International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-019-00513-7

REGULAR PAPER

f')

Check for
updates

A formal approach to AADL model-based software engineering

Hana Mkaouar’ - Bechir Zalila' - Jérome Hugues? - Mohamed Jmaiel'3

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Formal methods have become a recommended practice in safety-critical software engineering. To be formally verified, a
system should be specified with a specific formalism such as Petri nets, automata and process algebras, which requires a
formal expertise and may become complex especially with large systems. In this paper, we report our experience in the
formal verification of safety-critical real-time systems. We propose a formal mapping for a real-time task model using the
LNT language, and we describe how it is used for the integration of a formal verification phase in an AADL model-based
development process. We focus on real-time systems with event-driven tasks, asynchronous communication and preemptive
fixed-priority scheduling. We provide a complete tool-chain for the automatic model transformation and formal verification
of AADL models. Experimentation illustrates our results with the Flight control system and Line follower robot case studies.

Keywords Safety-critical software engineering - Real-time systems - Ravenscar profile - AADL - Formal specification -

Model-checking - CADP

1 Introduction

Software engineering in safety-critical domains such as
transport, health and aerospace industries is a quite deli-
cate field in computer science. In such a context, designers
often cope with large distributed, real-time and embed-
ded systems with diverse requirements. Several approaches
(modeling, verification, code generation and testing) have
focused on simplifying such complex constructions with
more abstraction in system design and automation in devel-

B<I Hana Mkaouar
hana.mkaouar@redcad.org

Bechir Zalila
bechir.zalila@redcad.org

Jérdme Hugues
jerome.hugues @isae.fr

Mohamed Jmaiel
mohamed.jmaiel @redcad.org

I ReDCAD Laboratory, University of Sfax, National School of
Engineers of Sfax, BP 1173, 3038 Sfax, Tunisia

Institut Supérieur de 1’ Aéronautique et de I’Espace
(ISAE-SUPAERO), Université de Toulouse,
31055 Toulouse Cedex 4, France

3 Digital Research Center of Sfax, B.P. 275, 3021 Sakiet Ezzit,
Sfax, Tunisia

Published online: 07 March 2019

opment tool-chains [56]. Among these approaches, we note
the Model-Driven Engineering (MDE) methodology. It is
a development trend based on modeling language, model
transformation, production of documentation and code gen-
eration. Theoretically, MDE approaches aim to abstract the
system representations and allow a coherent evaluation of
the system from the specification until the final application.
Technically, tools supporting MDE provide mainly auto-
matic generation, analysis and simulation of models and
code.

Other promising approaches are formal methods, which
refer to mathematically rigorous techniques and tools for the
specification and verification of systems. During the past
decades, formal methods have become one of the advo-
cated techniques in safety-critical software engineering [56].
Indeed, they are now accepted in certification processes (e.g.,
DO-333 [51], formal methods supplement to DO-178C and
DO-278A standards for avionics systems) as a way to get
certification credits by authorities. For these reasons, the
integration of formal methods in MDE approaches seems
rewarding.

However, their application requires a formal expertise: the
considered system should be specified with a specific for-
malism such as automata and Petri nets, based on a formal
semantics described using mathematical approaches, to be
explored by dedicated analysis tools. In contrary, the seman-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-019-00513-7&domain=pdf

H. Mkaouar et al.

tics of modeling (architectural) languages such as AADL
and MARTE is often given in natural language (i.e., stan-
dard and manual documents). This lack of formal semantics
makes modeling languages inappropriate for formal verifi-
cation, they cannot be explored directly by formal analysis
tools. Therefore, it is useful to provide an automatic model
generation of the formal specification that can be used and
reused to encourage the practice of formal methods and assist
designers in system verification.

In this context, we aim to integrate a formal verification
phase in an MDE approach based on the AADL (Architecture
Analysis and Design Language) [1] language. AADL is an
industrial architectural language for critical domains such as
avionics, automotive electronics and robotics. It is considered
as a leader in real-time modeling and ranked in [39] among
the top-used languages in industry. AADL is standardized by
the SAE!, and its second version was published in 2009 and
revised in 2016.

Our contribution consists of two main parts. In the first
one, we describe and justify a formal mapping of a real-
time task model compliant with the Ravenscar profile [13]
for safety-critical systems. This mapping is based on a con-
ventional tasking model inspired from Liu and Layland [37]
with rigorous semantics and strong requirements defined by
the Ravenscar profile [13]. It is designed to be modular and
comprehensible so that it can be easily extended and used in
MDE approaches. We mainly support periodic and sporadic
tasks, which are asynchronously connected and concurrently
executed by a preemptive fixed-priority scheduler. Different
model features are specified with the LNT? [14,23] formal
language, which is a process algebra based on two stan-
dards LOTOS and E-LOTOS [23]. LNT provides sufficiently
expressive operators for data and behavior with user-friendly
notations to simplify writing and extension. The LNT lan-
guage is supported by the CADP [22] (Construction and
Analysis of Distributed Processes) toolbox. This analysis
tool, developed since the mid-1980s, offers diverse formal
methods like model-checking and simulation. It is a well-
experimented toolbox, used in many industrial applications
(e.g., Airbus company [19]).

In the second part, we describe an AADL MDE approach
integrating the formal verification at the modeling phase. This
allows the early detection of deeper problems that can lead
to serious errors in the final application. Especially for real-
time systems that consider both concurrency and real-time
requirements, it is necessary to validate temporal parameters
such as periods, capacities, scheduling protocols, etc. This
verification is supposed to be automatic and transparent to

I Society of Automotive Engineers.

2 LNT is developed by the VASY and CONVECS teams from Inria for
safety-critical systems.

@ Springer

simplify and encourage the practice of formal methods in
software engineering.

For AADL formal verification, existing works often adopt
the transformation of AADL models into other formal mod-
els such as timed automata [34], BIP [15], TASM [57] and
FIACE [7], to allow their formal verification with existing
analysis tools like Tina, UPPA AL and Polychrony. In general,
the focus of these approaches is on the model transformation
to generate a formal specification, without automating the
next steps required to succeed the model verification. Indeed,
providing the formal specification is an important step, but
further steps are required to accomplish the verification. The
formal techniques are applied on the state space of the system,
built from the formal specification according to the language
semantics. The properties (system requirements to be ver-
ified) should be also specified as graphs or temporal logic
properties using dedicated formalisms. In addition, many
existing AADL transformations ignore important issues con-
cerning the generated analysis results (utility, usability, etc.),
and the fact that the formal verification may fail because of
scalability problems.

In our work, we propose and evaluate a transformation
AADL2LNT from the AADL language to the LNT language.
A basic proposal was discussed in [43], we presented a trans-
formation from AADL into LNT about only periodic tasks.
In this paper, we propose to optimize and complete the LNT
mapping to support a Ravenscar compliant task model. The
AADL2LNT transformation is implemented within the Oca-
rina [25] tool suite, a development environment for AADL
modeling, in order to automatically generate an LNT spec-
ification ready for analyzing with the CADP toolbox. In
addition, a script file, written in the SVL (Script Verifica-
tion Language) [20] language, is also generated to assist the
verification with CADP. This script ensures the generation of
the state space of the LNT specification and the verification of
a set of generic properties to check serious problems such as
the deadlock detection, the schedulability test and the detec-
tion of connection failures. Finally, the verification phase
ends with the generation of user-friendly analysis results,
easily interpreted by non-formal-expert designers. As part of
our experiment, a scalability study is carried out to show the
effectiveness of the proposed solution in the case of large
systems.

The remainder of this article is organized as follows:
Sect. 2 presents some elements of both LNT and AADL lan-
guages required in our contribution. In Sect. 3, we develop
an LNT formal mapping for a real-time task model. Sec-
tion 4 details the AADL2LNT transformation. Experimental
results are discussed in Sect. 5. Section 6 discusses related
work. Finally, conclusions and future work end the paper in
Sect. 7.

A formal approach to AADL model-based software engineering

(process MAIN R
synchronization X
process A process B
- 4
D process [l gate = rendezvous

Fig.1 LNT graphical representation

2 Background

In this section, we present the LNT language. Then, we
briefly introduce a subset of the AADL language considered
in our MDE application.

2.1 LNT

The LNT [14] language combines features from process alge-
bras and programming languages with a dynamic semantics
based on the formal SOS (Structural Operational Semantics)
rules.

The LNT specification distinguishes two parts: a data
part that defines types and functions; and a control part that
defines the behavior (within processes). The data part is a
fully imperative language in syntax and semantics. The con-
trol part includes almost all data part and adds constructs for
behavior like non-deterministic choice, process parallelism
and communication.

In the rest of this section, we informally present some

definitions of the LNT language (partially represented in
Fig. 1). We adopt these identifiers following the LNT ref-
erence manual [14] notations: M for module, IT for process,
B for behavior, I for statement, T for type, G for gate and
I' for channel.
Module The LNT specification typically consists of a set of
LNT modules. An LNT module M (Listing 1) is named with
the same name as its source file (*.1nt). M can import other
modules (My,..., M,); thus, all the definitions of My, ..., M,
are visible and can be used in M definitions. These definitions
include the LNT types, channels, functions and processes.

Listing 1 LNT module definition

module M [(Myp, ...,
definitiong . . . definition,
end module

Mn)] is

Type The LNT language provides a set of predefined basic
types (Boolean, Natural, Integer, Real, Character and String)
with the associated predefined functions (basic operations
such as addition and comparison) that are automatically
available. In addition, the language allows the definition of

non-basic types (Listing 2). A non-basic type may be a list,
a sorted list, a set, an enumerated or a range type (specified
within the type_expression, asillustrated with the T,

type).

Listing 2 LNT type definition

type T is
type_expression

end type

type Tep is -- example
list of BOOL

end type

Channel An LNT channel (Listing 3) is a gate type that fixes
the types of values to be sent or received during the commu-
nication on a given gate. The channel may use user-defined or
predefined basic types, as illustrated with the Iy, channel.

Listing 3 LNT channel definition

channel [is
(s » ...,
Tm,l) ’
end channel
channel [, is --

Tl,n): sy (Tm,l P

example
Texp
end channel

Process An LNT process (Listing 4) is an object describ-
ing a behavior. It can be parametrized with a list of formal
gates, variables and exceptions. The behavior B comprises
sequential composition, conditional behavior (i f), variable
declaration statement (var), loop behavior (1oop), non-
deterministic choice (select), parallel composition (par),
communication, etc.

Listing 4 LNT process definition

process [I [gate_declarationg, ..., gate_declarationy]
(formal_parameterg, ..., formal_parametery)
is
B
end process

Communication The LNT processes can be in communica-
tion through the gates and channels (Listing 5). Each process
has a set of gate declarations to be synchronized with other
processes. The same gate allows sending and receiving mes-
sages, compatible with a channel, with a rendezvous that
blocks the sender until the reception.

Listing 5 LNT Communication

process Il [Gy : Iy, ..., G, : IN] is
G; (!'V) -- output of expression V
G; (?P) -- dinput in pattern P
end process

@ Springer

H. Mkaouar et al.

Non-deterministic choice An LNT select statement (List-
ing 6) allows a non-deterministic choice between behaviors
By, ..., By.

Listing 6 LNT select statement

select
By [1 Bi [1 By
end select

Variable declaration An LNT var statement (Listing 7)
allows the definition of local variables with their names and
their types. The scope of each variable is the statement 7, in
which it can be assigned values multiple times.

Listing 7 LNT var statement

var
variable_declarationyp , ..., variable_declaration,
in
1
end var

Parallel composition An LNT par statement (Listing 8)
is used for behaviors (By, ..., By) parallelism and gates

(Go, ..., Gk and G 0), - - ., G(i n;)) synchronization. The
behavior B; often represents a process instantiation
(H [G(), ey Gk, G(iﬁ()), ey G(i,n,-)])- The par Composi-

tion allows two types of synchronization: global and inter-
face. The global synchronization is defined by Gy, ..., Gg,
this communication can happen only if all processes can
make it simultaneously. The interface synchronization is
defined by G; 0), ..., G, n,)- In this case, if a process is
waiting for a communication on a gate which belongs to its
synchronization interface (e.g., G, j)), this communication
can happen only if all processes synchronized on the same
gate (contain G; j in their synchronization interface) can
make it simultaneously.

Listing 8 LNT parallel composition

par [Go, ..., Gp in]
(Gooy, ---+ Gony -> 1 Bo
N
(Gioy, ---+ Gampy -> 1 Bi
[G(m'O) i e ey G(m,nm) ->] Bm
end par

MATIN process In the LNT specification, the system is rep-
resented by a set of concurrent processes communicating
through gates typed with channels. As shown in Fig. 1, a
root process named MAIN should be added to define
an entry point of the whole specification. The specification
represents an executable semantics in which all parallel pro-

@ Springer

system S

process P1

process P2

7\
device D

processor P

> data > event

Fig.2 AADL system graphical representation

> event data

cesses start execution and terminate at the same time with
the possibility of synchronization by rendezvous.

2.2 AADL

The AADL [1,18] language is an architecture description lan-
guage for model-based engineering of embedded real-time
systems. It defines notations, expressed using both a graph-
ical and a textual syntax, to represent a full system with its
software and hardware components in one model (architec-
tural representation of the system).

As shown in Fig. 2, the core language describes a sys-
tem as a hierarchy of components with their interfaces and
connections. The AADL components are defined by a type
(contains mainly the component interface elements called
features) and zero or more implementations (present the
component internal structure composed of subcomponents,
calls, connections, flows, modes and properties). The compo-
nents are grouped in three categories: software components
(subprogram, subprogram group, data, thread,
thread group and process); hardware components
(processor, virtual processor, device, bus,
virtual bus and memory); and system composition
component (system). An AADL connection is a linkage
established between components that can be port, parameter
or access connections.

The AADL language brings the capability to enrich the
model with additional information by a set of standard prop-
erties and annexes. Properties are used to complete the
component definition and bind the whole system hierarchi-
cally. Big and specific additions are specified by separate
annexes such as the Exrror-Model annex to specify the
fault behavior/propagation, the ARINC653 annex for the
avionics modeling and the Behavior annex [2] to spec-
ify the architectural behavior.

A formal approach to AADL model-based software engineering

In the rest of this section, we briefly present some AADL
elements (graphically represented in Fig. 2) that are sup-
ported in our work.’

Thread A thread component is a concurrent schedulable
unit of sequential execution code. It should be declared within
a process component, and it is bound to a processor
component to be scheduled.

Process A process component is a virtual address space
containing data, thread and subprogram associated
with the process and its subcomponents.

