
i-com 2015; 14(3): 192–204

*Corresponding author: Raquel Oliveira, University of Grenoble
Alpes, Grenoble, France, e-mail: raquel.oliveira@imag.fr
Sophie Dupuy-Chessa, Gaëlle Calvary: University of Grenoble Alpes,
Grenoble, France

DOI 10.1515/icom-2015-0036

Abstract: Interactive systems have largely evolved over
the past years. Nowadays, different users can interact
with systems on different devices and in different envi-
ronments. The user interfaces (UIs) are expected to cope
with such variety. Plastic UIs have the capacity to adapt to
changes in their context of use while preserving usability.
Such capability enhances UIs, however, it adds complex-
ity on them. We propose an approach to verifying interac-
tive systems considering this adaptation capability of the
UIs. The approach applies two formal techniques: model
checking, to the verification of properties over the system
model, and equivalence checking, to compare different
versions of a UI, thereby identifying different levels of UI
equivalence. We apply the approach to a case study in the
nuclear power plant domain in which several UI are ana-
lyzed, properties are verified, and the level of equivalence
between them is demonstrated.

Keywords: Equivalence Checking, Formal Verification, Inter-
active Systems, Model Checking, Plasticity, User Interfaces

1 Introduction
The advent of ubiquitous computing and the increasing
variety of platforms and devices change user expecta-
tions in terms of user interfaces. Systems should be able
to adapt to their context of use, i. e., the platform (e. g. a PC
or a tablet), the users who interact with the system (e. g.
administrators or regular users), and the environment in
which the system runs (e. g. a dark room or outdoor). The
capacity of a UI to withstand variations in its context of use
while preserving usability is called plasticity (Thevenin
and Coutaz 1999).

Plasticity provides users with different versions of a
UI. Although it enhances UI capabilities, plasticity adds

complexity to the development of user interfaces: con-
sistency between multiple versions of a given UI (one for
each context of use) should be ensured; functionalities
that are critical to the system should be preserved in all
UI versions; and ergonomic properties the UI is expected
to fulfill with should be satisfied in all its versions. Given
the large number of possible versions of a UI, it is time-
consuming and error prone to check these requirements by
hand. Some automation must be provided to verify plas-
ticity. This complexity is further increased when it comes
to UIs of safety-critical systems. Safety-critical systems are
systems in which a failure has severe consequences (e. g.
death or injury to people, environmental harm, loss or
damage to equipment). Several issues have been reported
in the safety-critical domain due to bad UIs (e. g., in avi-
onics (Degani and Heymann 2002), in radiation therapy
machines (Leveson and Turner 1993), in infusion pumps
to deliver drugs in hospitals (Thimbleby 2010), etc.). UIs
are now expected not only to provide correct, intuitive,
non-ambiguous and adaptable means for users to accom-
plish a goal, but also to cope with safety requirements
aiming to make sure that systems are reasonably safe
before they enter the market.

Several techniques to ensure quality of systems exist,
such as simulation, testing, code reviews, static analysis,
formal verification, etc (Garavel and Graf 2013) formal.
Formal verification is suitable for safety-critical systems
(Lutz 2000). It consists in the application of techniques
that are strongly rooted in mathematics to reason over a
model of the system, providing a rigorous way to perform
system verification. Our contribution is a global approach
to verify safety-critical interactive systems provided
with plastic UIs using formal methods. Using a powerful
tool-support, our approach permits to verify sets of prop-
erties over a system model, as well as to compare different
versions of UIs, showing to which extent they have the
same interaction capabilities and appearance.

2 Background in Verification
Formal verification requires the use of formal models.
Formal models are system descriptions in a very precise

Research article

Raquel Oliveira*, Sophie Dupuy-Chessa, Gaëlle Calvary

Verification of Plastic Interactive Systems

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   193

language which, unlike natural human languages, does
not allow for double meanings. Such unambiguity allows
formal models to be subject to deeper analyses using
several formal verification techniques. This permits, for
instance, the simulation of the system, the early verifi-
cation of properties or the detection of inconsistencies in
requirements. Examples of formal verification techniques
are model checking, and equivalence checking, which we
use in this work.

Model checking (Figure 1) permits to verify whether
a model satisfies a set of requirements, which are spec-
ified as properties. A property is a general statement
expressing an expected behavior of the system. In model
checking, a formal model of the system under analysis is
needed to be created, which is afterwards represented as
a finite-state machine (FSM). This FSM is then subject to
exhaustive analysis of its entire state space to determine
whether the properties hold or not. The analysis is fully
automated and the validity of a property is always decid-
able (Clarke et al. 1983). Expected properties should be
also formalized, which in is this case is done by means
of temporal logics. The analysis is mainly supported by
the generation of counter-examples when a property is
not satisfied. A counter-example can be a set of steps that
when followed, by interacting with the system, leads to
a state in which the property is false. The results of the
analysis permits a refinement of the modeled system.

Rather than verifying the satisfiability of properties,
equivalence checking (Figure 2) permits to formally prove
whether two representations of the system exhibit exactly
the same behavior or not. In order to verify whether two

systems are equivalent or not, a model of each system
should also be created, and then both models are com-
pared in the light of a given equivalence relation. Several
equivalence relations are available in the literature (e. g.
strong bisimulation (Park 1981) and branching bisimula-
tion (van Glabbeek and Weijland 1996)). Which relation
to choose depends on the level of details of the model
and the verification goals. The results of the analysis also
permits a refinement of the modeled systems.

