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Chapter 1

Introduction



2 Chapter 1. Introduction

1.1 The Industrial Context

Philips Healthcare develops a number of highly sophisticated medical systems, used for
various clinical applications. One of these systems is the interventional X-ray (iXR) sys-
tem, which is used for minimally invasive surgeries. An example of this type of systems
is depicted in Figure 1.1.

Movable 

parts

X-ray 

collimator
X-ray 

pedal

GUI

joysticks 

& buttons

Figure 1.1 An interventional X-ray system

As can be seen in the figure, the system includes a number of graphical user interfaces,
used for managing patients’ personal data, exam, and X-ray details. It also comprises
a number of motorized movable parts such as the table where patients can lay and the
stand where the X-ray generator and the image detector are fixed. Furthermore, the sys-
tem contains a number of PCs and devices that host the software that controls the entire
system.

Using this type of systems various clinical procedures can be accomplished. As an ex-
ample application, the system provides a practical means to avoid open-heart, invasive
surgeries. For instance, if a heart artery of a patient is blocked or narrowed, the surgeon
inserts a very thin flexible catheter (tube) to the artery of the patient and directs it to the
blockage in the affected artery. When the catheter reaches the blockage, a small balloon
and a stent are inflated to reopen the artery and flatten the blockage into the artery wall.
Along the surgery, the physicians are guided by high quality X-ray images. Figure 1.2
illustrates this type of clinical procedure.

The main benefits of using these systems in hospitals are that they provide more effective
and safe treatments, higher success rates, and shorter hospital stays. Therefore, many of
these systems are widely used in hospitals, saving patients lives every day, and every-
where.

However, since the healthcare domain is quickly evolving, many challenges are imposed
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Figure 1.2 At the left, the insertion point of the catheter and its course to the
heart, clinical users are guided by X-ray images. At the right, treat-
ment of the blockage.

on such type of X-ray systems. This includes, for example, rapidly supporting the in-
creasing amount of medical innovations, new complex and highly sophisticated clinical
procedures and smooth integration with the increasing products of third party suppliers.
Indeed, this requires a flexible software architecture that can be easily extended and main-
tained without the need of constructing the software from scratch.

For this reason, the software practitioners at Philips Healthcare are constantly seeking ap-
proaches, tools and techniques to advance current software development processes. The
purpose is to improve the quality of developed code, enhance productivity, lower devel-
opment costs, shorten the time to market, and increase end-user satisfaction.

To achieve a fast realization of the above goals, Philips Healthcare is gradually shifting
to a component-based architecture with formally specified and verified interfaces. New
components are developed according to this paradigm, and existing parts are gradually
replaced by components with well-defined formal interfaces.

The software architecture divides the X-ray system into three main subsystems called, the
Backend, the Frontend and the Image Processing subsystems. We detail their responsibil-
ities in the subsequent chapters. In turn, the software of each subsystem is divided into a
number of software units. Each unit comprises a number of modules that include software
components with interfaces.

At Philips Healthcare, the component-based development approach is based on a formal
approach called Analytical Software Design (ASD) [20, 21, 22]. This approach is sup-
ported by the commercial tool ASD:Suite of the company Verum [83]. ASD enables
the application of formal methods into industrial practice by a combination of the Box
Structure Development Method [65], CSP [79] and FDR2 [34, 79]. The tool ASD:Suite
supports the automatic generation of code in high-level languages, such as C++ or C#,
from formally verified models.
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The aim of using the ASD approach at Philips Healthcare is to build high quality compo-
nents that are mathematically verified at the design phase by eliminating defects as early
as possible in the development life cycle, and thus reducing the effort and shortening the
time devoted to integration and testing.

1.2 The subject matter

This thesis is concerned with evaluating the use of the ASD formal techniques in indus-
try, and investigating whether the use of the techniques resulted in better quality software
compared to traditional development. It details in depth the experiences and the chal-
lenges encountered during the application of the techniques to the development of the
iXR system, providing practical solutions to the encountered shortcomings. In particular,
it evaluates and details the formal development of various software components of the
iXR system and investigates the added value of such techniques to the end quality and the
productivity of the developed software.

The concept of quality in this thesis refers to the error density in terms of the number of
reported defects per thousand lines of code while productivity denotes the number of lines
of code produced per staff-hour.

