
Quantitative Analysis of Reo-based Service Coordination

Nuno Oliveira
∗

HASLab INESC TEC

Universidade do Minho
Braga, Portugal

nunooliveira@di.uminho.pt

Alexandra Silva
Centrum Wiskunde & Informatica

Radboud University Nijmegen
Amsterdam, The Netherlands

alexandra@cs.ru.nl

Luís S. Barbosa
HASLab INESC TEC

Universidade do Minho
Braga, Portugal
lsb@di.uminho.pt

ABSTRACT
Quality of Service analysis of composed software systems
is an active research area, with the goal of evaluating and
improving performance and resource allocation in service-
oriented applications, namely, in the glue code –coordination
layer– of such systems. Stochastic Reo offers constructs for
service coordination and allows the specification of stochas-
tic values for channels. But its state-of-the-art semantic
models fail in several (important) ways. In this paper, we
will see how Interactive Markov chains (IMC), proposed as a
stochastic compositional model of concurrency, can be effec-
tively used to serve as a compositional semantic model for
Stochastic Reo. Treating IMC as a direct semantic model,
gives rise to more faithful models and has obvious efficiency
advantages. Moreover, tool support that exists for IMC is
made available, without significant effort, to verify and rea-
son about the coordination layer modelled as Reo connectors.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.8b [Software Engineering]: Performance measures

General Terms
Service Coordination Analysis

Keywords
Interactive Markov chains, Reo, Coordination, Analysis

1. INTRODUCTION
Component-based software engineering and service-oriented

computing aim at the development of reusable software com-
ponents and/or services as building blocks that can be com-
posed to build different applications. The quest in this area
is to ease the analysis of complex software components, by

∗This author is supported by an Individual Doctoral Grant
from FCT, with reference SFRH/BD/71475/2010.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$10.00.

providing compositional models: properties of the composed
system can be derived from the properties of its building
blocks and the composing glue. Some approaches to soft-
ware composition use textual glue code [20, 13, 22], usually
in a scripting language, whereas others offer a more visual
approach, where ‘channels’ or ‘connectors’ are used to com-
pose components into a system [8, 24, 1, 12].

Channel based-languages play a prominent role in the
world of software composition. One of such languages is
Reo [1],which offers a model of component and service co-
ordination, wherein complex connectors are constructed by
composing various types of primitive channels. Stochastic
Reo [?] is an extension of Reo which allows for the spec-
ification of stochastic values for the channels (e.g., arrival
and processing rates). Having stochastic values enables QoS

analysis of composed software (intensive) systems, which has
become popular in the last few years, with the goal of eval-
uating and improving performance and resource allocation
in service-oriented applications.

There exist many semantic models in the literature for
Reo [6, ?, 9, 11, 10, ?, ?], many of which fail to capture
certain important features, such as the so-called context-
dependency, which is a desired feature, characterised by be-
haviours which depend upon both the presence and absence
of I/O requests on the boundary ports of the connector. For
the stochastic extension of Reo, there are three main models:
Continuous-Time Constraint Automata [7], stochastic inten-
sional automata [2], and stochastic Reo automata [?, ?]. The
first model fails to capture context-dependency, problem in-
herited from constraint automata. The second model cor-
rectly captures context dependency, but it suffers from many
drawbacks. For one, the number of states in the automata
representing even simple connectors is large, which restricts
immensely its applicability in real case studies. More worry-
ingly, it is not a compositional model, because of the ad-hoc
and contrived composition operator. The third model was
proposed as a solution for both these drawbacks: the models
are more compact and compositionally is inherited from Reo

automata. However, the applicability of the latter model is
also constrained by the lack of tool support. In an attempt
to bridge the gap, in [?], partial translations were provided
to CTMC and IMC, in the hope that then tool support from
these standard models would be available for Reo. Unfortu-
nately, the translations were shown not to be compositional,
which results in recalculating the whole model every time a
tiny change occurs in the automaton model, which has the
obvious disadvantages and again compromises the applica-
bility. Furthermore, the composition operator for IMC was



shown to not be suitable for many Reo models.
This paper takes a different approach. Instead of hav-

ing an intermediate automata model, we propose IMC as a
semantic model for Stochastic Reo. This offers several chal-
lenges, in order to correctly capture the expressivity of Reo

connectors and the composition of connectors. We show that
the obtained model has many desired properties, including
the important context dependency feature and composition-
ality, which enables a powerful analysis of complex systems.
Tools like CADP [14] or IMCA [15] provide interesting and
powerful means to analyse and model check IMC. The mod-
elling of stochastic Reo with IMC enables, without significant
effort, the use of these tools and associated techniques to
reasoning about qualitative and quantitative aspects of Reo.

Organisation. The paper is organised as follows. In Sec-
tion 2, we recall basic definitions of IMC and stochastic Reo.
In Section 3, we define the IMC corresponding to basic Reo
channels and discuss the adaptations that need to be done
to the classical IMC model in order to provide a correct se-
mantics for Reo. Section 4 contains the various operations
needed to compose Reo channels and a compositionality re-
sult. Section 5 presents tools to deal with the introduced
model and shows its effectiveness with an example. We
present concluding remarks and directions for future work
in Section 6.

