
PIC2LNT: Model Transformation for

Model Checking an Applied Pi-Calculus

Radu Mateescu1 and Gwen Salaün2,1

1 Inria Grenoble Rhône-Alpes and Lig — Convecs team, France
2 Grenoble Inp, France

{Radu.Mateescu,Gwen.Salaun}@inria.fr

1 Introduction

The π-calculus [12] was proposed by Milner, Parrow, and Walker about twenty
years ago for describing concurrent systems with mobile communication. The
π-calculus is equipped with operational semantics defined in terms of Ltss
(Labelled Transition Systems). Although a lot of theoretical results have been
achieved on this language (see, e.g., [1, chapter 8] for a survey), only a few verifi-
cation tools have been designed for analysing π-calculus specifications automat-
ically. The two most famous examples are the Mobility Workbench (Mwb) [14]
and Jack [5], which were developed in the 90s.

Our objective is to provide analysis features for π-calculus specifications
by reusing the verification technology already available for value-passing pro-
cess algebras without mobility. Contrary to existing verification tools for the
π-calculus, which rely on specific algorithms and intermediate models, such as
Hd-automata [5], our approach is based on a novel translation [9] from the finite
control fragment of π-calculus to a standard process algebra called Lotos Nt
(Lnt for short) [3]. Lnt is a value-passing process algebra with imperative pro-
gramming flavour accepted as input by the Cadp verification toolbox [8]. It sup-
ports the specification of data structures (constructed types, pattern-matching,
recursive functions) and concurrent processes. Lnt has a user-friendly syntax
and a formal operational semantics defined in terms of Ltss. To the best of
our knowledge, this is the first π-calculus translation having a standard process
algebra as target language.

In this work, we go a step further by extending the original polyadic π-
calculus with data-handling features. This results in a general-purpose applied
π-calculus, which offers a good level of expressiveness for specifying mobile con-
current systems, and therefore for widening its possible application domains.
As language for describing data types and functions, a natural choice was Lnt
itself: in this way, the data types and functions used in the π-calculus specifica-
tion can be directly imported into the Lnt code produced by translation. We
generalized our previous translation [9] to handle applied π-calculus specifica-
tions, and we automated it in the tool Pic2Lnt 2.0. This enables the analysis of
applied π-calculus specifications using all verification tools of Cadp, in particu-
lar the Evaluator 4.0 on-the-fly model checker [11], which evaluates temporal
properties involving channel names and data values.

2 R. Mateescu and G. Salaün

2 Applied Pi-Calculus

We designed our applied π-calculus by extending the original polyadic π-
calculus [12] equipped with the early operational semantics defined in [13]. We
consider π-calculus specifications satisfying the finite control property [4], which
amounts to forbid recursive agent calls through parallel composition operators.
When the set of channels is bounded, this results in finite-state systems that can
be analyzed using existing model checking techniques. We extended the origi-
nal π-calculus with constructs for manipulating data variables and expressions.
Agents can be parameterized by data variables in addition to channel names, and
the polyadic communication was extended to handle emission/reception of data
values. The guard operator was generalized to handle arbitrary Boolean expres-
sions (in addition to the comparison of channel names), and a new operator was
added for declaring and initializing data variables. The replication operator was
restricted to a bounded version (in order to satisfy the finite control property),
which instantiates n parallel copies of an agent, and therefore enables to describe
mobile systems containing a finite amount of dynamic control. Data types and
functions are specified in Lnt [3] as external modules, which are imported in
the applied π-calculus specification. The concrete syntax (which is compatible
with Mwb for dataless π-calculus specifications) and semantics of the applied
π-calculus are described in [10].

