
Available at:
http://hdl.handle.net/2078.1/33289

[Downloaded 2019/01/24 at 07:24:26]

"A product-line for families of program
translators : a grammar-based approach"

Ordonez Camacho, Diego

Abstract

The need for translating program source-code between many different
programming languages arises in some domains for which many such languages
coexist. One such domain is that of space-mission planning, where a family of
operations languages exists: different space operators use different languages
to capture the operational knowledge to test and to control spacecrafts. Building
a program translator from a single source to a target language already requires
considerable time and effort because of the inherent complexity of every step in
the process. If in addition, there is a big family of many such languages in some
application domain, the cost and effort of creating program translators between
any of them becomes prohibitive. In this thesis we address this translation
problem by combining several techniques to generate a family of program
translators: a product-line approach provides the support for a reusable translator
framework; a grammar convergence reverse-engineering approach...

Document type : Thèse (Dissertation)

Référence bibliographique

Ordonez Camacho, Diego. A product-line for families of program translators : a grammar-based
approach. Prom. : Mens, Kim

A product-line for families of
program translators.

A grammar-based approach

Département d’Ingénierie Informatique
École Polytechnique de Louvain
Université catholique de Louvain

Dissertation

A product-line for families of
program translators.

A grammar-based approach

Diego Antonio Ordóñez Camacho

26th August 2010

Thesis submitted in partial fulfillment of the
requirements for the degree of Doctor in Engineering

Sciences

Thesis Committee:
Prof. Olivier Bonaventure (Chair) UCL, Belgium
Prof. Kim Mens (Promoter) UCL, Belgium
Prof. Paul Klint CWI, The Netherlands
Prof. Anthony Cleve INRIA, France
Prof. Charles Pecheur UCL, Belgium

A product-line for families of program translators.
A grammar-based approach

c© 2010 Diego Antonio Ordóñez Camacho
Pôle d’Ingénierie Informatique
Institute for Information and Communication Technologies, Electronics and
Applied Mathematics
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

This work has been supported by the APPAREIL project of the First Eu-
rope Objectif 3 program of the Direction Générale des Technologies de la
Recherche et de l’Energie, Walloon Region Ministry, and the MoVES project
of the Interuniversity Attraction Poles Program of the Belgian Science Policy,
Belgian State.

To my family.

Acknowledgements
I am in debt with many people, in one way or another, for their help and support.
I apologise beforehand with those that I am not mentioning here. Either way,
mentioned or not, words will always be insufficient to express them how thankful
I am.

I owe my deepest gratitude to my adviser, Kim Mens. He provided me with
the opportunity, with guidance and with friendship. The patience he showed when
confronted to my stubbornness is biblical, and the active help he gave me with my
work deserves him another PhD. Thanks Kim. I am very lucky I was given the
opportunity to know you and to work with you.

I thank all the jury members, Olivier Bonaventure, Anthony Cleve, Charles
Pecheur and Paul Klint, for the time and effort invested in evaluating this work.
Their feedback was of the utmost importance to improve the quality of the text.

Two very important persons for this work have been Mark van den Brand and
Jurgen Vinju. When Paul Klint received me for an internship in CWI’s SEN1 lab-
oratory, Mark and Jurgen initiated me in the wonders of program transformation.
We wrote together a couple of papers, and Mark was part of my follow-up commit-
tee. I thank them and the rest of the CWI team with whom I had the opportunity
to share and work.

To the members of the INGI department, thank you. I had the great opportunity
to have them as teachers, colleagues and friends. I would especially like to thank
Stéphanie Landrain and Viviane Dehut. They helped me whenever they could,
always with a smile.

The RELEASeD laboratory will always be close to my heart. Me and my clos-
est friends and colleagues have worked there: Sebastián González, Alfredo Cádiz,
Nicolas Cardozo, Sergio Castro, Johan Brichau, Angela Lozano, and Kim Mens.
They have not only contributed to my work, but also to my life.

I am grateful to RHEA Systems and all the people I met there. They also made
possible this work.

To all my friends, thank you. They are my extended family, and I have always
received from them more than I gave. I am looking forward for the opportunity to
get even.

Thanks to my beloved family. To my parents Oswaldo and Marina. They would
be proud. To my brother Fernando and my sister Marina for caring about me.
To Verónica for her support no matter how rough the weather was. And finally,
thanks to my daughter AnaClara for being there and brighten up my life.

Contents

1 Introduction 17
1.1 Context . 17
1.2 Problem and Thesis Statement. 19
1.3 Solution . 20
1.4 Contributions . 21
1.5 Overview of the Dissertation 22

2 Preliminaries 23
2.1 Programming Language . 23
2.2 Operations Languages . 23
2.3 Domain-Specific Language . 24
2.4 Language Family . 26
2.5 Language Concept and Language Construct 27
2.6 Grammars and Transducers 28

2.6.1 Context-Free Grammar (CFG) 28
2.6.2 Annotated Grammar (AG) 29
2.6.3 Regular Tree Grammar (RTG) 29
2.6.4 Tree Transducer (TT) 30

2.7 SDF Grammars . 31
2.8 Grammarware . 32

2.8.1 Grammar Recovery . 32
2.8.2 Grammar Convergence 33

2.9 Program Equivalence . 34
2.9.1 Control-Flow Graph (CFG) 35
2.9.2 Labelled Transition Systems (LTS) 35
2.9.3 Observation Equivalence (Weak Bisimulation) 35

2.10 Product-line . 37
2.11 Conclusion . 39

3 Related Work 41
3.1 Running example. 41
3.2 Translators Techniques . 43

3.2.1 Ad-hoc Techniques . 44
3.2.2 Attribute Grammars and Compiler Compilers 44
3.2.3 Term Rewriting Techniques 45
3.2.4 Graph Rewriting Techniques 48
3.2.5 Model Driven Techniques 50
3.2.6 Template Based Techniques 51

10 Contents

3.3 Conclusion . 53

4 Language to Language Translation 57
4.1 A Grammarware Approach 57

4.1.1 The APPAREIL Approach 58
4.2 Annotated Grammars . 61

4.2.1 Grammar Annotations 61
4.3 Automated Generation of Program Translators 65

4.3.1 Transformation Example 66
4.3.2 Handling Mismatches: Manual Intervention 68
4.3.3 Translation Semantics 68

4.4 Control Flow Semantics . 72
4.4.1 Introductory Example. 75
4.4.2 Graphical Notation. 77
4.4.3 The Appareil Control-Flow Semantics Language, CFSL. 81

4.5 Lightweight Program Equivalence Verification 91
4.5.1 From Control-Flow Graphs (CFG) to Labelled Transi-

tion Systems (LTS) . 93
4.5.2 Checking Observation Equivalence 96

4.6 Conclusion . 98

5 A Product-line Approach 101
5.1 Scoping . 104

5.1.1 Core Assets . 107
5.2 Structuring . 108

5.2.1 Recovery: Obtaining the Working Grammars 108
5.2.2 Language Concepts Differentiation 109
5.2.3 Language Concepts Categorisation 117
5.2.4 Language Concepts Adaptation 127
5.2.5 Evaluating the Language Family. Metrics and Properties135

5.3 Generating and Testing . 138
5.4 Conclusions . 140

6 Validation 143
6.1 Preliminary Case Studies . 143

6.1.1 The IRL Case Study 143
6.1.2 The Stol-to-Mois Case Study 144

6.2 The STOL Validation . 145
6.3 Methodology . 146
6.4 The Experiment . 148
6.5 Discussion . 166
6.6 Conclusion . 168

7 Conclusion 169
7.1 Summary . 169
7.2 Contributions . 170

Contents 11

7.3 Limitations . 171
7.4 Future Research . 171

Bibliography 175

List of Figures

1.1 The Space System Interaction. 18

2.1 Code fragment of a test procedure in the PLUTO operations
language. 25

2.2 An example of a production in SDF. 31
2.3 P1 <t P2 but P1 6∼ P2 . 37

3.1 Compact LA and LB grammars. 42
3.2 Compact LA and LB semantics. 43
3.3 An example of an Antlr translation. 45
3.4 An example of a simple translation function in Asf+Sdf. . . 47
3.5 An example of a Progres graph definition. 49
3.6 An example of a Tefkat model transformation. 52
3.7 An example of a XSLT transformation. 53

4.1 An overview of the APPAREIL language-to-language transla-
tion approach. 59

4.2 Automated generation of program translators: A schematic
overview. 60

4.3 Common Abstract Syntax Tree. 62
4.4 Linked grammars (textual representation). 63
4.5 notation . 63
4.6 A Language Concept structure. 64
4.7 An alternative If construct. 65
4.8 A part of the Source grammar. 67
4.9 A part of the Target grammar. 67
4.10 Signatures of different translation functions. 67
4.11 Rewrite equations for translation functions. 68
4.12 A translation example. 68
4.13 An introductory example to the CFSL. 75
4.14 An introductory example to the CFSL. 76
4.15 A WhileDo component. 77
4.16 The graphical notation for the control-flow semantics of the

WhileDo component. 78
4.17 The elements in the Control Flow Graph Semantics notation. 78
4.18 A sequence of print instructions. 79
4.19 An addition expression. 79
4.20 A list of statements. 80

14 List of Figures

4.21 Using the Branch element. 81
4.22 An IfThenElse language component. 81
4.23 A small language for building a CFG. 91
4.24 Generating the LTS. 92
4.25 Final reduction to the graph. 92
4.26 Showing to the user a bisimulation problem. 94
4.27 Source-code, CFG and LTS of a program. 95
4.28 Strict vs. Non-strict Tags. 95
4.29 Two observation equivalent programs. 97
4.30 Two observation equivalent LTSs. 97

5.1 A translation schema. 102
5.2 The product-line model. 103
5.3 Product-line production phases. 105
5.4 The LCM table. 107
5.5 Parse trees for the 1 + 2 + 3 expression. 113
5.6 An AST with implicit encoding. 114
5.7 An LCM table. 118
5.8 Syntactic pattern of the IfThenElse construct in different OLs. 125
5.9 If syntactic pattern evolution. 125
5.10 Construct-category distances 126
5.11 The working example TCM table. 129
5.12 The WA2WR transformation. 131
5.13 A concrete example with the WA2WR transformation. 132
5.14 The WA2RU transformation. 132
5.15 A concrete example with the WA2RU transformation. 132
5.16 The WR2WB Transformation. 133
5.17 The WB2RU Transformation. 133
5.18 The LCM table updated. 134
5.19 Distance between two languages, L2LDij 136
5.20 Language Average Distance, LADl 136
5.21 Languages Compatibility Index, LCI 137
5.22 Distances sample between OLs. 137
5.23 Translator structure. 139
5.24 Equivalence verification. 139

6.1 Methodology Summary . 147
6.2 Concept-Construct Syntactic Distances 148
6.3 Syntactic Classification Assistant Results 149
6.4 Initial Similarity Metrics . 150
6.5 Some “Arguments” Inconsistencies 150
6.6 Some “Expressions” Inconsistencies 151
6.7 Compatibility Metrics After Correcting Inconsistencies 153
6.8 LCM with transformations . 158
6.9 Compatibility Metrics After Adding Transformations 158
6.10 TCM Recommendations . 159

List of Figures 15

6.11 Transformations per translator 159
6.12 Goto removal. Methods comparison. 160
6.13 Bisimulation False Negative 164
6.14 LAD Evolution. 167

1 Introduction
The need for translating program source-code between many

different programming languages arises in some domains for which
many such languages coexist. One such domain is that of space-
mission planning, where a family of operations languages exists:
different space operators use different languages to capture the
operational knowledge to test and to control spacecrafts.
Building a program translator from a single source to a target

language already requires considerable time and effort because
of the inherent complexity of every step in the process. If in
addition, there is a big family of many such languages in some
application domain, the cost and effort of creating program trans-
lators between any of them becomes prohibitive.
In this thesis we address this translation problem by combining

several techniques to generate a family of program translators: a
product-line approach provides the support for a reusable trans-
lator framework; a grammar convergence reverse-engineering ap-
proach enables to extract common models from programming
languages and programs, and a language-parametric grammar-
ware approach provides the specific translation and transforma-
tion techniques.

1.1 Context
We were first confronted with the problem of program translation in the
context of a research project with a company, RHEA Systems, specialised
in the domain of space-mission planning. The company has a software suite
that, amongst other functionalities, provides support for designing space op-
erations procedures. These procedures are programs for executing specific
operations during a space mission, such as reorienting an antenna, or cor-
recting the satellite’s orbit. Although the software suite is being successfully
used by different mission control centres around the world for designing new
operations procedures, there is one additional requirement demanding spe-
cial attention. This new requirement consists of being able to import into
the software suite existing operations procedures, created by external means,
to check or modify them thanks to the suite’s graphical interface.
This requirement was solved at first by the company by implementing

specific importers, or translators, but soon this solution became impracti-
cal. The company’s client database started to grow and, given that many

18 Introduction

of their clients were using their own set of languages to program their pro-
cedures, the number of specific translators required started to grow quickly.
Moreover, new versions of old languages appeared, and completley new lan-
guages started to be proposed as alternatives or as standards. To complete
the picture, some of the mission control centres started to closely collaborate
with each other. The translation problem became too big to keep working
under the same old schema. The development time and effort for each of the
specific translators increased considerably, and a different solution had to be
considered.
To program operations procedures, a specific kind of programming lan-

guages is used. These languages are called operations languages, because
they are used to implement the concrete operations that have to be com-
pleted in the context of a space mission. Most operations languages are
very similar. They are imperative languages, inspired by older languages
like ADA or Pascal, whose functionality is focused on (testing or) controlling
when certain functions or commands are invoked for execution on another
equipment (in particular, on a satellite). Operations languages provide the
means to refer to the different elements in the space system, like activity
commands or reporting data, and the means to define the procedural script
to interact with these elements. Figure 1.1 presents a schematic view of this
interaction.

Mission Control Centre

Operations
System

Space SystemOperations
Language
Interpreter

Mission
Database

Procedures

Figure 1.1: The Space System Interaction.

Operations languages procedures are executed by an interpreter attached
to the mission control centre. The interpreter runs the program, until it gets
to an instruction requiring communication with the satellite. The instruction
is then sent to the control centre operation system. In the control centre
there is a mission-specific database that contains all the instructions that
the satellite can execute. The mission database allows the control centre
to verify the instruction and its parameters, to translate the information in
terms of a low-level command invocation, and to send this command to the
satellite. Similarly, any information coming from the satellite is coordinated
by the control centre, who receives the information, and stores it in the

1.2 Problem and Thesis Statement. 19

mission database to make it accessible to the interpreter. It is the mission
control centre who is responsible for all the required communication between
operators and the satellite. With this in mind, we can see the execution of
operations procedures by the mission control centre as an automated version
of human interpreters, which is how the operations languages historically
came into existence.
Even though many operations languages are as powerful as any general-

purpose programming language. In practice though, they are used as domain-
specific languages, exploiting only the functionality required to invoke the
commands in the control centre, and to control the flow of the execution of
these commands.
Regardless of certain minor differences, at the moment of our analysis a

rather traditional technique was being used by the company to build the
translators used to import procedures from operations languages. The tech-
nique mainly involved an attributed grammar parser, and the translators
thus generated presented an important drawback: the code to generate the
translated procedure ends up embedded into the grammar used to parse the
original procedure, which leads to a lack of modularity, making reuse (to-
wards the languages) very difficult and limited. The different parts of the
translators are too specific to the source and target languages.
Although in our work we focused mainly on this language translation prob-

lem in the domain of operations languages, we have good reasons to believe
that this translation problem is not restricted to the domain of operations
languages only. For instance Cleve and Hainaut [28] present a case where
data and programs from a legacy database needed to migrate to other more
contemporaneous database. The languages used to program the queries and
transformations for any of these databases can be considered as a languages
family. For those cases where a migration between two relational database
platforms was necessary, a program translation approach could have been
used at some extent, as an alternative to some of the program transforma-
tion processes implemented.

1.2 Problem and Thesis Statement.
A typical program translator performs a series of large, non-trivial steps,
to transform programs from a source to a target language. Typical steps
are lexical, syntactic and semantic analysis, tree transformation and term
rewriting, unparsing and verification. Each of these steps have an inher-
ent complexity degree, and therefore the process of building a full-fledged
translator can be considered as highly complicated and time-consuming.
The difficulty of building such translators is aggravated in domains where

many similar languages coexist and where, to translate programs from any
such language to any other, a family of translators must be built. If in the
worst case we need to provide a translator for every possible combination
of languages in the domain, we end up with a number of translators that is

20 Introduction

quadratic in the number of languages in the family. A substantial reduction
in the number of required translators can be achieved if we use a pivot
language to and from which we translate all other languages. But even
with such solution, the number of translators needed still remains important.
Moreover, since a large portion of these translators have many commonalities,
the per-translator approach leads to duplicated efforts.
As we will see in Section 3.2, many alternative techniques exist to build

program translators like, for instance, Attribute Grammars [132] or Term
Rewriting [8]. These techniques have been thoroughly explored and each has
its own strengths and weaknesses. The purpose of this work is not to propose
yet another technique for program translation, but rather to use the best of
what has been proposed so far, to build a framework that can produce a
large number of program translators, with a minimal programming effort,
and with confidence in the result of the translation.
The solution we propose explicitly takes into account that we work with

a family of languages. After all, the problem is not about building a trans-
lator, but about building families of translators. We need to think in terms
of commonalities and differences between different languages and language
constructs, and we need to strive for reuse at every possible level. We do not
just need many translators, but we need them fast and we need to respond
quickly to upcoming new versions of languages, or even the addition of new
languages to the family.
Our approach provides improvements and advantages over other possible

alternatives. On the condition that all the languages considered share a
common semantic foundation, we claim that:

• By grouping the languages into a family sharing a common set of con-
structs, we can provide an automated generic approach which can be
used to build translators between any pair of those languages.

• Thanks to the use of a lightweight semantic definition technique, we
can automatically obtain a simplified verification tool, that performs
an initial first-pass assessment of the correctness of the translation.

• The way our technique builds and consolidates a language family, allows
for intensive reuse of program transformations.

1.3 Solution
In this dissertation we combine several established software engineering tech-
niques to address the specific problem of producing families of program trans-
lators.
We use a software architecture product-line approach to build a generic

framework for the production of families of program translators. This frame-
work can be used for different families of languages, by parameterising it with
the specific language constructs.

1.4 Contributions 21

The internal structure of the product-line allows for maximal reuse of
shared language constructs. For every language that is included into the
product-line we reuse the existing shared constructs first, and only then
include its own specific constructs and transformations. Thanks to the use
of a set of specific language-oriented metrics, we can assess at any point how
the inclusion of languages, constructs or transformations into the product-
line contributes to the synergy of the system.
To generate the specific language concepts structure for every family of

programming languages, we use a reverse engineering model extraction tech-
nique, contributed by a grammar convergence approach. An adapted inter-
pretation of the same technique is used to produce the language-independent
concepts model for every program being translated.
Addressing the issue of language variability, whether it is at a syntactic

or semantic level, requires the use of program transformation techniques.
A program may have to undergo several transformations to consistently go
from the particularities of one language to the particularities of another pro-
gramming language. Moreover, to gain more confidence in the translation
process, the translated program should be verified for equivalence against
the original program. We apply a verification technique on the original and
translated programs, based on a combined approach of grammar annotations,
control-flow semantics and weak-bisimulation.

1.4 Contributions
The main contribution of this work is its integrated approach to build families
of program translators. We combine different techniques coming from differ-
ent domains, into a consistent framework. We take advantage of techniques
coming from product-line engineering, program transformation, XML, pro-
cess concurrency and generative meta-programming, into a single framework
to build families of program translators.
More specific contributions of this dissertation can be summarised as fol-

lows.

• It shows a prototype implementation along with the validation of a
product-line of program translators for the industrially-relevant case of
the family of space operations languages.

• It presents a specific set of metrics, that facilitates the process of eval-
uating if the different actions we take to organise the system provide
positive results.

• It exploits regular annotations in SDF grammar definitions, to auto-
matically produce a preliminary definition of a language family along
with a set of semi-automatic translators.

• It presents a domain-specific language to define lightweight control-
flow semantics on language grammars, and to automatically generate,

22 Introduction

from that, labelled transition systems for equivalence verification of the
translated programs.

1.5 Overview of the Dissertation
The approach we follow to produce a solution to our specific problem of
language translation can be reduced to three main steps: first a study of rel-
evant technologies to acquire the required background knowledge. Second,
the development of a simplified technique for the language-to-language trans-
lation problem, and finally the generation of a complete solution to produce
families of program translators.
Before explaining the core of our approach, we present in Chapter 2 sev-

eral preliminary concepts that we use repeatedly along our work. We give an
introduction to the grammar formalisms and techniques we use, and to rel-
evant technologies for program transformation. We explain the Operations
Languages, giving an insight in the kind of languages involved in the case
study.
Next, in Chapter 3 we present an overview of current technologies used for

the automatic generation of translators, and program transformation in gen-
eral. We also present an overview of product-lines, as well as other techniques
closely related to our subject.
In Chapter 4 we develop the basis of our technique for language-to-language

translation. We explain in detail our annotated grammar notation, how to
generate translators and how to complete them with additional transforma-
tions when needed. We explain as well our lightweight notation for control-
flow semantics, and how to use it to generate a simple equivalence verification
system.
Chapter 5 builds on the previous chapter to explain how to produce

product-lines of program translators. The global approach is decomposed
into four important steps, each of which are explained in detail. First, we
start with a description of the product-line architecture. Next we review
the grammar convergence approach to extract shared language constructs.
Then, we explain how to handle language variability through program trans-
formations. Finally we put it all together into the proposed framework. As
an additional support to the process of building product-lines of program
translators, we present a set of metrics specifically designed to measure com-
patibility among constructs and languages in a language family.
Chapter 6 presents the experiment used to validate our technique. We

report on the operations languages case, and use intensively the set of lan-
guage metrics to show how the languages, language concepts and constructs,
converge into the product-line depending on different scenarios.
Finally, in Chapter 7, we discuss the achieved results, analysing advantages

and disadvantages, strengths and limitations of the proposed technique. We
draw conclusions, and sketch avenues of future work.

2 Preliminaries
This chapter collects a series of terms and concepts that we use and reference
repeatedly along our work. Our intention is simply to provide an introduc-
tory explanation of these terms and concepts, deep enough to put the reader
in context, and to eliminate possible ambiguities.

2.1 Programming Language
For our working definition of programming languages we are influenced by
Simonyi’s thoughts on Intentional Programming [4, 105].

A programming language is a set of abstractions provided to the
programmer to implement an executable solution, partial or com-
plete, to a certain problem.

Depending on the problem, a different set of abstractions will be needed to
define the solution. Because many different kinds of problems exist, as well as
different opinions on how to solve them, the existence of many programming
languages is a natural consequence. In our case study, for example, we are
concerned by the specific branch of problems related with the execution of
operations for spacecrafts in space missions.

2.2 Operations Languages
In spacecraft missions, the procedures used to perform any of the activities
during the different phases of a space mission, are written using one among
the multitude of operations languages in existence. The actual operations
language used by a mission centre depends, amongst others, on the specific
control equipment chosen when designing the mission.
Although different operations languages may exhibit syntactic differences

as well as differences in how they interact with the mission control centre
and the spacecraft, they need to conform to certain standards imposed by
industry, such as the ECSS-E-70-32 standard [42]. In general, Operations
Languages (OL) are used to build procedural scripts that describe high-level,
goal-oriented activities to be carried out by a spacecraft. These high-level
activities are built in terms of more elementary activities like telecommands
and telemetries. Telecommands are instructions uploaded to the spacecraft
to execute an action, and telemetries are blocks of data received from the

24 Preliminaries

spacecraft, as a measurement of its current state and that of its surround-
ings [42, 76].
It is important to realise that telecommands and telemetries are not de-

fined by a procedure or by an OL, but are described in a separate Mission
Information Base (MIB) [115]. A procedure written in an OL thus inter-
acts with a spacecraft by sending to the mission control centre a request to
execute an instruction stored in the MIB, and optionally waiting for confir-
mation or data. When receiving such a telecommand or telemetry request,
the control centre does a preliminary check against the MIB to confirm that
the instruction is well defined and that its parameters are consistent, before
sending the actual instruction to the spacecraft. It will also receive the data
returned by the spacecraft, and pass it back to the procedure when requested.
In addition to this direct interaction with the control centre, OLs contain

language constructs common to most imperative programming languages.
They provide the ability to structure the different instructions to be executed
in larger procedures. For this purpose, they contain primitives to control the
flow of execution within a procedure, like branching, iteration or exception
handling constructs, as well as the ability to execute instructions in parallel or
sequentially. They also contain primitives for variable assignment, arithmetic
operations and string handling.
Figure 2.1 shows part of a test procedure written in the PLUTO [42] opera-

tions language. As illustrated by the example, PLUTO supports conditional
instructions like the if ... then ... else (lines 11—19), Boolean com-
parisons like = and != (lines 7 and 11) and string manipulation operators
like the concatenation at line 16. It also provides dedicated instructions for
logging (lines 6, 12, ...) as well as dedicated command and telemetry in-
structions to communicate with the satellite. Examples of the latter are the
telemetry instruction Value of (line 7) and the telecommand initiate and
confirm (line 13).
There exist quite a number of operations languages, several of which were

analysed during our case study: the Spacecraft Test and Operations Lan-
guage STOL [51, 110], the Procedure Language for Users in Test and Oper-
ations PLUTO [35, 42], the language underlying the Manufacturing and Op-
erations Information System MOIS [95], the User Control Language UCL [7],
the European Spacecraft Control Language ELISA, or the Test and Oper-
ation Procedure Environment TOPE [76]. In addition, for some of these
languages more than one version exist and are currently in use.
Operations languages are considered as dedicated languages for the specific

domain of space operations.

2.3 Domain-Specific Language
We adopt the definition provided by van Deursen et al. [120], even though
the author himself warns about the vagueness of his definition due to the
difficulty of correctly defining what a problem or application domain is.

2.3 Domain-Specific Language 25

1 Initiate and confirm step Switch on Gyros
2 declare
3 event evtTimeout
4 end declare
5

6 Log "PROCEDURE Pluto_Test_43_03 Step_1";
7 Wait until (Value of DHT30100 = ACTIVE)
8 timeout 1 h 20 min
9 raise event evtTimeout;

10

11 if (monitoring status of DHT30101 != nominal) then
12 log "Enabling Gyros command: PHC10117 scheduled 18h 43";
13 initiate and confirm PHC10117
14 with Timetag := 2008-08-02T18:43:12.000Z end with
15 refer by cmdPHC10117;
16 log "result is:" + confirmation status of cmdPHC10117;
17 else
18 log "Gyros already enabled.";
19 end if;
20

21 watchdog
22 initiate and confirm step Gyro Controller Timeout
23 preconditions
24 wait for event evtTimeout
25 end preconditions
26

27 log "Gyro controller was not active within time.";
28 end step;
29 end watchdog
30 End step;

Figure 2.1: Code fragment of a test procedure in the PLUTO operations
language.

A domain-specific language (DSL) is a programming language or
executable specification language that offers, through appropri-
ate notations and abstractions, expressive power focused on, and
restricted to, a particular problem domain. [120]

In this definition van Deursen points out that the key term is the fo-
cussed expressive power of a DSL. DSLs can have a variety of characteris-
tics. They can look just like any other programming language, or have a
very specific syntax. They can be a library of specialised functions inside
a general-purpose language, or have a specific dedicated compiler. Most
DSLs are relatively small, precisely because they provide a restricted set of
abstractions only.
The family of DSLs which we are mainly interested in, in this thesis, is the

family of operations languages. They are dedicated languages that are meant
to control the different operations that need to be executed by a satellite via
a mission control system. This means that they are essentially restricted to
describing the flow of control in which those operations are executed.
Whereas some operations languages, like the classic STOL [51, 110], are

tuned-down versions of general-purpose programming languages, of which

26 Preliminaries

essentially the control-flow constructs are used, more dedicated modern OLs,
like PLUTO [35, 42] or MOIS [95], contain little more than basic control-flow
primitives, and specialised operations directives.
As for the case of operations languages, domain specific languages can be

grouped into languages families, depending on their application domain, and
sphere of activities.

2.4 Language Family
Implementing an adequate solution for a problem involves first deciding on
what are the required abstractions to implement it. Next, it is necessary to
choose a programming language better suited at providing these abstractions.
Apart from some particular cases, often there is more than one language
that can be chosen. By restricting the nature of the problems we want
to solve, to those belonging to some specific application domain, we can
confine ourselves to a specific and restricted group of programming languages
providing the required abstractions to solve those problems. This reduced
group of programming languages is what we call a Language Family targeted
to a specific application domain, like is the case of the family of operations
languages, targeted to the spacecraft operations domain. Our definition of
language family is similar to the definition of software family used by Weiss et
al. [129] Weiss says that defining a family is ultimately reduced to identifying
and characterising its members. A key step is to come up with an analysis
of what is common to all members, and what can vary among them.

A language family, therefore, can be informally defined as the
group of programming languages that provide the set of abstrac-
tions required to solve the problems in, and specific to, some
application domain.

Implicit in our definition we find one constraint that for practical reasons
needs to be imposed on the members of the family. This constraint holds
for our case of building language translators, and can be dismissed for other
situations. To include a programming language inside a family, it must be
domain-complete: it has to consider all the required abstractions to solve
all the problems in the domain. Our approach does not deal with cases
where this minimal set of abstractions is not respected. It is up to the user
discretion to define how to handle those incompatibilities. On the other hand,
additional abstractions can be part of the language. In practice, unless we
are talking about a domain-specific language, specifically designed to satisfy
the needs of some application domain, programming languages offer a wide
range of abstractions, providing more freedom to the programmer. This is
the case for general purpose programming languages, and is also the case
for those domain specific languages that have been designed based on, or
inspired by, some more general purpose languages.

2.5 Language Concept and Language Construct 27

2.5 Language Concept and Language Construct
As seen previously in this chapter, a programming language is defined by the
set of abstractions it considers. Each abstraction represents a different class
of activity, or category, with distinguishable semantics from other classes of
activities.
Two levels can be differentiated for every abstraction. First, the conceptual

level, which is abstract and universal. This level is represented by the core
semantics of the abstraction, and is common to every language implementing
that abstraction. It is the intrinsic nature of the activity, that remains un-
changed from language to language, regardless of its concrete implementation
in a grammar.

Language concepts are the core semantics of a class of activities.
Language concepts are language-independent and have distinct
semantics from other language concepts. [107]

Second, the instance level is concrete and particular to every language. It
describes how the abstract concept is instantiated for a particular language.
This level is represented by the syntax of the productions in every language
grammar. It maps the abstract, conceptual idea of a class of activities to
the specific and concrete grammar of a given language. In the grammar, the
abstraction receives a concrete structure.

Language constructs are the syntactical structures of a language
that correspond to particular language concepts. Language con-
structs have a distinguishable semantics from other language con-
structs in that language. In the grammar, a language construct
can range from one to several non-terminals, and the set of pro-
ductions defining them. [27, 32]

As a very simple example, addition is a concept, regardless of how it is
defined in a grammar. For a given language the corresponding construct can
be defined either in prefix notation ‘+’ Exp Exp -> Exp, infix notation Exp
‘+’ Exp -> Exp or as a function ‘Add’ ‘(’ Exp ‘,’ Exp ‘)’ -> Exp.

Categorisation of Constructs Concepts bring order to the big diversity
of entities we perceive and experience. Physical objects are perceived as
instances of more general concepts. For example, your desk chair is an in-
stance of the more abstract concept of “chair”. Concepts stabilise our world,
by organising some of the perceptible attributes of instances, thus capturing
a notion of similarity [107, 74].
The terms category and instance are important when we consider that

building a language family consists of classifying the instances of concrete
language constructs present in individual languages, into the conceptual cat-
egories or language concepts, present in the family of languages. Such a

28 Preliminaries

category in the language family serves as a link between the different in-
stances in each language. Specific language constructs get linked to their
generic language concept.
The different abstractions used by languages to define and solve problems,

are the concepts. These language concepts are independent of the program-
ming language. What programming languages provide are constructs, that
are instances of the abstract concepts. These constructs can be categorised
into some language concept thanks to their attributes, specially their seman-
tics.
Special attention is needed for compound constructs, which belong to more

than one category. A typical example is for instance: Exp ’+’ Exp -> Exp.
In some languages this Add construct represents both the mathematical ad-
dition and the string concatenation. These grammars do not make a specific
distinction between the two interpretations, and delegate the decision to the
runtime environment or the typechecker system. If some language in the fam-
ily uses two different constructs for this case, then two different categories
will be needed in the family.

In our work, the categories or language concepts are the non com-
pound abstractions provided by the languages, and the instances
are the language constructs provided by the grammars. Categori-
sation is the process of linking language constructs to language
concepts, such that all constructs sharing the same semantics,
belong to the same category.

The categorisation of language constructs permits ultimately to classify
the languages themselves into language families. In such a way, the generic
structure of our translation system points out in the direction of grammar-
ware engineering, whose principles we try to adhere to.

2.6 Grammars and Transducers
Grammars are the main input in our approach. Programming languages are
described by context-free grammars [24, 1]. Context-free grammars can be
augmented by the user with annotations producing annotated grammars [50].
Annotated grammars can be used to generate regular tree grammars [59, 29]
describing the abstract syntax trees of programs. Finally, tree transduc-
ers [71] can be used to transform grammars from one type to another, and
to translate programs accepted by one grammar, into programs accepted by
another grammar. These definitions will be necessary in Chapter 4, where
we describe our approach to language translation.

2.6.1 Context-Free Grammar (CFG)
A Context-Free Grammar (CFG) defines the syntax of a language. In our
approach we use CFGs to recognise the source code of programs –presented

2.6 Grammars and Transducers 29

as strings– that adhere to the grammar, and to derive the parse trees of those
programs.
Formally we define a CFG as a tuple CFG = (Σ, N, s, P) where:

• Σ is a finite alphabet of terminal symbols.

• N is a finite set of non-terminal symbols, and Σ ∩N = ø.

• s ∈ N is the start symbol.

• P is a finite set of productions of the form n → C where n ∈ N and
C ∈ (N ∪ Σ)∗

2.6.2 Annotated Grammar (AG)
An Annotated Grammar (AG) is a CFG augmented with a set of annotations
linked to its productions. This set of annotations holds additional informa-
tion related to the language. Annotations can be arbitrary objects. They
have no influence on the process of parsing source code, but provide the re-
quired information for other tasks like for instance producing tree grammars
and abstract syntax trees.
Formally, an AG can be defined as a tuple AG = (Σ, N, s, P,A, F) where:

• Σ, N, s and P are defined as in a standard CFG.

• A is a set of annotations.

• F is a set of mappings P 7→ A, from productions to annotations.

2.6.3 Regular Tree Grammar (RTG)
While CFGs are used to recognise strings, Regular Tree Grammars (RTG)
are used to recognise trees. In our approach we use CFGs to recognise valid
source code, and then, thanks to a parser, produce parse trees or concrete
syntax trees. From there, and to be able to use a generic set of transformation
tools, we produce an abstract version of these concrete syntax trees, where no
terminal symbols or syntactic keywords are included, and where the trees’
structure has been simplified. These abstract syntax trees (AST) are no
longer a valid derivation for the CFG used to recognise the original source
code. By working with RTGs, that can be generated automatically from an
AG, we fill the specification gap between CFGs and ASTs, and we provide a
clean way to validate the structure of the resulting ASTs.
An RTG is a tuple G = (Σ, N, s, P) where:

• Σ is an alphabet of tree constructors c with a fixed arity ar(c) ≥ 0.
The arity ar(c) of a tree constructor c determines how many children
it has. Constants (like for instance a variable’s name) have an arity of
zero.

30 Preliminaries

• N is a finite set of non-terminal symbols, and Σ ∩N = ø.

• s ∈ N is the start symbol.

• P is a finite set of productions of the form n → c(N1, ..., Nk), where
c ∈ Σ and ar(c) = k

A tree t is said to be a valid derivation for a regular tree grammar g if:

• It is constructed from the start symbol s ∈ N

• ∃s → t(N1, ..., Nn) ∈ P such that for every Ni inside t, there is a
production Ni → u(M1, ...,Mn) ∈ P , whose right hand side can replace
Ni, constructing a tree u, that is a valid derivation for some q ∈ N

As an example, having the following RTG:
G = (Σ, N,R, P)
Σ = {program, if, while, exp, com}
N = {R, I,W,E,C}
P = {
R→ program(I)
R→ program(W)
I → if(E,C,C)
W → while(E,C)
E → exp()
C → com()
}
The following two trees are valid derivations for G:

program(if(exp(),com(),com()))
program(while(exp(),com()))

2.6.4 Tree Transducer (TT)
A Tree Transducer (TT) is a recursive program that traverses and transforms
an input tree by generating as output another tree, a string, or more generally
any object that can be produced through a tree traversal. Essentially a tree
transducer consists of a set of rules that transform an input node by applying
a function that depends on the node’s label. Each child is recursively matched
with the set of rules to complete the transformation. We use tree transducers
as the standard way to specify a tree transformation.
A (top-down) Tree Transducer is a tuple T = (Q,Σ,Σ′, q0,∆), where:

• Q is a set of function names.

• Σ and Σ′ are the set of input and output symbols respectively.

• q0 ∈ Q is the initial function.

2.7 SDF Grammars 31

• ∆ is a set of transduction rules of the type
q(f(x1, ..., xn))→ u[q1(x1), ..., qn(xn)], where:
– f ∈ Σ.
– u ∈ Σ′.
– q, q1, ..., qn ∈ Q.
– x1, ..., xn ∈ N , where N is a set of input variables.

2.7 SDF Grammars
The Syntax Definition Formalism, SDF, is a formalism for the definition
of grammars, which combines lexical and context-free syntax definition. It
supports arbitrary context-free syntax thanks to its underlying generalized
parsing algorithm, and provides several disambiguation methods to deal with
ambiguous grammars. It also supports modularization and reuse of syntax
definitions [126].
An important difference between SDF and (E)BNF notation is that the

left and right-hand sides of the production rules are swapped. The SDF
equivalent of a BNF production X ::= A B C is the production A B C → X.
In addition, the right-hand side of an SDF production can be annotated with
a list of attributes that characterise that production. An example of such an
attribute is the constructor attribute cons which is used when building an
abstract syntax tree (AST) from a parse tree:

A B C → X{cons(ConstructorName)}

where ConstructorName will be used as node name in the AST.
Another important feature of SDF is the possibility to annotate non-

terminals in the left-hand side of a production with labels:

labela: A labelb: B labelc: C → X{cons(ConstructorName)}

This last feature is useful to avoid certain mapping problems when, for in-
stance, matching non-terminals in source and target productions do not ap-
pear in the same order. Figure 2.2 shows an example of an annotated SDF
production.

