed for the application of formal verifi-
cation tools to biological regulatory networks [5, 8, 12, 16, 21, 22, 41].

We plan to continue our work on several directions. First, we will extend
the Cæsar Solve [67] library of Cadp with resolution algorithms handling
boolean equation systems of alternation depth 2 [84] in order to obtain an
on-the-fly evaluation of the AF∞

ρ operator when the regular formula ρ is
nondeterministic. Second, the translation from Ctrl to HmlR can be op-
timized by adding static analysis features on the Gna atomic propositions
in order to reduce the size of the HmlR specifications produced. Third, a
distributed version of the Ctrl model checker can be obtained by coupling
it with the distributed boolean equation system resolution algorithms pro-
posed in [56, 57]. Fourth, we will develop tools to further support non-expert
users in applying formal verification to the analysis of biological regulatory
networks ([71], Monteiro et al., in preparation).

Acknowledgements

This research was funded by the Ec-Moan project no. 043235 of the
Fp6-Nest-Path-Com European program. Pedro T. Monteiro is also sup-
ported by the Fct program (PhD grant Sfrh/Bd/32965/2006). Estelle

36

Dumas is grateful to David Champelovier, Hubert Garavel, Romain Lacroix,
and Michel Page for their valuable assistance in developing the translator
from Ctrl to HmlR.

References

[1] Adélade, M., Sutre, G., 2004. Parametric analysis and abstraction of
genetic regulatory networks. In: Proc. BioCONCUR 04. London, UK.

[2] Aho, A. V., Sethi, R., Ullman, J. D., 1986. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley.

[3] Alur, R., Dang, T., Ivančić, F., 2006. Counter-example guided predicate
abstraction of hybrid systems. Theor. Comput. Sci. 354 (2), 250–271.

[4] Alur, R., Henzinger, T., Lafferriere, G., Pappas, G., 2000. Discrete ab-
stractions of hybrid systems. Proceedings of the IEEE 88 (7), 971–984.

[5] Antoniotti, M., Policriti, A., Ugel, N., Mishra, B., 2003. Model building
and model checking for biochemical processes. Cell Biochemistry and
Biophysics 38 (3), 271–286.

[6] Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza,
T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi,
M. Y., Zbar, Y., April 2002. The ForSpec temporal logic: A new tem-
poral property-specification language. In: Katoen, J.-P., Stevens, P.
(Eds.), Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’02
(Grenoble, France). Vol. 2280 of Lecture Notes in Computer Science.
Springer Verlag, pp. 296–211.

[7] Ballarini, P., Mazza, T., Palmisano, A., Csikasz-Nagy, A., 2009. Study-
ing irreversible transitions in a model of cell cycle regulation. In: Pro-
ceedings of the third International Workshop on Practical Applications
of Stochastic Modelling, PASM 2008.

[8] Barnat, J., Brim, L., Cerná, I., Drazan, S., Safranek, D., 2008. Parallel
model checking large-scale genetic regulatory networks with DiVinE.
In: From Biology to Concurrency and Back, FBTC 2007. Vol. 194 of
Electronic Notes in Theoretical Computer Science.

37

[9] Barringer, H., Goldberg, A., Havelund, K., Sen, K., January 2004. Rule-
based runtime verification. In: Steffen, B., Levi, G. (Eds.), Proceedings
of the 5th International Conference on Verification, Model Checking, and
Abstract Interpretation VMCAI’04 (Venice, Italy). Vol. 2937 of Lecture
Notes in Computer Science. Springer Verlag, pp. 44–57.

[10] Batt, G., Bergamini, D., de Jong, H., Gavarel, H., Mateescu, R., 2004.
Model checking genetic regulatory networks using GNA and CADP. In:
Graf, S., Mounier, L. (Eds.), Eleventh International SPIN Workshop on
Model Checking of Software, SPIN 2004. Vol. 2989 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, pp. 158–163.

[11] Batt, G., de Jong, H., Page, M., Geiselmann, J., 2008. Symbolic reacha-
bility analysis of genetic regulatory networks using discrete abstractions.
Automatica 44 (4), 982–989.

[12] Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page,
M., Schneider, D., 2005. Validation of qualitative models of genetic reg-
ulatory networks by model checking: Analysis of the nutritional stress
response in Escherichia coli. Bioinformatics 21 (Suppl 1), i19–i28.

[13] Batt, G., Yordanov, B., Belta, C., Weiss, R., 2007. Robustness analysis
and tuning of synthetic gene networks. Bioinformatics 23 (18), 2415–
2422.

[14] Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh,
Y., July 2001. The temporal logic Sugar. In: Berry, G., Comon, H.,
Finkel, A. (Eds.), Proceedings of the 13th International Conference on
Computer Aided Verification CAV’2001 (Paris, France). Vol. 2102 of
Lecture Notes in Computer Science. Springer Verlag, pp. 363–367.

[15] Beer, I., Ben-David, S., Landver, A., June 1998. On-the-fly model check-
ing of RCTL formulas. In: Hu, A., Vardi, M. Y. (Eds.), Proceedings
of the 10th International Conference on Computer Aided Verification
CAV’98 (Vancouver, BC, Canada). Vol. 1427 of Lecture Notes in Com-
puter Science. Springer Verlag, pp. 184–194.

[16] Bernot, G., Comet, J.-P., Richard, A., Guespin, J., 2004. Application of
formal methods to biological regulatory networks: Extending Thomas’

38

asynchronous logical approach with temporal logic. Journal of Theoret-
ical Biology 229 (3), 339–348.

[17] Bettenbrock, K., Fischer, S., Kremling, A., Jahreis, K., Sauter, T.,
Gilles, E.-D., 2006. A quantitative approach to catabolite repression
in Escherichia coli. J. Biol. Chem. 281 (5), 2578–84.

[18] Bosnacki, D., ten Eikelder, H., Steijaert, M., de Vink, E., 2008. Stochas-
tic analysis of amino acid substitution in protein synthesis. In: Heiner,
M., Uhrmacher, A. (Eds.), Computational Methods in Systems Biology,
CMSB-08. Vol. 5307 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, pp. 367–386.

[19] Brázdil, T., Cerná, I., 2006. Model checking of RegCTL. Computers and
Artificial Intelligence 25 (1).

[20] Brzozowski, J. A., 1964. Derivatives of regular expressions. J. ACM
11 (4), 481–494.

[21] Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R., 2005. Analysis of
signalling pathways using the PRISM model checker. In: Plotkin, G.
(Ed.), Computational Methods in Systems Biology, CMSB-05. Edin-
burgh, Scotland, pp. 79–90.

[22] Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.,
2004. Modeling and querying biomolecular interaction networks. Theo-
retical Computer Science 325 (1), 25–44.

[23] Chaouiya, C., 2007. Petri net modelling of biological networks. Briefings
in Bioinformatics 8 (4), 210–219.

[24] Chassagnole, C., Noisommit-Rizzi, N., Schmid, J., Mauch, K., Reuss,
M., 2002. Dynamic modeling of the central carbon metabolism of Es-
cherichia coli. Biotechnology and Bioengineering 79 (1), 53–73.

[25] Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.,
2004. Integrative analysis of cell cycle control in budding yeast. Molec-
ular Biology of the Cell 15 (8), 3841–3862.

[26] Chutinan, A., Krogh, B., 2001. Verification of infinite-state dynamic
systems using approximate quotient transition systems. IEEE Trans.
Autom. Control 46 (9), 1401–1410.

39

[27] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M., Apr. 2000. NuSMV:
a new symbolic model checker. Springer International Journal on Soft-
ware Tools for Technology Transfer (STTT) 2 (4), 410–425.

[28] Clarke, E., Grumberg, O., Peled, D., 2000. Model Checking. MIT Press.

[29] Cleaveland, R., Steffen, B., April 1993. A linear-time model-checking
algorithm for the alternation-free modal mu-calculus. Formal Methods
in System Design 2 (2), 121–147.

[30] Dam, M., April 1994. Ctl∗ and Ectl∗ as fragments of the modal µ-
calculus. Theoretical Computer Science 126 (1), 77–96.

[31] Damm, W., Harel, D., 2001. Lscs: Breathing life into message sequence
charts. Formal Methods in System Design 19 (1), 45–80.