We present below a code sample to illustrate our applied π-calculus on a
load balancing system, which is a networking method to distribute workloads
across multiple servers. The specification (Main agent) given below consists of
five agents: a client, the load balancer, and three servers. The client corresponds
to a possible environment and is used to simulate various scenarios. The load
balancer receives new tasks (task) with a private name (com), and then interacts
with the three servers to know their current load. To do so, a public channel
(e.g., al for the first server) is used for sending the request and receiving the
result. The load balancer compares the different loads and forwards the private
name originally submitted by the client to the server with the minimum load.
A server has three possible behaviours: it can be asked by the load balancer
to return its current load; it can receive a request for a new task (reception of
a private name from the load balancer and interaction with the client on this
private channel to receive the new load); or it can execute part of its work if its
total load is greater than zero. We can see with this simple example how data
expressions (natural numbers, comparison, addition, etc.) appear as parameters
of agents and channels to specify loads and their manipulation.

Main =
(ν task , al, ar, bl, br, cl, cr) (Client(task) | LoadBalancer (task , al, ar, bl, br, cl, cr) |

Server (al, ar, 0 of Nat) | Server (bl, br, 0 of Nat) | Server (cl, cr, 0 of Nat))

Client(task) =

(ν com1) task 〈com1〉.com1〈2 of Nat〉.(ν com2) task〈com2〉.com2〈1 of Nat〉.
(ν com3) task 〈com3〉.com3〈1 of Nat〉.(ν com4) task〈com4〉.com4〈2 of Nat〉.0

Model Checking an Applied Pi-Calculus 3

LoadBalancer (task , al, ar, bl, br, cl, cr) =
task(com). al .al(v1 : Nat). bl .bl(v2 : Nat). cl .cl(v3 : Nat).
([(v1 ≤ v2) and (v1 ≤ v3)] ar〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr)
+ [(v2 ≤ v1) and (v2 ≤ v3)] br〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr)
+ [(v3 ≤ v1) and (v3 ≤ v2)] cr〈com〉.LoadBalancer (task, al, ar, bl, br, cl, cr))

Server (ld , rq , totalload : Nat) =
ld .ld〈totalload〉.Server (ld , rq , totalload)
+ rq(req).req(newload : Nat).Server (ld , rq , totalload + newload)
+ [totalload > 0] execute〈ld , totalload〉.Server (ld , rq , totalload − 1)

3 Translation to LNT

Most of the π-calculus constructs are translated quite straightforwardly into
Lnt because of its high level of expressiveness. Nevertheless, we faced some
subtle difficulties in obtaining a translation as succinct as possible while still
preserving the Lts semantics, i.e., mapping each transition of a π-calculus agent
to a transition of the resulting Lnt process. One of the main problems was to
encode the binary, unidirectional, and mobile communication of π-calculus into
a specification language enabling multi-way and bidirectional communication on
static channels.

Since mobile communication cannot be described directly using Lnt static
channels, we overcome this issue by exploiting the data types and synchroniza-
tion features of Lnt. We represent π-calculus channel names as values of a Lnt
datatype Chan, which defines all the public and private names appearing in the
specification. Then, we model channel mobility between π-calculus agents by
communicating Chan values along Lnt channels. Binary unidirectional commu-
nications and two-among-n synchronizations, which cannot be directly described
in Lnt, are encoded by means of dedicated Lnt channels (one for each π-calculus
parallel composition operator), on which the sender and receiver are indicated
explicitly using process identifiers and placeholders. Communication on a π-
calculus channel is translated in Lnt as a choice on all Lnt channels connecting
the current agent to its environment. The translation of the original π-calculus
to Lnt is detailed in [9].

4 Tool Support and Verification with CADP

The translation from our applied π-calculus to Lnt has been automated by
the translator Pic2Lnt 2.0, implemented using the Syntax+Traian compiler
construction technology [7]. The tool consists of about 2, 300 lines of Syntax
code, 4, 800 lines of Lotos Nt code, and 700 lines of C code3.

Figure 1 gives an overview of the complete tool chain. Given a specification
in applied π-calculus, possibly containing data types and functions described in

3 The version 1.0 of Pic2Lnt, which handled the original π-calculus (without data
manipulation), consisted of about 3, 700 lines of code.