Processor A processor component is an abstraction of
hardware and software for the scheduling and execution of
threads.

Device A device component is considered as an entity to
interface with the external environment (such as sensors).
A device component can interact with both hardware and
software components (e.g., using port connections).

Port connection A port connection allows the transfer of
data and/or event between two components (threads and
devices), explicitly declared between two ports. As shown
in Fig. 2, the ports are directional as in, out or in out ports.
They are also typed as data, event or event data. In the case of
data transfer, the port may be typed with a data component.

System A system component is a composite of system
components (subsystems) or of software and hardware com-
ponents. Figure 2 represents an AADL model example, in
which a system component includes three threads and
a device connected through the different port connection
types (data, event and event data).

3 LNT mapping for a Ravenscar task model

In this first part of our contribution, we aim to define a
formal mapping for a real-time system. We use the LNT
language to generically specify a standard task model. The
LNT syntax combines features of programming languages
with concurrency primitives adopted from process algebras,
which makes it suitable for specifying concurrent tasks and
handling scheduling calculations. The formal representation
should simulate the scheduling, the execution and the interac-
tion of tasks. Ideally, the task and the scheduler are separately
specified to provide a comprehensible modular mapping.

In this section, we first present the considered task model.
Then, we develop the proposed mapping through three
principal parts: scheduling mapping, communication and
composition/synchronization. Finally, we close this section

3 More details about our AADL subset are provided in the AADL2LNT
transformation definition (Sect. 4).

with a discussion about the flexibility and the extensibility
of our proposal.

3.1 A Ravenscar compliant task model

In verification context, a real-time system can be consid-
ered as a set of cooperative and concurrent tasks dispatched
at regular intervals (periodic tasks) or with special events
(aperiodic or sporadic tasks). The system is then abstracted
as a task model with a set of real-time parameters, hiding
the architectural complexity. In our work, we rely on a con-
ventional tasking model inspired from Liu and Layland [37]
real-time model. Formally speaking, we work with a set of k
tasks denoted by S = {r1, ..., 7} whose each t; is defined
by two parameters C; and T;: C; refers to the capacity or
WCET (Worst Case Execution Time); and 7; is considered
as the period and the relative deadline of each dispatch.

In addition, strong constraints are also considered since
we deal with safety-critical systems that require certifica-
tion to be used. In such a context, we mention the Ravenscar
profile [13], which is defined to meet safety-critical real-time
requirements (determinism, schedulability analysis, suitabil-
ity for certification, etc.). This profile describes a set of
restrictions of the Ada tasking features to allow the static
analyses for high integrity system certifications.

The Ravenscar profile can be applied at the model level
as a subset composed of a static set of tasks in interaction,
run by one preemptive fixed-priority scheduler. In fact, to be
Ravenscar compliant, the task model should mainly respect
the following restrictions:

— All tasks must be either:

— periodic or time-driven tasks: they are synchronous
(simultaneously released at the first time) and cyclic
(progress periodically) tasks;

— sporadic or event-driven tasks: they have no fixed
first activation, they are activated in response to
asynchronous events (invocation-events) with a fixed
minimal delay between two successive activations.

— All tasks are created at initialization and then activated
and executed according to their priorities;

— All communications and synchronizations between the
tasks are achieved using the protected objects* with these
constraints:

— at most one task can wait on each object;
— sending and receiving operations are atomically exe-
cuted through the protected object procedures.

4 A protected object is a construction based on the well-known concept
of monitors for synchronizations.

@ Springer

H. Mkaouar et al.

(\dispatch/event

resume preempt Blocked
%plete
_ J
stop
Missed
Stopped

Deadline

Fig.3 Task state automaton

— Scheduling is based on FIFO-Within-Priorities policy as
follows:

— each task has a fixed priority;
— atask may preempt a task of a lower priority.

The task execution can be represented as a state automa-
ton drawn in Fig. 3. At any time, the task can be in one of
these states (READY, RUNNING or BLOCKED). A task may be
READY to run, i.e., the task is able to be executed by the pro-
cessor. It can also be BLOCKED, i.e., the task cannot execute
until an external event occurs. A BLOCKED task may become
READY by a temporal event (dispatch for a new period) or
an invocation-event (for sporadic task). The READY task can
be resumed (selected by the scheduler); thus, it moves to
the RUNNING state, i.e., the task is actually executing. While
running, the task can be preempted and so it returns to the
READY state or it can complete its execution and moves to
the BLOCKED state.

Note that the task execution is simulated during a hyper-
period (H (71..x)) which is the smallest time interval until
the schedule repeats in a cycle of task executions. H (71 k)
is calculated as the least common multiple of all task periods
(LCM (T;)), which is considered a sufficient time interval
to study task models under a priority-based monoprocessor
scheduling.

3.2 Scheduling mapping

The scheduling mapping concerns the task and the scheduler
LNT representations. Generally described, tasks are mapped
to LNT processes to be concurrently executed, each t; is rep-
resented by one LNT process, named TASK. These TASKs
are scheduled by a main process, named SCHEDULER,
which represents the scheduler: the TASKs are synchronized
(through the LNT gates and channels) with the SCHEDULER
to be activated. Note that the LNT language is not a specific

@ Springer

real-time process algebra. It has no time operators, and all
parallel processes start execution and terminate at the same
time. There exist timed extensions for the CADP languages
(ET-LOTOS [36], RT-LOTOS [16], etc.), but currently, they
are not supported by its tools. Nevertheless, the use of the
LNT language still sufficient for our purposes, since it pro-
vides a rich data part, used to specify real-time features and
scheduling algorithms. Therefore, the time is a part of the
proposed LNT mapping and it is smartly included (when
needed) to provide LNT specifications with reduced state
spaces. We define a COUNTER variable to represent the time
(a timer to count units of time), used as required to perform
the temporal calculations (e.g., dispatching, preemption). In
addition, we define a HYPERPERIOD variable that repre-
sents H(ty_j), thus, the timer COUNTER is bounded as
(0 < COUNTER < HYPERPERIOD).

In the following, we, respectively, develop the TASK and
SCHEDULER LNT definitions.

3.2.1 Task mapping

The TASK process is designed to represent the task as
a schedulable concurrent unit with a potentially infinite
sequence of activations (invocations or jobs) by the sched-
uler. To specify the considered dispatching model, we define
a set of activation orders mapped to the LNT enumera-
tion type exchanged between the TASK and SCHEDULER:
T_Dispatch_Preemption, T _Preemption,

T_Preemption_Completion, T Dispatch_Comp-
letion,

T Completion, T_Error and T_Stop.

We include the TASK skeleton in Listing 9. The pro-
cess declares an LNT gate, named ACTIVATION, to be
synchronized with the SCHEDULER. The TASK behavior is
an infinite 1oop whose body is a non-deterministic choice
select in order to separate the execution, error and ter-
mination behaviors. The selected behavior is determined by
the ACTIVATION communication with its different possible
values.

The task state switch (Fig. 3) is mapped in the TASK
execution behavior part. The ACTIVATION communication
defines the TASK states: the current state is defined accord-
ing to the received SCHEDULER order. Initially, the TASK
is supposed at the READY state. It is suspended until the
reception of a SCHEDULER order on the ACTIVATION
gate. All the task transitions of Fig. 3 (resume, preempt,
dispatch and complete) between the states are trans-
lated by suspensions on the ACTIVATION rendezvous
with the SCHEDULER. At the reception of an activation
order (T_Dispatch_Completion, T_Preemption,
T Dispatch_Preemption and T_Preemption_
Completion), the TASK moves to the RUNNING

A formal approach to AADL model-based software engineering

state. After the execution, the TASK sends the label
T_Completion to the SCHEDULER meaning that the
TASK has accomplished the activation order and it is no more
at the RUNNING state. At this point, depending on the received
order, the TASK may switch state as follows:

— T _Dispatch_Completion: it starts and completes
the execution of the current period and enters the
BLOCKED state;

— T_Dispatch_Preemption: it starts the execution in
the current period but with a preemption, thus, it returns
to the READY state;

— T_Preemption: it progresses in execution but without
reaching the completion time, so it returns to the READY
state;

— T_Preemption_Completion: it finishes the execu-
tion of the current period and enters the BLOCKED state.

The TASK can also receive a T_Error and T_Stop
orders, which are, respectively, used to mark a missed dead-
line and to stop the system simulation. This concerns the error
and termination behaviors, which leads to define two addi-
tional task states MISSED_DEADLINE and STOPPED included
in the task state automaton as shown in Fig. 3, used for veri-
fication ends.

Note that periodic and sporadic tasks are represented with
the same LNT skeleton, while the difference (dispatching
model) will be in the activation mode controlled by the
SCHEDULER. All the temporal calculations are encapsulated
in the SCHEDULER which maintains that periodic tasks are
executed with regular-orders, while sporadic tasks receive
irregular orders according to the reception of invocation-
events.

In our work, we support inter-task communications: a task
can be connected with other tasks. Atthe LNT mapping level,
exchanged data and events are generically mapped using an
enumerative LNT type (labels DATA and EVENT). The con-
nections are established through the LNT gates and channels.
Thus, the TASK can have many gate declarations as required
forits connections. The TASK interactions are also controlled
through SCHEDULER orders that fix the input and output
times as follows:

— T_Dispatch_Preemption (the start of execution
time): the TASK receives inputs;

— T_Preemption_Completion (thecompletiontime):

the TASK sends outputs;

— T_Dispatch_Completion (the completion execu-
tion): the TASK receives inputs at the start time and sends
outputs at the completion time.

Listing 9 TASK LNT skeleton

process TASK [ACTIVATION: LNT_Channel_|
Dispatch,
-- other gate declarations
] is
loop
select
select -- execution behavior
-- a complete execution
time

ACTIVATION
Completion);

[1]

-- preemption

(T_Dispatch_

ACTIVATION (T_Dispatch_
Preemption) ;

[1]

ACTIVATION (T_Preemption)

[1]

ACTIVATION (T_Preemption_

Completion) ;
end select;
ACTIVATION (T_Completion)
[l]-- error behavior
ACTIVATION (T_Error)
[]-- termination behavior
ACTIVATION (T_Stop)

end select
end loop
end process

3.2.2 Scheduler mapping

The SCHEDULER process encodes the scheduling algorithm
to simulate the execution of the tasks. It is synchronized
with all the TASKs through the ACTIVATION gates. The
SCHEDULER construction depends on the set of tasks S
and the chosen scheduling protocol. Following the Raven-
scar profile, the task execution is assumed by the preemptive
fixed-priority scheduling in which priority of each task is stat-
ically fixed and the scheduler runs always the ready task with
the highest priority. At any time, if a task with a higher prior-
ity becomes ready, the scheduler performs a context-switch
preempting the current running task enabling the higher pri-
ority task to resume execution. In this paper, we consider the
RM (Rate Monotonic) scheduling with a negligible context-
switch time. The task is defined by 7; = (C;, T;) whose index i
represents the task priority, attributed according to its period
T; as the task with the smallest period takes the highest pri-
ority. To schedule t;, we also define t; for the date of the jth

activation and d ; for the date of the jth deadline.

In Listing 10, we include the SCHEDULER LNT skeleton.
The process declaration has k gates (ACTIVATION_1, ...,
ACTIVATION_k) with n additional gates if S contains spo-
radic tasks (NOTIFICATION_1,...,NOTIFICATION_n,
with n is the number of sporadic tasks). The SCHEDULER
behavior consists of three parts as follows:

@ Springer

H. Mkaouar et al.

— Initialization part: the SCHEDULER begins with a set
of initializations needed for the temporal calculations,
mainly the COUNTER and the set of tasks S.

— Operational part: this part implements the schedul-
ing algorithm. While COUNTER has not reached the
HYPERPERIOD, the SCHEDULER simulates the execu-
tion of tasks using Algorithm 1 (illustrated in Figs. 5
and 4).

— Stopping part: the termination of tasks is not allowed
in the Ravenscar profile, but in our context of for-
mal verification, we define a global system termina-
tion when COUNTER = HYPERPERIOD. Therefore, the
SCHEDULER sends the T_Stop order for all the tasks
to mark the end of the simulation.

Listing 10 LNT SCHEDULER skeleton

process SCHEDULER [
ACTIVATION_1 LNT_Channel_Dispatch,
ACTIVATION_k LNT_Channel_Dispatch,
NOTIFICATION_1 LNT_Channel_Event, ...,
NOTIFICATION_n LNT_Channel_Event]

is

var -- initialization part
S : LNT_Type_Task_Array,

in
S [1] := LNT_Type_Task (..);
loop

if (Counter < HYPERPERIOD) then
-- operational part
-- time allocation
-- update task state
-- task activation
-- notification for sporadic task
else -- termination part
ACTIVATION_1 (T_Stop)
ACTIVATION_K (T_Stop)
end if
end loop
end var
end process

The set of tasks S is statically included using an LNT array.
Tasks are indexed within their fixed priorities according to
their periods (77, x), 1 (index 1) has the highest priority and
task 7; (index k) the lowest one. This array represents the
ready-queues in real systems: ready tasks are inserted/deleted
atthe head/tail according to their priorities in the ready-queue
and at any time the scheduler selects the task with the highest
priority for execution. In our mapping, we use a static struc-
ture where tasks have fixed indexes to mark their priorities,
while their states are modifiable by the SCHEDULER itself.
Each ; is represented with an LNT array containing a set
of fixed parameters and updated states (12 elements), mainly
(C;, T;, t;'., d;'.) and it is initialized as t; = (C;, T;, #§ = 0,
di=T)).

Note that a sporadic task is ignored until the reception
of an invocation-event (considered at the BLOCKED state).

@ Springer

Thereby, the SCHEDULER should be notified for every
new incoming invocation-event, which is ensured by the
NOTIFICATION_1i gates.