[32] de Jong, H., 2002. Modeling and simulation of genetic regulatory sys-
tems: A literature review. Journal of Computational Biology 9 (1), 67–
103.

[33] de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M., 2004.
Qualitative simulation of the initiation of sporulation in B. subtilis. Bull.
Math. Biol. 66 (2), 261–299.

[34] de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geisel-
mann, J., 2004. Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bulletin of Mathematical Biology 66 (2),
301–340.

[35] Dubnau, D., Losick, R., 2006. Bistability in bacteria. Molecular Micro-
biology 61 (3), 564–572.

[36] Emerson, E. A., Halpern, J. Y., January 1983. “Sometimes” and “not
never” revisited: On branching versus linear time. In: Proceedings of
the 10th Annual ACM Symposium on Principles of Programming Lan-
guages POPL’83 (Austin, Texas). pp. 127–140, also appeared in Journal
of ACM, 33(1):151-178, 1986.

[37] Emerson, E. A., Lei, C.-L., 1986. Efficient model checking in fragments
of the propositional mu-calculus. In: Proceedings of the 1st International
Symposium on Logic in Computer Science LICS’86. pp. 267–278.

40

[38] Emerson, E. A., Lei, C.-L., 1987. Modalities for model checking: Branch-
ing time logic strikes back. Science of Computer Programming 8.

[39] Fischer, M. J., Ladner, R. E., September 1979. Propositional dynamic
logic of regular programs. Journal of Computer and System Sciences
18 (2), 194–211.

[40] Fisher, J., Henzinger, T., 2007. Executable cell biology. Nature Biotech-
nology 25 (11), 1239–1250.

[41] Fisher, J., Piterman, N., Hajnal, A., Henzinger, T., 2007. Predictive
modeling of signaling crosstalk during C. elegans vulval development.
PLoS Computational Biology 3 (5), e92.

[42] Fisher, J., Piterman, N., Hubbard, E. J. A., Stern, M. J., Harel, D., 2005.
Computational insights into Caenorhabditis elegans vulval development.
Proceedings of the National Academy of Sciences of the USA 102 (6),
1951–1956.

[43] Garavel, H., March 1998. OPEN/CÆSAR: An open software architec-
ture for verification, simulation, and testing. In: Steffen, B. (Ed.), Pro-
ceedings of the First International Conference on Tools and Algorithms
for the Construction and Analysis of Systems TACAS’98 (Lisbon, Por-
tugal). Vol. 1384 of Lecture Notes in Computer Science. Springer Verlag,
Berlin, pp. 68–84, full version available as INRIA Research Report RR-
3352.

[44] Garavel, H., Lang, F., Mateescu, R., Serwe, W., July 2007. CADP 2006:
A toolbox for the construction and analysis of distributed processes.
In: Damm, W., Hermanns, H. (Eds.), Proceedings of the 19th Inter-
national Conference on Computer Aided Verification CAV’2007 (Berlin,
Germany). Vol. 4590 of Lecture Notes in Computer Science. Springer
Verlag, pp. 158–163.

[45] Ghosh, R., Tomlin, C., 2004. Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological mod-
elling: Delta-Notch protein signalling. IET Systems Biology 1 (1), 170–
183.

41

[46] Glass, L., Kauffman, S., 1973. The logical analysis of continuous non-
linear biochemical control networks. Journal of Theoretical Biology
39 (1), 103–129.

[47] Grognard, F., de Jong, H., Gouzé, J.-L., 2007. Piecewise-linear models
of genetic regulatory networks: Theory and example. In: Queinnec, I.,
Tarbouriech, S., Garcia, G., Niculescu, S. (Eds.), Biology and Control
Theory: Current Challenges. Vol. 357 of Lecture Notes in Control and
Information Science. Springer-Verlag, Berlin, pp. 137–159.

[48] Gutierrez-Ŕıos, R., Freyre-Gonzalez, J., Resendis, O., Collado-Vides, J.,
Saier, M., Gosset, G., 2007. Identification of regulatory network topo-
logical units coordinating the genome-wide transcriptional response to
glucose in Escherichia coli. BMC Microbiol. 7 (1), 53.

[49] Hamaguchi, K., Hiraishi, H., Yajima, S., June 1990. Branching time
regular temporal logic for model checking with linear time complexity.
In: Clarke, E. M., Kurshan, R. P. (Eds.), Proceedings of the 2nd In-
ternational Conference on Computer Aided Verification CAV’90 (New
Brunswick, New Jersey, USA). Vol. 531 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, pp. 253–262.

[50] Hengge-Aronis, R., 2000. The general stress response in Escherichia coli.
In: Storz, G., Hengge-Aronis, R. (Eds.), Bacterial Stress Responses.
ASM Press, Washington D.C., pp. 161–77.

[51] Holzmann, G., 2003. The SPIN Model Checker – Primer and Reference
Manual. Addison-Wesley.

[52] Huisman, G., Siegele, D., Zambrano, M., Kolter, R., 1996. Morphologi-
cal and physiological changes during stationary phase. In: Neidhardt, F.
(Ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology.
ASM Press, Washington DC, pp. 1672–82.

[53] IEEE, September 2004. PSL: Property specification language. Standard
P1850, IEEE Computer Society.

[54] ISO/IEC, September 1989. LOTOS — a formal description technique
based on the temporal ordering of observational behaviour. International
Standard 8807, International Organization for Standardization — Infor-
mation Processing Systems — Open Systems Interconnection, Genève.

42

[55] Jha, S., Krogh, B., Weimer, J., Clarke, E., 2007. Reachability for linear
hybrid automata using iterative relaxation abstraction. In: Bemporad,
A., Bicchi, A., Buttazzo, G. (Eds.), Proc. HSCC 2007. Vol. 4416 of
LNCS. Springer-Verlag, pp. 287–300.

[56] Joubert, C., Mateescu, R., February 2005. Distributed local resolution of
boolean equation systems. In: Tirado, F., Prieto, M. (Eds.), Proceedings
of the 13th Euromicro Conference on Parallel, Distributed and Network-
Based Processing PDP’2005 (Lugano, Switzerland). IEEE Computer So-
ciety, pp. 264–271.

[57] Joubert, C., Mateescu, R., March–April 2006. Distributed on-the-fly
model checking and test case generation. In: Valmari, A. (Ed.), Pro-
ceedings of the 13th International SPIN Workshop on Model Checking
of Software SPIN’2006 (Vienna, Austria). Vol. 3925 of Lecture Notes in
Computer Science. Springer Verlag, pp. 126–145.

[58] Kleene, S. C., 1952. Introduction to Metamathematics. North-Holland.

[59] Klipp, E., Nordlander, B., Krüger, R., Gennemark, P., Hohmann, S.,
2005. Integrative model of the response of yeast to osmotic shock. Nature
Biotechnology 23 (8), 975–982.

[60] Kozen, D., 1983. Results on the propositional µ-calculus. Theoretical
Comput. Sci. 27, 333–354.

[61] Kugler, H., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y., 2005. Tempo-
ral logic for scenario-based specifications. In: Halbwachs, N., Zuck, L.
(Eds.), Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’05
(Edinburgh, U.K.). Vol. 3440 of Lecture Notes in Computer Science.
Springer-Verlag, pp. 445–460.

[62] Lang, F., November 2005. EXP.OPEN 2.0: A flexible tool integrat-
ing partial order, compositional, and on-the-fly verification methods.
In: van de Pol, J., Romijn, J., Smith, G. (Eds.), Proceedings of the
5th International Conference on Integrated Formal Methods IFM’2005
(Eindhoven, The Netherlands). Vol. 3771 of Lecture Notes in Computer
Science. Springer Verlag, full version available as INRIA Research Re-
port RR-5673.

43

[63] Larsen, K. G., March 1988. Proof systems for Hennessy-Milner logic with
recursion. In: Proceedings of the 13th Colloquium on Trees in Algebra
and Programming CAAP’88 (Nancy, France). Vol. 299 of Lecture Notes
in Computer Science. Springer Verlag, Berlin, pp. 215–230.

[64] Leloup, J.-C., Goldbeter, A., 2003. Toward a detailed computational
model for the mammalian circadian clock. Proceedings of the National
Academy of Sciences of the USA 100 (12), 7051–7056.

