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Abstract—Alvis is a formal modelling language. It combines
graphical modelling of communication schema and a high level
programming language to describe behaviour of individual sys-
tem entities. An Alvis model can be verified formally by using
methods based on a system state space. The paper presents the
design and the command list of the Alvis Virtual Machine. The
aim of the project is to provide an execution environment for
Alvis language. Moreover, one of the goals is to allow different
hardware units to run Alvis models. Thus, a virtual machine was
chosen as a solution.

I. INTRODUCTION

A
LVIS [1], [2], [3] is a formal modelling language de-

signed to provide a user friendly method for developing

concurrent systems, especially embedded ones. Agents are

basic entities of Alvis models. Usually they run concurrently

and communicate with one another. From a user point of

view a model consist of two layers. The code layer provides

a high level programming language used to describe agents

behaviour. It’s syntax is similar to C, Java or Pascal and

it provides high level constructions as loop or conditional

statements. The graphical layer (called a communication

diagram) is a visual hierarchical language used to define

communication channels between agents [1]. The language

is being developed at AGH-UST in Krakow, Department of

Applied Computer Science. An on-line manual and software

supporting modelling with Alvis can be found at the project

web site http://fm.kis.agh.edu.pl.
States of a model and transitions among them are repre-

sented using a labelled transition system (LTS graph [4]). An

LTS graph is used to verify the corresponding model formally

with model checking techniques [5]. The Alvis Compiler

allows users to write LTS graphs in different formats.
Aldebaran format is used to export LTS graph to the CADP

Toolbox [6]. Thus, system behaviour requirements can be

provided by using µ calculus [7], [8] or XTL [9] and the

CADP Toolbox can be used to check whether the model

satisfies them. All things considered, the result of developing

concurrent systems with Alvis is an easy to understand model

with properties verified formally. Moreover it creates an open

environment that allows using other tools based on system

state graph semantics. The only thing that is required is an

appropriate export function in Haskell.
This paper addresses the problem of executable Alvis mod-

els by using virtual machine. The paper presents binary code

organisation and the virtual machine design and operation. The

presented solution allows execution of a formal Alvis models.

The paper is organised as follows. Section II provides

an overview of developing formal models with Alvis and

associated tools. The AVM design assumptions and operation

are presented in section III. The binary code organisation is

described in section IV. Section V deals with details about all

the AVM instructions. The paper is summarised in the final

section.

II. ALVIS ENVIRONMENT

Figure 1. The modelling and the verification process with Alvis
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Figure 2. Alvis Editor

The scheme of the modelling, verification and execution

process with Alvis is shown in Fig. 1. From a user’s point

of view, the process starts from designing a model using

a prototype modelling environment called Alvis Editor (shown

on Fig. 2). A system can be designed using a hierarchical

representation of Alvis model. With Alvis Editor user can

collapse and expand any valid part of a system back and forth.

It is a very useful feature from the human point of view.

However, before applying transformation methods, it has to

be flattened. This Alvis system representation proved to be

the best one for machine processing.

It is worth mentioning, that from the very beginning of Alvis

all model transformations meant to be fully automatic. It was

so to remove any ”ideas” that user may introduce to system

during human-powered translation.

A flat model is translated into Haskell [10], [4] source code

and its Haskell representation is used to generate the LTS

graph. A designer is able to define additional Haskell functions

(called filtering functions [4]) that search an LTS graph for

some states or parts of the graph that meet given requirements.

The source code is compiled with the GHC compiler [11]. The

results of the received program execution are the LTS graph

for the given model and the report of the model verification

with filtering functions. Further verification is performed with

the CADP Toolbox [6] and the µ calculus [7], [8] or XTL [9].

Furthermore other tools that support LTS system specification

might be used with little effort from the user.

For testing and educational purposes LTS graph can be

exported to the DOT format and visualized. It is a useful

feature during learning to model with Alvis. Unfortunately, it

can be used only to fairly small systems (in terms of generated

state space).

Alvis model can also be translated to an executable form.

