
i-com 2015; 14(3): 192–204

*Corresponding author: Raquel Oliveira, University of Grenoble 
Alpes, Grenoble, France, e-mail: raquel.oliveira@imag.fr 
Sophie Dupuy-Chessa, Gaëlle Calvary: University of Grenoble Alpes, 
Grenoble, France

DOI 10.1515/icom-2015-0036

Abstract: Interactive systems have largely evolved over 
the past years. Nowadays, different users can interact 
with systems on different devices and in different envi-
ronments. The user interfaces (UIs) are expected to cope 
with such variety. Plastic UIs have the capacity to adapt to 
changes in their context of use while preserving usability. 
Such capability enhances UIs, however, it adds complex-
ity on them. We propose an approach to verifying interac-
tive systems considering this adaptation capability of the 
UIs. The approach applies two formal techniques: model 
checking, to the verification of properties over the system 
model, and equivalence checking, to compare different 
versions of a UI, thereby identifying different levels of UI 
equivalence. We apply the approach to a case study in the 
nuclear power plant domain in which several UI are ana-
lyzed, properties are verified, and the level of equivalence 
between them is demonstrated.

Keywords: Equivalence Checking, Formal Verification, Inter-
active Systems, Model Checking, Plasticity, User Interfaces

1  Introduction
The advent of ubiquitous computing and the increasing 
variety of platforms and devices change user expecta-
tions in terms of user interfaces. Systems should be able 
to adapt to their context of use, i. e., the platform (e. g. a PC 
or a tablet), the users who interact with the system (e. g. 
administrators or regular users), and the environment in 
which the system runs (e. g. a dark room or outdoor). The 
capacity of a UI to withstand variations in its context of use 
while preserving usability is called plasticity  (Thevenin 
and Coutaz 1999).

Plasticity provides users with different versions of a 
UI. Although it enhances UI capabilities, plasticity adds 

complexity to the development of user interfaces: con-
sistency between multiple versions of a given UI (one for 
each context of use) should be ensured; functionalities 
that are critical to the system should be preserved in all 
UI versions; and ergonomic properties the UI is expected 
to fulfill with should be satisfied in all its versions. Given 
the large number of possible versions of a UI, it is time- 
consuming and error prone to check these requirements by 
hand. Some automation must be provided to verify plas-
ticity. This complexity is further increased when it comes 
to UIs of safety-critical systems. Safety-critical systems are 
systems in which a failure has severe consequences (e. g. 
death or injury to people, environmental harm, loss or 
damage to equipment). Several issues have been reported 
in the safety-critical domain due to bad UIs (e. g., in avi-
onics (Degani and Heymann 2002), in radiation therapy 
machines (Leveson and Turner 1993), in infusion pumps 
to deliver drugs in hospitals (Thimbleby 2010), etc.). UIs 
are now expected not only to provide correct, intuitive, 
non-ambiguous and adaptable means for users to accom-
plish a goal, but also to cope with safety requirements 
aiming to make sure that systems are reasonably safe 
before they enter the market. 

Several techniques to ensure quality of systems exist, 
such as simulation, testing, code reviews, static analysis, 
formal verification, etc (Garavel and Graf 2013) formal. 
Formal verification is suitable for safety-critical systems 
(Lutz 2000). It consists in the application of techniques 
that are strongly rooted in mathematics to reason over a 
model of the system, providing a rigorous way to perform 
system verification. Our contribution is a global approach 
to verify safety-critical interactive systems provided 
with plastic UIs using formal methods. Using a powerful 
tool-support, our approach permits to verify sets of prop-
erties over a system model, as well as to compare different 
versions of UIs, showing to which extent they have the 
same interaction capabilities and appearance.

2  Background in Verification
Formal verification requires the use of formal models. 
Formal models are system descriptions in a very precise 
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language which, unlike natural human languages, does 
not allow for double meanings. Such unambiguity allows 
formal models to be subject to deeper analyses using 
several formal verification techniques. This permits, for 
instance, the simulation of the system, the early verifi-
cation of properties or the detection of inconsistencies in 
requirements. Examples of formal verification techniques 
are model checking, and equivalence checking, which we 
use in this work.