[65] Manna, Z., Pnueli, A., 1992. The Temporal Logic of Reactive and Con-
current Systems, volume I: Specification. Springer Verlag.

[66] Martin, A. J., 1986. Compiling communicating processes into delay-
insensitive VLSI circuits. Distributed Computing 1 (4), 226–234.

[67] Mateescu, R., February 2006. CÆSAR SOLVE: A generic library for on-
the-fly resolution of alternation-free boolean equation systems. Springer
International Journal on Software Tools for Technology Transfer (STTT)
8 (1), 37–56, full version available as INRIA Research Report RR-5948,
July 2006.

[68] Mateescu, R., Monteiro, P., Dumas, E., de Jong, H., Oct. 2008. Com-
putation tree regular logic for genetic regulatory networks. In: Cha,
S. D., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (Eds.), Proceed-
ings of the 6th International Symposium on Automated Technology for
Verification and Analysis ATVA’08 (Seoul, South Korea). Vol. 5311 of
Lecture Notes in Computer Science. Springer Verlag, pp. 48–63, full
version available as INRIA Research Report RR-6521.

[69] Mateescu, R., Sighireanu, M., March 2003. Efficient on-the-fly model-
checking for regular alternation-free mu-calculus. Sci. Comput. Program-
ming 46 (3), 255–281.

[70] Mateescu, R., Thivolle, D., May 2008. A model checking language for
concurrent value-passing systems. In: Proceedings of the 15th Interna-
tional Symposium on Formal Methods FM’08 (Turku, Finland).

[71] Monteiro, P., Ropers, D., Mateescu, R., Freitas, A., de Jong, H., 2008.
Temporal logic patterns for querying dynamic models of cellular inter-
action networks. Bioinformatics 24 (16), i227–i233.

44

[72] Regev, A., Shapiro, E., 2002. Cells as computation. Nature 419 (6905),
343.

[73] Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J., 2006.
Qualitative simulation of the carbon starvation response in Escherichia
coli. Biosystems 84 (2), 124–152.

[74] Schoeberl, B., Eichler-Jonsson, C., Gilles, E.-D., Mller, G., 2002. Com-
putational modeling of the dynamics of the MAP kinase cascade acti-
vated by surface and internalized EGF receptors. Nature Biotechnology
20 (4), 370–375.

[75] Sepulchre, J.-A., Reverchon, S., Nasser, W., 2007. Modeling the onset
of virulence in a pectinolytic bacterium. J. Theor. Biol. 44 (2), 239–257.

[76] Shen, X., Collier, J., Dill, D., Shapiro, L., Horowitz, M., Mcadams,
H., 2008. Architecture and inherent robustness of a bacterial cell-cycle
control system. Proceedings of the National Academy of Sciences of the
USA 105 (32), 11340–11345.

[77] Streett, R., 1982. Propositional dynamic logic of looping and converse.
Information and Control (54), 121–141.

[78] Tarski, A., 1955. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics 5, 285–309.

[79] Thomas, R., Kaufman, M., 2001. Multistationarity, the basis of cell
differentiation and memory: I. Structural conditions of multistationarity
and other nontrivial behavior. Chaos 11 (1), 170–179.

[80] Thomas, R., Thieffry, D., Kaufman, M., 1995. Dynamical behaviour of
biological regulatory networks: I. Biological role of feedback loops and
practical use of the concept of the loop-characteristic state. Bulletin of
Mathematical Biology 57 (2), 247–276.

[81] Thomas, W., 1989. Computation Tree Logic and regular ω-languages.
Vol. 354 of Lecture Notes in Computer Science. pp. 690–713.

[82] Tiwari, A., Khanna, G., 2002. Series abstractions for hybrid automata.
In: Tomlin, C., Greenstreet, M. (Eds.), Proc. HSCC 2002. Vol. 2289 of
LNCS. Springer-Verlag, pp. 465–478.

45

[83] Usseglio Viretta, A., Fussenegger, M., 2004. Modeling the quorum sens-
ing regulatory network of human-pathogenic Pseudomonas aeruginosa.
Biotechnol. Prog. 20 (3), 670–678.

[84] Vergauwen, B., Lewi, J., July 1994. Efficient local correctness checking
for single and alternating boolean equation systems. In: Abiteboul, S.,
Shamir, E. (Eds.), Proceedings of the 21st ICALP (Vienna). Vol. 820 of
Lecture Notes in Computer Science. Springer Verlag, Berlin, pp. 304–
315.

[85] Wolper, P., 1982. A translation from full branching time temporal logic
to one letter propositional dynamic logic with looping. Unpublished
manuscript.

[86] Wolper, P., January-February 1983. Temporal logic can be more expres-
sive. Information and Control 56 (1/2), 72–99.

A. Proofs of the translation from CTRL to MESs

A.1. Translation from CTRL to RESs

A few additional definitions and lemmas are required in order to prove
Proposition 1. Given a propositional environment δ = [U1/X1, ..., Un/Xn],
its support is defined as supp(δ) = {X1, ..., Xn}, i.e., the set of variables
that are mapped by δ to state sets. It is straightforward to show that, for
environments with disjoint supports, the ⊘ operator is associative, commu-
tative, and has the empty environment [] as neutral element. Moreover,
supp([[B]]Kδ) = bv(B) and supp([[BL]]Kδ) = bv(BL) for any Kripke struc-
ture K, equation block B, equation block list BL, and environment δ.

Lemma 2. Let K be a Kripke structure, B an equation block, and δ1, δ2 two
propositional environments such that supp(δ1) ∩ supp(δ2) = ∅ and fv(B) ⊆
supp(δ1). Then:

[[B]]K(δ1 ⊘ δ2) = [[B]]Kδ1.

Proof Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block and δ1, δ2 two propo-

sitional environments as stated in the hypothesis. The semantics of B in
the context of an environment δ is determined by the associated functional
Φδ : (2S)n → (2S)n defined as follows:

Φδ(U1, ..., Un) = 〈[[ϕi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n

46

To prove the lemma, we show that the two functionals Φ(δ1⊘δ2) and
Φδ1 are identical, i.e., [[ϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn]) = [[ϕ]]K(δ1 ⊘
[U1/X1, ..., Un/Xn]) for any formula ϕ and any U1, ..., Un ⊆ S. We proceed
by structural induction on ϕ.

• ϕ ::= p:

[[p]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= {s ∈ S | p ∈ L(s)} by def. of [[]]
= [[p]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].

• ϕ ::= X:

Two cases are possible.

1. X ∈ {X1, ..., Xn}, i.e., X is bound in B. Let i ∈ [1, n] such that
X = Xi.

[[Xi]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(Xi) by def. of [[]]
= [U1/X1, ..., Un/Xn](Xi) by def. of ⊘
= Ui by def. of []
= [[Xi]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].

2. X 6∈ {X1, ..., Xn}, i.e., X is free in B. This means X ∈ supp(δ1).
[[X]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])

= ((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])(X) by def. of [[]]
= (δ1 ⊘ δ2)(X) by def. of ⊘
= δ1(X) fv(B) 6⊆ supp(δ2)
= [[X]]Kδ1 by def. of [[]]
= [[X]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of ⊘.

• ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):

[[ϕ1 ∨ ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= ([[ϕ1]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn]))∪

([[ϕ2]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])) by def. of [[]]
= [[ϕ1]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) ∪ [[ϕ2]]K((δ1 ⊘ [U1/X1, ..., Un/Xn])

by inductive hypothesis
= [[ϕ1 ∨ ϕ2]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].

• ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

47

[[EFρϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
πi ∈ [[ϕ]]K((δ1 ⊘ δ2) ⊘ [U1/X1, ..., Un/Xn])} by def. of [[]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
πi ∈ [[ϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn])} by inductive hypothesis

= [[EFρϕ]]K(δ1 ⊘ [U1/X1, ..., Un/Xn]) by def. of [[]].

• ϕ ::= EF∞
ρ (similarly for ϕ ::= AF∞

ρ | EG⊣
ρ | AG⊣

ρ):

[[EF∞
ρ]]K(δ1⊘δ2) = [[EF∞

ρ]]Kδ1 because EF∞
ρ is closed, so its interpretation

is independent of any environment δ.

