
Using Model Differencing for Architecture-level Regression Testing

Henry Muccini
Dipartimento di Informatica

University of L’Aquila
Via Vetoio, 1 - L’Aquila, Italy

muccini@di.univaq.it

Abstract

Regression testing can be systematically applied at the
software architecture level in order to reduce the cost of
retesting modified systems, and also to assess the regression
testability of the evolved system.

With the advent of model-based specification and anal-
ysis of software architectures, regression testing at the ar-
chitectural level can be handled by analyzing how the ar-
chitectural model evolves when moving from an initial to a
subsequent version.

This paper analyzes how model differencing, a recent
research topic in the model-based community, can be em-
ployed for implementing model-based architecture-level re-
gression testing.

1 Introduction

Model-based differencing is being recently studied as a
way to deal with evolving models and their subsumed sys-
tems: given two models (typically, representing the evolu-
tion of the same software system) model differencing algo-
rithms permit to discover similarities and differences among
the two models. UMLDiff [25], based on the UML meta-
model, considers a graph representation of a model. Given
models A and B, the two graphs are traversed and dif-
ferences are identified according to “name” similarity and
“structure” similarity. The SiDiff generic difference algo-
rithm [12], instead, calculates differences of two models
given as XML files. UML documents are treated as or-
dered trees (so to improve performance) and written accord-
ing to a proposed generic meta-model. Tool specific UML
differencing algorithms have been proposed by UML tool
vendors, like IBM/Rational [1]. Model differencing tech-
niques, based on model transformation composition, have
been proposed in [6].

While model differencing techniques have been pro-
posed so far with the primary intent of reasoning about

evolving versions of a given OO system, goal of this paper
is to make use of model differencing techniques for software
architecture-based regression testing of Component-based
Systems (CBS).

Goal of an architecture-based testing technique is to in-
crease the confidence on the quality of an assembly of
components, by verifying that a system derived by assem-
bling black-box components conforms to architectural de-
cisions [14]. Suites of abstract test cases are selected from
the architectural models; test cases are then executed on the
CBS so to prove (or disprove) the CBS conformance to its
architecture (hereafter referred as CBSA) [5, 20, 7, 19, 9,
21, 11, 14, 15]. Figure 1 summarizes state of the art in
architecture-based testing.

Goal of an architecture-based regression testing tech-
nique is to reiterate the testing process in a cost effective
manner, whenever a CBSA change over time [15]. Test
cases are selected by appropriately looking into existing test
cases. New test cases can be added.

Goal of this paper is to propose an architecture-based
conformance regression testing approach based on model
differences. The approach is architecture-based since ab-
stract test cases are selected (and re-selected) starting from
an architecture-level specification, refined into concrete test
cases, and run over the CB implementation. The approach
is based on model differences since the algorithm to re-
select tests (to be re-executed on the modified architectures)
is based on model differences information. While a SA-
based regression testing technique shall cope with two main
types of evolution (architectural evolution and code evolu-
tion, see [15]) this paper focusses on architectural evolution.

The rest of this paper is structured as follows: Section 2
provides some background information on regression test-
ing. Section 3 briefly describes and motivates the approach.
Section 4 discusses the developed approach and applies it
over a running example. Section 5 briefly describes exist-
ing tool support. Section 7 concludes the paper and outlines
future work.

1

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Bertolino

In
ve
rardi

‘
96

[5]

Richardson

Wolf

‘
96

[20]

Eickelmann

Richardson

‘96

[7]

Richardson

Stafford

Wolf

‘97

[19]

Harrold

‘98

[9]

Rosenblum

‘98

[21]

Jin

Offutt

‘
01

[11]

Bertolino

Inverardi

Muccini

et. al.