2. BACKGROUND
In this section, we introduce basic material on Interactive

Markov Chains (IMC), the coordination language Reo, and
its stochastic variant.

2.1 Reo and Stochastic Reo
Reo [?, ?, 1] is a channel-based model for the exogenous

coordination of components in the context of component-
based software. A channel is a, normally, directed commu-
nication mean with exactly two ends: a source and a sink
end; but Reo also accepts undirected channels (i.e., channels
with two ends of the same sort). Channels are compositional
to define more complex coordination structures referred to
as connectors. Composition of channels is made on their
ends, which form the nodes of connectors. A node may be
of three distinct types: (i) source node, if it connects only
source channel ends; (ii) sink node, if it connects only sink
channel ends and (iii) mixed node, if it connects both source
and sink channel ends. The first two types may also be re-
ferred as the ports of the channel or connector. A channel
is synchronous when it delays the operations at each of its
ends so that they can succeed simultaneously. Otherwise a
channel is asynchronous, exhibiting memory capabilities or
the possibility of specifying an ordering policy for content
delivering. A channel may also be lossy when it delivers
some values but loses others depending on a specified pol-
icy. Fig. 1 recalls the basic channels used in Reo.

sync lossy syncdrain fifoe

•
fifof

Figure 1: Primitive Reo channels.

The sync channel transmits data from one end to another
whenever there is a request at both ends synchronously, oth-
erwise one request shall wait for the other. The lossy channel
behaves likewise, but data may be lost whenever a request at

the source end is not matched by another one at the sink end.
Differently, a fifo channel has buffering capacity of (usually)
one memory position, therefore allowing for asynchronous
occurrence of I/O requests. The qualifiers e or f refer to the
channel internal state (either empty or full). Finally, the
syncdrain channel accepts data synchronously at both ends
and loses it.

Stochastic Reo [2, ?] extends Reo by modelling coordi-
nation with a quantitative perspective. Non-negative real
(stochastic) values are added both to channels and to their
ends to represent, respectively, processing delay rates and
I/O arrival rates. The former rate models the time needed
for the channel to process data from one point to another,
where point may be seen as an end, a buffer or a null space
where data is lost or automatically produced. One chan-
nel may be annotated with more than one processing delay,
depending on their operational behaviour. The latter mod-
els the time between consecutive arrivals of external I/O

requests to channel ports.
Figure 2 shows the basic channels of stochastic Reo. In

essence, they are the normal Reo channels but annotated
with stochastic rates. Channel ends names are usually omit-
ted because they can be inferred from the rate. Stochastic

γab
γbγa

sync

γab
γaL γbγa

lossy

γab
γbγa

syncdrain

γaB γBb
γbγa

fifoe

γab
γaLγa

γbB γBc
γc

lossyfifo

Figure 2: Primitive stochastic Reo channels.

Reo is still compositional. Each composed channel retains its
processing delay rate. The request arrival rates, however, are
only preserved for the ports of the connector. Since mixed
nodes are internal (hidden from the exterior) the arrival re-
quest rates of the constituent nodes are ignored, meaning
that they are always ready to read/write data from/to the
channels. The lossyfifo connector in Figure 2 precisely de-
picts this situation.

2.2 Interactive Markov Chains
Interactive Markov Chains (IMC) [16, 17] were proposed

as a model for performance evaluation of distributed sys-
tems. The approach combines systems quantitative mod-
elling, based on continuous-time Markov chains (CTMC) [5,
4], and process algebra [19, ?], to ensure compositionally.

An IMC exhibits two sorts of transitions: interactive and
Markovian. The former capture the system’s interaction
with its environment, and their occurrence is assumed not
to be time consuming, once externally triggered. τ -labelled
transitions abstract, as usual, unobservable activities. Since
they do not interact with the environment, they are assumed
to take place immediately, taking precedence over Marko-
vian transitions. The latter model a random delay in the
system’s evolution governed by a negative exponential dis-
tribution with a parameter γ ∈ R+. The introduction of
this second type of transitions extends smoothly classical la-
belled transition systems, bringing to scene continuous time



and specifying the delay probability for a state change.

Definition 1. An IMC is a tuple I = (S,Act, , , s),
where S is a nonempty set of states; Act is set of actions;

⊆ S × Act × S is the set of Interactive transitions;
⊆ S × R+ × S is the set of Markovian transitions and

s ∈ S is the initial state of the chain.

Markovian transitions (s, γ, s′) are denoted s
γ

s′ and
represent a transition from state s to state s′ within t time
units with a probability of 1− e−γ.t. Interactive transitions
(s, a, s′) are denoted as s

a
s′ and represent a change in

the system from state s to state s′ through an external ac-
tion a that may be executed either immediately or blocked
until the environment triggers it. Internal (interactive) tran-
sitions (τ -transitions) play an important role on IMC. Since
they do not interact with the environment, no execution
time is associated to them. Therefore, an internal transi-
tion always precedes any Markovian one leaving the same
state (known as unstable state), because the probability to
execute such transition within 0 time units is always null:
1 − e−γ.0 = 1 − e0 = 1 − 1 = 0. This fact is known as the
maximal progress assumption. Note that this only concerns
Markovian transitions; interactive transitions may as well
execute immediately.