2

Lemma 3. Let K be a Kripke structure and BL1, BL2 be two closed equation
block lists. Then:

[[BL1;BL2]]K = [[BL1]]K ⊘ [[BL2]]K .

Proof Let K,BL1, BL2 as stated in the hypothesis. We proceed by struc-
tural induction on BL1.

• BL1 ::= ε:

[[ε;BL2]]K = [[BL2]]K by def. of ;
= [] ⊘ [[BL2]]K
= [[ε]]K ⊘ [[BL2]]K by def. of [[]].

• BL1 ::= B.BL1:

[[(B.BL1);BL2]]K = [[B.(BL1;BL2)]]K
by def. of ;

= [[B]]K([[BL1;BL2]]K) ⊘ [[BL1;BL2]]K
by def. of [[]]

= [[B]]K([[BL1]]K ⊘ [[BL2]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K)
by ind. hyp.

= [[B]]K([[BL1]]K) ⊘ ([[BL1]]K ⊘ [[BL2]]K)
by Lemma 2

= ([[B]]K([[BL1]]K) ⊘ [[BL1]]K) ⊘ [[BL2]]K
by assoc.

= [[B.BL1]]K ⊘ [[BL2]]K
by def. of [[]].

48

2

Proof (Proposition 1). Let K be a Kripke structure, ϕ be a state formula
of Ctrl, and δ be a propositional environment. We proceed by structural
induction on ϕ.

• ϕ ::= p:

[[t(p)]]Kδ = [[〈X, {X
µ
= p}〉]]Kδ by def. of t

= ([[{X
µ
= p}]]Kδ)(X) by def. of [[]]

= [[p]]Kδ by def. of [[]].

• ϕ ::= ϕ1 ∨ ϕ2 (similarly for ϕ ::= ϕ1 ∧ ϕ2):

[[t(ϕ1 ∨ ϕ2)]]Kδ = [[〈X, {X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))〉]]Kδ

by def. of t

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}.(tBL(ϕ1); tBL(ϕ2))]]Kδ)(X)
by def. of [[]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ)

⊘([[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X)
by def. of [[]]

= ([[{X
µ
= tX(ϕ1) ∨ tX(ϕ2)}]]K(δ ⊘ [[tBL(ϕ1); tBL(ϕ2)]]Kδ))(X)

= [[tX(ϕ1)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ) ∪
[[tX(ϕ2)]]K(δ ⊘ [[tBL(ϕ1)]]Kδ ⊘ [[tBL(ϕ2)]]Kδ)

= [[tX(ϕ1)]]K([[tBL(ϕ1)]]Kδ) ∪ [[tX(ϕ2)]]K([[tBL(ϕ2)]]Kδ)
by Lemma 2

= [[t(ϕ1)]]Kδ ∪ [[t(ϕ2)]]Kδ
by def. of t

= [[ϕ1]]Kδ ∪ [[ϕ2]]Kδ
by ind. hyp.

= [[ϕ1 ∨ ϕ2]]Kδ
by def. of [[]].

• ϕ ::= EFρϕ (similarly for ϕ ::= AFρϕ | EGρϕ | AGρϕ):

49

[[t(EFρϕ)]]Kδ = [[〈X, {X
µ
= EFρtX(ϕ)}.tBL(ϕ)〉]]Kδ

by def. of t

= ([[tBL(ϕ)]]Kδ ⊘ [[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X)

by def. of [[]]

= ([[{X
µ
= EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ))(X)

= [[{EFρtX(ϕ)}]]K([[tBL(ϕ)]]Kδ)
by def. of [[]]

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
πi ∈ [[tX(ϕ)]]K([[tBL(ϕ)]]Kδ)}

by def. of [[]]
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧

πi ∈ [[ϕ]]Kδ}
by ind. hyp.

= [[EFρϕ]]Kδ
by def. of [[]].

• ϕ ::= EF∞
ρ (similarly for ϕ ::= AG⊣

ρ):

[[t(EF∞
ρ)]]Kδ = [[〈X, {X

ν
= EFρX}〉]]K by def. of t.

= ([[{X
ν
= EFρX}]]K)(X) = νΦ by def. of [[]],

where Φ : 2S → 2S, Φ(U) = [[EFρX]]K [U/X]. Note that the δ envi-
ronment is omitted in the definition of Φ because the equation block
{X

ν
= EFρX} is closed.

The lattice 〈2S, ∅, S,∩,∪〉 being finite, the maximal fixed point νΦ has
also the following iterative characterization [58]:

νΦ =
⋂

j≥0

Φj(S), where Φ0(S) = S, Φj(S) = [[EFρX]]K [Φj−1(S)/X].

Intuitively, the terms Φj(S) contain those states from which there is
an outoing sequence having a prefix that matches ρj:

Φj(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj}

This can be easily shown by induction on j. For j = 0, we take i = 0
(empty prefix). For the inductive step, we have:

50

Φj+1(S) = {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ Φj(S)}
by def. of Φ

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.
π0,i |=K ρ ∧ ∃π′ ∈ PathK(πi).∃l ≥ 0.π′

0,l |=K ρj}
by ind. hyp.

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρj+1}
repl. i by i+ l.

To show that [[EF∞
ρ]]K ⊆ νΦ, let s ∈ [[EF∞

ρ]]K and j ≥ 0. From the
definition of EF

∞
ρ , there exists π ∈ PathK(s) and i ≥ 0 such that

π0,i |=K ρj , which implies s ∈ Φj(S). Since this holds for every j ≥ 0,
it means that s ∈

⋂

j≥0 Φj(S), i.e., s ∈ νΦ.

To show that νΦ ⊆ [[EF∞
ρ]]K , let s ∈ νΦ. Since νΦ is a fixed point of

Φ, we have:

νΦ = Φ(νΦ) = [[EFρX]]K [νΦ/X]
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧ πi ∈ νΦ}.

Based on this, we construct the following path:

π = πi0 → · · · → πi1 → · · · → πi2 → · · · → πij · · ·

where πij ∈ νΦ for every j ≥ 0, i0 = 0, πi0 = s, and the intervals
πij → · · · → πm → · · · → πij+1

are defined as follows. Since πij ∈ νΦ,
according to the equation above, there exists π ∈ PathK(πij) and l ≥ 0
such that π0,l |=K ρ and πl ∈ νΦ. We take ij+1 = ij + l and for
each m ∈ [ij , ij+1], πm = πm−ij . The infinite path π is such that for
every j ≥ 0, there exists i′ = ij such that π0,i′ |=K ρj , and therefore
s ∈ [[EF

∞
ρ]]K .

2

A.2. Translation from RESs to MESs

Some additional definitions and lemmas are needed in order to prove the
translation. Let B = {Xi

σ
= ϕi}1≤i≤n be an equation block and Φδ : (2S)n →

(2S)n, Φδ(U1, ..., Un) = 〈[[ϕi]]K(δ⊘ [U1/X1, ..., Un/Xn])〉1≤i≤n be its associated
functional in the context of a Kripke structure K and an environment δ. For
a given l ∈ [1, n], the projection of Φδ on the equations [l, n], noted Φl,n :
(2S)n−l+1 → (2S)n−l+1, is defined as follows: Φl,n

δ (Ul, ..., Un) = 〈[[ϕj]]K(δ ⊘
[Ul/Xl, ..., Un/Xn])〉l≤j≤n. Similarly, the projection of a value 〈U1, ..., Un〉 ∈
(2S)n on the fields [l, n] is defined as 〈U1, ..., Un〉[l,n] = 〈Ul, ..., Un〉.

51

A.2.1. Operators EFρ and AGρ

Lemma 4. Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block, K be a Kripke

structure, δ be an environment, and Φδ : (2S)n → (2S)n be the functional
associated to B, K, and δ. Then, for all l ∈ [1, n]:

σΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]

= 〈(σΦδ)l, ..., (σΦδ)n〉

where Φl,n
δ : (2S)n−l+1 → (2S)n−l+1 is the projection of Φδ on the equations

[l, n].