Model checking (Figure 1) permits to verify whether 
a model satisfies a set of requirements, which are spec-
ified as properties. A property is a general statement 
expressing an expected behavior of the system. In model 
checking, a formal model of the system under analysis is 
needed to be created, which is afterwards represented as 
a finite-state machine (FSM). This FSM is then subject to 
exhaustive analysis of its entire state space to determine 
whether the properties hold or not. The analysis is fully 
automated and the validity of a property is always decid-
able (Clarke et al. 1983). Expected properties should be 
also formalized, which in is this case is done by means 
of temporal logics. The analysis is mainly supported by 
the generation of counter-examples when a property is 
not satisfied. A counter-example can be a set of steps that 
when followed, by interacting with the system, leads to 
a state in which the property is false. The results of the 
analysis permits a refinement of the modeled system.

Rather than verifying the satisfiability of properties, 
equivalence checking (Figure 2) permits to formally prove 
whether two representations of the system exhibit exactly 
the same behavior or not. In order to verify whether two 

systems are equivalent or not, a model of each system 
should also be created, and then both models are com-
pared in the light of a given equivalence relation. Several 
equivalence relations are available in the literature (e. g. 
strong bisimulation (Park 1981) and branching bisimula-
tion (van Glabbeek and Weijland 1996)). Which relation 
to choose depends on the level of details of the model 
and the verification goals. The results of the analysis also 
permits a refinement of the modeled systems.

Both model checking and equivalence checking are 
techniques that reason over the LTS (Labeled Transition 
System) representation of the system. A LTS is a graph 
composed of states and transitions between states. Transi-
tions between states are triggered by actions. Intuitively, a 
LTS represents all possible evolutions of a system modeled 
by a formal model.

These two verification techniques constitute the ele-
ments used in our approach to verify plastic interactive 
systems.

3  Global Approach
This section introduces our global approach to verifying 
interactive systems, as well as the rationale for the design 
and technical choices.

3.1  Overview

We propose a global approach (Figure 3) to assess quality 
of safety-critical interactive systems with plastic UIs. We 
integrate both model checking and equivalence check-
ing formal techniques. We use model checking to verify 
properties over the formal specification of the interactive 
system, and equivalence checking to compare formal 
specifications of the system in different contexts of use. 

The formal verifications are performed over the ISLTS 
(Interactive System LTS) representation of the specifica-
tions. We derive ISLTS from standard LTS in order to rep-
resent both UI interaction capabilities and appearance in 
one single model (Oliveira et al. 2015a).

Model checking and equivalence checking can be used 
independently or in an integrated way. Independently, dis-
regarding the UI adaptation capabilities of the interactive 
system, we propose the usage of model checking to verify 
properties over the system formal model. Considering that 
the system UIs are provided with plasticity capabilities, we 
propose a technique to compare different versions of the 
UIs by means of equivalence checking. 

Figure 1: Model checking.

Figure 2: Equivalence checking.
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Optionally, model comparison can be integrated with 
property verification. Before checking equivalence of 
the formal models, checking a set of properties over the 
models can guarantee that they cope with a certain level 
of quality, increasing the relevance of the equivalence 
checking results. In case the models under comparison 
are expected to satisfy the same set of properties, the 
verification can be reduced to check one model of the 
interactive system, and to verify the equivalence between 
both models: if one model satisfies the set of properties, 
and this model is equivalent to the other one, then the 
second model also satisfies the properties. If each model 
is expected to satisfy different properties, due to particu-
larities of their context of use, the approach is fully per-
formed: model checking each formal model with respect 

to their set of properties, followed by a equivalence verifi-
cation of the models. 