3. INTERACTIVE MARKOV CHAINS FOR
STOCHASTIC REO

This section discusses the formalisation of a semantic model
for stochastic Reo as an instance of IMC. In order to capture
Reo’s behaviour we will use an enriched set of labels for
the interactive transitions and also a composed state space.
Then, composition is defined building on the usual parallel
composition for IMC and eliminating transitions which are
not Reo-like via a synchronisation operator. This two-step
composition is very much in the same spirit as the one de-
fined for Reo automata [10].

Before introducing our proposal for an IMC model for sto-
chastic Reo, referred to as IMCReo in the sequel, some remarks
on what a transition and a state represent in this context,
are in order to build up intuition.

As expected, states capture the connector’s possible be-
haviour, i.e., data arrivals and data flowing through the
ports. A set of node/port names, N , and a set of state
names, Q, are assumed. Thus the state of a Reo connec-
tor comprises three components – (R, T,Q) – where R, T ∈
P(N ) denote the sets of ports with, respectively, pending
requests and data being transmitted. Naturally, the empty
set, ∅, represents absence of requests and transmissions; and
Q ∈ Q is an internal state identifier. This is in fact only
used to distinguish control states in state-based connectors,
such as the fifo where, for instance, Q = {empty, full}.

In the context of IMC modelling of (stochastic) Reo, Marko-
vian transitions will be labelled by γ ∈ R+, representing the
delays according to rate γ. Interactive transitions will be la-
belled by a set of ports F (corresponding to the observable
actions) that fire and allow data to flow through them. Tak-
ing sets of actions to label transitions is crucial to correctly
capture Reo semantics. Actually, ports firing synchronously
to enable data flow, are the rule rather than the exception
in Reo.

In summary, an IMCReo modelling a Reo channel, is an in-
stance of a classical IMC, with a structured set of states and
labels. Formally,

Definition 2. An IMCReo is a tuple (S, Act, , , s),
where S ⊆ P(N ) × P(N ) × Q is a nonempty set of states;
Act ⊆ P(N ) is a set of actions; ⊆ S × Act × S is a
set of Interactive transitions; ⊆ S × R+ × S is a set of
Markovian transitions and s ∈ S is the initial state.

States of the form (R, ∅, Q) are referred to as request states
and are represented as RQ; states of the form (∅, T,Q) are
referred to as transmission states and are represented as
{T}Q; states of the form (R, T,Q) are called as mixed states
and are represented as R {T}Q; finally, states of the form
(∅, ∅, Q) are represented as ∅Q and denote the absence of
both requests and data transmissions. For all representa-
tions, the buffer qualifier Q may be omitted, whenever clear
from the context.

For simplicity, Markovian transitions are denoted as usual
and Interactive transitions (s, {a1, a2, ...}, s′) by s

a1a2... s′.
An empty set of actions models the internal transition τ . To
avoid graphical overlap of transitions, a dashed circle is used
to refer to an already represented state.

Figure 3 depicts the IMCReo for the basic stochastic Reo

channels. For instance, the IMCReo of a stochastic sync chan-

∅ a

b a, b {a, b}

γa

γb γb

γa ab

γab

∅ a

b a, b {a, b}

{a}
γa

γb γb

γa ab

γab

a

γaL

γab
γbγa

γab
γbγa

γab
γaL γbγa

sync and syncdrain lossy

∅e a e

b e a, b e

{a}e

b {a}e

∅f a f

b f a, b f

{b}f a {b}f∅e a e

γa a γaB γa

γb γb γb γb γb

b

γa a γaB γa

b

γBbγBb γa

γaB γBb
γbγa

fifoe

Figure 3: IMC for basic stochastic Reo channels

nel is interpreted as follows: initially, no requests are pend-
ing neither in port a nor in port b. At a rate of γa (resp. γb)
a request arrives to port a (resp. port b). At that moment,
the channel blocks until a request arrives to the other port at
rate γb (resp. γa). When state a, b is reached, representing
a configuration in which both ports have pending requests,
then both may fire. That is, actions a and b may be acti-
vated simultaneously. At this moment, the channel starts
transmitting data between a and b and evolves back to the
initial state on a rate of γab.



4. NEW CONNECTORS FROM OLD
This section contains the basic result in the paper: that

IMC semantics for Stochastic Reo is compositional. Our start-
ing point is the parallel composition of IMC [16], suitably
tuned to deal with transitions labelled by sets of actions.
From this, we get compositionality, as inherited from IMC, for
free. However, parallel composition gives rise to a number
of transitions which are not compatible with the expected
behaviour for Reo connectors, as discussed below. Thus, we
further define a synchronisation operator which eliminates
such transitions. It is shown that this synchronisation oper-
ator still preserves compositionality.

