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Abstract

Motivation: Logical (Boolean or multi-valued) modelling is widely employed to study regulatory or
signalling networks. Even though these discrete models constitute a coarse, yet useful, abstraction of
reality, the analysis of large networks faces a classical combinatorial problem. Here, we propose to take
advantage of the intrinsic modularity of inter-cellular networks to set up a compositional procedure that
enables a significant reduction of the dynamics, yet preserving the reachability of stable states. To that
end, we rely on process algebras, a well-established computational technique for the specification and
verification of interacting systems.

Results: We develop a novel compositional approach to support the logical modelling of interconnected
cellular networks. First, we formalise the concept of logical regulatory modules and their composition.
Then, we make this framework operational by transposing the composition of logical modules into a pro-
cess algebra framework. Importantly, the combination of incremental composition, abstraction and min-
imisation using an appropriate equivalence relation (here the safety equivalence) yields huge reductions
of the dynamics. We illustrate the potential of this approach with two case-studies: the Segment-Polarity
and the Delta-Notch modules.

Availability and Implementation: GINsind] and CADPA are freely available for academic users. Files
needed to reproduce our results are provided at http://compbio.igc.gulbenkian.pt/nmd/node/45.

Contact: chaouiya@igc.gulbenkian.pt

1 Introduction

The growing number of published models shows the suitability of qualitative logical modelling to study
regulatory and signalling networks (e.g., [3, 12,24, 27]). However, when dealing with large networks, a
classical combinatorial explosion arises, hampering efficient analyses of the dynamical properties of these
systems, in particular, reachability properties. Although efficient algorithms have been proposed to identify
all stable states via static analysis (e.g., [9, 10, 23]), reachability analysis is hard to perform because it
requires exploring the dynamics. To address this issue, we propose to rely on the concepts of modularity
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and compositionality, focusing on the multi-valued logical formalism, initially defined by R. Thomas and
co-workers [33].

Modularity has emerged as a key feature of molecular networks (e.g. [36]), but a precise definition of
functional regulatory modules is still lacking, let alone a method to decompose large, intricate networks into
such functional modules. Nevertheless, when cellular patterns are governed by both inter-cellular signals
and intra-cellular regulatory networks, it is natural to consider each cellular network as a module. Moreover,
based on previous knowledge, sub-networks are often attributed specific functions within complex cellular
processes. This is the case of the cell cycle control for which specific modules are associated to check-points,
entry or exit control of specific phases, etc. In [12], a logical model was defined by combining three modules
involved in the control of the budding yeast cell cycle. Logical modelling was also applied to multi-cellular
networks controlling early embryonic developmental processes in Drosophila [6,15,29].

The composed models cited above were manually defined from smaller modules. Indeed, little work
on model composition has been carried out, although it has been identified as a major goal in systems
biology [32]. Generally, existing composition procedures are not automatic and aim at properly defining
a composed model, while little attention is paid to the analysis of the (potentially very large) associated
dynamics [26,30,31]. In any case, these studies mainly focus on biochemical reaction networks. Concerning
the composition of logical regulatory modules, a framework based on high-level Petri nets has been developed,
providing a formal and systematic procedure [5]. However, it still does not solve the scalability issue of the
analysis since the resulting composed models have still to be analysed in a monolithic manner.

[26] consider models in the form of sets of nonlinear differential equations and propose three different ways
of combining sub-models: composition, fusion and aggregation. Model composition and fusion, respectively,
keep or eliminate references to the original sub-models, while model aggregation requires that individual
sub-models come with their input and output ports (similar to our definition of logical regulatory modules).
These notions are important to distinguish different types of model combination, but, again, they do not
address the issue of analysing the resulting models. In this paper, we simply refer to the combination of
models as model composition.

Process algebras aim at representing and analysing complex interacting (discrete) systems. These ap-
proaches have led to the development of compositional approaches that mitigate the combinatorial explosion
problem through the minimisation of the individual dynamics while preserving properties of interest, and
then by incrementally composing and minimising intermediate dynamics, until a description of the global
behaviour is obtained.

Process algebras have already been considered for biological processes (see, e.g., [7] and references therein),
adopting different modelling approaches.

Recently, a compositional algorithm was proposed for gene regulatory networks modelled as piecewise-
linear ODE systems to check the reachability of a specific steady state from an initial condition [16]. In
contrast, we determine all stable states reachable from a given initial condition (see SectionMlfor a comparison
of the two approaches).