3.2  Design Choices

In order to obtain more reusable results, system models are 
represented following the ARCH architecture (Bass et al. 
1991). Architectural models provide a means to structure 
systems, using the principle of separation of concerns. In 
ARCH, systems are decomposed in five main components: 
the functional core, the functional core adaptor, the logical 
presentation, the physical presentation and the dialog con-
troller (i. e., the blue boxes in Figure 4). We use the simpli-
fied version of ARCH (i. e., the dashed boxes in Figure 4),  

Figure 3: Global approach to verifying interactive systems with plastic UIs.
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in which the major functional components of an inter-
active system are represented: a functional core compo-
nent, which groups the two components of ARCH, the UI 
component, which group two ARCH components, and 
the dialog controller component. We propose to take into 
account this separation of concerns when creating the 
formal models of the system. In addition, in our approach 
a user module is created. Figure 4 illustrates how the 
formal model is organized: each dashed box represents 
one or more parts of the formal model. The formal model 
reflects the fact that users interact only with the UIs, not 
having access neither to the functional core of the system 
nor to the dialog controller.

3.3  Technical Choices

The application of the approach is supported by several 
formal languages and tools from the CADP1 toolbox (Con-
struction and Analysis of Distributed Processes) (Garavel  
et al. 2013). The choice of the toolbox was mainly motivated 
by its maturity, continuous evolution and support, and 
the numerous included tools. CADP is a toolbox for ver-
ifying asynchronous concurrent systems: systems whose 
components may operate at variable speeds, without a 
global clock to synchronize them. Such components com-
municate and exchange information from time to time by 
channels. Asynchronous systems suit well the modeling of 
human-machine interactions: it permits the components 
that describe the users, the functional core and the UIs to 
evolve in time at different speeds, which reflects well the 
unordered sequence of interactions that can take place in 
human-machine interactions.

We use LNT (Champelovier et al. 2014) formal lan-
guage to specify the system formal models, which is one 
of the input specification languages supported by CADP. 
LNT is a specification language derived from ELOTOS ISO 

1 http://cadp.inria.fr

standard. It improves LOTOS, and can be translated to 
LOTOS automatically. LNT has several advantages over 
LOTOS, notably the user friendliness and the richer data 
type definition.

CADP can generate a ISLTS from LNT formal models, 
which can be subject to operations such as minimization 
(also called reduction), abstraction, comparison, deadlock /  
livelock detection, etc., by means of a scripting language 
called SVL2 (Script Verification Language) (Garavel and 
Lang 2001).

In order to formalize the expected properties of 
the interactive systems, we use MCL3 (Model Checking 
Language) (Mateescu and Thivolle 2008). MCL is an 
enhancement of the modal µ-calculus, a fixed point-
based logic that subsumes all other temporal logics, 
aiming at improving the expressiveness and conciseness 
of formulas (Mateescu and Thivolle 2008). Specifically, 
MCL adds data-handling mechanisms; it adds a fairness 
operator; it contains quantifiers over finite data domains 
and constructors inspired from functional programming 
(e. g. let, if-else, case, while, repeat, etc.) (Mateescu and 
Thivolle 2008).

This global approach of verification was applied to 
a case study in the nuclear-plant domain, in which a set 
of properties was verified and several versions of a user 
interface were compared to each other.

4  Case Study
Our case study concerns a control room system of a nuclear 
power plant that provides an overview of the plant state 
(Chériaux et al. 2012). It notifies the operator about all 
unexpected events in the plant. The main UI contains four 
zones (Figure 5, in French): 
1. The top part displays six tabs for selecting the plant 

status, which can range from RP (working at full 
capacity) to RCD (completely stopped). 

2. The Default Signals (“Signaux de défaut”) zone 
synthesizes signals triggered in reactor functions, 
according to unexpected events occurred in the 
reactor parameters. 

3. At the bottom, the Parameter (“Paramètres”) zone 
displays various reactor parameters (e. g. the pres-
sure), each one represented by a widget containing: 
the parameter name, its current value, a curve with 

2 http://cadp.inria.fr/man/svl.html
3 http://cadp.inria.fr/man/evaluator4.html, section “Overview of the 
MCL Language”

Figure 4: ARCH architecture usage in formal modeling.
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the value evolution over time, a minimum/maximum 
value boundaries, the sensor that monitors the para-
meter and its measurement unit. If unexpected events 
occur in some parameter, the same is highlighted (e. g. 
a stronger frame around it), and a signal is triggered in 
the zone two of the UI.

4. On the left, users access other UIs by a menu. Some of 
these UIs (covered by this study) have the same layout 
of this main UI, varying the parameters and signals. 
Other UIs (not covered by this study) have different 
purposes. 