Proof Let B, K, δ, and l as stated in the hypothesis. We show the equality
by double inclusion, only for σ = µ, the proof for the case σ = ν being
symmetric.
Inclusion “⊒”: By definition of fixed points we have µΦδ = Φδ(µΦδ), meaning
that for all l ≤ j ≤ n:

(µΦδ)j = [[ϕj]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn]) =
[[ϕj]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘ [(µΦδ)l/Xl, ..., (µΦδ)n/Xn])

This in turn means that:

Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]((µΦδ)l, ..., (µΦδ)n) = 〈(µΦδ)l, ..., (µΦδ)n〉

i.e., 〈(µΦδ)l, ..., (µΦδ)n〉 is a fixed point of Φl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1], and

therefore it is greater than the least fixed point of this functional:

µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1] ⊑ 〈(µΦδ)l, ..., (µΦδ)n〉.

Inclusion “⊒”: We use the iterative characterization [58] of µΦδ on the finite
lattice 〈2S

n
, ∅, Sn,⊓,⊔〉 (the operations ⊓ and ⊔ are the pairwise extensions

of ∩ and ∪):

µΦδ =
⋃

k≥0

Φk
δ (∅

n), where Φ0
δ(∅

n) = ∅n, Φk+1
δ (∅n) = Φδ(Φ

k
δ (∅

n)).

We show, by induction on k, that (Φk
δ (∅

n))[l,n] ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Base step. (Φ0
δ(∅

n))[l,n] = (∅n)[l,n] = ∅n−l+1 ⊑ µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1].

Inductive step. We have:

52

(Φk+1
δ (∅n))[l,n] = (Φδ(Φ

k
δ (∅

n)))[l,n]

= 〈[[ϕj]]K(δ ⊘ [(Φk
δ (∅

n))1/X1, ..., (Φ
k
δ (∅

n))n/Xn])〉l≤j≤n
by def. of Φ

= 〈[[ϕj]]K((δ ⊘ [(Φk
δ (∅

n))1/X1, ..., (Φ
k
δ(∅

n))l−1/Xl−1]) ⊘
[(Φk

δ (∅
n))l/Xl, ..., (Φ

k
δ(∅

n))n/Xn])〉l≤j≤n
⊑ 〈[[ϕj]]K((δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)l−1/Xl−1]) ⊘

[(Φk
δ (∅

n))l/Xl, ..., (Φ
k
δ(∅

n))n/Xn])〉l≤j≤n
by monotonicity

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]

((Φk
δ (∅

n))l, ..., (Φ
k
δ (∅

n))n)

by def. of Φl,n

= Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]

((Φk
δ (∅

n))[l,n])

⊑ Φl,n
δ⊘[(µΦδ)1/X1,...,(µΦδ)l−1/Xl−1]

(µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1])

by ind. hyp.

= µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]

by def. of µ.

Thus, (µΦδ)[l,n] = (
⋃

k≥0 Φk
δ (∅

n))[l,n] =
⋃

k≥0(Φ
k
δ (∅

n))[l,n] ⊑

µΦl,n
δ⊘[(σΦδ)1/X1,...,(σΦδ)l−1/Xl−1]

, which concludes the proof. 2

The following lemma allows to replace an equation of a block by a set of
equations, provided that the interpretation of the variable in the left-hand
side of the equation remains unchanged in the original and the substituting
block w.r.t. all environments.

Lemma 5 (Substitution). Let B = {Xi
σ
= ϕi}1≤i≤n be an equation block,

and let {Xn
σ
= ψn, Yj

σ
= ψj}n<j≤m be another block suitable for the substitu-

tion of the equation Xn
σ
= ϕn such that ([[{Xn

σ
= ϕn}]]Kδ)(Xn) = ([[{Xn

σ
=

ψn, Yj
σ
= ψj}n<j≤m]]Kδ)(Xn) for any Kripke structure K and environment δ.

Then:

([[{Xi
σ
= ϕi}1≤i≤n[Xn

σ
= ϕn := Xn

σ
= ψn, Yj

σ
= ψj]n<j≤m]]Kδ)(Xi) =

([[{Xi
σ
= ϕi}1≤i≤n]]Kδ)(Xi)

for all i ∈ [1, n] and for any K, δ.

Proof We show the lemma for σ = µ, the proof for the case σ = ν being
symmetric. Let Φ1,m

δ : (2S)m → (2S)m be the functional associated to the
substituted equation block, defined as follows:

Φ1,m
δ (U1, ..., Un,Wn+1, ...,Wn) =

〈[[ϕi]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym]),
[[ψj]]K(δ ⊘ [U1/X1, ..., Un/Xn,Wn+1/Yn+1, ...,Wm/Ym])〉1≤i<n,n≤j≤m

53

We first show that 〈(µΦ1,m
δ)1, ..., (µΦ1,m

δ)n〉 is a fixed point of the functional Φδ

associated to B and δ. From the definition of µΦ1,m
δ , it follows that [[ϕi]]K(δ⊘

[(µΦ1,m
δ)1/X1, ..., (µΦ1,m

δ)n/Xn, (µΦ1,m
δ)n+1/Yn+1, ..., (µΦ1,m

δ)m/Ym]) =
(µΦ1,m

δ)i for all i ∈ [1, n − 1]. The suitability condition
⋃n
i=1 fv(ϕi) ∩ {Yn+1, ..., Ym} = ∅ implies that all formulas ϕi

for i ∈ [1, n − 1] depend only upon X1, ..., Xn and therefore
[[ϕi]]K(δ ⊘ [(µΦ1,m

δ)1/X1, ..., (µΦ1,m
δ)n/Xn]) = (µΦ1,m

δ)i. To show that
this equality also holds for i = n, we apply Lemma 4 for l = n on the
substituted block and we obtain:

µΦn,m

δ⊘[(µΦ1,m
δ

)1/X1,...,(µΦ1,m
δ

)n−1/Xn−1]
= 〈(µΦ1,m

δ)n, ..., (µΦ1,m
δ)m〉

where Φn,m
δ : (2S)m−n+1 → (2S)m−n+1 is the projection of Φ1,m

δ on the equa-
tions [n,m]. From the hypothesis of the lemma and the definition of the
interpretation [[{Xn

σ
= ψn, Yj

σ
= ψj}n<j≤m]]Kδ, this implies:

([[{Xn
σ
= ϕn}]]K(δ ⊘ [(µΦ1,m

δ)1/X1, ..., (µΦ1,m
δ)n−1/Xn−1]))(Xn) = (µΦ1,m

δ)n

or, according to the definition of [[{Xn
σ
= ϕn}]]Kδ:

µΦn
δ⊘[(µΦ1,m

δ
)1/X1,...,(µΦ1,m

δ
)n−1/Xn−1]

= (µΦ1,m
δ)n

where Φn
δ : 2S → 2S, Φn

δ (U) = [[ϕn]]K(δ ⊘ [U/Xn]). Since (µΦ1,m
δ)n is by

definition a fixed point of Φn
δ⊘[(µΦ1,m

δ
)1/X1,...,(µΦ1,m

δ
)n−1/Xn−1]

, this means:

([[ϕn]]K((δ ⊘ [(µΦ1,m
δ)1/X1, ..., (µΦ1,m

δ)n−1/Xn−1])⊘
[(µΦ1,m

δ)n/Xn]))((µΦ1,m
δ)n) = (µΦ1,m

δ)n

i.e.,

([[ϕn]]K(δ ⊘ [(µΦ1,m
δ)1/X1, ..., (µΦ1,m

δ)n/Xn]))((µΦ1,m
δ)n) = (µΦ1,m

δ)n.

Therefore, 〈(µΦ1,m
δ)i〉1≤i≤n is a fixed point of Φδ.