The thesis also discusses a number of design steps and guidelines that facilitate the con-
struction of formally verified software components, based on the experiences gained from
designing various industrial cases. To detail these guidelines we employed another for-
mal technology called mCRL2, which we used to formally specify and verify a number
of design cases. For each guideline two designs that capture a same application intent are
compared in terms of the number of states they produce, given that one design follows the
guideline while the other does not. Moreover, we show that these guidelines can provide
an effective framework to design verifiable components at Philips Healthcare by applying
them to formally specify and verify an industrial case, developed at Philips Healthcare.

This work was established in an industrial context, dealing with real industrial projects
and a real product. The results are very conclusive in the sense that, in the context of
Philips Healthcare, the used formal techniques could deliver better quality code compared
to the code developed in more traditional development methods. Also, the results show
that the productivity of the formally developed code is better than the productivity of code
developed by projects of Philips Healthcare. Our findings indicate the possibility of a 10
fold reduction in number of errors and a threefold increase in productivity, as a result of
applying these techniques.

As observed in [86, 14], there are quite a number of reports detailing the application
of formal methods to industrial case studies, but very few published reports of formal
methods applications describe second or subsequent use. Similarly, the literature about
the incorporation of formal methods in the standard industrial development process is very
limited. Therefore, in this thesis, we discuss how the ASD formal techniques were tightly
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incorporated in the development process of projects established at Philips Healthcare,
and we introduce in the following chapters a series of industrial cases, demonstrating
continues and subsequent usages of these formal techniques in industry.

This work concerns a PhD thesis funded by Philips Healthcare. The author of this thesis
worked 4 days a week at Philips Healthcare as a member of various development teams,
participating, monitoring and analyzing the progress of applying formal methods to the
development of various components of the iXR product.

The effort was more concentrated on developing the control part of various components
using ASD, and investigating the fundamental issues behind the technology and its appli-
cability in industry. The work was accomplished in close contact with team members that
include project and team leaders, lead architects, main responsible designers of the units,
and the software and test engineers. Regarding the application of formal techniques in
industry, the thesis provides answers to various research questions that were raised during
the development process of the software. The research questions address various aspects
encountered when integrating the formal techniques in industry.

With respect to the accomplished work, the thesis reports about the experiences gained
from designing and developing real industrial products and not from designing case stud-
ies. The thesis evaluates the ASD technology not only in one project but in a series of
projects. To answer some of the research questions raised for some of the projects where
the author was partially involved, the author conducted plenty of meetings with the main
responsible leaders, architects and designers and then evaluated the projects from the data
available in many sources at Philips Healthcare such as version control and the defect
management system. After a careful analysis of the data, the data and the results are
communicated to the responsible teams for further feedback and comments. The author
published the results externally [43, 70, 74, 69, 42, 75, 44] after they are being reviewed
and confirmed by the responsible teams. The details are provided in the chapters of this
thesis.

1.3 Overview of the thesis

The thesis is divided into two parts and consists of seven chapters. Each chapter con-
centrates on different aspects of applying formal techniques in industry. The thesis is
organized as follows.

The first part details the application of the ASD technology to develop various parts of
the X-ray system. It includes four chapters in total.

Chapter 2 introduces the formal methods, tools and techniques that were used in this
work. It provides the preliminary concepts needed for understanding the rest of the thesis.
First, we start by detailing the fundamentals of the ASD approach, illustrating how the
formal approach can be tightly integrated with the standard development processes in
industry. Then, we briefly introduce relevant concepts of the mCRL2 language, which we
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use to introduce the design guidelines to avoid the state space explosion problem of model
checking in Chapter 6. Also we employe the language to formalize a number of industrial
designs, specified using the design guidelines in Chapter 7, to show that the guidelines
are effective in industrial settings.

Chapter 3 is mainly concerned with detailing experiences of incorporating the ASD tech-
nology in industrial practice during a project of the iXR, called the BasiX project. The
chapter details two design cases. With the first case we show how the ASD technology
was used to formalize and verify a controller of a power distribution unit (PDU) used
to distribute electrical power and network signals to the PCs and the devices of the X-
ray system. Using this design we elaborate more on how ASD models can be specified,
the ASD notations used to model the components, and the formal checks established by
FDR2. We discuss how the use of ASD formal techniques resulted in detecting some
veiled errors and subsequently improved the quality of the controller.
The second design case is related to the development of a number of services deployed
on the PCs of the X-ray system. The services communicate with the PDU across the
network to facilitate the automatic start-up and shutdown of the system. Using this case
we illustrate how the ASD technology was incorporated with the test-driven development
method to develop the software of the service. Since any method or technology used in
industry has to be compatible with other used methods, tools and techniques, we illustrate
the main challenges and key issues encountered when integrating the ASD technology
with available techniques and tools used at Philips, providing some practical solutions
for the faced shortcomings. Furthermore, we detail the benefits of applying these formal
techniques to the quality of the developed product. The details of this chapter is based on
the following publications:

J.F Groote, A.A.H. Osaiweran and J.H. Wesselius. Analyzing a controller of a power
distribution unit using formal methods. Proceedings of the Fifth International Confer-
ence on Software Testing, Verification and Validation (ICST 2012, Montreal, Canada,
April 18-20, 2012), (pp. 420-428). IEEE.

A.A.H. Osaiweran, M.T.W. Schuts, J.J.M. Hooman and J.H. Wesselius. Incorporat-
ing formal techniques into industrial practice: an experience report. Proceedings
of the 9th International Workshop on Formal Engineering Approaches to Software
Components and Architectures (FESCA’12, Tallinn, Estonia, March 31, ), (Electronic
Proceedings in Theoretical Computer Science, ..., pp. ...-...), submitted / in press.

Chapter 4 introduces experiences of developing sizable software units of the Backend
subsystem. The first unit is the FEClient, using which we detail the effort spent to develop
the control part using ASD and the percentage of time consumed for every development
process: requirements, formal modeling and verification, for instance. The second unit
is the Orchestration, by which we demonstrate the steps performed to obtain structured
components and the peculiarities that made the components easily verified using model
checking. For both cases, we discuss the typical errors found during the construction
of the units and we show that the errors that could escape the formal verification were
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easy to find and to fix, not very deep interface or design errors. Finally, compared to the
industrial standard, we show that the end quality result of the two units was remarkable,
and the units were robust against the frequent changes in the requirements. The details of
this chapter is based on the following publications:

J.F. Groote, A.A.H. Osaiweran and J.H. Wesselius. Experience report on developing
the Front-end Client unit under the control of formal methods. Proceedings of the
27th ACM Symposium on Applied Computing, The Software Engineering Track (ACM
SAC-SE 2012, Riva del Garda, Italy, March 25-29, 2012), (pp. 1183-1190).

A.A.H. Osaiweran, T. Fransen, J.F. Groote and B.J. van Rijnsoever. Experience report
on designing and developing control components using formal methods. Proceedings
of the 18th international Symposium of formal methods. Cnam, Paris, France, 27-31
August, 2012. (pp. ...-...), submitted / in press

Chapter 5 evaluates the use of the ASD formal techniques in both the Frontend and the
Backend subsystems. The chapter highlights the main obstacles encountered during the
application of the ASD technology. Furthermore, we compare the end quality and pro-
ductivity of the units that incorporate ASD with others that were developed in a more tra-
ditional development method. We demonstrate the steps followed to empirically evaluate
the ASD developed units. The details of this chapter is based on the following publica-
tions:

A.A.H. Osaiweran, M.T.W. Schuts, J.F. Groote, J.J.M. Hooman and B.J. van Rijn-
soever. Evaluating the effect of formal techniques in industry. (Computer Science
Report, No. 12-13). Eindhoven: Technische Universiteit Eindhoven, 21 pp.

J.F. Groote, A.A.H. Osaiweran and J.H. Wesselius. Analyzing the effects of formal
methods on the development of industrial control software. Proceedings of the 27th
IEEE International Conference on Software Maintenance (ICSM 2011, Williamsburg
VA, USA, September 25-30, 2011), (pp. 467-472). IEEE.

The second part is concerned with introducing a number of specification and design guide-
lines to circumvent the state space explosion problem and detailing their applicability to
design real industrial cases. This part of the thesis consists of two chapters.

Chapter 6 introduces the guidelines. For each design guideline we introduce two different
designs that both maintain the same application intent. The first design does not consider
the guideline so it subsequently produces a large state space. The second design uses the
guideline so the resulting state space is less compared to the first design. The details of
this chapter is based on the following publication:

J.F. Groote, T.W.D.M. Kouters and A.A.H. Osaiweran. Specification guidelines to
avoid the state space explosion problem. Fundamentals of Software Engineering (4th
IPM International Conference, FSEN 2011, Tehran, Iran, April 20-22, 2011. Revised
Selected Papers), (Lecture Notes in Computer Science, 7141, pp. 112-126). Berlin:
Springer.
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Chapter 7 demonstrates the application of some of the proposed guidelines of Chapter 6
to the design and the verification of the PDU controller, addressed in Chapter 4. We show
that the guidelines were effective for designing the controller, and hence could provide a
suitable framework to design verifiable components of real industrial cases. The details
of this chapter is based on the following publication:

J.F. Groote, A.A.H. Osaiweran, M.T.W. Schuts and J.H. Wesselius. Investigating the
effects of designing industrial control software using push and poll strategies. (Com-
puter Science Report, No. 11-16). Eindhoven: Technische Universiteit Eindhoven,
19+36 pp.
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2.1 Introduction

This chapter is concerned with a concise introduction to the formalisms, tools and tech-
niques used for modeling, verifying and developing components of the industrial designs
presented along the rest of this thesis. First, we introduce the ASD approach. We illus-
trate its main principles and how the formal techniques supplied by the approach were
tightly integrated with the standard development processes of software in iXR projects.
The ASD approach was used to develop software components of the industrial projects
presented in Chapter 3,4, and 5.

Second, we introduce the mCRL2 language [63] in Section 2.5. We use the mCRL2
toolset to formally analyze a number of design cases. The purpose is to illustrate the
effectiveness of various design guidelines and styles that we propose to circumvent the
state explosion problem in Chapter 6 and 7.

The reason of choosing mCRL2 as an alternative technology of ASD is that we found
that some of the guidelines may not be directly realized using the current version of the
ASD:Suite. The mCRL2 toolset is used to merely specify and formally verify the behavior
of a number of designs constructed following the proposed guidelines. Code generation
of the specified formal models is not of importance here as the main goal is to illustrate
how the guidelines may circumvent the state explosion of model checking and lead to
construct verifiable components.

2.2 Analytical Software Design

Philips Healthcare introduced the ASD technology to its development context in 2006.
The technology was initially used as a formal means to formally specify the interaction
protocol between the subsystems of the X-ray machine. Then, in 2008 the technology
was used as a formal approach to develop various software components of the system.
Below we briefly discuss the fundamentals of the approach and how it is being exploited
in Philips Healthcare.

ASD is a model-based technology that combines formal mathematical methods such
as Sequence-based Specification (SBS) [52] technique, Communicating Sequential Pro-
cesses (CSP) [79] and the model checker FDR2 (Failures-Divergence Refinement) [79,
34] with component-based software development [26].

A key principle of ASD is to identify a design of software as interacting components,
communicating with each other or their environment via channels (interfaces). A com-
mon ASD practice is to distribute system functionalities among components in levels
(e.g., hierarchical structure ), to allow a systematic construction and verification of each
component separately. Each ASD component includes a state machine that comprises
input stimuli and output responses.

Figure 2.1 at the left depicts an example structure of components, which includes a con-
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troller (Ctr) that controls a motor and a sensor. We assume that the motor is responsible
for moving the patient table to the left and to the right while the sensor is used to de-
tect any object during the movement to prevent potential collisions. We use this example
system along the rest of this chapter.

2.2.1 The specification of ASD models

Any ASD component is realized by constructing two types of models specified in a similar
tabular notation: an interface model and a design model. The two models are exploited
as follows:

• The interface model is an initial abstract state machine of the component being
developed. The model is used as a formal means to describe not only the meth-
ods to be invoked on the component but also the external behavior with respect to
clients. Interactions with components located at a lower level of the component
being developed are abstracted away from this interface specification.

• The design model of a component refines and extends the interface model with
more internal details. From the behavioural perspective, the design model is not
an abstract state machine but a concrete state machine in the sense that all detailed
behavior is described. Usually, the design model uses the interface models of other
ASD and non ASD components (i.e., the handwritten components). These inter-
faces, in turn, are independently refined by other design models (perhaps by other
teams), facilitating multi-site, parallel development of components.

The state machine of the ASD interface model provides a technical description between
client and server components, affording a shared understanding of the required behavior.
The model represents the protocol of interactions similar to a protocol state machine of
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UML [16]. When a design is decomposed into a number of components in levels, a client
component uses the interface model of the server component. So a server at one level
becomes a client of another component located at a lower level, similar to the Design by
Contract approach [64].

To ensure complete and consistent specifications, the models are described using the
sequence-based specification technique [72]. That is, any ASD model includes a com-
plete specification in the sense that responses to every possible input stimulus in every
state must be described.