Currently Java target and a dedicated virtual machine, pre-

sented here, are supported. As it is shown on Fig. 1 it is not

required for a model to be formally validated before execution.

Any syntactically correct one can be translated to executable

form, however it is wise to perform this step.

For more details on the Alvis syntax see [1] and the on-line

manual at the project web site. The formal semantics for Alvis

can be found in [2].

III. AVM DESIGN AND OPERATION

Alvis Virtual Machine was designed to run Alvis models

without modifying its structure. Common problem in using

formal methods in real cases is translation from a model to

code. Even properly designed system can be ruined during

implementation phase. Thus an executable specification con-

cept was introduced and becomes more and more popular in

different applications and forms f.e. [12], [13]. The whole

Alvis project is a part of that conception. It brings a modelling

environment and, by generating LTS of the possible system

states, it provides ability to verify formally given system with

tools that operate on a such representation [6].

As it will be presented in section V, AVM instruction set

almost completely reflects Alvis language statements. The

main goal here is to provide identical execution paths as

generated in LTS graph [4]. AVM can be considered as a high

level virtual machine. It has a very complex commands and is

more like BEAM Erlang VM than JavaVM [14], [15]. Also the

architecture of the Alvis Virtual Machine can be classified as

register VM. Most of the operations are performed ”in place”

with variable location treated as operational registers.

Like in most virtual machines, the common operation that

precedes execution, is code loading. In AVM this procedure

prepares binary code for execution.

The preliminary step is checking cryptographic keys. It is

based on public-private key pair. A code is signed with private

key. The machine has a public key of the software supplier.

If the cryptographic signature is included in code it will

be checked before execution. If it passes, the next steps for

preparing code for execution will be performed, otherwise the

loading will be abandoned.

There are two strategies being considered for the loader.

First one, is for devices with large RAM pool. In that case,

the whole binary code is loaded to RAM. It is very simple yet

effective. There is no need to copy initial values for variables.

All offsets are relative to the beginning of a code or the

beginning of a given block.

The second code loading strategy is for devices with limited

RAM capacity and FLASH memory like embedded SoC

or microcontrolers. In that case a code resides in program

memory alongside with AVM itself and before execution an

additional step has to be performed.

Data field of the variable is moved to the RAM and an

additional record is created to translate original address (in

ROM/EEPROM) to the actual location. Unfortunately, this

slows the execution which is the price for decreasing RAM

occupancy. During execution a function which fetches vari-

able, its pointer is modified by additional address translation

step. The direct and indirect variable fetching is presented on

Fig. 3.

To support online code upgrade AVM may use double code

buffer. If the device is powerful enough the new code may be

loaded during executing the old one.
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Figure 3. Direct vs indirect variable access

The machine performs all the necessary steps of preparing

code for execution while executing the current one. It will

be run as a background task. When new code will be ready,

machine will restart and begin executing a new one.

Current AVM implementation is a bytecode interpreter. It

fetches instruction from specified locations and runs them.

Every AVM instruction has a function associated within virtual

machine, responsible for its execution.

If a block is executed by VM, a next instruction after block

(see block description in Section IV) is placed onto agent’s

return stack. When it reaches block end, this address is popped

and execution continues from that location. In term of efficient

virtual machine design and implementation it is suboptimal,

but the main goal here is to reflect original model behaviour.

Dynamic memory management is minimized in AVM to

simplify code execution and increase reliability. The only

dynamic data structures required during execution are:

• stacks for agents for tracing block processing,

• data fields if code is run form ROM,

• address translation table if code is run from ROM,

• temporary storage for guard evaluation.

IV. CODE FORMAT

In this section a detailed binary code organization for the

Alvis Virtual Machine is presented. It is organized in top-

down fashion, starting form overall description and ending

with details about subsequent elements. The size information

is presented as bytes.

Two byte word was chosen as a primary data size for AVM.

Thus limits the maximal code size to 2
16 bytes, including all

extensions. As AVM is a high level virtual machine and its

instruction are complex, it is enough for fitting quite large

systems in its address space.