4.1 Parallel composition of connectors
Let us first recall the usual definition of IMC parallel com-

position, adapted to IMCReo by explicitly dealing with sets of
actions.

Definition 3. Let I = (SI , ActI , I , I , i) and J =
(SJ , ActJ , J , J , j) be two IMCReo. The parallel com-
position of I and J with respect to a set of actions M is
defined as

I ||M J = (S,Act, , , (i, j))

where S = SI × SJ , Act = ActI ∪ ActJ , and and
are the smallest relations satisfying, respectively

1. If i1
AI

I i2 and AI ∩M = ∅, then (i1, j)
AI (i2, j),

for j ∈ SJ .

2. If j1
AJ

J j2 and AJ ∩M = ∅, then (i, j1)
AJ (i, j2),

for i ∈ SI .

3. If i1
AI

I i2, j1
AJ

J j2 and (AI ∩ AJ) ⊆ M , then

(i1, j1)
AI∪AJ (i2, j2).

4. i1
γ
I i2, implies (i1, j)

γ
(i2, j), for j ∈ SJ ,

5. j1
γ
J j2, implies (i, j1)

γ
(i, j), for i ∈ SI ,

Rules 1.−3. apply to interactive transitions. The first two
are for independent evolution of each connector (the other
remaining in the same state). This independence is only al-
lowed for transitions which do not interfere with the mixed
nodes. This condition appears in a similar form in the defini-
tion of product of Reo automata, a model for non-stochastic
Reo. Rule 3. defines joint evolution: if the nodes to be con-
nected are ready to fire then they fire in both connectors.
Rules 4. − 5. are for Markovian transitions: evolution al-
ways happens interleaved. Figure 4 depicts interesting parts
(for further discussion) of the parallel composition between
a lossy and a fifoe channel with respect to a set M = {b}. We
use a bar to separate the elements of the pair. Due to space
limitations and readability issues, we do not present the full
composition, which computes an IMCReo with 72 states and
182 transitions.

4.2 Synchronisation
The definition of parallel composition, however, has to

be adjusted to correctly capture the intended semantics for
channel composition in Reo. The mismatch concerns Reo

mixed nodes which are not supposed to actively block be-
haviour, rather acting like a self-contained pumping station [1].

∅|∅e

a |∅e

b |∅e. . .

a | c e

a | b e

. . .

{a}| c e. . .

{a}| b e. . .

a, b | b, c e {a, b}| c {b}e

∅| c {b}e. . .

{a, b}| c f . . .

γa

γb

γc
. . .

γb

a

a

. . .
ab

γab

γbB

Figure 4: Parallel Composition of a lossy and fifoe

Failing to take this into account generates unwanted be-
haviour, making the semantics unsound. For example, the
composition of a lossy and a fifoe, in Figure 4 allows for the
data token arriving to port a to be lost, even if the buffer
is empty. This corresponds to transition a | b e a {a}| b e.
But such a transition violates the mixed node assumption
in the Reo rationale in the sense that, port a fires when port
b is explicitly blocked.

The following definition captures this notion of active block-
ing. For notational convenience consider that, given a node
i = (R, T,Q) and a set of ports M i�M refers to the node
where all ports in M are considered hidden, i.e., i �M=
(R \M,T,Q). For a composed node (i, j), the obvious pair-
wise extension (i, j)�M= (i�M , j�M ) is used.

Definition 4. Given an IMCReo (S1×S2, Act, , , i),
a node (i, j) actively blocks a set of nodes M if there exists

a transition (i, j)
X

( , ) with X ∩M = ∅ and

• Ri ∩M = ∅ and Rj ∩M 6= ∅, where Ri and Rj are the
requests in i and j, respectively.
or

• there exists (i′, j′) such that (i′, j′)�M= (i, j)�M and

(i′, j′)
Y

( , ) with X ∩ Y = X and Y ∩M 6= ∅.

The first condition in the definition corresponds to the active
blocking explained above: for a port to fire, a mixed node
in j is explicitly kept without firing. The second condition
is another form of active blocking to which we call forced
nondeterminism: there are two transitions in the chain that
correspond to the same state modulo the presence of a re-
quest in the mixed node, but in one of them mixed nodes are
explicitly blocked from firing, which again violates the self-
contained pumping station assumption about mixed node
behaviour in Reo. As an example, in Figure 4, state a | c
actively blocks M, because a | c a {a}| c and there exists
the state a, b | b, c such that a, b | b, c �M = a | c �M , whose

transition a, b | b, c ab {a, b}| c {b} holds {a, b}∩M 6= ∅ and
{a} ∩ {a, b} = {a} (the action of the blocking state).

We are now ready to introduce a synchronisation opera-
tion, which removes unwanted transitions from the chain and
then prove, in Theorem 1, that it still preserves composition-
ality. Again, it should be remarked this operation is quite
similar to the analogous one defined for Reo automata [9,
10], which also hides mixed nodes.