"if" cond:Expr
"then" true:Stats
"else" false:Stats
"end if"

-> If {cons("IfThenElse")}

Figure 2.2: An example of a production in SDF.

32 Preliminaries

2.8 Grammarware
The term Grammarware has been coined by Klint et al. [56] as an answer to
the need for a grammar-aware software engineering.
Grammarware comprises the terms grammar and grammar-dependent soft-

ware. Grammar refers to any kind of grammar formalisms and notations.
Not only the grammars defining the syntax of a programming language, but
in general any kind of structured format definition. Grammar-dependent
software refers to any kind of software that intrinsically requires and makes
use of grammar knowledge. A parser generator is a typical example.
Even though we have been using grammars in different kinds of software

for many years, we still do not have a comprehensive foundation for gram-
marware engineering. There is a lack of best practices in general, and more
specifically we do not have a discipline of programming for grammarware or
a comprehensive theory for transforming and testing grammarware. There
is a lack of metrics and other quality notions, and we are still looking for a
unified framework relating grammar forms and notations[56]
To cope with the mentioned deficiencies, a set of common principles is pro-

posed by Klint et al. [56]. These principles come directly from best practices
used in contemporary software engineering. These best practices though, are
not being used consistently in grammarware. It is therefore not a new pro-
posal, but a call for adapting a set of common-sense principles and applying
them in grammar engineering as well. These principles can be integrated
into a proper grammarware life-cycle.
The proposed life-cycle starts by getting base-line grammars independent

of any use case. These grammars are then customised depending on the
requirements of the specific use case. The grammar-dependent software is
implemented then, based on these customised grammars. Evolution in gram-
marware should be handled through automated transformations, such that
any modification on the grammar structure is transposed directly to the
grammar-dependent software components and to existent data.
Our project in general, and the tools we require and develop, more specif-

ically, are largely shaped by grammars. We tried therefore, besides our spe-
cific scientific objectives, to adhere the higher-level goal of supporting the
grammarware principles.

2.8.1 Grammar Recovery
Grammar recovery is the structured process of deriving a lan-
guage grammar from available resources like language documen-
tation or compiler code [63, 64, 38].

This thesis does not deal with the problem of generating the base-line
grammars for the languages, because it is not central to the problem of
generating language translators. We do consider necessary nevertheless, to
include this step into the product-line for completeness.

2.8 Grammarware 33

Our approach is fundamentally grammar-based, which is the main reason
why we work with the grammarware methodology. In grammarware, the
life-cycle starts by getting a base-line grammar. Grammar recovery focuses
in recovering correct base-line grammars such that the grammar life-cycle
is enabled. The first and main input for our entire process are language
grammars we use for different purposes. Base-line grammars provide con-
crete and abstract grammars. Concrete grammars generate parsers for the
programs. Abstract grammars provide language concepts, that constitute
the core of the product-line. Grammars in general are central to our process
for generating language translators.
Our approach assumes that, for every language we will work with, a correct

SDF grammar is available. In practical terms though, this is not always
possible. In our case study, for instance, we had to deal with the following
situations:

• We did not receive, for any of the OLs we considered, a working gram-
mar ready to use. The commercial nature of OLs and the sensitive
nature of the space operations environment were the main reasons.
Grammars needed to be extracted from the provided documentation,
such as manuals.

• SDF grammars are not of common use in industry. In general, LL com-
pliant BNF grammars were provided in the languages documentation.
Extracting and transforming these provided grammars from BNF to
SDF was necessary.

• Some of these BNF grammars suffered from a relatively common prob-
lem in software projects. The documentation was inconsistent and
outdated with respect to the actual software. Some of the test pro-
grams we received did not parse with the grammars extracted from the
documentation.

As we can see, there are cases where a grammar recovery process comes
in handy. We do not go into more details in this section, but in the chapter
dedicated to the product-line approach we will provide some more technical
information on how we used this technique.

2.8.2 Grammar Convergence
Grammar convergence is a lightweight verification method for es-
tablishing and maintaining the correspondence between grammar
knowledge ingrained in all kinds of software artifacts. [66]

Ideally, the development process of software artifacts should follow an
organised approach, like for instance the model-driven methodology: starting
from a generic, abstract model, this model is transformed step by step in a
controlled way, until the more specific products are generated.

34 Preliminaries

In many cases, for instance, software artifacts have embedded grammar-
like knowledge that was used to build them. For those cases, grammar con-
vergence can be used to extract grammars from all these artifacts, and later
on, transform these grammars until they become identical, and therefore
convergent.
For the specific case of program translation developed in this thesis, we

will use grammar convergence to extract the common model of the family of
languages, as well as to represent in detail the differences among the different
grammars, to implement the variation points.
Other complementary cases of grammar convergence exist as reference,

like the introductory example presented by Lämmel and Zaytsev in [66]. In
that example, different grammar formats for a small language are converged
together. There is also a very complete case study that the same authors
present in [67], where they analyse the consistency of the Java Language
Specification among different versions and representations, using the gram-
mar convergence technique to come up with a central model of the different
grammars, that precisely and systematically represents the various differ-
ences among them.
Grammarware is complemented with a product-line approach to provide

not only an organised software structure, but also an effective way to reuse
the different software elements and language components.

2.9 Program Equivalence
In our specific case of program translation, an important concern is to deter-
mine if two programs, an original program and its translated version, present
the same behaviour. In other words if they are equivalent.
Defining equivalence does not has a simple answer. This issue has been

analysed by many authors, for instance Buss et al. [20] and Blass et al. [15]
in their discussions about algorithm equivalence.
In general terms, two programs P and Q can be considered as equivalent

if we can put them in an equivalence relation <, noted as P < Q. Then we
can say that P and Q are <-equivalent. What we need to decide upon is
which, among the existing equivalence relations at hand, should be used as
<.
Different notions of equivalence exist and some are stronger than others,

depending on how strict are the criteria the two programs must satisfy to be
seen as equivalent under that notion.
In our study we are interested in the family of behavioural equivalences,

whose basic idea, as noted by Bernardo et al. [14] is to capture whether two
systems are able to mimic each other’s behaviour stepwise. From the differ-
ent approaches to behavioural equivalence [14, 36, 22], we are particularly
interested in observation equivalence, also known as weak bisimulation.
Behavioural equivalence approaches are commonly applied on Labelled

Transition Systems (LTS) [54]. An LTS is a specialised representation of the

2.9 Program Equivalence 35

more general notion of a Control-Flow Graph (CFG).
In our approach for program equivalence, we first build the CFGs of the

programs; from there we produce the LTSs, and finally we use this LTS
representation to verify program equivalence.

2.9.1 Control-Flow Graph (CFG)
We define a CFG as the tuple (V,L,A, s0) where:

• V is a finite set of nodes or vertices v

• L is a set of labels l (ε ∈ L is the empty label).

• A is a finite set of directed edges or arcs (v, l, w) between nodes. (v, l, w)
represents an edge from node v to node w labelled with l. The edge
(v, w) is the shorthand notation for (v, ε, w)

• s0 ∈ V is the initial node of the control-flow graph.

2.9.2 Labelled Transition Systems (LTS)
An LTS is a tuple (S,A ∪ {τ},→, s0) where:

• S is a countable set of states s

• A is a set of observable actions a

• τ is the hidden action, denoting an event internal to the system. These
actions are invisible for other communicating systems or external ob-
servers.

• → is a transition relation →⊆ S × (A∪ {τ})×S where s a→ s′ denotes
(s, a, s′) ∈→

• s0 ∈ S is the initial state

An LTS is non-deterministic if ∃(s′ 6= s′′) : s a→ s′ ∧ s a→ s′′. Inversely, in
a deterministic LTS for every state s and action a there is at most one state
s′ such that s a→ s′.

2.9.3 Observation Equivalence (Weak Bisimulation)
To better understand observation equivalence, it is convenient to start defin-
ing trace equivalence and (strong) bisimulation. Trace equivalence presents
the base notion of observing the behaviour of a system. It allows also to in-
troduce the notion of hidden actions and implicitly that of external observers.
Bisimulation is a stronger form of equivalence that provides a solution to the
limitations of trace equivalence. Finally, weak bisimulation reconciles bisim-
ulation and hidden actions, to provide a good compromise between strength
and flexibility.

36 Preliminaries

Trace Equivalence

The trace of a system S is a finite sequence of actions a0, ..., ak such that a
possible execution of S is the sequence of transitions s0

a0→ s1
a1→ ...

ak→ sk.
We write traces(S) for the set of possible traces of S.
If for two systems P and Q it holds that traces(P) = traces(Q), then they

are trace equivalent: P <t Q. In other words, every possible trace for P is a
valid trace for Q and vice versa.

Weak Trace Equivalence

A variation of trace equivalence is weak trace equivalence, <wt, where all
the internal actions of the system, τ , are not considered in the trace and
therefore p0

a→ p1
b→ p2 <wt q0

a→ q1
τ→ q2

b→ q3.

Bisimulation

Two systems P and Q can be considered bisimilar, or in a strong bisimulation
equivalence <∼, written P ∼ Q, if whenever one of them can execute an
action, the other one can execute the same action as well.
We can say that P ∼ Q iff for every p ∼ q the following conditions hold:

• If p a→ p′ exists, then there exists a q′ such that q a→ q′ and p′ ∼ q′

• If q a→ q′ exists, then there exists a p′ such that p a→ p′ and p′ ∼ q′

Weak Bisimulation

As with trace equivalence, a variation of strong bisimulation is weak bisim-
ulation, ≈, also known as observation equivalence, where only observable
actions are matched.

Assuming we define s a⇒ t as s τ→
∗
s′

a→ t′
τ→
∗
t, where τ→

∗
signifies a prob-

ably empty list of successive transitions τ→, then we can say that P ≈ Q iff
for every p ≈ q the following conditions hold:

• If p a⇒ p′ exists, then there exists a q′ such that q a⇒ q′ and p′ ≈ q′

• If q a⇒ q′ exists, then there exists a p′ such that p a⇒ p′ and p′ ≈ q′

which is essentially the same definition as P ∼ Q but for the weaker transition
relation ⇒.

Trace Equivalence versus (Weak) Bisimulation

Trace equivalence falls short in two aspects. First, in the presence of non-
determinism it can evaluate as equivalent systems that have different be-
haviour. For instance in Figure 2.3, traces(P1) = traces(P2), even though
their behaviour is not the same: P1 is a non-deterministic LTS, and an

2.10 Product-line 37

aa a

b c b c

P1 P2

Figure 2.3: P1 <t P2 but P1 6∼ P2

external user has no choice between actions b and c. In P2, which is a deter-
ministic LTS, the choice can be made by the user. Second, trace equivalence
disregards the branching structure of systems because it considers only final
traces.
Bisimulation solves these limitations, but it still presents one drawback

regarding our needs: it does not provide enough flexibility when program
constructs need to be adapted. In program translation, when we cannot
establish a one-to-one equivalence between constructs in different languages,
we are forced to adapt these constructs through program transformations.
These transformations can introduce (or eliminate) some actions that, if
included in the bisimulation, will provoke the verification to fail, even though
the behaviour of the program with respect to the satellite or the control center
remains the same. Weak bisimulation allows us to declare these actions
that are internal to the programs as hidden actions, therefore providing an
additional degree of freedom which is required in our program translation
approach.

2.10 Product-line
Other than the generic language translation problem we discuss in this thesis,
there is a second problem related with how, when defining translators be-
tween different languages in a family, we can take profit of the many common
constructs we can find in related languages.

A product line engineering approach implements and facilitates
large-scale reuse, for improving the development efficiency of fam-
ilies of systems, sharing a common set of features satisfying the
main needs of a specific domain. [119]

In our case, the specific domain is that of space missions operations, and
the family of systems we need to develop are program translators. Since the
translators act on programs designed with languages belonging to the family
of operations languages, the features included in any translator belong to a

38 Preliminaries

set that is largely common to all languages in the family. Reuse is thus not
only possible but strongly desirable.
One of the most significant software engineering goals has been the quest

for reuse. Building systems by assembling components has become a com-
monly accepted software development technique. Module-based approaches
and later object-oriented programming have introduced reuse of rather small
units of code. Large-scale reuse problems were addressed with object-oriented
frameworks and component-oriented programming that showed up as paral-
lel approaches. The notion of software product-lines resulted from combining
software architecture and component-based software development.
Creating a product-line requires some essential activities following the no-

tions of functionality-based architectural design [17]. First we have the do-
main engineering, or core asset development, whose goal is to establish the
capability of the product-line to generate the products, in our case program
translators. Three outputs are expected from this activity [49]:

1. Scoping. A description of the products that will be included into the
product-line. It will consider commonalities among products, and how
the products vary from one another. The scope of our product-line con-
cerns the set of translators that will be generated. This set is restricted
to the languages in the family. How and how much the translators dif-
fer, depends on specific components of each language.

2. Core assets. They include the product-line architecture, that will sat-
isfy also the needs of the individual products, by defining the varia-
tion points to support the different products considered in the scope.
Other core assets are the software components that will be systemat-
ically reused for the development of products, as well as requirement
specifications and domain models. Core assets in our approach are
the grammars of the languages in the family. Other assets like lan-
guage concepts and constructs are derived from those grammars, and
program transformations are driven by the grammar structure.

3. Production plan. This is the set of processes attached to every core
asset, defining how the asset will be used for product development.
The production plan describes how the individual processes have to be
put together to build a product. The production plan for our program
translators product-line starts with the construction of the required
grammars, passing by the definition of the product-line structure, until
the production of the resulting translators.

Product development, or application engineering is the second essential ac-
tivity required to create a product-line. This activity takes as input the three
outputs described above, plus the requirements for the individual products,
which can be seen as the variation from some generic product description
detailed in the scope of the product-line.

2.11 Conclusion 39

Ultimately, the product-line approach consists of correctly developing a
probably big group of desired products. This is accomplished by first receiv-
ing the requirements of a product within the scope of the product-line, and
then following the production plan to make a proper use of the core assets.
Our specific product-line will generate a set of program translators within

the scope of the operations languages family. It will follow a grammarware
oriented production plan, that will make a proper use of grammars, language
concepts and constructs, and program transformations. The details of the
product-line approach will be provided in Chapter 5, only after the language-
to-language technique is explained in Chapter 4.

2.11 Conclusion
This chapter presents the most relevant concepts and ideas that we use along
this thesis. It tries, first, to define more precisely certain notions, like lan-
guages and families, concepts and constructs, grammarware and product-
lines.
Second, it presents this concepts in an order that already shows the direc-

tion followed by the thesis and its approach. Starting from the individual
programming languages, we analyse their grammars and dissect them in their
basic elements. Then we put those elements back together in an organised
common structure, before generating and verifying the final product.

3 Related Work
Many techniques can be used to build program translators. These techniques
range from string manipulation techniques, using text processors like sed
and awk [37], or general-purpose programming languages like perl [127],
over specific transformation languages like TXL [30], to more structured
approaches based on some kind of program specifications, using tools like
Rose [97].
Although the distinction among techniques to build program translators

is not clear, we propose a classification based on the kind of language spec-
ification they are based on, and on the main transformation technique they
use to manipulate the program’s structure.
We explain the technique used in each category, thanks to a toy example

where we build a simplified translator between two small and similar lan-
guages. First we introduce the example, and then we explain each different
technique to build translators, using the example to illustrate how to build
such a translator for the two languages.

3.1 Running example.
The example we are presenting follows our hypothesis that automating the
process of building program translators requires a high similarity between the
languages involved. Domain-specific languages inside a single domain are in
general expected to share many characteristics. These similar characteristics
can be exploited when building a translator.
We will use two very similar languages, where we can establish a full

equivalence mapping between their constructs. The idea is to show what can
be automated, and how, by using different techniques and approaches. The
languages for the example are very small: there is only one “representative”
construct for each language (an in-depth analysis of translation will be the
subject of Chapter 6).
In this section, we want to discuss the advantages and disadvantages of

different translation techniques, providing a common ground for a subsequent
comparison with our own technique, presented in the following chapters. The
reader should be aware that each of these techniques may provide additional,
more advanced functionality, not shown in this example. We believe though,
that this simple example allows the reader to get a good understanding
of the techniques presented, without requiring a deep knowledge of those
techniques.

42 Related Work

We call our languages LA and LB . Both languages are completely equiv-
alent, at a semantic level. The differences between them are only syntactic.
Each language consist of a single conditional construct that, depending on
the evaluation of a conditional statement producing a true or false boolean
result, will execute one block of instructions from the two provided possibil-
ities. In the example we are not unfolding the constructs related with the
conditional statement nor with the block of instructions. We assume that
the translation is already solved at those points.
For both languages we provide an EBNF syntax, as well as a compact

semantics definition. We assume that the input programs have been parsed
and appear as an abstract syntax tree, which is traversed depth-first left-to-
right for interpretation.
Whenever this example will be used to build a translator, in the following

sections of the chapter, we assume the translation is unidirectional from LA
to LB , unless otherwise explicitly stated.
To facilitate further references, Figure 3.1 presents a compact EBNF syn-

tax of both languages, and Figure 3.2 presents the corresponding semantics
definitions.
The semantics definitions assume that: J K is the semantic function de-

scribing the semantics of a program; a superscript L delimits the function to
the context of a language L; a subscript f represents an auxiliary function
for specific fragments of a program; capital letters represent variables hold-
ing a program or a fragment of a program. For instance, JXKL

f
applies the

auxiliary function f to the program fragment X in the context of language
L.

Program ::= If
If ::= "if" Expr "then" Stats "else" Stats "fi"
Expr ::= <boolean expression>
Stats ::= <sequence of instructions>

(a) LA syntax

Procedure ::= Eval
Eval ::= "eval" "(" Cond ")" "[" Block "," Block "]"
Cond ::= <boolean expression>
Block ::= <sequence of instructions>

(b) LB syntax

Figure 3.1: Compact LA and LB grammars.

3.2 Translators Techniques 43

JProgram(X)KLA = JXKLA
program

JIf(X)KLA
program

= JXKLA
if

J(E, Y, Z)KLA
if

= JY KLA
stats

if JEKLA
exp

= TRUE

J(E, Y, Z)KLA
if

= JZKLA
stats

if JEKLA
exp

= FALSE

JXKLA
expr

= TRUE|FALSE

JXKLA
stats

= < value >

(a) LA semantics

JProcedure(X)KLB = JXKLB
procedure

JEval(X)KLB
procedure

= JXKLB
eval

J(C, Y, Z)KLB
eval

= JY KLB
block

if JCKLB
cond

= TRUE

J(C, Y, Z)KLB
eval

= JZKLB
block

if JCKLB
cond

= FALSE

JXKLB
cond

= TRUE|FALSE

JXKLB
block

= < value >

(b) LB semantics

Figure 3.2: Compact LA and LB semantics.

3.2 Translators Techniques
Developing program translators is a process that can be compared to build-
ing a compiler [3], because it can be decomposed in the following activities:
scanning, parsing, semantic interpretation, transformation and code genera-
tion. Every activity in the process, regardless of the specific input and output
languages of the programs to translate, contains a generic part, independent
of the languages involved in the translation. These generalities between lan-
guages have been analysed over time, and specific solutions automating those
parts of the process have been implemented and included in program trans-
lators. Developing translators has become, thus, more and more structured,
and less ad-hoc. Nevertheless, even with those improvements, building a
program translator, regardless of the technique we are using, requires an
amount of problem-specific programming. In general there are differences
between two programming languages that cannot be directly solved by a
generic approach, and therefore a specific solution has to be designed.
This dissertation studies how to automate the process of building transla-

tors. We therefore focus our presentation on how different techniques handle
what we consider amenable to automation. For each case we present pros and
cons, and in Section 3.3 we use this information to discuss the advantages
and disadvantages of these approaches against our own technique.

44 Related Work

3.2.1 Ad-hoc Techniques
Even though there are cases where a pure ad-hoc approach can be the only
alternative for building a translator, we are not considering them. We can
always reuse existing tools and techniques to produce a translator. For in-
stance, scanning and parsing are problems already solved. We can build
our own lexical scanner and tokeniser from scratch, programming a state
machine, or we can use Lex [111] and simply write the scanner description.
The same applies for the syntactic analysis. On the one hand we can build
a recursive descent parser on our own, or we can just write a Yacc [111]
description for the language.
The real need of a so called ad-hoc approach starts with the semantic

analysis. At this point, and thereafter, building a translator gets more or
less ad-hoc. The differences between approaches depend on the technique
used, and that is the main subject of this chapter.

3.2.2 Attribute Grammars and Compiler Compilers
This is among the most well-known and used techniques to recognise and
manipulate source code. Attribute grammars were born in the mid 60’s [58]
as a way to define programming languages semantics. They attach attributes
and semantic actions to the rules of a non-circular context-free grammar. At-
tributes allow to share information among the nodes in the parse tree, which
can be used by the semantic actions when executed. Attribute grammars are
the base for compiler-compilers tools like Yacc [111], SmaCC [19] or ANTLR
[90].
Generally speaking these techniques are composed of a lexical analyser,

that scans the input looking for basic text tokens. On top of it, a parser
builds a parse tree based on a non-circular context-free grammar. Finally,
a semantic engine executes the actions attached to the production rules, as
soon as the parser provides enough information to trigger them. Thanks to
the defined attributes on the non-terminals, the information resulting from
the execution of the semantic actions, is passed along the parse tree until the
parsing is finished and a final result is available.
In Figure 3.3 we can see an example written in Antlr defining a simplified

translation between our reference languages: from LA to LB . The exam-
ple decribes the translation from the If construct (lines 3 to 7) into the
equivalent Eval construct (line 11). On line 3 we define the name of the pro-
duction. Line 4 declares the variable or attribute that will carry the resulting
value up in the tree. Line 5 defines the body of the production, and lines 6
and 7 constitute the semantic action that will be executed. In this case the
actions build the string with the translated code. The Target grammar on
line 11 is not used nor necessary for the translation in this technique, and is
presented here just to better illustrate the expected result. The translator
is built specifically for going from LA to LB , and in general no verification
mechanism is provided directly by these tools to assert the result. From our

3.2 Translators Techniques 45

1 /* Source grammar */
2 ...
3 if
4 returns [String value]
5 : ‘if ’ e=expr ‘then ’ s1=stats ‘else ’ s2=stats ‘fi ’
6 { $value = "eval (" + $e.value + ")";
7 $value += "[" + $s1.value + "," + $s2.value + "]";};
8 ...
9 /* Target grammar */

10 ...
11 eval : ‘eval ’ ‘(’ cond ‘)’ ‘[’ block ‘,’ block ‘]’;
12 ...

Figure 3.3: An example of an Antlr translation.

point of view, one of the main inconveniences presented by this technique,
is that the semantic actions are too tightly embedded with the grammar.
This makes the resulting grammar difficult to read and maintain, and also
difficult to adapt for using with other languages.

3.2.3 Term Rewriting Techniques
Term rewriting techniques and systems are widely used for program transfor-
mation. As for attribute grammars, these techniques generally use BNF-like,
context-free grammars to specify the syntax of the language. Thanks to this
specification, programs in that language are parsed, and a complete parse
tree is built before attempting any kind of manipulation or analysis on the
source code. This building of a full parse tree prior to any transformation
creates some memory overhead for big parse trees. But it also has interesting
advantages, among which the fact that it allows for a better design and reuse
by separating the specification of the syntax from the semantic actions. Once
the parse tree is built, the rewriting engine will try to apply the rewriting
rules, until a normal form is reached, where no more transformations can be
applied. Rewriting rules are in general of the form

L = R if C1, C2, . . .

stating that whenever the term L is matched, it can be rewritten to the term
R, on the condition that C1, . . . , Cn all evaluate to true.
Many rewriting systems exist like for instance TXL [30], the ASF+SDF

Meta-Environment [118], Rascal [57] and Stratego [124]. With the exception
of TXL, the other three systems use the Syntax Definition Formalism (SDF)
to specify the language grammars and also share the SGLR [126] generalised
parsing technique. This sharing SDF and SGLR is quite handy for it allows
us to use different (though similar) rewriting techniques, with the same input.

46 Related Work

ASF+SDF and the ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment [118, 117] is a development environment
for the generation of systems for constructing language definitions, and sup-
port tools for these languages. The ASF+SDF Meta-Environment allows the
definition of syntactic and semantic specifications for a language, that are
fully integrated together.

Syntax Definition Formalism, SDF, is a grammar formalism used by the
ASF+SDF Meta-Environment, to provide the context-free syntax definition
of languages. It was presented in Section 2.7.

Algebraic Specification Formalism, ASF, is a formalism for defining con-
ditional rewrite rules. These rewrite rules can be used to define an “oper-
ational" semantics, for a language specified in SDF, through equations that
can be executed as rewrite rules of the form

L = R when C1, C2, . . .

stating that whenever L is matched, it can be rewritten to R, on the con-
dition that C1, . . . , Cn all evaluate to true. A simple form of equation is
the unconditional one L = R. In the left-hand side, right-hand side and
conditions of an equation, variables can be used. Matching a left-hand side
of an equation implies binding the variables to the matched subterms in the
concrete syntax tree. See [118] for a more detailed description.
Figure 3.4 shows a small piece of code in ASF+SDF which we will use as

an example of how to build a simple translator from LA to LB . We have
included both productions in a single file to simplify the explanation. Lines
4-5 show the "If" production on LA and lines 7-8 show its equivalent "Eval"
production on LB . ASF+SDF is a strongly typed language, so we need to
define a function for every transformation to guarantee that the translation
will be type preserving. Lines 12 to 14 define these functions. To handle the
different subtrees when manipulating the parse tree, while respecting typing,
we have to define variables that will hold the subtrees. We do that on lines
18 to 20. Finally we need to define the rewriting rules that will perform the
transformation. In this simple case, where we assume that both constructs
are completely equivalent, we only need one single rule, written on lines 24 to
29. Line 24 defines the tag of the rule. Line 26 defines the pattern-matching
expression in the LA language. Notice that ASF+SDF works with concrete
syntax, and therefore we write the pattern as if it were source code. Finally
line 29 defines the replacement expression in the LB language.
Some advantages of term rewriting compared against the attributed gram-

mars approach, presented in the previous section, are: first, the term rewrit-
ing semantic actions, defined by the rewriting rules, are not tangled with the
syntax, which allows for a modular design. Second, in term rewriting, the
grammar of the target language is explicitly used to check for type equiv-
alence. Some disadvantages of term rewriting are that the type checking

3.2 Translators Techniques 47

1 context -free syntax %% (SDF syntax rules)
2

3 %% Language 1
4 "if" Expr "then" Stats "else" Stats "end if"
5 -> If {cons ("IF ")}
6 %% Language 2
7 "eval (" Cond ")" "[" Block "," Block "]"
8 -> Eval {cons ("IF ")}
9

10 context -free syntax %% (rewrite functions)
11

12 f(If) -> Eval
13 f(Expr) -> Cond
14 f(Stats) -> Block
15

16 variables
17

18 " $Expr$ " -> Expr
19 " $Stats1$ " -> Stats
20 " $Stats2$ " -> Stats
21

22 equations
23

24 []
25 %% From Language 1
26 f(if $Expr$ then $Stats1$ else $Stats2$ end if)
27 =
28 %% To Language 2
29 eval(f($Expr$)) [f($Stats1$), f($Stats2$)]

Figure 3.4: An example of a simple translation function in Asf+Sdf.

produces some programming overhead, and for more complex cases, it is not
easy to produce intermediate results. We need to carry a lot of information
in the rewriting rule conditions.

Tom / Gom

One last tool that could be interesting to mention in this section is Tom /
Gom [10]. The Tom language is an extension to Java that provides it with
term rewriting capabilities based on pattern matching. Tom introduces in
Java constructs, basically to define data structures, to build terms, and to
match and rewrite terms. Tom allows defining abstract syntax trees using
Gom, and provides an adaptor to Antlr that allows Tom to build an ab-
stract syntax tree based on an Antlr grammar, and therefore to work with
terms from any language accepted by Antlr. Tom offers the possibility to be
embedded in other programming languages like C or ML for instance.

48 Related Work

Discussion

In general, term rewriting systems are an excellent choice to transform pro-
grams in the same language, because they can provide strong type checking
guaranteeing structure preserving, one-to-one translations. On the other
hand, this same characteristic could be problematic when translating be-
tween different languages: types can vary significantly, forcing too many
additional type conversions. Being a declarative technique, it provides a
straightforward way to define transformations. Nevertheless, pure rewrit-
ing makes carrying information along the tree very difficult. In general, the
underlying information is represented as singly linked lists, therefore nodes
have no access to their parents or previous siblings. This fact implies that
querying an arbitrary position is not possible unless we keep explicit track of
the traversed path for every position. Operations requiring more than only
sequential processing become thus very cumbersome to define.
There are some examples of translators built with term rewriting tech-

niques, as reported by Alalfi et al. [5]. Alalfi and colleagues do an interesting
work bridging data models and UML, and build a specific tool to translate
from SQL schemas to UML entity relation models. The tool is built using
TXL to perform syntactic modification from a SQL DDL schema to a XMI
file. The tool only supports MySQL schema and XMI version 2.1.

3.2.4 Graph Rewriting Techniques
Graph rewriting techniques can be considered as a generalisation of term
rewriting techniques [101]. In the previous section, we saw that term rewrit-
ing techniques are based on tree structures, where terms can be seen as
subtrees. Trees are special cases of graphs, more specifically undirected, or-
dered, acyclic graphs, with unlabelled edges. To exemplify, our source graph
could be the syntax tree of a program accepted by some language "LA". The
graph rewriting rules or productions will be applied to this source graph,
according to a defined strategy, to step by step modify the source graph
until the target graph is reached. This target graph could be a syntax tree
respecting the structure of some "LB" language. Graph rewriting techniques
use, very similarly to term rewriting techniques, rules of the form

LHS = RHS

stating that whenever the subgraph LHS is matched, computing a morphism
against the graph that is being transformed, LHS can be replaced by an
image of the subgraph in RHS. Rules in graph rewriting systems do not
require to be completely defined, and only consider those parts that are
relevant to the transformation. The transformations, then, basically apply
the following summarised actions: nodes in RHS matching nodes in LHS
are preserved; nodes and edges in LHS without a match in RHS have to
be deleted; nodes and edges in RHS with no match in LHS have to be
created. Several graph rewriting systems exist that share this technique,

3.2 Translators Techniques 49

like Progres [101] or Fujaba [43]. In Figure 3.5 we can see an example of a
small graph definition, along with a rewriting rule to perform the translation,
written in Progres. Lines 3 to 5 show the definition of an IF construct in
a LA language, while lines 9 to 11 show an equivalent construct in a LB
language. Lines 15 to 27 show the rewriting production that will execute
the translation. A few other small examples of program-like translations
performed with graph rewriting techniques can be found in [102].

1 /* L_A definition */
2 ...
3 node_class IF is_a STAT end;
4 edge_type has : IF [1:1] -> EXPRESSION [1:1];
5 edge_type has : IF [1:1] -> STATEMENTS [2:2];
6 ...
7 /* L_B definition */
8 ...
9 node_class EVAL is_a CFINSTRUCTION end;

10 edge_type has : EVAL [1:1] -> CONDITION [1:1];
11 edge_type has : EVAL [1:1] -> BLOCK [2:2];
12 ...
13 /* Rewriting rules */
14 ...
15 production If_to_Eval () =
16 ’1 : IF --has --> ’2 : EXPRESSION
17 --has --> ’3 : STATEMENTS
18 --has --> ’4 : STATEMENTS
19 ::=
20 1’ : EVAL --has --> 2’ : CONDITION
21 --has --> 3’ : BLOCK
22 --has --> 4’ : BLOCK
23 redirect --has --> from ’1 to 1’;
24 redirect --has --> from ’2 to 2’;
25 redirect --has --> from ’3 to 3’;
26 redirect --has --> from ’4 to 4’;
27 end;
28 ...

Figure 3.5: An example of a Progres graph definition.

Graph rewriting can be seen as more powerful than term rewriting, and
it indeed provides some advantages like for instance: allowing multiple dis-
connected subgraphs which could permit us to carry intermediate results
in the same graph, avoiding complicated rules; a less rigid data structure
than terms that permits incomplete node construction, again avoiding com-
plicated rules with the possibility to use simpler rules one after the other;
explicit support for local-to-global and global-to-local transformations thanks
to partial-defined global-scoped patterns.
Of course, disadvantages also exist, some of them provoked by the same

advantages we have just seen: incomplete pattern definitions and intermedi-
ate graphs dependency can cause ambiguities and inconsistent rewriting; to
the extent of our knowledge, they do not provide a parsing mechanism for

50 Related Work

programs, therefore besides the grammar used for parsing the program, we
need additionally the graph definition.

3.2.5 Model Driven Techniques
Model driven techniques are focused on the creation and transformation of
models that describe how a system is composed: its elements and relations.
More general models are iteratively transformed into more specific models,
until a final product like a software module or a database definition is gen-
erated. A model always conforms to a metamodel, and a metamodel can
be defined in many formalisms, like the grammars used for term or graph
rewriting or in more specific approaches, like the Unified Modeling Language,
UML [52] or the Model Object Facility, MOF [82].
One of the standards for model transformation has been defined by the

Object Management Group, OMG. It is the Query/View/Transformation,
QVT [62] also known as the MOF/QVT. QVT is the standard defining an
imperative and declarative language for querying and transforming MOF
models. Among its implementations are Great [25] and Tefkat [68].
Model driven techniques are very similar to Grammar rewriting techniques.

In many cases, they use graph rewriting systems as an implementation means,
like for instance the tool Moflon [6] that uses Triple Graph Grammars [102].
Other preferred techniques for implementing model-driven transformations
are functional and logic programming [77].
We can easily establish some similarities with programming languages,

which is the domain that concerns us. We can say that a model is like a pro-
gram, a metamodel is like the grammar of the programming language that
accepts a program, and the MOF is like BNF that defines the grammars of
programming languages. With this in mind, we could use Model Driven En-
gineering approaches, MDE, to tackle our problem, by considering program
translation as a special kind of model transformation. Related work in this
field can be found mainly for model transformation an model evolution.
Gray et al. [48] transform legacy C++ source code by building a specific

translator from the Embedded Systems Modelling Language transformation
rules to the DMS [12] Rules Specification Language. Even though this ex-
ample shows a nice way to go from a model transformation to a program
transformation, the approach is rather generative than translational because
at the implementation level the source model transformation rules are never
created and then translated. The target program transformation rules are
rather generated directly with a model interpreter.
In the field of model migration De Geest et al. [33] report on a semi-

automatic mapping mechanism used to support DSL evolution between ver-
sions. This project tries to be more generic and be used for arbitrary DSLs,
but currently it can provide automatic mappings only for entities of the same
kind, and requires user intervention for complex cases.
A similar approach focused on data model migration is used by Vermolen et

3.2 Translators Techniques 51

al. in [123] to map data model transformations to data migrations programs
in Java. This case is focused on coupled evolutions, but is strongly related
to our approach because it uses SDF grammars to define the models.
An appealing graphical approach based on colored petri nets [53] concepts

is provided by Weinner et al. with TROPIC [131]. TROPIC uses the con-
cepts of places, tokens and transitions, to define the model transformations.
These concepts are derived from the elements in metamodels, models, and
in the transformation logic. The presence of certain elements in the source
model triggers the transition, and transports the tokens from the source, to
the corresponding elements in the target model. This model driven approach
gives to the transformation designer extended debugging possibilities, on the
model transformations. The translation process itself, remains user driven,
however.
In Figure 3.6 we can see a summarised example of a simple Tefkat model

transformation, working on our running example. Lines 3 to 7 show the
definition of the IF structure in the LA metamodel, while lines 10 to 15 show
the equivalent EVAL structure in the LB metamodel. Lines 19 to 25 show
the transformation rule that will execute the translation.

3.2.6 Template Based Techniques
Template based techniques are transformation techniques that act on a source
tree or document, transforming it into a result tree, through the succes-
sive application of a pattern-matching / template instantiating mechanism.
Several tools exist using this mechanism like XSLT [55], Velocity [109], or
Andromda [112].
In this category the approaches followed by these techniques vary signif-

icantly. For instance Andromda is tightly linked with the MDE approach,
while Extensible Stylesheet Language Transformations, or simply XSLT, fo-
cus on XML [40] documents, and is probably one of the better known and
widely used techniques in this category.
XSLT is a declarative language for transforming XML documents into

other (but not restricted to) XML documents. XSLT does not modify the
source document, but generates a new result document. It uses XPATH [106]
patterns to define the nodes that once matched, will serve to instantiate the
transformation templates. In general template-based techniques work like
this: a pattern matches one or several nodes from the source tree; then the
nodes resulting from the matching are used to instantiate the template, that
starts the process of creating the result tree, by directly writing pieces of it,
or by instantiating other templates.
In Figure 3.7 we can see how a translation can be accomplished in XSLT,

on our running example. Lines 3 to 10 show the schema definition of the LA
language, while lines 14 to 21 show the definition of the LB language. In both
cases we are defining the languages in XSD [128] which is normally used to
validate an XML document. Lines 25 to 31 show the template transforming

52 Related Work

1/* Source metamodel */
2...
3<eClassifiers name ="If">
4<eReferences name =" exp"
5eType ="#// Expression " lowerBound ="1"/ >
6<eReferences name =" then"
7eType ="#// Stats" lowerBound ="1"/ >
8<eReferences name =" else"
9eType ="#// Stats" lowerBound ="1"/ >
10</ eClassifiers >
11...
12/* Target metamodel */
13...
14<eClassifiers name =" Eval">
15<eReferences name =" cond"
16eType ="#// Condition " lowerBound ="1"/ >
17<eReferences name =" true"
18eType ="#// Block" lowerBound ="1"/ >
19<eReferences name =" false"
20eType ="#// Block" lowerBound ="1"/ >
21</ eClassifiers >
22...
23/* Transformation specification */
24...
25RULE If2Eval
26FORALL If if
27MAKE Eval ev
28SET ev.cond = if.expr ,
29ev.true = if.then ,
30ev.false = if.else
31;
32...