It remains to show that this is indeed the minimal fixed point of Φδ.
Since the lattice 〈2S

m
, ∅, Sm,⊓,⊔〉 is finite (the operations ⊓ and ⊔ being the

pairwise extensions of ∩ and ∪), the minimal fixed point µΦ1,m
δ also has an

iterative characterization [58]:

µΦ1,m
δ =

⋃

k≥0

(Φ1,m
δ)k(∅m)

54

where (Φ1,m
δ)0(∅m) = ∅m, (Φ1,m

δ)k+1(∅m) = Φ1,m
δ ((Φ1,m

δ)k(∅m)).
We show, by induction on k, that ((Φ1,m

δ)k(∅m))i ⊆ (µΦδ)i for all i ∈ [1, n]
and k ≥ 0. Let i ∈ [1, n].
Base step. ((Φ1,m

δ)0(∅m))i = ∅ ⊆ (µΦδ)i.
Inductive step. For i ∈ [1, n− 1], we have:
((Φ1,m

δ)k+1(∅m))i = (Φ1,m
δ ((Φ1,m

δ)k(∅m)))i
= [[ϕi]]K(δ ⊘ [((Φ1,m

δ)k(∅m))1/X1, ..., ((Φ
1,m
δ)k(∅m))m/Ym])

by def. of [[]]

= [[ϕi]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n/Xn])

by suitability
⊆ [[ϕi]]K(δ ⊘ [(µΦδ)1/X1, ..., (µΦδ)n/Xn])

by ind. hyp.
= (µΦδ)i

by def. of µΦδ.
For i = n, we have:
((Φ1,m

δ)k+1(∅m))n = [[ψn]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))m/Ym])

⊆ [[ψn]]K(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1,

(µΦ1,m
δ)n/Xn, ..., (µΦ1,m

δ)m/Ym])

by def. µΦ1,m
δ

= ([[{Xn
µ
= ψn, Yj

µ
= ψj}n<j≤m]]K

(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1]))(Xn)

by def. of [[]]

= ([[Xn
µ
= ϕn]]K

(δ ⊘ [((Φ1,m
δ)k(∅m))1/X1, ..., ((Φ

1,m
δ)k(∅m))n−1/Xn−1]))(Xn)

by hyp.
= µΦn

δ⊘[((Φ1,m
δ

)k(∅m))1/X1,...,((Φ
1,m
δ

)k(∅m))n−1/Xn−1]

by def. of [[]]
⊆ µΦn

δ⊘[(µΦδ)1/X1,...,(µΦδ)n−1/Xn−1]

by ind. hyp.
= (µΦδ)n

by Lemma 4.
The last application of Lemma 4 above considers the block
B = {Xi

σ
= ϕi}1≤i≤n and takes l = n. This concludes the proof that

〈(µΦ1,m
δ)i〉1≤i≤n is the least fixed point of Φδ. 2

Lemma 5 allows to prove the correctness of a substitution by focusing only
on the equations involved in the substitution, as illustrated in the proof

55

below.

Proof (Proposition 2). Let K be a Kripke structure, B1 = {Xi
µ
= ϕi}1≤i≤n

and B2 = {Xi
ν
= ϕi}1≤i≤n two equation blocks, and δ a propositional en-

vironment as stated in the hypothesis. We show the proposition only for
blocks of type B1 and the substitutions in the upper part of Figure 5, the
other cases being dual.

• Substitution X
µ
= EFρ1.ρ2Y := X

µ
= EFρ1Z,Z

µ
= EFρ2Y . It is sufficient

to show that this substitution satisfies the condition in the hypothesis
of Lemma 5:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X) = ([[{X

µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[]] and simple properties about substitu-
tion of variables in a Res, we obtain:

([[{X
µ
= EFρ1.ρ2Y }]]Kδ)(X)

= [[EFρ1.ρ2Y]]Kδ
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1.ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ∈ [0, i].

π0,k |=K ρ1 ∧ πk,i |=K ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.

π0,k |=K ρ1 ∧ ∃i ≥ k.πk,i |=K ρ2 ∧ πi ∈ [[Y]]K}
= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ1 ∧ ∃π′ ∈ PathK(πk).∃i ≥ k.

π′
k,i |=K ρ2 ∧ π

′
i ∈ [[Y]]K}

= {s ∈ S | ∃π ∈ PathK(s).∃k ≥ 0.π0,k |=K ρ ∧ πk ∈ [[EFρ2Y]]K}
= [[EFρ1EFρ2Y]]Kδ

= ([[{X
µ
= EFρ1EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= EFρ1Z,Z

µ
= EFρ2Y }]]Kδ)(X).

• Substitution X
µ
= EFρ1|ρ2Y := X

µ
= Z ∨ U,Z

µ
= EFρ1Y, U

µ
= EFρ2Y . As

above, it is sufficient to show that:

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X) =

([[{X
µ
= Z ∨ U,Z

µ
= EFρ1Y, U

µ
= EFρ2Y }]]Kδ)(X).

By applying the definition of [[]] and simple properties about substitu-
tion of variables in a Res, we obtain:

56

([[{X
µ
= EFρ1|ρ2Y }]]Kδ)(X)

= [[EFρ1|ρ2Y]]Kδ
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1|ρ2 ∧ πi ∈ [[Y]]Kδ}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.(π0,i |=K ρ1 ∨ π0,i |=K ρ2) ∧

πi ∈ [[Y]]Kδ}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.((π0,i |=K ρ1 ∧ πi ∈ [[Y]]Kδ) ∨

(π0,i |=K ρ2 ∧ πi ∈ [[Y]]Kδ))}
= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ1 ∧ πi ∈ [[Y]]Kδ ∨

∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ2 ∧ πi ∈ [[Y]]Kδ}
= [[EFρ1Y ∨ EFρ2Y]]Kδ

= ([[{X
µ
= EFρ1Y ∨ EFρ2Y }]]Kδ)(X)

= ([[{X
µ
= Z ∨ U,Z

µ
= EFρ1Y, U

µ
= EFρ2Y }]]Kδ)(X).

• Substitution X
µ
= EFρ∗Y := X

µ
= Y ∨ Z,Z

µ
= EFρX. As above, it is

sufficient to show that:

([[{X
µ
= EFρ∗Y }]]Kδ)(X) = ([[{X

µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X).

Let A = ([[{X
µ
= EFρ∗Y }]]Kδ)(X). We have:

([[{X
µ
= EFρ∗Y }]]Kδ)(X) = by def. of [[]]

[[EFρ∗Y]]Kδ =
{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ∗ ∧ πi ∈ [[Y]]Kδ} =
{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y)}.

Let B = ([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X). We have:

([[{X
µ
= Y ∨ Z,Z

µ
= EFρX}]]Kδ)(X) = by subst. on Y

([[{X
µ
= Y ∨ EFρX}]]Kδ)(X) = µΦδ

where the functional Φδ : 2S → 2S is defined as follows:

Φδ(U) = [[Y ∨ EFρX]]K(δ ⊘ [U/X])
= [[Y]]K(δ ⊘ [U/X]) ∪ [[EFρX]]K(δ ⊘ [U/X])
= δ(Y) ∪ [[EFρX]]K [U/X].

The lattice 〈2S, ∅, S,∩,∪〉 being finite, the minimal fixed point µΦδ has
also the following iterative characterization [58]:

µΦδ =
⋃

k≥0

Φk(∅),

57

where Φ0(∅) = ∅, Φk+1(∅) = δ(Y) ∪ [[EFρX]]K [Φk(∅)/X].

Intuitively, Φk+1(∅) contains those states having an outgoing sequence
that matches ρj for some j ∈ [0, k] and leads to a state in δ(Y):

Φk+1(∅)= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj ∧ πi ∈ δ(Y)}.

This statement can be easily shown by induction on k.
Base step.
Φ1(∅) = δ(Y) ∪ [[EFρX]]K [Φ0(∅)/X]

= δ(Y) ∪ [[EFρX]]K [∅/X]
= δ(Y)
= {s ∈ S | ∃π ∈ PathK(s).π0,0 |=K ρ0 ∧ π0 ∈ δ(Y)}

by choosing i, j = 0.

Inductive step.
Φk+2(∅) = Φ(Φk+1(∅)) by def. of Φ

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.
π0,i |=K ρ ∧ πi ∈ Φk+1(∅)} by ind. hyp.

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.π0,i |=K ρ ∧
∃π′ ∈ PathK(πi).∃i

′ ≥ 0.∃j ∈ [0, k].
π′

0,i′ |=K ρj ∧ π′
i′ ∈ δ(Y)}

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj+1 ∧ πi ∈ δ(Y)} repl. i by i+ i′

= δ(Y) ∪ {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [1, k + 1].
π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k + 1].
π0,i |=K ρj ∧ πi ∈ δ(Y)}.