In this paper, we propose a new computational approach to cope with the combinatorial explosion that
hampers proper analyses of models defined as compositions of logical regulatory modules. For simplicity, we
restrict ourselves to the composition of identical modules, which is often the case of multi-cellular systems.
In any case, this constitutes an important class of applications that notably includes most of the patterning
problems in developmental biology. Furthermore, we are concerned with the reachability of stable states
that is a property of real interest for differentiation regulatory networks.

We thus define a framework to compose logical modules by means of logical integration functions de-
scribing how modules interact with their neighbours. We establish a constructive method to determine the
dynamics of the composition from the dynamics of the individual modules and their interactions. Then,
we rely on process algebra techniques to generate, abstract and minimise the behaviours of the modules,
yet preserving reachability properties. These dynamics are iteratively combined and minimised, to obtain
a final, reduced description of the dynamics of the composed model. Minimisation relies on an equivalence
relation, which is chosen depending on the property to be preserved. Here, we rely on the safety equivalence
that preserves the reachability of the stable states, while ensuring significant reductions of the dynamics.

For the implementation, we use the CADP toolbox (Construction and Analysis of Distributed Processes
[14]) to specify the dynamics of the logical modules and to implement operations of abstraction, minimisation



and incremental composition.

The paper is organised as follows. First, in Section 2] we introduce the modelling framework with formal
definitions of Logical Regulatory Module (LRM), logical integration function, composition rules, as well
as the corresponding dynamics. Section [J] presents the principles of abstraction and minimisation, relying
on classical process algebra operations; other implementation aspects are also briefly discussed. Section [
includes the application of our procedure to the Segment-Polarity and the Delta-Notch modules. These case-
studies illustrate the potential of our approach to analyse crucial properties of composed LRMs dynamics
that are far too large to be comprehensively tackled with currently available tools.

2 Methods

This section introduces Logical Regulatory Modules (LRMs) and their composition, which results in a unique
LRM. Furthermore, it presents the dynamics of LRMs represented as State Transition Graphs (STGs).
Importantly, we prove that composing the individual dynamics is equivalent to constructing the dynamics
of the composed model (formal definitions and proof of the theorem are provided in the Supplementary
Materials).

2.1 Logical regulatory modules and their dynamics

A schematic representation of a four-components LRM is displayed in Fig. [l A. In this view, a LRM is an
open system with two kinds of components. Proper components and their regulatory interactions define the
internal dynamics of the system, while input components represent external stimuli. Proper components are
subject to regulatory effects of other components, whereas input components are unconstrained (their values
may be set by the environment or by other modules during the composition).

Definition 1. A Logical Regulatory Module (LRM) is defined by a triplet N = (G, U, K), where:

e G = {gi}ieLc is the indexed set of the proper components (Lg is the corresponding set of indices);
U ={ui};cy, 15 the indeved set of the input components (Ly is the corresponding set of indices);

C=GUU = {ci};cy,. 15 the set of all the components.

e FEach component ¢; € C 1is associated with a domain D; = {0,...,M;} C N and the variable v; € D;

denotes its level. The state space S is given by HieLc D; and v € S denotes a state.

o K = (K;)icL, are the logical regulatory functions of the proper components; Vg; € G, K; : S — D;,
and K;(v) is the target value of g; in state v, i.e. the value towards which it evolves.

Briefly, the variable associated to a component of a LRM (gene, protein, etc.) represents its functional
level (e.g. activity or concentration). Generally, this variable is Boolean, but some situations require ad-
ditional values (see [34]). The logical regulatory function defines the evolution of the corresponding proper
components depending on the levels of their regulators. Hence, given a state (current levels of all the com-
ponents), some components may remain stable, while others may be called to change their values, giving
rise to state transitions.

The asynchronous dynamics of a LRM is represented by a STG (see Def. S1 in the Supplementary
Materials and Fig. [[}-B for an illustration). The successors of a state v are defined by all transitions going
out of v: input transitions (towards states that differ from v only by the value of an input component) and
proper transitions over components g; € G such that K;(v) — v; # 0 (i.e. called to update in state v). In
this discrete framework, stable states are those with no outgoing transitions. Because input components
freely vary, there are no such states for a LRM with inputs: each state is connected to all states that differ
only by the value of an input variable. This leads to the definition of strong and weak stable states with
respect to the proper components (see Fig.[[I-B and [22]): in strong stable states, proper components remain
stable whatever the variation of the inputs, while in weak stable states, proper components are stable only
for specific values of the inputs.