Table I presents general organization of the AVM code. First

is the header block, then functions block. After it, agent’s data

are placed sequentially. The size of every block depends on

the model.

Table I
GENERAL AVM BINARY CODE ORGANIZATION

Header Functions Agents Crypto

The AVM header block is presented in Table II. It starts

with a magic number, which is ”AVM ” in ASCII code. Next

element is a version number. Virtual machine cannot load the

code if magic word is incorrect or version number is higher

than it can understand.

The function block offset represents displacement from

beginning of the AVM binary code to the first function (see

Sec. III). The last two elements describes agents in model.

First one is an agent counter and the second is a table with

offsets to a specific agent structures.

Table II
AVM HEADER

Name Description Size
MAGIC Magic number ’AVM ’ 4
VERSION Code version 4
FUN Function block offsets table 2
ACNT Size of the agents table 2
AGENTS Agents block offsets table 2
SECURITY Cryptographic extension block offset 2

The agent block is shown in Table III. It consists of:

agent’s name truncated to 12 characters, mainly for debug

purposes, agent’s code offset from beginning of AVM code,

location of port and variable definitions. The overall single

agent code organization is presented in Table V. The STATE

field contains actual code pointer, execution block and agent

state information (see [2]).

Table III
ACTIVE AGENT HEADER

Name Description Size in bytes
NAME Agent name 12
STATE Agent state 8
CODE Agent code block 6
PCNT Ports count 2
PORTS Ports table pointer 2
VCNT Variables count 2
VARS Variables table pointer 2

Table IV
VARIABLE BLOCK

Name Description Size in bytes
NAME Variable name 12
TYPE Variable type 2
LOCATION Value pointer 2
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Table IV presents variable structure. The variable table

consists of such elements. The whole variable block combines

variable table and variable values. NAME and TYPE are left

here mainly for debug reasons and their removal is considered

to reduce code size.

Table V
AGENT BINARY CODE ORGANIZATION

Agent header Ports Variables Code

The active port structure is presented in Table VI. This

element is generated for every port’s data type pair. It holds

port’s name type identifier for transferred data and pointer for

the other side port structure.

Table VI
ACTIVE PORT BLOCK

Name Description Size in bytes

NAME Port name 12
TYPE Type of data 2
CPORT Connected port 2

Passive agent definition is in Table VII. It is almost identical

to active agent. The only difference is it holds passive ports

definitions instead of active ones.

Table VII
PASSIVE AGENT BLOCK

Name Description Size in bytes

NAME Agent name 12
STATE Agent state 2
PCNT Ports count 2
PPORTS Ports table pointer 2
VCNT Variables count 2
VARS Variables table pointer 2
CODE Code pointer 2

Table VIII
PASSIVE PORT BLOCK

Name Description Size in bytes

NAME Port name 12
TYPE Type of data 2
CODE Port’s code block 6

Table IX presents security extension block. It consists of:

key type, key data length and key location as an offset from

code beginning.

Key type specifies how the key data should be interpreted

during code loading. Virtual machine which is not able to

process a specific key type, should refuse to execute the code.

Key type may by set to NULL value. In that case, no code

verification is performed and key length and value pointer

should also be set to NULL.

Table IX
SECURITY EXTENSION BLOCK

Name Description Size in bytes
TYPE Key type 2
SIZE Key length 2
LOCATION Value pointer 2
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Figure 4. Example binary code map

Figure 4 shows an overview of the complete AVM binary

code. The header is presented in detail. Then function block

is placed. After it is an agent table. Then all the agents

are located. The final block is occupied by cryptographic

extension. This block location is not crucial for the AVM

operation. It represents actual block placement but it can be

reorganized. It is because most of the offsets are relative to

the beginning of the AVM code (magic word location). This

makes code generation more complicated because, in fact,

1642 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014



some linking operations are applied during that phase. An

advantage of that approach is faster code loading and easy

code execution. No linking is required during code loading.