Definition 5. For an IMCReo I = (S1×S2, Act, , , i),
we define the synchronisation of the chain with respect to a
set of mixed nodes M by

∂MI = (SM , Act \M, M , M , i)

where



• SM = {(i, j)�M | (i, j) ∈ S1 × S2}

• If i
X

i′, and i does not actively block M , then

i�M
X\M

M i′�M .

• If i
γ

i′ and Ri′ ∩M = ∅, then i�M
γ

i′�M . Here,
Ri′ are the requests in i′.

Finally, composition on nodes M is defined as ∂M (I1 ||M I2),
where I1, I2 are two IMCReo.

In Figure 4, we display in red transitions that are deleted
because the state is actively blocking the mixed node. We
display in blue the transitions deleted by the second condi-
tion of the synchronisation, that is, Markovian transitions
to states with requests in the mixed node.

4.3 Compositionality
A compositionality result, stating that no matter in which

order connectors are plugged their behaviour is the same,
can now be proved. Note that behaviour equivalence is the
usual IMC bisimilarity, as defined in [17].

Theorem 1. Let I1 and I be IMCReo, where Act1 is the
alphabet of I1. The following holds:

1. ∂M (I1 ||M1I) ∼ I1 ||M1∂MI, if Act1 ∩M = ∅.

2. ∂M2(∂M1I) = ∂M1(∂M2I) = ∂M1∪M2I.

Proof. For 1., note that a transition will be deleted
from I1 ||M1I if a node blocks behaviour. However, because
Act1 ∩M = ∅, the deleted transition will also correspond
to a node that blocks behaviour in I. Hence, in the paral-
lel composition, every transition with blocking source state
(i, j) will be deleted if and only if the transition is also not
present in ∂MI. Which means such transition will also not
be present in I1 ||M1∂MI. For Markovian transitions, the
only kept are those which do not land in states with requests
in M , which will be the same in both chains considered.

For 2., note that all interactive transitions in ∂M2(∂M1I)
and ∂M1(∂M2I) are such that the source node does not ac-
tively block M1 and M2. In other words Ri ∩ M1 = ∅,
Ri ∩M2 = ∅, Rj ∩M1 6= ∅ and Rj ∩M2 6= ∅. This is equiva-
lent to Ri ∩ (M1 ∪M2) = ∅ and Rj ∩ (M1 ∪M2) 6= ∅. Hence,
this corresponds to transitions whose source node does not
actively block M1 ∪M2, which are all interactive transitions
in ∂M1∪M2I. For the Markovian transitions, the equality is
a simple consequence of (i�M1)�M2= i�M1∪M2 .

4.4 Unintended Transitions
In general, when Reo channels are set in parallel within a

connector, they evolve independently. However, when con-
nected on their ends, data flows from channel to channel in
sequence and there is a clear intended direction of flow. Sim-
ilarly to many models, we have so far simplified the analysis
and we have not explicitly modelled the difference between
input and output ports, which then set the data flow direc-
tion. This generates some imprecisions. In Figure 4, node
{a, b}| c {b}e evolves interleaved via γab or γbB to the same
state. However, this allows for the buffer to become full
before data is transmitted through the lossy channel, which
is not intended. Moreover, when a channel is transmitting
data from a port to another, arrival of requests might not
be desired (this is of course subject of discussion, arriving

requests could also be stored), because ports are busy. Note
that this problem is only occurring in markovian transitions.

To solve this, the following can be done. Given an IMCReo
I = (S1 × S2, Act, , , i), we explicitly model the di-
rection of flow by considering that Act is equipped with a
partial order <. That is, given two ports a, b ∈ Act if a < b
then data flows from a to b or, in other words, first in a and
then in b. Given this, we can define when an IMCReo respects
sequencing.

Definition 6. Given an IMCReo I = (S,Act, , , i),
where the set of labels is equipped with a partial order <, we
say that I respects sequencing if for every transition i

γ
f ,

the set of nodes that finished transmission in this transition,
that is Ti \ Tf , does not contain any element greater than
any element in the set of nodes that still needs to transmit,
that is, the elements of Tf .

Similarly, we can also define when an IMCReo respects no
arrival requests on busy nodes.

Definition 7. Given an IMCReo I = (S,Act, , , i),
we say that I does not allow requests on busy nodes if for
every transition i

γ
f , the set of nodes that have a request

after this transition is taken, that is Ri′ , does not overlap
with the set of active nodes.

The set of active nodes for each state is easily obtained
from the set of nodes effectively active (Ti) and their rela-
tions from the assumed partial order by taking advantage
of its transitivity property. This set of active nodes repre-
sent, in fact, the nodes that transmit in each synchronous
(atomic) data flow in Reo.

In order to incorporate these into the framework, one can
define at a final stage of composition a clean-up operation
that deletes all the transitions that do not comply with these
properties (in case these properties are wanted). Composi-
tionality will not be affected, because all the transitions that
would be deleted in smaller components will also be deleted
in larger components including these.