’
97
-
‘04

[14]

Muccini,

Dias,

Richards
on

‘05
-
‘06

[15]

Introduction to the
 topic
 ++
 ++
 +
 ++
 +
 +
 +

Test case Selection
 +
 +
 ++
 +
 ++
 ++

Coverage
 Criteria
 ++
 ++
 +
 ++
 +

Adequacy criteria
 ++
 ++

Test Execution
 ++
 ++

Testin
g

Activities

Results Evaluation
 +
 +

Unit
 ++

Integration
 ++
 ++
 ++
 +
T
esting

Phases
 System

SA
-
based Testing
 +
 +
 +
 +
 ++
Testing

Goal
 SA assessment
 +
 +

Testability
 +
 ++
 ++
 ++

SA styles
 +
 ++

Regression Testing
 +
 ++
 +
 ++

Other

Traceabi
lity

Figure 1. Software Architecture-based Testing Techniques

2 Background: Regression Testing

Regression testing, as quoted from [10], “attempts to val-
idate modified software and ensure that no new errors are
introduced into previously tested code”. The traditional ap-
proach is decomposed into two key phases: i) testing the
program P with respect to a specified test suite T, and ii)
when a new version P′ is released, regression testing of the
modified version P′ to provide confidence that P′ is correct
with respect to a test set T′.

To explain how a regression testing technique works in
general, let us assume that a program P has been tested with
respect to a test set T. When a new version P′ is released,
regression testing techniques provide a certain confidence
that P′ is correct with respect to a test set T′. In the simplest
regression testing technique, called retest all, T′ contains all
the test cases in T, and P′ is run on T′. In selective regression
testing, T′ is selected as a “relevant” subset of T, where t
∈ T is relevant for P′ if there is the potential that it could
produce different results on P′ that it did on P (following a
safe definition).

In general terms and assuming that P is a program under
test, T a test suite for P, P′ a modified version of P and T′

the new test suite for P′, regression testing techniques work
according to the following steps: 1) select T′, subset of T
and relevant for P′; 2) test P′ with respect to T′; 3) if neces-
sary, create T′′, to test new functionality/structure in P′; 4)
test P′ with respect to T′′; 5) create T′′′, a new test suite and
test history.

All of these steps are important for the success of a selec-
tive regression testing technique and each of them involves
important problems [8]. However, step 1 (also called, re-
gression test selection) characterizes a selective regression
testing technique. For this reason, this paper focusses on

this step.

3 Approach Overview and Motivations

Any component-based system has its own architecture
(CBSA), in terms of architectural elements and constraints.
The CBSA model specifies, by focussing on components
integration while hiding implementation details, what to ex-
pect (in terms of properties and qualities) from the assem-
bly of components. Since an architectural model may con-
sist of different diagrams, according to the multi-view ar-
chitectural modeling philosophy [13], we do here focus on
structural and behavioral diagrams, that is, those typically
utilized for modeling the SA topology (i.e., component dia-
grams) and its behavior in terms of interacting components
and connectors (i.e., sequence and state diagrams).

From the CBSA, architecture-level test cases can be ex-
tracted, so to be successively run on the CBS implementa-
tion for compliance analysis. When the software architec-
ture evolves, the model documenting the architectural deci-
sions evolves itself. Architectural elements can be added,
removed, or modified. The architecture itself can be recon-
figured, by changing connectivity among architectural ele-
ments. By following the drawing in Figure 2, a new version
of the CBSA model is then created.

The approach we are proposing makes use of a model
differencing algorithm and tool we developed, in order to
identify how the structural and behavioral models taken into
consideration vary. The output of this model differencing
analysis is a delta diagram which is taken in input by a test
re-selection algorithm in order to identify which test cases
need to be re-tested.

This approach inherits from existing model-differencing
algorithms the main principles of “name” and “structure”

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

CBSA model, v1
 CBSA model, v2

evolves

Test Case for

CBSA, v1

Model

Differencing

Algorithm

Test

re-selection

Algorithm

Test Case for

CBSA, v2

Figure 2. Approach Overview

similarity heuristics, “XML-based difference” calculation,
model difference “coloring”.