5  Verification of Properties
In order to verify a set of ergonomic properties over the 
system, both the system and the properties should be for-
malized. Nowadays the system model is manually written, 
in contrast to the work proposed in (Paternó 1997), that 
generates a LOTOS specification directly from a task 
model. In our case, a task model per se does not contain 
sufficient information to permit automatic generation 
of the formal model. It turns out that our formal model 
covers the user interface behavior and some aspects of 
the functional core. For this reason, the formal model is 
written manually, to be as realist as possible. 

Once the formal specification is created, one can 
verify a set of properties on it. Our approach suggests the 
usage of ergonomic guidelines to support the identifica-
tion of the desired properties. A lot of work has been done 
to guide the identification of user interface properties. In 
our approach, the usability properties from the framework 
proposed in (Abowd et al. 1992) were chosen. All the iden-
tified properties are classified as robustness properties, 

which refer to the possibility of navigating through the 
observable states of the system.

We write the properties in MCL language. For example, 
the property: 

“From any UI, one can always go directly to the main UI 
(i. e. without passing through any other UI)”

is expressed in MCL in the following way:
[true*] 〈 (not(UI))*. ′GLOBAL_SYNTHESIS′ 〉 true
and may be read as: 
[From every reachable state] 〈 there exists a sequence 

of steps, not passing through any UI, and leading to the 
GLOBAL_SYNTHESIS UI 〉 

This property ensures that, in all user interfaces, there 
is always the possibility to come back to the main UI with 
one single user interaction, i.e. without the need to access 
intermediate UI before. Once the desired properties are 
formalized, they are verified using the model checker of 
CADP toolbox. 

5.1  Discussion

The key enhancement brought by our approach is the 
usage of a more powerful support (Oliveira et al. 2014). The 
user-friendliness of the LNT language decreases the learn-
ing curve of designers in formal methods, and it decreases 
the required labor time of writing a formal specification of 
the system, enabling one to more quickly take advantages 
of formal methods. The rich data type definitions of LNT 
permits more realistic UI models, thus widening the capa-
bilities of verification, covering verifications on the data 
type of the UI fields, for instance.

The use of MCL to formalize the properties is another 
advantage of our approach. MCL permits to identify, for 
example, the existence of complex unfair (infinite) cycles 
in the ISLTS generated from the formal model. An unfair 
cycle is an infinite sequence made by the  concatenating 
sub-sequences satisfying the formula (Mateescu and 
 Thivolle 2008), e. g. a sequence of actions over the user 
interface that once started loops forever.

The set of tools is also important to support formal 
analysis. Rather than developing our own tool to perform 
formal verification, we work in collaboration with the 
authors of CADP toolbox. In particular, CADP has contin-
uously evolved over the past years. By taking advantage 
of its new capabilities, it is now possible for example to 
perform compositional verification on individual pro-
cesses of the model, enabling to handle much larger 
state spaces. In practice, bigger models can be handled, 
so that we can consider more complex UIs and more real-
istic UI models.

Figure 5: A nuclear power plant control room system. Main UI of the 
system – PC Version.
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5.2  Validation

We use LNT to write the formal specification of the case 
study. Hand-written modeling adds subjectivity to the 
formal model. To avoid this, the formal models were val-
idated with an expert in the nuclear-plant domain. Fol-
lowing ARCH, the formal specification contains 6 LNT 
modules: the plant_status and menu modules describe 
some zones of the UI; the reactor and generate_signals 
describe some functions of the functional core; the selec-
tion module describes the dialog controller; and, beyond 
ARCH, an additional module called user was added, to 
describe part of the user behavior. The whole specification 
contains 15 modules in total, and 2462 lines of LNT code. 

CADP tools were used to generate the ISLTS from the 
LNT specification and to verify the properties over the 
model using model checking. In particular, the EVALUA-
TOR 4.0 model checker was used, as well as the OCIS4 
tool (Open / Caesar Interactive Simulator) for step-by-step 
 simulation with backtracking, permitting to explore all 
the possible executions of the model.