Algorithm 1: Operational part algorithm

1 begin
2 while (i € §) do
3 if (Blocked or Miss_Deadline t;) then
4 ‘ Move to Tiy1;
5
6 else if (Ready t;) then
7 Calculate Allocated_Time of t;;
8 hp@)=1...(— 1)
9 while (i € hp(i)) do
10 if (1; reaches ti’) then
/* 1, 1s preempted by 713 */
11 Update Allocated_Time of Ti;
12 end if
13 end while
/* if 1; respects all tfp<i), the
Allocated_Time contains the
required time to complete the
execution */
14 Update t; state;
15 Activate T;;
16 Check sporadic tasks;
/* if we have a preemption, we
return to t;; if we have a
notification from a sporadic
task, we return to 11; else we
move to T4 */
17
18 end while

19 end

During the scheduling, the SCHEDULER visits the tasks in
loops in order of their priorities to find and run the ready tasks.
From the highest to the lowest priority, each task is handled
to determine its current state (READY or BLOCKED), thus the
first task 7; fixed to the READY state, is always the ready task
with the highest priority as shown in Fig. 4. Formally, the
SCHEDULER compares 7/ and d’, with the COUNTER value.
Thus, it decides T; state as follows:

Tlowest

priority

Tfilst ready task with
the highest priority

T highest
priority

o olod0 CO

Time Update Task
allocation 4l task state 4 activation v

Fig.4 SCHEDULER algorithm: ready task

A formal approach to AADL model-based software engineering

T

Tlowest

Thighest first ready task with

priority the highest priority priority
= Qo Qld,
i(1 2 - i1 i i+1 .. k \
(% /
AN - ,
s g Restart the loop from 4

~.

—

the new ready task with e
Restart the loop from TJ the highest priority | _oee=x""

after a sporadic task ~ d of £ "
| becomes ready) End of set of tasks,
~—— restart the loop from 1,

g.5 SCHEDULER algorithm: task-loops

(

F

— BLOCKED: 1; is an inactive sporadic task or itis a periodic
task awaiting for the next dispatch
(1 >COUNTERY);

— MISSED_DEADLINE: 7; has missed a deadline (d ; <
COUNTER), in this case, the T_Erroxr label will be sent
to the task;

— READY: 1; is initialized, preempted or dispatched (t;
<COUNTER< d?).

The BLOCKED or MISSED_DEADLINE tasks are ignored
and the SCHEDULER moves to 7;41. Else, if 7; is asserted at
the READY state, the SCHEDULER decides about the execu-
tion of t; which moves to the RUNNING state.

At that level, the SCHEDULER can execute 7; with its
whole capacity C;, and then, it moves to handle other tasks.
This can be sufficient for a non-preemptive scheduler of a
set of periodic tasks. However, in our context, a task with a
higher priority can become ready at any time. Similarly, a
sporadic task with a higher priority can become ready by the
reception of an invocation-event. These cases can lead to pre-
empt the execution of the current running task, so they should
be considered during the scheduling. The idea consists in
interrupting the SCHEDULER task-loops and restarting the
task-loop to consider new ready tasks as shown in Fig. 5.
In the remainder of this section, we explain this algorithm
through three steps achieving the execution of a given READY
task t;: time allocation, update task state and task activa-
tion. In addition, we include a sporadic task checking section
added if S contains sporadic tasks.

Time allocation This step calculates the execution time of
the current period for 7; and prepares an activation order that
will be sent at the task activation step. We remind that t; is
the current ready task with the highest priority. We define the
variable Al1located_Time to compute the execution time.
It can return the required time to achieve the execution in the
current period, or it can return a part of the execution time,
since 7; can be preempted by another task (7,<;) which is a
new ready task with a higher priority. For this reason, in the
calculation of the Allocated_Time value, SCHEDULER

should always check the states of tasks with higher prior-
ities. We define hp(i) = {1...i — 1} the set of indexes of
tasks with higher priorities than ;. Simply, the SCHEDULER
checks t;lfr(li) which are the next activation times of 7,y by
comparing COUNTER + Allocated_Time value with all
t;li(li) value as shown in Algorithm 1 (lines 7-12). Three
alternatives can be presented leading to fix different activa-

tion orders:

1. a comp}ete execution time C; is allocated, if 7; respects
all /7 (COUNTER + Allocated_Time < 1/}})):
T_Completion_Execution order

2. a preemption is imposed, if Allocated_Time+
COUNTER reaches an 1/ 5} of 7,<; (with & € hp(i)),
thus
(Allocated T ime:t]’.‘ ={-COUNTER) with two behav-
iors:

2.1. a preemption at the start time of the execution:
T Dispatch_Preemption order

2.2. apreemption in the middle of the execution:
T Preemption order

3. a complete needed time is allocated when t; is already
preempted: T_Preemption_Completion order

Note that in the case of a preemption (alternative 2), 7; is
preempted by 1, .; so the SCHEDULER restarts its task-loop
from £ to handle t;,;, the new ready task with the highest
priority as shown in Fig. 5.

Update task state At this point, t; is considered at the
RUNNING state, the SCHEDULER increments the COUNTER
with the Allocated_Time and updates the task array
for the next activations. In the case of a preemption, the
SCHEDULER conserves the task state and saves the executed
time of 7; in order to complete the rest later. In the case of
a non-preemption, the SCHEDULER prepares the task for a
new period. A periodic task becomes (C;, T, tj 4= d;,
d;. = d} + T;). In contrast, the parameters of a sporadic
task cannot be predicted. the SCHEDULER has no values
for its next activation or deadline. Currently, the sporadic
task is viewed as (C;, T;, tj‘+1 > dj., dj‘+1 = 00) and it
is ignored in the scheduling until the reception of a new
notification.

Task activation The SCHEDULER sends to 7; its cur-
rent order with the ACTIVATION_1i gate. It waits for a
T_Completionnotification from t; and then moves to 7; 1|
calculation. In the case of a missed deadline, the T _Error
label will be the last order sent to t;, since it will be ignored
in the rest of the simulation.

Sporadic task checking The global state of the set of tasks
may change after each task activation (exchanging events

@ Springer

H. Mkaouar et al.

and data, increase of the COUNTER, etc.). Particularly, the
sporadic tasks may be activated by the invocation-events
and may move to the READY state, so they should be
considered in the scheduling with other periodic tasks. To
this end, after each task activation, the SCHEDULER con-
sults all the NOTIFICATION_i gates. When receiving a
notification at ¢/, the SCHEDULER applies the following
steps:

1. marking tc’f equal to the current value of the COUNTER;

2. verifying tc’f > téfl + T;: a notification can be ignored.
Since we consider 7; as the minimal delay between two
successive activations, 7; cannot be reactivated before
4T (1), > 18 + Th);

3. if (2) is verified, then, 7; moves to the READY state with
these parameters (C;, T, t) = t//, d\ = ti + T;). Thus,
7; is considered in the scheduling and served according
to its priority;

4. if (2) is verified, then the SCHEDULER restarts the task-
loop (return to t1): the SCHEDULER should recheck the
set of tasks to find the new ready task with the highest
priority, as shown in Fig. 5.

3.3 Communication

In our work, the tasks can be connected to each other to
asynchronously exchange data or events. In the sporadic case,
each task has at least one connection needed for its activation:
the reception of an invocation-event activates the sporadic
task that may move to the READY state.

The LNT processes communicate by bidirectional block-
ing rendezvous on gates. The LNT rendezvous on a gate
allows the synchronization of n processes (several sending
and receiving offers at the same time). In our case, we do
not need such an advanced synchronization between pro-
cesses. We consider the gates unidirectionally and we use
only the synchronization between pair of processes (sender
and receiver). The asynchronous inter-task connections can-
not be mapped directly with synchronizations of the LNT
gates since they denote blocking rendezvous. For this reason,
we add an auxiliary process the CONNECTOR to represent
the connection by means of the Ravenscar protected objects.
CONNECTOR has two main gates (INPUT and OUTPUT) and
a variable to save data/event.

In Listing 11, we give the CONNECTOR skeleton. The pro-
cess behavior consists of three parts through an infinite 1oop
whose body is a select statement to separate the sending
and receiving data/event and the sporadic notification. Thus,
only one operation can be executed at any time and the choice
is solved by the possibility of communication on the gates.

@ Springer

Listing 11 LNT CONNECTOR skeleton

process CONNECTOR [
INPUT: LNT_Channel_Port,
OUTPUT: LNT_Channel_Port,
NOTIFICATION: LNT_Channel_Event]
(Queue_Size: Nat)
is
loop
select
-- inputs
INPUT ()
[1]
-- output
OUTPUT ()
[1]
-- sporadic part
-- needed to notify SCHEDULER|
-- when receiving a new event
NOTIFICATION ()
end select
end loop
end process

of event/data part

of event/data part

Each connection between two TASKs is mapped to
a CONNECTOR synchronized (rendezvous point) with the
sender on INPUT and the receiver on OUTPUT which
assumes the atomicity of the two operations (sending and
receiving) and the TASK unicity in awaiting at any time
(respectively, on the INPUT and the OUTPUT gates).

Data are saved and kept until the next reception. Each
time a new input is received, the last one is overwritten. In
contrast, events are queued in an LNT list with a defined size.
We use non-blocking FIFO, in which the new incoming input
overwrites the previous events in the case of an overflow. In
the case of an empty FIFO, the TASK receives an EMPTY
message without blocking.

Since we consider a special invocation-event for the spo-
radic task activation, we add a third gate to the CONNECTOR
process (named NOTIFICATION) to be synchronized with
the SCHEDULER. We use this gate to notify the SCHEDULER
of every new reception; thus, it considers the concerned task
in the scheduling.

3.4 Composition and synchronization

We complete the proposed LNT mapping with two manda-
tory steps: composition and synchronization. All described
LNT processes should be structured (connected) to form
the main system. This step is ensured by the LNT par
composition statement for the parallelism and the synchro-
nization (global and interface) of the TASK, CONNECTOR
and SCHEDULER processes. Thus, we assemble the whole
system within the MATN process.

A formal approach to AADL model-based software engineering

Note that a set of the LNT types and channels are used for
the TASK-CONNECTOR, CONNECTOR-SCHEDULER and
TASK-SCHEDULER synchronizations. For example, we
include in Listing 12 the type and channel for the TASK-
SCHEDULER synchronization.

Listing 12 TASK-SCHEDULER: LNT type and channel

type LNT_Type_Dispatch is
T_Dispatch_Completion,
T_Dispatch_Preemption,
T_Preemption,
T_Preemption_Completion,
T_Completion,
T_Error,
T_Stop

end type

channel LNT_Channel_Dispatch is
(LNT_Type_Dispatch)
end channel

For further explanations, we include an example of a task
model whose MAIN process is included in Listing 13 and
graphically presented in Fig. 6. The initial task model (z1, 72)
consists of a periodic task connected to another sporadic task
running on a scheduler (Producer—Consumer system). The
obtained LNT specification contains five processes synchro-
nized in the MATN process. The par composition is globally
used for the following synchronizations:

— The TASK_CONSUMER and CONNECTOR are synchro-
nized on the RECEIVE_A gate;

— The CONNECTOR and TASK_PRODUCER are synchro-
nized on the SEND_A gate;

— The CONNECTOR and SCHEDULER are synchronized on
the NOTIFICATION_1 gate;

— The TASK_CONSUMER, TASK PRODUCER and
SCHEDULER are synchronized on the ACTIVATION_1
and ACTIVATION_2 gates.

MAIN

CONNECTOR_
EVENT_
SPORADIC

RECEIVE_A

TASK_
PRODUCER

TASK_
CONSUMER

NOTIFICATION_1

ACTIVATION_2

SCHEDULER

N

Fig.6 Producer—consumer: LNT graphical MAIN

Listing 13 Producer—consumer: LNT code MAIN

process MAIN [
ACTIVATION_1: LNT_Channel_Dispatch,
ACTIVATION_2: LNT_Channel_Dispatch,
NOTIFICATION_1: LNT_Channel_Event,
SEND_A: LNT_Channel_Port,
RECEIVE_A: LNT_Channel_Port
] is
par
ACTIVATION_1, RECEIVE_A->
TASK_CONSUMER [ACTIVATION_1, RECEIVE_A]
[l
NOTIFICATION_1, SEND_A, RECEIVE_A->
CONNECTOR [SEND_A, RECEIVE_A, NOTIFICATION_1]
[
SEND_A, ACTIVATION_2 ->
TASK_PRODUCER [ACTIVATION_2, SEND_A]
[
ACTIVATION_1, ACTIVATION_2, NOTIFICATION_1->
SCHEDULER [ACTIVATION_1, ACTIVATION_2,
NOTIFICATION_1]
end par
end process

3.5 Discussion

The obtained LNT specification (the set of the LNT defini-
tions composed in the MATN process) represents a formal
executable semantics for a real-time task model, where the
TASKs are connected through the CONNECTORs and sched-
uled by the SCHEDULER. This mapping is flexible enough
to support various task models with minor changes: peri-
odic/sporadic tasks, independent/communicating tasks and
preemptive/non-preemptive tasks.

In addition, the real-time features are modularly designed
which increases the extensibility of the mapping: each feature
can be separately completed or extended. For example, the
TASK can be easily enriched with more behavior that can
be specified in a separate LNT process or function and just
called within the TASK skeleton.

Similarly, the scheduling mapping can be extended with
other scheduling protocols since we specify an explicit
SCHEDULER that encapsulates all the scheduling calcula-
tions. For example, we have developed the EDF (Earliest
Deadline First) based on unfixed priority scheduling. The
SCHEDULER skeleton is conserved. The modifications can
be limited in the operational part, mainly, the time alloca-
tion operation. The other manipulations (update task state,
task activation and sporadic task checking) can be conserved,
and thus the TASK and CONNECTOR processes need no
changes.

4 Model transformation
In this section, we discuss the applicability of our LNT map-

ping as a software engineering practice. We aim at integrating
the formal verification in a model-driven process based on

@ Springer

H. Mkaouar et al.

S,

[—4
» (o

(=)
initial AADL model

'

Model
transformation

Specification » Modelling

Fig.7 AADL model-based development process

the AADL language. A basic proposal was discussed in [43],
where we presented a transformation from AADL into LNT
about the periodic threads with a preemptive RM sched-
uler. In this paper, we propose to refine this approach and
extend the scope of our work.

As simply depicted in Fig. 7, throughout the develop-
ment process, the system representation takes different forms
(written specification, architectural model, source code) on
many phases (specification, modeling and code generation).
During the modeling phase, the formal verification of the
AADL model seems useful and complementary to traditional
syntactic and semantic analyses. To this end, we define the
AADL2LNT model transformation from the initial AADL
model into an LNT specification based on the proposed LNT
mapping. This transformation achieves the automatic gen-
eration of an LNT specification compliant with the CADP
toolbox and ready for verification.

In the remainder of this section, we develop our AADL
subset. Then, we describe the AADL2LNT transformation
rules with a discussion about the novelty and the improve-
ments compared to our previous work [43]. Finally, we
describe our implementations allowing the definition of a
tool-chain for a development process based on the AADL
language.

4.1 AADL subset

The AADL language describes different concepts of real-
time embedded systems with a rich semantics detailed in its
standard [1]. The language covers many important aspects
(timing requirements, fault and error behaviors, time and
space partitioning, safety properties, etc.) that cannot be
wholly analyzed in one approach.