It differs from previous work for two main reasons: we
do implement the difference algorithm over state machines
(while previous work focus on class diagrams), and it is
the first regression testing approach explicitly supported by
model differencing algorithms. At the best of our knowl-
edge, while initial reasoning on SA-based regression test-
ing techniques have been proposed in [9], SARTE (Soft-
ware Architecture-based Regression Testing) is the only
framework explicitly dealing with SA-based regression test-
ing [15]. This paper inherits from SARTE the main con-
cepts and extends the test re-selection phase through model
differencing. In the domain of model-based regression test-
ing, only very few approaches and tools support regression
testing [16] and those tools work at the low level design, not
at the architectural level. Indeed, other work on software
architecture-based analysis and dependence analysis at the
architectural level [23] may be related to this approach.

4 Using Model Differencing for Architecture-
level Regression Testing

In the rest of this paper, while assuming the CBSA model
is available and architectural test cases have been already
selected, we will focus on the model differencing algorithm
(used to detect differences and similarities), and to the the
test re-selection algorithm (used to identify which architec-
tural test cases are still valid in the modified version of the
CBSA).

The rest of the paper will focus on the two algorithms.
We initially describe the ATM system to be used as a run-
ning example, then propose those two algorithms.

4.1 The ATM running example

We make use of the ATM system as the running ex-
ample for this paper. While many architecture description
languages have been proposed so far for software archi-
tecture modeling, in this paper we cast our study on the
CHARMY [4, 18] notation for modeling software architec-
tures.

CHARMY allows the specification of a software architec-
ture by means of both a topological (static) description and
a behavioral (dynamic) one. To describe the architectural
topology, CHARMY uses a subset of the UML component
diagram. An architectural component is drawn with the fa-
miliar UML 2.0 notation for components. A connector can
be seen as a complex coordination element or as a simple
communication channel. Complex connectors are modeled
using the UML notation for components, while an architec-
tural channel is represented by an association line between
architectural components.

The architecture of the ATM system (called ATM v2)
that we consider is composed of four components as shown
in Figure 3: the User, the transaction manager (TM compo-
nent), the bank account (BA component), and the authenti-
cation (AUTH component). The User component communi-
cates only with the TM component that forwards the service
requests to the BA component or to the Auth component.

The internal behavior of each component is specified in
terms of a State Transition Diagram (STD) notation close to
the Promela syntax, defined as a quadruple (S,L, S0, T),
where S is the set of states, L is the set of distinguished
labels (actions) denoting the STD alphabet, S0 ∈ S is the
initial state, and T = { l−→ ⊆ S × S | l ∈ L} is the transi-
tion relation labeled with elements of L. The labels L are
structured as follows:

[guard]‘/‘event‘(‘parameter list‘)“/‘op1‘; ‘ · · · ‘; ‘opn

where guard is a boolean condition that denotes the transi-
tion activation, an event e can be a message sent or received
(denoted by an exclamation mark “!e” or a question mark
“?e”, respectively) or an internal operation (“e”), and can
have several parameters as defined in the parameters list.
op1, op2, · · · , opn are the operations to be executed when
the transition fires.

The notation is shown in Figure 4: the User component
handles three different requests, one for the authentication
(!login) followed by two possible responses (?login ok and
?login ko), one for withdrawing money from her account
(!withdraw), and one for recharging the mobile phone
credit (!chargePhone). The TM component contains the
logic of the ATM system. This component receives the lo-
gin request from the User (?login) and forwards it to the
AUTH component (!login Auth). Two are the possible re-
sponses that TM can receive from AUTH: login success

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

(?login auth ok), and login failure (?login auth ko). In
case of success, the User is habilitated to available services
(i.e., withdraw money or recharge mobile phone). TM re-
ceives the response for both services and forwards them to
the User component. The other two components, BA and
AUTH, manage the bank account services (i.e., withdraw,
charge) and login services, respectively.

Figure 3. Topology Diagram of the ATM exam-
ple

From the ATM architectural specification, a suite of
seven test specifications have been selected, by applying the
approach described in [14]. The selected coverage criteria
requires the coverage of each edge in the STD graph. Infor-
mally, the test specifications are:

t1: the User tries to login, but her access is denied;

t2: the User logins, then logouts;

t3: the User logins, asks to withdraw money, the connec-
tion with her bank account fails and she cannot with-
draw money;

t4: the User logins, asks to charge her phone, the con-
nection to the bank account succeed, but she has not
enough money in her checking account, and the oper-
ation fails;

t5: the User logins, asks to charge her phone, and succeed.

t6: the User logins, asks to withdraw money, the connec-
tion with her bank succeed, but he has not enough
money for the withdraw;

t7: the User logins, asks to withdraw money, and suc-
ceeds.