Both model checking and equivalence checking are
techniques that reason over the LTS (Labeled Transition
System) representation of the system. A LTS is a graph
composed of states and transitions between states. Transi-
tions between states are triggered by actions. Intuitively, a
LTS represents all possible evolutions of a system modeled
by a formal model.

These two verification techniques constitute the ele-
ments used in our approach to verify plastic interactive
systems.

3 Global Approach
This section introduces our global approach to verifying
interactive systems, as well as the rationale for the design
and technical choices.

3.1 Overview

We propose a global approach (Figure 3) to assess quality
of safety-critical interactive systems with plastic UIs. We
integrate both model checking and equivalence check-
ing formal techniques. We use model checking to verify
properties over the formal specification of the interactive
system, and equivalence checking to compare formal
specifications of the system in different contexts of use.

The formal verifications are performed over the ISLTS
(Interactive System LTS) representation of the specifica-
tions. We derive ISLTS from standard LTS in order to rep-
resent both UI interaction capabilities and appearance in
one single model (Oliveira et al. 2015a).

Model checking and equivalence checking can be used
independently or in an integrated way. Independently, dis-
regarding the UI adaptation capabilities of the interactive
system, we propose the usage of model checking to verify
properties over the system formal model. Considering that
the system UIs are provided with plasticity capabilities, we
propose a technique to compare different versions of the
UIs by means of equivalence checking.

Figure 1: Model checking.

Figure 2: Equivalence checking.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

194   R. Oliveira et al., Verification of Plastic Interactive Systems

Optionally, model comparison can be integrated with
property verification. Before checking equivalence of
the formal models, checking a set of properties over the
models can guarantee that they cope with a certain level
of quality, increasing the relevance of the equivalence
checking results. In case the models under comparison
are expected to satisfy the same set of properties, the
verification can be reduced to check one model of the
interactive system, and to verify the equivalence between
both models: if one model satisfies the set of properties,
and this model is equivalent to the other one, then the
second model also satisfies the properties. If each model
is expected to satisfy different properties, due to particu-
larities of their context of use, the approach is fully per-
formed: model checking each formal model with respect

to their set of properties, followed by a equivalence verifi-
cation of the models.

3.2 Design Choices

In order to obtain more reusable results, system models are
represented following the ARCH architecture (Bass et al.
1991). Architectural models provide a means to structure
systems, using the principle of separation of concerns. In
ARCH, systems are decomposed in five main components:
the functional core, the functional core adaptor, the logical
presentation, the physical presentation and the dialog con-
troller (i. e., the blue boxes in Figure 4). We use the simpli-
fied version of ARCH (i. e., the dashed boxes in Figure 4),

Figure 3: Global approach to verifying interactive systems with plastic UIs.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   195

in which the major functional components of an inter-
active system are represented: a functional core compo-
nent, which groups the two components of ARCH, the UI
component, which group two ARCH components, and
the dialog controller component. We propose to take into
account this separation of concerns when creating the
formal models of the system. In addition, in our approach
a user module is created. Figure 4 illustrates how the
formal model is organized: each dashed box represents
one or more parts of the formal model. The formal model
reflects the fact that users interact only with the UIs, not
having access neither to the functional core of the system
nor to the dialog controller.

3.3 Technical Choices

The application of the approach is supported by several
formal languages and tools from the CADP1 toolbox (Con-
struction and Analysis of Distributed Processes) (Garavel
et al. 2013). The choice of the toolbox was mainly motivated
by its maturity, continuous evolution and support, and
the numerous included tools. CADP is a toolbox for ver-
ifying asynchronous concurrent systems: systems whose
components may operate at variable speeds, without a
global clock to synchronize them. Such components com-
municate and exchange information from time to time by
channels. Asynchronous systems suit well the modeling of
human-machine interactions: it permits the components
that describe the users, the functional core and the UIs to
evolve in time at different speeds, which reflects well the
unordered sequence of interactions that can take place in
human-machine interactions.

We use LNT (Champelovier et al. 2014) formal lan-
guage to specify the system formal models, which is one
of the input specification languages supported by CADP.
LNT is a specification language derived from ELOTOS ISO

1 http://cadp.inria.fr

standard. It improves LOTOS, and can be translated to
LOTOS automatically. LNT has several advantages over
LOTOS, notably the user friendliness and the richer data
type definition.

CADP can generate a ISLTS from LNT formal models,
which can be subject to operations such as minimization
(also called reduction), abstraction, comparison, deadlock / 
livelock detection, etc., by means of a scripting language
called SVL2 (Script Verification Language) (Garavel and
Lang 2001).

In order to formalize the expected properties of
the interactive systems, we use MCL3 (Model Checking
Language) (Mateescu and Thivolle 2008). MCL is an
enhancement of the modal µ-calculus, a fixed point-
based logic that subsumes all other temporal logics,
aiming at improving the expressiveness and conciseness
of formulas (Mateescu and Thivolle 2008). Specifically,
MCL adds data-handling mechanisms; it adds a fairness
operator; it contains quantifiers over finite data domains
and constructors inspired from functional programming
(e. g. let, if-else, case, while, repeat, etc.) (Mateescu and
Thivolle 2008).

This global approach of verification was applied to
a case study in the nuclear-plant domain, in which a set
of properties was verified and several versions of a user
interface were compared to each other.

4 Case Study
Our case study concerns a control room system of a nuclear
power plant that provides an overview of the plant state
(Chériaux et al. 2012). It notifies the operator about all
unexpected events in the plant. The main UI contains four
zones (Figure 5, in French):
1. The top part displays six tabs for selecting the plant

status, which can range from RP (working at full
capacity) to RCD (completely stopped).