In practice, since we are interested in reachability properties from an initial condition sg, instead of the
full STG, we consider only the sub-graph that is reachable from s (Def. S2 in the Supplementary Materials).



2.2 Module composition

In order to compose LRMs, one needs to specify how they influence each other. This is done by first
specifying a neighbourhood relation for each input component, which is then mapped to proper components
of its neighbouring modules. This mapping, along with the specification of a logical integration function,
determines how signals are combined. Thus, the evolution of mapped inputs depends on the evolution of
the arguments of their integration function, whereas unmapped (free) inputs remain unconstrained. Finally,
regulatory effects of mapped inputs are replaced by the (integrated) regulatory effects from the components
they are mapped to. This amounts to adequately redefining the logical functions of proper components
regulated by mapped inputs, which are removed (reduced) following the reduction method introduced in [25].

Definition P2l below formalises the composition of 7 LRMs (N (k)) w1 - Forsimplicity, we assume that for
all distinct k, k" (in {1,...,7}) Low N Loy = O (in other words, all indices are distinct). As a consequence,
indices uniquely correspond to components. Hence all objects associated to a component g; will be indexed
by i without any confusion. We also introduce an additional notation: ¥X C C, S|x = HZ—GX D; and v|x is
such that (vix); = vy, Vi € X.

Definition 2. Consider r LRMs N¥) = (G(k),U(k),K(k)), k = 1,...,r and the composition rule M
defined over the set of all the input components such that, for any input g; € Uk, M(g;) = (Z;, h;) with

Z; C Uk';ék G(kl), the set of proper components mapped to g;; h; : [] D; — Dj, the logical integration

gi€Z;
function defining the behaviour of g; (if Z; =0, g; remains free and h; is the empty function).

Then the composition of the r LRMs, denoted @), {N(k)}kzl ., isa LRM N = (G,U, K) with:

e G=Upr ., G®) | the set of proper components, and U = Uk=1....r (U(k) \ (7(’“)), the set of input

components (where Uk = {g; € U® | Zj # 0} is the set of mapped input components), C = GUU
and Lo the corresponding set of indices;

o S =1licr.D; the state space;

e The logical requlatory functions (K;)icr, are defined adequately for any proper component g; € G :
YoesS, K;(v)= Ki(k)(w), weSH®, st Vg, € CW\NUP, w; =v; and Vg; € UM w; = h; (v)z,).

Note that nothing in our definition of LRM composition requires the individual modules to be identical;
they can be different LRMs provided that they do not overlap (i.e. do not share identical proper components).
Therefore, even if our applications involve only identical networks, the proposed framework is generic.

2.3 Dynamics of composed modules

We now proceed with the characterisation of the dynamics of composed models since our aim is to check
reachability properties over these dynamics.

The composition of STGs can be formally defined and the dynamics of the LRM, composed from r
modules, equals the composition of the individual dynamics of the modules (see Theorem [I below). In other
words, to study the dynamics of a composed model, we can either compose the modules and then construct
and analyse the (large) STG or analyze the modules dynamics in a compositional manner. Definitions and
proof of the theorem are provided in the Supplementary Materials. Here, we give an intuitive introduction
to STG composition and include our main result ensuring the compositionality of our approach.

Composing STGs leads to a new STG, where the states are any combinations of states of the original
STGs in which the values of the mapped inputs are compatible with the values of the proper components
they are mapped to (compatible states; see Def. S3 in the Supplementary Materials). Transitions going out
of a composed state involve only proper components and free inputs, if any free input remains after the
composition. Hence, considering a particular state s in the STG of one module, the transitions leaving s
have their counterparts in the composed dynamics in all states resulting from the composition of s with
compatible states of the others STGs. Moreover, any transition going out of s that involves a mapped input
is accounted for by (or synchronised with) transitions over proper components involved in the integration



function of this input. Panels D-F in Fig. [I illustrate the composition of two STGs reachable from two
compatible initial states.

The following theorem asserts that the dynamics of the composition of LRMs matches the composition
of their individual dynamics. Importantly, this also applies to the composition of STGs reachable from
(compatible) initial conditions.