As remarked before, those are abstract test specifica-
tions (as in most of the model-based testing approaches)
to be successively (i.e., when the CBS implementation be-
comes available) refined into concrete and executable test
cases. They can be selected and specified according to
existing model-based and architecture-based testing tech-
niques [16, 14].

4.2 Model Differencing

While the comparison between topology diagrams is a
straightforward instantiation and adaptation of existing al-
gorithms, to keep the section more focussed, we here ana-
lyze how we compared the CHARMY state machines.

When dealing with state machines, two are the main el-
ements to be compared: states and transitions. As shown
in the excerpt of the CHARMY XML schema for state di-
agrams in Figure 5, a state S in the STD graph (ELE-
MENTSTATE tag) is identified by an ID, a NAME, and
a TYPE (initial or internal state). A transition label L
has a more informative structure, with an ID, a NAME, a
transition TYPE (synchronous, asynchronous, or loop), the
transition SOURCE, the transition TARGET, the ACTIONS
(events), the CONDITIONS (guards), and PARAMETERS.

<LISTADP>

<ELEMENTTHREAD>

<LISTSTATE>

<LISTATHREAD>

<LISTMESSAGE>

<ELEMENTSTATE>

<ELEMENTMESSAGE>

ID

NAME

TYPE

ID

NAME

TYPE

SOURCE

TARGET

CONDITIONS

ACTIONS

PARAMETERS

Figure 5. The CHARMY state machines XML
schema

When comparing two CHARMY state diagrams, the al-
gorithm takes in input the two STD graphs and outputs
an STDdiff differencing graph highlighting unchanged and
changed elements. The algorithm initially compares ELE-
MENTSTATE tags for state names similarity. STD1 ELE-
MENTSTATE tags are traversed and compared with STD2

states. Two states, Si in STD1 and Sj in STD2, are the same

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 4. State diagrams of the ATM components

if three conditions hold: i) Si and Sj have the same names,
ii) they have the same incoming and outgoing transitions
(same transition names), and iii) they have the same source
and target states. Whenever these three conditions apply,
the state is copied in STDdiff and colored in green. If at
least one condition applies (but not all of them), then the
state is marked as changed and colored in yellow. If state
Si in STD1 has not an equivalent state in STD2, then Si has
been removed when transiting from STD1 to STD2. If, in-
stead, Si in STD2 has not an equivalent state in STD1, then
Si has been added when transiting from STD1 to STD2.
Added states are colored in red, while removed ones are
represented as dotted circles.

Procedure: stateNameComparison
input: STD_i, STD_i+1
output: STD_diff

Repeat
s_i = getElementState(STD_i);

markAsVisited(s_i,STD_i);
if exists(s_i,STD_i+1)
then markAsVisited(s_i,STD_i+1);
if (getName(s_i,STD_i) !=

getName(s_i,STD_i+1))
then addAsChanged(s_i,STD_diff)
else if (getSource(s_i,STD_i) =

getSource(s_i,STD_i+1) &
(getTarget(s_i,STD_i) =

getTarget(s_i,STD_i+1))
then addAsSame(s_i,STD_diff)

else addAsRemoved(s_i,STD_diff)
Until notVisited(STD_i) =! empty
if notVisited(STD_i+1) =! empty

then foreach(s_i,notVisited(STD_i+1))
addAsNew(s_i,STD_diff)

After state name comparison, the algorithm proceeds
with transition name similarity. STD1 ELEMENTMES-
SAGE tags are traversed and compared with STD2 transi-
tions. In order to identify transition equivalence, two tran-

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

sitions Ti and Tj are the same if two conditions hold: i) the
transition label is the same (ACTIONS, CONDITIONS, and
PARAMETERS tags), and ii) the target and source states are
the same (SOURCE and TARGET tags). A non modified
transition is represented in green. In case only one condi-
tion holds, the transition has been modified and it is colored
in yellow. Added transitions are colored in red, while re-
moved ones are represented via dotted lines.