According to our verification purposes, we define an
AADL subset whose elements are depicted in Fig. 8. More-
over, the consideration of the Ravenscar profile requires some
additional restrictions applied at the model level, meaning
that the AADL subset should be compliant with the profile.
Mainly, the profile claims that the threads are either spo-

@ Springer

Code
generation

o=

analysis results
for the model
correction

O@
»e
o9
Generated LNT Verified AADL
specification model
; 7 \
— // thread / —o[process THREAD
Scheduling l /)
rules)
ﬂ processor process SCHEDULER
w,
-
— data —{ type
o/
Connection
port gate

rules

process CONNECTOR
N
system H process MAIN
J
N
/ process /—{ -
J

.
m device —o[process DEVICE
7

Fig.8 High-level view of AADL2LNT transformation

AADL2LNT transformation

Hierarchy
rules

radic or periodic and they are schedulable according to the
Rate Monotonic analyses such as the exact schedulability
test [37]: for a synchronous set of tasks S of n independent
and periodic tasks, if U = Y I, %’ <n (2" —1) ~ 0.69,
then S is RM-schedulable.

In our work, we aim at defining an executable formal
semantics of the AADL model viewed as a set of commu-
nicating tasks in a real-time context. This abstraction allows
different alternatives of verification, such as the schedula-
bility analysis, the thread execution simulation and the
verification of communication properties.

At the model level, we consider the system as a
set of threads bound to a monoprocessor and commu-
nicating through the port connections . We do not sup-
port either AADL shared access or AADL flows/modes.
The model is completed by a set of standard properties

A formal approach to AADL model-based software engineering

attributed to different components. We support the following
lists:

— properties specifying the constraints for the software-
hardware binding like the Actual_Processor_
Binding property, which canlistonly one processor;

— properties specifying the temporal and scheduling infor-
mation such as Dispatch_Protocol (periodic or
sporadic), Compute_Execution_Time, Period,
Input_ Time (Start_Time for all thread ports) and
Output_ Time (Completion_Time for all thread
ports);

— properties specifying the information for the port connec-
tions like Queue_Processing_ Protocol (FIFO),
Queue_Size, Overflow_Handling_ Protocol
(drop oldest) and Dequeue_Protocol (one item).

In the AADL language, the system is modeled through
a set of nested components whose top-level is the system
component, as shown in Fig. 2 and Table 3.

The system implementation mainly contains: a set of
subcomponents that can be data, process,
processor or device; a set of connections to
declare port connections of processes and devices; and
asetof properties in whichthe Actual_Processor
_Binding property is used to bind the processor with
the processes.

The AADL2LNT transformation can be applied on an
instantiable AADL system, which means that the model
is successfully analyzed (syntactically and semantically) and
can be completely bound, as when all threads are bound
to the processor.

4.2 Transformation rules

Model transformation plays a crucial role in MDE for various
goals (modeling, optimization and analysis). It is the mech-
anism of generating a target model based on information
extracted from a source one. This operation is based on our
LNT mapping and requires a set of new LNT definitions to
cover the considered AADL subset. The AADL2LNT trans-
formation is described with a set of correspondence rules
between AADL and LNT (summarized in Tables 1, 2, 3
and 4).

Basically, the LNT mapping (Sect. 3) is used as fol-
lows: we translate each AADL thread component into
a TASK process; we represent the AADL ports by the
LNT gates; the AADL port connections are mapped through
the CONNECTOR processes; and the AADL processor
becomes the SCHEDULER process. Figure 8 graphically rep-
resents these basic transformation rules, which are applied
through four steps, respectively, developed in the rest of this
section.

4.2.1 Scheduling rules

The execution and scheduling rules concern the thread and
processor components.

Thread rule The AADL thread is a schedulable unit
that can be concurrently executed with other threads.
Each thread executes a set of sequential instructions. It
is declared within a process component, and it is bound
to a processor component to be scheduled.

The thread component becomes the TASK process
described in Sect. 3.2.1. As illustrated in Table 1, the TASK
process takes the thread implementation name prefixed by
“THREAD_” and declares the ACTIVATION default gate to
be synchronized with the SCHEDULER process.

The supported standard properties are used to specify
the temporal parameters of the thread, as follows: the
Dispatch_Protocol property represents its dispatch
model; the Period property represents its period 7;; and
the Compute_Execution_Time property represents its
capacity C;.

In the AADL language, the dispatch semantics is given
for the standard dispatch protocols (periodic, sporadic, ape-
riodic, timed, hybrid, and background threads). Since we
consider a Ravenscar compliant model, we support periodic
and sporadic dispatch models, as described in the AADL
standard:

— periodic threads: they are periodically dispatched at
time intervals of the specified Period property value.

— sporadic threads: they are activated as the result
of an event/event data (invocation-event) arriving at
an event/event data port of the thread. The time
interval between two successive dispatch requests will
never be less than the associated Period property
value.

As described in Sect. 3.2.1, the thread dispatching is
ensured by the SCHEDULER through the defined activation
orders (T_Completion, T Dispatch_Preemption,
T_Preemption_Completion, T_Dispatch_
Completion and T_Preemption).

The dynamic semantics for an AADL thread is defined
using a hybrid automaton (thread scheduling and execution
states automaton) included in Fig. 9. The TASK mapping
covers an important part of the AADL thread seman-
tics of its dispatching, its scheduling and its execution.
Compared to the standard thread hybrid automaton, the
proposed state automaton of Fig. 3 excepts the await-
ing states (shared resources, subprogram calls and back-
ground thread), that are non-covered by our work since
we do not support either subprogram components or
shared resources. In addition, the standard defines a sus-

@ Springer

H. Mkaouar et al.

Table 1 Scheduling rules

AADL

|

LNT

AADL thread transformation rule

thread T
properties
Dispatch_Protocol => Sporadic/Periodic;
Compute_Execution_Time => min .. C;;
Period => Tj;
end T;

thread implementation T.Impl

end T.Impl;

process THREAD_T_IMPL [
ACTIVATION:LNT_Channel_Dispatchl]
is
loop select
select
ACTIVATION
1
ACTIVATION
1
ACTIVATION
[1
ACTIVATION (T_Preemption)
end select;
ACTIVATION (T_Complete)
[1
ACTIVATION (T_Error)
(1
ACTIVATION (T_Stop)
end select end loop
end process

(T_Dispatch_Preemption)
(T_Preemption_Completion)

(T_Dispatch_Completion)

AADL processor

transformation rule

processor the_processor
properties

Scheduling_Protocol => RMS;
end the_processor;

process SCHEDULER [
ACTIVATION_1: LNT_Channel_Dispatch, ...,
ACTIVATION_K: LNT_Channel_Dispatch,
INCOMING_EVENT_1: LNT_Channel_Event, ...,
INCOMING_EVENT_N: LNT_Channel_Event]

Awaiting
dispatch

Iy

dispatch l ! complete

l Executing T

< <

resource
resume
Awaiting
return

l error

a)

X

Fig.9 AADL thread hybrid automaton [1]

pended AWAITING DISPATCH state for threads when
completing the execution of the current dispatch, which
corresponds to the BLOCKED state in the proposed LNT

mapping.

@ Springer

Processor rule The processor is a hardware component
that ensures the scheduling and execution of the threads.
As shown in Table 1, the processor component becomes
the SCHEDULER process developed in Sect. 3.2.2. Every
link between the processor and a thread corresponds
to an ACTIVATION_i gate declaration in the SCHEDULER
process. In the case of a sporadic thread, the corresponding
NOTIFICATION_1 gate is also declared.

The task model S = {7y, ..., ¢} with ; = (C;, T;), is
extracted from the AADL model for the SCHEDULER gen-
eration. We distinguish different information required for the
scheduling: the number of thread instances (k); the num-
ber of sporadic thread instances n; the set of values of each
thread properties (71, k, C1..x) to compute the hyperpe-
riod H (11), assign each thread priority and encode the
task LNT array S of the initialization part (Sect. 3.2.2, List-
ing 10).

4.2.2 Connection rules

The thread components may declare (data, event or event
data/in, out or in out) ports to be in interaction with other
components. A port connection allows the transfer of data
and/or event between two components, explicitly declared
between two ports at process and system levels. The
connection rules concern then the AADL ports (typed with

A formal approach to AADL model-based software engineering

Table2 Connection rules

AADL

LNT

AADL data transformation rule

data D
end D;

type LNT_Type_Data is AADLDATA, EMPTY end type
channel LNT_Channel_Port is

(LNT_Type_Data)
end channel

AADL port transformation rule

thread TH
features
A : in event data
properties
Dispatch_Protocol => Sporadic/Periodic;
Compute_Execution_Time => min .. Cis
Period => Tj;
end TH;

port T;

process Thread_TH [ACTIVATION:
PORT_A: LNT_Channel_Portlis
var A LNT_Type_Data in
A := EMPTY;

LNT_Channel_Dispatch,

select
ACTIVATION (T_Dispatch_Completion);
PORT_A (74);
[1
ACTIVATION (T_Dispatch_Preemption);
PORT_A (7A);
[1

end select;

ACTIVATION (T_Completion)

end process

AADL port connection transformation rule

process[system]

subcomponents
A: thread[process] AA; B:

connections -- data port
AB: port A.al -> B.bil;

implementation P.Impl

thread [process] BB;

process PERIODIC_DATA_CONNECTOR
[INPUT: LNT_Channel_Port,
OUTPUT: LNT_Channel_Port]

process [system]
subcomponents
A: thread[process] AA; B: thread[process] BB;
connections -- event [event datal] port
AB: port A.al -> B.bil;

implementation P.Impl

process PERIODIC_EVENT_CONNECTOR
[INPUT: LNT_Channel_Port,

OUTPUT: LNT_Channel_Port]
(Queue_Size:Nat)

process [system]
subcomponents

-- sporadic thread

A: thread[process] AA; B: thread[process] BB;
connections -- event [event datal] port

AB: port A.al -> B.bil;

implementation P.Impl

process SPORADIC_EVENT_CONNECTOR
[INPUT: LNT_Channel_Port,

OUTPUT: LNT_Channel_Port,
NOTIFICATION LNT_Channel_Event]
(Queue_Size:Nat)

the data components) and their connections, which are
declared at the process and system levels.

Data rule The data component is mapped into a generic
LNT type. For a full abstraction, we use a generic type for all
data and event exchanging (label AADLDATA as included in
Table 2). A corresponding channel is also added to allow the
communication. At this level, this representation is sufficient
to draw connections between the threads since we do not
handle the AADL data content.

Port rule The AADL ports are declared in the thread
component for the transfer of control and data. They are
transformed into the LNT gate declarations. Since they are

bidirectional, the LNT gates can represent in and out ports. In
addition, we complete the behavior of the TASK skeleton of
Listing 9 with an initialization part using the LNT var state-
ment. As shown in Table 2, for each declared port, named 2,
we proceed as follows:

— a gate declaration PORT_A:LNT_Channel_Port is
added;

— avariable A: LNT_Type_Data is declared and initial-
ized in the initialization part;

— acorresponding communication is added as follows:

— for out port: PORT_A (!A)
— for in port: PORT_A (?A)

@ Springer

H. Mkaouar et al.

(system S A
R) T .
7 ;
thread A ',' - ’:I thread C
[AT / L
- &

7%

device Q

Fig. 10 AADL semantics port connections

Note that data, event or event data ports are exactly
mapped at the THREAD_* level, while the difference
between these types (reception, queuing, etc.) is assumed
by the communication mechanism using the CONNECTORS.

Port connection rule The port connections are ensured
through the synchronizations of the CONNECTOR instances
(Sect. 3.3) allowing unidirectional communications, so we
consider only 1-to-1 connections with no in out ports.
Each port connection becomes a CONNECTOR instance. The
CONNECTOR should be synchronized on the INPUT and
OUTPUT gates between two TASKs equivalent, respectively,
to the threads of in and out ports.

In the AADL language, the port connection declara-
tions follow the containment hierarchy of the threads,
processes and systems or of devices and systems,
as shown in Fig. 10. The CONNECTOR process represents
the semantics port connection abstracting all the port con-
nection declarations that follow the component containment
in the instantiated system from an ultimate source (out port
of a thread or a device) to an ultimate destination (in
port of a thread ora device). Thus, the connection @, @
or @ of Fig. 10 is similarly transformed into a CONNECTOR
instance, despite the difference in the declaration-level.

In our work, we consider the AADL asynchronous con-
nections whose determinism is ensured by the Ravenscar
constrained protected object as developed in Sect. 3.3. In the
AADL semantics port connection, the content of incomings
isfrozen during the thread execution: the port variable con-
tent is not affected by the arrival of new incomings. Data and
events arriving through in ports are available to the thread
ataspecified input time, fixed by the Input_ Time property.
This communication model is assumed in the LNT spec-
ification through the INPUT synchronization (reading the
port content) between the CONNECTOR and the THREAD_ *
corresponding to the thread of in port. According to our
LNT mapping, the INPUT rendezvous is fixed at the start
time of each period equivalent to the Start_Time value of

@ Springer

the Input_Time property. After the INPUT rendezvous,
any new data or event arriving becomes available only at
the next start time. In addition, the AADL port output is
transferred to the other components at an output time speci-
fied by the Output_Time property. The transfer of data or
event corresponds to the OUTPUT synchronization with the
thread of out port, which is fixed at the completion time
of each period equivalent to the Completion_Time value of
the Output_Time property.

According to the port type (data, event or event data) and
the thread Dispatch_Protocol property value (peri-
odic or sporadic), we generate one of three CONNECTOR
types, as included in Table 2. In the case of a data
port and a periodic thread, the data port connection
is mapped by a simple CONNECTOR without queuing or
sporadic notifications. When exchanging events, we use a
CONNECTOR with an input list for the event queuing, that
implements the supported set of AADL properties. Finally,
the NOTIFICATION gate is added in the case of a sporadic
thread.

4.2.3 Hierarchy rules

The AADL components are hierarchically structured in both
the process (a set of thread subcomponents) and the
system components.

Process rule The process component represents a pro-
tected virtual address space that can be ignored in verifica-
tion. So the processes have no equivalent in the obtained
LNT specification and its dispatch semantics is omitted. The
AADL model may contain a process with a composition
of the threads. In this case, the corresponding THREAD_ *
instances are directly added in the MAIN process.

System rule The system component becomes the LNT
MATIN process. This generation corresponds on the LNT syn-
chronization and composition phase developed in Sect. 3.4.
The MAIN generation can be summarized in three steps:

— Preparation of the list of thread instances : each
process subcomponent corresponds to one or more
of THREAD_* instances.