In Figure 4, we represent in green transitions that would
be deleted by these properties.

4.5 Composition examples
To now illustrate the full process of composition of IMCReo,

we address three different examples, each one with different
subtleties, which are worth pointing out. Figure 5 results
from composing a lossy and a sync channel.

∅|∅ a |∅

∅| c a | c

{a, b}|{b, c}

{a}|∅

∅|{b, c}

γa

γc γc

γa

ac

γab

γbc

a

γaL

γab
γaLγa

γbc
γc

Figure 5: The IMCReo for the composition of lossy and
sync channels.

Note that the result is an IMCReo corresponding to a lossy
channel with ports a and c and processing delay resulting



from the relevant operation that compose rates γab and γbc.
This illustrates that the sync channel behaves as the identity
of IMCReo composition, as, in fact, it is expected in Reo.

Figure 6 presents the composition of a lossy and a fifoe

channel. This example shows that data is not lost when
the buffer is empty, unlike what happens, for instance, with
constraint automata as stressed in [10].

Due to space limitations, we just show a partial IMCReo
for the composition of two fifoe (the complete model has 39
states and 75 transitions). In this example we show that
when the first buffer is full and the second is empty, data
may flow instantaneously to the second buffer, freeing the
first one. The τ -transitions, which appear by hiding mixed
node b, explicitly model this intended behaviour. Conse-
quently, the maximal progression assumption would simplify
the chain by deleting Markovian transitions leaving unstable
states.

∅e|∅e

∅e| c e

a e|∅e

a e| c e

{a}e|∅e

{a}e| c e

∅f |∅e

a f |∅e

∅f | c e

a {b}f |∅e

{b}f |∅e

{b}f | c e

. . .

. . .

. . .

. . .

. . .

γa

γc

γa

γc

a

a

γc

γaB

γaB

γc

γa

τ

τ

τ

γaB γBb
γa

γbB γBc
γc

Figure 7: The partial IMCReo for the composition of
two fifoe channels.

5. TOOL SUPPORT
In order to be able to use the above model for a practical

study, we developed a tool chain. The advantage of having
IMC as the stochastic semantic model is that we build our
tool set re-using developed tools. The tool chain is divided
into two main parts: one for building the model, from the
composition of several Reo channels, and another one for its
analysis, linking to existing tools.

The first component (to which we refer to as IMCREOtools)
takes as input a description of a Reo connector with stochas-
tic information based on the CooPLa language [23]. It com-
poses a (randomly selected) initial channel with the subse-
quent ones taking into account the results of Theorem 1 to
avoid state space explosion and improve composition effi-
ciency. This creates an IMCReo, which is then linearly con-
verted into a standard IMC. The second component resorts
to tools like IMCA, CADP or PRISM for the quantitative
and qualitative analysis of the generated IMC.

For the purposes of this paper, because of space reasons,
we will investigate the quantitative behaviour of two sim-
ple connectors, which contain a different number of buffers.
The analysis will focus on the amount of data loss and its
relation with the number of buffers. Though this is a toy
example, it occurs in the context of more complex systems,
e.g. the ASK systems [2]. Our two examples will be a

lossyfifo with a single buffer (as presented in Figure 2), and
another one with 4 buffers and similar stochastic properties
(γab = 800, γaL = 450, γbB = 600, γBc = 750) measured
for the same negligible time unit (t.u.). It is assumed a rate
of 106 for the connections between buffers on the 4-buffer
version of lossyfifo, which results in an almost instantaneous
data transmission between buffers. Moreover, it is also as-
sumed a constant consumption rate (γc = 10) and a variable
production rate (γa ranging from 1 to 25).

To analyse the data losses in these two connectors and
associated probabilities, we will use PRISM, which requires
an extra translation step. PRISM does not support IMC and
therefore we convert the obtained IMC into a CTMC, which
can be done using the minimisation algorithms provided by
CADP.

Hence, after modelling each connector in CooPLa, we used
the generator tool from IMCREOtools to generate a CADP
compatible model: the simple lossyfifo had 19 states and 33
transitions (as shown in Figure 6) and the 4-buffer version
had 677 states and 2058 transitions. With the CADP bcg io
tool, we converted them into bcg models which were then
minimised with the CADP bcg min tool, creating two CTMC

(the simpler one with 12 states and 20 transitions and the
other one with 324 states and 972 transitions). Again, we
converted the resultant bcg models into aut, with the bcg io
tool. To, finally, generate the PRISM input from the aut
models, we used the prismer tool from IMCREOtools.

Within PRISM we analysed the behaviour of the two con-
nectors by observing (i) the losses in the first 5 t.u., for a
constant request arrival rate of 5 and (ii) the probability of
losing data with respect to variations of the production rates
(1 to 25) in the long run. The results are shown in Figure 8.