Also, multiple memory access is not required to access a

specific structure nor additional memory to cache frequently

used object locations.

V. INSTRUCTIONS

Below all the instructions supported by the Alvis Virtual

machine are presented. All of them are shown as a small

tables where there is instruction and type parameters (if any)

in the first column, and short description in the second column.

Binary format of the instruction is equal to the first column

contents.

Instructions were divided into two blocks. The first one

consists of instructions present in Alvis itself, whether the

second one is composed of instructions added to allow Alvis

models to be executed on small embedded systems with

limited resources, in case it is impossible to fit native Haskell

code.

Haskell is not a problem during generation of LTS graph

because its already there. Executing even simplest functions

as an arithmetic operations in Haskell is perfectly reasonable.

But in embedded environment Haskell brings a huge overload

to smaller systems. In such case, using it to do a few additions

do not seem to be a good idea.

Moreover, during examination of already created test mod-

els during Alvis development, this subset allows for running

quite large set of code without involving Haskell binaries.

The following types of arguments are used in AVM binary

code:

agP agent pointer - offset to specified agent structure;

fP function pointer - offset to the start of specific

function;

vP variable pointer - offset to specific variable;

pP port pointer - offset to specified port structure;

ppP passive port pointer - offset to specified port struc-

ture;

cP code pointer - offset to specified instruction;

bs block specification - it consists of three code pointers

(block start, block end, first instruction to execute

after block);

char 8 bit signed character;

uint32 32 bit unsigned integer;

int32 32 bit signed integer;

double 64 bit double precision floating point number;

list list of any of the simple data types (char, uint32,

int32, double);

All offsets are relative to beginning of the AVM binary

code. It speeds up code execution by allowing to fetch specific

data without multiple memory access. Moreover, it simplifies

a ”virtual memory” (see Fig. 3) implementation for devices

where code lays in read only area. In this case, some portions

of the data have to be moved to random access memory which

is required for execution. This design feature complicates a

bit code generation, but it is a consequence of execution

requirements for small devices.

NULL do nothing

The NULL instruction does nothing. However, it increments

agent’s program counter and consumes some time during

execution.

START start agent
agP agent pointer

The START instruction begins execution of agent pointed

by the first argument. Its state is changed from initialized to

ready.

EXIT stop agent
agP agent pointer

The EXIT instruction stops execution of agent pointed by

the first argument. Its state is changed to finished.

EXEC execute function
fp function pointer

The EXEC instruction executes specified function. Function

arguments are hard-coded inside so there is no need for passing

them.

NEXEC native exec
nfP native function pointer
uint32 argument count
vP result pointer
vP first argument pointer
... ...
vP n-th argument pointer

The NEXEC instruction is a wrapper for executing natively

implemented functions. It requires pointers for all arguments

and for result. Also types of AVM arguments have to match

natively implemented function. Function code has to be com-

piled and linked with AVM.

IF start agent
fP guard pointer
bs true block specification

The IF instruction is the simplest implementation of the

if Alvis statement. It is the case when there is no elseif or

else clause. If a guard function evaluates to true, it executes

a code block, otherwise the next instruction specified by bs is

selected.

IFE if-else instruction
fP guard pointer
bs true block specification
bs false block specification

The IFE instruction covers the case when there is an else

statement in Alvis code. If its value is interpreted as true, its

first block is executed, otherwise second block is executed.

IFEIFE select instruction
uint32 branch count
fP first guard pointer
... ...
fP n-th guard pointer
bs first branch block
... ...
bs n-th branch block
bs else branch block
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The IFEIFE is the most complicated version of the if

statement in Alvis. It is the case when there is if-elseif-else

form of the statement. It consists of table of guards and a table

of connected code blocks to execute. The last code block is

an else branch one and it is executed when all guard functions

evaluate to false. There is also the IFEIF virtual machine

instruction. The only difference from IFEIFE is it has no else

branch.

The if statement was split into several cases because during

example code analysis, the most commonly used statement

was if or if-else one. It was made to optimize VM instruction

execution and to make implementation clearer.