Figure 3.6: An example of a Tefkat model transformation.

this specific construct.
Regarding XML documents, in [69] Leonen builds an automated XSLT

translator using the definitions of source and target structures. This ap-
proach is rather for document transformation because there is the restriction
that both definitions must belong to the same class of documents. There
are also other approaches more focused on program translation as shown by
Clark in [26], which gets support from a knowledge base to establish the map-
ping. Some other efforts exist, focused on the Java programming language,
that through an XML representation of the source code, as in JavaML [9],
provide the possibility to translate from Java to similar languages. One
such example is XES 1, that uses XSLT templates to translate from Java to
the XES representation to C#. Template approaches, specially those using
XSLT based techniques, are being boosted thanks to the energy dedicated
by the web community on improving the related tools and on creating more
tool support. In particular we believe that the XML-XPATH-XSLT com-

1http://sourceforge.net/projects/xes/

3.3 Conclusion 53

1 /* Source schema */
2 ...
3 <xs: complexType name ="If">
4 <xs:sequence >
5 <xs: element name =" Expression " type =" Expression "/>
6 <xs: element name =" Stats" type =" Stats "/>
7 <xs: element name =" Stats" type =" Stats "/>
8 </xs:sequence >
9 </xs: complexType >

10 ...
11 /* Target schema */
12 ...
13 <xs: complexType name =" Eval">
14 <xs:sequence >
15 <xs: element name =" Condition " type =" Condition "/>
16 <xs: element name =" Block" type =" Block "/>
17 <xs: element name =" Block" type =" Block "/>
18 </xs:sequence >
19 </xs: complexType >
20 ...
21 /* Transformation template */
22 ...
23 <xsl: template match ="If">
24 eval(<xsl:apply - templates select =" Expression "/>)
25 [<xsl:apply - templates select =" Stats [1]"/ > ,
26 <xsl:apply - templates select =" Stats [2]"/ >]
27 </xsl:template >
28 ...

Figure 3.7: An example of a XSLT transformation.

bination provides an interesting and powerful set of tools and techniques
that can be applied to the program translation field. A drawback, neverthe-
less, is the verbosity of the approach, that makes documents, programs and
transformers cumbersome to read.

3.3 Conclusion
Many techniques exist to build program translators, all of them offering
powerful mechanisms. We can choose from traditional techniques to work
with languages and programs, like attributed grammars or term rewriting, to
more innovative techniques, not necessarily linked to language engineering,
like the MDE, or the XML-like approaches. In every technique we can find
pros and cons.
Attribute grammars technique are among the best known techniques to

parse and transform programs. They provide strong parsing techniques,
like Antlr and Yacc that provide some flavours of generalised parsing. One
drawback of the technique is the fact that semantic actions are attached
directly to the syntax definitions. This makes it harder to modularise and

54 Related Work

reuse the grammars, and more importantly, semantic actions are directly tied
to the parse tree, which in general is more verbose than the abstract syntax
tree.
Term rewriting techniques, like those provided by Stratego and ASF+SDF,

have strong parsing techniques as well, namely the SGLR. Its use of SDF
grammars facilitates the building of modularised grammar definitions, and
they keep semantic actions at a different level, not tangled with the syntax.
A strong advantage is the fact of giving the possibility to add user-defined
annotations to the syntax, that can be exploited later. Some of these an-
notations, for instance, allow very easily to directly produce an AST from
the parsing. Their rewriting techniques have the advantage of being com-
pletely declarative, with recursive exhaustive transformations. Nevertheless,
it is hard to freely jump to a specific point in the tree while transforming it,
making it cumbersome, even with the use of improved traversal techniques,
to program certain transformations.
Model and Graph techniques, regarding our needs, perform the same.

They are more focused on model transformations, therefore providing in-
teresting graphic capabilities. These techniques are in general not oriented
to program source-code, but to systems architecture, typically object ori-
ented systems. According to what has been done in previous works, the
use of these techniques for program transformation requires the participa-
tion of additional program specific techniques like grammar processing tools.
Certain model extraction techniques can be useful for our language families
problem.
XML based techniques have many advantages that can be exploited for

our work. The XML format for documents is becoming more and more
accepted, even considering its extreme verbosity, that makes it definitely
heavier than for instance the ATerm format used by SDF. Many tools exist
to work with XML format, and even some of the classical program transfor-
mation frameworks like Stratego provide tools to convert from their internal
format to XML. Template-based techniques like XSLT provide an interest-
ing mechanism of rewriting, similar, though less powerful, to term rewriting
techniques. More important, many programming languages provide support
for DOM and XPath, which gives wider possibilities to build specific program
transformation solutions.
Considering our special needs, we believe that we must not stick to a single

technique, but rather combine several of them to exploit their advantages,
and minimise their disadvantages. We need to build families of translators,
which implies we should strive for reuse. We will be dealing with probably
very different families of languages. This means we need strong parsing
techniques. The kind of transformations required to go from one language
to another can become very complex as well, and a compromise between
simplicity and powerfulness has to be reached.
Regarding the first step in the translation process, parsing, we have decided

to use SDF grammars for the following reasons:

3.3 Conclusion 55

• They provide a strong parsing mechanism, the generalised parsing,
allowing us to define a broad range of languages.

• They accept user-defined annotations without the need of adapting
the SDF core definitions, and provide a way to extract and process the
annotations in a separate step independent from parsing.

• SDF comes with a simple way to define concrete and abstract syntax
trees, and provides tools to convert them to different formats, depend-
ing on the user needs.

• SDF is highly modular, allowing reuse of grammar definitions.

For the next step, transformation, the choice is more complicated. We
have opted for building our own library of specific transformation functions,
presented to the user as a language extension to JavaScript. We work ba-
sically on a XML-DOM based representation of programs, making intensive
use of XPath and E4X libraries. The main reasons for this choice are:

• JavaScript more relevant features for our approach are dynamic typing,
that facilitates the translation between mapped grammar productions;
first-class functions along with run-time evaluation permits to define
independent components that can be put together at need for every
translator; E4X complete support, and finally, easiness of linking with
existing Java libraries and programs.

• Adaptability and portability. The availability of DOM-XPath support
in different programming environments allows to easily port our solu-
tions if necessary, with minimal effort and variability. It is easier for
instance, thanks to the tools availability, to go from XML to ATerm
and apply Stratego specific transformation techniques if needed.

• This combination present the best compromise to implement global
transformations. Thanks to XPath we can easily reach any point in
the program tree, without having to specifically track traversals. This
is a major benefit considering the kind of transformations we are im-
plementing.

We strongly believe that this compromise among related techniques pro-
vide us with the best alternative to build families of translators. We adopt
techniques proved for program transformation, and we enrich them with
complementary techniques coming from other domains.
Next chapter puts in practice what we have learned thanks to this analysis,

and explains how we use the chosen techniques and tools in our approach to
generate program translators.

4 Language to Language
Translation

Automatically translating source code from one programming language to
another while preserving the semantics is hard [114]. Only a few of such
translation tools exist for a very limited set of source and target languages.
Still, there are cases where such tools are needed and where constructing
them is feasible. In this chapter we describe our approach to generate au-
tomatic translators between two languages inside a language family. Since
we assume that languages inside a family share a common semantic basis,
the translation problem is mostly syntactic in nature. This enables a high
degree of automation: the translators can (largely) be generated from anno-
tated syntax definitions. The techniques described in this chapter are the
basis for our larger goal of generating families of translators, explained in
the following chapter.

4.1 A Grammarware Approach
Our approach relies on ideas and principles of grammarware development [56],
to automate the generation of program translators for a family of languages.
We provide a solution for two general issues we have detected, that are

ultimately related with reusability. First, we want to efficiently detect and
reuse the common elements between languages. Second, we want to adapt
the incompatible elements thanks to a simplified and reusable mechanism.
This process is constantly driven by an analysis of the principles and rules
underlying the grammars used to define the languages in a family of lan-
guages.
The approach reconciles three related problems. One is the generic lan-

guage translation problem [65, 113, 114]. A second problem is how to assess
the correctness of the generated translators, by verifying the equivalence of
the translated programs. Thirdly, when defining translators between differ-
ent languages in a family, there should be a way to take profit of the many
commonalities among related languages.
This chapter focuses on the first two problems: language to language trans-

lation and equivalence verification. We leave the third problem, that is based
on the solution for the first two problems, to be discussed in the next chapter.
To solve the first problem, we automate the process of building program

translators by taking advantage of language similarities. We map source to

58 Language to Language Translation

target languages by annotating their grammars, and provide these annotated
grammars to our system to produce an automatic translator.
To tackle the second problem, we augment our annotated grammars model

with a set of generic lightweight semantic annotations, that we use to verify
the translation. More specifically, we annotate operations language1 con-
structs with their control-flow semantics. Next, we test the control-flow
equivalence of original and translated programs, by comparing their respec-
tive control-flow graphs. We generate these graphs automatically from the
aforementioned semantic annotations and use weak bisimulation [108] to
show their equivalence.
In the next chapter, we will then explain how to increase sharing of lan-

guage components between translators. We design a common structure for a
family of languages, allowing us to classify both common language constructs
and reusable program transformations. This common structure provides a
generic semantic model common to our family of languages. As such, we can
map directly common constructs, and we can share program transformations
between languages.
For a better understanding of the different building blocks of our approach

we start this chapter by presenting an overview of our basic approach to build
a single translator between two languages. We introduce this way the basic
idea of generating translators from annotated grammars, upon which our
extended approach for languages families, explained in the next chapter, is
based. In the remainder of this chapter, we then present the annotated
grammars technique, which is the pillar of our approach, in more detail.

4.1.1 The APPAREIL Approach
The flow of our APPAREIL 2 process for producing a language translator,
as depicted in Figure 4.1, can be decomposed in five main steps.
First (1) we start from the language documentation that provides the spec-

ifications and definitions of the languages. Since often this documentation
is not complete or too informal to be used directly, we need to complete
it and correctly structure it. This first step corresponds to the recovery of
a base-line grammar, as recommend by the grammarware principles. This
step is included in the process for completeness. In our approach we assume
that the working grammars exist. If it is not the case, a grammar recovery
process should be implemented, as explained in sections 2.8.1 and 5.2.1.
Next (2), we customise the grammars by using the Asf+Sdf Meta- Envi-

ronment [118] as a support tool to design a working SDF grammar for both
source and target languages. We annotate those grammars with extra an-
notations defining the important language constructs and their control-flow
semantics. This step is explained in Section 4.2.

1This is the family of languages which we studied in detail in this thesis
2APPAREIL stands for “Approche paramétrique de réingénierie logicielle.”

4.1 A Grammarware Approach 59

G1

Operations
Languages OL1

OL2

G2
Grammars

AG1

AG2
Annotated
Grammars

Partial
Translator

Full
Translator

Test
Procedures

APPAREIL
Verification

ASF+SDF
Meta-

Environment

APPAREIL
Grammar

Annotations

APPAREIL
Transforma-
tions Library

ASF+SDF
Rewriting

APPAREIL
Translator

Builder

Designs
Extracts

Completes

Annotates

Generates

Verifies

Support

1

2
3

4

5

Figure 4.1: An overview of the APPAREIL language-to-language translation
approach.

The third step (3) takes as input the annotated grammars of both lan-
guages, and produces a partial translator from one language to the other.
This translator, depending on how different both languages are, could re-
quire a certain amount of manual extra work to complete it with additional
transformations. Section 4.3 explains this step.
In step (4) we cope with those cases where the nature of the mismatches

between languages are such that an automatic transformation cannot be de-
rived only based on annotations. The previous step already provides relevant
information, extracted from an analysis of the mappings, signaling the places
where mismatches and incompatibilities have been found. We build the ad-
ditional transformations, from components in a dedicated transformations
library, to include in the translator. Section 4.3.2 exemplifies this part of the
process.
Finally (5), we use the now complete translator, providing it with the test

60 Language to Language Translation

program procedures to translate. We verify the result of this translation
with our verification module, that will check for (observation) equivalence
between original and translated procedures. Section 4.4 gives details on this
step.
Steps four (4) and five (5) could be iterative, especially in cases when

some further modifications to the translator need to be made due to errors
reported by the verification module.
Figure 4.2 provides an alternative overview of our automated approach for

generating language translators, now focusing on the three different kinds
of actors involved. The bottom or base level represents the end users. The

APPAREIL meta-tool
(automated program
translator generator)

Program Translation

Partial Program
Transformer

Additional
Transf.
Rules

generates

Source
Language

Specificaton

Target
Language

Specification

Program in
Source

Language

Program in
Target

Language

tool
builder

m
et

a
m

et
a

le
ve

l
(to

ol
 g

en
er

at
or

)
m

et
a

le
ve

l
(to

ol
 b

ui
ld

er
)

ba
se

 le
ve

l
(e

nd
 u

se
r)

Figure 4.2: Automated generation of program translators: A schematic
overview.

end users’ only concern is having a translator which receives programs in a
source programming language and which produces an equivalent program in
a target language. At the intermediate or meta level, we have the program
translator builders who provide the end users with a transformation tool for
the source and target programming language of their choice. To build such a
program transformation tool, program translator builders in turn make use
of our APPAREIL meta tool which is situated at the top (or meta meta)
level. The program translator builders provide this meta tool with a specifi-
cation of the grammar of both source and target language, augmented with
annotations that specify the correspondence between language constructs in
both languages. Using this input, the meta tool semi-automatically gener-
ates a dedicated transformer for translating programs from the source to the
target language, and the translator builder has to intervene only to specify

4.2 Annotated Grammars 61

how to translate those cases for which no direct equivalence could be stated
between constructs in the source and target grammars.
Although many existing tools could be used to implement the translator

generator part of our solution, such as DMS [12], TXL [30] or Stratego [124],
we chose the Asf+Sdf Meta-Environment for implementing the generation
of program translators. Asf+Sdf, as explained earlier, is a specification
formalism composed of the Algebraic Specification Formalism (ASF) and
the Syntax Definition Formalism (SDF), allowing the integrated definition
of syntax and semantics of a programming language [118] in a modular way.
The modularity of Asf+Sdf enables reusability, at the syntactic as well
as at the semantic level, which is one of the advantages of using it as our
implementation medium. Furthermore, Asf+Sdf has a strong notion of
syntax-directed translation both on input and output sides. Both sides are
based on grammars which ensures the syntactic correctness of the results.
The following section comes back to step 2, depicted in Figure 4.1, and

explains how the grammars of source and target languages are augmented
with annotations defining the important language constructs, to automate
the translation process.

4.2 Annotated Grammars
Syntax-directed translation [2] is a common mechanism used, mainly in com-
piler construction, to translate from a source to a target language. A par-
ticular instantiation of this technique is the use of syntax-directed transduc-
tion [70], which specifies the input-output relation of the translation and
deduces the actual translator from that relation.
The Step 3 (from Figure 4.1) of our approach builds on these techniques

to develop a simple and easy-to-use mechanism to semi-automatically build
source-code translators between two related languages. We take as input
context-free grammars of both languages, previously annotated with con-
structor and label information, to establish a mapping [91] between corre-
sponding language constructs (step 2). The mechanism automatically gener-
ates the translator for most of the syntactic constructs (step 3), and provides
support to manually extend that translator for the others (step 4).
Our technique assumes that the languages between which we want to trans-

late are semantically similar. Furthermore, the more similar the syntax of
source and target language (i.e., the language grammars), the less human
intervention will be required to produce the complete program transformer
(step 4).

4.2.1 Grammar Annotations
As explained in Section 4.1.1, to automate the translation process of pro-
grams between two operations languages, we will use SDF grammars and
annotations to define the languages, and ASF rewrite rules to specify the

62 Language to Language Translation

translator. For example, the language constructs shown on lines 4 and 6 of
Figure 3.4 on page 47 belong to two different operations languages. Although
the syntactic structure of both constructs differs, they have the same seman-
tics: they evaluate a boolean expression, and depending on its truth value,
they execute one of the statement blocks. Both constructs belong to one sin-
gle abstraction or language concept. Therefore, we declare a correspondence
between them by annotating both productions with the same constructor
name cons(“IF").
As Figure 4.3 illustrates, such an equivalence can be regarded as an ab-

stract syntax tree (AST) shared by the corresponding constructs in both
languages. Since terminals (denoted by octagons in the figure) do not inter-
est us when defining this correspondence, they are left out of the common
AST. In this way we build a mapping between the two languages, allow-
ing us to translate specific instances of a construct in one language to its
counterpart in the other language.

Stats

If
<<Lang 1>>

if then else

IF
<<Common>>

Eval
<<Lang 2>>

end if

Expr Stats Block

eval() [,]

Cond Block

Eval
Block

True
Block

False
Block

cons("IF")

Figure 4.3: Common Abstract Syntax Tree.

There are equivalences in the left-hand sides of these SDF productions
as well, like is the case with the conditional expression (Expr in language
1 and Cond in language 2), and with the blocks of statements (Stats in
language 1 and Block in language 2). In most cases, the system can guess
automatically how to match non-terminals occurring in the left-hand side
of both productions. The order in which they appear is often enough to
establish a one-to-one mapping. Only in more complicated cases, for example
when there are multiple non-terminals of the same type that appear in a
different order, we need to manually label the corresponding non-terminals
explicitly (as was illustrated in Figure 2.2 on page 31).

4.2 Annotated Grammars 63

Some Annotated Examples The basic idea of annotating the grammars is
represented in the small example from figures 4.4 (textual) and 4.5 (graphi-
cal). We have two equivalent constructs, SWait and TWait, in two different
Source and Target grammars. The square shapes in the graphical representa-
tion, represent keywords, that are not relevant for this example. The ellipses
represent the Non-Terminal Symbols that contain the representative infor-
mation we need to translate, and the diamonds represent the annotations
used to link both constructs together. The full figure represents two Wait
constructs whose semantics are to hold the execution of the program until
the cond expression becomes true, which allows the program to continue with
the execution of the next instruction. timout represents a timeout control
value that once elapsed, continues the execution, even if cond never becomes
true.

"waituntil" "(" cond:SExp ")" "" timout:STimeout ""
-> SWait cons(" Wait")

"<Wait>" "<Until>" cond:TExp "</Until>" timout:TTimeout "</Wait>"
-> TWait cons(" Wait")

Figure 4.4: Linked grammars (textual representation).

SWait

SExp

"waituntil" "("

")" "{"

STimeout

"}"

TWait

"<Wait>
<Until>"

TExp

"</Until>

TTimeou
t

"</Wait>

Wait

cond timout

Source Grammar Annotations Target Grammar

Figure 4.5: Linked grammars (graphical representation).

The annotations representing the link between these two constructs are in
our approach basically unrestricted, with the exception of certain reserved

64 Language to Language Translation

keywords, or SDF’s own lexical restrictions. We can use whatever word we
consider useful to annotate the constructs at the constructor level as well as
at the label level.
To better understand how the annotations must be included, and how they

represent an abstraction or language concept, let us analyse a well known
If-Then-Else conditional construct, present in almost every language:

"if" Expression "then" Block "else" Block "fi" -> If

The language concept underlying this conditional construct, can be struc-
turally represented according to Figure 4.6.

<If>
<condition/>
<trueblock/>
<falseblock/>

</If>

Figure 4.6: A Language Concept structure.

This representation (Figure 4.6) implies that regardless of syntax specific
characteristics, and considering the minimal conditions required to execute
the If construct, it is composed of a conditional expression condition, and
of two groups of instructions trueblock and falseblock. If the result of evalu-
ating the condition expression yields true, then what is inside trueblock will
be executed, otherwise, what is inside falseblock will be executed. In this
approach, the If construct, or concept, does not care about what is really
inside its internal components. It is up to If’s internal components to evalu-
ate the information inside them as necessary. Reduced to the extreme, the If
component is aware only of the order of execution of its internal components,
and knows only how to perform a simple conditional test.
To build the language concept from the grammar construct, we use the

annotations. In our If example, the corresponding annotations are shown in
bold:

"if" condition:Expression
"then" trueblock:Block
"else" falseblock:Block "fi"

-> If {cons("If")}

It is rather straightforward in this example to see how the annotations
correspond exactly with the elements in the language concept in Figure 4.6.
There are other examples, though, where the relation between a construct
and a concept is less clear. Let us slightly modify the If example, to see how
the relations can change:

"if" Expression Alternatives "fi" -> If
THEN ELSE -> Alternatives

4.3 Automated Generation of Program Translators 65

"then" Statement* -> THEN
"else" Statement* -> ELSE

In this variation we have introduced additional non-terminal symbols: Al-
ternative, THEN and ELSE. The If structure has changed such that it is
no longer that straightforward to annotate the construct, according to our
needs. How to define the two required blocks trueblock and falseblock now
that we have only one symbol Alternatives? Of course in this case the easiest
and recommended solution is to modify the grammars to simplify them and
align them. If for some reason this is not possible for other cases, we can not
annotate certain symbols, having the following result:

"if" condition:Expression Alternatives -> If {cons(" If")}
THEN ELSE -> Alternatives
"then" then:Statement* -> THEN
"else" else:Statement* -> ELSE

Figure 4.7: An alternative If construct.

This combination of annotations will produce the language concept
<If>

<condition/>
<then/>
<else/>

</If>

which compared with the concept represented in Figure 4.6 remains struc-
turally the same. As you can see, though, there are name differences in
the internal elements: trueblock becomes then, and falseblock becomes else.
These differences were introduced on purpose, and in this case they are not
important, but they should be avoided. The concepts produced by the gram-
mar can be considered as a draft or template that will be later on personalised
by the translator designer. What is important to take into account at this
point are two things. First, the If concept will be created, therefore all the
languages that will implement a construct with this semantics, should an-
notate the construct with the same If name to allow the mapping. Second,
the productions Alternatives, THEN and ELSE will not produce concepts,
because of its lack of constructor annotations. They will be absorbed by the
declaring production.

4.3 Automated Generation of Program
Translators

In Section 4.1.1 we already provided a schematic overview of how the AP-
PAREIL meta-tool generates program translators. In this section we explain

66 Language to Language Translation

step by step how to use that tool to produce a translator.

1. Make the annotated syntax definitions of source and target languages
that will be given as input to the APPAREIL meta-tool.

a) For every production in the source language, find an equivalent
production in the target language, if available, and annotate both
productions with the same annotation in the cons() section.

b) Link the left-hand sides of both productions. For every non-
terminal in the source production, label the corresponding non-
terminal in the target production with the same attribute name.
Note that this is only needed when non-terminals cannot be matched
by order of appearance, which is the default behavior.

c) When possible keep your grammars simple. If a better alignment
can be done by modifying some productions, for instance removing
unnecessary symbols, do it.

2. Run the APPAREIL meta-tool with the obtained language specifica-
tions as input.

a) Feed the system with the annotated grammars of source and tar-
get language. Based on this information the APPAREIL meta-
tool will then build an Asf+Sdf translator from source to target
(see section 4.3.1 for more detailed information).

b) In addition, the meta-tool produces warnings about, for instance,
unmapped productions.

3. Manual intervention: adding additional transformation rules.
In the last step, we need to manually handle cases where mappings
could not be derived automatically. We do so by manually adding
rewrite equations to the translator, as will be explained in more detail
in Section 4.3.2. The warnings generated by the meta-tool are useful
here.

4.3.1 Transformation Example
We now illustrate the approach by deriving a translator for the toy languages
shown in Figures 4.8 and 4.9. In those figures, we already performed step
1 of our approach. Both grammars have been annotated by the user with
constructor information and labels.
When given these grammars as input, the APPAREIL meta-tool (step 2)

starts by relating productions in the source and target grammars that have
the same constructor attribute. The non-terminal at the right-hand side of
the production in the source grammar becomes the argument of a transla-
tion function f, while the right-hand side of the production in the target
grammar becomes the result of that translation function. For example, for

4.3 Automated Generation of Program Translators 67

module Source
context-free syntax
"proc" b:StatsS "endproc" -> StartS {cons("Start")}
"if" e:Expr "then" b:StatsS "fi" -> IfS {cons("IfThen")}
"if" Expr "then" StatsS

"else" StatsS "fi" -> IfS {cons("IfThenE")}
"while" e:Expr "do" b:StatsS "od" -> WhileS {cons("While")}
if:IfS | w:WhileS | e:Expr -> StatS {cons("Stm")}
it:StatS* -> StatsS {cons("Block")}
"true" | "false" | "nil" -> Expr {cons("Expr")}
"not" Expr -> Expr {cons("Expr")}

Figure 4.8: A part of the Source grammar.

module Target
context-free syntax
"start(" b:BlockT ")" -> StartT {cons("Start")}
"eval(" e:Expr "," b:BlockT ")" -> EvalT {cons("IfThen")}
"loop(" e:Expr "," b:BlockT ")" -> LoopT {cons("While")}
if:EvalT | w:LoopT | e:Expr -> InstT {cons("Stm")}
it:InstT* -> BlockT {cons("Block")}
"true" | "false" | "nil" -> Expr {cons("Expr")}
"not" Expr -> Expr {cons("Expr")}

Figure 4.9: A part of the Target grammar.

the productions with constructor attribute cons("IfThen"), a translation
function f(IfS) -> EvalT is derived.
Next, the rewrite equations for the transformation system are generated

based on the left-hand sides of both productions. For the translation function
f(IfS) -> EvalT we thus obtain the following rewrite equation:

f(if $Expr$ then $StatsS$ fi) = eval($Expr$, f($StatsS$))

where every non-terminal NT has been replaced by a variable NT. For every
non-terminal, the corresponding translation function is invoked recursively.
The signatures of the translation functions (Figure 4.10) and the corre-

sponding rewrite equations (Figure 4.11) are derived automatically from the
grammars in Figures 4.8 and 4.9.

f(StartS) -> StartT
f(IfS) -> EvalT
f(WhileS) -> LoopT
f(StatsS) -> BlockT

Figure 4.10: Signatures of different translation functions.

68 Language to Language Translation

f(proc $StatsS$ endproc) = start(f($StatsS$))
f(if $Expr$ then $StatsS$ fi) = eval($Expr$, f($StatsS$))

f(while $Expr$ do $StatsS$ od) = loop($Expr$, f($StatsS$))
f(IfS $StatS*$) = f(IfS) f($StatS*$)

f($WhileS$ $StatS*$) = f($WhileS$) f($StatS*$)
f($Expr$ $StatS*$) = $Expr$ f($StatS*$)

Figure 4.11: Rewrite equations for translation functions.

4.3.2 Handling Mismatches: Manual Intervention
Finally, we illustrate step 3 of the approach. We handle all cases for which the
meta-tool failed to establish a mapping between productions. For each miss-
ing construct in the source grammar an extra rewrite equation needs to be
added to the automatically derived translator. For example, the production
with constructor attribute "IfThenE" in Figure 4.8 has no equivalent produc-
tion in the target grammar of Figure 4.9. Manual intervention is needed to
tell the translator how to handle this language construct. A possible solution
for this particular example is:

1. Modify the translation function for IfS by changing the cardinality of
the resulting type: f(IfS) -> EvalT+

2. Add an equation to rewrite the pattern:
f(if $Expr$ then $StatsS$ else $StatsS2$ fi) =
eval($Expr$, f($StatsS$))
eval(not $Expr$, f($StatsS2$))

After this manual intervention we obtain a complete translator that can
translate any program in the source language to the target language. For
instance, the program in the left column of Figure 4.12 gets translated to the
one on the right.

Input program in source language Translated program
in target language

proc start(
if true then nil else nil fi eval(true, nil)

eval(not true, nil)
while true do nil od loop(true, nil)
endproc)

Figure 4.12: A translation example.

4.3.3 Translation Semantics
Finally, the process of first building a translator, and then using it to translate
source code, is formalised in this section.

4.3 Automated Generation of Program Translators 69

Domains

CFG = Context-Free Grammars, defined in Section 2.6.1 on page 28

AG = Annotated Grammars, defined in Section 2.6.2 on page 29

RTG = Regular Tree Grammars, defined in Section 2.6.3 on page 29

SC = Source Code, is the set of strings representing programs that can be
derived by some CFG grammar. We note SCg the set of source code
strings sc ∈ SC that adhere to grammar g ∈ CFG.

CST = Concrete Syntax Trees, is the set of trees representing programs
that are a valid derivation of some annotated grammar in AG. We
note CSTag the set of trees cst ∈ CST derived from a context-free
grammar ag ∈ AG.

AST = Abstract Syntax Trees, is the set of trees representing programs
that are a valid derivation of some regular tree grammar in RTG. We
note ASTrtg the set of trees ast ∈ AST derived from a regular tree
grammar rtg ∈ RTG.

Operations

To produce a translator we have as main input two context-free grammars:
one for the source language and the other for the target language of the
translation. Before building the translator we need to produce annotated
and regular tree grammars for each context-free grammar. We first present
the two functions required to produce these additional grammars, and then
we show how to produce the translator.

• annotate : CFG→ AG

annotate(g) = ag, is a manual function where the user annotates a
context-free grammar by hand, as previously described in Section 4.2.

• build_rtg : AG→ RTG

The build_rtg function builds a regular tree grammar from an anno-
tated grammar. The purpose of this function is to abstract the anno-
tated grammar into a grammar describing the abstract syntax trees.
The set N of non-terminals, as well as the start symbol s are are passed
directly from the AG to the RTG. The set of annotations A in the AG
becomes the alphabet of tree constructors of the RTG. The main task
of the function is to build the set of productions P ′ of the tree gram-
mar. This is done thanks to the application of a tree transducer (see
Section 2.6.4 on page 30) rtgp to every production in the annotated
grammar. rtgp transforms the structure of each annotated production
and gets rid of terminal symbols.
build_rtg(Σ, N, s, P,A, F) = (A,N, s, P ′), where:

70 Language to Language Translation

P ′ = {rtgp(p) | p ∈ P}
Foreach p = (n→ x1, ..., xn) ∈ P :

If (p 7→ a) ∈ F , then
rtgp(p) = n → a(y1, ..., yk) where yi, ..., yk is the largest
subsequence of x1, ..., xn where every yi ∈ N

else rtgp(p) is undefined.

A program-to-program translator is represented by the function translate.
To obtain the translate function we use several auxiliary functions that
process the input source and target grammars. We start by defining the
translate function, and define the auxiliary functions as needed.

• translates,t : SCs → SCt

translates,t(scs) = sc′t, translates a program scs adhering to grammar
s into a program sc′t adhering to grammar t. A translator function is
the composition of four auxiliary functions:

translates,t =
unparserrtgs,agt ◦ trwrtgs,rtgt ◦ cst2astags,rtgs ◦ parserags

• parserag : SCag → CSTag

A parser is a function specific to a grammar ag ∈ AG. It will process
only source code sc ∈ SCag, producing concrete syntax trees cst ∈
CSTag. Parsers are built by the auxiliary function build_parser :
AG→ (SCag → CSTag)
parserag(sc) = cstag where sc ∈ SCag

build_parser(ag) = parserag

The build_parser function uses an external tool to build a parser.
This external tool will depend on the specific kind of grammars
used to specify the languages, which in our approach are SDF
grammars (See Section 2.7 on page 31). SDF grammars are pro-
cessed with the set of tools related to SGLR [118], to produce
a specific parser: parserag, for the grammar ag ∈ AG given as
input.

• cst2astag,rtg : CSTag → ASTrtg

This tree transducer transforms a concrete syntax tree cst ∈ CSTag
into an abstract syntax tree ast ∈ ASTrtg, where ag and rtg are re-
lated by the function build_rtg(ag) = rtg. cst2astag,rtg requires the
auxiliary function ann : CSTag → A, where A is the set of annotations
in AG.
cst2astag,rtg(cstag) = astrtg, is defined as (for brevity we drop the
suffixes of the function in the definition below):

4.3 Automated Generation of Program Translators 71

if cst is a tree x(x1, ..., xn), then
cst2ast(cst) ={ the tree ann(x)(cst2ast(x1), ..., cst2ast(xn)) if x ∈ Nag

the empty tree if x ∈ Σag
the leaf node x() otherwise∗

(∗ x is a constant or lexical token. e.g. a variable’s name)

ann(n) = a

For a given ag ∈ AG, for every node n inside cst ∈ CSTag, if n is
a derivation of production p, and p is annotated with annotation
a, then ann(n) = a, and we say that n is decorated with a.

• trws,t : ASTs → ASTt

A term rewriting system is a function specific to a pair of grammars
s, t ∈ RTG, and therefore it will process only abstract syntax trees
ast ∈ ASTs, producing abstract syntax trees ast′ ∈ ASTt. trw is built
by the auxiliary function build_trw : RTG×RTG→ (AST → AST).
trws,t(asts) = ast′t, where:

the ast received as parameter adheres to the regular tree grammar
s, and the resulting ast′ adheres to the regular tree grammar t.
ast is assumed to be functionally equivalent to ast′: ast ≈ ast′.

build_trw(s, t) = trws,t

This is a manual function where the user builds by hand a term
rewriting system, that adapts the constructs in a source language
s, that are not compatible with a target language t.
Having s, t ∈ RTG, for every construct in the language s that has
no compatible construct in t , the user must include a transfor-
mation rule into the term rewriting system that will be produced
as output.

• unparserrtg,ag : ASTrtg → SCag

The function unparser is a tree transducer that receives as parameter
an abstract syntax tree astrtg that is a valid derivation for the tree
grammar rtg, and produces as output a string [a, b, c, ...], representing
a source code scag that adheres to an annotated grammar ag. The two
grammars rtg and ag are bound by the relation build_rtg(ag) = rtg

unparserrtg,ag(astrtg) = scag, is defined as (for brevity we abbreviate
unparserrtg,ag as unp in the definition below):

72 Language to Language Translation

unp(ast) =

[x]

if ast is the leaf node x()

[α∗0, unp(x1), α∗1, ..., α
∗
n−1, unp(xn), α∗n]

if ast is a tree of the form x(x1, ..., xn)

1. For the base case, when the ast node is a lexical token x() (e.g.
the name of a variable), unparser produces directly the value of
the token into the resulting string.

2. When the ast node is a subtree, the produced string needs to
combine the information in the node with information that comes
from the production from which the node was originally derived.
To combine this information, the following relationships related
with the ast being processed hold:
– The root node x of the ast (its constructor, more specifically)

corresponds to an annotation in the set A in ag.
– There is a mapping p 7→ x ∈ F , where F is the set of mappings

from productions P to annotations A in ag.
– The production p in this mapping is equal to
y → α∗0, y1, α

∗
1, ..., α

∗
n−1, yn, α

∗
n, where each α∗ represents

a possibly empty list of consecutive terminal symbols, and
where by construction each yi ∈ Nag corresponds to one of
the subtrees xi in the ast

– The symbols α∗0, ..., α
∗
n in the set of terminals Σ in ag, will

be included in the output string without further processing.

With this set of functions we can produce a translator for a source and
target languages inside a given language family, provided that for every pro-
duction either a direct mapping was established, or a transformation function
to handle the mismatch was provided. The semantic definitions provided do
not consider cases where these two conditions do not hold and partial trans-
lators need to be generated.

4.4 Control Flow Semantics
Program translation assumes some form of equivalence between the original
and the translated program. Ideally, we would hope to have a full equiv-
alence between both versions of a program. Realistically, considering that
two different languages rarely offer exactly the same abstractions and that for
those incompatible constructs a –probably imperfect– transformation must
be implemented, our hopes of equivalence must be tuned down somewhat.
Program translation is a process where you need to transform the original

structure of a program. For simple cases, the required transformation is
mainly syntactical, and you just need to change keywords or symbols. For

4.4 Control Flow Semantics 73

these simple cases, as shown in Section 4.2, it is the designer of the translator
who provides, as a postulate, the equivalence of two constructs by mapping
their structures on a one-to-one basis.
For more complicated situations, the transformations can affect the seman-

tics and the structure of the constructs, for instance if these constructs are
not present in the target language: if a language does not natively support
a construct that provides specific semantics, it may need to be implemented
through complex combinations of other language constructs to simulate the
required behaviour. These adaptive transformations, and their overall impact
on the program, cannot always be assumed to be correct by construction,
like we did with the previous case.
In the worst case, the semantic impedance mismatch may be so important

that it is not possible to implement a proper translation at all.
Because of these problems, the translation process is often not fully auto-

matic and requires some manual intervention to deal with the more complex
cases. In that case, a way of verifying whether the transformations are cor-
rect is desired. This boils down to checking whether the original and the
translated program are functionally equivalent or not.
Considering though, that full functional equivalence verification of pro-

grams is an undecidable problem [104], we need to weaken the requirements,
and introduce a simplified form of equivalence.
Among the many authors that have tried to solve the full equivalence ver-

ification problem by adopting a simplified equivalence testing, we mention in
the following paragraphs those that provide inspiration to our own approach.
Podlovchenko [94] reduces the equivalence problem by modeling programs

as graphs specifying the succession relation between the instructions of the
program. Next he defines a set of logging instructions that he maps against
certain relevant nodes in the graph. Then he traverses the graph register-
ing the history of abstract execution of the different instructions mapped
with each node. Finally, his equivalence verification between two programs
is established by comparing the history of the traversal of the two graphs
modeling the programs.
Mason et al. [73] show another simplification of operational equivalence,

treating programs as black-boxes, observing only the produced results re-
gardless of how they were produced. Mason and his colleagues then extend
the operational equivalence of programs to statements and expressions, using
a constrained equivalence based on contextual assertions.
Similarly, Pitts [92] adopts a structural approach largely based on syntax.

Pitts focuses on contextual equivalence of expressions, defining two phrases
of a programming language as contextually equivalent if any occurrences of
the first phrase in a complete program can be replaced by the second phrase
without affecting the observable results of executing the program.
Finally Veerman, in his work on Cobol programs transformation [121],

check the correctness of the implemented transformations by drawing the
control flow graphs for the two sides of some specific rewriting rules, and

74 Language to Language Translation

comparing the two graphs to see if they are bisimilar.
Our own simplification to the equivalence verification problem is the result

of adapting the ideas form the authors we have mentioned, to our specific
domain of Operations Languages. Operations Languages are used to de-
scribe high-level goal-oriented activities. To describe these activities, the
procedures designed with these OLs make use of elementary instructions like
telecommands and telemetries. Telecommands are uploaded to the space-
craft to execute an action, and telemetries are measurements received from
the spacecraft’s sensors. These elementary instructions are specific and de-
pendent on the spacecraft, and not on the operations language used to design
the procedure. What is specific to the language is how it controls the flow
of execution of these instructions.
If we translate a procedure from some operations language to another, the

control-flow instructions specific to the language may change depending on
what control-flow primitives are available. The elementary instructions, on
the other hand, must always be the same and they must respect the same
order of execution both in the source and in the target language.
This dependency on the control-flow instructions provided by each lan-

guage made us focus on how different operations languages manage control-
flow, and made us adopt a control-flow semantics to verify the equivalence
of translated procedures.
More specifically, since the semantics of operation languages is essentially

a control-flow semantics, the approach we follow is to create a Labelled Tran-
sition System (LTS) –see Section 2.9.2 on page 35– for both the original and
the translated program, based on the control-flow specifications of each lan-
guage. Then we pass these two LTSs to the CADP Bisimulator tool [13], and
ask it to check for equivalence, more specifically weak bisimilarity [108], of the
two labelled transition systems. Finally, in case the bisimulation cannot be
established, we analyse the trace produced by the CADP Bisimulator and we
present to the user the graphs and the source code, where markers show the
problems. In other words, for our domain of operations languages we reduce
the problem of functional equivalence verification to the simpler problem
of verifying observation equivalence (weak bisimulation) of the control-flow
graphs of two programs.
To create the required Control-Flow Graph (CFG) , and later on its cor-

responding LTS, independently of the specific language used to write the
programs, we use a small domain-specific language that can be attached to
every grammar as annotations. This DSL, that we have named the Control-
Flow Semantics Language (CFSL), provides the required primitives to build
a CFG representing the control-flow semantics of programs written in im-
perative languages like, for instance, those in our family of OLs.
Our technique to generate the control-flow graphs of programs, even though

conceived with OLs in mind, can be thought as generic to any imperative
language rather than specific to operations languages. It provides a set of
generic instructions that allow to define the arcs and edges of a control-flow

4.4 Control Flow Semantics 75

graph, based on the nodes of the abstract syntax tree of a program. Our
approach to generate these control-flow graphs is similar to that of other
frameworks, like for instance DeFacto [11], that uses a set of rules attached
to a grammar to extract from a program a set of facts related with its control-
flow structure. These facts can be used later on to generate a control-flow
graph. JastAdd [39] (specific to Java) and DMS [12] are other examples of
frameworks capable of generating control-flow graphs from grammar specifi-
cations.