2. The Default Signals (“Signaux de défaut”) zone
synthesizes signals triggered in reactor functions,
according to unexpected events occurred in the
reactor parameters.

3. At the bottom, the Parameter (“Paramètres”) zone
displays various reactor parameters (e. g. the pres-
sure), each one represented by a widget containing:
the parameter name, its current value, a curve with

2 http://cadp.inria.fr/man/svl.html
3 http://cadp.inria.fr/man/evaluator4.html, section “Overview of the
MCL Language”

Figure 4: ARCH architecture usage in formal modeling.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

196   R. Oliveira et al., Verification of Plastic Interactive Systems

the value evolution over time, a minimum/maximum
value boundaries, the sensor that monitors the para-
meter and its measurement unit. If unexpected events
occur in some parameter, the same is highlighted (e. g.
a stronger frame around it), and a signal is triggered in
the zone two of the UI.

4. On the left, users access other UIs by a menu. Some of
these UIs (covered by this study) have the same layout
of this main UI, varying the parameters and signals.
Other UIs (not covered by this study) have different
purposes.

5 Verification of Properties
In order to verify a set of ergonomic properties over the
system, both the system and the properties should be for-
malized. Nowadays the system model is manually written,
in contrast to the work proposed in (Paternó 1997), that
generates a LOTOS specification directly from a task
model. In our case, a task model per se does not contain
sufficient information to permit automatic generation
of the formal model. It turns out that our formal model
covers the user interface behavior and some aspects of
the functional core. For this reason, the formal model is
written manually, to be as realist as possible.

Once the formal specification is created, one can
verify a set of properties on it. Our approach suggests the
usage of ergonomic guidelines to support the identifica-
tion of the desired properties. A lot of work has been done
to guide the identification of user interface properties. In
our approach, the usability properties from the framework
proposed in (Abowd et al. 1992) were chosen. All the iden-
tified properties are classified as robustness properties,

which refer to the possibility of navigating through the
observable states of the system.

We write the properties in MCL language. For example,
the property:

“From any UI, one can always go directly to the main UI
(i. e. without passing through any other UI)”

is expressed in MCL in the following way:
[true*] 〈 (not(UI))*. ′GLOBAL_SYNTHESIS′ 〉 true
and may be read as:
[From every reachable state] 〈 there exists a sequence

of steps, not passing through any UI, and leading to the
GLOBAL_SYNTHESIS UI 〉

This property ensures that, in all user interfaces, there
is always the possibility to come back to the main UI with
one single user interaction, i.e. without the need to access
intermediate UI before. Once the desired properties are
formalized, they are verified using the model checker of
CADP toolbox.

5.1 Discussion

The key enhancement brought by our approach is the
usage of a more powerful support (Oliveira et al. 2014). The
user-friendliness of the LNT language decreases the learn-
ing curve of designers in formal methods, and it decreases
the required labor time of writing a formal specification of
the system, enabling one to more quickly take advantages
of formal methods. The rich data type definitions of LNT
permits more realistic UI models, thus widening the capa-
bilities of verification, covering verifications on the data
type of the UI fields, for instance.

The use of MCL to formalize the properties is another
advantage of our approach. MCL permits to identify, for
example, the existence of complex unfair (infinite) cycles
in the ISLTS generated from the formal model. An unfair
cycle is an infinite sequence made by the concatenating
sub-sequences satisfying the formula (Mateescu and
 Thivolle 2008), e. g. a sequence of actions over the user
interface that once started loops forever.

The set of tools is also important to support formal
analysis. Rather than developing our own tool to perform
formal verification, we work in collaboration with the
authors of CADP toolbox. In particular, CADP has contin-
uously evolved over the past years. By taking advantage
of its new capabilities, it is now possible for example to
perform compositional verification on individual pro-
cesses of the model, enabling to handle much larger
state spaces. In practice, bigger models can be handled,
so that we can consider more complex UIs and more real-
istic UI models.

Figure 5: A nuclear power plant control room system. Main UI of the
system – PC Version.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   197

5.2 Validation

We use LNT to write the formal specification of the case
study. Hand-written modeling adds subjectivity to the
formal model. To avoid this, the formal models were val-
idated with an expert in the nuclear-plant domain. Fol-
lowing ARCH, the formal specification contains 6 LNT
modules: the plant_status and menu modules describe
some zones of the UI; the reactor and generate_signals
describe some functions of the functional core; the selec-
tion module describes the dialog controller; and, beyond
ARCH, an additional module called user was added, to
describe part of the user behavior. The whole specification
contains 15 modules in total, and 2462 lines of LNT code.

CADP tools were used to generate the ISLTS from the
LNT specification and to verify the properties over the
model using model checking. In particular, the EVALUA-
TOR 4.0 model checker was used, as well as the OCIS4
tool (Open / Caesar Interactive Simulator) for step-by-step
 simulation with backtracking, permitting to explore all
the possible executions of the model.

Nine properties were identified and written in MCL
(Oliveira et al. 2014). All properties were satisfied over
the formal model, which is an evidence that the modeled
system satisfies such properties. This modeling of the
case study was the basis for the verification of plastic user
interfaces.

6 Comparison of User Interfaces
The control room system has the need to adapt to different
contexts of use. For instance, to make operators mobile, a
tablet version of the UIs could be provided. Our approach
permits to identify different levels of equivalence between
different versions of a UI.