A version 3 of the ATM example has been produced
(ATM v3), where the User can also check her money bal-
ance, and the TM has a different connection management:
first, a connection with the BA is established, then the with-
draw, charge, or money balance services are activated ac-
cording to the User request (while in the previous version,
when a service is activated, it opens its own connection). By
applying the model differencing algorithm to the TMdiff

component, we obtained the diagram in Figure 6. In green,
states and transitions preserved. In red, new states and tran-
sitions. In yellow, modified states and transitions.

By taking a closer look to the TMdiff diagram, we can
make the following observations: change ok and change ko
states are in green since they have same names, same in-
coming and outgoing transitions, and same source and tar-
get states in the two versions. Connecting is a modified
state (i.e., in yellow) since, even if source and target states
are unchanged, they do have modified incoming transitions
and names. Balance is a new state (thus in red) since there
is no state with the same name, and incoming and outgoing
transitions, and source and target state differ. ?Connect ok
is a non modified transition (i.e., in green) since both names
and source and target states are the same. ?ChangePhone is
modified since the source state differs in the two versions.
!Moneyreport is a new transition (thus in red) since there is
no transition with such name in the first version, and there
is no other transition with the same source and target states.

4.3 Test Case re-Selection

In selective regression testing, given P a software system,
P′ its evolution, and T a test suite for P, t ∈ T is selected to
be re-executed in P′ (i.e., t ∈ T′) if there is the potential that
it could produce different results on P′ that it did on P (fol-
lowing a safe definition). Dangerous regions are identified
to denote portions of the system that, if traversed, may lead
to a different behavior in P and P′ [17]. Whenever a test
case t ∈ T causes P to traverse a dangerous region, t tra-
verses a modified code that may cause a different behavior
in P and P′, and t must be re-run on T′.

Our approach identifies dangerous regions by model dif-
ferencing. Any node/arc in the STDdiff graph which has
been colored in red, yellow, or via dotted lines represent
dangerous regions.

The test case re-selection algorithm presented in this

section performs two different actions, thus implementing
steps 1 and 3 in Section 2: i) it checks whether an exist-
ing test case t ∈ T must be re-tested in T′ (regression test
selection phase), and ii) it identifies new test cases t′′ nec-
essary to cover added portions of the CBSA (new test case
selection phase).

The regression test selection phase is performed by sim-
ulating each test case t∈ T in the STDdiff graph. Whenever
the test case covers yellow or dotted states and transitions,
then it needs to be re-run on P′. Whenever it covers red
states or transitions, new test cases might be needed to test
the added portion of the CBSA.

By taking into consideration the ATM example, and the
seven test cases previously described, we notice that most
of them need to be re-run. By solely focus on the TM com-
ponent, test cases t1 and t2 do not need to be re-tested since
they cover only green states and transitions (the upper left
part of the TMdiff graph in Figure 6). t3 needs to be re-
tested, since it traverses the !connect transition marked in
red and the connecting state in yellow. Since any other test
case t4 to t7 traverses the !connect transition and the con-
necting state, they need to be re-tested all. This is due to the
fact that the TM component behavior has been conceptually
restructured (connection first, than any of the service). As-
suming the only change from version ATM v2 to ATM v3
would have been adding the check money balance feature,
none of the seven test cases would have been re-tested.

The new test case selection phase is instead implemented
by generating test cases covering the added states and tran-
sitions. In the ATM v3 specification, the new states are
balance, waiting, report, and check1, while the new transi-
tions are !connect, ?moneybalance, !moneyreport, ?report,
and print. By re-applying the same coverage criteria ap-
plied in the initial graph (i.e., any edge in the STD graph),
!connect is already covered by the test cases t3-t7, new test
cases are needed for the other transitions. Two test cases are
needed for covering all the new transitions: t8′ – the User
logins, get connected, asks for money balance, and obtains a
printed statement, and t9′ – the User logins, get connected,
asks for money balance, but does not receive a printed state-
ment since there is no paper in the ATM machine. In sum-
mary, seven test cases need to be run on ATM v3: t3-t7,
t8′, and t9′.