Theorem 1. Consider N = @) , {N(k)}k:1 . the LRM defined as the composition of r LRMs. The STG
En of N s equal to the composition of the r STGs: En = @) 5, {E(k)}k:1 -

So far, we have defined the framework for LRM composition and shown that one can equivalently generate
the dynamics of the composed model or generate the individual dynamics and compose them in any order.
The next section is devoted to the implementation of this framework. Because compositional analysis has
been well studied in the framework of process algebras, and efficient tools have been developed, we recast
our original problem in the realm of process algebras.

3 Implementation

To alleviate the combinatorial explosion of the dynamics associated with LRMs, we rely on classical abstrac-
tion and minimisation techniques. Here we describe the key features of the implementation. More details
can be found in the Supplementary Materials.

3.1 LTS abstraction and minimisation

Process algebra techniques apply to Labelled Transition Systems (LTSs) representing the dynamics to be
analysed. Basically, in contrast to STGs where all the information is stored in the states, in a LTS the infor-
mation is put onto transition labels. These refer to actions performed by the transitions (here, component
updates). Converting a STG into a LTS is thus quite direct. The addition of a specific self-loop transition
on (weak and strong) stable states (in which proper components are stable) is a technicality that will ensure
the preservation of all paths leading to these states. This transition translates into a specific action denoted
L in the LTS representation.

Abstraction is obtained by defining a set of components as non-visible: their modification is not observ-
able. All transitions involving such components, termed non-visible transitions, can simply be labelled by a
special action denoted 7. Then, minimisation consists in building a new LTS equivalent, in some sense, to
the original LTS. Equivalence is defined with respect to one of the various equivalence relations described
in the literature, each of them preserving certain properties of the original LTS [2,21,35]. Some of these
relations are implemented in publicly available tools (in particular, CADP).

The choice of an equivalence relation depends on the property to be checked. Here, we aim at identifying
all the stable states reachable from an initial condition. We thus opt for the safety equivalence that elicits
the elimination of all 7 transitions and redundant paths, while preserving reachability properties.

We define key components as those allowing the distinction between the potential stable states. They
are defined as the visible components for the abstraction operation (the remaining components are thus
non-visible). After the minimisation step, the states in the reduced LTS that correspond to stable states in
the original dynamics are recovered thanks to the | action.

From the onset, the dynamics of each module can be abstracted and minimised in terms of the key
components before the composition. Only visible components and components that are involved in the
composition need to be preserved. The main advantage of this approach is that, by successively performing
composition followed by abstraction and minimisation, the full dynamics of the composed model are never
generated. However, this incremental composition requires some adaptation described in Section [3.21

The aforementioned abstraction, minimisation and composition operations are performed using the
CADP toolbox [14], which provides several tools to produce, transform and analyse LTSs from process
specifications.

LRMs behaviours are expressed using the LOTOS NT specification language [4], in terms of a process with as
many associated gates as components (input and proper components), and with state variables representing



the values of the components. Each gate can issue actions with labels denoting updates of component
values. The process evolution is driven by the logical rules that elicit updates of the state variables. When
the conditions associated to a component update are met, an action associated to the gate of the component
is issued, the corresponding state variable is updated accordingly, and the main process loops back. When,
for the current values of the state variables, the logical rules do not permit any further evolution of the
proper components, a | action is issued.

Then, the reachability of each potential stable state is verified on the minimised LTS, checking whether
there is a path from the initial state towards a | action and leading to a final value of the key components
corresponding to that stable state. In our implemented workflow, this reachability analysis is performed by
using the model checker of CADP.

3.2 Incremental composition of LTSs

In this section we discuss the main implementation aspects of the incremental composition of LTSs (see
Supplementary Materials and the code documentation for further details). The composition is specified by
providing;:

1) The LRMs to be composed and a neighbourhood relation;

2) The integration functions of the mapped inputs;

3) The list of key components — having the potential stable states of the composed model (obtained via
static analysis), we can specify the minimal set of components that should remain visible;

4) The (global) initial state — which indicates the initial value of the components in each individual LRM.