6.1 UI Versions

In (Vanderdonckt et al. 2008) the dimensions of UI
adaptation were studied and the problem space of plastic
UIs was defined, in which seven dimensions were iden-
tified. The Adaptation Means dimension, which refers
to the means used for UI adaptation, is our primary
concern in this paper. Two different means were identi-
fied: UI re-molding denotes any UI reconfiguration that

4 http://cadp.inria.fr/man/ocis.html

is perceivable by the user and that results from trans-
formations in the UI, while redistribution denotes the
re-allocation of the UI components to different interac-
tion devices.

Figure 6a illustrates an example of re-molding: the
control room UI is adapted to the target platform (a Smart-
phone). While on the PC (Figure 5) all reactor signals and
parameters are always displayed, on the Smartphone the
display is limited to those currently affected by a failure.
Besides, the widget representing reactor parameters is
re-molded to fit on the size-reduced screen of a Smart-
phone. Finally, while on the PC the menu is always visible
(in the zone four), on the Smartphone it is accessible by a
circled button on the top-left corner.

Figure 7a and 7b illustrate another example of re-
molding, in which the UI is adapted to the target user.

(a)

(b)

Figure 6: UI platform adaptation, (a) Smartphone UI, (b) Tablet UI.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

198   R. Oliveira et al., Verification of Plastic Interactive Systems

In training mode (Figure 7a), the following elements are
added: 1) at the top, a breadcrumb trail helps navigation;
2) UI zones 2 and 3 are entitled; 3) Non-failure signal
symbols have a disabled appearance (e. g. the four symbols
beside the “Air Comprimé” function in the Default Signals
zone); and 4) Reactor functions are line-grouped according
to their systems: Safety, Production, or Support. In expert
mode, all this guidance is removed.

A Tablet version (Figure 6b) of the UI illustrates redis-
tribution. The UI is re-distributed on a tablet, but only
part of the UI is migrated (i. e. the “Parameters” zone), the
other part is displayed on other devices, such as kiosks.

Re-molding and redistribution transform a UI into
various versions. We propose an approach to show to
what extent these UIs differ. This work covers two UI
aspects: interaction capabilities and appearance. UI
interaction capabilities concern the ways users can
interact with the UI (and, reversely, how the UI reacts to
this interaction). UI appearance concerns the elements
present in the UI (where they are presented, in which
color, etc.).

Different versions of a UI can diverge at several levels.
Such levels should be taken into account when compar-
ing the UI versions. Our approach permits to identify
the level of equivalence between UIs, and it covers four
levels of equivalence: equivalent UIs, non-equivalent UIs,
equivalent modulo “X” UIs and included UIs. A general
framework formalizing these four levels of UI equiva-
lence is provided in (Oliveira et al. 2015a). The analysis
is supported by three abstraction techniques, which are
explained in the following.

6.2 Equivalent User Interfaces

In the light of our UI comparison formal framework
(Oliveira et al. 2015a), two UIs are equivalent when, at a
certain level of abstraction, they present the same inter-
action capabilities and appearance, i. e., whenever the
user can perform the same actions in both UIs, both UI
versions respond with the same feedback, and the same
information is displayed on both UIs.

The equivalence which can be shown between two
UIs varies from strongly equivalent to weaker equivalent.
This is defined by the level of abstraction of the UI models.
There are cases in which certain actions (together with the
UI appearance after the action execution) may be skipped
in the analysis. These actions receive a special label in the
ISLTS (i. e. t), and can be ignored, although they are still
present in the UI model. We call this abstraction technique
an omission. This abstraction is useful, for instance, when
users are provided with a functionality activated in differ-
ent ways in the UIs: for example, two UIs that have menus
with the same options, but in one UI the menu is always
unfolded and in the other UI it is folded. Omission permits
the action of unfolding the menu to be ignored when com-
paring the UIs. When UI actions are bypassed in the ana-
lysis, a weaker equivalence between the UIs is shown.

Another abstraction technique we propose is called
generalization, and it concerns only UI appearance (not
interaction capabilities). This technique permits the rep-
resentation of the UI appearance in different levels of
details, allowing information to be summarized into a
more general representation.

(a) (b)

Figure 7: UI user adaptation, (a) Training mode, (b) Expert mode.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   199

To illustrate the approach, consider a UI adaptation accord-
ing to the platform, to which re-molding was applied: PC
(Figure 5) and Smartphone (Figure 6a). Regarding the UI
interaction capabilities, the menu in both UIs is made avail-
able in distinct ways: on the PC version the menu is always
visible and on the Smartphone it is accessible by a button
in the UI top-left corner. Due to these differences in the
UIs, the corresponding ISLTS are different (Figure 8). Each
transition of these ISLTS fragments represents the action of
choosing the corresponding menu and sub-menu options.
In this case, “open menu” is an example of t action: a user
action that does not have an impact on the menu options:
they are always the same. We used omission abstraction
to ignore the “open menu” action in the analysis, as if the
menu was always visible on the Smartphone UI.

Concerning the UI appearance, both signals and
parameters are displayed in the same zones. For this ana-
lysis, we will focus on the way the two UIs display failures:
on the Smartphone only the reactor parameters and signals
with some failure are displayed, while on the PC all items
are always displayed. Figure 9 illustrates such differences
in an ISLTS fragment. Both frames on top represent the
display of reactor parameters in the UI. While on the PC
ISLTS this transition is labeled with an action containing
the whole list of reactor parameters, the Smartphone ISLTS
contains only the problematic parameter (i. e. “Groupe R”).

Generalization abstraction permits to generalize actions
containing detailed information into less detailed actions
(i. e. the “Failure in x” renamed action at the bottom frames).
Using generalization and omission abstractions, the PC UI
model and the Smartphone UI model are equivalent.