Nine properties were identified and written in MCL 
(Oliveira et al. 2014). All properties were satisfied over 
the formal model, which is an evidence that the modeled 
system satisfies such properties. This modeling of the 
case study was the basis for the verification of plastic user 
interfaces.

6  Comparison of User Interfaces
The control room system has the need to adapt to different 
contexts of use. For instance, to make operators mobile, a 
tablet version of the UIs could be provided. Our approach 
permits to identify different levels of equivalence between 
different versions of a UI. 

6.1  UI Versions

In (Vanderdonckt et al. 2008) the dimensions of UI 
adaptation were studied and the problem space of plastic 
UIs was defined, in which seven dimensions were iden-
tified. The Adaptation Means dimension, which refers 
to the means used for UI adaptation, is our primary 
concern in this paper. Two different means were identi-
fied: UI re-molding denotes any UI reconfiguration that 

4 http://cadp.inria.fr/man/ocis.html

is perceivable by the user and that results from trans-
formations in the UI, while redistribution denotes the  
re-allocation of the UI components to different interac-
tion devices. 

Figure 6a illustrates an example of re-molding: the 
control room UI is adapted to the target platform (a Smart-
phone). While on the PC (Figure 5) all reactor signals and 
parameters are always displayed, on the Smartphone the 
display is limited to those currently affected by a failure. 
Besides, the widget representing reactor parameters is 
re-molded to fit on the size-reduced screen of a Smart-
phone. Finally, while on the PC the menu is always visible 
(in the zone four), on the Smartphone it is accessible by a 
circled button on the top-left corner.

Figure 7a and 7b illustrate another example of re- 
molding, in which the UI is adapted to the target user. 

(a) 

(b)

Figure 6: UI platform adaptation, (a) Smartphone UI, (b) Tablet UI.
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In training mode (Figure 7a), the following elements are 
added: 1) at the top, a breadcrumb trail helps navigation;  
2) UI zones 2 and 3 are entitled; 3) Non-failure signal 
symbols have a disabled appearance (e. g. the four symbols 
beside the “Air Comprimé” function in the Default Signals 
zone); and 4) Reactor functions are line-grouped according 
to their systems: Safety, Production, or Support. In expert 
mode, all this guidance is removed.

A Tablet version (Figure 6b) of the UI illustrates redis-
tribution. The UI is re-distributed on a tablet, but only 
part of the UI is migrated (i. e. the “Parameters” zone), the 
other part is displayed on other devices, such as kiosks.

Re-molding and redistribution transform a UI into 
various versions. We propose an approach to show to 
what extent these UIs differ. This work covers two UI 
aspects: interaction capabilities and appearance. UI 
interaction capabilities concern the ways users can 
interact with the UI (and, reversely, how the UI reacts to 
this interaction). UI appearance concerns the elements 
present in the UI (where they are presented, in which 
color, etc.). 

Different versions of a UI can diverge at several levels. 
Such levels should be taken into account when compar-
ing the UI versions. Our approach permits to identify 
the level of equivalence between UIs, and it covers four 
levels of equivalence: equivalent UIs, non-equivalent UIs, 
equivalent modulo “X” UIs and included UIs. A general 
framework formalizing these four levels of UI equiva-
lence is provided in (Oliveira et al. 2015a). The analysis 
is supported by three abstraction techniques, which are 
explained in the following. 

6.2  Equivalent User Interfaces

In the light of our UI comparison formal framework 
(Oliveira et al. 2015a), two UIs are equivalent when, at a 
certain level of abstraction, they present the same inter-
action capabilities and appearance, i. e., whenever the 
user can perform the same actions in both UIs, both UI 
versions respond with the same feedback, and the same 
information is displayed on both UIs.

The equivalence which can be shown between two 
UIs varies from strongly equivalent to weaker equivalent. 
This is defined by the level of abstraction of the UI models. 
There are cases in which certain actions (together with the 
UI appearance after the action execution) may be skipped 
in the analysis. These actions receive a special label in the 
ISLTS (i. e. t), and can be ignored, although they are still 
present in the UI model. We call this abstraction technique 
an omission. This abstraction is useful, for instance, when 
users are provided with a functionality activated in differ-
ent ways in the UIs: for example, two UIs that have menus 
with the same options, but in one UI the menu is always 
unfolded and in the other UI it is folded. Omission permits 
the action of unfolding the menu to be ignored when com-
paring the UIs. When UI actions are bypassed in the ana-
lysis, a weaker equivalence between the UIs is shown.