The integration of the regulatory signals originating from neighbouring modules is specified by the inte-
gration function associated with each mapped input. The values of these functions are partially constrained
in the course of an incremental composition, as the values of each argument become bound to an actual
proper component — the corresponding actions are to be synchronised. This is why we propose to model
integration functions as independent processes with their own dynamics. More precisely, a LTS is generated
for each integration function h; (associated to an input component g;). Actions in this LTS reflect the
updates of both the function arguments and the function value. The values of the function arguments are
allowed to vary freely. More precisely, from a given state, if the update of a proper component g; influencing
the value of g; (i.e. gr € Z;) has no impact on the value of the integration function h;, the LTS contains an
action corresponding solely to the update of gi. If, on the other hand, this update does change the value
of h;, the action refers to both g; and g; updates. In subsequent composition operations, all these actions
must be synchronised with the appropriate actions in the LTSs accounting for the evolution of the relevant
components (the arguments of h;), and with the actions over g;.

Most importantly, to ensure a correct synchronisation, actions over mapped input components and ar-
guments of integration functions must be kept visible during the incremental composition until they are no
longer required.

Reduced LTSs of individual modules are incrementally composed following the specified rules. At each
step, components that are no longer needed are made non-visible (new abstraction step) and the LTS of the
intermediate composition is minimised.

Upon the last composition step, a final abstraction and minimisation step is undertaken, where only key
components are kept visible thus obtaining a minimal description of the dynamics of the whole composition.

Given the LOTOS NT specifications of the module and of the integration functions, the synchronisation
(composition) of the whole is specified by way of synchronisation vectors [18]. A high-level language pro-
vided by CADP called SVL [13] is used to specify the generation of the LTSs for each individual LRM, their
preliminary minimisation step, subsequent synchronisation steps, as well as the final abstraction and min-
imisation operations. The intermediate composition steps are automatically produced by CADP. The SVL
script as well as the EXP [18] file, which specifies the synchronisation vectors, are automatically generated
from a symbolic representation of the LRM exported from GINsim and processed using Perl scripts.

Note that, for simplicity, our current implementation performs composition for multi-cellular systems such
as the ones presented in Section[# modules are identical (r instances of a unique LRM), the neighbourhood
relation is defined as a r X r adjacency matrix, and the (same) inputs in distinct modules are uniformly
mapped to proper components from neighbouring modules. Hence, it is enough to specify the integration



functions of the mapped inputs, with the proper components that are to be taken as arguments.

3.3 Note on composition order

The order followed to compose the modules affects the performance of our method. Our implementation
relies on the smart reduction [8], which is an operator of SVL that determines the order of the composition,
including the synchronisation, abstraction and minimisation operations. The underlying heuristics aims at
controlling the size of the intermediate LTSs. It generally performs poorly in the case of LRM composition,
because it preferentially synchronises all LTSs related to the integration functions (which are usually smaller),
then composes the LTSs associated to the modules and finally combines all these intermediate LTSs. As a
consequence, all the restrictions on the dynamics of a module (imposed by its neighbours via the integration
functions) are put in place later rather than sooner, giving rise to large intermediate LTSs. We further
discuss and illustrate this issue of the composition order in Section ATl

4 Applications

To evaluate our method, we consider the Segment-Polarity and the Delta-Notch modules (various composi-
tions of four instances of the toy LRM introduced in Fig. [l are presented in the Supplementary Materials).

4.1 The Segment-Polarity module

The Segment-Polarity module (SP) is involved in the fruit fly embryo segmentation, which has been exten-
sively studied by geneticists as a model system for development. Early embryo organisation into a series of
segments along the antero-posterior axis is initiated by maternal morphogens, which control a few dozens of
genes. These genes have been split into several classes. The first classes, gap, pair-rule and segment-polarity
modules, constitute a temporal hierarchical genetic system. Segment-polarity genes are under the control
of the pair-rule genes. Their patterns of expression define the anterior and posterior parts of the embryonic
segments and they are responsible for the consolidation of these borders [28]. The segment-polarity (SP)
module has been modelled using continuous [17] and logical approaches [6,29]. Here, we rely on the model
defined in [29], with an intracellular network of a dozen of components, submitted to two external inputs
(the Wingless (Wg) and Hedgehog (Hh) signals).