6.3 Equivalent User Interfaces Modulo “X”

There are cases in which certain divergences between two
UIs are considered acceptable. For instance, when a navi-
gation aid is present in one UI and absent in another one.
Knowing that the UIs present this difference, we may still
want to analyze the remaining aspects of the UIs. Equiv-
alence modulo “X” permits this reasoning. Two UIs are
equivalent modulo “X” when, discarding the functional-
ity “X” from the analysis, both UIs are equivalent.

Elimination abstraction can be used to bypass a UI
functionality, permitting the removal of elements in the
UI model before performing the analysis. UI interaction
capabilities can be discarded, together with the UI appear-
ance once the action is executed. Contrary to omission, in
which the elements are still present in the model and are
ignored, here the elements are removed.

To illustrate the technique, consider a UI adapta-
tion according to the user expertise, to which re-molding
was applied: Training Mode (Figure 7a) and Expert Mode
(Figure 7b). Regarding the appearance, there are several
differences between the two UIs. We use generalization to
represent differences 2, 3 and 4 (Figure 7a).

Concerning the UIs interaction capabilities, the
Training-mode UI contains one additional navigation
aid: a breadcrumb trail (i. e. the difference 1 in Figure 7a).
We set the equivalence checking to be done disregarding
this feature. We use elimination abstraction (Figure 10) to
search (in the ISLTS) actions corresponding to the bread-
crumb trail (i. e. the bct_ pattern). Once a match occurred,

Figure 8: ISLTS fragments of PC and Smartphone UIs.

Figure 9: Generalization in an ISLTS. Figure 10: Elimination in an ISLTS.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

200   R. Oliveira et al., Verification of Plastic Interactive Systems

all the successor states (and transitions) were eliminated
in cascade from the ISLTS.

Using generalization (for the items n. 2, 3, and 4 of
Figure 7a) and elimination (for the item n. 1), the Training
and Expert UI models are equivalent modulo the bread-
crumb trail.

6.4 Non-Equivalent User Interfaces

There are cases in which two UIs present a large number
of divergences, and eliminate all the divergences compro-
mises the usefulness of the results. In this case, the UIs are
not equivalent.

6.5 Inclusion of User Interfaces

Two UIs can also relate with each other by the inclusion
relation. Intuitively, a given user interface U1 includes
another user interface U2 whenever the former contains at
least all interaction capabilities (and the appearance) of
the latter.

To illustrate, consider a UI adaptation according to
the target platform, to which redistribution was applied:
PC (Figure 5) and Tablet versions (Figure 6b). Regarding UI
interaction capabilities, the functionalities that permit user
interactions are available only on the PC (i. e. the menu and
the plant status selection). With respect to appearance, the
UIs also diverge: the Tablet version does not contain the
plant status, the reactor signals and the menu zones.

The divergences of these two UIs are too large to con-
sider the use of elimination abstraction. In this case, we
apply no abstraction techniques, and the two UI models
are shown non-equivalent, because the user can perform
several actions on the PC version which are not available
on the Tablet version. Even though, we show that the PC
version contains at least all functionalities (regarding inter-
action capabilities and appearance) of the Tablet version.
The PC-version UI model includes the Tablet-version UI
model (i. e. Tablet_model ≤ PC_model).

6.6 Discussion

The abstraction techniques introduced here support UI
model comparison. The principle is to first create abstract
models of the UIs, used afterwards to perform equivalence
checking. Figure 11 illustrates the different levels of equiv-
alence between two UI models. The strongest equivalence
relation two UI models can have is when, with none of

these abstractions, they are equivalent. This is achieved
only when two UIs are almost identical, which is possible,
but rare. In practice, since plastic UIs have to cope with
several changes in the context of use, numerous diver-
gences are present within the UI versions. The challenge
is to verify equivalence between the UI models in spite of
these divergences. Abstraction techniques provide means
to do that, and weaker equivalence relations between the
models can be shown. The more abstractions are applied
to the models, the weaker the equivalence between the
models becomes. Transversally, the inclusion between
two UI can be verified at any level of abstraction. The
results of the comparison allow a refinement of the formal
models and/or the real UIs.

6.7 Validation

A LNT formal model was manually written for the 5 con-
texts of use presented in this paper (i. e., PC, Smartphone,
Tablet, Training and Expert Mode). The abstract criteria
were implemented using SVL language. Table 1 summarizes
the number of lines of LNT code and the ISLTS size. The
case study shows that the approach scales well (Oliveira
et al. 2015a). It was initially designed for one context of
use (PC), later extended to 5 contexts of use. Each formal
model contains 3 UIs. Each UI model describes about 20
curves and symbols (UI appearance) and 14 user interac-
tions (UI interaction capabilities), generating significantly
large ISLTS for the analysis in a reasonable time (< 3 h).

Figure 11: Different levels of equivalence between UI models.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   201

Table 2 illustrates the summary of the comparisons, where
O indicates the number of omissions done, G the number
of generalizations, E the number of eliminations, and the
last column indicates the comparison time. The PC and the
Smartphone versions were shown equivalent, the Training
and the Expert versions were shown equivalent modulo
the breadcrumb trail feature and the Tablet version was
shown included in the PC version. The comparison of the
ISLTS was done using BCG_CMP5 and BISIMULATOR6
tools of CADP.

Table 1: Summary of the formal models.

Context of use # loc # states # transitions

PC 2462 33,053,947 189,539,691
Smartphone 2558 41,944,680 208,554,613
Tablet 1686 4438 5547
Training Mode 2579 160,681,601 946,293,368
Expert Mode 2410 16,678,151 76,202,201

Table 2: Summary of the comparisons.