LOOP conditional loop
fP guard pointer
bs block specification

The LOOP instruction executes specified block as long as

associated guard function evaluates to true. Otherwise, the next

instruction denoted by bs is used.

LOOPE timed loop
uint32 dalay value
bs block specification

The LOOPE is a special loop instruction. It loops in-

definitely, but each iteration should start every delay value

milliseconds. To achieve the process a time stamp is taken

before code block execution. After it, another time stamp is

taken and the remaining time is calculated. If there is some

time left, agent suspends its execution.

JUMP unconditional jump
cP code pointer

The JUMP instruction performs an unconditional jump to

specified code location.

IN input from port
vP input variable pointer
pP local port pointer
pP remote point pointer

The IN instruction performs communication with other

agent via port specified. It requires a variable structure pointer

to store a new value, local port structure and remote port

structure.

OUT output to port
vP output variable pointer
pP local port pointer
pP remote point pointer

The OUT instruction performs communication with other

agent via port specified. It requires a variable structure pointer

to send value, local port structure and remote port structure.

INP input from passive port
vP input variable pointer
pP local port pointer
ppP remote point pointer

The INP instruction performs passive agent call via specified

port. The caller is an active agent. It requires a variable

structure pointer to save new value, local port structure and

remote passive port structure.

OUTP output to passive port
vP output variable pointer
pP local port pointer
ppP remote point pointer

The OUTP instruction performs passive agent call via port

specified. The caller is an active agent. It requires a variable

structure pointer to send value, local port structure and remote

passive port structure.

INPP input from passive port
vP input variable pointer
ppP local port pointer
ppP remote point pointer

OUTpP output to passive port
vP output variable pointer
ppP local port pointer
ppP remote point pointer

The INPP OUTPP instructions perform passive agent call

via port specified. The caller is a passive agent. They require a

variable structure pointer to send or save to, local port structure

and remote passive port structure.

SELECT select instruction
uint32 branch count
fP first guard pointer
... ...
fP n-th guard pointer
bs first branch pointer
... ...
bs n-th branch pointer

The SELECT instruction reflects Alvis’s select statement.

It consists of a table of guard functions and a table of code

blocks. Guards are evaluated sequentially. If guard evaluates

to true, a corresponding code block is executed.

READY check if port is ready for communication
pP port pointer

PREADY check if passive port is ready for communication
ppP passive port pointer

The READY and PREADY instructions check if a specified

port is ready for communication. It is required for guard

functions mainly in select statement.

Table X
INTERNAL COMMANDS FOR FUNCTION EXECUTION

ADD add operands
SUB subtract operands
MUL multiply operands
DIV divide operands
HEAD get head of a list
TAIL get tail of a list
INS insert element in list at the beginning
ADD append element to list
AND logical and
OR logical or
NOT logical not

Table X presents summarized list of AVM commands im-

plemented for internal functions. Almost all of them take three

arguments except for the last one which takes two. The binary

layout of instructions is presented below.
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{INSTR} instruction code, see Table X
vP result
vP first operand
vP second operand

All the operations are defined for appropriate datatypes.

Arithmetical instructions are automatically applied to all sim-

ple types. Conversions are executed as in ISO-C standard [16].
Presented AVM instruction list should not be considered as

closed. AVM is in active development phase and commands

are added, removed and reorganized.

VI. SUMMARY

The Alvis Virtual Machine was presented in the paper.

The main goal of the project is to provide executable form

of an Alvis models. There is an Alvis to Java conversion

already done, which was a test drive for Alvis Compiler code

generation facility. AVM is a second attempt for automatic

Alvis code execution.
AVM was designed for executing a formally checked code

in high availability environment. Thus a code signing and a

double code buffer were introduced in it.
The first feature is crucial for upgrading AVM code in

installations where the software provider has no full control

over device and running unauthorized code is a security risk.
The second feature is required in situations when device

has to work continuously while providing ability to hot code

swapping.
AVM is currently under development and presented features

may be a subject to a change.
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