Figure 8: LossyFifo: data loss analysis

As expected, the amount of data lost after the first 5 t.u.
(top graph) grows faster in a 1-buffer lossyfifo than in the
4-buffer version. From this analysis we may expect to lose
0.700 tokens per t.u. for the 1-buffer lossyfifo and 0.056



∅|∅ a |∅e

c |∅e a | c e

{a, b}|{b}e

{a, b}| c {b}e

∅|{b}e

∅| c {b}e

∅|∅f a |∅f {a}|∅f

∅| c f a | c f {a}| c f

∅|{c}f a |{c}f {a}|{c}f

{a}|∅e {a}| c e

a |∅e

∅|∅e ∅| c e

γa

γa

γc γc

a

a

γc

γab

γab

γc

γbB

γbB

γc

γa

γa

c

γc

c

a

γc

c

a

γa a

γBc

γaL γc

γaL

γaL

γaL

γBc

γBc

γaL

Figure 6: The IMCReo for the composition of lossy and fifoe channels.

tokens per t.u. for the 4-buffers version. This means an
average time to lose data of 1.429 t.u. and 17.857 t.u. for
the connectors with, respectively, 1-buffer and 4-buffers.

On the other hand, the long-run analysis (bottom graph)
leads to interesting conclusions about the relations between
the number of buffers and the production/consumption rates.
To begin with, the 1-buffer lossyfifo converges faster to higher
loss probabilities than its counterpart. For the 4-buffer ver-
sion, it is possible to see that only when the arrival rate
surpasses the number of buffers, the probability to lose data
starts to increase more significantly. This means that the
higher the number of buffers, the lower the probability to
lose data. However, when the production rates tend to the
infinity (and the consumption rate remains constant) the
number of buffers becomes insignificant as the probability
to lose data will tend to 1.

Albeit its simplicity and not very surprising analysis, this
example illustrates our toolset and the value of the IMCReo se-
mantic model that we propose in this paper. The tool chain
allows for a diversified functional and performance analysis,
overcoming the problems of other models. An important
point to note is that the tool chain scales up. This fact is
proven by the existing case studies with PRISM and CADP
showing that such tools can analyse chains with millions of
states.

6. CONCLUSIONS
The paper proposed Interactive Markov Chains (IMC) as a

semantic model for stochastic Reo. This has several advan-
tages to existing models, from which we highlight three: it
does not use an intermediate automata model, which avoids
extra translation steps; it is a compositional model, which
is important not only for behavioural but also for efficien-
cy/implementation purposes; and last, but certainly not
least, IMC are a well-studied formalism with many tools and
results surrounding their theory. In particular measures typ-
ically obtained from the analysis of IMC become available
for the study of stochastic Reo circuits. We developed IM-

CREOtools1 to translate Reo connectors into IMCReo. The
output of this tool is compatible with the most known tools
to deal with IMC, e.g. CADP [14] and PRISM [18], which al-
low for both the qualitative/quantitative analysis and mod-
elling of distributed stochastic processes; and IMCA [15]
which is specifically designed for the analysis of IMC.

We see several directions for future work. The simplifi-
cation of mixed nodes as self-pumping stations that allow
for data to be read and written with no processing delay
was present since the invention of Reo and kept when the
stochastic version was designed. However, this feature is
not desired in practice. Such I/O operations take time and,
therefore, may interfere with QoS values. In order to incor-
porate this in the model the following could be done. Each
channel would have its boundary nodes modelled as indepen-
dent stochastic processes with a processing delay rate. The
inside of the channel would also be an independent process
with a processing delay rate and a data transmission policy.
Composition would then be achieved by taking all of these
small components together. The notions developed in this
paper, like the synchronisation operation, could be directly
used for this purpose.

ECT [3] offers a plugin-based integrated environment to
model and analyse Reo coordination. Providing a transla-
tion tool that directly interacts with ECT will enable us to
analyse larger connectors which have been modelled in the
past within ECT. It will also provide the Reo toolset with a
range of quantitative tools.

Acknowledgments. We thank Farhad Arbab for several sug-
gestions and comments. This work is funded by ERDF -
European Regional Development Fund through the COM-
PETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT, the Por-
tuguese Foundation for Science and Technology, within project
FCOMP-01-0124-FEDER-020537.

7. REFERENCES
1Implementation details and information about IMCReo may
be seen in http://reo.project.cwi.nl/reo/wiki/ImcReo

http://reo.project.cwi.nl/reo/wiki/ImcReo


[1] F. Arbab. Reo: a channel-based coordination model
for component composition. Mathematical. Structures
in Comp. Sci., 14(3):329–366, June 2004.

[2] F. Arbab, T. Chothia, R. van der Mei, S. Meng,
Y. Moon, and C. Verhoef. From coordination to
stochastic models of QoS. In J. Field and
V. Vasconcelos, editors, Coordination Models and
Languages, volume 5521 of LNCS, chapter 14, pages
268–287. Springer, Berlin, Heidelberg, 2009.

[3] F. Arbab, C. Krause, Z. Maraikar, Y. Moon, and
J. Proença. Modeling, testing and executing reo
connectors with the eclipse coordination tools. In
proceedings of the International Workshop on Formal
Aspects of Component Software (FACS 2008),
Salamanca, Spain, September 2008.