Models # O # G # E Result Comp. time

PC x Smartphone 1 22 0 Equivalent 7 min
Training x Expert 0 6 1 Equiv\bread-

crumb
19 min

PC x Tablet 0 0 0 Tablet included
in PC

4 s

7 Related work
Property verification by model checking has been pro-
posed several times in the past years (Navarre et al. 2009,
Sousa et al. 2014, Paternó 1997, Oliveira et al. 2014). But
none of them cover plastic UIs. Similar to our UI com-
parison approach, existing approaches compare UIs in
different ways. Some are supported by classical testing
(Bauersfeld 2013, Jung et al. 2012) and others by formal
methods (Bowen and Reeves 2008). In the following, we
compare such approaches according to the following cri-
teria: (1) model coverage: to be as representative as pos-
sible, the model should cover aspects of the users, the
UIs and the functional core; (2) application to the nuclear
plant domain: we will analyze whether the approach was

5 http://cadp.inria.fr/man/bcg_cmp.html
6 http://cadp.inria.fr/man/bisimulator.html

applied to this domain or not; (3) scalability: whether it
scales well for real-life applications.

In (Bauersfeld 2013) regression testing is applied over
the new version of a UI, providing a list of the detected
differences. The approach was applied to several case
studies and it is tool-supported (Bauersfeld et al. 2014),
indicating that it scales well for real-life systems.
However, no application to safety-critical systems was
found, and only the UIs are covered in the verification.
In (Jung et al. 2012) Capture-and-Replay technique was
used to perform regression testing of UIs. However, the
scripts generated in the capture part are fragile to GUI
layout change, which can render entire automated test
suites inept. The paper provides no evidence that the
approach scales well. No application of the approach
to safety-critical systems was found either, and only the
UIs are covered. In (Bowen and Reeves 2008) a formal
technique to verify if a UI is a refinement of another UI
is proposed, which covers the modeling of users, UIs
and the functional core. The approach verifies func-
tional equivalence, which is similar to our inclusion ver-
ification: it verifies if a UI provides at least as much as
another UI. However, it does not verify different levels
of equivalence, and it was not applied to safety-critical
systems. Besides, the verification is performed with no
automation, by manual inspection of the UI models,
giving no evidence that the approach scales well for
larger applications.

Table 3 summarizes these model-based approaches to
verify interactive systems by comparing different versions
of the system, the means to represent the system, the tech-
nique used for comparison, the chosen tool and the cri-
teria we used to analyze them. Specifically, no approach
so far covered plastic UIs. Our approach aims at verifying
safety-critical systems, and it was applied to a realistic
case study in the nuclear-plant domain, which shows that
it scales well for real-life applications. Besides, it covers
the modeling and verification of the user, the UIs and the
functional core.

8 Conclusion
We presented a global approach to verifying safety- critical
interactive systems provided with plastic UIs, in which
sets of properties can be verified over a formal specifica-
tion of the system by means of model checking, and dif-
ferent versions of plastic UIs can be compared with each
other by means of equivalence checking. In the UI compar-
ison, two UI aspects are covered: interaction capabilities

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

202   R. Oliveira et al., Verification of Plastic Interactive Systems

and appearance. We show whether two UIs are equiva-
lent, equivalent modulo some features, included one in
the other, or neither one. The approach was successfully
applied to a case study in the nuclear power plant domain.

One limitation of the approach is that it relies on the
ISLTS representation of the model. Depending on the
abstractions, the number of ISLTS states / transitions may
largely increase. Alternatives exist in CADP to handle big
models, avoiding state space explosion (e. g. composi-
tional verification), but they need further investigation
with larger case studies.

We have started investigations on other techniques
to verify plastic user interfaces (Oliveira et al. 2015b). For
the moment, we have mainly explored the comparison
of UIs. Other possibilities are the verification of proper-
ties common to all the UI versions and the verification
of properties over the adaptation engine implement-
ing the transformation rules of the UIs. In the future,
we plan to deeper investigate these two alternatives, in
particular in terms of the description of the adaptation
engine logic.

We also plan to study when and how to apply the
approach, for instance during the design process to the
respective task, abstract, concrete and final UI models.
The approach could also be valuable to compare UI ver-
sions along product evolutions. More generally, it can also
be used to compare any UIs. In such case, a large use of
abstraction techniques is required. These perspectives
show that equivalence is promising for UI comparison in
any context.

Acknowledgment: This work is funded by the French Con-
nexion Cluster (Programme d’Investissements d’avenir / 
Fonds national pour la société numérique / Usages, ser-
vices et contenus innovants). We warmly thank Frédéric
Lang and Hubert Garavel, researchers at INRIA Rhône-
Alpes, for their strong contribution to the work.

References
Abowd G. D., J. Coutaz and L. Nigay. 1992. Structuring the space

of interactive system properties. In Proceedings of the
IFIP TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction, pages 113–129, Amsterdam,
The Netherlands, The Netherlands. North-Holland Publishing
Co. ISBN 0-444-89904-9. URL http://dl.acm.org/citation.
cfm?id=647103.717569.

Bass L., R. Little, R. Pellegrino, S. Reed, R. Seacord, S. Sheppard
and M. R. Szezur. 1991. The ARCH Model: Seeheim Revisited. In
User Interface Developpers’ Workshop.