5 Tool support

The regression testing method has been implemented in-
side the CHARMY framework through three main modules.

The CHARMY standard editor plugin which allows the
model-based specification of the CBSA under analysis. It
allows the specification of a CBSA through a topology ed-
itor and a behavioral diagram (as summarized in Section 4
and shown in Figures 3 and 4).

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

Figure 6. Modified State diagram for the TM component

The CHARMY architectural testing plugin, recently de-
veloped, which allows the test cases selection from the ar-
chitectural specification. This module implements the ap-
proach in [14] by generating a global automaton out of the
component state diagrams, by applying an observation so
to focus on relevant (with respect to a test purpose) por-
tions of the graph, and by implementing various cover-
age criteria [24, 19] (all edges, all components, all states,
McCabe). The CADP (Construction and Analysis of Dis-
tributed Processes) [2] tool features have been utilized in
many steps in the test case selection process, and integrated
with CHARMY.

The CHARMY regression testing plugin, currently in its
beta version, which implements the model differencing and
test re-selection algorithms described in this paper. The pro-
duced output is a colored graph highlighting model differ-
ences (as the one in Figure 6) and a set of re-selected test
cases.

6 Initial Considerations

This initial work on model differencing-based regression
testing seems to be very promising, due to the current inter-
est on model-based specifications of software architectures
(see e.g., [3]) and to the ongoing work on model differenc-

ing techniques.

However, many issues still need to be resolved. First of
all, it is important to understand how much the algorithms
are useful and effective for selective regression testing. Ac-
cording to [22] five are the main categories which should be
taken into account when evaluating selective retest strate-
gies: inclusiveness, precision, efficiency, generality, and ac-
countability. More study is necessary in order to be able
to position our approach according to those parameters.
However, initial study let us believe that as far as concern
precision (which measures the ability of a RT technique
to omit tests that are non-modification-revealing) the pro-
posed technique is safe (i.e., it re-selects any relevant test
case) even if its inclusiveness (which measures the extent
to which a selective retest strategy chooses modification re-
vealing tests) can be improved by making the algorithms
considering finer grained architectural changes. This ap-
proach considers only the impact of architectural changes
on the test case re-selection process, while not taking into
account code changes. Moveover, the basic assumption of
our approach is that it is possible to trace architectural com-
ponents to real components by focussing on the concrete
architecture of a CBS (called CBSA).

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

7 Conclusions and future Work

Regression testing can be systematically applied at the
software architecture level in order to anticipate the testing
phase as soon as possible in the software design stage, while
reducing the cost of retesting modified systems. While pre-
vious effort has investigated what regression testing at the
architectural level means [9] and how it can be conceptu-
ally implemented in a testing and regression testing frame-
work [15], this paper has shown how the regression test se-
lection and the new test case selection phases can be imple-
mented through model differencing. This paper has outlined
two algorithms: one for model differencing of CHARMY
state machines, one for test re-selection based on the model
differencing results. Initial results have been shown in the
context of the ATM running example.

In future work we do plan to improve tool support and to
apply our approach to a complex example. From a concep-
tual view point, we want to understand how this approach
can be applied when subsequent evolutions of the CBSA
apply (linear derivation), or when the same version evolves
according to different evolution branches (branching deriva-
tion).

Acknowledgment

The author of this paper wish to thank Linda Corsetti
who implemented part of the model differencing regression
testing approach and the anonymous reviewers who pro-
vided relevant comments and suggestions on how to im-
prove it.

References

[1] Comparing and merging UML models in IBM
Rational Software Architect. http://www-
128.ibm.com/developerworks/rational/library/05/712 comp/.

[2] Construction and Analysis of Distributed Processes (CADP)
project homepage. http://www.inrialpes.fr/vasy/cadp/.

[3] The SAE Architecture Analysis and Design Language
(AADL). http://www.aadl.info/.

[4] CHARMY Project. Charmy Web Site.
http://www.di.univaq.it/charmy, 2004.