4.4.1 Introductory Example.
Before presenting in detail the different parts of our DSL, Figure 4.13 gives
a small, intuitive example of how to define the control-flow semantics of a
simple program.

Semantics (CFSL)

`while' `(' cond:Expression `)'
`do' block:Block `enddo'
 -> While {cons(`WhileDo')}

Syntax (SDF)
WhileDo

(IN,cond);
(cond,TRUE,block);
(cond,FALSE,OUT);
(block,IN);

Semantics (CFSL)

`if' `(' cond:Expression `)'
`then' then:Block
`else' else:Block `endif'
 -> If {cons(`IfThenElse')}

Syntax (SDF)
IfThenElse

(IN,cond);
(cond,TRUE,then);
(cond,FALSE,else);
(then,OUT);
(else,OUT);

Source-code (OL)
Program

Control-flow graph (CFG)

while(B) do {
 if (C) then X1 else X2 endif;
 if (D) then Y1 else Y2 endif;
}
AST

SDF

CFSL

Figure 4.13: An introductory example to the CFSL.

We can see to the left of the figure two language components: a WhileDo
component defining a loop construct, and an IfThenElse component defining
a conditional construct. We use the term language component to refer to an
extended description of a language construct, comprising besides its syntax,
also a semantics definition. In this representation of the language components
we have clearly divided the syntactic SDF definition from the more semantic
CFSL definition, at the top and the bottom of each component respectively.
To the right of the figure we see the small program of our example in a box

76 Language to Language Translation

with three different representations. At the top of the program box we have
the source-code representation in some operations language. The source-code
is parsed using the SDF syntactic definitions in the components, producing
an AST of the program. This AST, which is the representation in the middle
of the program box, is processed using the components’s CFSL semantic
definitions, producing the CFG representation of the program, shown at the
bottom of the box.
Parsing the source-code of the program to obtain an abstract syntax tree

is done thanks to SDF grammars and the SGLR parser. Since this part of
the process is not central to our work, we do not elaborate on that.
This section is focused rather on how, from the AST of a program, we

obtain its CFG that can be afterwards represented as an LTS. The process
is sketched in Figure 4.14.

Program

Block

WhileDo

B Block

If If

Block BlockC Block BlockD

X2X1 Y2Y1

Semantics (CFSL)
...
Syntax (SDF)

WhileDo

(IN,cond);
(cond,TRUE,block);
(cond,FALSE,OUT);
(block,IN);

Semantics (CFSL)
...
Syntax (SDF)

IfThenElse

(IN,cond);
(cond,TRUE,then);
(cond,FALSE,else);
(then,OUT);
(else,OUT);

IN

OUT

cond

blockblock

IN

OUT

cond

block"in"
"out"

Figure 4.14: An introductory example to the CFSL.

First we perform a preorder traversal of the AST. For each node we reach
during the traversal, we look into its associated language component for the
corresponding CFSL definition, as shown for the WhileDo node. Thanks to
the CFSL definition, we build the CFG subgraph associated with that node.
Each child of the AST node we are processing also has a subgraph associated
with it. This is shown by the dotted lines joining the cond and the block
parts of the WhileDo’s AST and CFG representations. Each subgraph will
be in turn expanded when its corresponding AST node will be traversed, as
we can see with block, inside the processed WhileDo node. Each of the If
children inside block are processed thanks to their CFSL definition and the
resulting subgraphs are included inside the previously generated block node.
Let us focus now on the CFSL instructions at the bottom of the WhileDo

4.4 Control Flow Semantics 77

Semantics (CFSL)

`while' `(' cond:Expression `)'
`do' block:Block `enddo'
 -> While {cons(`WhileDo')}

Syntax (SDF)
WhileDo

1. (IN,cond);
2. (cond,TRUE,block);
3. (cond,FALSE,OUT);
4. (block,IN);

Figure 4.15: A WhileDo component.

component in Figure 4.15. The four numbered instructions (1 to 4) define
each an edge between two nodes. These instructions were defined by the
user manually, when designing the annotated grammar for the language.
The nodes, and the edges between nodes, will be generated thanks to these
instructions, taking as input the subtree which was linked with the compo-
nent when the AST was created. The keywords IN, in instructions 1 and 4,
and OUT, in instruction 3, define the initial and final nodes of the subgraph.
IN and OUT represent the entry and exit points of the subgraphs generated
by every component, and are the links with the rest of the CFG. The key-
words TRUE and FALSE define the labels of the edge. Instructions with three
elements, as in instructions 2 and 3, can be seen as guarded transitions: the
path can be followed only if the condition (TRUE or FALSE) holds.
The intuition is that for every node reached during the traversal of an

AST, we proceed as follows:

• For every child of the current AST’s node, crate a new subgraph.

• For every subgraph, define "IN" and "OUT" as its corresponding entry
and exit nodes.

• For every CFSL instruction, create and edge between the two subgraphs
referenced by the instruction.

• For every guarded instruction (a three elements instructions), label the
corresponding edge with the element in the middle of the instruction.

Graphically, the control-flow of the WhileDo example can be expressed as
in Figure 4.16. This rather intuitive graphical notation will be used to better
explain the control-flow graph definitions in the components, and it will be
explained in Section 4.4.2.

4.4.2 Graphical Notation.

Prior to the detailed explanation of the Control-Flow Semantics Language,
CFSL, this section presents the graphical notation we will use to ease the

78 Language to Language Translation

WhileDo

Branch block

cond

IN

OUT

True

False

Figure 4.16: The graphical notation for the control-flow semantics of the
WhileDo component.

explanation of the different constructs and instructions that constitute the
languages we work with. We use this graphical notation to provide a more
intuitive understanding of the control-flow inside the different instructions
and their interactions. The graphic elements we use are shown on Figure 4.17.

IN OUT

Statement

List of Statements

Branch

True

a)

b)

c)

e)

d)

f)

g)

Figure 4.17: The elements in the Control Flow Graph Semantics notation.

a) The circled connectors IN and OUT delimit a construct, and pass or
receive the control flow to or from another construct. IN receives the
flow coming from the previously executed instruction, and OUT sends
the flow to the following instruction.
For instance, a list of instructions: print "a"; print "b"; print
"c"; will be represented as in Figure 4.18.

b) The box Statement designs any language element that will execute an
instruction either directly, like a literal, or indirectly through its inner
statements.

4.4 Control Flow Semantics 79

IN

OUT

print "a"

IN

OUT

print "b"

IN

OUT

print "c"

Figure 4.18: A sequence of print instructions.

A typical example of a statement is an expression, like for instance:
A + B, where the top expression is an addition, and the two inner
expressions are identifiers, as shown in the following abstract syntax
tree representation:

+
/ \

A B

While this representation is easy to understand, it doesn’t say anything,
at least explicitly, about the order of execution of the different parts.
Defining the ‘+’ instruction, in control-flow notation is presented in
Figure 4.19, where part (a) shows the Addition construct. For this
specific example we suppose that the two expressions that are executed
first, are Identifiers, represented by the construct in part (b). Once the
two expressions are evaluated, and their return values retrieved, the
Add primitive function executes the mathematical addition.

IN

OUT

Expression

IN

OUT

Identifier

Expression

Add

a)

b)

Figure 4.19: An addition expression.

80 Language to Language Translation

For those cases where the statements in our languages are expressions
or primitive functions processing values, they will not be drawn in de-
tail. In our specific case of operations languages, we give more impor-
tance to those statements affecting control-flow, like an IF-Then-Else
construct.

c) A List of Statements, represented by the double-lined box, denotes a
particular kind of statement, composed of other statements that will
be executed sequentially but independently, as in Figure 4.20. No
statement inside the list requires the execution or the presence of other
statements from the list, from a control-flow point of view. List of
Statements are indeed any block, like the then or else parts inside an
IfThenEse statement. Even if they can be modeled as a single symbol
Block, we know that inside this symbol we have a list of statements
that will be executed sequentially. The use of this symbol is not strictly
necessary, but it can provide more exactitude to some definitions.

IN

OUT

List

IN

OUT

Statement

...

Statement

Figure 4.20: A list of statements.

d) The diamond Branch element conditionally sends the flow of control
to one of the two possible paths True or False. This element depends
on the existence of a boolean value provided by the execution of an
expression immediately before the Branch. A typical use of this element
is when defining an If-Then-Else component, as depicted in Figure 4.21.

e) The single line arrow represents the direction of a normal flow of con-
trol. It shows the order of execution of the elements.

f) The labelled single arrow represents a conditional path. In general it
is used together with the diamond element (e), which will direct the
control flow through the corresponding arrow, depending on its label.

4.4 Control Flow Semantics 81

OUT

IN

Boolean

Branch

ElseThen

True False

Figure 4.21: Using the Branch element.

g) The dotted line arrow is in general used with the double-line box (List
of Statements) and denotes the possibility that some statement inside
the list breaks the normal sequential flow, and exits the list. It is used
to model break and continue statements.

4.4.3 The Appareil Control-Flow Semantics Language,
CFSL.

Recalling our introductory example from Section 4.4.1, our system is com-
posed of language components where we group the syntax and semantics of
each construct present in the grammar of a language. Figure 4.22 shows the
language component for the well known IfThenElse construct.

Semantics (CFSL)

`if' `(' cond:Expression `)'
`then' then:Block
`else' else:Block `endif'
 -> If {cons(`IfThenElse')}

Syntax (SDF)
IfThenElse

(IN,cond);
(cond,TRUE,then);
(cond,FALSE,else);
(then,OUT);
(else,OUT);

Figure 4.22: An IfThenElse language component.

The component in the figure is formed of two sections. At the top of the
figure we have the syntax section, which shows the annotated grammar of
the construct. At the bottom of the figure there is the semantics section,
where we find the CFSL instructions for the component.
Regarding the syntax section, what is important to notice here are the

annotations used to label the symbols in the grammar, like cond for the

82 Language to Language Translation

Expression symbol, or then and else for the two Block symbols. These
annotations are references that can be used in the semantics section to point
to the corresponding subtrees in the Abstract Syntax Tree (AST) that hold
the information to build the Control-Flow Graph (CFG).
In this part of the thesis we will focus on the semantics section of the lan-

guage components, where we have the user-defined CFSL instructions. The
CFSL instructions are tuples defining a transition of the LTS. The param-
eters in those tuples are either labels defined in the syntax section of the
component, or special functions or keywords specific to the CFSL, that will
be described later in this section.
We initiate the definition of our language by presenting the SDF syntax of

CFSL. Remember that SDF has a functional style where the left-hand side
implies the right-hand side, which is the inverse of BNF. Next we present
the semantic domains and the required equations defining the semantics of
CFSL.

4.4.3.1 CFSL Syntax

CFSLinstruction* -> CFSLprogram

Transition* -> CFSLinstruction

ComplexTransition -> Transition
DirectTransition -> Transition
GuardedTransition -> Transition

"(" Instruction ")" -> ComplexTransition
"(" State "," State ")" -> DirectTransition
"(" State "," Guard "," State ")" -> GuardedTransition

"TRUE" | "FALSE" -> Guard
"IN" | "OUT" -> State
AbstractSyntaxElement -> State {1}

"default()" -> Instruction
"skip()" -> Instruction
"trace()" -> Instruction
"label(" Marker ")" -> Instruction
"jump(" Marker ")" -> Instruction
"ctxjump(" Marker ")" -> Instruction
"ctxlabel(" Marker ")" -> Instruction
String -> Marker {2}

{1} An AbstractSyntaxElement can be any annotation defined
in the <Syntax> section of the component.

4.4 Control Flow Semantics 83

{2} A Marker can be any String not defined as an existing
AbstractSyntaxElement.

4.4.3.2 CFSL Semantics

In this section we describe more formally how, thanks to the Control-Flow
Semantics Language attached to a Regular Tree Grammar (see Section 2.6.3
on page 29), we can build the Control-Flow Graph, CFG (see Section 2.9.1
on page 35), for an Abstract Syntax Tree representing a program.

Domains

CFG = Control-Flow Graph. A Control-Flow Graph, CFG = (V,L,A, s0)
see Section 2.9.1 on page 35), defines how the control, during the ex-
ecution of a program, is passed between nodes of an abstract syntax
tree, AST.

CFRTG = Control-Flow RTG. A CFRTG grammar is an RTG grammar
whose productions have been annotated with a set of control-flow in-
structions. A CFRTG grammar holds, in its annotations, a CFSL
program defining how to build a control-flow graph for every AST that
is a valid derivation of that grammar.
A CFRTG is a tuple (Σ, N, s, P, F), where:
• Σ, N, s and P are defined as in a standard RTG (see Section 2.6.3
on page 29)

• F is a set of mappings P 7→ CFSL, from productions to CFSL
instructions (the CFSL domain is defined later on in this section).

AST = Abstract Syntax Tree. A program is represented by its Abstract
Syntax Tree, AST. Every node in an AST denotes a program instruc-
tion.
Every node s of an AST can itself be considered as a tree with root
node s and subnodes s1, . . . , sn (which can in turn be considered as
trees). We use the notation s(s1, . . . , sn) to denote this node s with its
subtrees s1, . . . , sn. We will refer to s1, . . . , sn as the internal nodes of
s. A node without internal nodes (a leaf in the tree) will be denoted
as s().
To define the CFSL semantics of a full AST program, we will first define
the semantics of every node, in terms of the flow of control between its
internal nodes. After that, the semantics of each individual node needs
to be connected to that of other nodes. To achieve that, for every node
we introduce two artificial internal in and out nodes. They represent
the start and end points of the control flow inside the node. For a
given node s(s1, ..., sn), we thus implicitly have s(sin, s1, ..., sn, sout).
We will use these internal in and out nodes to connect the semantics

84 Language to Language Translation

of one node to that of another, simply by connecting the out node of
one node to the in node of another, as illustrated by the picture below,
which sequentially connects the control-flow of nodes r, s and t:

s1 sn

s

...

sin sout

...r1 rn

r

...

rin rout

... t1 tn

t

...

tin tout

...

There is a one-to-one relationship between the nodes s in an AST
derived from an RTG, and the productions p in that RTG. Since this
relationship applies also to their internal nodes, and since we have
introduced artificial in and out nodes, we also need to create artificial
IN and OUT symbols corresponding to these in and out nodes. In
other words:
∀s(sin, s1, ..., sn, sout) ∈ AST,
∃p(IN, p1, ..., pn, OUT) ∈ RTG corresponding to s
such that sk corresponds to pk, for k ∈ {1, ..., n}
and we assume that sin corresponds to IN
and sout corresponds to OUT

How an AST node organises its control-flow internally, is described
thanks to a set of CFSL instructions, that is attached to the grammar
for which the AST is a valid derivation. For every node in such an AST
there is a production in the respective grammar. For every production
there is a set containing zero or more CFSL instructions.

DAST = Decorated AST. A decorated AST is a tuple DAST =
(AST, FD,CD), where:

• AST is an abstract syntax tree.
• FD is a set of mappings s 7→ (v, l, w) of nodes in the AST to arcs

between nodes in that AST.
The idea is that, for each given node s the mapping FD defines
the control flow for that node s in terms of its internal nodes. The
set FD is built from the CFSL instructions included in the RTG
that derived the AST, as will be explained later. By building the
set FD we build the arcs that will form the CFG. In other words,
once some DAST has been constructed completely, the codomain
of FD contains all the arcs for a given CFG.

• A set CD of mappings s 7→ (m 7→ s′), where s, s′ are nodes of the
AST, s is the parent of s′, and m ∈Markers 3.

3according to the CFSL Syntax

4.4 Control Flow Semantics 85

Without going into the details now, this set CD is needed to
provide anchors for contextual jumps, as defined later on in this
section by the instructions ctxlabel and ctxjump.

CFSL = CFSL Instructions. An instruction in CFSL defines the flow of con-
trol between internal symbols of the production p ∈ RTG where the
instruction is defined. For instance, if we look at the example in Fig-
ure 4.22, the second CFSL instruction (cond, TRUE, then) declares
that the control will flow from the cond expression to the then block if
the condition is TRUE.
In general, a CFSL instruction is a tuple with one, two or three ele-
ments. In a tuple (ps, l, pt) with three elements, defined inside some
production p, ps and pt are symbols internal to p, and l is a label that
can be true, false or ε (empty). (ps, l, pt) declares that after having
processed the internal flow of ps, control will pass to pt. This transi-
tion of flow will happen only if the value of label l was produced as the
result of processing the flow of ps.
Tuples (ps, pt) with two elements are simply a shorthand notation for
the tuple (ps, ε, pt) with an empty label. We assume, therefore, that
every tuple with two elements is implicitly transformed into its corre-
sponding tuple with three elements.
Finally, tuples (c) with one element, represent complex instructions like
default(), skip(), and so on. To define the semantics of such complex
instructions, they will be expanded into tuples with three elements
representing simple instructions 4, as will be shown further in this
section.

Operations

A control-flow graph CFG is built by the function build_cfg from the arcs
defined in a decorated abstract syntax tree. We first define the build_cfg
function, and the decorate function that builds the DAST. The required
auxiliary functions will be defined as needed.

• build_cfg : DAST → CFG

The build_cfg function takes as input a decorated abstract syntax tree
dast = (ast, FD,CD) ∈ DAST , extracts the arcs from the set FD,
and consolidates them into the CFG:
build_cfg(dast) =

initial(r)⊕ a1 ⊕ . . .⊕ ai ⊕ . . .⊕ an
where r is the root node of ast
and {a1, ..., an} = {(v, l, w) | s 7→ (v, l, w) ∈ FD}

4Complex instructions are represented in the CFSL Syntax as productions for the symbol
“Instruction”

86 Language to Language Translation

The auxiliary function initial : V ertex → CFG creates, from a given
AST node r, a CFG containing only that node as starting node:
initial(r) = ({r}, ∅, ∅, r)
The auxiliary function ⊕ : CFG×Arcs→ CFG, adds an arc (v, l, w)
to a CFG:
(V,L,A, s0)⊕ (v, l, w) = (V ∪ {v, w}, L ∪ {l}, A ∪ {(v, l, w)}, s0)

• decorate : AST → DAST

To build a DAST from an abstract syntax tree, the decorate function
essentially needs to construct the set FD of mappings s 7→ (v, l, w) of
nodes in the AST to arcs between nodes, and the set CD of mappings
s 7→ (m 7→ s′) for context jumps.
To build the set FD, using some auxiliary functions, we collect all
CFSL instructions and convert them to arcs between AST nodes. Note
that complex CFSL instructions will first need to be expanded into
more simpler ones.
To build the set CD, we need to add, for each CFSL instruction of
the form ctxlabel(m, s′), a mapping s 7→ (m 7→ s′) from the node s
having that instruction, to a mapping from the contextual label m to
the internal node s′ , where s is a parent node of s′. This label m
can be reached by any node t descendant of s (using a ctxjump(m)
instruction), which is the reason why we call it contextual label: it can
only be reached in the context of the AST node where it was declared.
Formally, for a given ast, we have :
decorate(ast) = (ast, FD,CD)
where FD and CD are defined as follows:
FD =

⋃
s node of ast∧a∈cfsl(derived(s))

expand(s, subst(s, a))

CD = {s 7→ (m 7→ s′) | s, s′ nodes of ast ∧ parent(s′) = s ∧
ctxlabel(m, s′) ∈ cfsl(derived(s))}

The required auxiliary functions parent, derived, cfsl, subst and expand
are defined below.

• parent : AST → AST

parent(s′) =

 s if s(sin, s1, ..., sn, sout)
∧ s′ ∈ {sin, s1, ..., sn, sout}

ε otherwise (s′ is the root of the tree)

The parent function provides the parent node s for a node s′ internal
to s. If s′ is the root of the AST, nothing will be provided.

• derived : AST → P

4.4 Control Flow Semantics 87

The derived function relates nodes in an AST with the production in
a CFRTG from which that node was derived.
derived(s) = p, where p ∈ cfrtg is the production that was used to
derive s.

• cfsl : P → P(CFSL)
The cfsl function provides the set of CFSL instructions attached to a
production of the CFRTG grammar.
cfsl(p) = {a | p 7→ a ∈ Fcfrtg}

• subst : AST × CFSL→ CFSL

CFSL instructions are defined in terms of the productions in the gram-
mar. To add these instructions to the DAST, we first need to redefine
each instruction in terms of the AST node that was derived from the
production holding the instruction.
Since derived(s) = p, we know that:
s(sin, s1, ..., sn, sout) ∈ AST ,
p(IN, p1, ..., pn, OUT) ∈ RTG corresponding to s,
sk corresponds to pk, for k ∈ {1, ..., n} and
sin corresponds to IN and sout corresponds to OUT .
If a = (ps, l, pt) ∈ cfsl(derived(s)), we define:
subst(s, a) = (h(ps), l, h(pt))

where h(pi) =

sin if pi = IN
sout if pi = OUT
stin if pi = pt (last element of the tuple)
ssout if pi = ps (first element of the tuple)

Schematically, if we have a node s with a corresponding CFSL instruc-
tion (ps, l, pt), what we need to do is to link the inner node ss of s to
the inner node st of s (with label l). This is done by connecting the
out node of ss to the in node of st:

ss st

s

...

ssout

... ...

stin

• expand : AST × CFSL→ CFSL

expand complements the previously defined subst function. expand
only works over complex instructions, leaving the simple instructions
unchanged. For each complex instruction, expand will call an auxiliary
function with the same name as the instruction.

88 Language to Language Translation

expand(s, (a)) =

default(s) if a = default()
skip(s) if a = skip()
trace(s) if a = trace()
label(s,m) if a = label(m)
jump(s,m) if a = jump(m)
ctxlabel(s,m, s′) if a = ctxlabel(m, s′)
ctxjump(s,m, s) if a = ctxjump(m)
{a} otherwise

– default(s(sin, s1, ..., sn, sout)) =
{(sin, s1), (sn, sout)} ∪ {(si, sj) | 1 ≤ i < n ∧ j = i+ 1}

The default function creates a left-to-right traversal of the internal
nodes of s. It is generally used with lists of instructions that, at
design time, have an unknown size. If for some production p,
cfsl(p) = ε, then default() is assumed.

– skip(s) = {(sin, sout)}
skip provokes that the s subtree will not be included in the CFG.
skip is generally used with Comments that have no effect on the
control-flow of a program.

– trace(s) = {(sin, traces), (traces, sout)}
trace is a special instruction required when doing program equiva-
lence verification (see Section 4.5 on page 91). trace inserts in the
CFG a special vertex traces carrying specific information about
the AST node we are processing, and therefore about the source-
code instruction that is being referenced by the AST. The traces
vertices are the only vertices that will be considered as observable
actions when building the final LTS. All the other vertices will be
treated as τ actions (see Section 2.9.3 on page 36).

– label(s,m) = {(sin,m), (m, sout)}
label creates a node m that can be accessed from a distant node
in the CFG, thanks to the jump instruction.

– jump(s,m) = {(sin,m)}
jump breaks the normal sequential flow of a program, creating a
link from the current node s, to a distant node m, defined with a
label instruction. label and jump are used for the typical case of
Goto-Label statements.

– ctxlabel(s,m, s′) = {}
ctxlabel does not add CFSL instructions to the DAST. The only
effect of declaring contextual labels is that the necessary mappings
s 7→ (m 7→ s′) are added to the DAST. Since this is already done
by the decorate function, the expand function does not need to
do anything else.

4.4 Control Flow Semantics 89

– ctxjump(s,m, t) =

 {(sout, t
′
in)} if t 7→ (m 7→ t′) ∈ CD

ctxjump(s,m, parent(t)) otherwise

ctxjump recursively traverses the ancestor nodes of the current
node s (starting from s itself), looking for some node t linked
with m (by the ctxlabel instruction). The traversal is performed
thanks to the parent function, therefore it is guaranteed that the
first node t declaring m that is found, is the closest to s. Once t
is found, the link is established from s to the node t′ internal to t.
The ctxlabel and ctxjump instructions are commonly used when
defining Break and Continue constructs working together with
loops like WhileDo and For. The loop constructs use ctxlabel and
Break and Continue use ctxjump. The third parameter, the state
s′ internal to s, used with ctxlabel is justified by the fact that, for
instance, Break and Continue jump to different nodes inside the
loop: Break jumps to the end (sout), while Continue jumps to the
beginning (sin, or the state incrementing the counter, in the case
of For).

4.4.3.3 CFG Reduction

Reducing the CFG is the process of removing, from the full CFG, those
vertices that from a control-flow point of view, can be considered as irrelevant
for the verification process. This reduction allows for a simplified solution
to the problem of not being able to prove a full equivalence relationship
between programs. By reducing the CFG we assess a less strict, or reduced,
equivalence relationship. Even though this reduced program equivalence does
not rule out all the possible problems related to program translation, it does
verify the main issues regarding the execution order of sensitive instructions.
It provides, thus, a non negligible increase in the user confidence degree of
the translation.
CFG reduction serves two basic purposes that facilitate the equivalence

verification process. First, it simplifies the graph and its transition system,
minimizing the set of states we need to test. Second, it minimizes the risk
of local incompatibility due to adaptive transformations. When we apply
transformations to adapt the code, we modify the structure of the programs,
generally by adding, deleting or moving some instructions. Checking for
equivalence under these circumstances may fail in those places that where
modified, even though globally the equivalence holds. The reduction is per-
formed in two steps.

• The first, and most important step, is implicit to the definition of the
CFSL instructions. This step is done by asking the user to mark in the
grammar, with the trace() CFSL instruction, those significant con-
structs that must be checked for observation equivalence. For the case

90 Language to Language Translation

of OLs those constructs are, besides the typical control-flow instruc-
tions, telemetries, telecommands, and certain specialised functions like
directives from the mission control centre. All those constructs consti-
tute the interaction with the satellite. The rest of the constructs, those
that are not marked as traceable or observable, will be considered as
hidden actions, and implicitly marked with the special symbol τ (see
Section 2.9.3 on page 36).

• Second, the process of generating the CFG produces many arcs, which,
even though necessary when building the CFG, are useless for our pur-
poses of checking equivalence. More specifically, we do not need arcs
linking the special vertices in and out.

The second step of the reduction, therefore, removes unnecessary in and
out vertices using the function reduce : CFG→ CFG.

• reduce(cfg) = remove(relink(cfg))
reduce applies two auxiliary functions. First relink, that adds the arcs
that will replace the connectivity provided by all the in and out vertices.
Then remove, that eliminates from the CFG all the in and out vertices,
as well as any related arc (by using the auxiliary 	 function).

• relink(cfg) = cfg ⊕ a1 ⊕ . . .⊕ ai ⊕ . . .⊕ an
where {a1, ..., an} = {(v, l, w) |
v, w are not in or out vertices ∧
∃u1, ..., uk ∈ Vcfg : u1, ..., uk are in or out vertices ∧
∃ sequence (v, l0, u1), (u1, l1, u2) . . . , (uk−1, lk−1, uk), (uk, lk, w) ∈ Acfg∧

l =

{
true if true ∈ {l0, ..., lk}
false if false ∈ {l0, ..., lk}
ε otherwise

}

The goal of relink is to create a new arc going from vertex v to vertex
w, for every sequence of more than one arc leading from v to w. All
the vertices involved in the sequence, with the exception of v and w
themselves, have to be in or out vertices.
Regarding the label used by the new arc there are two possibilities.
First, all the intermediate arcs have the ε label, in which case the label
for the new arc is also ε. Second, there is one label in the sequence
that is different to ε (true or false), which will be used.
One label at most can be different to ε in such sequence of arcs for
two reasons. First, even though a true or false label can be part of
an arc between two in or out vertices, this is only because of how we
build the CFG. Such label was indeed produced by some other vertex
representing a boolean expression (and therefore different to in or out).
Second, by the definition of the sequences we consider, we cannot have
a vertex that is not in or out in the middle of such sequence.

4.5 Lightweight Program Equivalence Verification 91

v

in

in
...

out

out

w

lbl

lbl

• remove(cfg) = cfg 	 {v ∈ Vcfg | v is in or out vertex}
remove builds the set of in and out vertices in the CFG, and pass it
to the 	 function.

• The function 	 : CFG × P(V) → CFG, removes a set W ⊂ Vcfg of
vertices, and all the arcs related with those vertices, from a CFG.
(V,L,A, s0)	W = (V \W,L,A \ {(v, l, w)|v ∨ w ∈W}, s0)
Finally, all the in and out vertices, as well as all the arcs considering
any of these vertices, will be removed from the CFG.

Before dealing in the next section with the problem of program equivalence
verification, let us go through all the steps of generating a CFG. Figure 4.23
presents the complete specification of a small language we have designed for
the example. At the left of Figure 4.24, we have a program accepted by the
language in Figure 4.23. This program will produce the AST at the right of
Figure 4.24, which finally generates the CFG arcs at the bottom of the same
Figure 4.24. In a last step, the CFG will be reduced to produce the CFG in
Figure 4.25, where only 6 relevant vertices are left.

Semantics (CFSL)

`if' `(' cond:Expression `)'
`then' then:Block
`else' else:Block `endif'
 -> If {cons(`IfThenElse')}

1. (IN,cond);
2. (cond,TRUE,then);
3. (cond,FALSE,else);
4. (then,OUT);
5. (else,OUT);

IfThenElse
Syntax (SDF)

1. (IN,cond);
2. (cond,TRUE,block);
3. (cond,FALSE,OUT);
4. (block,IN);
5. (ctxlabel('break',OUT));
6. (ctxlabel('continue',cond));

Syntax (SDF)

Semantics (CFSL)

`while' `(' cond:Expression `)'
`do' block:Block `enddo'
 -> While {cons(`WhileDo')}

WhileDo

Semantics (CFSL)

`break`
 -> Break {cons(`Break')}

Syntax (SDF)
Break

1. (ctxjump('break'));
Semantics (CFSL)

`continue`
 -> Cont {cons(`Continue')}

Syntax (SDF)
Continue

1. (ctxjump('continue'));
Semantics (CFSL)

`A` | `B`
 -> Exp {cons(`Expression')}

Syntax (SDF)
Expression

1. (trace());
Semantics (CFSL)

`CMD` `W` | `X` | `Y` | `Z`
 -> Com {cons(`Command')}

Syntax (SDF)
Command

1. (trace());

Semantics (CFSL)

(IfThenElse | WhileDo
| Break | Continue
| Com)*
 -> Block {cons(`Block')}

Syntax (SDF)
Block

1. (default());
Semantics (CFSL)

Block
 -> Start {cons(`Start')}

Syntax (SDF)
Start

1. (default());

Figure 4.23: A small language for building a CFG.

4.5 Lightweight Program Equivalence Verification
Our ultimate goal of building the control-flow graph of programs is to test
their equivalence, or more specifically the observation equivalence of a trans-
lated program with respect to the original one. In this section we introduce

92 Language to Language Translation

2:Block

3:Cmd(W) 4:WhileDo

5:Exp(A)

7:IfThenElse

8:Exp(B)

10:Cmd(X) 11:Continue

15:Cmd(Z)

14:Break13:Cmd(Y)

1:Start

6:Block

9:Block 12:Block

CMD W
DO WHILE (A)
 IF (B) THEN
 CMD X
 CONTINUE
 ELSE
 CMD Y
 BREAK
 ENDIF
ENDDO
CMD Z

[1]
(1:in, 2:in)

(2:out, 1:out)

[2]
(2:in, 3:in)

(3:out, 4:in)
(4:out, 15:in)

(15:out, 2:out)

[3]
(3:in, 3:W)

(3:W, 3:out)

[4]
(4:in, 5:in)

(5:out, true, 6:in)
(5:out, false, 4:out)

(6:out, 5:in)
(4:cont, 5:in)

(4:break, 4:out)

[5]
(5:in, 5:A)

(5:A, 5:out)

[6]
(6:in, 7:in)

(7:out, 6:out)

[7]
(7:in, 8:in)

(8:out, true, 9:in)
(8:out, false, 12:in)

(9:out, 7:out)
(12:out, 7:out)

[8]
(8:in, 8:B)

(8:B, 8:out)

[9]
(9:in, 10:in)

(10:out, 11:in)
(11:out, 9:out)

[10]
(10:in, 10:X)

(10:X, 10:out)

[11]
(11:in, 4:cont)

[12]
(12:in, 13:in)

(13:out, 14:in)
(14:out, 12:out)

[13]
(13:in, 13:Y)
(13:Y, 13:out)

[14]
(14:in, 4:break)

[15]
(15:in, 15:Z)

(15:Z, 15:out)

Program AST

LTS

Reduced LTS

(START, 3:W)
(3:W, 5:A)

(8:B, +, 10:X)
(8:B, -, 13:Y)

(5:A, +, 8:B)
(5:A, -, 15:Z)

(10:X, 5:A)
(13:Y, 15:Z)
(15:Z, EXIT)

[0]
(START, 1:in)
(1:out, EXIT)

Figure 4.24: Generating the LTS.

Figure 4.25: Final reduction to the graph.

4.5 Lightweight Program Equivalence Verification 93

a lightweight approach to verify program observation equivalence, based on
the CFGs presented earlier in this chapter.
Our verification technique to assess the observation equivalence of a source

program and its translated counterpart consists of four steps:

• First, produce the CFGs which models the programs’ control-flow be-
haviour.

• Second, represent the CFGs as Labelled Transition Systems (LTS).

• Third, using a verification tool like the CADP Bisimulator [47], check
if the two LTSs are equivalent modulo weak bisimulation (see Sec-
tion 2.9.3 on page 36), also known as observation equivalence. If the two
LTSs are bisimilar, we are done. If it is not the case, the verification
tool provides a report pointing to the inconsistency. In this thesis we
used two similar tools to confirm our results: the CADP Bisimulator,
which is a solid and performant verification tool with many function-
alities. We also implemented our own verification tool, which focuses
specifically on doing weak bisimulation, and gives us additional control
on the trace that is emitted as report. This is particularly useful when
dealing with non-strict tags, as explained in the following paragraphs.

• Fourth, analyse the trace produced by the verification tool. We map
this result to the CFGs and to the source code, marking the inconsis-
tency in both the original and the translated programs, as shown in
Figure 4.26.

At the top of Figure 4.26, we have two programs being tested for equiv-
alence, that are not bisimilar. After testing for bisimulation, the CFG will
show in light gray the last common nodes: up to this point the nodes for
both programs are bisimilar. In dark gray we can see the first inconsistent
node detected: a node is inconsistent if, from the last common node, it can
be reached in one program but not in the other. At the left of Figure 4.26,
an edge exists from B to D. At the right of the figure there is no such edge.
Finally, in the code at the bottom of the figure, the tags «Bisim» delimit
the source code fragment between the two shaded nodes that contain the
inconsistency.

4.5.1 From Control-Flow Graphs (CFG) to Labelled
Transition Systems (LTS)

Both representations, the CFG and the LTS, can be considered as abstract
state machines. Both are used to model the behaviour of a program or a
process, though at a different level of abstraction. We mention some of those
differences relevant to our work.

94 Language to Language Translation

A

C B

A
while (B)
 C
end
D

A
do
 B
while (C)
D

D

A

C B

D

A
<<<Bisim>>>
while (B)
 C
end
<<<Bisim>>>
D

A
do
<<<Bisim>>>
 B
while (C)
<<<Bisim>>>
D

Figure 4.26: Showing to the user a bisimulation problem.

• According to the naming conventions, a CFG has nodes and edges,
while an LTS has states and transitions. Nodes correspond to states,
and edges to transitions.

• Tags or labels represent actions in both, though in a CFG they are
normally in the nodes, while in an LTS they are in the transitions.
CFGs can use additional tags in the edges, to express for instance
when a path can be followed. LTSs consider the special silent action
τ , unobservable from the outside.

• Graphically, CFGs tend to be more expressive, using different shapes
for nodes having specific types of behaviour. For instance diamonds
can be used for conditional nodes. LTSs do not make any distinction
between states, except for the start state that, if necessary, can be
drawn with a double line.

• In general CFGs have a more general use, being employed for complex
code analysis and manipulation tasks. LTSs can be seen as specific
to the field of process verification, and therefore many of the existing
tools in the domain rely on the LTS representation.

Figure 4.27 shows the three representations of a program: source-code,
CFG and LTS. Note that the + and - labels in the CFG represent the values
true and false respectively: if B is evaluated to true, the path to C can be
followed; if false, then we proceed with D. In the LTS this is represented with
the labels +B and -B (if B would be considered as a silent action, we would
keep anyway the + and - labels in those transitions).

4.5 Lightweight Program Equivalence Verification 95

A

C

B

A
while (B)
 C
end
D

D

+ -

EXIT

A

+B -B

D

C

Source-code CFG LTS

Figure 4.27: Source-code, CFG and LTS of a program.

The user has two alternatives when producing the LTSs for the bisimu-
lation analysis. First, a strict-tag labeling can be used. In this case, the
labels in the LTS include the unique id of the CFG node (and previously the
AST node) that generated them. e.g. “13:Cmd1” means that the instruction
Cmd1 was present in the node 13. The second alternative is the non-strict-
tagging where only the name of the instruction is used. The CADP bisimula-
tor tool uses only the text in the labels to establish the comparison, so these
two mechanisms can produce different results, as depicted in Figure 4.28.

Non-strict tags
(equivalent paths)

Strict tags
(not equivalent paths)

A A

B B

A

B

1

2

4

3

1

2

3

1A 1A

2B 3B

1A

2B

Figure 4.28: Strict vs. Non-strict Tags.