Bauersfeld S. 2013. GUIdiff – A Regression Testing Tool for
Graphical User Interfaces. In Proceedings of the 2013
IEEE Sixth International Conference on Software Testing,
Verification and Validation, ICST ‘13, pages 499–500,
Washington, DC, USA. IEEE Computer Society. ISBN
978-0-7695-4968-2. 10.1109/ICST.2013.84. URL http://dx.doi.
org/10.1109/ICST.2013.84.

Bauersfeld S., T. E. J. Vos, N. Condori-Fernandez, A. Bagnato and
E. Brosse. 2014. Evaluating the TESTAR Tool in an Industrial
Case Study. In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement, ESEM ‘14, pages 4:1–4:9, New York, NY, USA.
ACM. ISBN 978-1-4503-2774-9. 10.1145/2652524.2652588. URL
http://doi.acm.org/10.1145/2652524.2652588.

Bowen J. and S. Reeves. Apr. 2008. Refinement for User Interface
Designs. Electron. Notes Theor. Comput. Sci., 208:5–22. ISSN
1571-0661. 10.1016/j.entcs.2008.03.104. URL http://dx.doi.
org/10.1016/j.entcs.2008.03.104.

Champelovier D., X. Clerc, H. Garavel, Y. Guerte, C. McKinty,
V. Powazny, F. Lang, W. Serwe and G. Smeding. aug 2014.
Reference Manual of the LNT to LOTOS Translator (Version
6.1). INRIA/VASY and INRIA/CONVECS, 131 pages.

Chériaux F., D. Galara and M. Viel. 2012. Interfaces for nuclear
power plant overview. In 8th International Topical Meeting
on Nuclear Plant Instrumentation, Control, and Human-
Machine Interface Technologies (NPIC & HMIT 2012):
Enabling the Future of Nuclear Energy, NPIC & HMIT 2012,
pages 1002–1012. Curran Associates, Inc., 2012.
ISBN 978-1-627-48015-4.

Clarke E. M., E. A. Emerson and A. P. Sistla. 1983. Automatic
Verification of Finite State Concurrent System Using Temporal

Authors

Verification Criteria

Language Technique Tool
Model coverage

Applied Scalability
user UI core

Bauersfeld et al. trees modelbased testing GUITest, GUIDiff,
Rogue / TESTAR

√ noncritical yes

Jung et al. images modelbased testing a prototype √ noncritical no evidence
Bowen and Reeves Z, µCharts, FSM manual model inspection – √ √ √ noncritical no evidence
Oliveira et al. LNT model checking,

equiv. checking
CADP √ √ √ nuclearplants yes

Table 3: Summary of approaches that compare different versions of the system model.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

 R. Oliveira et al., Verification of Plastic Interactive Systems   203

Logic Specifications: A Practical Approach. In Proceedings
of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ‘83, pages 117–126, New York,
NY, USA. ACM. ISBN 0-89791-090-7. 10.1145/567067.567080.
URL http://doi.acm.org/10.1145/567067. 567080.

Degani A. and M. Heymann. 2002. Formal Verification of Human-
Automation Interaction. Human Factors, 44:28–43.

Garavel H. and S. Graf. 2013. Formal methods for safe and secure
computer systems. Federal Office for Information Security.

Garavel H. and F. Lang. 2001. SVL: A Scripting Language for
Compositional Verification. In Proceedings of the IFIP TC6/
WG6.1–21st International Conference on Formal Techniques
for Networked and Distributed Systems, FORTE ‘01, pages
377–394, Deventer, The Netherlands, The Netherlands. Kluwer,
B.V. ISBN 0-7923-7470-3. URL http://dl.acm.org/citation.
cfm?id=646219.682166.

Garavel H., F. Lang, R. Mateescu and W. Serwe. 2013. CADP 2011:
A Toolbox for the Construction and Analysis of Distributed
Processes. International Journal on STTT, 15:89–107,
2013. 10.1007/s10009-012-0244-z. URL http://hal.inria.fr/
hal-00715056.

Jung H., S. Lee and D.-K. Baik. 2012. An Image Comparing-Based
GUI Software Testing Automation System. In SERP, pages
318–322.

Leveson N. G. and C. S. Turner. July 1993. An Investigation of the
Therac-25 Accidents. Computer, 26(7):18–41. ISSN 0018-9162.
10.1109/MC.1993.274940. URLhttp: //dx.doi.org/10.1109/
MC.1993.274940.

Lutz R. R. 2000. Software engineering for safety: a roadmap. In
Proceedings of the Conference on The Future of Software
Engineering, pages 213–226. ACM.

Mateescu R. and D. Thivolle. 2008. A Model Checking Language for
Concurrent Value-Passing Systems. In Proceedings of the 15th
International Symposium on Formal Methods, FM ‘08, pages
148–164, Berlin, Heidelberg. Springer-Verlag.
ISBN 978-3-540-68235-6 10.1007/978-3-540-68237-0_12.
URL http://dx.doi.org/10.1007/978-3-540-68237- 0 12.

Navarre D., P. Palanque, J.-F. Ladry and E. Barboni. Nov. 2009. ICOs:
A Model-Based User Interface Description Technique Dedicated
to Interactive Systems Addressing Usability, Reliability and
Scalability. ACM Trans. Comput.-Hum. interact., 16(4):
18:1–18:56. ISSN 1073-0516. 10.1145/1614390.1614393. URL
http://doi.acm.org/10.1145/1614390.1614393.

Oliveira R., S. Dupuy-Chessa and G. Calvary. 2014. Formal
Verification of UI Using the Power of a Recent Tool Suite. In
ACM SIGCHI symposium on EICS, pages 235–240.
ISBN 978-1-4503-2725-1. 10.1145/2607023.2610280.
URL http://doi.acm.org/10. 1145/2607023.2610280.