[5] A. Bertolino and P. Inverardi. Architecture-based Software
Testing. In Proc. ISAW96, October 1996.

[6] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A DSML for
Model Differences. In European Workshop on Composition
of Model Transformations, CMT 2006, 2006.

[7] N. Eickelman and D. Richardson. What Makes One Soft-
ware Architecture More Testable Than Another? In In Proc.
ISAW-2, October 1996.

[8] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An Empirical Study of Regression Test Selec-
tion Techniques. In Proc. of the 20th Int. Conf. on Software
Engineering (ICSE’98), pages 188–197, Japan, April 1998.

[9] M. J. Harrold. Architecture-Based Regression Testing of
Evolving Systems. In Proc. Int. Workshop on the Role of
Software Architecture in Testing and Analysis - ROSATEA,
pages 73–77, July 1998.

[10] M. J. Harrold. Testing: A Roadmap. In A. Finkelstein, ed-
itor, ACM ICSE 2000, The Future of Software Engineering,
pages 61–72, 2000.

[11] Z. Jin and J. Offutt. Deriving tests from software architec-
tures. In ISSRE, pages 308–313, 2001.

[12] U. Kelter, J. Wehren, and J. Niere. A Generic Difference
Algorithm for UML Models. In Proceedings of the SE 2005,
Essen, Germany, March 2005.

[13] P. Kruchten. Architectural Blueprints - The “4+1” View
Model of Software Architecture. IEEE Software, 12(6):42–
50, November 1995.

[14] H. Muccini, A. Bertolino, and P. Inverardi. Using Software
Architecture for Code Testing. IEEE Trans. on Software En-
gineering, 30(3):160–171, March 2003.

[15] H. Muccini, M. Dias, and D. J. Richardson. Software
Architecture-based Regression Testing. Int. Journal of Sys-
tems and Software, special issue on Architecting Depend-
able Systems, To appear 2006.

[16] L. Naslavsky, D. Richardson, and H. Ziv. Scenario-based
and State Machine-based Testing: An Evaluation of Auto-
mated Approaches. Technical report, University of Califor-
nia, Irvine - ISR TR UCI-ISR-06-13, 2006.

[17] A. Orso, N. Shi, and M. J. Harrold. Scaling regression test-
ing to large software systems. In Proceedings of the 12th
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE 2004), pages 241–252, 2004.

[18] P. Pelliccione. CHARMY: A framework for Software Archi-
tecture Specification and Analysis. PhD thesis, Computer
Science Dept., University of L’Aquila, May 2005.

[19] D. J. Richardson, J. Stafford, and A. L. Wolf. A Formal Ap-
proach to Architecture-based Software Testing. Technical
report, University of California, Irvine, 1998.

[20] D. J. Richardson and A. L. Wolf. Software Testing at the
Architectural Level. In ISAW-2, in Joint Proc. of the ACM
SIGSOFT ’96 Workshops, pages 68–71, 1996.

[21] D. Rosenblum. Challenges in Exploiting Architectural Mod-
els for Software Testing. In Proc. Int. Workshop on the
Role of Software Architecture in Testing and Analysis -
ROSATEA, July 1998.

[22] G. Rothermel and M. J. Harrold. A Framework for Evaluat-
ing Regression Test Selection Techniques. In In Proc. 16th
Int. Conference on Software Engineering, ICSE 1994, pages
201–210, Sorrento, Italy, May 1994.

[23] J. A. Stafford and A. L. Wolf. Architecture-level dependence
analysis in support of software maintenance. In ISAW ’98:
Proceedings of the third international workshop on Software
architecture, pages 129–132, New York, NY, USA, 1998.

[24] A. H. Watson and T. J. McCabe. Structured Testing: A Test-
ing Methodology Using the Cyclomatic Complexity Metric.
NIST Special Publication 500-235, August 1996.

[25] Z. Xing and E. Stroulia. Differencing logical UML models.
Special issue of Automated Software Engineering Journal.
Selected papers from ASE 2005. To appear.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 26, 2009 at 11:18 from IEEE Xplore. Restrictions apply.