From the above statement, we obtain:

B =
⋃

k≥0 Φk(∅) = Φ0(∅) ∪
⋃

k≥0 Φk+1(∅) =
⋃

k≥0 Φk+1(∅)
=
⋃

k≥0{s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃k ≥ 0.∃π ∈ PathK(s).∃i ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.∃j ∈ [0, k].
π0,i |=K ρj ∧ πi ∈ δ(Y)}

= {s ∈ S | ∃π ∈ PathK(s).∃i ≥ 0.∃k ≥ 0.π0,i |=K ρk ∧ πi ∈ δ(Y)}
choose j = k

= A.

58

2

A.2.2. Operators AFρ and EGρ

Translation to guarded form.

Proof (Lemma 1). Let K be a Kripke structure, B = {Xi
µ
= ϕi}1≤i≤n be an

equation block and δ a propositional environment as stated in the hypothesis.
It is sufficient to show that the absorption substitution satisfies the condition
in the hypothesis of Lemma 5:

([[{X
µ
= X ∨ ϕ}]]Kδ)(X) = ([[{X

µ
= ϕ}]]Kδ)(X)

which amounts to show, applying the definition of [[]], that:

µΦδ = [[ϕ]]Kδ

where the functional Φδ : 2S → 2S is defined as Φδ(U) = [[X ∨ ϕ]]K(δ ⊘
[U/X]) = U ∪ [[ϕ]]Kδ. The lattice 〈2S, ∅, S,∩,∪〉 being finite, the minimal
fixed point µΦδ has also the following iterative characterization [58]:

µΦδ =
⋃

k≥0

Φk(∅), where Φ0
δ(∅) = ∅, Φk+1

δ (∅) = Φk
δ (∅) ∪ [[ϕ]]Kδ.

To obtain the desired equality, it is therefore sufficient to show that Φk+1
δ (∅) =

[[ϕ]]Kδ for every k ≥ 0. We proceed by induction on k.
Base step: Φ1

δ(∅) = Φ0
δ(∅) ∪ [[ϕ]]Kδ = [[ϕ]]Kδ.

Inductive step:
Φk+1
δ (∅) = Φk

δ (∅) ∪ [[ϕ]]Kδ by def.
= [[ϕ]]Kδ ∪ [[ϕ]]Kδ by ind. hyp.
= [[ϕ]]Kδ.

2

Determinization.

Several definitions and lemmas are needed in order to prove Proposition 3.
Consider a Kripke structure K and the following potentiality Res:

{

Xi
µ
=

n
∨

j=1

(hij ∧ EFρij
Xj) ∨ (hi ∧ Y)

}

1≤i≤n

(∗)

59

where hij , hi ∈ Bool and ρij are regular formulas for all 1 ≤ i, j ≤ n.
Unguarded occurrences of variables Xj in the right-hand sides of the equa-
tions are obtained by taking ρij = nil. Ress of the form (∗) are encoun-
tered throughout the translation from a potentiality Res to its guarded
form. For instance, a potentiality Res {X1

µ
= EFρY } can be rewritten as

{X1
µ
= EFρX2, X2

µ
= Y }, which is in the form above by considering n = 2,

h11 = false, h12 = true, ρ12 = ρ, h1 = false, h21 = h22 = false, and h2 = true.
Similarly, a guarded potentiality Res is a particular case of form (∗) in which
all regular formulas ρij are simply atomic propositions pij .

To each propositional variable Xi of the potentiality Res (∗) and environ-
ment δ is associated a path predicate Pδ,i : PathK → Bool characterizing the
paths denoted by Xi in the context of δ. These path predicates are defined
by the following equation system:
{

Pδ,i(π)
µ
=

n
∨

j=1

(

hij ∧ ∃lij ≥ 0.π0,lij |= ρij ∧ Pδ,j(πlij ,∞)
)

∨ (hi ∧ π0 ∈ δ(Y))

}

1≤i≤n

where πlij ,∞ denotes the suffix of path π starting at the state of index lij .

The translation from a potentiality Mes {X1
µ
= EFρY } to its guarded

form preserves the path predicate associated to the main variable X1, as
shown by the lemma below.

Lemma 6. Let K be a Kripke structure, R = {X1
µ
= EFρY } be an equation

block, M be its corresponding guarded potentiality Mes in the form (∗), and
Pδ,i be its associated path predicates. Then:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y)

for any π ∈ PathK and any propositional environment δ.

Proof Let K be a Kripke structure and δ be a propositional environment.
Let the equation block R = {X1

µ
= EFρX2, X2

µ
= Y } in form (∗). Its associ-

ated path predicates are defined as follows:

Pδ,1(π) = ∃l12 ≥ 0.π0,l12 |= ρ12 ∧ Pδ,2(πl12,∞)
Pδ,2(π) = π0 ∈ δ(Y)

where π ∈ PathK . After appropriate renamings, we obtain the desired equal-
ity:

Pδ,1(π) = ∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y).

60

It remains to show that this equality also holds along the translation of R
into guarded form. This translation consists of two phases: elimination of the
regular operators present in ρ (Proposition 2) and elimination of unguarded
occurrences of variables (Lemma 1). The substitutions performed in both
phases preserve the path predicates associated to the variables defined by
the substituted equations. This can be shown using similar arguments as in
Proposition 2 and Lemma 1; we show below the path predicate preservation
only for the first rule in Proposition 2, leaving the other ones as exercises for
the interested reader.

This rule transforms the Res R = {X
µ
= EFρ1.ρ2Y } into the Res

R′ = {X
µ
= EFρ1Z,Z

µ
= EFρ2Y }. The predicate P ′

δ,1 associated to X1 in R′ is
defined as follows:

P ′
δ,1(π) = ∃l ≥ 0.π0,l |= ρ1 ∧ P

′
δ,2(πl,∞) by def. of P ′

δ,1

= ∃l ≥ 0.π0,l |= ρ1 ∧ ∃l′ ≥ 0.πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y) by def. of P ′
δ,2

= ∃l ≥ 0.∃l′ ≥ 0.π0,l |= ρ1 ∧ πl,l+l′ |= ρ2 ∧ πl+l′ ∈ δ(Y)
= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y)

by taking k = l + l′ and j = l
= ∃k ≥ 0.∃j ≥ 0.π0,j |= ρ1 ∧ πj,k |= ρ2 ∧ πk ∈ δ(Y) by def. of ρ1.ρ2

which coincides with the definition of Pδ,1 in R. Thus, the path predicate
Pδ,1 associated to X1 in R remains unchanged during the translation of R
into guarded form, which shows the desired equality. 2

The relation between the path predicates associated to a guarded poten-
tiality Mes and the interpretation of the corresponding determinized Mes
is given by the lemma below.

Lemma 7. Let K be a Kripke structure, M be a guarded potentiality Mes
in the form (∗), and Pδ,i be its associated path predicates. The determinized
Mes corresponding to M is defined as in Section 3.3.2. Then:

([[{

XI
µ
=
∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
}

I⊆[1,n]

]]

K
δ
)

(XJ)

=
{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}

for any index set J ⊆ [1, n] and any propositional environment δ.

Proof Let K, M , δ, and Pδ,i as stated in the hypothesis. The functional

Φδ : (2S)
2n−1

→ (2S)
2n−1

associated to the determinized Mes corresponding

61

to M is defined as follows:

Φδ(〈UJ〉J⊆[1,n]) =
〈[[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
]]

K

(δ ⊘ [UJ/XJ]J⊆[1,n])
〉

I⊆[1,n]

The interpretation of the determinized Mes is equal to µΦδ. Let U = 〈{s ∈
S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}〉J⊆[1,n]. We must show that µΦδ = U ,
which we split into a double inclusion.

Inclusion ⊆.. By Tarski’s theorem [78], showing that µΦδ ⊆ U amounts to
show that Φδ(U) ⊆ U . We have:

Φδ(U) =
〈 [[

∨

∅⊂Q⊆prop(I) AFQXvars(Q,I) ∨ (h(I) ∧ Y)
]]

K

(δ ⊘ [{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.Pδ,j(π)}/XJ]J⊆[1,n])
〉

I⊆[1,n]

Let I ⊆ [1, n] and s ∈ (Φδ(U))I . By using the definition of Φδ and
the interpretation of AF, and doing a simple first order reasoning, this is
equivalent to the disjunction of the two conditions below:

(a) ∃∅ ⊂ Q ⊆ prop(I).(s |= Q ∧ ∀π ∈ PathK(s).∃j ∈ vars(Q, I).Pδ,j(π1,∞))
(b) h(I) ∧ s ∈ δ(Y).