4 R. Mateescu and G. Salaün

Lnt libraries, Pic2Lnt translates it into an equivalent Lnt specification, which
is accepted as input by the Cadp tools. The resulting Lnt specification is con-
nected by the Lnt.Open tool (via an intermediate translation to Lotos) to the
Open/Cæsar environment [6], which gives access to all the on-the-fly verifica-
tion tools of Cadp. The pic2lnt dyn.tnt file (static code) contains external C
functions for generating fresh channel names and process identifiers.

pic2lnt dyn.tnt

Cæsar.adt
Cæsar &.lnt

.lib
.lib

Lnt2LotosPic2Lnt 2.0

.pic

.lotos

Evaluator 4.0

.mcl

.ren other Cadp

yes / no & diagnostic

Lnt.Open

: reference

: input/output

: input code

: intermediate code

on-the-fly
verification

tools

Open/Cæsar Api

Fig. 1. Overview of the tool chain

As illustrated on Figure 1, one can use the Evaluator 4.0 on-the-fly model
checker to verify temporal properties specified in Mcl [11], an extension of
alternation-free µ-calculus with regular expressions, data-based constructs, and
fairness operators. Mcl is suitable for analyzing applied π-calculus specifica-
tions, because the properties can involve both the channel names and the data
values transmitted. The Lts actions, which carry additional information intro-
duced during the translation to Lnt, are renamed on-the-fly to retrieve the
original π-calculus format using a predefined label renaming file.

Going back to the load balancing system specified in Section 2, the Lts of
the resulting Lnt specification contains 2, 007 states and 5, 450 transitions. As
an example, we can check that this Lts satisfies the Mcl data-based response
property below, which states that every time a server has begun an execution,
it will eventually exhaust its workload by executing it one unit at a time:

[true∗.{execute ?ld :String ?load :Nat ... where load > 1}]
µX(crt load :Nat := load − 1).(

〈true〉true ∧
[¬{execute !ld !crt load ...}] X(crt load) ∧
[{execute !ld !crt load ... where crt load > 1}] X(crt load − 1)

)

Model Checking an Applied Pi-Calculus 5

The action predicates enclosed between curly braces enable to capture the infor-
mation present on Lts actions, i.e., the channel names (interpreted as character
strings) and the data values transmitted. The box modality matches all sequences
that end up, after zero or more steps, with an execute action carrying a channel
name ld and a workload load. These values are captured and used later in the
parameterized minimal fixed point operator µX , which expresses the inevitable
reachability of consecutive execute actions that carry decreasing workloads.

The Pic2Lnt 2.0 translator is currently provided as a Cadp plug-in. The
manual page and the executable files for several architectures (Mac computers,
Pcs running Linux or Windows, Solaris workstations) are available on-line [10].

5 Experimental Evaluation

We applied Pic2Lnt 2.0 on a benchmark of π-calculus specifications, which
includes most of the examples provided with Mwb, as well as applied π-calculus
examples that we specified ourselves. Our benchmark currently contains 284
files, totalizing about 5, 200 lines of π-calculus, which were translated in about
50, 000 lines of Lnt. This expansion in size, which is negligible given the speed
of the Lnt compiler, is caused partly by the complexity of the translation (one
new Lnt channel per parallel composition operator) and partly by the verbosity
of Lnt w.r.t. the compact algebraic notation of the π-calculus.

The table below shows a few examples from the Mwb distribution. For each
example, the table gives the number of agents, the size of the specification before
and after translation, and some quantitative information (size, time) about the
Lts generated using Pic2Lnt 2.0 and the Cadp exploration tools.