Another abstraction technique we propose is called 
generalization, and it concerns only UI appearance (not 
interaction capabilities). This technique permits the rep-
resentation of the UI appearance in different levels of 
details, allowing information to be summarized into a 
more general representation.

(a) (b) 

Figure 7: UI user adaptation, (a) Training mode, (b) Expert mode.
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To illustrate the approach, consider a UI adaptation accord-
ing to the platform, to which re-molding was applied: PC 
(Figure 5) and Smartphone (Figure 6a). Regarding the UI 
interaction capabilities, the menu in both UIs is made avail-
able in distinct ways: on the PC version the menu is always 
visible and on the Smartphone it is accessible by a button 
in the UI top-left corner. Due to these differences in the 
UIs, the corresponding ISLTS are different (Figure 8). Each 
transition of these ISLTS fragments represents the action of 
choosing the corresponding menu and sub-menu options. 
In this case, “open menu” is an example of t action: a user 
action that does not have an impact on the menu options: 
they are always the same. We used omission abstraction 
to ignore the “open menu” action in the analysis, as if the 
menu was always visible on the Smartphone UI.

Concerning the UI appearance, both signals and 
parameters are displayed in the same zones. For this ana-
lysis, we will focus on the way the two UIs display failures: 
on the Smartphone only the reactor parameters and signals 
with some failure are displayed, while on the PC all items 
are always displayed. Figure 9 illustrates such differences 
in an ISLTS fragment. Both frames on top represent the 
display of reactor parameters in the UI. While on the PC 
ISLTS this transition is labeled with an action containing 
the whole list of reactor parameters, the Smartphone ISLTS 
contains only the problematic parameter (i. e. “Groupe R”). 

Generalization abstraction permits to generalize actions 
containing detailed information into less detailed actions 
(i. e. the “Failure in x” renamed action at the bottom frames). 
Using generalization and omission abstractions, the PC UI 
model and the Smartphone UI model are equivalent. 

6.3  Equivalent User Interfaces Modulo “X”

There are cases in which certain divergences between two 
UIs are considered acceptable. For instance, when a navi-
gation aid is present in one UI and absent in another one. 
Knowing that the UIs present this difference, we may still 
want to analyze the remaining aspects of the UIs. Equiv-
alence modulo “X” permits this reasoning. Two UIs are 
equivalent modulo “X” when, discarding the functional-
ity “X” from the analysis, both UIs are equivalent. 

Elimination abstraction can be used to bypass a UI 
functionality, permitting the removal of elements in the 
UI model before performing the analysis. UI interaction 
capabilities can be discarded, together with the UI appear-
ance once the action is executed. Contrary to omission, in 
which the elements are still present in the model and are 
ignored, here the elements are removed.

To illustrate the technique, consider a UI adapta-
tion according to the user expertise, to which re-molding 
was applied: Training Mode (Figure 7a) and Expert Mode 
(Figure 7b). Regarding the appearance, there are several 
differences between the two UIs. We use generalization to 
represent differences 2, 3 and 4 (Figure 7a). 

Concerning the UIs interaction capabilities, the 
Training-mode UI contains one additional navigation 
aid: a breadcrumb trail (i. e. the difference 1 in Figure 7a). 
We set the equivalence checking to be done disregarding 
this feature. We use elimination abstraction (Figure 10) to 
search (in the ISLTS) actions corresponding to the bread-
crumb trail (i. e. the bct_ pattern). Once a match occurred, 

Figure 8: ISLTS fragments of PC and Smartphone UIs.

Figure 9: Generalization in an ISLTS. Figure 10: Elimination in an ISLTS.
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all the successor states (and transitions) were eliminated 
in cascade from the ISLTS. 

Using generalization (for the items n. 2, 3, and 4 of 
Figure 7a) and elimination (for the item n. 1), the Training 
and Expert UI models are equivalent modulo the bread-
crumb trail. 