The example at the left of the figure uses non-strict tags, thus the two
LTSs are equivalent.

A.B|A.B ∼ A.B
The example at the right of the figure uses strict tags, and there is no equiv-
alence between the two LTSs.

1A.2B|1A.3B 6∼ 1A.2B

Strict-tag labeling is better suited when we use automatic transforma-
tions, because we work based on the same AST. The unique identifiers are

96 Language to Language Translation

preserved, and we can take profit of the additional precision in the bisimula-
tion. When we want to compare two procedures that do not come from the
same AST, strict tagging is no longer suitable: we cannot guarantee the same
ids for equivalent AST nodes. This is the case when we manually modify
a program, and later on we need to check if it is bisimilar with the previ-
ous version. Non-strict tagging must be used then, providing the standard
bisimulation precision.

4.5.2 Checking Observation Equivalence
Verifying if two programs can be put in an observation equivalence relation,
known as weak bisimulation, is a process separated from translation. From
the usability point of view we can apply the verification technique to any
two programs, independently of how they were generated, as long as we can
get their LTSs. Some practical restrictions and requirements exist, though:

• There must be a one-to-one relationship, for every observable instruc-
tion (i.e. marked as traced), from source to target grammar. If the
source language is capable to execute one of these instructions, so must
the target language.

• Our verification technique is oblivious to side-effects in the execution
of a program, unless the instructions involved, for instance logging
instructions or assignments to variables, are marked as traced by the
user. Otherwise they will be considered as silent τ actions during the
weak bisimulation.

• We assume that transformations implemented to solve mismatches are
reduced to the minimum necessary to ensure compatibility. If some
transformations are implemented to reengineer or improve the code we
are going to check, we cannot make any claim regarding their effect on
observation equivalence.

Observation equivalence, also known as weak bisimulation, was formalised
in 2.9.3 on page 36. In this section we provide a more intuitive view based on
a simple example where we see how two programs P and Q in Figure 4.29, are
verified for observation equivalence. For convenience the observable instruc-
tions marked as traced by the user, are simply denoted by capital letters,
and the silent instructions by lower case letters.
First, we need to produce the LTSs for P and Q, and rename all the silent

actions to τ . Then, we initiate the process from the start state of both LTS.
The LTSs are shown in Figure 4.30.
We have numbered the states to make it easier to follow the bisimulation:

- We start by assuming that the start states are equivalent: p1 ≈ q1,
- since p1 A⇒ p3 ∧ q1 A⇒ q3, we must then have that p3 ≈ q3
(according to weak bisimulation, p2 and q2 do not need a bisimilar state,
because they are part of a silent transition)

4.5 Lightweight Program Equivalence Verification 97

#P
A;

while(x) {
C;
D;

}

E;

#Q
A;
if(y) then {

do {
C;
D;

} while(y);
}
E;

Figure 4.29: Two observation equivalent programs.

1

2

3

4 5

60

1

2

3

4 5

60

A

τ

- +

E C
D

8

9

A

τ

+-

C

D

-

+

E

E

P Q

7
τ

Figure 4.30: Two observation equivalent LTSs.

- next, since p3 −⇒ p4 ∧ q3 −⇒ q4, therefore p4 ≈ q4,
and the process continues this way for the following states:
- p3 +⇒ p5 ∧ q3 +⇒ q5, and p5 ≈ q5
- p4 E⇒ p0 ∧ q4 E⇒ q0, and p0 ≈ q0
- p5 C⇒ p6 ∧ q5 C⇒ q6, and p6 ≈ q6
- p6 D⇒ p3 ∧ q6 D⇒ q8, and p3 ≈ q8
(again, q7 does not need a bisimilar state, and one state –p3– can be bisim-
ilar with many states –q3 and q8)
- q8 +⇒ q5 ∧ p3 +⇒ p5, and q5 ≈ p5
(note that any of the two LTS can lead the bisimulation, as long as it has
transitions that have not been checked)
- q8 −⇒ q9 ∧ p3 −⇒ p4, and q9 ≈ p4

98 Language to Language Translation

- q9 E⇒ q0 ∧ p4 E⇒ p0, and q0 ≈ p0
- Finally, no more transitions exist: q0 6⇒ ∧p0 6⇒ , confirming that P ≈ Q
(s 6⇒ means that there are no transitions from state s).

Thanks to the technique of weak bisimulation we can provide an additional
degree of confidence on the observation equivalence of translated procedures.
Moreover, when a lack of equivalence exists, the user is pointed to the exact
place in the code where the problem appears.
The technique, however, cannot be considered as definitive for this kind

of problems. Many limitations stem from the fact that we are making an
imprecise abstraction when we define certain actions as silent. A good im-
provement would be to study how to combine this approach with data-flow
and side-effects analysis techniques.

4.6 Conclusion
Automated support for translating procedures between different operations
languages, in the domain of spacecraft mission planning, is an important
issue. Firstly, there is an industrial demand for general-purpose tools that
can manipulate and translate between procedures in any of the operations
languages that currently exist. Secondly, the current tendency to strive to-
wards a standard operations language strengthens the need for translation
tools, not only to translate procedures in old operations languages to the new
standard language, but also because there is a need for translating between
the two languages competing to become a standard.5
Although the language translation problem is, in general, a very hard

problem to tackle, for the case of operations languages the problem is easier
because they all share a common semantical basis. This makes it feasible
to semi-automatically generate transformation tools that can automatically
translate procedures written in one operations language to another opera-
tions language. More specifically, we have shown how annotated grammar
definitions can support this automated generation of translators between lan-
guages. The annotations are used to define a mapping between corresponding
grammar productions. From these mappings, rewrite rules that transform
the corresponding productions can be derived automatically. The translator
thus produced only needs to be completed to handle those productions for
which no mappings were given.
We have shown how to augment the annotations with more semantic in-

formation on the flow of control in the grammar productions. We illustrated
how these additional annotations could be used to produce a verification tool
for the correctness of the translation process.

5At the time of writing, the PLUTO language [42] was being put forward as a standard
by the ECSS (European Cooperation for Space Standardization), whereas the language
underlying the MOIS system [95] has been proposed as a standard to the OMG (Object
Management Group).

4.6 Conclusion 99

The approach for program equivalence verification presented in this the-
sis is an interesting starting point for more advanced experiments on the
use of bisimulation techniques for verifying program translation. Moreover,
we believe that with the right set of advanced annotations, an early assess-
ment prior to the translation can be provided, based only on the annotated
grammars and annotated transformations.
We conjecture that the advanced annotations can also be used to enhance

the automated generation of program translators beyond simple one-to-one
mappings between grammar productions. These last two extensions are part
of our ongoing research work.

5 A Product-line Approach
Previous chapters, particularly Chapter 4, introduced and described our ap-
proach for building program translators between two different languages. In
this chapter we extend the approach to families of languages.
Let us consider the example family of Operations Languages, OLs, em-

ployed by space industry to design procedures used to test and control
spacecrafts. In general, programs built with these OLs describe high-level,
goal-oriented activities to be carried out by a spacecraft. These high-level
activities or procedures are built up of more elementary activities such as
directives, which are functions or procedures executed directly by the control
centre, telecommands, which are instructions uploaded to the spacecraft to
execute an action, and telemetries which are blocks of data received from
the spacecraft as a measurement of its current state. Different circumstances
can require users of these procedures to translate them to a new language,
for instance due to technology change, the advent of new standards, or com-
pany merging. A concrete example for this case can be found in [87] where
a consultant company for the space industry is confronted with the need of
a program translation solution for its procedure design tool.
The case of OLs is not unique nor special. Program translation is not

an uncommon need since programming languages typically evolve with in-
dustry. New functionality gets added, some gets deprecated, and languages
keep growing in new versions. Languages also have a life span. When they
stop being maintained, eventually they become legacy languages. On the
other hand new ideas and technologies emerge, and with them new pro-
gramming languages. This evolving scenario produces many examples like
that of OLs. We have already mentioned some of these examples. For in-
stance in [28], Cleve presents a case inside the data-base community, where
a translation approach would have been a feasible alternative in a software
migration project for database query and manipulation languages.
For the general problem of program translation there is no universal solu-

tion that can always be applied. Studies like those from Verhoef et al. [65]
and Terekhov et al. [114] show that automated language conversion remains
in practice hard to achieve, partly because of the many semantic differences
between languages. Nevertheless, using the appropriate technology, like for
instance by applying reengineering techniques to the code before translating
it, it is possible to reduce the complexity of the problem, and to build spe-
cific automated translators. This approach can be useful specially for some
specific application domains where programming languages are semantically
related and can be grouped in families. By limiting the approach to languages

102 A Product-line Approach

belonging to the same family, advantage can be taken of structural and se-
mantic similarities between those languages to semi-automatically build a
family of translators between them.
Building program translators between a group of languages sharing many

similar properties, but at the same time manifesting certain differences, re-
quires an answer to the question of how to take maximum profit of com-
monalities among languages, and therefore among translators, and how to
minimise the overload due to solving language differences.
Our solution follows a product-line engineering approach. This approach

strives for reuse, and defines how to take profit of similarities between prod-
ucts by explicitly defining how their components are related. Commonalities
and variabilities between products are therefore explicitly taken into account
during the design phase of a product-line, and reuse of components is max-
imised when building the products. A general description of product-line
approaches can be found in Section 2.10. In the current section we will in-
stantiate the product-line concepts for the specific case of building families
of program translators.

A Translation Schema.

Our product-line solution extends our language-to-language translation ap-
proach, explained in the previous chapter, to families of languages and trans-
lators.

A

GA

B

GB

Start Point End Point

Translation

LA LB

Figure 5.1: A translation schema.

Figure 5.1 shows the basic schema of a translation with two end points.
The Start Point, to the left of the figure, represents the input for the trans-
lation. The original program A or Source Program is accepted by the gram-
mar GA, or Source Grammar, which represents the language LA or Source
Language. The End Point represents the output of the translation. More
specifically, the program B or the Translated Program is accepted by the
grammar GB or Target Grammar, which represents the language LB or Tar-
get Language. Theoretically, a new translator needs to be built for each pair
of source and target language.

103

A Product-line Model.

Our instantiation of the product-line model for families of languages and
translators is defined in Figure 5.2, showing the main parts of this product-
line: scope, core assets and production plan.

• The scope defines the family of languages we are interested in and the
translators we are going to build.

• The core assets, derived from the scope definition, are the different
elements we are going to put together: the tools we need to build the
translators; the languages, represented by their grammars and language
concepts, and the transformations that will adapt the programs during
the translation.

• The production plan describes the different processes involved in the
production of the translators: recovery of a working grammar when
it is not available, convergence of all languages into a central family
structure, and finally generating and testing the produced translators.

This product-line model is a rather technical way of describing our product-
line. To harmonically structure all these elements such that they are defined
and added to the product-line in the correct order, we have divided the
building process in four production phases, each of which are detailed below.

Scope

Languages
Family

L1

L2

Translators

Core Assets

Grammars

Language
Concepts

Transformations

Production Plan

Generation

Testing

Recovery

Convergence

Tools

L1->L2

Figure 5.2: The product-line model.

Production Phases.

Our ultimate goal is to translate programs. The complete production pro-
cess of our product-line, to go from programming languages to translators be-

104 A Product-line Approach

tween these languages and translated programs, consists of four main phases,
sketched in Figure 5.3.
The first phase, scoping the product-line, defines all the elements that will

be part of it: languages, translators, etc.
In the second phase, structuring the product-line, we design and build

the product-line structure. This is a manually intensive phase where the
product-line designer needs to get all the core assets, process them, and put
them together into the product-line structure.
The third phase, translator generation, is an intermediary automatic step,

where all the required translators are produced and ready to be tested. We
will present this phase together with the last phase.
Finally the testing phase consists of evaluating the translators with a set of

programs, checking if the original and the translated programs are function-
ally equivalent. If the results of the testing phase show some unacceptable
differences, the designer will have to modify the generated program transfor-
mations and retest them. If the designer cannot provide a solution for every
incompatibility between languages and language concepts, a partial trans-
lation may still be produced. The rest of the chapter elaborates on each
phase.

5.1 Scoping

Defining the scope of our product-line ultimately consists of defining the
set of translators that will be generated as final product. The scope thus is
defined by construction, and is dependent on the group of languages that will
be targeted by the translators. The scope definition tends to be driven by
business needs, rather than by technical considerations. Unfortunately, from
the business point of view, the necessity of having a certain translator does
not imply its feasibility. Even more unfortunate, the unfeasibility of trans-
lating programs between two given languages often does not show up early
enough in the process of building a translator. Acquiring some confidence
on the viability of the translators as soon as possible, will save valuable time
and effort. Gathering enough information on the languages we are including
in our family is essential to increase this confidence.
Regarding the extent of the information we need, it is desirable to start

the scope definition with as many languages as possible. Technically, there
is no restriction to initiate a language family with as few as two languages.
Including other languages iteratively as it becomes necessary to build new
translators is possible. The inconvenience of such an iterative process of
growing a family, however, manifests itself at the reusability level, where
translations implemented on the basis of just a few languages risk to be
more difficult to reuse.
In depth, the scope needs to consider not only the languages, but also

the language concepts beneath. We consider language concepts as first-class

5.1 Scoping 105

Structuring Phase

Grammars Recovery

Translators Generation Phase

Language
Grammars

Grammars Convergence

Language
Concepts

Categorisation

Language
Concepts
Extraction

Language
Documentation

Testing Phase

Language
Concepts

Adaptation

Translation

Source
CFG

Source
Program

Translated
Program

Functional
Equivalence
Verification

Translated
CFG

Scoping Phase

Languages Selection Translators Definition

Figure 5.3: Product-line production phases.

106 A Product-line Approach

elements in the family, and not limited or restricted to a single language. It
is during the scope definition that we set up the basis for the final structure
of the languages family.
How we build the scope of a language family can be summarised by the

following three questions:

1. What are the members of the language family? This apparently trivial
question defines indirectly the application domain. Even if there is
no restriction on the number of languages, or if the product-line can
be extended afterwards with additional languages, it is important to
establish our starting point, which provides the basis for the rest of the
process. As we have already mentioned, even if it is possible to start
the product-line with as few as two languages, the more languages we
have for the initial scope definition, the better the general knowledge
on the language domain we will acquire, and the more effective our
efforts to adapt language mismatches.

2. How similar are the languages in the family? Answering this ques-
tion requires an in-depth knowledge of every language in the language
family. We need to know their internal structure to compare all the
languages based on the features and concepts they offer.

3. How complete can we expect the resulting automatic translators to be?
Based on the information obtained from the previous questions, we
have a preliminary idea of incompatibility issues, and we already know
where to focus our efforts. Thanks to this question, we focus precisely
on what has been found as directly incompatible. We try to define
precisely how the mismatched language structures in one language,
can be reduced to different language structures in other languages,
becoming indirectly compatible.

These questions point directly to avoiding at an early stage two major risks
in practice regarding product scoping. If the scope is too large because we
try to include too different languages in the family, then accommodation to
variability will be hampered by the impossibility to adapt language concepts.
If on the other hand, the scope is too small, in other words if we have too
few languages, the adaptions for every translator may not be generic enough
to provide reusability [34, 100, 89].
The answers to these questions are provided by two interrelated elements

that are part of our technique for structuring the language family. First,
the Language Concepts Matrix (LCM) that relates languages to concepts,
and second a set of language metrics that, when applied to the LCM, makes
evident the nature of those relationships. Detailed explanations for the LCM
and the set of metrics respectively are provided in sections 5.2.3.1 and 5.2.5.
Figure 5.4 shows an example of an LCM where the languages and their

constructs are related, and from which some equivalences and relations be-
tween languages and constructs can be inferred directly. One the most im-

5.1 Scoping 107

Figure 5.4: The LCM table.

portant relations we try to establish is direct compatibility between language
concepts and languages. For a language concept, being directly compatible
with a language means that the language provides a native construct whose
abstract syntax structurally corresponds, and whose functional semantics is
equivalent to the language concept.
For instance, concepts 1 and 2 are compatible for all languages, while

the other two constructs are only partially compatible. Language 4 can be
considered as a universal receiver in a translation because no adaptation will
be needed when translating from the other three languages to this language,
since language 4 has all the concepts provided by languages 1 to 3. On
the other hand, translating from language 4 to any of the other languages
will require implementing some adaptations. For example, construct 3 needs
to be transformed when translating to languages 1 and 3, and construct 4
always needs to be transformed into native constructs of any other language
we are translating to. When such an adaptation is possible, we can say that
the language concept is indirectly compatible with the language.
For a toy LCM example like this, the relations between languages and

constructs are easily perceived. For more realistic cases it will be a lot harder
to see because of the number of languages and in particular because of the
number of constructs in those languages. The purpose of our set of language
metrics is to help us overcome this difficulty by providing a global view of
the family and by pointing to specific places that can be either opportunities
to take profit of (e.g. concepts shared by many language), or problems that
need to be solved or avoided (e.g. concepts appearing in a small number of
languages).

5.1.1 Core Assets
In this section we briefly summarise the considered assets in our product-line.
All of these elements already have been introduced and explained in detail
in the previous chapters.
Four kinds of core assets are distinguished in our product-line model: tools,

grammars, language concepts and program transformations.
Tools are used to process the grammars and their language concepts, to

generate the program transformations, and finally to generate and test the
translators.
Grammars are the main input for defining our product-line. They de-

108 A Product-line Approach

fine the languages, provide the language constructs, recognise the input pro-
grams, and validate the translated programs.
Language concepts are extracted during scope definition, from the gram-

mars describing the languages. Language concepts are the main elements in
the LCM table, and they are extracted from the language constructs, which
are in turn extracted from the grammars.
Program transformations are the glue among mismatched constructs. These

transformations are small, dedicated programs used to solve specific compat-
ibility problems among languages. In general, languages considered inside a
family share a large amount of language concepts. Moreover, our approach
is restricted to those families with high levels of (syntactic) compatibility
among languages. Nevertheless there always exist language incompatibilities
among languages that need to be solved to make the approach useful: direct
full compatibility between two given languages is very rare to find. Program
transformations allow to adapt incompatible constructs in the source lan-
guage, to some combination of constructs in the target language, providing
functional equivalence.

5.2 Structuring
Building a translator with our approach, as was already pointed out in Fig-
ure 5.1, is a syntax-dependent process. The grammars of source languages
allow to parse and manipulate the source code of the original programs. The
grammars of target languages allow to unparse the transformed programs
and produce the translated source code.
Our approach relies on the existence of working SDF grammars for every

language to be included in the family. We do not address, however, how
to build a grammar for a language. For completeness though, we consider
in our approach the possibility of not having direct access to these gram-
mars. In the following paragraphs, we provide some information on possible
ways of circumvent such cases, notably with the use of grammar recovery
techniques [64].

5.2.1 Recovery: Obtaining the Working Grammars
The grammars we require, to build the product-line, are not always directly
or easily available. This availability depends on the accessibility of the lan-
guages we are working with, which depends a lot on the specific application
domain. For our specific case of OLs, Pluto and UCL provided a complete
BNF grammar in LL style –scattered among other information, for Ucl. Mois
provided an XSD grammar. Elisa and Tope had an informal BNF grammar
linked to examples, and for Stol there was only examples of how to use the
more relevant instructions.
Availability of the grammars comes in different degrees. In the best case,

which is the assumed case in this dissertation, is to have a directly available

5.2 Structuring 109

working SDF grammar. Not ideal, but still a good alternative, is having
working grammars but in a different format, like ANTLR or YACC for in-
stance. The worst situation is not to have any grammar at all.
Assuming the worst case, when grammars are not available, we must at

least count on some sort of documentation, like manuals or examples, that
can be used to extract or infer these grammars from. The specific pro-
cess of extracting working grammars from various sources of information
has been called Grammar Recovery, and has been addressed by Lämmel et
al. in [64]. Grammar Recovery, in conjunction with the Grammar Deploy-
ment Kit [60] can significantly facilitate this process. Unfortunately this step
remains highly manual. A-priori we have no control over the kind of infor-
mation we are going to receive, and a considerable amount of effort could be
required in reconstructing the required SDF grammars.
Using the Grammar Deployment Kit must be considered only as a rec-

ommendation, and it is not mandatory for this step. This set of tools, for
instance, can be really useful when we already have a grammar but in a
different format, like Yacc or JavaCC. As the creators of the technique say
in [64] “...there are no real restrictions on what technology to use, so go ahead
and use your favourite transformation tool, ... so you can quickly produce
the parsers and other grammar-based tools that you need.”
From the moment we have obtained the required SDF working grammars,

we can initiate the core of this phase, which is explained in the following two
sections –5.2.2 and 5.2.3–, where we adapt some of the ideas of Grammar
Convergence [66] into a product-line approach for building program transla-
tors.
First, we prepare the grammars in a process analogous to normalisation,

such that the language concepts underlying the constructs in the grammar
can be easily extracted, as independently as possible of other languages in
the family. Then we use the language concepts as properties of the family,
and categorise every language according to the properties they present. We
relate this way languages and language concepts into a single language family
structure. From this structure, we can efficiently build the translators.

5.2.2 Language Concepts Differentiation
Our technique for relating languages and language concepts relies on some
of the syntactic properties of the constructs provided by the languages, like
their symbols and keywords. These language-specific syntactic properties,
we believe, relate with the more generic semantic properties of the language
concepts underlying the constructs.
Together, syntactic and semantic properties, constitute the structural prop-

erties of languages. Classifying languages according to their structural prop-
erties is strongly related to Language Typology. Language typology, as de-
fined by Caffarel et al. in [75], is, in a broad sense, the general study of
similarities and differences across languages. Among the many existing typo-

110 A Product-line Approach

logical approaches, Whaley encourages the use of those approaches involving
the classification of languages –and elements of languages– based on their
shared properties [130].
This category of approaches consists of first directing the attention towards

a particular construct that arises in a language. Then, using cross-linguistic
data, all the possible types of this construct in other languages are deter-
mined, thus inferring a category based on this shared property. Even if these
typological approaches mentioned by Whaley, were originally conceived with
natural languages in mind, they fit remarkably well to our needs because of
their structured nature which matches our grammar-oriented approach.
From the working concrete grammars successfully used for parsing and

unparsing source code, we can extract an abstract representation of every
language where only the relevant structural elements have been retained.
From this condensed abstract representation we can infer two things: com-

mon language concepts shared among multiple languages that will be put
immediately together, and variations specific to some languages, that will be
adapted through program transformations.
Getting the abstract, conceptual representation of the constructs in a

grammar requires some pre-processing. A concrete grammar that success-
fully parses programs has good probabilities of not being conceptually clean,
because of practical constraints imposed by the interpreter or compiler of
that language. An analogy with database designing can be made: some-
times a clean, normal-form design of a database, needs to be de-normalised
to meet the requirements of a specific database engine.

Extracting Language Constructs from a Grammar The first step to clas-
sify the constructs coming from some language, inside our languages family,
requires the extraction of the abstract concepts from a concrete language
grammar. Language constructs are physically represented by means of pro-
ductions inside a language grammar. The way these productions are designed
vary from language to language. For the same construct we can have a dif-
ferent syntax in two different languages. Extracting, or differentiating the
productions representing an instance of some language construct is a non-
trivial problem.
In this section we present a lightweight methodology for differentiating and

extracting the different language constructs from a grammar. This methodol-
ogy is composed of guidelines, or rules of thumb (RoT). This set of guidelines
was extracted from the experience obtained with our case study (see Chap-
ter 6). They worked very well during our experiments, and we have good
reasons to believe that they will be applicable and useful for other families
too.
Although we warmly suggest the user to follow these guidelines, there are

exceptions to its use. When possible we present examples of those exceptions.
For application domains with noticeable differences with the domain from our
case study, discretion is advised when using these rules.

5.2 Structuring 111

RoT#1: Prefer grammar modifications over program transformations.
The family structure and the resulting mappings will be cleaner.
As mentioned before, in this work we are not interested in how to build the

initial grammars of the languages we receive as input. We assume we already
have valid SDF grammars for all languages of the family. These grammars,
nevertheless, should be susceptible of being modified along the process of
classifying the languages.
When some part of a grammar requires some adaptation to allow for a

better mapping with the rest of the languages of the family, we have two
alternatives. First, to modify the original grammar. Second, to build a set
of program transformations that modify the resulting ASTs of the concrete
programs we receive. In our approach we give preference to the first alter-
native. It is not always possible to come up with an equivalent grammar for
some set of productions, but it is the cleanest solution: transformations tend
to clutter the structure of the language family.

RoT#2: Extract the constructs top-down. A systematic approach for
analysing the grammar gives a clean start to the process.
There is a big number of productions in almost any programming language

grammar, regardless of the grammar formalism used. Moreover, if we con-
sider specifically the case of our SDF grammars, there is no constraint on
the order in which the productions are defined. Dependencies among pro-
ductions do not impose any restriction on whether some production needs to
be defined before or after another. All this makes it difficult to know where
we should start the analysis for extracting the language constructs.
Two important things are known, though. First, the relevant productions

are to be found inside the context-free syntax section of the SDF gram-
mar. The rest of the sections can be avoided. Second, and more important
for this rule of thumb, the start-symbols section defines what are the sym-
bol, or symbols, that according to the grammar designer are the accepted
start symbols for the parse trees. Moreover, for a majority of the languages,
there is one single accepted start symbol, referencing the full program or
procedure.
Even though one may be tempted to start picking up from the grammar

those productions that can be recognised at first sight, that approach pro-
vokes too many extra revisions of the grammar, and is therefore not advised.
Extracting constructs starting from the start symbol, and then going top-

down as organised as possible, proved to be the best alternative during our
case study.

RoT#3: Try to avoid lexical syntax symbols. Even though lexical differ-
ences have to be solved later on in the translation, the symbols that define
lexical syntax should not be considered as language constructs in this step.
Let us consider the following example, where we define identifiers for some

programming language. An identifier is an abstraction that represents a

112 A Product-line Approach

variable that points to the value inside some memory location.

[a-zA-Z_] -> AlphaChar
[0-9] -> NumChar
AlphaChar (AlphaChar | NumChar)* -> Identifier

Although three symbols are present in the example, the only one that will
be promoted to language construct is the symbol Identifier. The symbols
defining the lexical syntax, AlphaChar and NumChar, are only auxiliary
symbols used to recognise characters to build a valid identifier. If we take a
closer look at the example, we can see that we do not even need the auxiliary
symbols, because they can be directly injected in the definition of Identifier.
To reinforce the idea that the user should analyse every case from a se-

mantic point of view, looking for structures with a complete meaning, let us
assume that Identifier was defined without any auxiliary symbol.

[a-zA-Z_] ([a-zA-Z_] | [0-9])* -> Identifier

Now, Identifier can be considered as a lexical symbol as well. What prob-
ably seems ambiguous, is that we are promoting it to a construct anyway.
Our example becomes now an exception to the guideline.
Let us clarify these things. The main consideration for promoting Identifier

as a language construct, and not AlphaChar or NumChar, is that in this
context Identifier represents an entity with a well defined semantics. It
is a required abstraction whose definition cannot be simply injected into
other symbols, without loosing expressiveness. In general lexical symbols are
there to help building more complex definitions. Nevertheless, exceptions are
always present, depending on how the grammar was built.

RoT#4: One construct can span several productions. A single language
construct can be defined in more than one production.
First, do notice that in our previous rule of thumb we already had a con-

struct that needed three productions to be completely defined.
This case however is different. Our example is related with how grammars

for LL parsers are designed to avoid left recursion. The operation in the
example is the arithmetic addition. For a GLR parser this operation can
simply be defined as Exp "+" Exp -> Exp {left}, recognising expressions
like 1 + 2 + 3, and linking them from the left. The case for an LL grammar
is more complicated. An LL grammar will not show a straightforward defini-
tion, and the user will require extra attention to understand the productions
involved. Let us see the example.

Head Tail -> Addition
NUMBER -> Head
"+" NUMBER Tail? -> Tail

The language abstraction that interests us here is the arithmetic addition,
let us call it Add. The first reaction is to consider only the Addition symbol

5.2 Structuring 113

Add

Head Tail

1 2 Tail

Add

1 Tail

3

2 3

(A) (B)

Figure 5.5: Parse trees for the 1 + 2 + 3 expression.

as defining the construct, and to leave away Head and Tail. For the case
of Head, it is indeed an auxiliary symbol. We can get rid of it, and inject
NUMBER directly in the definition of Addition. The case of Tail is more
complicated. Even though it looks like an auxiliary symbol, it is not. It is
complementary to Addition, and it has the same meaning. Therefore both,
Addition and Tail, represent the same Add construct. In Figure 5.5 we can
see the tree generated by these productions, for the expression 1 + 2 + 3.
In (A) we have the more complete parse tree. If we simplify the tree,

getting rid of the unary branches roots, we have in (B) a more succinct
representation. As you can see, if Tail is not annotated as the Add construct,
the sub expression 2 + 3 will not be recognised as an addition.
An even better and cleaner solution for this specific example would be

to reformat the grammar into a GLR style: Exp "+" Exp -> Exp {left}.
Our next rule of thumb illustrates why this is a better alternative.

RoT#5: Prefer a high-level grammar style. Avoid the implicit encoding
of associativity and precedence in the grammar.
This case, like the previous one, relates with problems we can find inside

LL grammars style. It mainly relates with how LL grammars tend to man-
age operator precedence and associativity. Let us analyse a small example
of how a parser generator like ANTLR handles precedence between a ‘+’
addition operator (AddExp), a ‘*’ multiplication operator (MultExp), and
a ‘ˆ’ exponentiation operator (ExpExp). The precedence order, from higher
to lower is: ‘ˆ’, ‘*’, ‘+’. Addition and multiplication associates from the left,
and exponentiation associates from the right. We present the example using
SDF syntax to ease visualisation and comparison.

MultExp ("+" MultExp)* -> AddExp
ExpExp ("*" ExpExp)* -> MultExp
NUMBER ("^" ExpExp)? -> ExpExp

This grammar recognises an expression like: 1 + 2 * 3 ˆ 4 as if it would
have been parenthesised like: (1 + (2 * (3 ˆ 4)))

114 A Product-line Approach

This is a nice example of explicit encoding of precedence and associativity
rules. First, the precedence is encoded thanks to the nesting of the pro-
ductions. The deeper in the hierarchy, the higher the precedence. Second,
the direction of the associativity is encoded thanks to iterations for the left
associativity (AddExp and MultExp), and tail recursion for the right asso-
ciativity (ExpExp).
From our point of view focused on the translation based on mappings,

the main problem of using this approach, is in the extreme interdependence
of the symbols. Let us suppose we have the very simple expression 1 + 2.
What we can intuitively expect as AST from this expression is as depicted
in Figure 5.6(A). What is really produced by the parser is definitely more
tangled, as shown in Figure 5.6(B).

AddExp

MultExp MultExp

ExpExp ExpExp

1 2

AddExp

1 2

(A) (B)

Figure 5.6: An AST with implicit encoding.

The AST we obtain with this grammar needs post-processing with some
transformation to reduce the unnecessary symbols MultExp and ExpExp.
The user should be aware that these symbols are unnecessary only in this
context. For other cases, they are completely valid symbols. This makes the
required transformations to adapt this tree, rather cumbersome because of
the additional checking.
If we modify this grammar, and instead use a GLR style with precedence

and associativity rules, as shown immediately, we will get the expected result.

context-free syntax
Exp "+" Exp -> Exp
Exp "*" Exp -> Exp
Exp "^" Exp -> Exp

context-free priorities
Exp "^" Exp -> Exp {right}

> Exp "*" Exp -> Exp {left}
> Exp "+" Exp -> Exp {left}

Cleaner ASTs, and therefore cleaner mappings can be obtained thanks to
the power of full context-free grammars, like SDF.

5.2 Structuring 115

Do notice that the context-free priorities section does not need to
be considered when looking for constructs. Only the productions inside the
context-free syntax section are needed for that task.

RoT#6: Avoid productions with too much structure. Splitting function-
ality into auxiliary productions can make it easier to aligning grammars.
For this example, let us analyse the IfElseIf construct. Intuitively, this

construct is composed of a list of blocks of code. Each one of these blocks
is governed by a conditional expression. The first block whose conditional
expression evaluates to true is the only one that will be executed. If no
conditional expression evaluates to true, the construct can have a default
block that, if present, will execute.
We can define the full construct with a single production, as follows:

"if" Expression "then" Block
("elseif" Expression "then" Block)*
("else" Block)? "endif" -> IfElseIf

Even though this is completely valid, there is too much information for only
one production. Good formatting, as in the example, helps to a better under-
standing of the production but there are bigger issues than just reading the
grammar. Let us focus on the second line of the example. This part of the
production represents a list of unknown length, whose elements are blocks
of code governed by a conditional expression. If we leave the production as
shown in the example, the instances of the list will be anonymous. Consid-
ering we base our technique in mappings against equivalent structures, and
that we identify these structures by name, anonymous structures have to
be avoided. Anonymous structures create an ambiguity problem. Overcom-
ing this problem requires to implement conditional checking to know we are
mapping the right structures.
If we consider a refactoring of the previously shown IfElseIf production, a

possible alternative is the following.

Then ElseIf* Else? "endif" -> IfElseIf
"if" Expression "then" Block -> Then
"elseif" Expression "then" Block -> ElseIf
"else" Block -> Else

The definition now is more modular and easier to understand. We have
differentiated three main components, and we have an auxiliary symbol for
each one: Then, ElseIf and Else. More important though, going back to
the problem presented in the previous guideline, this allows every instance of
the ElseIf* list to be named. Mapping these instances can be made directly,
thanks to the auxiliary productions.
The symbol Else provides the same benefits as the ElseIf symbol. Regard-

ing the last auxiliary symbol, Then, it is more a choice of the designer. It
is not a required symbol, because it can be directly injected into its parent
IfElseIf symbol, and semantics will not be affected.

116 A Product-line Approach

RoT#7: A single production can represent more than one construct.
One construct must have one semantics.
This is probably one of the more complicated situations. It is hard to

detect because probably there is nothing in the grammar that warns about
the problem. It is hard to solve because it will certainly imply a refactoring
of the parts of the grammar involved.
Let us consider the Wait statement, coming from the Pluto operation

language, that is defined in a single production in the reference grammar. In
the production we have removed the portions of the syntax not required for
understanding the example.
"wait until" Expression -> Wait

This production has three different semantics, depending on the value of
Expression., that rely on a hidden test, made by the compiler, that is not
noticeable from the grammar. This test has a different nature, depending on
the kind of Expression received by the Wait construct. Let us see the three
different semantics of the test:
If Expression produces a Boolean Value, then the program waits until its

value is true.
wait until Boolean Value == true

If Expression produces an Absolute Time Value, i.e. a specific moment in
the future, then the program waits until the current time is bigger than the
absolute time received in the expression.
wait until Absolute Time Value < Now

If Expression produces a Relative Time Value, for instance a number of
seconds, the program waits until this amount of time elapses.
var := Now.getSeconds
wait until Relative Time Value < (Now.getSeconds - var)

Other languages are not so general as Pluto, and do not consider the
three alternatives. This means that we cannot consider this case as a single
construct, but as three different constructs with similar, but not the same
semantics
The recommendation here is: reformat the grammar and create three dif-

ferent Wait productions, one for each semantics.
"wait until" AbsTimeExpression -> Wait {WaitAbsolute}
"wait until" RelTimeExpression -> Wait {WaitRelative}
"wait until" BooleanExpression -> Wait {WaitBoolean}

Remember that we heavily trust on the generated AST for the translation
process. The AST therefore must contain as much semantic information, and
the information should be as clear as possible, to give preference to simple
mappings over complex transformations. Monolithic constructs, with several
possible meanings, force to implement additional operations to extract the
specific semantics concerned.

5.2 Structuring 117

5.2.3 Language Concepts Categorisation
One of the pillars of our approach is the assumption that inside a well con-
ceived language family, similarities between languages fairly outnumber their
differences. We expect that for any two languages we compare, a big major-
ity of the constructs in one language can be directly mapped to an equivalent
construct in the other language. Moreover, for those constructs without a
direct mapping in some language, we assume there exist an adapted mapping
thanks to some program transformation.
To avoid mismatches between languages due to grammar and syntactic

styles, the previous step presented a set of guidelines to uniformly extract
constructs from a grammar, without requiring a step by step comparison
with other grammars. By better regulating the shape of the constructs,
we provide more uniformity between language structures, on a language-
independent basis.
However, the relationships between language constructs, even if we adhere

to the rules of thumb given in 5.2.2, are not easily seen. We need to organise
languages and constructs in categories such that the different commonalities
and variabilities between them are pointed out and emphasized.
By including categories in our system, commonalities –equivalent constructs–

are mapped together directly when included into the same category. Vari-
abilities –mismatches between constructs– can be adapted with a reduced
number of program transformations: transformations can be built via shared
constructs.
Our technique is related with Mosses’ proposal of using reusable compo-

nents for describing programming languages [79]. Mosses points out that
different languages often have many constructs in common, even if they be-
long to different language families. These common constructs can be defined
in a common repository. Every language reuses existing definitions and con-
tributes with new definitions that can be later on reused by other languages.
Next, we show how we elaborate and apply these ideas to the family of
operations languages.

5.2.3.1 The Language-Constructs-Matrix, LCM

The Language-Constructs-Matrix, LCM, is a two dimensional matrix where
the global relationships between languages and constructs are highlighted.
A small introduction to the LCM was given in Section 5.1. In this section
we provide an extended explanation based on an example extracted from our
main case study (presented in Chapter 6).
The structure of the LCM is not complex. The columns represent lan-

guages, and the rows represent constructs. The cells or intersections be-
tween rows and columns, represent relationships between a language and a
construct. Three kinds of relationships can hold:

• Direct. The language supports the construct natively. Specific pro-
ductions in the grammar provide the syntax for the construct. The

118 A Product-line Approach

construct’s semantics and abstract structure defined by the language,
are guaranteed to be completely equivalent across all the languages in
the table defining the same construct. We represent this relationship
in the table with a value of true (X in our examples).

• Adapted. The language does not support the construct natively. No
productions exist in the grammar defining the structure of the con-
struct. Nevertheless, a program transformation has been provided
adapting the construct, when it is received from another language in a
translation. This relationship is represented with the unique Id of the
transformation performing the adaption.

• None. No direct support exists for the construct and, so far, no pro-
gram transformation has been provided that adapts the construct func-
tionality into something the language understands. A value of false (or
empty) represents this situation.

Figure 5.7 shows the LCM for a subset of languages and constructs. This
small, though non-trivial, example will be used along this chapter to describe
the global data structures used to build a language family. Only Direct
relations are shown in the matrix from Figure 5.7. Later on, we will introduce
Adapted relations to the table, and explain how to reuse them.