Oliveira R., S. Dupuy-Chessa and G. Calvary. 2015a.
Equivalence Checking for Comparing User Interfaces.
In Proceedings of the 7th ACM SIGCHI Symposium on
Engineering interactive Computing Systems, EICS ‘15, pages
266–275, New York, NY, USA., ACM. ISBN 978-1-4503-
3646-8. 10.1145/2774225.2774844. URL http://doi.acm.
org/10.1145/2774225.2774844.

Oliveira R., S. Dupuy-Chessa and G. Calvary. 2015b. Plasticity
of User Interfaces: Formal Verification of Consistency. In
Proceedings of the 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ‘15, pages 260–265,
New York, NY, USA. ACM. ISBN 978-1-4503-3646-8.

10.1145/2774225.2775078. URL http://doi.acm.
org/10.1145/2774225.2775078.

Park D. 1981. Concurrency and Automata on Infinite Sequences. In
Proceedings of the 5th GI-Conference on Theoretical Computer
Science, pages 167–183, London, UK, UK. Springer-Verlag.
ISBN 3-540-10576-X. URL http://dl.acm.org/citation.cfm?id=
647210.720030.

PaternÓ F. 1997. Formal Reasoning about Dialogue Properties
with Automatic Support. interacting with Computers,
9(2):173–196. ISSN 0953-5438. http://dx.doi.org/10.1016/
S0953-5438(97)00015-5. URL http://www.sciencedirect. com/
science/article/pii/S0953543897000155.

Sousa M., J. Campos, M. Alves and M. Harrison. 2014. Formal
Verification of Safety-Critical User Interfaces: a Space System
Case Study. In Formal Verification and Modeling in Human
Machine Systems: AAAI Spring Symposium, pages 62–67.
AAAI Press.

Thevenin D. and J. Coutaz. 1999. Plasticity of User Interfaces:
Framework and Research Agenda. Proc interact99 Edinburgh
A Sasse C Johnson Eds IFIP IOS Press Publ, 99:110–117. URL
http://books.google.com/books?hl=en&lr=&id=yXehjiOd_
kkC&oi= fnd&pg=PA110& dq=Plasticity+of+User+Interf
aces:+Framework+and+Research+ Agenda&ots=NTnX-
sS3yHr&sig=yUEc2R_iTCZeIz119UjLjCw3_3o.

Thimbleby H. 2010. Think! Interactive Systems Need Safety Locks.
CIT. Journal of Computing and information Technology,
18(4):349–360.

van Glabbeek R. J. and W. P. Weijland. 1996. Branching Time and
Abstraction in Bisimulation Semantics. Journal of the ACM,
pages 555–600. ISSN 0004-5411. 10.1145/233551.233556.
URL http://doi.acm.org/10.1145/233551.233556.

Vanderdonckt J., G. Calvary, J. Coutaz and A. Stanciulescu. 2008.
Multimodality for Plastic User Interfaces: Models, Methods, and
Principles. In Multimodal User interfaces, pages 61–84. Springer.

Bionotes
Raquel Oliveira
University of Grenoble Alpes,
Grenoble, France
raquel.oliveira@imag.fr

RAQUEL OLIVEIRA is a PhD Candidate at two research groups in
LIG (‟Laboratoire d‘Informatique de Grenoble”): EHCI (Engineering
Human-Computer Interaction) and Convecs (Construction of Verified
Concurrent Systems). LIG is an informatics research laboratory at
the University of Grenoble Alpes, France. She currently works in the
crossroad of three domains: human-computer interaction, formal
methods and safety-critical systems. Her research interests include
the usage of formal notations to the specification of interactive
systems; the formalization of plastic user interfaces and transforma-
tion engines; the application of formal techniques to ensure quality
of plastic user interfaces in the safety-critical systems.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

204   R. Oliveira et al., Verification of Plastic Interactive Systems

Prof. Gaëlle Calvary
University of Grenoble Alpes,
Grenoble, France
gaelle.calvary@imag.fr

Gaëlle Calvary is professor in Computer Science at Grenoble
Institute of Technology since 2009, and a member of the Engineer-
ing Human Computer Interaction group since 1999. Before joining
University Joseph Fourier in 1999 as assistant professor, she has
served as a user interface software designer for 8 years at Thales.
Her main research area is about Plasticity of User Interfaces (UI)
for making UIs capable of adaptation to the context of use while
preserving user-centered properties. She explores model-driven
engineering as well as artificial intelligence. She also investigates
worth centered design and persuasive technology. She is a member
and the general secretary of the IFIP Working Group 2.7/13.4
under which auspices she co-chaired the first ACM Symposium on
the Engineering of Interactive Computing Systems (EICS) held in
 Kingston in 2009. In France, she is the founder and cochair of a
Working Group on Persuasive Technology.

Prof. Sophie Dupuy-Chessa
University of Grenoble Alpes,
Grenoble, France
sophie.dupuy@imag.fr

Sophie Dupuy-Chessa is professor at University of Grenoble Alpes.
She got her PhD thesis in 2000 in the domain of software engi-
neering, more precisely in software modeling. Then she has two
post-doctoral positions: she was lecturer at University of Geneva
and research scientist at Xerox Research Center Europe. She holds
a authorization to steer researches (HDR) in Computer Science from
the University of Grenoble in 2011. Currently, her research interest
concerns model-driven engineering for human-computer interaction
and information system design.

Authenticated | raquel.oliveira@imag.fr author's copy
Download Date | 12/14/15 5:20 PM