6.4  Non-Equivalent User Interfaces

There are cases in which two UIs present a large number 
of divergences, and eliminate all the divergences compro-
mises the usefulness of the results. In this case, the UIs are 
not equivalent.

6.5  Inclusion of User Interfaces

Two UIs can also relate with each other by the inclusion 
relation. Intuitively, a given user interface U1 includes 
another user interface U2 whenever the former contains at 
least all interaction capabilities (and the appearance) of 
the latter. 

To illustrate, consider a UI adaptation according to 
the target platform, to which redistribution was applied: 
PC (Figure 5) and Tablet versions (Figure 6b). Regarding UI 
interaction capabilities, the functionalities that permit user 
interactions are available only on the PC (i. e. the menu and 
the plant status selection). With respect to appearance, the 
UIs also diverge: the Tablet version does not contain the 
plant status, the reactor signals and the menu zones. 

The divergences of these two UIs are too large to con-
sider the use of elimination abstraction. In this case, we 
apply no abstraction techniques, and the two UI models 
are shown non-equivalent, because the user can perform 
several actions on the PC version which are not available 
on the Tablet version. Even though, we show that the PC 
version contains at least all functionalities (regarding inter-
action capabilities and appearance) of the Tablet version. 
The PC-version UI model includes the Tablet-version UI 
model (i. e. Tablet_model ≤ PC_model). 

6.6  Discussion

The abstraction techniques introduced here support UI 
model comparison. The principle is to first create abstract 
models of the UIs, used afterwards to perform equivalence 
checking. Figure 11 illustrates the different levels of equiv-
alence between two UI models. The strongest equivalence 
relation two UI models can have is when, with none of 

these abstractions, they are equivalent. This is achieved 
only when two UIs are almost identical, which is possible, 
but rare. In practice, since plastic UIs have to cope with 
several changes in the context of use, numerous diver-
gences are present within the UI versions. The challenge 
is to verify equivalence between the UI models in spite of 
these divergences. Abstraction techniques provide means 
to do that, and weaker equivalence relations between the 
models can be shown. The more abstractions are applied 
to the models, the weaker the equivalence between the 
models becomes. Transversally, the inclusion between 
two UI can be verified at any level of abstraction. The 
results of the comparison allow a refinement of the formal 
models and/or the real UIs.

6.7  Validation

A LNT formal model was manually written for the 5 con-
texts of use presented in this paper (i. e., PC, Smartphone, 
Tablet, Training and Expert Mode). The abstract criteria 
were implemented using SVL language. Table 1 summarizes 
the number of lines of LNT code and the ISLTS size. The 
case study shows that the approach scales well (Oliveira 
et al. 2015a). It was initially designed for one context of 
use (PC), later extended to 5 contexts of use. Each formal 
model contains 3 UIs. Each UI model describes about 20 
curves and symbols (UI appearance) and 14 user interac-
tions (UI interaction capabilities), generating significantly 
large ISLTS for the analysis in a reasonable time (< 3 h). 

Figure 11: Different levels of equivalence between UI models.
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Table 2 illustrates the summary of the comparisons, where 
O indicates the number of omissions done, G the number 
of generalizations, E the number of eliminations, and the 
last column indicates the comparison time. The PC and the 
Smartphone versions were shown equivalent, the Training 
and the Expert versions were shown equivalent modulo 
the breadcrumb trail feature and the Tablet version was 
shown included in the PC version. The comparison of the 
ISLTS was done using BCG_CMP5 and BISIMULATOR6  
tools of CADP.

Table 1: Summary of the formal models.

Context of use # loc # states # transitions

PC 2462 33,053,947 189,539,691
Smartphone 2558 41,944,680 208,554,613
Tablet 1686 4438 5547
Training Mode 2579 160,681,601 946,293,368
Expert Mode 2410 16,678,151 76,202,201

Table 2: Summary of the comparisons.