We compose two modules, accounting for the cells flanking the segmental border. Figure [ illustrates
this model and the results contrasting the STG size with the minimised LTS size for a full version of the
model and a reduced one. The initial condition accounts for the outcome of the activity of the pair-rule
system [28,29]: significant amounts of Wg and Slp in the anterior cell, a significant amount of En in the
posterior cell. The three stable states reachable from this initial condition combine three cellular patterns: a
Wg expressing state (denoted W), an En expressing state (E), and a trivial state (T) with neither Wg, nor
En. They correspond to the expected wild type pattern WE in addition to the TT and EW patterns [29]. We
also consider a reduced (intra-cellular) regulatory graph with 9 components and 31 regulatory interactions.
It has been obtained by applying the reduction method available in GINsim and described in [24]. Note
that with GINsim, it was impossible to construct the STG for the full model, and for the reduced model
the resulting LTS structure is much smaller and thus more amenable to further analysis (see Fig. B-C-D).
In [29], the construction of the STG was interrupted as soon as the WT and TT stable states were reached.

To investigate the impact of the composition order, we now consider six instances of a further reduced
SP module (with 3 proper components: Wg, En, Hh). These modules are organised along a line, each having
two neighbours, except for the two extreme ones. For each instance i (i = 1,...,6), our method generates
three LTSs: 1) M;, LTS of the i-th module; 2) H;(Hh), LTS of the integration function of the input Hh in
the i-th module; 3) H;(Wg), LTS of the integration function of the input Wg in the i-th module.

Table [ illustrates the impact of the composition order. It first includes the composition steps as per-
formed by the smart reduction implemented in CADP. The intermediate LTSs grow very fast. Indeed, we
can observe that composition operations are performed over LTSs that have no synchronisation restrictions
(because they are not related, such as, e.g. H2(Wg) and H5(Wg)). In this specific case, the smart reduction
heuristics performs poorly. Even the monolithic composition of all the LTSs (in a single step) leads to a much



better performance. A better composition order, drawn from the knowledge of how each LTS restricts its
neighbours, consists in first composing the LTSs of each regulatory module with the LTSs of the integration
functions of their input components, and then to iteratively compose these LTSs along the line of the six
modules (see Table [I]).

4.2 The Delta-Notch module

The Delta-Notch module is involved in cell differentiation in crucial steps of embryonic development of several
species [16,19]. In each cell, when active, the Notch protein inhibits the production of Delta. The production
of Notch is stimulated by the presence of Delta in neighbouring cells. These regulatory interactions, for a
single cell, can be represented by the logical module shown in Fig.Bl where the Delta_ext component accounts
for Delta in the adjacent cells. This simplified model is the Boolean counterpart of the model used as a case
study for the compositional verification approach described in [16]. Similarly to [16], cells are hexagonal (i.e.
they can have up to 6 neighbours), and the integration function of the input component Delta_ext is a logical
OR between all the Delta components in neighbouring modules. We illustrate our approach by considering

| Composition | Resulting LTS size | Minimised LTS size |
Incremental composition, smart reduction
El H3 (Wg) ® H5 (Wg) 27 27
Hy(Wg) @ Hy(Wg) 27 27
Eg = Hg(Hh) ® Hs(Hh) 27 27
L4 = Ho(Hh) ® H4(Hh) 27 27
L5 =M ® Mo 729 729
Le = M5 ® Mg 747 747
Lr=Lo® Hﬁ(Wg) 27 27
Lgs =L ® Hy (Wg) 27 27
Lo=L4® Hﬁ(Hh) 27 27
L9 = L3 Hy (Hh) 27 27
L11 = M3 ® My 8 019 8 019
Li2=L11® Ly ® L5 1 764 450 1130 157
L1353 =L12® L10 R Lg 25 999 469 out of memory
Monolithic composition, in one step
®r.o (M, © H,(H) © H,(Wg)) | 548 208 861
Incremental composition, specific order
Ci =M ®H1(Hh)®H1(Wg) 81 81
Cy =M ® HQ( ) ® HQ(Wg) 729 729
C3 = M3 ® Hs (Hh) ® Hg(Wg) 729 729
Cy=Ms® H4(Hh) ® H4(Wg) 891 891
Cs = Ms ® Hj (Hh) ® H5(Wg) 891 891
Cs = Mg ® Hg (Hh) ® Hﬁ(Wg) 81 81
L1 =C1®Cy 729 585
Lo=L1®C; 5 265 2 691
L3 =Ly ®Cy 27 027 7101
L4=L3®RCs 75 852 32 409
L5 =Ly ®Cs 19 829 864

Table 1: Impact of the composition order illustrated with 6 instances of a reduced version of the SP module
(3 proper components), interconnected along a line; the 1st and the 6th modules have one neighbour (the
2nd and the 5th), all other modules have two neighbours. The left column indicates the LTSs that are
synchronised, each step defining a new LTS; the middle column contains the size of the resulting LTS, while
the right column gives the size of the minimised LTS. First, the results relate to the order performed by the
smart reduction available in CADP. Then, the composition is performed in one step and, finally, incremental
composition is performed following an order based on the structure of the model (see text).