Figure 5.7: An LCM table.

The example takes into account five languages: Stol, Tope, Mois, Ucl and
Pluto, and the subset of constructs related with the Wait functionality. The
Wait functionality groups some related constructs that stop the execution of
the procedure temporarily, until some condition becomes true. We recognise
for this example three variants:

• WaitUntilTimeAbs, or WA for short. The WA construct receives
as parameter an expression Exp representing an absolute time value.
The result of evaluating WA is that it stops the execution of the pro-
cedure, until the current time is greater than the value represented in

5.2 Structuring 119

the expression Exp. This construct is directly supported by Stol and
Pluto.

• WaitForTimeRel, WR. The WR construct receives as parameter
an expression Exp representing a relative time value in seconds. WR
stops the execution of the procedure and waits until Exp seconds have
elapsed. Stol, Tope and Pluto provide support for this construct.

• WaitUntilBool, WB. WB receives as parameter an expression Exp
representing a boolean value. WB stops the execution of the procedure
and waits until the value of Exp becomes true to allow the execution to
continue. From our set of languages, Mois and Pluto support directly
this construct.

For the completeness of the example we include also a set of constructs
supported by all the languages. These constructs will be used by some of
the transformations we will present afterwards. RepeatUntil or RU iterates
over a block of instructions, until a conditional expression yields true; Assign
updates the value of a variable; Add is the mathematical addition; Sus is the
mathematical sustraction; Id represents an identifier; Gt is the ‘greater than’
construct; FuncTimeAbs2Rel or simply Fa2r, is a function converting from
absolute to relative time, and FuncNow or Fnow, is a function providing the
current time of the system.
A quick look at the matrix gives us a first impression and some basic

information that, intuitively, we expect to find in a language family.
There is a high degree of shared constructs among languages. In this

case more than 70% of the constructs in the matrix are shared by all the
languages.
Some of the languages will be more expressive than others. In our example,

Pluto captures the functionality of all the constructs in the matrix. If we
assume, just for the sake of the example, that the programs we want to
translate use only this subset of constructs, Pluto could act as a universal
receptor: Translators to Pluto should be built with the least effort. On the
other hand UCL presents itself as the least expressive language. It does not
consider any of the Wait constructs. A consequence could be, under the
same assumption as in the Pluto case, that building translators from UCL
should be less complex. Other properties of the language family exist. They
are probably more interesting than those we have mentioned, but they are
harder to see, requiring a slightly more complex analysis of the data. All
the properties of the LCM, that we have considered useful, will be explained
later on in Section 5.2.5, where we explain the different metrics we used.
The process of filling the LCM table with languages and constructs, in-

deed means annotating the grammars consistently, as shown in Section 4.2.1.
For every production, according to its semantics, the user decides to which
language concept it corresponds. Our system uses those annotations to in-
dex the information in the LCM, and presents it back to the user. To be

120 A Product-line Approach

successful, this process requires that the same dictionary is used with all
the languages. The user should be careful when introducing new constructs.
Otherwise there is the risk of duplicate semantics, which would make the
mapping overcomplicated.
The process of annotating the grammars is done manually by the user, as

explained in Section 4.2. Some automated assistance can be offered in this
step, by providing a recommendation of the possible categories where the
production can be classified, based on the production’s syntactic information.
This is presented in the following section.

5.2.3.2 Assisted Constructs Classification

To classify all the constructs of a language family inside a common struc-
ture, we need to create the categories where to classify the constructs. Each
category defines a set of essential semantic properties that every construct
must have in order to belong to it. Constructs will be included in their
corresponding category, regardless of the language where they come from.
Constructs categorisation involves two basic steps: extraction and classi-

fication.
Constructs Extraction, already explained in Section 5.2.2, consists of

differentiating and extracting, as independent entities, the constructs from
a language grammar. We analyse the syntactic structure of the grammar,
its productions and symbols, looking for distinct semantic concepts. This
analysis, that can involve a modification of the original grammar, produces
as output a list of constructs. Each construct is an instance of an abstract
semantic concept that corresponds to a distinct operation. These abstract
concepts are the prototypical structures representing the categories in our
family, and they are language independent.
Constructs Classification is the process of first, including the categories

into the language family, and then linking the constructs coming from each
language with their corresponding category. Each construct is an instance
of some category.
There are two cases to consider for this step. First, the family is empty,

and we are about to classify the first language in the family. Second, one or
more languages have already been introduced inside the family, and we need
to include a new language inside the family.
The first case is straightforward. The user has no practical restrictions

when annotating the grammars to delimit the constructs for the first lan-
guage. This first language provides the initial definition of the family: the
initial set of categories and the first instance for each one of these categories.
This initial definition will guide the process of mapping the other languages
we will include in the family.
Even though we do not provide any evidence to support this claim, we

believe that there are two alternatives providing a head start to this process:

• Use the most expressive language in terms of the variety of constructs

5.2 Structuring 121

it considers. This provides the best mapping possibilities for the rest
of the languages.

• Use the language you know better. It makes easier to detect similar
features in constructs coming from other languages.

The complexity of this step lies in, first, the appropriate selection of the
first language, and second, the appropriate selection of the annotations defin-
ing each category: the names of the categories need to be as meaningful and
non ambiguous as possible. Our recommendation is to base the annotations
on the syntactic keywords from the productions defining the construct. More
on this later in this section.
The second case, when we already have some languages inside the fam-

ily, implies a reduced freedom when extracting constructs from the new lan-
guages. Not only do we need to extract the constructs from the new language
paying the same attention as we did before. Additionally we need to anno-
tate the constructs according to those categories that already exist inside the
family. To include in the family a construct coming from a new language,
we have to check if the construct is an instance of an existent category, or
if we need to create a new category. Checking whether a category already
exists inside a family, involves trying to match the new construct with the
prototypical structure of an existing category.
The list of categories in a family can be very long. In the worst case, the

user will have to check, category by category, if the construct matches the
semantics of some existing language concept. The nature of this work makes
it error prone, with a high risk of missing the correct category. A quick
explanation is presented next, of how we performed this analysis during our
case study. Then we will present our proposal for an automated methodology
that emulates the first phases of this process.

Categorisation Based on Similarities Building a language family in gen-
eral, and in particular categorising the different language constructs into this
family, can be facilitated if the product-line designer has a previous experi-
ence in the application domain. In practice though, this is not often possible.
There is a high probability that the users from the application domain are
completely unlinked from the people who are building the product-line and
the translators. Two conditions are, nevertheless, required and assumed as
premises.
First, the product-line designer has a solid experience and knowledge on

programming languages in general. Second, the designer is at least aware
of the specific application domain: a general knowledge of the domain is
necessary to deal with domain-specific instructions. This specific knowledge,
though, can be acquired through reference documentation, and not solely by
personal experience.
These two premises are the least restrictive but at the same time important

to be able to build a consistent language family. The designer needs to be

122 A Product-line Approach

able to recognise and differentiate the different data and control structures
present in a programming language and in the source code. He is required
to know when an instruction can be mapped directly, and when and how it
needs to be adapted through some program transformation.
When categorising the constructs from a language, two phases are tra-

versed by the designer.
First the designer builds an intuitive opinion about the category where

the construct may belong. This opinion, based on the syntax of the produc-
tions that form the construct, is derived from his experience with other lan-
guages. His previous experience with languages provides him with a knowl-
edge base where he has already categorised, on an ad-hoc basis, productions
and constructs from other languages. The intuitive opinion built based on
this knowledge, will be confirmed or dismissed in the next phase.
The second phase is based on a more in-depth analysis of the semantics

of a construct, and transforms the previous intuitive opinion into a fact,
and therefore into the construct to be classified. The designer needs to use
additional sources of information to be sure of the category where a construct
belongs. This semantic knowledge is not included into the grammar, which
contains syntactic information only. This second phase, being dependent of
information from different sources, falls out of our control, and we cannot
provide any support at this level, in the context of this work. The first phase,
on the other hand, is completely linked to the grammar, and some assistance
can be provided to the designer, though we acknowledge that the process
remains highly manual.
In the next section we proceed to describe the methodology we used as

product-line designers, to build the first opinion about the category where a
construct belongs. We show how to express this methodology in terms of an
automated constructs classifier that emulates the manual process.

5.2.3.3 Constructs Classification Methodology

The input for this part of the process is a list of constructs, from a particular
language, generated according to the language concepts extraction principles
presented in Section 5.2.2. In summary, the list of constructs will be iterated
over, and for each construct a match with one of the existing categories in
the family will be searched. If no match is found, a new category will be
created.
We use an instance-based classification that is very close to the nearest

neighbors techniques [78]. The languages family is described thanks to an
n-dimensional space where each syntactic attribute of the constructs be-
come one of the dimensions. Every construct and every language concepts
category is described by an attributes vector, that we call its syntactic pat-
tern. In the constructs, the values of the attributes are assigned according
to their relevance in describing their semantics. In the categories, the values
for the attributes are a combination of the values of all constructs classi-
fied in that category. For every new construct to be classified, we obtain

5.2 Structuring 123

its candidate categories by calculating the Euclidean distance between the
syntactic pattern of the construct and the syntactic pattern of each category.
We hypothesise that the closer the match, the more probable to get a posi-
tive classfication. Finally, the candidate categories are analysed in-depth for
semantic equivalence using the available language documentation.

Building the syntactic pattern of the constructs: a weighted list of the
relevant visible attributes of the construct. Constructs are composed of
one or more productions, that are composed of various symbols. The names
of these symbols are syntactic keywords representing the visible attributes
of the construct.
The goal of this step is to build a list with those keywords with seman-

tic meaning, and assign each keyword a value based on their relevance to
describe the semantics of the construct. Syntactic delimiters, like colons,
semicolons, parentheses, and alike are discarded because of their lack of se-
mantic meaning: they are in general used to make the code more readable.
Each relevant keyword or attribute of the construct represents one dimen-
sion in the n-dimensional space of the family, and the magnitude of each
dimension is the assigned value. This list of weighted attributes becomes the
syntactic pattern of the construct.
The meaningful keywords differ in their importance to describe the se-

mantics of a construct. Even though the personal criteria of the designer
has an influence in this choice, the general prioritisation applied during our
experiment was, starting from the most relevant keywords:

• The production’s name, which in a well designed grammar, tends to
be self-explanatory about the semantic meaning of the production. If
for instance, we have some production named “IfThenElse”, then we
probably do not need any additional information to confirm its seman-
tics: a classical conditional branching. Even though in general the first
priority can be assigned to the production’s name, the user should be
aware of special cases where the production name is too generic, and
provides no help for categorisation. If for instance the production has
been named Expression, which is a very generic name, good chances
are that many productions with different semantics share the name,
and that more information is needed to disambiguate.

• Non-terminal keywords provide the basis for understanding a program.
We use non-terminal keywords to understand the source-code of a pro-
gram, and we use them as well to understand a grammar. Let us
consider a typical keyword ‘if’, typically used for conditional control-
flow structures. If we see the ‘if’ keyword inside a section of source
code, we immediately know, based on our previous knowledge, that
some kind of conditional is being used, even though other keywords
are needed to decide what is the specific kind of conditional. Inside a
grammar it happens exactly the same. We start the analysis by looking

124 A Product-line Approach

for some keyword we are used to. As soon as we see a keyword that we
recognise as familiar, we have an approximate idea of the semantics of
the construct. We start to build an opinion based on visible syntactic
similarities with our own personal categorisation.

• The names of the symbols in the left hand side of a production can be
considered of a reduced utility, even though they do have some weight
in our decision. The reason of the lesser importance of these keywords
is because there are a few symbols like Expression, Statement, Block,
etc., that are used in many productions, and therefore are too generic
to effectively prune, later on, the list of candidate categories.

In Figure 5.8 we show how we extracted the syntactic pattern from "if-
then-else" constructs in three different languages. The weights we used in
this example –and along our validation– are normalised to a maximum value
of 1, where production names are worth 100% of that value, non-terminal
keywords 80% and terminal keywords 50%. For those cases where some
keywords appear more than once, as you can see with “if” and “block” in
PLUTO, we add weights. Finally we total the values, and normalise them
to a maximum value of 1.
The list built this way becomes the syntactic pattern [72] of the construct.

In the next step we use the syntactic patterns to find the best matches
between them, and the candidate categories.

Calculate the syntactic pattern of the language concepts categories: a
combined pattern of its instances. The goal of extracting the construct
syntactic pattern, in the previous step, is to use it for classifying the construct
into the adequate language concept category. Each category has its own
syntactic pattern, resulting from the combination of the syntactic patterns
of all the constructs already included there.
In Figure 5.9 we show how the category pattern for the IF language concept

evolves as we include in it each one of the “if-then-else” constructs from Pluto,
Stol and Elisa that we saw in Figure 5.8.
At first, every category receives its syntactic pattern directly from the first

language included in the family. Pluto in this example. Every time a new
language is included, we combine the syntactic patterns by vector addition,
and normalisation again to a maximum value of 1.

Generate the ordered list of candidate categories. For every construct
to be classified, we want to know the probability that it belongs to one of
the categories in the family. We work under the assumption that constructs
with similar semantics tend to have similar syntactic patterns, and therefore
there is a higher probability that a syntactically similar construct is also
semantically equivalent. Under this assumption, what we need to calculate
is how close each category is from the construct. We do that by calculating

5.2 Structuring 125

Figure 5.8: Syntactic pattern of the IfThenElse construct in different OLs.

Figure 5.9: If syntactic pattern evolution.

126 A Product-line Approach

the Euclidean distance between the construct’s syntactic pattern, and the
category’s syntactic pattern:
Having the construct x, represented by its syntactic pattern

x = {a0, . . . , an}

For every category c ∈ C, where c is also represented by its syntactic
pattern

c = {a′0, . . . , a′n}
The distance d between c and x is given by the formula

d(x, c) =

√√√√ n∑
i=0

(ai − a′i)2

When an attribute is not present in a syntactic pattern, it is included with
a value of 0. This way the syntactic patterns of constructs and categories
are always aligned.

Figure 5.10: Construct-category distances

The closer the syntactic patterns –the smaller the distance– the higher the
probability of finding a semantic equivalence. Figure 5.10 shows an example
of the DoWhile construct from STOL, compared against three categories:
WHILE, UNTIL and REPEAT, where the constructs from the languages
PLUTO, UCL and ELISA have already been classified. To the bottom of
the figure we have the calculated distances. The WHILE concept distance is
the closest one to the STOL construct, which in this case happens to be the
correct equivalence category for the DoWhile construct being analysed.
This shallow syntactic analysis may return many hypotheses or candidate

categories. A small subset of those seeming most promising –higher prob-
ability of matching– will be selected for the following in-depth semantical
analysis [81].

5.2 Structuring 127

Finding the semantically equivalent category for a construct. For a given
construct, the previous step provide us with a list, ordered by increased dis-
tance, of all the language concepts in the family. We can assume based on
our syntactic similarity premise, that if there exists some category function-
ally equivalent with the construct, it has to be near the beginning of the list.
There is no rule of thumb we can use to know when to decide that there is
no equivalent category. Nevertheless, it is reasonable enough to think that
the user should not check more than 5 categories. Our validation experiment
shows that for the cases where an equivalence existed, in 69% of the cases it
was found in the first recommended category, with another 16% percent in
the second recommended category. The user has to be aware though, that
this process is based on an hypothetical premise. No proof exists that syn-
tactic similarity can somehow guarantee some kind of semantic equivalence.
Even more, if no syntactic similarity is found with this process, it does not
mean either that no semantic equivalence exist. If a semantic equivalence is
found, we include the construct in the category. Otherwise, a new category
must be built.

5.2.4 Language Concepts Adaptation
In the previous sections we have shown how the mapping technique of our ap-
proach allows us to align equivalent language constructs. This mapping tech-
nique is useful for those translations where the differences between constructs
are mainly syntactic. When working with families of related languages, and
the family of OLs in particular, the majority of the constructs we are trans-
lating can be handled with such a mapping. However, mismatches between
constructs, whenever a one-to-one equivalence cannot be established, remain
present to some extent in the generated program translators. Those mis-
matches can be difficult to solve, and require the design of complex specific
program transformations for each case.
Programming specific program transformations consumes a significant part

of the effort put in building program translators. The results of this effort
can be maximised if, when building a new translator, we reuse some of the
transformations we have already programmed for previous translators. This
reuse is possible because even if the languages in a family may be syntacti-
cally different, they have conceptually the same building blocks. If we know
in advance what other language or construct could benefit from some trans-
formation, we can try to design the transformation accordingly. Through
reuse, we can reduce the “cost” of the transformations, and obtain an overall
advantage.
When adding a new language to a language family, we expect that a big

part of the constructs in this new language, can be directly mapped to equiv-
alent constructs in those languages already in the family. We have already
discussed this situation in the previous sections. What we also expect, and
that is the subject of this section, is that among the mismatches we have pre-

128 A Product-line Approach

viously noticed between the languages already in the family, some of them
are the same in nature, as those that will be detected in the new languages.
For these cases, if a transformation was designed to solve a previously en-
countered mismatch, there are good hopes that this transformation can be
reused as is, to adapt the mismatched construct detected in the new language
as well.
Program transformations are designed to solve a specific problem between

some source and target languages. No guarantee exists that they will remain
valid if either or both languages are replaced. This uncertainty can be re-
duced if we provide a mechanism to classify or index the transformations,
the same way we do with the languages: transformations will be linked to
a category of constructs, and therefore we assume they will work for all the
constructs linked to the same category. This idea is backed up by the fact
that during the design of the Language Concepts Matrix, we agree that all
the constructs belonging to a certain category are functionally equivalent,
regardless of the language. Transformations then can be thought as solving
a category of problems.
Our approach for reusing transformations proposes using two interrelated

matrixes to index the languages, constructs, and transformations, inside a
specific language family. We can use the information in those tables to de-
rive the appropriate relations and paths between unmatched constructs and
existing transformations. The Language Constructs Matrix, LCM, where we
relate languages and constructs, was already explained in Section 5.2.3.1. In
the following section we show how to relate constructs and transformations,
and we provide an example of how we use this information to reuse existing
transformations.

5.2.4.1 Indexing Transformations: the Transformation Constructs
Matrix, TCM

The Transformation Constructs Matrix, TCM, is a two dimensional matrix
where the relationships between language concepts and transformations act-
ing on the constructs linked to those language concepts are shown.
Let us first review a simple transformation, its basic structure, and how it

is used. A transformation is a rewriting expression composed of three parts:
a name, a matching pattern, and a replacement pattern.

(name)
match
==>
replace

The name is a unique id allowing us to identify the transformation un-
equivocally. The name does not have any influence on the execution of
the transformation, but it allows us to reference it precisely. The matching
pattern presents the construct that will be transformed. The replacement
pattern shows the combination of constructs that will be written in place

5.2 Structuring 129

of the matched construct. Some additional data and operations can be nec-
essary for building the replacement pattern, like conditions, but we do not
include them here, because they tend to be implementation-dependent.
In a rewriting transformation the replace side is functionally equivalent to

the match side. This is guaranteed by the designer of the transformation.
What we need to know, when trying to reuse a transformation, is if all
the individual components of the replace side will be supported by the new
target language. If the target language does support all the elements in the
replacement side of the transformation, we consider the adaptation complete
and equivalent. When one or more of the elements in the replacement pattern
are not supported by the new language, we need to recursively search for
another transformation capable to adapt these unsupported elements. If we
cannot find a chain of transformations providing only constructs supported
by the new language, then the we have a partial adaptation, and we will
need to design additional transformations.
The Transformations-Constructs-Matrix, TCM, was designed to help the

designer of the languages family, in discovering how to combine existing
transformations, and when to design additional transformations.
The TCM table is very similar to the LCM table. It has one column

for each transformation, and one row for each construct in the family. The
columns are indexed according to the match construct of the transformation,
which finally implies that we are relating constructs against constructs. The
cells or row-column intersection of the TCM admit two values:

• An I means that the construct is modified, or required by the trans-
formation.

• An X is shown when the transformation produces among its result the
corresponding construct.

Along this section we will come back to the WAIT example introduced in
Section 5.2.3.1.

Figure 5.11: The working example TCM table.

Figure 5.11 presents one of the TCMs we will use for our examples. There
are five transformations we have indexed there, whose names are shown as

130 A Product-line Approach

headers of the columns. For instance the first transformation to the left is
named WA2WR. Its match construct, the one that will be transformed, is
WaitUntilTimeAbs, or WA for short. In the first column of the table we
find as row headers the names (and shortnames) of all the constructs present
in either the match or the replacement patterns. If we analyse again the
first transformation, WA2WR, we can see that it produces in its replacement
pattern the constructs WR (short name), Sus, Fa2R and Fnow. TheWA2WR
transformation is presented in Figure 5.12.
Designing a transformation that adapts some unmatched construct, pro-

vides to the target languages an indirect support for that construct, which is
functionally equivalent to a direct mapping. If we follow the example from
Figure 5.7, we can see that the construct WA is not supported by the lan-
guage Tope. If we want to translate programs from Stol to Tope, we need
to build a transformation adapting WA into something Tope understands.
If we can come up with a transformation like WA2RU, shown in Figure 5.14
then we have provided Tope with an indirect support for the construct WA.
Analysing the replacement pattern of the transformation adapting WA, we
can see also a very interesting circumstance. The replacement constructs
produced by the transformation are in the intersection of all the languages.
We have, therefore, an adaptation useful not just for Tope but also for Ucl
and Mois. It is not always easy or possible to come up with something as
generic as WA2RU. In many cases we can only produce transformations like
WA2WR, in Figure 5.12, which is a valid adaptation only for Tope.
The last step, once the TCM has been filled with the information from the

designed transformations, is to put them together in the translator. Several
strategies to apply the transformation rules exist. Some of these strategies,
like in the case of ASF+SDF, are automatic. The rewriting system takes the
required decisions. Some other strategies are more user-defined, like in the
case of Stratego, where the user can provide the order. The many different
kins of strategies are thoroughly explained in Visser’s survey [125]. In our
methodology, we give preference to a user-defined strategy, where the order
of the sequence of rules can be chosen for every translator. Thanks to the
TCM, we can provide to the user a suggested order in which the rules can be
applied. The technique defines a partial order between the transformations,
and then apply a topological sort. The partial order rule we use is the
following:

having :
t1, t2 ∈ Transformations,
c ∈ Concepts

then:
if t1(c) = I ∧ t2(c) = X
⇒ t1 < t2

For every two transformations t1 and t2 using the same concept c, if t1 re-
quires c (marked with an I in the TCM), and t2 generates c (marked with and

5.2 Structuring 131

X in the TCM), then t1 has a lower precedence over t2, and therefore t2 has
to be applied before t1 (higher precedence executes before lower precedence).
In the example from Figure 5.11 the partial order set is:

WR2WB < WA2WR,WB2RU < WR2WB,WR2RU < WA2WR

Once the partial order has been defined, a topological sort provides the
suggested order. For those cases where cycles are detected: t1 < t2 ∧ t2 < t1,
the user is alerted about the rules involved in the cycle. The user, then, can
adapt the solution choosing the more convenient order for every translator.

5.2.4.2 An Adaptation Example.

This example emulates, on a reduced scale, the full process of building the
program translators, once we have already categorised all the constructs
into the LCM table. We have divided the example in four steps. In each
step one new translator is built. During the first three steps we set up
the example by adding the languages one by one, and by adapting their
unmatched constructs through a series of transformations. In the fourth
step we show how the existing transformations are reused to build a new
translator.
1) The first translator we want to build is the Stol → Tope translator.

In the corresponding LCM table 5.7 we can see that a mismatch exists in
the construct WaitUntilTimeAbs. This construct exists in Stol, but it is
not natively supported in Tope. Therefore we need to build a transforma-
tion to adapt this construct. Analysing the semantics of the construct, we
come up with a functionally equivalent transformation using the Tope con-
struct WaitForTimeRel, plus some other auxiliary constructs. The designed
transformation is presented in Figure 5.12.

WA2WR)
WaitUntilTimeAbs($texp_abs)
==>
WaitForTimeRel(Sus(Fa2r($texp_abs), Fnow()))

Figure 5.12: The WA2WR transformation.

What the WA2WR transformation of Figure 5.12 does is obtaining the
difference between the absolute time, and the current time, and then passing
this value into the WaitForTimeRel construct. If we think in terms of a
concrete source code example, the WA2WR transformation would look as in
Figure 5.13.
The WA2WR transformation of Figure 5.12 works perfectly to fulfill our

current goal, and is probably the best alternative if we want to remain as close
as possible, both syntactically and semantically, to the original intention of

132 A Product-line Approach

wait until 2009-10-01:23:15:30
==>
wait (clock scan 2009-10-01:23:15:30 - clock seconds)

Figure 5.13: A concrete example with the WA2WR transformation.

the code. There are however other ways to transform this construct, like for
instance the transformation WA2RU, shown in Figure 5.14, whose concrete
source code example is shown in Figure 5.15.

WA2RU)
WaitUntilTimeAbs($texp_abs)
==>
RepeatUntil(

Gt(Fnow(), Fa2r($texp_abs)),[]
)

Figure 5.14: The WA2RU transformation.

wait until 2009-10-01:23:15:30
==>
repeat { } until (clock scan 2009-10-01:23:15:30 > clock seconds)

Figure 5.15: A concrete example with the WA2RU transformation.

The advantage of WA2RU (Figure 5.14) is that it adapts the construct
not only for the Tope language, but also for the Ucl and Mois languages
without the need of additional transformations. The disadvantage is that
the resulting code, has less in common with the original code, than if we use
the WA2WR alternative.
There is no good or bad transformation in this case. Both have advantages

and disadvantages, and both fulfill the purpose. For the sake of the example,
let us choose the first alternative, WA2WR.
2) Now we want to build the translator Tope → Mois. Looking at the

LCM table 5.7, the mismatch is found in the WaitForTimeRel construct,
supported by Tope, but non existing in Mois. We need again to design a
transformation to adapt this construct, and we decide to build the WR2WB
transformation, shown in Figure 5.16:
The main construct produced by WR2WB is WaitUntilBool, that we

consider as the semantically closest construct in Mois. As in the previous
step, there are other possible alternatives for this transformation that we are

5.2 Structuring 133

WR2WB)
WaitForTimeRel($texp_rel) //{[$t := _newId()]}
==>
Assign(Id($t), Add(FuncNow(), $texp_rel))
+
WaitUntilBool(Gt(FuncNow(), Id($t)))

Figure 5.16: The WR2WB Transformation.

not considering.
3) The last step to complete the setup of our example is to build the

translator Mois → Ucl. The mismatch is located in the WaitUntilBool
construct, not present in Ucl (indeed Ucl seems to be be the weakest language
regarding the WAIT family of constructs). The transformation we choose to
implement is WB2RU, in Figure 5.17:

WB2RU)
WaitUntilBool($b)
==>
RepeatUntil($b,[])

Figure 5.17: The WB2RU Transformation.

Now the setup for our example is complete, and in the next step, step 4,
we illustrate our methodology for transformation reuse.
4) Suppose that the translator we need to build now is Stol → Ucl. We

already have a database of transformations we have generated for other trans-
lators, and we would like to know what can be reused. The base condition
to do this is to fill the LCM and TCM tables, as shown in figures 5.7 and
5.11 respectively. Next we can initiate the following process:

1. As in the previous steps, if we scan the LCM table top-down, we find
the first mismatch between Stol and Ucl in the WaitUntilAbsolute
construct, present in Stol, but not supported by Ucl.

2. We jump now to the TCM table in Figure 5.11 and check, in the match
index, if there is some transformation already designed to adapt the
WaitUntilAbsolute construct. We find the WA2WR transformation
in the first column of the table.

3. Next, while still in the TCM table, we check in the WA2WR column
if all the symbols produced by the transformation are supported by
Ucl. We find that there is one construct that is not supported: the
WaitForTimeRel construct.

134 A Product-line Approach

4. We repeat the second step, but now looking for a transformation adapt-
ing the WaitForTimeRel construct. We find the WR2WB transforma-
tion in the second column of the TCM.

5. We repeat the third step with the WR2WB transformation, and we
find that the WaitUntilBool construct is not supported by Ucl.

6. We repeat the second step once more, and we search for a transfor-
mation adapting the WaitUntilBool construct. We find the WB2RU
transformation in the third column of the TCM table.

7. Repeating the third step, we find now that all the constructs produced
by the WB2RU transformation are supported by Ucl. This makes our
complete search successful, and we can emit as result the sequence of
transformations:

WA2WR⇒WR2WB ⇒WB2RU

The LCM table gets updated as shown in the excerpt in Figure 5.18.

Figure 5.18: The LCM table updated.

As additional positive side effects of this example, is worth noticing the
following:

• We have found a solution not only for the mismatch we noticed with
the WaitUntilAbsolute construct, but also for the second mismatch
between Stol and Ucl: the WaitForRelative construct. Analysing the
steps from the preceding procedure backwards, we can see that once we
find the WB2RU transformation, it makes the transformation WR2WB
fully compatible with Ucl, and this transformation also provides an
adaptation for the WaitForRelative construct.

• Even if for the Stol → Ucl translator, it is not necessary to provide
a compatibility with the WaitUntilBoolean construct, because it is
not included in any of the two languages, the WB2RU transformation
provides this compatibility anyway, therefore if at some time we need
to build for instance the translatorMois→ Ucl, we already have found
an adaptation for the mismatch with the WaitUntilBoolean construct.

• Moreover, for the current example, Ucl becomes fully compatible with
all the four languages in the set, because we have found adaptations
for all the constructs that Ucl was not supporting.

5.2 Structuring 135

• Finally, If we repeat this procedure with all the languages in the set,
we will see that all the mismatches are solved with only those three
transformations, and we can build any full translator in that family
without designing additional transformations.

5.2.5 Evaluating the Language Family. Metrics and
Properties

A language family is well described by the LCM and TCM tables, whose
visual representation already give us a good overview of some of the global
properties of the family. Nevertheless, languages are big structures, with
many constructs, and we need more efficient ways of describing the state of
our product-line, and the way it evolves as we keep adapting the mismatches
we find.
In this section we present some basic properties and metrics that can

help to assess different perspectives of a language family. These metrics can
be used to get a better feeling of how the adaptability between languages
increases (or decreases) as we keep designing and reusing transformations.
Our proposal of metrics turns around the concept of entropy, which in

short is a measure of the disorder of a system. The concept of entropy comes
originally from thermodynamics, but it has been adopted by many branches
of computer science. In information theory the Shannon entropy [103] is used
to measure the undeterminacy of a message, which has direct implications on
knowing its expected compression rate. In the field of biology Rao [98], and
this is key to our metrics proposal, measures diversity and similarity among
populations thanks to the quadratic entropy that incorporates the functional
differences among species. Machine learning techniques make extensive use
of entropy, for instance to determine how well some attribute classifies the
training data [78]. Calera-Rubio et al. [21] calculate the relative entropy
between regular tree languages to measure the similarity of grammatical
inference learning methods. Closer to software engineering and to the study
of programming languages, Roca [99] uses entropy to measure the structural
complexity of software, in an effort to determine the safetyness of critical
redundant software. Krein et al. [61] propose language entropy as a metric
to characterise how, in a multi-language development environment, authors
distribute efforts between those languages, and how that distribution affects
productivity.
We use the general principle of entropy to determine how close, and there-

fore how compatible, the languages in a family are, in terms of their language
concepts. We start by defining the basic compatibility measures step by step,
to finish with the overall family entropy metric. Then we derive some auxil-
iary metrics that will help us find out how our efforts to adapt mismatches
influence the global compatibility.

Language To Language Distance, L2LDij. Considering that in our approach,
languages are characterised by the language concepts they use, which

136 A Product-line Approach

are categorical attributes, the more appropriate measure of the distance
between two languages is Podani’s simple matching coefficiency [93],
shown in Figure 5.19. The use of Podani’s distance was already pro-
posed by Botta-Dukat [18] when dealing with nominal, unordered cat-
egorical, functional attributes.

L2LDij = uij
|C|

Figure 5.19: Distance between two languages, L2LDij

In this formula i and j represent two languages in L, which is the set
of languages in the family. C is the set of language concepts in the
family which results from the union of the concepts provided by all the
languages in L: C =

⋃
l∈L

Cl. Finally, uij is the number of concepts

whose value in the LCM table is not the same in languages i and j
(LCM[c,i] 6= LCM[c,j]).
The C set of concepts must remain constant during all calculations
inside the family, to avoid bias. Therefore even for this language to
language case, we always use the full set C. For cases where you are
interested exclusively in the distance between two languages, and no
further comparisons will be made against other languages, it can be
more appropriate to use only the subset Ci ∪ Cj
An L2LD = 0 means there are no differences between the two languages:
they use the same set of concepts. An L2LD = |Ci ∪Cj |/|C|, means a
complete absence of common traits. The highest value of L2LD tends
to 1.

Average Language Distance,LADl. The next step –and metric– calculates
de mean distance between one language and the other languages in the
family, and it is shown in Figure 5.20.

LADl =

L∑
i6=l

L2LDli

|L| − 1

Figure 5.20: Language Average Distance, LADl

This value is simply the addition of the individual distances between l
and each of the other languages, weighed by the number of distances
calculated. If in doubt about how well some language belongs to a

5.2 Structuring 137

family this is the metric we have to use. LAD values start from 0,
when the language is a perfect representative of the family, and tend
to 1 when it has nothing in common with the rest of languages.

Languages Compatibility Index, LCI. This is probably the most relevant
metric. It gives us a measure of how compatible, overall, the languages
in a family are.

LCIL =

L−1∑
i=1

L∑
j=i+1

L2LDij

1/2(|L|(|L| − 1))

Figure 5.21: Languages Compatibility Index, LCI

The formula we use, shown in Figure 5.21, is derived from Ganeshaiah’s
avalanche index [45, 44] and average taxonomic diversity [46]. In turn
those metrics adapt Rao’s quadratic entropy [98].
The formula adds the distance between every couple of languages in
the family, and weighs it for the total number of unique combinations.
In the ideal case, having a family where all the languages are compatible
with all the concepts, would produce an LCI of zero.

Figure 5.22: Distances sample between OLs.

In Figure 5.22 we can see an example of these metrics, based on
the LCM table from Figure 5.7. Inside the table, each cell contains
the L2LD values between pairs of languages. The rightmost column
presents the LAD for each language, and at the bottom of the table
we can see the LCI general value for this sample of the operations
languages family.
This sample considers 5 languages, and a set of 11 concepts. From this
set of concepts three of them, those related with the WAIT function-
ality, are not compatible with all languages. It is this group of three
concepts that contributes negatively to the entropy of the table.

138 A Product-line Approach

If we fill the table with the three transformations developed in the
example from Section 5.2.4.2, the LCI becomes 0.

Direct Language Compatibility Index, LDCI. The LCI is very general, and
can be used at any moment we want to know more about the overall
compatibility of our family, for instance after introducing some set
of transformations. The Languages Direct Compatibility Index is a
slightly restricted form of LCI.
This metric is the same as the LCI, but with the restriction that it
only considers the concepts provided natively by the languages. In
other words, this metric does not consider any adaptation introduced
by the transformations we include in the system. Once we categorise
all the languages in the family, its value remains constant.
We use the LDCI as the representation of the initial state of the lan-
guages family. Variations from this metric will give us the measure of
how the system has progressed in terms of compatibility.

This set of metrics complements the methodology to build a language fam-
ily, with the ability to first, assess the current state of the family, regarding
language diversity, and then measure its evolution in terms of compatibility.
Chapter 6 will extend on the use of these metrics.

The next section presents the final step in building a language family,
namely the final generation of the required translators, based on the struc-
tures built so far.

5.3 Generating and Testing
In the previous phase, structuring, we put together all the languages and
language concepts in a categorised structure, the LCM. Thanks to the LCM,
it is easier to notice mismatches and incompatibilities between languages.
The mismatches were solved thanks to program transformations implemented
by the language family designer. These transformations were put together
and related with the constructs they act upon, in another structure similar
to the LCM, the TCM By using both the TCM and LCM together, we
showed how it was possible to reuse existing program transformations to solve
additional mismatches. Finally, and unless there are unsolvable mismatches
(which is an open possibility), we can obtain full compatibility –direct or
adapted– between the languages that we need to translate. At this point,
generating a translator becomes an automatic process, based on what we
already fed into the LCM and TCM structures.
The basic structure of a translator is depicted in Figure 5.23. The original

program is parsed thanks to the source language specification, and an ab-
stract syntax tree conforming to the languages family structure is produced.
The AST is sent to a rewriting engine, where the program transformations

5.3 Generating and Testing 139

Rewriting UnparsingParsingOriginal
Program

Translated
Program

Source
Language
Specification

Target
Language
Specification

Source2Target
Adaptive

Transformations

Figure 5.23: Translator structure.

to adapt the specific compatibilities between the two languages are applied.
Finally, thanks to the target language specification the program is unparsed,
completing the process. For those rare cases where no mismatches between
source and target languages where detected during the structuring process,
then the translator sends the AST directly to unparsing. No adaptive trans-
formation is required.
As mentioned before, there is always a possibility that for some mismatches

between languages, no combination of program transformations can be found
to solve the conflict. In that case the translator will be incomplete, and the
untranslated pieces of code will be marked with special comments. Of course,
thanks to the LCM and TCM tables, the designer knows beforehand where
those hard mismatches exist, and what to expect from the translation.
Finally, there is the non mandatory, though highly recommended phase

of Testing. The testing phase does not differ from the language to language
technique we explained in Section 4.5. It consists of verifying the observation
equivalence of the original and translated programs.

Source

Weak
Bisimulation

Program

CFG

Equivalence
Report

Target

Program

CFG

LTS LTS

Translation

Figure 5.24: Equivalence verification.

In the schema of Figure 5.24, we summarise the main lines of the process.
Once the program is translated, we generate from both source and target

140 A Product-line Approach

programs, their respective control-flow graphs, based on their control-flow
semantics, included in their language specifications. Then, we run a weak
bisimulation process with the labelled transition systems generated from both
control-flow graphs, and test if the equivalence holds. In the case of problems
during the bisimulation, markers will be included in the graphs and in the
source code of source and target programs. These markers will help the
designer to detect the exact nature of the problem, go back to the structuring
phase, correct the transformations, and regenerate the translators.

5.4 Conclusions
The main goal and contribution of this chapter was to provide a methodology
to build families of language translators, based on two approaches:

• translation-wise, we used the language to language approach shown in
Chapter 4.

• structure-wise, we adopted the product-line approach introduced in
this chapter.