— *_CONNECTOR synchronizations: for each port connec-
tion, we create one *_CONNECTOR instance. We use
the AADL connection name, prefixed by “SEND_" and
“RECEIVE_" to represent two gates (e.g., the port con-
nection Connect_AB, of the example of Table 3, is
represented by the SEND_AB and RECEIVE_AB gates).
These gates are used in the synchronization between the
THREAD_ * and *_CONNECTOR instances as follows:

— the RECEIVE_* synchronization represents the
reading of the port content by the thread of in port.

A formal approach to AADL model-based software engineering

Table 3 Hierarchy rules

AADL

|

LNT

AADL systenm transformation rule

system PC
end PC;

system implementation PC.Impl
subcomponents
Data_Exp: data Alpha;
A: process AA.Impl;
B: process BB.Impl;
CPU: processor the_processor;
connections
AB:port A.A1 -> B.B1;
properties
Actual_Processor_Binding => (reference (CPU))
applies to A;
Actual _Processor_Binding => (reference (CPU))
applies to B;
end PC.Impl;

process Main [
ACTIVATION_1:
ACTIVATION_2:

LNT_Channel_Dispatch,
LNT_Channel_Dispatch,

SEND_AB: LNT_Channel_Port,

RECEIVE_AB: LNT_Channel_Port,
INCOMING_EVENT_2: LNT_Channel_Event] is
par

ACTIVATION_1,SEND_AB ->
THREAD_P_IMPL[ACTIVATION_1,SEND_AB]
Il
SEND_AB ,RECEIVE_AB, INCOMING_EVENT_2->
Event_Port [SEND_AB ,RECEIVE_AB , INCOMING_EVENT_2](3)
Il
ACTIVATION_2 ,RECEIVE_AB ->
THREAD_C_IMPL[ACTIVATION_2 ,RECEIVE_AB]
Il
ACTIVATION_1,ACTIVATION_2,INCOMING_EVENT_2->
SCHEDULER
[ACTIVATION_1 ,ACTIVATION_2 ,INCOMING_EVENT_2]
end par
end process

Table 4 Other rules

AADL

|

LNT

AADL device transformation rule

device D
features
A: out event port;
B: in event port;
end D;

process Device_D [PORT_A: LNT_Channel_Port,
PORT_B: LNT_Channel_Port]
is
var A: LNT_Type_Data, B: LNT_Type_Data in
A := AADLDATA; B := EMPTY;
loop select
PORT_A (74)

(1
PORT_B (!B)
end select end loop
end var

end process

— the SEND_ * synchronization represents the transfer
of the data or event from the thread of out port.

— Global composition: all THREAD_ *s are synchronized
with the SCHEDULER on ACTIVATION_1 gates. Sim-
ilarly, all *_ CONNECTORs are synchronized with the
SCHEDULER on the NOTIFICATION_1 gates.

For the system transformation illustration, this rule is
applied on an AADL simple Producer—Consumer model
(two AADL threads running on one processor to
exchange events), which is included in Table 3.

4.2.4 Other rules

At this level, the LNT mapping is used in the definition of the
AADL2LNT transformation with minor changes. In addition,
the transformation can be completed by rules concerning
other AADL components such as devices.

Device rule The thread components can communicate
with devices via ports. We do not consider the internal
device behavior, but we provide a simple LNT specifica-
tion sufficient for the thread-device port connections.

The device becomes an LNT process prefixed by
“DEVICE_". Unlike THREAD_*, DEVICE_* has no acti-
vation gate, but its port declarations are similarly mapped.
The DEVICE_* behavior consists simply of a loop-select
statement comprising the PORT_* communications as given
in Table 4. The AADL device port connections are simi-
larly mapped as the thread port connections through the
CONNECTORs at the MAIN level.

4.3 Discussion
The description of a model transformation based on more

generic LNT definitions was the purpose of our previous
work published in [43] and depicted in Fig. 11 (the Producer—

@ Springer

H. Mkaouar et al.

TASK CONNECTOR TASK
SCHEDULER g cauest
Response (Response 1
(TASKl)(TASK 2 \
. —_ (4 i
Time = (t starti!tCOmpletej) u Time]Ju Time U
\

Fig.11 Old LNT mapping

consumer example). Mainly, the scheduling was differently
ensured between the THREAD *s and SCHEDULER. Com-
pared to the actual SCHEDULER, the old one was generically
defined to execute any task model: it has no information
about the task model (no initialization part). Using only two
gates (REQUEST and RESPONSE), the SCHEDULER gives
a response according to a received request without a global
view of the task model: the execution advances by exchang-
ing time [t;'m,tj, té()mplete_,'] between the SCHEDULER and
THREAD_ *s. Each process (THREAD_ * and SCHEDULER)
has a local COUNTER. Each THREAD_* requests time
for its execution [(tsi,ar,j, tgonlpletej), T;, i] and waits for
the SCHEDULER response. While the SCHEDULER com-
putes start and completion execution time based on the
tasks priorities and the advancement of its COUNTER. The
THREAD_ * manages its own temporal calculations (execu-
tion times, preemptions, etc.). At the reception of a response,
the THREAD_ * updates its COUNTER, executes the allocated
time and then prepares a new request.

This first proposition brings generic SCHEDULER and
THREAD_ * constructions, favoring the reuse of our map-
ping. However, in the case of large systems, this mapping
rapidly led to the state explosion problem during the analy-
sis phase: the system state space may become very large, or
even infinite, that cannot be explored with limited resources
of time and memory (see Sect. 5.5). In this paper, we redefine
the SCHEDULER and THREAD_ * processes and their syn-
chronizations in order to avoid and reduce this problem. We
opt to get rid of the heavy requests and responses by abstract-
ing the SCHEDULER-THREAD_ * exchanges with a set of
activation orders to restrict the enumerations in the analy-
sis phase. In addition, we eliminate the time counters from

@ Springer

the THREAD_ *s and maintain a unique counter of the whole
system within the SCHEDULER. Thus, useless calculations
are removed and time is managed only by the SCHEDULER.

For the same reasons, some restrictions were applied on
the considered AADL subset concerning mainly the port
connection rules. The in out ports and n-to-n connections
can be supported in the AADL2LNT transformation since the
LNT language provides bidirectional gates and n-to-n syn-
chronizations. However, the resulting formal specifications
rapidly explode, especially with highly connected models.

With these refinements, the resulting state spaces are sig-
nificantly reduced at the analysis phase. Thus, we provide
a scalable solution (see evaluation in Sect. 5.5) without
restricting our purposes (preemptive priority-based schedul-
ing, asynchronous communication, etc.).

In another direction, we aim to enrich the communica-
tion mapping by considering the content of exchanges. The
AADL2LNT transformation is completed by the consider-
ation of the AADL Behavior annex [2], which is used
to specify the behavior handling inputs and outputs within
the thread components. The mapping of the Behavior
annex requires a new abstraction level where the thread
behavior (described as a local state transition machine) and
data content are considered in a new AADL subset. The
Behavior annex transformation with the set of new rules
about AADL thread and data components can be found
in [42].

4.4 Tool-chain

The model transformation description being defined, we

reach the implementation phase to provide an automatic gen-

eration of the LNT specification from a given AADL model.

A detailed description of our implementations can be found

in [44]. In this section, we briefly describe the obtained

tool-chain, depicted in Fig. 12, based on Ocarina [35] for
architectural modeling and CADP [22] for formal verifica-
tion:

— Ocarina’ is an open-source tool suite for AADL model-
ing developed since 2004 and deployed on GitHub under
the OpenAADL project. Ocarina can be used as a stand-
alone compiler for the AADL language with the support
of some annexes ARINC653, EMV?2 and REAL. The tool
suite is appropriate for an MDE approach since it pro-
vides basic analysis (syntactic and semantic), advanced
model manipulations, formal verification (Petri nets) and
code generation (toward the AADL runtime PolyORB-
HI/Ada and C).

— CADP is a toolbox for the design and verification of
concurrent systems, developed since 1986. It is avail-

3 https://github.com/OpenAADL/ocarina.

https://github.com/OpenAADL/ocarina

A formal approach to AADL model-based software engineering

AADL QGARINA
Package " :L,\‘\j]:v

PR -~

* . S
Transformation Code
| AADL2LNT Generation

SVL Script
I LNT Modules
Analysis 1
Results

Model-
Checking

Fig.12 Ocarina-CADP tool-chain

able with both academic and commercial licenses.® In
addition to LNT, it supports many other input languages
such as LOTOS, FSP and EXP. It also provides a script-
ing language SVL (Script Verification Language) [20] for
the description of analysis scenarios. The toolbox offers
a comprehensive set of tools for specification, interactive
simulation, verification (model-checking, equivalence
checking, etc.), performance evaluation, etc. To deal with
complex systems, CADP provides a set of verification
techniques such as the reachability analysis, on-the-fly
verification and distributed verification.

4.4.1 Ocarina extension

The proposed AADL2LNT transformation is integrated
within the Ocarina tool suite.” The Ocarina compiler is
designed with a modular architecture distinguishing three
parts: a central library (a set of routines), the frontend (for
model analyses) and the backend (for model manipulations
and generations). Different model manipulations are han-
dled using the ASTs (Abstract Syntax Tree) which are the
internal representation of models (AADL, annexes and other
languages).

Generally described, the AADL2LNT model transforma-
tion is implemented in the Ocarina backend. We assume that
the AADL model should be successfully analyzed on the
frontend and then transformed into an AADL AST. We do not
use model transformation languages for our generation. We

6 http://cadp.inria.fr/.

7 The AADL2LNT transformation is integrated in the official Ocarina
GitHub repository.

directly apply the transformation rules on the AADL AST
(without meta-model) to form a corresponding LNT AST.
Then, this AST is scanned in order to produce the source
code files (* . 1nt). In addition to the LNT modules, a script
file (demo . sv1)is also generated, containing a set of opera-
tions specified in the SVL language to orchestrate the analysis
phase. This file is directly generated for each AADL system
(without an SVL AST).

4.4.2 CADP formal verification

The formal verification allows designers to prove that a sys-
tem satisfies its requirements. The verification techniques
are applied on an abstract mathematical model of the system
(system state space), built according to the considered speci-
fication language semantics. In addition, the verified proper-
ties (system requirements) should be specified as graphs or
temporal logic properties, using specific formalisms. Then,
the verification can be performed by the analysis tools. In our
work, we mainly deal with the model-checking technique,
which consists in checking whether the system satisfies a
given property specified with a temporal logic.

Based on the Ocarina generated outputs, a formal verifica-
tion phase can be performed by the CADP toolbox using the
SVL script, which guides the compilation of the LNT specifi-
cation and the verification of a set of behavioral and temporal
properties. The generated LNT specification is firstly com-
piled into an LTS (Labeled Transition System) to be explored
using the CADP model checkers. To automate this operation,
we include the verified properties within the SVL script.
Using the SVL property statement, we define a set of
generic properties to verify some requirements of real-time
systems such as deadlock, schedulability, communication
problems (e.g., data loss) and queuing problems (e.g., over-
flow of buffers).

We thereby drew a tool-chain providing an automatic and
transparent verification of the AADL model. The transfor-
mation is carried out by the Ocarina command line, then,
the generated SVL script is simply invoked to begin the
verification phase with the CADP toolbox. Finally, the anal-
ysis results help designers in AADL model correction and
improvement. This operation can be iteratively applied after
each modification, throughout the development process, until
the generation of the final application.

5 Experiments

The AADL2LNT transformation has been tested with various
examples. In this section, we report experiments performed
on two case studies: FCS (Flight Control System) and LFR
(Line Follower Robot) [47], to illustrate the periodic/sporadic
tasks and data/event connections model transformation and

@ Springer

http://cadp.inria.fr/

H. Mkaouar et al.

process_FCS

PL

Fig. 13 FCS AADL model (process level)

formal analysis. We describe the considered AADL models;
then, we expose our experimental results about the Ocarina
generation and the CADP formal analysis. Finally, we discuss
the usability of the analysis results and the scalability of our
solution.

5.1 Modeling phase

This phase consists in defining the task models (real-time
parameters, connections, etc.) and modeling the whole sys-
tem with the AADL language.®

5.1.1 Flight control system

We consider this example to illustrate periodic tasks and data
connections. FCS is a safety-critical avionics system for air-
craft controlling. This system controls the altitude, trajectory
and speed of an airplane. We consider a simplified version,
composed of 7 periodic tasks (Spcs = {r1...7}) which collab-
orate through exchanging data, in order to send a feedback
to the flight control surface.

Briefly described, the FCS model consists of a first sub-
set of tasks (FL (Feedback Law), FF (Feedback Filter) and
AP (Acceleration Position Acquisition)), which is executed
at 10 ms to acquire the state of the system (angles, posi-
tion, acceleration) and compute the feedback law of the
system, in order to send the final order to the flight con-
trol surface. A piloting-loop subset of tasks (PL (Piloting
Law) and PF (Piloting Filter)) is executed at 40 ms to deter-
mine the acceleration to apply. Finally, a navigation-loop
subset of tasks (NL (Navigation Law) and NF (Navigation

8 The FCS and the LFR AADL models are available on-line in the
AADLIb GitHub repository, which is a library of reusable AADLv2
models under the OpenAADL project (https://github.com/OpenAADL/
AADLID).

@ Springer

Robot

proc_sensor__ left proc_sensor_ right

-

Fig. 14 LFR AADL model (system level)

Filter)) is executed at 120 ms to determine the position to
reach.

The corresponding FCS AADL model, partially depicted
inFig. 13, counts 186 lines. It consists of 7 periodic threads
(FL, PL, PF, NL, NF, AP and FF) grouped in one process
(process_FCS) bound to one processor. The model
contains a set of inter-thread connections (declared at
process level) and a set of process-device connections with
5 devices (declared at system level).

5.1.2 Line follower robot

LFR is our second case study to test sporadic tasks and event
data connections. This robot is a machine that follows a black
line on a white area. This system uses sensors to detect the
line and control units to make movement decisions and com-
mand right and left servomotors (wheels). The robot sensors
control regularly the follow-up of the black line and send
information to the control units. While, the servomotors are
commanded (to turn on/off) only if the robot loses the line,
which consists of a non-periodic action. Thus, the servomo-
tor behavior would be better modeled within the sporadic
tasks.

The LFR task model (SLpr = {71...6}) considers right/left
robot sides similarly. Each side contains 3 tasks exchanging
event data: a periodic task for sensing, a periodic task for
controlling and a sporadic task for turning on/off the servo-
motor.