8



three compositions: DN7, DN10 and DN12 depicted in Fig. Bl

In Gossler’s paper, the reachability of a specific stable state from an initial condition was checked in
models encompassing up to 343 modules. In contrast, we could only deal with models encompassing up
to a dozen of modules. However, we answer a different problem, since our procedure accounts for all the
trajectories from a given initial condition to any reachable stable state, which is certainly different from
verifying the existence of one trajectory leading to one specific stable state (note that the number of stable
states grows rapidly with the number of interconnected modules and depends on the neighbouring relations).

An isolated, open module has two stable states: when Delta_ext is active, Notch eventually becomes
active and Delta inactive, otherwise Notch remains inactive and Delta becomes active. Either stable state
can be univocally identified by the value of e.g. Delta, hence there is a single key component in each module.

In the case of DN7 as depicted in Fig. [ if all modules start with both Delta and Notch inactive, then
the 6 stable expression patterns are reachable. The pattern of Delta expression that ultimately emerges
depends on which cells express Delta sooner. The STG generated with GINsim shows that from this initial
condition, almost the entire state space is explored (there are 16 024 reachable states for a total state space
of size 16 384). The minimised LTS (retaining only Delta as a visible component) contains 2 290 states,
which is a significant reduction (it is then possible to check on this reduced LTS that the 6 stable expression
patterns are reachable). The reduction is even more significant in the case of DN10. For DN12, only the
compositional framework we propose here can solve the problem.

5 Conclusions

Pattern formation notably relies on inter-cellular communication, while involving intra-cellular regulatory
processes. Several logical models dealing with such developmental processes have been published [1,6,15,29].
However, current monolithic approaches are not appropriate to answer questions that require searching the
(generally huge) state space. In particular, the study of inter-cellular networks involved in differentiation
processes focuses on the reachability of stable expression patterns from given initial conditions. Here, we
have introduced a framework to address the combinatorial explosion of logical models that can be specified
as module compositions. Our approach is made operational by recasting Logical Regulatory Module com-
position in terms of process algebra operations. We rely on GINsim for the definition of the LRMs and on
CADP for the composition, abstraction and minimisation operations. The procedure has been applied to
the Segment-Polarity and the Delta-Notch modules, showing that huge reductions can be obtained.

With the study of the SP module, we could discuss the problem of the composition order. At present, the
public release of CADP does not provide instructions to make smart reduction adopt an order different from
what the built-in heuristics determines, although the appropriate specification of the several intermediate
synchronisation steps can be manually done by a proficient CADP user. In general, it is not trivial to
determine the optimal composition order. However, considering the application we are dealing with, we
propose an alternative heuristics that should lead to reasonable performances. It consists in composing the
LTSs of individual LRMs with the integration functions of their inputs and progressively proceed according
to the specified neighbourhood relation.

Our results indicate that, while our compositional framework leads to a significant decrease of the size
of the behaviour, there is still room for improvement. In the case of the reduced SP model, the number of
states in the dynamics is reduced by two orders of magnitude. Nevertheless, the asynchronous dynamics are
often huge, since they include all possible behaviours from a given initial condition, resulting in dynamics
that explore a large portion of the state space. Most of the trajectories represented in these dynamics
are generally not pertinent from the biological point of view. Several methods aim to avoid non-realistic
trajectories in asynchronous dynamics, among them the consideration of priority classes [11]. Future work
will extend LRM composition rules, accounting for such modified dynamics.

In this paper, we have used minimisation modulo safety equivalence, which provides a good compromise
between algorithmic complexity and compression of the state space. Most importantly, the safety equivalence
preserves the reachability of stable states, a crucial property when studying differentiation processes. This
property could be enriched to verify additional features along the trajectories leading to the states of interest,
such as whether a given component is always required to change. Other verification techniques could prove
efficient in our context, including the consideration of on-the-fly verification directed by a property to be
checked [18,20].