Along this chapter we presented first the product-line model adapted to
our specific case of programming language families. Then we showed how to
build a product-line, by organising the process in four well defined phases:
scope definition, structuring, translator generation and testing.
Additional contributions of the chapter are:

• A set of guidelines to prepare a grammar, independently from other
grammars. That way, constructs and language concepts can be easily
extracted and categorised into the family structure.

• A methodology for language concept categorisation and program trans-
formation reuse, based on a double matrix structure: the language con-
cepts matrix, LCM, and the transformation constructs matrix, TCM.
Thanks to this structure we are able to evaluate the current state of
a family, and take better decisions regarding mismatches adaptation,
with a reduced number of program transformations.

• A tool that provides automated assistance for language concepts cate-
gorisation, based on the syntactic similarity of constructs.

• A set of metrics to describe a language family and evaluate its evolution
in terms of the compatibility of its members.

The methodology proposed in this chapter applies in cases where we need
too build many different translators, from a group of syntactically similar
programming languages. It improves the understanding of the languages
involved, and helps reducing the number of program transformations that
need to be implemented, thanks to its global structure.

5.4 Conclusions 141

It does not, however, deal with specific problems related with (functional)
language incompatibilities and program transformation design. Therefore
translation for certain languages remains incomplete.
In the next chapter, we exemplify and validate this methodology in detail

on the specific family of Operations Languages.

6 Validation
Along this thesis we have explained our approach to build families of language
translators. The approach applies a methodology based on a combination
of different techniques: a product-line approach providing the support for a
reusable translator framework; a grammar convergence reverse-engineering
approach enabling the extraction of common features from programming
languages and programs, and a language-parametric grammarware approach
providing the specific translation and transformation techniques.
The purpose of this work has not been to propose yet another technique

for program translation. We rather tried to use as much as possible state-of-
the-art existing techniques, to build a framework that can generate a large
number of program translators, among languages belonging to a same fam-
ily, with an effective reduction of the programming effort involved. In this
chapter we validate our approach, by building a set of translators for the
family of operations languages. The translations are tested on a group of
procedures defining some typical operations in a space mission.

6.1 Preliminary Case Studies
Before presenting the validation of the product-line approach to program
translators, we first introduce some preliminary studies, mainly related to
language-to-language translation. These studies already give indications of
the power of the annotated grammars technique described in Chapter 4,
which is the basis of our approach.

6.1.1 The IRL Case Study
The MOIS system and language are successfully used in the space operations
environment to design operations procedures for space missions [95, 96]. One
of the goals of the APPAREIL project [84] was to study how MOIS could
benefit from a generic mechanism to import existing procedures programmed
in different operations languages.
The traditional way to import such procedures, used so far by MOIS en-

gineers, was to use attributed grammars and ANTLR parsers to build the
required importers. After a few translators were built with this approach, it
became clear to them that this approach was highly time-consuming, both
when developing and especially when maintaining the importers.
After further analysis in collaboration with the MOIS team, and thanks to

144 Validation

the support of the CWI’s SEN1 Laboratory1, we became convinced that the
special characteristics of an environment like Asf+Sdf [118] could greatly
improve the process of building such program importers. Therefore, using
Asf+Sdf, a preliminary experiment was performed, where we manually
built a number of translators between PLUTO [42], UCL [7] and a reduced
version of MOIS, that we will call IRL (IRL stands for Intermediate Repre-
sentation Language).
We started with a subset of constructs for these languages, consisting

mainly of control-flow structures, which is what all operations languages
have in common. We manually created four translators: PLUTO to IRL,
IRL to PLUTO, UCL to IRL, and IRL to UCL.
The total number of Asf+Sdf rewriting rules we had to implement for

these four translators was 91, but the implementation of 73 of these rules
(about 80%) followed a repetitive pattern. The rewriting rules served as a
kind of mapping between source and target grammars, with an almost one-to-
one correspondence between productions and non-terminals. Only 18 of all
the rules (slightly less than 20%) were less trivial, requiring more knowledge
than what could be deduced from the grammar.
While conducting this experiment, we thus experienced a high-level of

repetition. In addition, declaring the sometimes complex mappings between
language concepts required high technical skills. As such, this initial experi-
ment motivated and justified the need for a more automated approach, that
could generate automatically a significant part of the rewriting rules.

6.1.2 The Stol-to-Mois Case Study
Based on the data gathered from the previous experiment, where we built
program translators completely by hand, we developed a first prototype of
our APPAREIL tool as described in Chapter 4. Then, we used that tool to
generate a full translator from Stol to Mois. The goal of this experiment was
not only to build a proof-of-concept prototype, but also to test its validity
and usefulness for one of the clients (Panamsat) of our industrial partner
(RHEA Systems, the creators and owners of the MOIS system). A final
version of the translator that was generated by the APPAREIL tool was
sent to that client, and we have been informed by our industrial partner that
it was successfully used to import Stol procedures into their Mois tool.
The development time of this prototype, from the moment we started

preparing the grammars, until we generated the first version ready to be
tested with complete Stol procedures, was about two months. The project
was in our hands (one full time researcher) with the support of one person
from the industrial partner’s technical team (about twenty percent of his
time).2 An interesting comparison, extracted from conversations with the

1http://www.cwi.nl/en/research-groups/Software-Analysis-and-Transformation
2After this point many delays, mostly unrelated to the development of the translator,
made it difficult to track the total time invested exclusively in the project.

6.2 The STOL Validation 145

industrial partner, indicates that in a very similar project where a translator
from Elisa to Ucl was built, one full time programmer invested thrice the
time working completely on ANTLR, until he reached the same testing stage
as we did. Unfortunately, we have no knowledge about other variables that
could have influenced this significant difference in development time.
Regarding the size of the code of the generated translator, two separate

parts should be distinguished: the code generated automatically by the AP-
PAREIL tool based on the grammar specifications, and the code built by
hand to cope with the mismatches that could not be addressed automati-
cally by the tool. The code generated automatically counted 3.775 lines in
376 ASF+SDF rewriting rules. This code was generated from the specifica-
tions (annotations) that were added to the grammar files by hand: 229 lines
of code. The manually written part of the code was programmed in Java,
counting 1.182 lines distributed over 58 methods.
If we compare this data with the data obtained from the previous experi-

ment, we can see that it goes in the direction of what we expected to achieve:
in number of lines of code we were able to generate 63% of the code auto-
matically; in number of functions we generated 85% of the total code by
automatic means.

6.2 The STOL Validation
This section can be considered as an instantiation of the product-line ap-
proach explained in Chapter 5. The activities performed during the experi-
ment reflect the organization suggested in that chapter.
In the following sections we describe, first, the set-up of the experiment

and why the case was chosen; second, the methodology that was followed,
which is mainly a quick summary of the approach; third the experiment
itself, where we describe the problems we encountered, how we solved them,
and the overall results; and finally we discuss the results obtained, providing
some interpretations, advantages and disadvantages of the approach, and
general conclusions.
We were first confronted with the problem of program translation in the

context of a research project with a company, RHEA Systems, specialised
in the domain of space-mission operations planning. The company has a
software suite, MOIS 3, which amongst others, provides tool support for
designing space operations procedures. Considering the sheer amount of ex-
isting procedures, designed in one of the many existing operations languages,
it was interesting and necessary to study different alternatives to build pro-
gram translators between these languages.
All the information we received for the experiment, and the project in

general, was provided by the company. The strong constraints regarding
confidentiality, very common in that domain, restricted the flow of informa-

3Manufacturing and Operations Information System

146 Validation

tion towards us. This restriction is manifested especially in the small number
of test procedures we received.
The company provided us with documentation on six different operations

languages: Stol, Mois, Pluto, Ucl, Tope and ELisa. We received, for the test-
ing purposes, 10 Stol procedures that had been obfuscated previously to hide
the real names of some elements, especially telemetries and commands. Nev-
ertheless, the company certified these procedures as being good and faithful
representatives of what is generally found in the domain. These procedures
use a set of directives from a specific mission running on an EPOCH4 control
system.
The experiment basically consisted of building a product-line with this

family of six operations languages. We then generated a set of five translators
from Stol to the rest of the languages in the family. Finally, the translators
were tested on the group of 10 Stol procedures.

6.3 Methodology
The methodology we used for the experiment is explained in detail in Chapter
5, and summarised in Figure 6.1. There are three main cyclic steps we follow
until we reach the final product.
In the first step, we align the grammars. To differentiate the constructs,

the grammars are analysed and modified when necessary, applying the recom-
mended rules of thumb from Section 5.2.2. The constructs are then classified
in categories, based on their syntactic patterns, as shown on Section 5.2.3.3.
This way we obtain a first initial version of the LCM. A manual revision
of the LCM table is then performed, to look for imprecisions in the cate-
gorisation process. From this part of the process we can evaluate how our
actions affect the evolution of the family, thanks to the set of metrics defined
in Section 5.2.5.
The second cycle is for the adaptation of the mismatched constructs. We

use the LCM and TCM tables, as presented in sections 5.2.3.1 and 5.2.4.1,
to decide what are the mismatches we should try to solve first, to better
reuse the transformations we need to program. The LCM and TCM tables
are updated with the information from the transformations we build. The
cycle continues until we have solved, if possible, all the mismatches between
language constructs, for the translators that need to be generated.
Finally, in the third cycle, we generate the translators and translate the set

of test procedures (Section 5.3). We verify the results using the verification
tool, and when necessary we go back to the previous adaptation cycle, to
correct the inaccurate transformations. We regenerate the translators, and
retest.
Along the entire process the measures obtained thanks to the metrics pro-

vided, are used to assess whether the decisions we have taken so far, are

4http://www.integ.com/

6.3 Methodology 147

Differentiating
Constructs Rules of Thumb

Classifying
Constructs Syntactic patterns

LCM Table
& Metrics

Analysing
Mismatches

LCM Table
& Metrics

Building
Transformations

LCM+TCM
Tables

LCM+TCM
Tables

Generating
Translators

Translators
Generator

Translating
Procedures

Generated
Translators

Bisimulator trace

Verifying
Equivalence Bisimulation

<<inequivalences>>

<<mismatches>>

<<inconsistencies>>

1

2

3

Align

Adapt

Test

using...

Figure 6.1: Methodology Summary

148 Validation

Figure 6.2: Concept-Construct Syntactic Distances

giving the expected results or not.

6.4 The Experiment
Differentiating the constructs. Our main concern in this part of the pro-
cess was to convert all the grammars to a GLR style. We focused on redesign-
ing those productions that in their original version were in a LL style. This
is often the case for productions dealing with precedence and associativity
issues. The grammars from Pluto, Ucl, Tope and Elisa were suffering from
these kind of problems, especially in the productions dealing with arithmetic
and boolean expressions.
The rules of thumb recommended in Section 5.2.2, for aligning the gram-

mars were not applied exhaustively. We wanted to keep some “raw” material
to better test the assisted constructs classification technique. We did, how-
ever, get rid of some unnecessary redundant symbols, and modified the names
of some other symbols to facilitate the task of extracting the syntactic pat-
tern of the constructs in the next step. The renaming was mainly to allow an
automated word splitting. For instance, the DoWhile construct was renamed
into Do-While, introducing a dash between the two words. Only a few of
these cases were considered necessary.

Classifying the constructs. With the grammars ready to be aligned, we
first decided on the order in which the languages will be processed. The first
language we include in the LCM is specially important, because it provides
the initial language concepts definition for the LCM. We used Stol as first
language, because it was already a well known language for us. An initial
prototype for translating Stol programs to Mois had been made before, and
it was tested and used by the company. Stol’s grammars could be considered
as a solid initial set of LCM categories. The rest of the languages were
classified under a similar criteria: how familiar we are with their grammars
and concepts. The final order was: Stol, Mois, Pluto, Ucl, Tope and Elisa.

6.4 The Experiment 149

Figure 6.3: Syntactic Classification Assistant Results

Each language was classified on top of the initial set of categories provided
by Stol, using the recommendations provided by the syntactic classifier as-
sistant. A small example of how these recommendations are presented is
shown in Figure 6.2. The categories inside the LCM are shown to the left,
and the constructs provided by the language are shown at the top of the
table. The table shows the first 10 suggestions presented when classifying
Elisa’s Break-Statement construct.
The results of using the classification assistant are presented in Figure 6.3.
The first column shows the position where a positive recommendation

was found. The cells of the table show the number of constructs whose
correct category was recommended in that position, for each language (Stol
is not shown because being the first language, it was directly included in
the table). For instance in the case of MOIS, for 29 of its 114 constructs
the recommendation shown as the first alternative was correct, and for 74
constructs the correct alternative was recommended in second position. The
column at the right of the figure shows in average the percentage of positive
recommendations for each position were a recommendation was found. In

150 Validation

Figure 6.4: Initial Similarity Metrics

Figure 6.5: Some “Arguments” Inconsistencies

69% of the cases the first recommendation provided by the assistant was
correct: it corresponded with our own manual classification based on the
documentation. In another 16% of the cases the correct category was found
in the second recommendation. For the other 15% of the cases, either we did
not find any positive recommendation, or the recommendation was buried
too deep in the list as to be of any practical use: if we do not find a positive
in the first 5 positions, it is the better to postpone that construct till the
end, when we have significantly reduced the list of available categories. All
languages presented a similar behaviour.
Once we classified all the languages in the LCM, we applied the compati-

bility metrics on this first version of the LCM table. Figure 6.4 show these
results. The cells on the language-to-language intersection present the Lan-
guage to Language Distance, L2LD (the values to the left of the diagonal
mirror the values to the right). The column to the right-side of the table
shows the Language Average Distance, LAD, and finally, the last row of the
table shows the Languages Compatibility Index, LCI, of the family.

Second revision of the LCM After the first “rough” categorisation, we did a
second pass over the LCM searching for inconsistencies that were introduced
in the process of differentiating and classifying constructs. We report on the
cases we detected in three different groups.
The first group is related with arguments used in procedures, commands

and functions. Figure 6.5 shows the concepts involved, before being modified
and adapted.

• The ArgsDeclaration construct represents an argument declaration at
the procedure level. It is only considered in Stol and Mois, even though
according to our knowledge, all languages should include this construct.

6.4 The Experiment 151

Figure 6.6: Some “Expressions” Inconsistencies

For the case of Pluto, the reason was that the syntax for this construct
was not present in the provided grammar. In Pluto there is a different
global structure called the meta-information of the mission. It is in
this structure where the arguments for all the procedures are declared.
We augmented the syntax of Pluto with this construct at a top level,
so that it can be moved back easily to the mission meta-information
when necessary. For Ucl, Tope and Elisa it was a consequence of having
used more general concepts like Arguments and Parameters. We split
those constructs creating the specific ArgDeclaration construct in those
languages.

• The concepts Parameters and Arguments had the same meaning, so
they were unified into Arguments.

• The CommandArgs construct was being used in Mois and Stol to recog-
nise the arguments passed to a command. There was nothing that jus-
tifies the use of a separate construct for these kinds of arguments. It
was removed by modifying the syntax of Command using the generic
Arguments symbol.

• Like the previous case, FunctionArgs was replaced by Arguments, by
modifying the Function syntax.

The second group of grammar modifications involves different kinds of
boolean and arithmetic expressions. In Figure 6.6 we can see the constructs
involved before being modified.

• With respect to arithmetic expressions, MOIS provides only a single
generic construct, parameterised by a string. We split this monolithic
construct into several specific constructs, one for each expression, there-
fore removing the generic ArithmeticExp concept.

152 Validation

• As in the previous case, MOIS provides a generic construct for boolean
expressions. We replaced the generic BoolComp construct in Mois,
by the specific And, Or, Not, and Xor constructs. Do notice that
Pluto and Ucl do not support the ArithmeticExp_Mod construct. A
transformation will be designed in the adaptation cycle, to adapt this
mismatch with the mod() function.

• The BoolNot is included into UCL. It was simply missed from the
grammar because of a human error.

• BoolXOr is not supported by Ucl and Tope. We will need to design a
transformation to provide these two languages with a functional equiv-
alent combination of instructions.

• Finally, the boolean comparisons like Equals, etc., were mistakenly
omitted when building the Pluto and Ucl grammars . We included the
missing constructs.

The final group of grammar modifications is a collection of different unre-
lated cases, that are worth to mention.

• The Halt-Statement construct , from Ucl and Elisa, corresponds di-
rectly to the Exit statement. When checking this problem, we realised
also that in Ucl, the Exit construct was equivalent to the Break concept.

• The Command and Expression constructs were accidentally omitted
from UCL

• In MOIS, the Declaration construct was equivalent to the Declaration-
Body concept. Furthermore, a transformation was needed to collect
scattered declarations into a single declarations header.

• The Expression-List concept, considered in Stol and Mois was not really
necessary. It was redundant, and therefore removed.

• Function-Call was unified with Function.

• Function-Name in Stol and Mois was not necessary. It was replaced in
those grammars with the more generic construct Identifier.

• The PassByRef construct used by arguments, was not being taken
explicitly into account in the documentation of the Pluto, Ucl, Tope
and Elisa grammars. We added it to those grammars.

• The Wait statement needed to be split in three different wait concepts,
with a different semantics: WaitAbsolute,WaitRelative andWaitBoolean.
This was done using program transformations.

6.4 The Experiment 153

Figure 6.7: Compatibility Metrics After Correcting Inconsistencies

Finally, after the mentioned inconsistencies were detected and solved, the
size of the set of language concepts was reduced by 5%, from 153 to 144
concepts. We recalculated the compatibility metrics to check how the LCM
benefitted from these second pass. The new results are shown in Figure 6.7,
and are analysed in Section 6.5.

Adapting the constructs: analysing mismatches and building transforma-
tions. Knowing that our priority is to translate from Stol to the other five
languages, we look in the LCM for those constructs supported by Stol, that
are unsupported by the rest of the languages. Then we design a draft of the
transformation, and see if the constructs that will be generated are present
in the other languages or not. If they are not, we sketch a different trans-
formation, or see recursively if for the unsupported construct we can build a
new transformation.
The transformations we are presenting have been simplified showing only

the match and replace patterns. We are not showing other operations that
can be included in the transformations, like conditional tests, to check whether
or not to perform the transformation.
We present the transformations ordered from the simpler, leaving to the

end the more complex adaptations.

• Arithmetic_Mod. Neither Pluto nor Ucl offer natively this construct.
They do offer, however, a function providing the same functionality.
Additionally, in both languages the function has the same name, which
allows us to reuse the same transformation.
M2F)
Mod(lft:Expression, rgt:Expression)
==>
Function(Identifier("mod"), Arguments([lft, rgt]))

This is a very straightforward transformation that requires only a quick
and superficial analysis of the LCM and the TCM. Both languages
provide the required constructs: Function, Identifier, and Arguments.

• BoolXOr. This construct is absent from Ucl and Tope. They do pro-
vide, however, the boolean operations we require to emulate Xor, using
And, Or, and Not.

154 Validation

X2O)
XOr(lft:Expression, rgt:Expression)
==>
Or(And(lft, Not(rgt)), And(Not(lft), rgt))

• ProcedureCall is not supported in Pluto, and there is no other native
command for doing this. Nevertheless, considering that we are using
the set of directives provided by an EPOCH control system, we can call
one of the system directives to do the job. Indeed, many times, this is
how it is done even in Stol, rather than using the native construct of
the language.
P2D)
Proccall(id:Identifier, arg:Arguments)
==>
Dir(DirProcStart(id, arg))

• While is not supported in Elisa. Elisa fetaures only a generic loop
statement that, combined with the break statement, can simulate other
more specific types of loops.
WH2L)
While(e:Expression, b:Block)
==>
Loop(Break(Not(e)), b)

• Three languages do not support the If-Else-If construct: Mois, Pluto
and Elisa. In this example, the symbol & denotes that we are requesting
the execution of an operation internal to the translation system. For
instance, in line 4 we request a new identifier name, that will be stored
in the variable i. Lines 7 to 10 iterate through every item in list, and
transform it into a series of simple If constructs.

1IS2IF)
2Ifelsif (list :[(Expression , Block)], else:<Block >)
3==>
4&(i = _NewId ())
5LocalDeclaration (Identifier (&i)),
6Assignment (Identifier (&i), False ()),
7&(foreach (e:Expression , b:Block) in list {
8[If(And(e, Not(Identifier (&i)))
9, Assignment (Identifier (&i), True ()), b, <>),]
10})
11If(Not(Identifier (&i)), else , <>)

• Wait. This case was already explained in detail in Section 5.2.4.1,
when we showed how to use the TCM table to link different related
transformations to reuse them. Three transformations were designed
and put together, solving the mismatches for the six languages, and
the set of three language concepts related with the Wait functionality.

6.4 The Experiment 155

• Goto - Label This is an example of a mismatch for which our proposed
automatic solution did not work for all the procedures, because the
algorithm we used is exponential. For some procedures we did not
have enough resources to complete the process. For other procedures,
the resulting code was too big.
In our language family, the Goto and Label constructs are provided
natively by Stol and Elisa. In the case of Mois gotos are deprecated,
but it is still possible to use them. The gotos are not supported in
Pluto, Ucl and Tope.
The case of gotos in Stol is particularly interesting. Stol does not
enforce any restriction on the kind of jumps that can be introduced
in the code. It is possible to jump inside and outside of any block
of code (loops included), and across different nesting levels. Jumping
inside a loop is specially problematic, because it provokes irreducible
regions in the control-flow [80]. Irreducible regions are complex to solve
for any goto removal strategy. Additionally, for some of the Stol test
procedures, the irreducible region covered more than 80% of the code
in the procedure. Finally, Stol does not support the constructs required
by some of the existent goto removal strategies.
Many strategies have been proposed to solve the goto removal problem.
In [23], Ceccato et al. report on five of them. Ceccato compares these
strategies in the context of a migration project from a legacy language
to Java:

– In the pattern-based strategy [122], recurring goto patterns are
identified by the programmer. The programmer, then, designs an
equivalent replacement pattern without gotos. These patterns are
implemented as rewriting rules that automatically translate the
code recognised by the pattern. For some tangled goto structures,
like was the case with some of the Stol test procedures, we could
not define the required patterns. Ceccato reports a successful
removal of only 21% of the gotos in the code he analysed.

– The Bohm-Jacopini strategy [16], and the Erosa strategies [41],
cannot be used in our experiment. Both of them need constructs
that are not supported by Stol: Bohm’s strategy uses Switch and
Continue constructs, and Erosa’s strategies use Break and Con-
tinue constructs.

– Finally, the JGoto strategy was specific to Java, and worked only
at the java byte-code level.

A different strategy, not considered in Ceccato’s experiment is the
node-splitting strategy [80], which normalises the irreducible regions in
a control-flow graph by iteratively applying the following three func-
tions:
– T1) Remove edges connecting a node to itself.

156 Validation

– T2) If a node has a single predecessor, merge it with its predeces-
sor, preserving their incoming and outgoing edges.

– T3) If a node has multiple predecessors, duplicate it to produce
one copy per predecessor.

The process continues until there is one single node. If this process
is reversed, preserving the duplicated nodes, the result is a reducible
control-flow graph.
This strategy does not introduce additional constructs, or different
kinds of jumps in the program, and uses a single algorithm for every
program, which makes it our best candidate for removing the gotos
from Stol procedures. The disadvantages, though, are important: the
algorithm is exponential. When the irreducible regions are too big, two
scenarios become possible:
– The resulting code can be considerably larger than the original.
– The algorithm can consume all the available resources in the com-

puter, and stop before completion.
We finally decided to implement and try the node-splitting strategy. It
is general enough to be used with languages like Stol, and it has the
potential to be improved with, for instance, a heuristics approach, as
proposed by Unger et al. [116]. We explored Unger’s approach, pro-
ducing a semi-automatic version of node-splitting: for some procedures
it is possible to duplicate and split a few selected nodes, from the post-
dominator of the control-flow graph, before applying the node-splitting
algorithm. This reduces the size of the irreducible region and produces
smaller programs.

• The Telemetry construct deserves special attention. According to the
LCM table, Stol and Ucl do not provide this construct. Nevertheless,
telemetries, together with commands and directives, are instructions
that any procedure willing to communicate with the control centre or
the spacecraft needs to use.
The explanation for this situation is that Stol and Ucl hide the activity
of fetching a telemetry value. In both cases the interpreter keeps track
of all the identifiers declared with a Point Declaration. Then, every
time they are used in the code, the compiler fetches the value of the
telemetry behind scenes. The rest of the languages in the family use a
more “visual” approach, thanks to the specific telemetry constructs.
To solve this case we needed to introduce artificially the Telemetry
construct in Stol, when the target languages natively implement the
specific Telemetry construct. The transformation basically collects all
the statements using a point identifier, and inserts before them the
corresponding Telemetry construct.

6.4 The Experiment 157

i_TLW)
&(list:[Statement, [Identifier]]

= CollectStatementsHavingPointIdentifiers())
==>
&(foreach([s:Statement, listid:[Identifier]] in list) {
foreach(id in listid) {
Telemetry(id), s

}
})

This inverse application of the transformation is peculiar, in the sense
that it applies when the source language does not provide a construct.
In general we need to adapt when the target language does provide the
construct.

• Another case of inverse application of a transformation, involves the
Assignment-to-Tlm construct. It is possible in certain cases to update
a telemetry temporarily with an arbitrary value.
Stol makes no distinction between this case and a regular assignment.
Mois and Pluto, however, use a special instruction for those cases where
an arbitrary value must be assigned to a telemetry.
i_TLAS)
Assignment(t:Telemetry, e:Expression)
==>
AssignToTlm(t, e)

• The last mismatch we need to solve relates to how declarations can
be scattered or not in the procedure. Stol allows to declare variables
anywhere in the code. Mois, Pluto and Elisa require that variables
are declared into the DeclarationsBody header, at the beginning of the
procedures.
D2DB)
&(list:[Declaration] = CollectAndRemoveAllDeclarations())
==>
&(addfirst(Start, DeclarationsBody(list)))

In Figure 6.8 we can see the LCM table after having included all the
transformations we have designed. We repeated only the language concepts
that were affected.
Finally, we recalculate the compatibility metrics to check how the LCM

benefited from these transformations. The results are shown in Figure 6.9.

Generating the translators. Before generating the translators, it is neces-
sary to decide the order in which the additional transformations we have
designed must be applied. The constraint that has to be respected is that
a transformation modifying some construct C, must always be applied after
any other transformation that generates the same construct C.

158 Validation

Figure 6.8: LCM with transformations

Figure 6.9: Compatibility Metrics After Adding Transformations

We use the information inside the TCM to calculate this order, as ex-
plained in Section 5.2.4.1. Figure 6.10 shows the TCM for this example.
The transformations are already ordered from left to right. The system will
start with the left-most transformations. The cells shadowed in gray show
the sections of the table that specifically affect the order. A value of I indi-
cates that the transformation modifies that construct, and a value of X that
the translation generates that construct.
Finally, not all the transformations have to be included in every translator.

Figure 6.11 shows the list of transformations considered in every translator
having Stol as source language.

Translating the test procedures. The translation was performed in three
different steps. First, we did a test translation from Stol to Tope, with the
original procedures. We confirmed that all the Goto and Label constructs
where correctly detected and tagged by the generated translator as mis-
matches, because Tope does not support the Goto construct. In total 117
cases where signaled in the translated code, with the “Mismatch” tag:

...
<Mismatch from="Stol" concept="Goto">

goto EXIT
</Mismatch>
...
<Mismatch from="Stol" concept="Label">

EXIT:

6.4 The Experiment 159

Figure 6.10: TCM Recommendations

Figure 6.11: Transformations per translator

160 Validation

(This experiment was executed on a Mac Pro 8-Core, with 15GB of RAM).

Figure 6.12: Goto removal. Methods comparison.

</Mismatch>
...

The mismatch tag is used when any symbol that cannot be understood
by the target language grammar is found. If it is possible, after tagging the
mismatch, the translator tries to translate the rest of the code.
Second, to remove gotos and labels we tested three different alternatives,

whose results are summarised in Figure 6.12:

• a) We translated all the procedures by hand, using mainly code du-
plication to solve the improper loops. We did it this way to obtain a
better understanding of the structure of the programs, and as a backup
solution: the node-splitting algorithm we use for the automatic goto
removal is exponential and for some programs the solution will not be
reached. The best result in terms of the size of the code produced, com-
pared with the other two techniques, were obtained with this manual
approach, with an increase of 14% in the number of lines of code.

• b) We tried the semi-automatic translation, with the assisted version
of node-splitting, explained previously in this section. With this tech-
nique, the procedure P08 could not be processed. The duplication of
nodes required by the node-splitting algorithm exhausted all the mem-
ory in the computer. With the semi-automatic method, the number of
lines of code increased 97% in average. The total time used to process
the 7 procedures that succeed to complete, was 112 seconds.

• c) We used the automatic translation with the node-splitting algo-
rithm. Two procedures, P02 and P08, could not be processed with this
method. The number of lines of code increased by 403% in average.
The six procedures were processed in 311 seconds in total.

In all three cases, we used the bisimulation tool to confirm the weak bisim-
ilarity between the original procedure, and the procedure without the goto-
label constructs.

6.4 The Experiment 161

In the third step, to proceed with the final translation, we decided to use
the manually generated “goto free” procedures. The decision was based in
their smaller code, compared to the size of the code generated by the semi-
automatic and the automatic strategies.
The translation completed successfully for the ten procedures and the five

target languages. One final step was performed as an additional test for
completeness: we translated the generated procedures back to Stol again.
The following actions were necessary for this final step:

• First, we created four new transformations to revert the changes suf-
fered by the procedures.
– TLAS, which reverts the effect of the i_TLAS transformation.

This transformation was necessary to translate from Mois and
Pluto. It transforms the AssignToTlm construct into the Assign-
ment construct.
TLAS)
AssignToTlm(t:Telemetry, e:Expression)
==>
Assignment(t, e)

– DB2D, which reverts the effect of D2DB. This transformation
applies when translating from Mois, Pluto and Elisa. The trans-
formation replaces the DeclarationsBody construct by each Dec-
laration construct contained in the list inside DeclarationsBody.
DB2D)
DeclarationsBody(list:[Declaration])
==>
&(foreach(d in list) {

d
})

– TLW, which reverts the effect of i_TLW. This transformation ap-
plies when translating from Mois, Pluto, Elisa and Tope. This
transformation simply removes the Telemetry construct. Remem-
ber that in Stol, fetching the value of a telemetry is done auto-
matically by the compiler, when a variable referencing a telemetry
is used.
TLW)
Telemetry(id:Identifier)
==>
//

– L2GOTO, which reverts the effect of WH2L. This transformation
applies when translating from Elisa. This transformation does not
revert the Loop construct to a While, so it cannot be considered
strictly as inverting the effect of WH2L. Nevertheless it produces
functionally equivalent code, and it transforms any Loop construct
to Stol. Unfortunately it cannot be used to translate from Elisa to

162 Validation

Pluto, Ucl or Tope, because these three languages do not support
the Goto construct.
L2GOTO)
Loop(a:[Statement], Break(e:Expression), b:[Statement])
==>
&(in = _NewId(); out = _NewId())
Label(&in),
a,
If(e, Goto(&out), <>),
b,
Goto(&in),
Label(&out)

Only four transformations needed to be reverted. For the other 6 trans-
formations used when translating from Stol (M2F, X2O, P2D, IS2IF,
WR2WB and WA2WR), they already produced constructs supported
by Stol. The translators built this way are not complete, because they
do not consider all the incompatible constructs that need to be trans-
formed. The translators were, nevertheless, complete enough as to
translate back to Stol the tested procedures.

Verifying the equivalence. The verification tool proved to be useful not
only as the final step in the translation, testing the resulting procedures. It
is useful also while building the translators, as a debugging tool. In our exper-
iment, more specifically, for every transformation we used a set of small test
programs that were tested for equivalence after every important modification
of the transformations. It helped to detect and correct errors introduced by
accident in the logic of the transformations.
Next, we present some more specific cases detected when testing the trans-

lators.

• Verifying the weak functional equivalence of two procedures from dif-
ferent source code files can be done with some restrictions in the kind
of tags used by the control-flow graphs. It is necessary to use non-strict
tagging, because the unique identifiers of the nodes in the two ASTs are
no longer aligned. This was the case when we use the verification tool
to check the weak equivalence between the original Stol procedures,
and the procedures where the gotos were removed by hand.

• Similar to the previous problem, whenever you need to create a new
instruction that will be tracked during the verification, or when you
delete one such instruction, the verification will not be able to establish
a relation and will stop.
One such example happens when translating from Stol to Mois. Stol
uses the WaitAbsolute construct, which need to be transformed into a
WaitRelative construct in Mois. The two constructs, become unrelated

6.4 The Experiment 163

for the verification tool. This case, though, is simply solved by renam-
ing the two instructions into a common WAIT tag, when producing
the CFG, even though precision will be lost.
More difficult to solve becomes the case when we replace the original
instruction with something we no longer track. We did not suffer this
problem in this experiment, but if we want to translate from UCL to
Tope, the WaitBoolean construct will be changed with a loop, and loop
constructs disappear as individual entities in the CFG.
An alternative could be to use some special notation for these cases,
when tracked constructs changed radically. This way the verification
tool would identify those cases as signaled exceptions, and continue.

• The verification is sensible to the branching structure in our programs,
and false negatives can appear when we modify this structure disre-
garding this sensibility. Let us illustrate this case with a transforma-
tion required when translating from Stol to Elisa. Stol supports the
If-Elseif construct like in the following example:
X
IF (a) THEN

Y1
ELSEIF (b)

Y2
ELSEIF (c)

Y3
ELSE

Y4
ENDIF
Z

Elisa does not support this construct, so we build a transformation re-
placing the If-Elseif construct, with a non-nested structure of If con-
structs, using one auxiliary boolean variable to control the branching,
as shown in the following piece of code:
my_0 = FALSE
X
IF (a && ! my_0) THEN
my_0 = TRUE
Y1

ENDIF
IF (b && ! my_0) THEN
my_0 = TRUE
Y2

ENDIF
IF (c && ! my_0) THEN
my_0 = TRUE
Y3

ENDIF

164 Validation

Original
(If-Elseif)

Translated
(sequence of If)

Figure 6.13: Bisimulation False Negative

IF (! my_0) THEN
Y4

ENDIF
Z

Even though these two pieces of code execute the same, the verification
shows an inconsistent path: in the translated program it is possible to
go directly from the execution of X to the execution of Z, as shown in
Figure 6.13.
The verification stops when it finds the first inconsistency. In this
case, though, it is easy to see that many inconsistent paths exist, like
for instance from Y1 to Y3.
To avoid this inconsistency, we changed the implementation of the
transformation into a nested If structure, that more naturally resem-
bles the original structure. Also for the end-user of the program, this
alternative will be easier to recognise and to identify with the old one.
X
IF (a) THEN

Y1
ELSE

IF (b) THEN
Y2

6.4 The Experiment 165

ELSE
IF (c) THEN

Y3
ELSE

Y4
ENDIF

ENDIF
ENDIF
Z

For cases where we cannot provide with an alternative implementation
for the transformation, we cannot use the verification on procedures
presenting these constructs.

Impact on reuse. Our global experiment consisted of creating a lan-
guage family of six languages: Stol, Mois, Pluto, Ucl, Tope and Elisa.
This was achieved by adding a total of 770 lines of specifications (an-
notations) to the grammars of the six languages. Then, we built 10
translators in total: 5 from Stol to the other languages, and 5 to bring
the translated code back to Stol. Thanks to the specifications included
in the grammars, 76% of all the productions in the family (109 / 144)
could be mapped directly between the six languages in the family. The
Stol language consists of 120 productions. For the 11 Stol productions
that could not be mapped directly with the other five languages, a
total of 15 additional functions where added to the language family
structure for solving the mismatches. Each function was used in 2.27
translators in average (ranging from 1 to 4 translators).
Compared with a more traditional approach, where translators are
built independently without an explicit categorisation and mapping
of compatible constructs, the effort would have been considerably dif-
ferent.
First let us consider the case of those productions that were directly
mapped together between the six languages. For translating one of
these compatible productions, in our approach we need to write one
line of specifications per language in average: 6 lines of code for the 10
translators we built. With a different approach, like the one we men-
tioned in the previous paragraph, this would have required 10 functions
in total, one per translator. These functions are in general not com-
plicated, and they require 3 lines of code in average. Even considering
that defining a correct mapping can be a more difficult task than pro-
gramming any of these 10 simple functions, still the effort measured in
lines of code is five times smaller: 6 vs. 30 lines of code per mapped
production.
Second, for the functions that need to be programmed to adapt the mis-
matches, it is more difficult to give a generic view of the improvement.

166 Validation

It largely depends on the complexity of every case. For this experiment
though, instead of only 15 functions, we would have needed to write
34, one for each mismatch in every translator, which means that the
total effort, measured in lines of code, was reduced by more than the
half.
We believe that these facts show that an important degree of reuse can
be achieved, thanks to the product-line structure implemented, from
every specification and function that we add to the language family.
Even though the effort of producing the specification and the functions
is not negligible, it pays in the short term, when many translators are
expected to be built.

6.5 Discussion
Construct differentiation requires to abstract away, from the concrete gram-
mar used for parsing, specific details linked more with the implementation
of the parser, than with the semantics of the construct. It is a step that
requires a balance between a concrete and an abstract grammar. We cannot
simply get rid of all terminal in the productions, because enough syntactic
information needs to be left, that can explain the behaviour of the construct.
This syntactic information we leave in the constructs is required for the use
of the classification assistant.
Classifying the constructs into the LCM is an iterative process. When

we put the constructs together into the family, many inconsistencies can be
shown, like involuntary omissions of constructs in the grammar and dupli-
cated concept definitions. For cases where more languages are considered,
or if the languages have considerably more productions, we can assume that
more than two revisions of the table are required.
The classification assistant provided a good percentage of usable recom-

mendations: for 85% of the productions the correct recommendation was
found in the first two positions. The results may somehow be biased though,
because the grammars were analysed and manipulated by the same person,
during a reasonably short period of time. This probably stimulate that the
symbols were named following the same schema. On the one hand we prob-
ably cannot expect the same results if the grammars are preprocessed by
different persons. On the other hand, this possible bias reinforces the idea
that if we follow an organised set of criteria, the grammar alignment per-
formed during the differentiation process is effective.
With respect to the adaptation step, the goto-label issue remains unsolved.

Not being able to provide an automatic solution that works with every pro-
gram, hampers the process of translation. Nevertheless, this is not a problem
of the approach to build translators, but rather of our ability to come up with
a more effective algorithm. A positive point is that this problem allowed us
to show that we can also use a refactoring process, previous to the transla-

6.5 Discussion 167

tion, and still get results that can be verified afterwards, even though with
a reduced precision.
In this experiment we were able to define one single order to apply the

transformations, that works with all the procedures. No cycle between trans-
formations was found, partly because there is a small number of transforma-
tions. For other cases, if cycles are detected, the user will receive a warning
about the transformations involved, and the conflicts will need to be solved
by hand. Generating the order for applying the transformations for each
translator independently, reduces the number of transformations to consider,
and reduces the probability that cycles will show up.
The verification step is very useful when testing the designed translations.