[4] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton.
Model-checking continuous-time markov chains. ACM
Trans. Comput. Logic, 1:162–170, July 2000.

[5] C. Baier, B. Haverkort, H. Hermanns, and J. P.
Katoen. Model-Checking algorithms for
Continuous-Time markov chains. IEEE Transactions
on Software Engineering, 29(6):524–541, 2003.

[6] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M.
Rutten. Modeling component connectors in reo by
constraint automata. Sci. Comput. Program.,
61(2):75–113, 2006.

[7] C. Baier and V. Wolf. Stochastic reasoning about
channel-based component connectors. In Proceedings
of the 8th international conference on Coordination
Models and Languages, COORDINATION’06, pages
1–15, Berlin, Heidelberg, 2006. Springer.

[8] M. A. Barbosa, L. S. Barbosa, and J. C. Campos.
Towards a coordination model for interactive systems.
Electron. Notes Theor. Comput. Sci., 183:89–103, July
2007.

[9] M. M. Bonsangue, D. Clarke, and A. Silva. Automata
for Context-Dependent connectors. In Proceedings of
the 11th International Conference on Coordination
Models and Languages, COORDINATION ’09, pages
184–203, Berlin, Heidelberg, 2009. Springer.

[10] M. M. Bonsangue, D. Clarke, and A. Silva. A model of
context-dependent component connectors. Science of
Computer Programming, 77(6):685–706, June 2012.

[11] D. Costa. Formal Models for Component Connectors.
PhD thesis, Vrije University, Amsterdam, October
2010.

[12] J. L. Fiadeiro and A. Lopes. CommUnity on the move:
Architectures for distribution and mobility. In F. S.
Boer, M. M. Bonsangue, S. Graf, and W. Roever,
editors, Formal Methods for Components and Objects,
volume 3188 of LNCS, pages 177–196. Springer, 2004.

[13] C. Fournet and G. Gonthier. The join calculus: A
language for distributed mobile programming. In
G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva,
editors, Applied Semantics, volume 2395 of LNCS,
pages 268–332. Springer, 2002.

[14] H. Garavel, F. Lang, R. Mateescu, and W. Serwe.
CADP 2011: a toolbox for the construction and
analysis of distributed processes. International Journal
on Software Tools for Technology Transfer (STTT),
pages 1–19, 2012.

[15] D. Guck, T. Han, J. Katoen, and M. R. Neuhäußer.

Quantitative timed analysis of interactive markov
chains. In A. E. Goodloe and S. Person, editors,
NASA Formal Methods, volume 7226 of LNCS, pages
8–23. Springer, 2012.

[16] H. Hermanns. Interactive Markov Chains: The Quest
for Quantified Quality, volume 2428 of LNCS.
Springer, 2002.

[17] H. Hermanns and J. P. Katoen. The how and why of
interactive markov chains. In Proceedings of the 8th
international conference on Formal methods for
components and objects, FMCO’09, pages 311–337,
Berlin, Heidelberg, 2010. Springer.

[18] M. Kwiatkowska, G. Norman, and D. Parker. A
framework for verification of software with time and
probabilities. In K. Chatterjee and T. Henzinger,
editors, Proc. 8th International Conference on Formal
Modelling and Analysis of Timed Systems
(FORMATS’10), volume 6246 of LNCS, pages 25–45.
Springer, 2010.

[19] R. Milner. A Calculus of Communicating Systems,
volume 92 of LNCS. Springer, 1980.

[20] J. Misra and W. R. Cook. Computation orchestration:
A basis for wide-area computing. Software and
Systems Modeling (SoSyM), 6(1):83–110, March 2007.

[21] Y. Moon, A. Silva, C. Krause, and F. Arbab. A
compositional model to reason about end-to-end QoS
in stochastic reo connectors. Science of Computer
Programming, December 2011.

[22] O. Nierstrasz. Piccola - a small compositional
language (invited talk). In Proceedings of the IFIP
TC6/WG6.1 Third International Conference on
Formal Methods for Open Object-Based Distributed
Systems (FMOODS), pages 457–, Deventer, The
Netherlands, The Netherlands, 1999. Kluwer, B.V.

[23] N Oliveira and L. S. Barbosa. Reconfiguration
mechanisms for service coordination. In MauriceH
Beek and Niels Lohmann, editors, Web Services and
Formal Methods, volume 7843 of LNCS, pages
134–149. Springer, 2013.

[24] J. V. G. Scholten. Mobile channels for exogenous
coordination of distributed systems: semantics,
implementation and composition. PhD thesis, LIACS,
Faculty of Mathematics and Natural Sciences, Leiden
University, January 2007.


	Introduction
	Background
	Reo and Stochastic Reo
	Interactive Markov Chains

	Interactive Markov Chains for Stochastic Reo
	New connectors from old
	Parallel composition of connectors
	Synchronisation
	Compositionality
	Unintended Transitions
	Composition examples

	Tool Support
	Conclusions
	References