The compositional framework presented here constitutes a novel and systematic method to compose
logical regulatory modules and to efficiently perform comprehensive analyses of their behaviours. This will
greatly facilitate the definition and analysis of network models involved in various multicellular patterning
systems.
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Figure 1: (A) A simple, toy Logical Regulatory Module, where each proper component has one activator,
g3 being further inhibited by the input component gog. (B) The corresponding STG; each node is a state
(vo, v1, V2, v3); dotted arrows depict input transitions over go; plain arrows depict proper transitions; black
nodes denote states in which proper components are stable (the sole outgoing transition refers to the input).
The pair of states defined by v1 = va = v3 = 0 (respectively v1 = vy = v3 = 1) define a strong (respectively
weak) stable state with respect to the proper components. (C-F) Composition of two instances of this LRM.
A relabelling of the components ensures their uniqueness: component g; of module M; (j-th instance of the
LRM) becomes g;;. In panel C, the input go; of M; is mapped to the proper component gso of module
Ms: M(up1) = (Zo1, ho1), with Zg1 = {g22} and ho; the identity. For the sake of brevity, the dynamics are
truncated at depth 2 from the initial states. Panel D (respectively E) displays the (truncated) STG of M;
(respectively M) from the initial state vél) = (1,1,1,0) (respectively vé2) = (1,0,1,0)). These states are
compatible: vy = vaa = hp1(ve2) = 1. Panel F displays the composed STG: transitions over go; are lost
(go1 is a mapped input), while transitions over ggo are preserved. The (red) transition that sets g2 to 1

from the initial state v(()2) in panel E gives rise to 2 transitions in panel F, the first leaving the initial state

v, the second leaving vs. Likewise, the (dark green) transition that sets g1 to 0 from the initial state vél)

has 4 counterparts: (dark green) transitions from wg, v1, v and vy.
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(Fe B Full model (12 components per cell)
A1
STG (GINsim) LTS (CADP)
time 6.62 days 6.69 hours
| size (states) — 9 701
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Figure 2: (A) Composition of two instances of the segment-polarity module, accounting for the two cells
flanking the segmental border. Each module contains 12 components among which 7 are associated to
Boolean variables (oval nodes) and 5 to ternary variables (rectangle nodes); suffix ’a’ (respectively 'p’) denotes
components of the cell anterior (respectively posterior) to the border; regulatory interactions are denoted
by arrows (activation) or flat-end edges (repression); inter-cellular interactions are denoted by thick edges.
Additionally, grey nodes are reduced to obtain the 9-components version of the model. (B—C) Measures
for the construction of the dynamics, in terms of size (number of states), time and memory use, for the full
(panel B) and reduced (panel C) models.

Delta-Notch module DNT7 & stable patterns DN10 DN12

% g 6% g £
i | @mea

DNT7 topology DNI10 topology DNI12 topology
STG (GINsim) | LTS (CADP) STG (GINsim) | LTS (CADP) STG (GINsim) | LTS (CADP)
time <ls 2.25 minutes time 3.82 minutes 6.52 minutes time - 1.54 hours
size 16 024 2290 size 1 022 890 63 179 size 523 611
memory | 7.36 MB 2.46 GB memory | 555 MB 18.98 GB memory | out of memory | 45.69 GB

Figure 3: Composition of the Delta-Notch module. Top left panel displays the Delta-Notch Logical Reg-
ulatory Module. All components are Boolean. Delta and Notch are proper components and Delta_ext is
an input component integrating the influence of Delta from neighbouring modules (the integration function
being a disjunction). In the initial state, all variables are set to 0. Three cases are analysed: DN7 referring
to the composition of 7 instances (cells) of the module, following the neighbouring relations as illustrated
(the cell at the centre receives a Delta signal from its 6 neighbouring cells, all the other cells have 3 neigh-
bours), DN10 and DN12. For DN7 there are 6 (reachable) stable expression patterns as depicted (a black
dot indicates a cell with active Delta); DN10 gives rise to 14 stable expression patterns and D12 to 22 stable

expression patterns, all being reachable from the specified initial state. Performance results are given for the
three cases.

14



	Introduction
	Methods
	Logical regulatory modules and their dynamics
	Module composition
	Dynamics of composed modules

	Implementation
	LTS abstraction and minimisation
	Incremental composition of LTSs
	Note on composition order

	Applications
	The Segment-Polarity module
	The Delta-Notch module

	Conclusions