Problems that slip from the designer’s mind can be caught by verifying the
transformations on simple examples. While defining and testing the trans-
formations, we used the verification after every iteration, and many problems
in the logic of the transformations were detected.
The verification is difficult to use when the sensitive operations we track in

the CFG, need to be modified by the transformations, producing a different
instruction. As annoying as this is, it is nevertheless an expected behaviour:
the very principle behind the verification is that the sensitive instructions
must not change. Which is why we check them during the bisimulation. To
overcome this problem, there is always the resource of renaming the instruc-
tions. If renaming does not apply, we should reevaluate if the instructions
involved need to be modified, or tracked.
More restrictive is the problem between verification and modifications to

the branching structure of the program. As we could see, false negatives
appear when non existing problems are detected. The real problem though,
is that we cannot check what happens inside the conditions that control
branching. If, for instance, we omit by mistake a boolean modifier, the
verification will never detect it, and will give a false positive, much more
dangerous than a false negative.

!"#$#%&'()*

+,-%./

0&12
#1(*

+23&1
4)2
516%

72(*,

8

898:

89/

89/:

89;

89;:

89<

89<:

0&12

#1(*

+23&1

4)2

516%

72(*,

0&12 #1(* +23&1 4)2 516% 72(*,

8

898:

89/

89/:

89;

89;:

89<

89<:

!=>$/

!=>$;

!=>$<

8

898:

89/

89/:

89;

89;:

89<

89<:

8

898:

89/

89/:

89;

89;:

89<

89<:

!"?$/

!"?$;

!"?$<

Figure 6.14: LAD Evolution.

Finally, the use of metrics shows how the actions put in practice during
every step have a positive effect reducing the entropy of the system, as shown
in Figure 6.14, which summarises the information presented in figures 6.4,

168 Validation

6.7 and 6.9, where we presented the measures taken after classifying the
constructs, after a second iteration to check for inconsistencies, and after
defining the transformations.
The difference between the first measure, LAD1, taken after the languages

were classified into the LCM, with respect to the second measure, LAD2,
taken after a second revision for classification inconsistencies, shows that
simple efforts aligning language concepts have a significant impact in the
languages compatibility. The effect is less dramatic comparing LAD2 with
LAD3, taken after the adaptation with program transformations, because
not all the incompatibilities were solved. An improvement is shown, never-
theless.
Regarding the choice of Stol as the first language included in the family,

we can see in LAD1 that even if it does not have the best Language Average
Distance, it is among the better ranked (the lower the value of the entropy,
the better in terms of compatibility). LAD2 confirms the choice. Other
languages could have been good candidates as well, like Tope. The case of
Pluto is interesting because it persists as the less compatible language in the
three measures. This lower compatibility, is also a consequence of having
more constructs than the other languages. Anyway, the compatibility of
Pluto is also improved at each new step.

6.6 Conclusion
Thanks to this experiment we have been able to go through all the neces-
sary steps to build a product-line for a family of programming languages.
We generated a group of program translators from Stol to Mois, Pluto, Ucl,
Tope and Elisa, and we evaluated the translators using a group of test Stol
procedures. The experiment covers all the steps proposed in our methodol-
ogy.
The approach shows some limitations, that are manifested for instance

with the goto-label problem, due to its exponential algorithm, and with
the false negatives found during verification, because our weak bisimulation
approach is oblivious to the values of expressions.
Advantages of the approach are also shown. Among others that the use of

the LCM and TCM common structures, provide an effective way to organise
language concepts and reuse program transformations. We also confirmed
that the verification based on weak bisimulation is a useful technique to
detect problems with the transformations and with the translation in general.
The methodology, the techniques, and the tools that are grouped together,

allowed us to build the required family of program translators.

7 Conclusion

7.1 Summary
Throughout this thesis we presented our methodology for building families
of program translators. This methodology is based on the following pillars:

• Product-lines. This software engineering approach provides the basic
architectural principles that allow us to put together a variety of tools
and techniques, making them work collaboratively.

• Grammarware. Our work required not just an operational software
engineering methodology, but probably more important, a solid lan-
guage engineering orientation guiding us along the full process, and
structuring our efforts.

• Families of languages. By grouping the languages to translate into a
family, where all its members share a common set of constructs and
common semantic foundations, we reduce to a realistic dimension an
otherwise very large problem.

• A set of existing, third-party, state-of-the-art tools for the analysis,
manipulation and verification of programs and programming languages.

Thanks to these pillars we showed how to:

• Build a generic framework to produce families of program translators.
The product-line approach, and its emphasis on clearly identifying the
commonalities and variabilities between the different elements in our
family, helped us in defining simple structures like the Languages Con-
cepts Matrix and the Transformations Concepts Matrix. Organising
the languages into these structures was fundamental to the generation
of the final family of translators.

• Align the languages and make them converge into language family.
Grammarware principles and methodologies were applied to go from
language documentation, to grammars to a language family. The orig-
inal language documentation is processed such that successively apply-
ing grammar recovery and convergence techniques, we can produce the
required grammars for parsing, classifying and verifying.

• Reuse program transformations. Having a common “dictionary” of
concepts, and designing the transformations based on these common

170 Conclusion

concepts, makes it straightforward to combine existing transformations
into new translators.

• Verify a weak form of functional equivalence between original and trans-
lated programs. Thanks to the use of a lightweight semantic annotation
technique, we can automatically obtain the input for a simplified ver-
ification tool, that performs an initial assessment of the correctness of
the translation.

• Produce the required family of translators. By grouping the languages
into a family sharing a common set of constructs and transformations,
we can provide an automated generic approach which can be used to
build translators between any pair of those languages.

7.2 Contributions
The main contribution of this work is its integrated approach to build fami-
lies of program translators. Different techniques and methodologies, coming
form different domains, are combined into a consistent framework. Specific
contributions we would like to mention are the following:

• A product-line oriented architecture dedicated to families of program-
ming languages, for the production of program translators.

• A strong use of regular annotations in SDF grammar definitions, to
automatically produce preliminary descriptions for language tools.

• A technique for language concepts categorisation based on:
– A set of guidelines to preprocess grammars for alignment.
– An assisted classification technique, based on the syntactic pattern

of grammar productions.

• An explicit technique for transformation rules sequencing, based on
partial ordering, and topological sort.

• A domain-specific language to define lightweight control-flow semantics
on language grammars, and to automatically generate the control-flow
graphs of programs.

• An application of weak bisimulation for the lightweight verification of
functional equivalence between original and translated programs.

• A specific set of metrics, based on the concept of entropy reduction,
that facilitates the process of evaluating how the different actions we
take to adapt the languages’ compatibility, affect the organisation of
the language family system.

7.3 Limitations 171

7.3 Limitations
Despite the contributions we mentioned, some limitations of the approach
have been identified. We present them now.

• Languages in the family have to be semantically very similar to obtain
some benefit of the additional work of indexing the grammars into the
common family structure. If the languages are too different, first, the
grammar alignment is limited and more program transformations will
need to be implemented. Second, which is a consequence of the first
point, the programmed transformations rely more on unaligned con-
cepts, and the possibilities of reusing these transformations are there-
fore reduced. The advantage of the “economy of scope” provided by
the product-line approach disappear.

• The verification approach we use can only analyse the ability of one
program to follow the same paths of execution of another program.
The verification is blind to the result of expressions.
This limitation is specially restrictive for the case of boolean expres-
sions controlling the branching in control flows. We cannot know if we
are entitled to follow a path, because we do not know all the associated
conditions that enable to do it.
This blindness to expressions may provoke false positives when the
paths have been inverted, or false negatives when a path exists even if
it cannot be followed because of some boolean restriction.

• The approach was validated with only one language family. We cannot
be sure that the methodology can be extended to other families while
preserving the same characteristics and advantages. The scope of the
technique has not been clearly established yet, and its generality is
assumed but not confirmed.

• The solution we implemented to solve the Goto removal problem is
generic, but is not effective. The node-splitting algorithm that is used
is exponential. For programs were the irreducible region is too big
or contains nested irreducible regions, it would fail if we do not have
enough ressources to calculate the solution. Moreover, the size of the
code of the programs that can be transformed, tend to be considerably
bigger than in the original program. This increase in code size makes
harder to manipulate the resulting program.

7.4 Future Research
Our work focused on providing a methodology for building families of pro-
gram translators. In the process of doing so, many questions and additional

172 Conclusion

problems were unveiled. Some we were able to solve, others, that we mention
next, still need an answer.

• The use of weak bisimulation to verify the functional equivalence of
programs is promising. Several alternatives could be envisaged to de-
velop a more robust and parameterisable technique:
– Augment the number and type of instructions to be checked. This

implies augmenting the number of transitions in the LTS, but that
is something the CADP Bisimulator seems to handle without any
problem, eliminating one of the technical problems that similar
studies were having [31]. The problem is, however, that the more
nodes we add to the graph, the more we limit the liberty that
transformations will have to manipulate the code. For instance,
let us suppose we decide to include in the control-flow graph one
node for every Assignment in a program. This immediatly implies
that the bisimulation will fail for any transformation introducing
auxiliary variables to control the flow, like we do in Section 6.4
with the IS2IF transformation that translates the If-Else-If con-
struct to a sequence of If constructs: the transformation will create
a series of assignments that do not exist in the original program.
A good compromise between structure and functionality is neces-
sary.

– How to combine bisimulation with other techniques, in an organ-
ised workflow, that alternate each other when necessary. Coming
back to our false negative example from Section 6.4, if we combine
bisimulation with some form of data-flow analysis, we could see
that the path reported as inconsistent by the bisimulation cannot
be reached in practice thanks to the boolean guard introduced by
the transformation.

– How to extend the technique we use to generate the CFGs with
other primitives that can translate functionality into states, for
instance when manipulating boolean conditions.

• Language concepts classification is merely based on syntactic features.
Other features though do not appear as constructs at all. In the valida-
tion experiment presented in Section 6.4, we have been able to translate
into constructs, the functionality provided by the languages that was
relevant to our problem. For other families, it could not be the case. It
is necessary to study how the language family structures like the LCM
and the TCM can be augmented to handle non-context free restrictions
that currently need to be dealt with transformations.

• Other families of programming languages could benefit from this ap-
proach, but more experimentation is needed. Different applicative do-
mains need to be analysed, as well as programming languages with
different paradigms.

7.4 Future Research 173

• The metrics we have proposed, and the use we did of them, are still
rather limited. Especially if we are interested in extending the study
to other families of languages, it is necessary to measure how common
or different these families and languages are, and to assess the validity
of the metrics proposed.

• Grammar annotations require a full study on their own. We have
successfully used simple annotations to align grammars and to produce
automatically large parts of the translators. Our work with the CFSL
showed how to use more advanced annotations to generate CFGs that
can be analysed for some weak kind of functional equivalence. This, we
believe, are only two small examples of how a grammar can be extended
beyond syntax to provide with a better description of languages.

• We have used annotated grammars to semi-automatically produce trans-
lators. Other kinds of tools for program visualization, analysis or ma-
nipulation, could be described and generated using this approach as
well.

• In our approach, the verification between original and translated pro-
cedures is done after the translation. We could benefit of some form
of verification, before the translation, on the implemented transforma-
tions. It could be similar to what Veerman did in his work with Cobol
program transformations [122]. Even more, a lightweight form of weak
bisimulation could be applied on the grammar graphs of the languages
we want to translate. We can learn more about possible incompatibili-
ties that are deep in the nested structure of the languages, even before
implementing the transformations

Bibliography
The references are sorted alphabetically by first author.

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice Hall Professional Technical Reference, 1972. ISBN
0139145567.

[2] A. V. Aho and J. D. Ullman. Translations on a context-free gram-
mar. In STOC ’69: Proceedings of the first annual ACM symposium
on Theory of computing, pages 93–112, New York, NY, USA, 1969.
ACM Press.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986. ISBN 0-201-10088-6.

[4] W. Aitken, B. Dickens, P. Kwiatkowski, O. de Moor, D. Richter, and
C. Simonyi. Transformation in intentional programming. In ICSR ’98:
Proceedings of the 5th International Conference on Software Reuse,
page 114, Washington, DC, USA, 1998. IEEE Computer Society. ISBN
0-8186-8377-5.

[5] M. H. Alalfi, J. R. Cordy, and T. R. Dean. SQL2XMI: Reverse en-
gineering of UML-ER diagrams from relational database schemas. In
WCRE ’08: Proceedings of the 2008 15th Working Conference on Re-
verse Engineering, pages 187–191, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3429-9.

[6] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON:
A Standard-Compliant Metamodeling Framework with Graph Trans-
formations. In Model Driven Architecture - Foundations and Applica-
tions: Second European Conference, volume 4066 of Lecture Notes in
Computer Science (LNCS), pages 361–375, Heidelberg, 2006. Springer
Verlag.

[7] ASTRIUM. User control language reference manual.
http://www.astrium.eads.net/, 2003.

[8] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
University Press, New York, NY, USA, 1998. ISBN 0-521-45520-0.

176 Bibliography

[9] G. J. Badros. JavaML: a markup language for java source code. In
The International Journal of Computer and Telecommunications Net-
working, pages 159–177. North-Holland Publishing Co., 2000.

[10] E. Balland, P. Brauner, R. Kopetz, P. E. Moreau, and A. Reilles.
Tom: Piggybacking rewriting on Java. In Term Rewriting and Ap-
plications, Lecture Notes in Computer Science, pages 36–47. Springer-
Verlag, 2007.

[11] H. Basten and P. Klint. Defacto: Language-parametric fact extraction
from source code. pages 265–284, 2009.

[12] I. D. Baxter. DMS: Program transformations for practical scalable
software evolution. In IWPSE ’02: Proceedings of the International
Workshop on Principles of Software Evolution, pages 48–51, New York,
NY, USA, 2002. ACM Press. ISBN 1-58113-545-9.

[13] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. Bisimula-
tor: A modular tool for on-the-fly equivalence checking. In N. Halb-
wachs and L. Zuck, editors, Proceedings of the 11th International Con-
ference on Tools and Algorithms for the Construction and Analysis
of Systems TACAS’2005 (Edinburgh, Scotland), volume 3440 of Lec-
ture Notes in Computer Science, pages 581–585. Springer Verlag, April
2005.

[14] M. Bernardo and S. Botta. A survey of modal logics characterising
behavioural equivalences for non-deterministic and stochastic systems.
Mathematical Structures in Computer Science, 18(1):29–55, 2008. ISSN
0960-1295.

[15] A. Blass, N. Dershowitz, and Y. Gurevich. When are two algorithms
the same. The Bulletin of Symbolic Logic, 15(2):145–168, 2009.

[16] C. Böhm and G. Jacopini. Flow diagrams, Turing machines and lan-
guages with only two formation rules. pages 11–25, 1979.

[17] J. Bosch. Design and use of software architectures: adopting and evolv-
ing a product-line approach. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000. ISBN 0-201-67494-7.

[18] S. Botta-Dukat. Rao’s quadratic entropy as a measure of functional
diversity based on multiple traits. Journal of Vegetation Science, 16
(5):533–540, 01 2005.

[19] J. Brant and D. Roberts. SmaCC, a smalltalk compiler-compiler.
http://www.refactory.com/Software/SmaCC.

[20] S. Buss, A. Kechris, A. Pillay, and R. Shore. The prospects for math-
ematical logic in the twenty-first century. The Bulletin of Symbolic
Logic, 7:169–196, 2001.

Bibliography 177

[21] J. Calera-Rubio and R. C. Carrasco. Computing the relative entropy
between regular tree languages. volume 68, pages 283–289, Amsterdam,
The Netherlands, 1998. Elsevier North-Holland, Inc.

[22] Y. Cao. A hierarchy of behavioral equivalences in the pi-calculus with
noisy channels. The Computer Journal, 53(1):3–20, 2010.

[23] M. Ceccato, P. Tonella, and C. Matteotti. Goto elimination strategies
in the migration of legacy code to Java. In CSMR ’08: Proceedings
of the 2008 12th European Conference on Software Maintenance and
Reengineering, pages 53–62, Washington, DC, USA, 2008. IEEE Com-
puter Society. ISBN 978-1-4244-2157-2.

[24] N. Chomsky and M. Schutzenberger. The algebraic theory of context-
free languages. The Journal of Symbolic Logic, 32(3):388–389, 1967.

[25] A. Christoph. Graph rewrite systems for software design transforma-
tions; objects, components, architectures, services, and applications for
a networked world. In International Conference NetObjectDays, NODe
2002, pages 7–10, 2002.

[26] D. P. Clark, M. Chen, and J. V. Tucker. Automatic program transla-
tion - a third way. International Symposium on Multimedia Software
Engineering, 0:265–272, 2004.

[27] T. Cleenewerck. Modularizing Language Constructs: A Reflective Ap-
proach. PhD thesis, Vrije Universiteit Brussel, 2007.

[28] A. Cleve and J.L. Hainaut. Co-transformations in database appli-
cations evolution. In Ralf Lämmel, João Saraiva, and Joost Visser,
editors, Generative and Transformational Techniques in Software En-
gineering, volume 4143 of Lecture Notes in Computer Science, pages
409–421. Springer, 2006. ISBN 3-540-45778-X.

[29] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications. Available on: http://www.grappa.univ-lille3.
fr/tata, 2007. release October, 12th 2007.

[30] J. R. Cordy. TXL - A Language for Programming Language Tools and
Applications. ENTCS, 110:3–31, 2004.

[31] M. J. S. Pelican D. J. Musliner and P. J. Schlette. Verifying equivalence
of procedures in different languages: preliminary results. VV&PS 2009,
2009.

[32] J. Daintith. A Dictionary of Computing.
http://www.encyclopedia.com/, 2004.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

178 Bibliography

[33] G. de Geest, S. D. Vermolen, A. van Deursen, and E. Visser. Gener-
ating version convertors for domain-specific languages. In Andy Zaid-
man, Massimiliano Di Penta, and Ahmed Hassan, editors, Proceed-
ings 15th Working Conference on Reverse Engineering (WCRE 2008),
pages 197–201. IEEE Computer Society, 2008.

[34] J. DeBaud and K. Schmid. A systematic approach to derive the scope
of software product lines. In ICSE ’99: Proceedings of the 21st inter-
national conference on Software engineering, pages 34–43, New York,
NY, USA, 1999. ACM. ISBN 1-58113-074-0.

[35] B. Demeuse and S. Valera. Pluto, a procedure language for users is
test and operations. DAta Systems In Aerospace, DASIA, pages 307 –
310, 1998.

[36] V. Diekert. The Book of Traces. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1995. ISBN 9810220588.

[37] D. Dougherty and A. Robbins. SED & AWK (2nd Edition). O’Reilly
Media, Inc., 1997. ISBN 1565922255.

[38] E. B. Duffy and B. A. Malloy. An automated approach to grammar
recovery for a dialect of the C++ language. In WCRE ’07: Proceedings
of the 14th Working Conference on Reverse Engineering, pages 11–20,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
3034-6.

[39] T. Ekman and G. Hedin. The jastadd extensible java compiler. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN confer-
ence on Object-oriented programming systems and applications, pages
1–18, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-5.

[40] H. R. Elliotte. XML Bible. Hungry Minds, gold edition, 2001.

[41] A. M. Erosa and L. J. Hendren. Taming Control Flow: A Structured
Approach to Eliminating GOTO Statements. In International Confer-
ence on Computer Languages, 1994.

[42] European Cooperation for Space Standardisation. Test and operations
procedure language. http://www.ecss.nl/, 2006. ECSS-E-70-32A.

[43] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A
new graph rewrite language based on the Unified Modeling Language
and Java. pages 296–309, 2000.

[44] K. N. Ganeshaiah and S. Uma. Measuring biological heterogeneity of
forest vegetation types: Avalanche index as an estimate of biological
diversity. Biodiversity and Conservation, 9(7):953–963, 07 2000.

Bibliography 179

[45] K. N. Ganeshaiah, K. Chandrashekara, and A. Kumar. Avalanche
index: A new measure of biodiversity based on biological heterogeneity
of the communities. Current Science, 73(2):128–133, 07 1997.

[46] K. N. Ganeshaiah, K. Sagar, and S. Uma. Floral resources of Kar-
nataka: A geographic perspective. Current Science, 83(7):810–813, 10
2002.

[47] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A tool-
box for the construction and analysis of distributed processes. Com-
puter Aided Verification, pages 158–163, 2007.

[48] J. Gray, J. Zhang, Y. Lin, S. Roychoudhury, H. Wu, R. Sudarsan,
A. Gokhale, E. Neema, F. Shi, and T. Bapty. Model-driven program
transformation of a large avionics framework. In Avionics Product
Line Architecture, Generative Programming and Component Engineer-
ing (GPCE 2004), Springer-Verlag LNCS, pages 361–378. Springer-
Verlag, 2004.

[49] M. L. Griss. Software reuse: Architecture, process, and organization for
business success. In ICCSSE ’97: Proceedings of the 8th Israeli Confer-
ence on Computer-Based Systems and Software Engineering, page 86,
Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-
8135-7.

[50] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF - reference manual. SIGPLAN Notices, 24
(11):43–75, 1989.

[51] Integral Systems. EPOCH T&C Directives and STOL Functions Ref-
erence Manual. http://www.integ.com/, 2000.

[52] G. Booch J., Rumbaugh, and I. Jacobson. Unified Modeling Language
User Guide. Addison-Wesley Professional, 2005. ISBN 0321267974.

[53] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use, volume 1-2. Springer-Verlag, 1992.

[54] J. P. Katoenr. Labelled transition systems. Lecture Notes in Computer
Science, pages 615–616. Springer Berlin / Heidelberg, 2005.

[55] M. Kay. XSLT 2.0 and XPath 2.0 Programmer’s Reference, 4th Edi-
tion. Wrox, 2008. ISBN 978-0-470-19274-0.

[56] P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering discipline
for Grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380,
2005. ISSN 1049-331X.

180 Bibliography

[57] P. Klint, T. van der Storm, and J. Vinju. RASCAL: A domain-specific
language for source code analysis and manipulation. Source Code Anal-
ysis and Manipulation, IEEE International Workshop on, 0:168–177,
2009.

[58] D. E. Knuth. The genesis of attribute grammars. In WAGA: Proceed-
ings of the international conference on Attribute grammars and their
applications, pages 1–12, New York, NY, USA, 1990. Springer-Verlag
New York, Inc. ISBN 0-387-53101-7.

[59] A. Koller, M. Regneri, and S. Thater. Regular tree grammars as a for-
malism for scope underspecification. In Proceedings of the 46th ACL-
Conference on Human Language Technologies, pages 218–226, Colum-
bus, Ohio, USA, 2008. Association for Computational Linguistics.

[60] J. Kort, R. Lämmel, and C.Verhoef. The Grammar Deployment Kit.
Electronic Notes in Theoretical Computer Science, 65, 2002.

[61] J. Krein, A. MacLean, D. Delorey, D. Eggett, and C. Knutson. Lan-
guage entropy: A metric for characterization of author programming
language distribution. In Fourth International Workshop on Public
Data about Software Development (WoPDaSD ’09), page 6, June 2009.

[62] I. Kurtev. State of the art of QVT: A model transformation language
standard. Applications of Graph Transformations with Industrial Rel-
evance, pages 377–393, 2008.

[63] R. Lämmel. Grammar Testing. In Proceedings of Fundamental Ap-
proaches to Software Engineering (FASE) 2001, volume 2029 of LNCS,
pages 201–216. Springer-Verlag, 2001.

[64] R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery.
Software—Practice & Experience, 31(15):1395–1438, December 2001.

[65] R. Lämmel and C. Verhoef. Cracking the 500-Language Problem. IEEE
Software, pages 78–88, 2001.

[66] R. Lämmel and V. Zaytsev. An introduction to grammar convergence.
In IFM ’09: Proceedings of the 7th International Conference on In-
tegrated Formal Methods, Lecture Notes in Computer Science, pages
246–260, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
00254-0.

[67] R. Lämmel and V. Zaytsev. Recovering grammar relationships for the
Java language specification. IEEE International Workshop on Source
Code Analysis and Manipulation, 0:178–186, 2009.

[68] M. Lawley and J. Steel. Practical declarative model transformation
with TEFKAT. Satellite Events at the MoDELS 2005 Conference,
pages 139–150, 2006.

Bibliography 181

[69] P. Leinonen. Automating XML document structure transformations.
In DocEng ’03: Proceedings of the 2003 ACM symposium on Document
engineering, pages 26–28, New York, NY, USA, 2003. ACM. ISBN 1-
58113-724-9.

[70] P. M. Lewis and R. E. Stearns. Syntax-directed transduction. J. ACM,
15(3):465–488, 1968. ISSN 0004-5411.

[71] D. Liu and D. Gildea. Improved tree-to-string transducer for machine
translation. In StatMT ’08: Proceedings of the Third Workshop on
Statistical Machine Translation, pages 62–69, Morristown, NJ, USA,
2008. Association for Computational Linguistics. ISBN 978-1-932432-
09-1.

[72] N. Lobo, T. Kasparis, M. Georgiopoulos, F. Roli, J. Kwok, G. C.
Anagnostopoulos, and M. Loog. Structural, syntactic, and statistical
pattern recognition. In Vision, Pattern Recognition, and Graphics.
Springer Publishing Company, Incorporated, 2008. ISBN 3540896880,
9783540896883.

[73] I. A. Mason and C. L. Talcott. Program transformation via contextual
assertions. In Logic, Language and Computation, pages 225–254, 1994.

[74] M. W. Matlin. Cognition, 6th Edition. John Wiley & Sons, Inc., 2005.
ISBN 978-0-471-45007-8.

[75] C. Matthiessen, A. Caffarel, and J. R. Martin. Language typology : a
functional perspective. John Benjamins, Amsterdam ; Philadelphia :,
2004. ISBN 1588115593 9027247668.

[76] N. Mecredy and A. Armitage. Herschel Planck central checkout system
system user manual. http://www.terma.com/, 2004.

[77] T. Mens, K. Czarnecki, and P. Van Gorp. A taxonomy of model
transformations. In Jean Bezivin and Reiko Heckel, editors, Lan-
guage Engineering for Model-Driven Software Development, number
04101 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2005.

[78] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[79] P. Mosses. Component-based description of programming languages.
In Visions of Computer Science - BCS International Academic Con-
ference, 2008.

[80] S. S. Muchnick. Advanced compiler design and implementation. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997. ISBN
1-55860-320-4.

182 Bibliography

[81] M. J. Nederhof and G. Satta. Kullback-Leibler distance between prob-
abilistic context-free grammars and probabilistic finite automata. In
COLING ’04: Proceedings of the 20th international conference on
Computational Linguistics, page 71, Morristown, NJ, USA, 2004. As-
sociation for Computational Linguistics.

[82] Object Management Group. Meta object facility (MOF) core specifi-
cation version 2.0. http://www.omg.org/spec/MOF/, 2006.

[83] D. Ordóñez Camacho. Towards a language-independent intentional
views framework. Université catholique de Louvain, 2004.

[84] D. Ordóñez Camacho and K. Mens. Appareil: A tool for building
automated program translators using annotated grammars. In 23rd
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2008), 15-19 September 2008, L’Aquila, Italy, pages
489–490. IEEE, 2008.

[85] D. Ordóñez Camacho and K. Mens. Using annotated grammars for the
automated generation of program transformers. In Ingénierie Dirigée
par les Modéles, IDM2007, proceedings, pages 7 – 24, Toulouse, France,
2007. Eds. Antoine Beungard & Marc Pantel. ISBN 978-2-7261-1292-7.

[86] D. Ordóñez Camacho, K. Mens, M. van den Brand, and J. Vinju. Auto-
mated derivation of translators from annotated grammars. Electronic
Notes in Theoretical Computer Science, 164, Issue 2:121–137, 2006.

[87] D. Ordóñez Camacho, K. Mens, D. Quigley, and J. Cater. Issues and
problems in tests and operations languages translation. Proceedings of
the SpaceOps 2008 Conference, 2008.

[88] D. Ordóñez Camacho, K. Mens, M. van den Brand, and J. Vinju.
Automated generation of program translation and verification tools
using annotated grammars. Science of Computer Programming, 75
(1-2):3–20, 2010. ISSN 0167-6423.

[89] S. Y. Park and S. D. Kim. A systematic method for scoping core assets
in product line engineering. In APSEC ’05: Proceedings of the 12th
Asia-Pacific Software Engineering Conference, pages 491–498, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2465-6.

[90] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, May 2007. ISBN 0978739256.

[91] L. Petrone. On the use of syntax-based translators for symbolic and
algebraic manipulation. In Proceedings of the second ACM symposium
on Symbolic and algebraic manipulation, pages 224 – 237, 1971.

Bibliography 183

[92] A. M. Pitts. Operational semantics and program equivalence. In Ap-
plied Semantics, APPSEM 2000, Lecture Notes in Computer Science,
pages 378–412, London, UK, 2002. Springer-Verlag. ISBN 3-540-44044-
5.

[93] J. Podani. Introduction to the Exploration of Multivariate Biological
Data. Backhuys Publishers, Leiden, The Netherlands, 2000. ISBN
90-5782-067-6.

[94] R. I. Podlovchenko. Models of sequential programs used to study func-
tional equivalence of programs. Cybernetics and Systems Analysis, 15
(1):22–31, 1979.

[95] D. Quigley and S. J. Cater. Satellite test and operation procedures
cost reduction through standardization. IEEE Aerospace Conference,
page 10, 2006.

[96] D. Quigley and A. Monham. Mission operations preparation manage-
ment: An effective end-to-end approach. IEEE Aerospace Conference,
pages 3846 – 3855, 2004.

[97] D. J. Quinlan. ROSE: Compiler support for object-oriented frame-
works. Parallel Processing Letters, 10(2/3):215–226, 2000.

[98] C. R. Rao. Diversity and dissimilarity coefficients: A unified approach.
Theoretical Population Biology, 21(1):24 – 43, 1982. ISSN 0040-5809.

[99] J. L. Roca. An entropy-based method for computing software struc-
tural complexity. Microelectronics and Reliability, 36(5):609 – 620,
1996. ISSN 0026-2714.

[100] K. Schmid. Scoping software product lines: an analysis of an emerging
technology. In Proceedings of the first conference on Software product
lines : experience and research directions, pages 513–532, Norwell, MA,
USA, 2000. Kluwer Academic Publishers. ISBN 0-79237-940-3.

[101] A. Schurr. PROGRES, a visual language and environment for PRO-
gramming with Graph REwrite Systems, 1994.

[102] A. Schurr. Specification of graph translators with triple graph gram-
mars. Proceedings of the 20 International Workshop on Graph-
Theoretic Concepts in Computer Science, Herrsching, Germany, June
1994, 1994.

[103] C. E. Shannon and W. Weaver. The Mathematical Theory of Commu-
nication. University of Illinois Press, Urbana, Illinois, 1949.

[104] K. Shashidhar, M. Bruynooghe, F. Catthoor, and G. Janssens. Func-
tional equivalence checking for verification of algebraic transformations
on array-intensive source code. In Design, Automation and Test in Eu-
rope. IEEE, pages 1310 – 1315. IEEE Computer Society, 2005.

184 Bibliography

[105] C. Simonyi. The death of computer languages, the birth of inten-
tional programming. Technical Report MSR-TR-95-52, Microsoft Re-
search, Microsoft Corporation, One Microsoft Way, Redmond, WA
98052, 1995.

[106] J. E. Simpson. XPath and XPointer: Locating Content in XML Docu-
ments. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002. ISBN
0596002912.

[107] E. E. Smith and D. L. Medin. Categories and concepts. Harvard Uni-
versity Press, Cambridge, Mass., 1981. ISBN 0674102754, 0674157257.

[108] C. Stirling. The joys of bisimulation. In MFCS, volume 1450 of Lecture
Notes in Computer Science, pages 142–151. Springer, 1998. ISBN 3-
540-64827-5.

[109] T. Sturm, J. von Voss, and M. Boger. Generating code from UML
with Velocity templates. In UML ’02: Proceedings of the 5th Interna-
tional Conference on The Unified Modeling Language, pages 150–161,
London, UK, 2002. Springer-Verlag. ISBN 3-540-44254-5.

[110] Integral Systems. STOL programmer’s reference manual.
http://www.integ.com/, 2000. Integral Systems Inc. Lanham,
Maryland, USA.

[111] J. Levine T., Mason D., and Brown. LEX & YACC, 2nd Edition (A
Nutshell Handbook). O’Reilly, October 1992. ISBN 1565920007.

[112] G. Taentzer, D. Müller, and T. Mens. Specifying domain-specific refac-
torings for AndroMDA based on graph transformation. In Applications
of Graph Transformations with Industrial Relevance: Third Interna-
tional Symposium, AGTIVE 2007, pages 104–119, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-89019-5.

[113] A. A. Terekhov. Automating language conversion: a case study. In
IEEE International Conference on Software Maintenance, pages 654–
658. IEEE Computer Society Press, November 2001.

[114] A. A. Terekhov and C. Verhoef. The realities of language conversions.
IEEE Software, 17(6):111–124, November/December 2000.

[115] L. J. Timmermans, T. Zwartbol, B. A. Oving, and A. A. Casteleijn.
From simulations to operations: Developments in test and verification
equipment for spacecraft. DAta Systems In Aerospace, DASIA, 2001.

[116] S. Unger and F. Mueller. Handling irreducible loops: optimized node
splitting versus DJ-graphs. ACM Trans. Program. Lang. Syst., 24(4):
299–333, 2002. ISSN 0164-0925.

Bibliography 185

[117] M. van den Brand and P. Klint. ASF+SDF Meta-Environment user
manual. http://www.meta-environment.org/, 2005.

[118] M. van den Brand, A. van Deursen, J. Heering, H. de Jonge,
M. de Jonge., T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
a component-based language development environment. In R. Wil-
helm, editor, Compiler Construction 2001 (CC 2001), volume 2027 of
LNCS, pages 365–370. Springer-Verlag, 2001.

[119] F. van der Linden and H. Obbink. ESAPS - engineering software ar-
chitectures, processes and platforms for system families. Software Ar-
chitectures for Product Families, pages 244–252, 2000.

[120] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages:
an annotated bibliography. SIGPLAN Not., 35(6):26–36, 2000. ISSN
0362-1340.

[121] N. Veerman. Towards lightweight checks for mass maintenance trans-
formations. Science of Computer Programming, 57(2):129–163, 2005.

[122] N. Veerman. Restructuring Cobol systems using automatic transfor-
mations, November 2001.

[123] S. D. Vermolen and E. Visser. Heterogeneous coupled evolution of
software languages. Lecture Notes in Computer Science, 5301:630–644,
September 2008. ISSN 0302-9743. In K. Czarnecki and I. Ober and
J.-M. Bruel and A. Uhl and M. Voelter (eds.) Proceedings of the 11th
International Conference on Model Driven Engineering Languages and
Systems (MODELS 2008). Toulouse, France, October 2008.

[124] E. Visser. Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in StrategoXT-0.9. In C. Lengauer et al.,
editors, Domain-Specific Program Generation, volume 3016 of Lecture
Notes in Computer Science, pages 216–238. Spinger-Verlag, June 2004.

[125] E. Visser. A survey of rewriting strategies in program transformation
systems. Electronic Notes in Theoretical Computer Science, 57, 2001.

[126] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997.

[127] L. Wall, T. Christiansen, and J. Orwant. Programming Perl (3rd Edi-
tion). O’Reilly, 2000. ISBN 0596000278.

[128] P. Walmsley. Definitive XML Schema. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001. ISBN 0130655678.

[129] D. M. Weiss and R. Lai Chi Tau. Software product-line engineering: a
family-based software development process. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999. ISBN 0-201-69438-7.

186 Bibliography

[130] L. J. Whaley. Introduction to Typology. The Unity and Diversity of
Language. Sage Publications, Inc., 1997. ISBN 9780803959637.

[131] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel, W. Retschitzegger,
and W. Schwinger. A petri net based debugging environment for QVT
relations. In Proceedings of the 24th International Conference on Au-
tomated Software Engineering (ASE 2009), pages 1–12. IEEE, 2009.

[132] D. M. Yellin. Attribute grammar inversion and source-to-source trans-
lation. Springer-Verlag New York, Inc., New York, NY, USA, 1988.
ISBN 0-387-19072-4.

	Introduction
	Context
	Problem and Thesis Statement.
	Solution
	Contributions
	Overview of the Dissertation

	Preliminaries
	Programming Language
	Operations Languages
	Domain-Specific Language
	Language Family
	Language Concept and Language Construct
	Grammars and Transducers
	Context-Free Grammar (CFG)
	Annotated Grammar (AG)
	Regular Tree Grammar (RTG)
	Tree Transducer (TT)

	SDF Grammars
	Grammarware
	Grammar Recovery
	Grammar Convergence

	Program Equivalence
	Control-Flow Graph (CFG)
	Labelled Transition Systems (LTS)
	Observation Equivalence (Weak Bisimulation)

	Product-line
	Conclusion

	Related Work
	Running example.
	Translators Techniques
	Ad-hoc Techniques
	Attribute Grammars and Compiler Compilers
	Term Rewriting Techniques
	Graph Rewriting Techniques
	Model Driven Techniques
	Template Based Techniques

	Conclusion

	Language to Language Translation
	A Grammarware Approach
	The APPAREIL Approach

	Annotated Grammars
	Grammar Annotations

	Automated Generation of Program Translators
	Transformation Example
	Handling Mismatches: Manual Intervention
	Translation Semantics

	Control Flow Semantics
	Introductory Example.
	Graphical Notation.
	The Appareil Control-Flow Semantics Language, CFSL.

	Lightweight Program Equivalence Verification
	From Control-Flow Graphs (CFG) to Labelled Transition Systems (LTS)
	Checking Observation Equivalence

	Conclusion

	A Product-line Approach
	Scoping
	Core Assets

	Structuring
	Recovery: Obtaining the Working Grammars
	Language Concepts Differentiation
	Language Concepts Categorisation
	Language Concepts Adaptation
	Evaluating the Language Family. Metrics and Properties

	Generating and Testing
	Conclusions

	Validation
	Preliminary Case Studies
	The IRL Case Study
	The Stol-to-Mois Case Study

	The STOL Validation
	Methodology
	The Experiment
	Discussion
	Conclusion

	Conclusion
	Summary
	Contributions
	Limitations
	Future Research

	Bibliography