We must show that s ∈ UI , i.e., that ∀π ∈ Path(s).∃i ∈ I.Pδ,i(π). By
applying the definition of path predicates, this expands as follows:

∀π ∈ Path(s).∃i ∈ I.(∃j ∈ [1, n].(hij ∧ s |= pij ∧Pδ,j(π1,∞))∨ (hi ∧ s ∈ δ(Y)))

which is equivalent to the disjunction of the two conditions below:

(a’) ∀π ∈ Path(s).∃j ∈ [1, n].(∃i ∈ I.(hij ∧ s |= pij) ∧ Pδ,j(π1,∞))
(b’) ∃i ∈ I.hi ∧ s ∈ δ(Y).

Two cases are possible, depending on the fact that (a) or (b) holds.

Case (a). Let Q ⊆ prop(I) such that s ∈ Q and for all π ∈ PathK(s)
there exists j ∈ vars(Q, I) such that Pδ,j(π1,∞). Let π ∈ PathK(s).
From condition (a), we can choose j ∈ vars(Q, I) such that Pδ,j(π1,∞).
Based on the definition of vars(Q, I), we can choose i ∈ I such that
pij ∈ Q and hij = true. Since s |= Q and pij ∈ Q, it follows that
s |= pij (recall from Section 3.3.2 that Q stands for the conjunction of
all atomic propositions that it contains). This implies condition (a’).

62

Case (b). Assume that h(I) = true and s ∈ δ(Y). From the definition of
h(I), it follows that we can choose i ∈ I such that hi = true. This
implies condition (b’).

Inclusion ⊇.. The equation system defining the path predicates associated
to M is defined as follows:
{

Pδ,j(π)
µ
=

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pδ,k(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y))

}

1≤j≤n

For simplicity, we assume that all predicates occurring in the right-hand
sides of equations are defined by some other equations of the system; this
corresponds to the fact that M does not have free propositional variables
excepting Y , whose interpretation is given by the environment δ. The func-
tional Πδ : (PathK → Bool)n → (PathK → Bool)n associated to this system
is defined below:

Πδ(P1, ..., Pn) =

〈

λπ.

(

n
∨

k=1

(hjk ∧ π0 |= pjk ∧ Pk(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y))

)〉

1≤j≤n

It is straightforward to check that the functional Πδ is continuous on
the lattice 〈(PathK → Bool)n, (λπ.false)n, (λπ.true)n,⊓,⊔〉, where ⊔ and ⊓
are the pointwise extensions of disjunction and conjunction operations on
path predicates. Therefore, its minimal fixed point µΠδ, which gives the
interpretation of the equation system, has the following iterative characteri-
zation [58]:

µΠδ =
⊔

k≥0

Πk
δ ((λπ.false)

n), Π0
δ((λπ.false)

n) = (λπ.false)n.

We note 〈P k
δ,j〉1≤j≤n = Πk

δ ((λπ.false)
n). From the iterative characteriza-

tion of µΠδ and the definition of ⊔, we have:

Pδ,j(π) =

(

⊔

k≥0

〈P k
δ,j〉1≤j≤n

)

(π) = ∃k ≥ 0.P k
δ,j(π).

To obtain the desired inclusion, we use the following statement:

∀k ≥ 0.
(

〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P k
δ,j(π)}

〉

J⊆[1,n]
⊆ µΦδ

)

(∗∗)

63

To show that U ⊆ µΦδ, let J ⊆ [1, n] and let s ∈ UJ , which means that
for all π ∈ PathK(s), there exists j ∈ J such that Pδ,j(π). The definition of
Pδ,j(π) above ensures that we can find k ≥ 0 such that P k

δ,j(π). By applying
(∗∗) for that k, we obtain s ∈ (µΦδ)J , which implies in turn the desired
inclusion U ⊆ µΦδ.

It remains to show the (∗∗) statement. We proceed by induction on k.
Base step.

〈

{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P 0
δ,j(π)}

〉

J⊆[1,n]
= by def. Π0

δ((λπ.false)
n)

〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.false}〉J⊆[1,n] = 〈∅〉J⊆[1,n] ⊆ µΦδ.

Inductive step. Let Uk = 〈{s ∈ S | ∀π ∈ PathK(s).∃j ∈ J.P k
δ,j(π)}〉J⊆[1,n].

We show below that Uk+1 ⊆ Φδ(U
k), which together with the inductive hy-

pothesis and the definition of minimal fixed points implies Uk+1 ⊆ Φδ(U
k) ⊆

Φδ(µΦδ) = µΦδ, i.e., the desired inequality.
Let J ⊆ [1, n] and let s ∈ (Uk+1)J , which means that for every π ∈

PathK(s) there exists j ∈ J such that P k+1
δ,j (π). From the definition of Πδ

and P k
δ,j, we have:

P k+1
δ,j (π) =

n
∨

l=1

(hjl ∧ π0 |= pjl ∧ P
k
δ,l(π1,∞)) ∨ (hj ∧ π0 ∈ δ(Y)).

By expanding this equality and doing a simple first order reasoning, the
conditions above can be rewritten as the disjunction of the two conditions
below:

(c) ∀π ∈ PathK(s).∃l ∈ [1, n].(∃j ∈ J.(hjl ∧ s |= pjl) ∧ P
k
δ,l(π1,∞))

(d) ∃j ∈ J.hj ∧ s ∈ δ(Y).

Let s ∈ (Φδ(U
k))J . From the definition of Φδ, this is equivalent to:

s ∈
[[

∨

∅⊂Q⊆prop(J) AFQXvars(Q,J) ∨ (h(J) ∧ Y)
]]

K
(δ ⊘ [(Uk)L/XL]L⊆[1,n])

Using the definition of Uk and the interpretation of AF, and doing a
simple first order reasoning, this is equivalent to the disjunction of the two
conditions below:

(c’) ∃∅ ⊂ Q ⊆ prop(J).(s |= Q ∧ ∀π ∈ PathK(s).∃l ∈ vars(Q, J).P k
δ,l(π1,∞))

(d’) h(J) ∧ s ∈ δ(Y).

Two cases are possible, depending on the fact that (c) or (d) holds.

64

Case (c). Let the set of atomic propositions Q be defined as follows:

Q =
⋃

π∈PathK(s)

{pjl | j ∈ J ∧ l ∈ [1, n] ∧ s |= pjl}

Condition (c) guarantees that Q is not empty and the definition of
prop(J) implies that Q ⊆ prop(J). Since s |= pjl for every pjl ∈ Q,
it follows that s |= Q (recall from Section 3.3.2 that Q stands for
the conjunction of all atomic propositions that it contains). Let π ∈
PathK(s). From condition (c), we can find l ∈ [1, n] and j ∈ J such
that hjl and s |= pjl and Pδ,j(π1,∞). Since pjl ∈ Q by definition of Q,
from the definition of vars(Q, J) it follows that l ∈ vars(Q, J). This
implies condition (c’).

Case (d). Let j ∈ J such that hj = true. From the definition of h(J),
it follows that h(J) = true. Since s ∈ δ(Y) from condition (d), this
implies condition (d’).

This concludes the proof of the lemma. 2

We are finally ready to prove Proposition 3.
Proof (Proposition 3).

Let K be a Kripke structure, δ be a propositional environment, R =
{X1

µ
= AFρY } an equation block. Let Pδ,i be the path predicates associated

to the guarded potentiality Mes obtained by translating R, and let M be
the Mes further obtained after determinization.

We have:

([[M]]Kδ)(X{1}) = by Lemma 7
{s ∈ S | ∀π ∈ PathK(s).Pδ,1(π)} = by Lemma 6
{s ∈ S | ∀π ∈ PathK(s).∃l ≥ 0.π0,l |= ρ ∧ πl ∈ δ(Y)} = by def. of AFρY

and [[]]

([[{X1
µ
= AFρY }]]Kδ)(X1).

2

65