Models # O # G # E Result Comp. time

PC x Smartphone 1 22 0 Equivalent 7 min
Training x Expert 0 6 1 Equiv\bread-

crumb
19 min

PC x Tablet 0 0 0 Tablet included 
in PC

4 s

7  Related work
Property verification by model checking has been pro-
posed several times in the past years (Navarre et al. 2009, 
Sousa et al. 2014, Paternó 1997, Oliveira et al. 2014). But 
none of them cover plastic UIs. Similar to our UI com-
parison approach, existing approaches compare UIs in 
different ways. Some are supported by classical testing 
(Bauersfeld 2013, Jung et al. 2012) and others by formal 
methods (Bowen and Reeves 2008). In the following, we 
compare such approaches according to the following cri-
teria: (1) model coverage: to be as representative as pos-
sible, the model should cover aspects of the users, the 
UIs and the functional core; (2) application to the nuclear 
plant domain: we will analyze whether the approach was 

5 http://cadp.inria.fr/man/bcg_cmp.html
6 http://cadp.inria.fr/man/bisimulator.html

applied to this domain or not; (3) scalability: whether it 
scales well for real-life applications.

In (Bauersfeld 2013) regression testing is applied over 
the new version of a UI, providing a list of the detected 
differences. The approach was applied to several case 
studies and it is tool-supported (Bauersfeld et al. 2014),  
indicating that it scales well for real-life systems. 
However, no application to safety-critical systems was 
found, and only the UIs are covered in the verification. 
In (Jung et al. 2012) Capture-and-Replay technique was 
used to perform regression testing of UIs. However, the 
scripts generated in the capture part are fragile to GUI 
layout change, which can render entire automated test 
suites inept. The paper provides no evidence that the 
approach scales well. No application of the approach 
to safety-critical systems was found either, and only the 
UIs are covered. In (Bowen and Reeves 2008) a formal 
technique to verify if a UI is a refinement of another UI 
is proposed, which covers the modeling of users, UIs 
and the functional core. The approach verifies func-
tional equivalence, which is similar to our inclusion ver-
ification: it verifies if a UI provides at least as much as 
another UI. However, it does not verify different levels 
of equivalence, and it was not applied to safety-critical 
systems. Besides, the verification is performed with no 
automation, by manual inspection of the UI models, 
giving no evidence that the approach scales well for 
larger applications.

Table 3 summarizes these model-based approaches to 
verify interactive systems by comparing different versions 
of the system, the means to represent the system, the tech-
nique used for comparison, the chosen tool and the cri-
teria we used to analyze them. Specifically, no approach 
so far covered plastic UIs. Our approach aims at verifying 
safety-critical systems, and it was applied to a realistic 
case study in the nuclear-plant domain, which shows that 
it scales well for real-life applications. Besides, it covers 
the modeling and verification of the user, the UIs and the 
functional core.

8  Conclusion
We presented a global approach to verifying safety- critical 
interactive systems provided with plastic UIs, in which 
sets of properties can be verified over a formal specifica-
tion of the system by means of model checking, and dif-
ferent versions of plastic UIs can be compared with each 
other by means of equivalence checking. In the UI compar-
ison, two UI aspects are covered: interaction capabilities 
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and appearance. We show whether two UIs are equiva-
lent, equivalent modulo some features, included one in 
the other, or neither one. The approach was successfully 
applied to a case study in the nuclear power plant domain.

One limitation of the approach is that it relies on the 
ISLTS representation of the model. Depending on the 
abstractions, the number of ISLTS states / transitions may 
largely increase. Alternatives exist in CADP to handle big 
models, avoiding state space explosion (e. g. composi-
tional verification), but they need further investigation 
with larger case studies.

We have started investigations on other techniques 
to verify plastic user interfaces (Oliveira et al. 2015b). For 
the moment, we have mainly explored the comparison 
of UIs. Other possibilities are the verification of proper-
ties common to all the UI versions and the verification 
of properties over the adaptation engine implement-
ing the transformation rules of the UIs. In the future, 
we plan to deeper investigate these two alternatives, in 
particular in terms of the description of the adaptation  
engine logic.

We also plan to study when and how to apply the 
approach, for instance during the design process to the 
respective task, abstract, concrete and final UI models. 
The approach could also be valuable to compare UI ver-
sions along product evolutions. More generally, it can also 
be used to compare any UIs. In such case, a large use of 
abstraction techniques is required. These perspectives 
show that equivalence is promising for UI comparison in 
any context.
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