The corresponding LFR AADL model, partially depicted
in Fig. 14, counts 131 lines. The model contains 6 threads
in communication (sensor-control and control-servomotor
exchanges) through event data port connections: each sen-
sor/servomotor thread is contained in a process, while
the control threads are grouped together in the same

https://github.com/OpenAADL/AADLib
https://github.com/OpenAADL/AADLib

A formal approach to AADL model-based software engineering

Table 5 Case studies transformation metrics

FCS LFR

AADL LNT AADL LNT

Source code lines Source code lines

188 697 131 566
Transformation Transformation

7 threads 7 THREAD_ %S 6 threads 6 THREAD_ *S
4 devices 4 DEVICE_x*S - -

1 process - 5 processes -

17 data connections
1 processor

1 system

LTS

12 Data_CONNECTORS
1 SCHEDULER
1 MAIN

2439 states

10 event data connections
1 processor

1 system

LTS

4 Event_Data_CONNECTORs
1 SCHEDULER
1 MAIN

673 states

14,570 transitions

673 transitions

process. All the process components are bound to one
processor. Other hardware components can be added to
complete the model (a set of devices for the sensors and
servomotors), yet the current software model is sufficient for
our purposes.

5.2 Automatic model generation

The transformation and generation are performed by our
Ocarina extension (AADL2LNT). For each AADL model,
Ocarina generates 5 LNT modules in separate files: *_
Ports.1lnt, *_Threads.lnt, *_Processor.l1lnt,
*_Types.lnt and the root module *_Main. 1nt, with
the script file demo . sv1.

Table 5 sums up the transformation metrics of the FCS and
LFR case studies. The FCS specification counts 697 lines
and contains 25 processes. The LFR specification counts
566 lines and consists of 12 processes. For each case study,
all the LNT processes are instantiated and synchronized at
the MAIN level, despite the difference in the port connec-
tion types and declaration levels: in the LFR case study, the
different event data port connections declared following the
AADL component hierarchical containment, are abstracted
inonly 4 Event_CONNECTOR instances at the MAIN level,
and in the FCS case study, the process-device connections
are similarly considered as the inter-thread connections (12
Data_CONNECTOR instances).

The AADL2LNT transformation complexity depends
mainly of the number of AADL threads and port connec-
tions: from models with independent threads, we obtain
simple LNT models without the CONNECTOR synchroniza-
tions. While with highly connected models, the number of
the required processes increases significantly.

The Ocarina automatic generation covers all the necessary
steps for the transformation from AADL into LNT and elimi-
nates its complexity, especially in the SCHEDULER mapping
which is less generic compared with the other processes
(THREAD_*, DEVICE_* and *_CONNECTOR) generation.
For example, the LFR SCHEDULER counts 250 lines (nearly
50% of the code). Another difficulty eliminated with our
AADL2LNT generation resides in the composition and syn-
chronization phase: the mapping of the MATN process seems
tricky since we deal with a lot of process instances and
gates, especially for the mapping of the port connections, in
which different hierarchical declarations (at the process
and system levels) should be abstracted at the MATN level.
For example, to map the 7 threads of the FCS case study,
we should synchronize 25 process instances on 32 different
gates.

5.3 Formal analysis

After the AADL2LNT generation, various analysis can be
performed by the CADP toolbox. In our work, we use two
important formal techniques: simulation (for example with
the OCIS simulator) and model-checking. We remind that
the analysis phase is described in the demo . sv1 through
the following two steps, developed in the next sections.

5.3.1 State space generation

This is an imperative step to enable the verification of the
LNT specifications. A translation from LNT into LOTOS is
firstly applied with the Lnt. Open, Lnt2LOTOS and Lpp tools.
Then, a generation of an LTS is performed by the CESAR
compiler [24]. The LTS represents the dynamic behavior of

@ Springer

H. Mkaouar et al.

Fig. 15 The generated LTS corresponding to Listing 14

the LNT specification with a set of states and transitions
(system state space). The LTSs can be explicitly manipulated
with the BCG (Binary-Coded Graphs) tools. BCG is both a
format for the LTS representation and a set of libraries and
programs dealing with LTSs (information, display, edition,
minimization, etc.).

Moreover, the LTS generation can be smartly reduced
to improve the verification performance [17]. We can also
personalize the LTS generation using the SVL language
(hide, cut, rename labels, etc.). For example, Listing 14
and Fig. 15 represent a divbranching reduction [21] of
the FCS case study, that hides all the LTS labels except
the ACTIVATION_6 gate. The resulting LTS corresponds
to the activation graph of the NL. thread, whose graph
(Main.bcg) is drawn in Fig. 15.

Listing 14 Smart generation with SVL language

"Main.bcg"= divbranching reduction of
hide all but ACTIVATION_NL in
rename ACTIVATION_6 -> ACTIVATION_NL in
"FCS.1lnt"
end rename
end hide;

The LTSs metrics of our case studies are included in
Table 5. These results show the effectiveness of our con-
tribution and the improvements achieved for our work and
for the Ocarina formal verification in general:

— The LFR and FCS systems are represented with small
state spaces.

— Compared to LFR, FCS has the largest state space since
it counts more threads and connections. Note that the
AADL devices presence only increases the transitions
number without changing the activation graph.

— Regarding the state explosion problem met with our old
mapping, we note a significant reduction (up to 100%)
in the state space of FCS compared to statistics given
in [43].

@ Springer

— Considering the scheduling level, the obtained activation
graph can be compared with analysis results performed
with existing schedulability analysis tools. For exam-
ple, we choose the Cheddar [53] tool, since it supports
AADL as input model. The generation of the FCS
LTS can be personalized by cutting the T_Stop and
T_Completion labels; thus, we obtain the activation
graph counting 52 states corresponding to the same num-
ber of the context switches found by Cheddar when
analyzing the FCS AADL model.

— Note that the Ocarina tool suite is extended in [47-49]
by the generation of a Petri net model for formal anal-
ysis with the Tina tool. This work is illustrated by the
same robot case study in [47]. Compared to our exper-
imental results, we note a significant reduction in the
state space metrics: about 673 states and 673 transi-
tions for the LFR case study, compared to 65 527 states
and 425 985 transitions for a Petri net model without a
timer.

5.3.2 Verification

After the state space generation, we reach the model-
checking phase. As mentioned before, we use the SVL
property statement to specify the verified properties. This
statement can be parameterized by a set of parameters, it
can embed a set of verification statements such as the tem-
poral logic verification statement that integrates a temporal
logic formula. In our work, we choose the Evaluator model
checker [40,41] and so we define each property formula
with the temporal logic MCL (model-checking language). In
addition, the Evaluator model checker allows the definition
of macros for the temporal operators parameterized by action
and/or state formulas. Thus, we use a set of predefined macros
(standard.mcllibrary),suchasNEVER (R) (thereisno
action sequence R) and AFTER_1_INEVITABLE_2 (A,
B) (after an action A, the action B is inevitably reachable).
In the following, we include some examples of the defined
generic properties:

— Scheduling_Test property (Listing 15): this prop-
erty indicates if a given thread has respected all its
deadlines (absence of the T_Error label);

— Is_Preempted property (Listing 16): a thread may
be preempted by the SCHEDULER, this property detects
if a given thread has been preempted during the
scheduling. The absence of all the T_Preemption,
T_Dispatch_Preemption and T_Preemption
_Comple-tionlabels means that the threadisnever
preempted;

— Connection property (Listing 17): this property ver-
ifies if a port connection is well established, through a
given port connection AB, after the transfer of the data

A formal approach to AADL model-based software engineering

or event (a rendezvous on SEND_AB gate), there is at
least one reading of the port content (a rendezvous on
RECEIVE_AB gate);

— Data_Loss property (Listing 18): this property detects
the loss of data through a given data port connection AB, it
detects the occurrence of two successive transfers of data
(rendezvous on SEND_AB gate), without a reading of the
port content, in this case, the oldest input is overwritten
by the newest one;

— Overflow_FIFO property (Listing 19): this property
detects if a list (FIFO with N size) of an event/event data
port is overflowed, it detects the occurrence of N+1 suc-
cessive transfers of events, without any reading of the
port content, in this case, the oldest input is overwritten
by the N+1th one.

Listing 15 Scheduling property

property Scheduling_Test (ID)
"Scheduling test of thread $ID"

is
"Main.bcg"|= with evaluator3
NEVER (true *. 'ACTIVATION_SID !T_ERROR ') ;
expected TRUE;
end property;
Listing 16 Preemption property
property Is_Preempted (ID)
"Preemption test of thread"
is
"Main.bcg" |= with evaluator3
NEVER (true *.
"ACTIVATION_SID !T_DISPATCH_PREEMPTION ') and
NEVER (true *.
"ACTIVATION_SID !T_PREEMPTION ') and
NEVER (true *.

"ACTIVATION_SID
expected TRUE;
end property;

! T_PREEMPTION_COMPLETION ') ;

Listing 17 Port connection property

property Port_Connection (ID)
"After a SNED_S$ID action,
a RECEIVE_S$ID is eventually reachable"

is
"Main.bcg" |= with evaluator3
AFTER_1_INEVITABLE_2 (’SEND_S$ID !AADLDATA ',

'RECEIVE_S$ID !AADLDATA ') ;

expected TRUE;

end property

Listing 18 Data loss property

property Data_Loss (ID)
"Between two consecutive SEND_S$ID actions,
there 1is a RECEIVE_S$ID action™"
is
"Main_$ID.bcg" =
hide all but "SEND_S$ID", "RECEIVE_SID" in
"Main.bcg" |= with evaluator4

NEVER (true* 'SEND_SID !AADLDATA '
(not 'RECEIVE_S$ID !AADLDATA ') *
'SEND_S$ID !AADLDATA ') ;

expected TRUE;
end property

Listing 19 FIFO property

property Overflow_ FIFO
"Between SN consecutive
is a RECEIVE_S$ID action™"

(ID, N)
SEND_S$SID actions,

"Main_S$ID.bcg" =

hide all but "SEND_s$ID",
"Main.bcg"

|= with evaluator4

"RECEIVE_SID" in

NEVER (true*

(" SEND_S$SID !AADLDATA ') {SN + 1}
(not 'RECEIVE_SID !AADLDATA ') *
'SEND_SID !AADLDATA ') ;

expected TRUE;
end property;

The defined properties allow the detection of serious
problems at the model level. Since we deal with real-time
systems, it is necessary to validate temporal and communi-
cation parameters such as deadlock detection, scheduling test
and detection of connection failures (overflow of buffers, loss
of data, broken links). We check both LFR and FCS models,
and we perceive that they are well scheduled and deadlock-
free. All port connections are well established. We test the
LFR system with different FIFO sizes, and we find that the
sensor-control queue size should be > 2 to avoid the overflow
problem.

5.4 Analysis results

An important issue in the AADL formal approaches con-
cerns the usability of the obtained analysis results which are
produced by the formal tools. In our work, we provide a
user-friendly (simple) output form, that is easily interpreted
by non-formal-expert designers.

Based on a traceable definition of the LNT specification
and the SVL verified properties, we preserve information
from the initial AADL model that is readily distinguished
in the displayed results. The traceability is firstly assumed
during the model generation: the LNT specification keeps
the names of the AADL components and port connections,
which are used in the naming rules of the LNT variables,
gates and processes. In addition, the use of parameterized
and commented properties furthers the traceability and gives
understandable results. Parameters are used to represent port
connections and threads by their initial AADL names.
Thus, each thread or port connection can be separately
verified and so failures are rapidly localized in the AADL
model.

For illustration, we include an extract of the outputs of the
LFR case study in Listing 20. The Scheduling Test
property is applied for each thread, so when the system
scheduling test fails, the concerned thread (with a missed
deadline) is directly localized. Similarly, the port connec-
tions are separately handled by their AADL initial names:

@ Springer

H. Mkaouar et al.

the Sensor_Control_R port connection corresponding
to the sensor-control right side connection (Fig.14) is obvi-
ously identified in Listing 20 (the PASS response means that
no overflow is detected in this connection while the simula-
tion).

Listing 20 Analysis results from the LFR case study

property PROPERTY_Deadlock
PASS

property Scheduling_Test (1, TH_SERVOMOTOR_R)
| Scheduling test of the thread TH_SERVOMOTOR_R
PASS

property Overflow_FIFO (SENSOR_CONTROL_R, 3)
|Between 2 consecutive SEND_SENSOR_CONTROL_R
actions, there is a RECEIVE_SENSOR_CONTROL_R ong€

PASS

5.5 Scalability discussion

The proposed tool-chain has been initially tested with a set of
case studies (flight control system, pacemaker, door manage-
ment system, etc.) from the AADLIb library® to validate the
correctness of the AADL2LNT generation. Such examples
with a certain scale are easily verified in few minutes with
basic machines. In addition, advanced experiments were car-
ried out to evaluate the scalability of our solution.

In a formal context, the state space explosion is a serious
issue that discourages the application of formal methods.
The problem occurs when the system state space becomes
too large to be verified: the number of states or transitions
explodes. In our work, we deal with real-time systems based
on the parallel concurrent behaviors which often lead to large
state spaces. To avoid the pitfall of the state explosion prob-
lem, a set of refinements (discussed in Sect. 4.3) were applied
on the LNT mapping in order to obtain small state spaces. In
fact, the resulting LTS size depends on many factors related
to the given AADL model at different levels (tasking model,
scheduling protocol, communication, etc.). In this paper, we
consider two main factors which are the number of threads
and the simulation interval H (ty_g).

A test suite is defined, composed of 100 AADL models,
to evaluate three model families: (i) models with indepen-
dent threads; (ii) models with periodic threads and data
port connections; (iii) models with sporadic threads and
event port connections. The test is based on a set of general-
ized Producer—Consumer system: we increase progressively
the number of Producer—Consumer couples with different
thread periods to also increase the H (t;_ k) value. Start-
ing from models with only 2 threads, we reach 40 and
70 threads to be tested during thousands of units of
time (H (t1_1)). The AADL Producer—Consumer models are

9 https://github.com/OpenAADL/AADLib/tree/master/examples.