File name Description |Agents|
Nb. of lines Lts

Time
.pic | .lnt |S|/|T |

memcell1 Memory cell 2 7 | 82 10 / 100 0.39s

memcell2 Memory cell 2 7 | 91 91 / 910 0.39s

abp-bv Alternating bit protocol 7 35 | 257 1, 281 / 4, 320 1.24s

thandover Mobile network 6 35 | 257 11 / 18 0.56s

handstrong Mobile network 9 40 | 318 39, 909 / 76, 679 0.68s

pbool Boolean operations 6 38 | 950 4 / 678 1.63s

Our tool support for the applied π-calculus is already used for teaching purposes
at the University of Saarbrücken (Germany). It is also currently used for specify-
ing and verifying self-deployment and other self-management protocols designed
in the context of the OpenCloudware4 project, which aims at building an open
software engineering platform for the collaborative development of distributed
applications to be deployed on multiple cloud infrastructures. Since the applied
π-calculus is convenient for specifying many kinds of mobile systems (e.g., Web
services, autonomic applications, cloud computing protocols, software architec-
tures, biological systems, cryptographic protocols, etc.), we believe that our tool
support can provide a useful service in a wide range of application areas.

4 http://opencloudware.org

6 R. Mateescu and G. Salaün

6 Concluding Remarks

We introduced in this paper an applied π-calculus equipped with data-handling
features, and proposed a translation of this language into the Lnt value-passing
process algebra. This translation, automated by the Pic2Lnt 2.0 tool, enables
the analysis of applied π-calculus specifications using all verification tools of
Cadp. As far as we are aware, this results in one of the few operational frame-
works for verifying an applied π-calculus. ProVerif [2] is an alternative ap-
proach focused on the verification of cryptographic protocols and security prop-
erties (secrecy, authentication, etc.). In contrast, our solution is independent of
any application domain and provides a larger panel of verification techniques.

Acknowledgments. We are grateful to Hubert Garavel for his valuable feed-
back about the applied π-calculus and the connection of Pic2Lnt 2.0 to Cadp.

References

1. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

2. B. Blanchet and B. Smyth. Proverif: Automatic cryptographic protocol verifier,
user manual and tutorial (version 1.86pl3). 2011.

3. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, V. Powazny, F. Lang, W. Serwe,
and G. Smeding. Reference manual of the LOTOS NT to LOTOS translator
(version 5.1). Inria/Vasy, 109 pages, 2010.

4. M. Dam. Model checking mobile processes. In Proc. of CONCUR’93, volume 715
of LNCS, pages 22–36. Springer, 1993.

5. G. L. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An auto-
mated based verification environment for mobile processes. In Proc. of TACAS’97,
volume 1217 of LNCS, pages 275–289. Springer, 1997.

6. H. Garavel. Open/cæsar: An open software architecture for verification, simu-
lation, and testing. In Proc. of TACAS’98, volume 1384 of LNCS, pages 68–84.
Springer, 1998.

7. H. Garavel, F. Lang, and R. Mateescu. Compiler construction using lotos nt. In
Proc. of TACAS’02, volume 2304 of LNCS, pages 9–13. Springer, 2002.

8. H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In Proc. of TACAS’11,
volume 6605 of LNCS, pages 372–387. Springer, 2011.

9. R. Mateescu and G. Salaün. Translating pi-calculus into lotos nt. In Proc. of

IFM’10, volume 6396 of LNCS, pages 229–244. Springer, 2010.
10. R. Mateescu and G. Salaün. Pic2Lnt: A translator from the applied pi-calculus to

lotos nt. Available at http://convecs.inria.fr/software, 2012.
11. R. Mateescu and D. Thivolle. A model checking language for concurrent value-

passing systems. In Proc. of FM’08, volume 5014 of LNCS, pages 148–164.
Springer, 2008.

12. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Inf. Comput.,
100(1):1–77, 1992.

13. U. Montanari and M. Pistore. Checking bisimilarity for finitary pi-calculus. In
Proc. of CONCUR’95, volume 962 of LNCS, pages 42–56. Springer, 1995.

14. B. Victor and F. Moller. The mobility workbench - a tool for the pi-calculus. In
Proc. of CAV’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