@ Springer

transformed into LNT specifications using Ocarina and then
compiled into LTSs using CADP.
Results Tables 6 and 7 summarize some of the obtained LTS
metrics. Table 7 concerns a set of exhaustive tests of family
(i): the H(t_ k) value is between 100 and 30,000 units of
time (row 1), and the number of threads is between 50
and 70 (column 1). Table 6 regroups results of families (ii)
and (iii): the H (t1_ ;) value is between 100 and 5000 units of
time (row 1) and the number of threads is between 2 and
40 threads (column 1). For each test, we give the number
of states of the generated LTS (with divbranching reduction).
In general, the LTS size grows as the number of threads
and units of time (H (71, x)) increases, yet each family test
has some particular observations:

(i) This family includes the state spaces obtained from
independent-thread AADL models. As shown in
Table 7, the LTSs are quite small compared to the impor-
tant number of threads. The exhaustive experiments
reach 50 threads tested until the 30,000 units of time
without explosion. We notice an interesting results with
50 or 60 threads, simulated during 100 units of time,
which are tested in pretty small spaces (about one hun-
dred states). Note that, beyond 70 threads, the LTSs
grow exponentially and the state explosion problem is
more frequent which makes models with such a scale
hard to be verified.

(i) When adding port connections, the corresponding LNT
processes (CONNECTOR) are added in the obtained LNT
specification which increases the size of the gener-
ated LTS. For this reason, the tests are limited to 40
threads, and beyond that, the state explosion problem
is more frequent. Nevertheless, we still obtain interest-
ing results: starting with only 29 states for 2 threads
and 100 units of time, reaching 2020 states for 40
threads and 5000 units of time (Table 6).

(iii) This family includes models with sporadic threads
and event or event data ports. In the Producer—Consumer
system, the consumer thread becomes sporadic with
an event port connection. Being tested in the same scope
as the family (ii), the obtained LTSs of this family
are much bigger and lead to some explosions (mainly
with 40 threads). This is explained by the fact that
additional synchronizations are required for the spo-
radic threads scheduling (the NOTIFICATION syn-
chronizations between the processes SCHEDULER and
CONNECTORS). Yet, we still obtain reasonable results.
For example, models with 10 and 20 threads are suc-
cessfully simulated with small state spaces (between
2802 and 835,786 states).

https://github.com/OpenAADL/AADLib/tree/master/examples

A formal approach to AADL model-based software engineering

Table 6 State spaces results of family (ii) and (iii)

Periodic threads with data port connections (ii)

Sporadic threads with event port connections (iii)

100 300 500 1000 1500 3000 5000

100 300 500 1000 1500 3000 5000

2 29 37 23 30 37 113 89 136 563 997 2052 2904 5910 9782

8 121 140 196 266 326 116 386 1590 7028 12,116 27,318 39,254 85,212 134,064
10 153 175 115 386 175 145 523 2802 9875 17,820 39,788 58,401 134,750 212,148
20 305 350 230 498 350 395 1003 7960 36,655 63,192 129,619 211,519 504,365 835,786
40 428 269 774 836 700 2290 2020 38,820 oo 00 00 0 00 0

Table 7 State spaces results of family (i)

100 5000 10,000 30,000
50 114 1716 2859 16,001
60 134 1804 0 00
70 00 1884 2610 00

This test suite has been carried out on a machine with high
performance!? using the 2017-J “Sophia Antipolis” CADP
version. The generation of all the LNT specifications needs
a few seconds, while the analysis time (LTS generation and
model-checking of properties) depends evidently of the test
and may require some minutes or hours. The LTS genera-
tion of family (ii) needed 28 min, which is a satisfying time
for a test suite composed of 43 models counting up to 40
threads. From family (iii), the analysis time of a Producer—
consumer model with 10 threads simulated during 1500
units of time is about few seconds (with a basic machine, it
may take 4 min). While it takes about 1h for a Producer—
consumer model with 20 threads simulated during 1000
units of time from the same family (iii).

To conclude, the size of LTS depends directly on the num-
ber of threads, but also on other minor factors such as
the scheduling mapping and the obtained activation graph:
the sporadic and preemptive threads are more expen-
sive (in size) than independent, periodic or non-preemptive
threads; similarly, highly connected threads increase
the size of the LTSs significantly. Compared to the consid-
ered subset, the proposed AADL model verification requires
reasonable resources in memory and time. These experimen-
tal results are promising, showing the effectiveness of our
solution to verify real-time systems with a respectable scale.

6 Related work

Since we deal with a Ravenscar compliant model, we firstly
note that certain approaches have been proposed for the for-

10 processor Intel Xeon(R), 2.20 GHz x32, 63GB RAM, running Linux
MATE 1.12.

mal analysis of the Ravenscar systems. In general, these
works aim to analyze the Ada real-time systems, such as:
Kristina et al. [38] propose a formal mapping of a Ravenscar
compliant runtime kernel for verification with the UPPAAL
model checker; authors in [28] work on the generation of
the Ada Ravenscar code from the AADL models, in which
a particular data connector DBX (Deterministic Bridge
Exchangers) is manually mapped in LOTOS to verify its
deterministic behavior. In addition, they provide a static and
dynamic semantics for the generated Ada Ravenscar in [29];
authors in [45] present a transformation of Ada Ravenscar
programs using the IF timed automata. Compared to these
works, we use the Ravenscar profile to apply a set of strong
constraints at the model level for safety-critical real-time sys-
tems modeling. We provide an LNT mapping for a Ravenscar
task model that can be completed and automated for the Ada
code analysis with the CADP toolbox, which presents an
important perspective. But, we currently focus on the ver-
ification of the architectural models rather than the code
analysis: our Ravenscar LNT mapping is completed with
architectural descriptions to transform AADL models, also
it is extended to support the AADL Behavior annex.

The proposed AADL2LNT transformation is classified
among AADL formal approaches. Several AADL transfor-
mations have been developed for diverse objectives. Table 8
summarizes a set of studies grouped in three families accord-
ing to their target formalism: Petri nets, automata and other
specification languages (e.g., process algebras). We include
18 AADL transformations with their target languages, the
tools used in the transformation/formal verification and some
objectives. In the following, we detail some works, aimed
mainly to verify behavioral and temporal properties.

The first family concerns the Petri nets and their exten-
sions. We mention Renault et al. work, in which an AADL
subset is firstly transformed into symmetric nets in [49] and
then extended into timed and colored Petri nets in [48] for the
verification of temporal properties such as missed deadline
or missed thread activation, using the Tina formal analysis
tool.

The second formalism is the automata. Particularly, we
note the use of the timed automata and the UPPAAL

@ Springer

H. Mkaouar et al.

Table8 Summary of AADL transformation approaches

Language Tools Objectives Papers
Transformation Verification
Petri nets GSPN ADAPT SURF-2 Dependability analysis [52]
SAN ADAPT-M MoBIUS Dependability analysis [30]
TPN Ocarina Tina Temporal properties [48,49]
Automata Linear hybrid automata - TIMES Scheduling analysis, simulation [26]
Event data automata COMPASS COMPASS Behavioral properties, safety [10-12]
analysis, FDIR and
performance evaluation
Timed automata - UPPAAL Control/data-flow reachability [33,34]
Timed automata ATL UPPAAL Behavioral properties [27]
Timed automata - UPPAAL AADL mode analysis [61]
Formal languages LUSTRE aadl2sync Lurette, Lesar Simulation, behavioral [32]
properties
BIP OSATE BIP framework Behavioral properties [15]
TLA+ TOPCASED model checker TLC Temporal analysis [50]
Signal OSATE SynDEX, Polychrony Temporal and scheduling [8,58,59]
analysis
FIACE TOPCASED Tina Simulation, behavioral [7,9]
properties
ACSR OSATE VERSA Temporal and scheduling [54,55]
analysis
Real-Time Maude OSATE Maude platform Behavioral properties [4-6,46]
IF TOPCASED - Safety properties [3]
TASM OSATE, ATL TASM, UPPAAL Behavioral properties [31,57]
Stateful Timed CSP OSATE PAT Behavioral and temporal [60]
properties
LNT (our approach) Ocarina CADP Behavioral and temporal [43,44]

properties

model checker. For example, Hamdane et al. [27] describe a
tool-chain from AADL into timed automata for the model-
checking of behavioral properties like deadlock, liveness and
reachability properties.

Bozzano et al. [10-12] propose a comprehensive plat-
form COMPASS for the analysis of AADL models such as
the requirements validation, functional verification, safety
analysis, FDIR (Fault Detection, Isolation and Recovery)
and performance evaluation. This approach is based on the
defined SLIM language, which is an extension of the AADL
language and its Error annex. The SLIM model is trans-
formed into an EDA (event data automata) to be explored
with different COMPASS tools (the NuSMV symbolic model
checker, the MRMC probabilistic model checker and the
RAT requirements analysis tool).

The third family transforms different AADL subsets into
diverse specification languages. Our work is included among
this family using the LNT language. Firstly, we note that
a set of approaches addresses synchronism by using syn-
chronous languages as target formalisms such as in [32],
where authors explain how the synchronous paradigm can be

@ Springer

used to describe asynchronous behaviors through the trans-
formation of an AADL subset into the synchronous language
Lustre. Other works deal with an AADL synchronous sub-
set, for example, the contributions around the Polychrony
framework ([8,58,59]) introduce the concept of co-modeling
using an AADL subset (periodic threads and data port
connections) for modeling and the Simulink language for
the behavioral specifications. The verification is based on
the transformation into the Signal synchronous language,
which allows the exploration of the AADL model with the
Polychrony and SynDEX tools. Yang et al. [31,57] use the
same synchronous subset adding AADL modes, Behavior
annex and offline non-preemptive scheduling policy to define
a formal semantics with the TASM language. The trans-
formation is implemented in the OSATE environment and
formally verified by the Coq theorem prover, in order to ver-
ify behavioral properties (deadlock and reachability) with
the TASM and UPPAAL tools. The proof is performed by
equivalence checking and based on the equivalence check-
ing of the TTS (Timed Transition System) of both the AADL
and TASM models. In our proposal, we rather handle asyn-

A formal approach to AADL model-based software engineering

chronous model supported by the AADL language to deal
with larger AADL subsets for more realistic applications.

The transformation of AADL model into FIACRE lan-
guage is addressed by Berthomieu et al. in the TOPCASED
environment [7]. A second version of this work is presented
in [9] dealing with an AADL synchronous subset. The verifi-
cation needs a first transformation into the FIACRE language,
and then the FIACRE model is compiled into an abstract
timed transition system supported by the Tina tool for model-
checking. This work considers the AADL model as a set
of communicating threads and supports periodic/sporadic
thread and event/data port connections, but it is restricted
to the non-preemptive scheduling.

Another work [46] uses a formal real-time rewriting logic
semantics, Real-Time Maude to transform an AADL subset
with its Behavior annex to an executable semantics with
the Real-Time Maude platform (an AADL simulator and LTL
model checker). In addition, authors in [4—6] are motivated by
the PALS pattern that reduces the design and verification of
an asynchronous system with its synchronous version. They
define a Synchronous AADL sub-language and provide its
formal semantics in Real-Time Maude.

Chkouri et al. [15] define a translation from a signifi-
cant AADL subset with its Behavior annex into the BIP
language, and then the BIP model is transformed into a non-
timed model to enable the model-checking (Aldebaran and
observers tools) and the simulation with the BIP framework.
This work supports periodic/sporadic thread and event/-
data port connections, but it uses a simple scheduler without
preemption.

In general, all the related works aim practically at defining
a formal executable semantics for an AADL subset to allow
the model-checking of behavioral and temporal properties.
However, subsets, methodologies and tools are diverse. Com-
pared to the existing approaches, we are distinguished by the
following points:

— The AADL2LNT transformation considers both software
and hardware AADL components with the considera-
tion of a significant set of temporal and queuing stan-
dard properties: well we focus on the AADL thread
scheduling execution and port connection mechanism
with the definition of an explicit scheduler. We sup-
port the event-driven tasks, preemptive priority-based
scheduling and asynchronous communications. The con-
sidered subset covers the fundamental real-time features
that can be used in more realistic applications rather than
synchronous and non-preemptive approaches.

— Many existing works require more than one model trans-
formation to be connected to the analysis tools. We use
LNT as target model which is a direct input language
(without additional transformations) for the CADP tool-
box. This gateway allows the exploitation of the CADP

toolbox that offers a variety of formal methods (model
and equivalence checking, simulation, etc.) and provides
mature solutions for the state space explosion prob-
lem (smart state space reductions, on-the-fly verification,
etc.).

For the soundness of the AADL transformation, [9,57]
propose a semantics preservation proof based on the for-
malization of an TTS semantics for a restricted AADL
subset. Then, an equivalence relation is checked with the
corresponding TTS of the target language using the Coq
theorem prover. However, the AADL-TTS semantics def-
inition is supposed to be correct without preservation
proving. This semantics gap concerns all the AADL for-
mal transformations. Due to the informal semantics of
the AADL language, we cannot directly prove the equiv-
alence between the AADL semantics and the formal
semantics of the target formalism. In our work, we pro-
pose an LNT mapping for a task model compliant with
the Ravenscar profile that can be reused on other archi-
tectural transformations. We use a standard task model as
pivot representation: the AADL semantics is abstracted
as a task model which reduces semantic ambiguity in the
transformation.

The AADL2LNT transformation is the result of sev-
eral adjustments (at the AADL subset) and refinements
(in the LNT mapping) to obtain formal specifications
exploitable with the verification tools. Based on the
encapsulation of the temporal calculations within the
SCHEDULER, the synchronizations between the pro-
cesses of the LNT specification are restricted to a set of
enumerated labels (activation orders, data labels, etc.),
which allows to reduce significantly the generated LTSs
at the analysis phase. The performed scalability study
proves the efficiency and the applicability of our approach
in the verification of real-time systems with a respectable
scale.

A majority of works uses the OSATE (eclipse plug-in)
to implement the AADL transformation. In our work, we
opt to Ocarina which is open-source tool suite that can be
used as stand-alone compiler since it provides different
engineering steps (modeling, analysis and code gener-
ation) with the possibility of the use of extra tools like
Cheddar for scheduling analysis and Bound-T for WCET
analysis. In addition, Ocarina can be easily integrated as
a backend for other AADL editors (already used through
OSATE and AADL Inspector tools), which increases the
visibility of our work.

The Ocarina-CADP tool-chain is totally automated and
transparent for the transformation and verification. The
verification phase is ensured by the SVL script allow-
ing the exploration of the system state space and the
model-checking of a set of generic temporal and behav-
ioral properties.

@ Springer

H. Mkaouar et al.

7 Conclusions and future work

In this paper, we reported our experience in the context of
real-time systems. We mainly presented a formal mapping for
real-time task model using the LNT language. This proposal
has been applied and tested in an MDE approach based on
the AADL modeling language. We presented an automatic
transformation from AADL models into LNT specifications,
implemented in the Ocarina tool suite. This generation allows
the formal verification of the AADL model with the CADP
toolbox. Our work has been illustrated with various real-
time systems. We discussed analyses of two examples Flight
control system and Line follower robot and we tested the
scalability of our contribution using a family of generalized
Producer—Consumer systems.

Throughout this paper, we detailed and justified the use
of LNT to specify real-time features. We provided a for-
mal executable semantics considering mainly the scheduling
execution and communication which are indispensable for a
useful analysis of real-time systems. Our proposition brings
significant results face to formal verification challenges
(analysis time and state space explosion) which is encour-
aging for more advanced mapping and analysis.

At this level, a fundamental step is achieved. As future
work, the scheduling mapping can be extended to support
multi-core scheduling. Another direction concerns the net-
working aspect and the consideration of the AADL bus and
virtual bus components.

Acknowledgements We would like to thank the CADP team (Hubert
Garavel, Frédéric Lang and Wendelin Serwe) for their help in using the
LNT language and CADP toolbox.

References

1. AS5506A: SAE Architecture Analysis and Design Language
(AADL) Version 2.0 (2009)

2. AS5506/2: SAE Architecture Analysis and Design Language
(AADL) Annex Volume 2 (2011)

3. Abdoul, T., Champeau, J., Dhaussy, P., Pillain, P.Y., Roger, J.:
AADL execution semantics transformation for formal verification.
In: 13th IEEE International Conference on Engineering of Com-
plex Computer Systems, pp. 263—-268. IEEE (2008)

4. Bae, K., Olveczky, P.C., Al-Nayeem, A., Meseguer, J.: Syn-
chronous AADL and its formal analysis in Real-Time Maude. In:
Qin, S., Qiu, Z. (eds.) Formal Methods and Software Engineering,
pp. 651-667. Springer, Berlin (2011)

5. Bae, K., Olveczky, P.C., Meseguer, J.: Definition, semantics, and
analysis of multirate synchronous AADL. In: Jones, C., Pihla-
jasaari, P., Sun, J. (eds.) FM 2014: Formal Methods, pp. 94—-109.
Springer, Cham (2014)

6. Bae, K., Olveczky, P.C., Meseguer, J., Al-Nayeem, A.: The
SynchAADL2Maude tool. In: de Lara, J., Zisman, A. (eds.) Funda-
mental Approaches to Software Engineering, pp. 59-62. Springer,
Berlin (2012)

7. Berthomieu, B., Bodeveix, J.P., Chaudet, C., Dal Zilio, S., Filali,
M., Vernadat, F.: Formal verification of AADL specifications in

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

the TOPCASED environment. In: Kordon, F., Kermarrec, Y. (eds.)
Reliable Software Technologies—Ada-Europe 2009, pp. 207-221.
Springer, Berlin (2009)

. Besnard, L., Bouakaz, A., Gautier, T., Le Guernic, P., Ma, Y.,

Talpin, J.P., Yu, H.: Timed behavioural modelling and affine
scheduling of embedded software architectures in the AADL using
Polychrony. Sci. Comput. Program. 106, 54-77 (2015)

. Bodeveix, J.P., Filali, M., Garnacho, M., Spadotti, R., Yang, Z.:

Towards a verified transformation from AADL to the formal
component-based language FIACRE. Sci. Comput. Program. 106,
30-53 (2015). (Special Issue: Architecture-Driven Semantic
Analysis of Embedded Systems)

Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T.,
Roveri, M.: The COMPASS approach: correctness, modelling and
performability of aerospace systems. In: Buth, B., Rabe, G., Sey-
farth, T. (eds.) Computer Safety, Reliability, and Security, pp.
173-186. Springer, Berlin (2009)

Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T.,
Roveri, M.: Safety, dependability and performance analysis of
extended AADL models. Comput. J. 54(5), 754-775 (2010)
Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T.,
Roveri, M., Wimmer, R.: A model checker for AADL. In: Touili,
T., Cook, B., Jackson, P. (eds.) Computer Aided Verification, pp.
562-565. Springer, Berlin (2010)

Burns, A.: The Ravenscar profile. ACM SIGAda Ada Lett. 19(4),
49-52 (1999)

Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F.,
McKinty, C., Powazny, V., Serwe, W., Smeding, G.: Reference
Manual of the LNT to LOTOS Translator. Technical report (2018)
Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating
AADL into BIP-application to the verification of real-time sys-
tems. In: Chaudron, M.R.V. (ed.) Models in Software Engineering,
pp- 5-19. Springer, Berlin (2009)

Courtiat, J.P., Santos, C.A., Lohr, C., Outtaj, B.: Experience with
RT-LOTOS, a temporal extension of the LOTOS formal description
technique. Comput. Commun. 23(12), 1104-1123 (2000)
Crouzen, P., Lang, F.: Smart reduction. In: Giannakopoulou, D.,
Orejas, F. (eds.) Fundamental Approaches to Software Engineer-
ing, pp. 111-126. Springer, Berlin (2011)

Feiler, P, Gluch, D.: Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis and Design Lan-
guage. SEI Series in Software Engineering. Pearson Education,
London (2012)

Garavel, H., Hautbois, R.P.: An experiment with the LOTOS for-
mal description technique on the flight warning computer of airbus
330/340 aircrafts. In: Proceedings of the first AMAST International
Workshop on Real-Time Systems. Citeseer (1993)

Garavel, H., Lang, F.: SVL: a scripting language for compositional
verification. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Formal
Techniques for Networked and Distributed Systems, pp. 377-392.
Springer, Boston (2001)

Garavel, H., Lang, F., Mateescu, R.: Compositional verification of
asynchronous concurrent systems using CADP. Acta Inform. 52(4),
337-392 (2015)

Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a
toolbox for the construction and analysis of distributed processes.
Int. J. Softw. Tools Technol. Transf. 15(2), 89-107 (2013)
Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen,
J.P, Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd:
Essays Dedicated to Ed Brinksma on the Occasion of His 60th
Birthday, pp. 3-26. Springer, Cham (2017)

Garavel, H., Serwe, W.: State space reduction for process algebra
specifications. Theor. Comput. Sci. 351, 131-145 (2006)

Geniet, D., Dubernard, J.P.: Scheduling hard sporadic tasks with
regular languages and generating functions. Theor. Comput. Sci.
313(1), 119-132 (2004)

A formal approach to AADL model-based software engineering

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Gui, S., Luo, L., Li, Y., Wang, L.: Formal schedulability analysis
and simulation for AADL. In: 2008 International Conference on
Embedded Software and Systems, pp. 429—435. IEEE (2008)
Hamdane, M.E., Chaoui, A., Strecker, M.: From AADL to timed
automaton-a verification approach. Int. J. Softw. Eng. Appl. 7(4),
115-126 (2013)

Hamid, I., Najm, E.: Real-time connectors for deterministic data-
flow. In: 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA 2007),
pp- 173-182. IEEE (2007)

Hamid, I., Najm, E.: Operational semantics of Ada Ravenscar. In:
Kordon, F., Vardanega, T. (eds.) Reliable Software Technologies—
Ada-Europe 2008, pp. 44-58. Springer, Berlin (2008)

Hecht, M., Lam, A., Vogl, C.: A tool set for integrated software
and hardware dependability analysis using the architecture analysis
and design language (AADL) and error-model annex. In: 2011
16th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 361-366 (2011)

Hu, K., Zhang, T., Yang, Z., Tsai, W.T.: Exploring AADL verifi-
cation tool through model transformation. J. Syst. Archit. 61(3),
141-156 (2015)

Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.:
Virtual execution of AADL models via a translation into syn-
chronous programs. In: Proceedings of the 7th ACM and IEEE
International Conference on Embedded Software, pp. 134-143.
ACM, New York, NY, USA (2007)

Johnsen, A., Lundqvist, K., Hanninen, K., Pettersson, P., Torelm,
M.: AQAF: an architecture quality assurance framework for
systems modeled in AADL. In: 2016 12th International ACM SIG-
SOFT Conference on Quality of Software Architectures (QoSA),
pp. 31-40. IEEE (2016)

Johnsen, A., Lundqvist, K., Pettersson, P., Jaradat, O.: Automated
verification of AADL-specifications using UPPAAL. In: 2012
IEEE 14th International Symposium on High-Assurance Systems
Engineering, pp. 130-138. IEEE (2012)

Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: an environ-
ment for AADL models analysis and automatic code generation
for high integrity applications. In: Kordon, F., Kermarrec, Y. (eds.)
Reliable Software Technologies—Ada-Europe 2009, pp. 237-250.
Springer, Berlin (2009)

Léonard, L., Leduc, G.: A formal definition of time in LOTOS.
Form. Asp. Comput. 10(3), 248-266 (1998)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM 20(1),46-61 (1973)
Lundqvist, K., Asplund, L.: A Ravenscar-compliant run-time ker-
nel for safety-critical systems. Real Time Syst. 24(1), 29-54 (2003)
Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What
industry needs from architectural languages: a survey. IEEE Trans.
Softw. Eng. 39(6), 869-891 (2013)

Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking
for regular alternation-free mu-calculus. Sci. Comput. Program.
46(3), 255-281 (2003). (Special issue on Formal Methods for
Industrial Critical Systems)

Mateescu, R., Thivolle, D.: A model checking language for con-
current value-passing systems. In: Cuellar, J., Maibaum, T., Sere,
K. (eds.) FM 2008: Formal Methods, pp. 148—164. Springer, Berlin
(2008)

Mkaouar, H.: A formal approach for real-time systems engineering.
Ph.D. thesis, University of Sfax, Tunisia (2019)

Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: From AADL model
to LNT specification. In: de la Puente, J.A., Vardanega, T. (eds.)
Reliable Software Technologies—Ada-Europe 2015, pp. 146-161.
Springer, Cham (2015)

Mkaouar, H., Zalila, B., Hugues, J., Jmaiel, M.: An Ocarina exten-
sion for AADL formal semantics generation. In: Proceedings of

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

the 33rd Annual ACM Symposium on Applied Computing, pp.
1402-1409. ACM, New York, NY, USA (2018)

Ober, 1., Halbwachs, N.: On the timed automata-based verification
of Ravenscar systems. In: Kordon, F., Vardanega, T. (eds.) Reliable
Software Technologies—Ada-Europe 2008, pp. 30-43. Springer,
Berlin (2008)

Olveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and
analysis of behavioral AADL models in Real-Time Maude. In:
Hatcliff, J., Zucca, E. (eds.) Formal Techniques for Distributed
Systems, pp. 47-62. Springer, Berlin (2010)

Renault, X.: Mise en ceuvre de notations standardisées, formelles et
semi-formelles dans un processus de développement de systemes
embarqués temps-réel répartis. Ph.D. thesis, Université Pierre et
Marie Curie-Paris VI (2009)

Renault, X., Kordon, F., Hugues, J.: Adapting models to model
checkers, a case study: analysing AADL using Time or Colored
Petri Nets. In: 2009 IEEE/IFIP International Symposium on Rapid
System Prototyping, pp. 26-33. IEEE (2009)

Renault, X., Kordon, F., Hugues, J.: From AADL architectural
models to Petri Nets: Checking model viability. In: 2009 IEEE
International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing (ISORC), pp. 313-320. IEEE
(2009)

Rolland, J.E., Bodeveix, J.P., Filali, M., Chemouil, D., Thomas,
D.: Modes in asynchronous systems. In: 13th IEEE International
Conference on Engineering of Complex Computer Systems (iceccs
2008), pp. 282-287. IEEE (2008)

RTCA/DO-333: Formal Methods Supplement to DO-178C and
DO-278A (2011)

Rugina, A., Kanoun, K., KaAéniche, M.: The ADAPT tool: From
AADL architectural models to stochastic Petri nets through model
transformation, pp. 85-90 (2008)

Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible
real time scheduling framework. In: ACM SIGAda Ada Letters,
vol. 24, pp. 1-8. ACM (2004)

Sokolsky, O., Lee, 1., Clarke, D.: Schedulability analysis of AADL
models. In: Proceedings of the 20th International Conference on
Parallel and Distributed Processing, pp. 179-179. IEEE Computer
Society, Washington, DC, USA (2006)

Sokolsky, O., Lee, I., Clarke, D.: Process-algebraic interpretation of
AADL models. In: Kordon, F., Kermarrec, Y. (eds.) Reliable Soft-
ware Technologies—Ada-Europe 2009, pp. 222-236. Springer,
Berlin (2009)

Vyatkin, V.: Software engineering in industrial automation: state-
of-the-art review. IEEE Trans. Ind. Inform. 9(3), 1234-1249 (2013)
Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin, J.P.: From
AADL to Timed Abstract State Machines: A Verified Model Trans-
formation, pp. 42—68. Elsevier, Amsterdam (2014)

Yu, H., Ma, Y., Gautier, T., Besnard, L., Le Guernic, P., Talpin, J.P.:
Polychronous modeling, analysis, verification and simulation for
timed software architectures. J. Syst. Archit. 59(10), 1157-1170
(2013)

Yu, H., Ma, Y., Gautier, T., Besnard, L., Talpin, J.P., Le Guernic, P.,
Sorel, Y.: Exploring system architectures in AADL via Polychrony
and SynDEx. Front. Comput. Sci. 7(5), 627-649 (2013)

Zhang, F., Zhao, Y., Ma, D., Niu, W.: Formal verification of
behavioral AADL models by stateful timed CSP. IEEE Access 5,
27421-27438 (2017)

Zhang, Y., Dong, Y., Zhang, Y., Zhou, W.: A study of the AADL
mode based on timed automata. In: 2011 IEEE 2nd International
Conference on Software Engineering and Service Science, pp. 224—
227. IEEE (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	A formal approach to AADL model-based software engineering
	Abstract
	1 Introduction
	2 Background
	2.1 LNT
	2.2 AADL

	3 LNT mapping for a Ravenscar task model
	3.1 A Ravenscar compliant task model
	3.2 Scheduling mapping
	3.2.1 Task mapping
	3.2.2 Scheduler mapping

	3.3 Communication
	3.4 Composition and synchronization
	3.5 Discussion

	4 Model transformation
	4.1 AADL subset
	4.2 Transformation rules
	4.2.1 Scheduling rules
	4.2.2 Connection rules
	4.2.3 Hierarchy rules
	4.2.4 Other rules

	4.3 Discussion
	4.4 Tool-chain
	4.4.1 Ocarina extension
	4.4.2 CADP formal verification

	5 Experiments
	5.1 Modeling phase
	5.1.1 Flight control system
	5.1.2 Line follower robot

	5.2 Automatic model generation
	5.3 Formal analysis
	5.3.1 State space generation
	5.3.2 Verification

	5.4 Analysis results
	5.5 Scalability discussion

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