An example of the tabular specification related to the interface model of the motor com-
ponent of Figure 2.1 is depicted in Figure 2.2. As can be seen from the specification, each
table is a state, where all potential input stimuli are listed in rule cases (rows of the tables).
A rule case comprises a number of items, each of which includes an interface (channel),
a stimulus, predicate (conditions on the stimulus), responses, state (or predicate) updates,
a next state, comments, and tags of informal requirements.

The set of stimuli of a component consists of events invoked by clients located at an upper
level plus callback events sent by used components at a lower level. The set of responses
includes events sent to used components plus callback events sent to upper client compo-
nents. Calls from client to used components are always synchronous, whereas callback
events sent by used components to the client components are asynchronous and stored
locally in a FIFO queue of the target client component.

To ensure specification completeness, the set of user-defined responses is extended with
special purpose responses: Illegal, Blocked, and Null. The Illegal response denotes that
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invoking a stimulus is illegal. The Blocked response denotes that the corresponding stimu-
lus cannot happen. The Null response denotes that no action is required when the stimulus
event is invoked: consuming a call, for instance.

In all presented models throughout this thesis the NullRet response indicates the comple-
tion of the client request (i.e., the call is returned to the client). A channel postfixed by INT
denotes an internal channel, not visible to the client. The corresponding stimulus event of
an internal channel denotes a spontaneous event internally generated by the component,
not synchronized with any component. A channel postfixed by CB indicates a callback
stimulus/response event received/sent from/to a queue of the client.

To illustrate the above modeling conventions, consider Figure 2.2. The NullRet of rule
case 3 indicates that the initialize event is successfully completed, and the motor transits
to the Operational state. The spontaneous defect stimulus of the IMotorINT channel of
rule case 18 denotes that the motor may fail internally for some internal reasons, and as
a response the motor notifies the upper controller by sending the IMotorCB.motorDefect
callback event to the queue of the controller.

The addition <yoked> of rule case 17 and 18 indicates that the number of allowed call-
backs (listed in the corresponding response list of the rule case) in the queue is restricted.
In our example specification, if the yoking threshold is set to 1 for each of the two call-
backs then this means that the queue will include only 2 callbacks at maximum. This
is one way to circumvent queue overflow cases in ASD, during formal verification using
model checking, since the CSP processes will deadlock when the queue is full.

The specification of ASD design models is restricted to components with data-independent
control decisions. This means that the correctness of parameter values of methods is not
checked by the tool, and components responsible of data manipulations or algorithms
should be implemented by other techniques. The technology is also restricted to the de-
velopment of components with discrete behavior and does not support the development
of timed systems.

To ensure consistency and correctness, mathematical CSP models [79] are automatically
generated from the ASD model. To enable better industrial usage, all CSP models are
hidden from end-users and the models are verified at a remote server located at Verum.
The details of such translation is outside the scope of this thesis.

A vital and very attractive feature in the ASD:Suite is the support of a comprehensive code
generation from formally verified design models to a number of programming languages
(C, C++, C#, Java), following the state machine pattern of [35]. The details of such
translations are irrelevant for this thesis. The translation details are part of the ASD patent
described in [22].
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2.2.2 The use of data parameters in ASD models

The interface model is used to declare calls received from clients (the implemented inter-
face of the component) and the callbacks sent to client components. Calls and callbacks
might include data parameters that must be compatible with the target programming lan-
guage of code generation.

In the design model these parameters are used as control independent parameters. That
is, the parameters, for instance, can not be used in the model as state variables (in the
predicates), i.e., they do not affect the behavior of the component as they are only used
to pass the data across the component. The design model abstracts from the data details
and how the data is processed. Processing the values of these parameters is done by other
components written manually.

Patient’s details received from 
clients

Call is returned with the name 
of patient

The name will be displayed on 
the terminals 

Figure 2.3 Use of data parameters in a design model

To illustrate the parameter usage in ASD consider the example specification of the design
model depicted in Figure 2.3. It corresponds to an ASD component that is responsible of
displaying a patient name on a screen. The design model uses two interface models repre-
senting the external behavior of two handwritten components: IProcessPatient and IGUI
interface models, depicted at the left of the figure and used in the Responses column. The
component is used by a client component and receives a stimulus event (setPatientDe-
tails) that contains a parameter of an xml string which includes the details of a patient.
We assume that the GUI accepts only a string representing the name of the patient to be
displayed.

To obtain the name from the xml string the ASD component passes the received string
to another handwritten component which extracts the name and returns it to the ASD
component with the call. For instance, the parameter paXML (patient xml) may be passed
to the handwritten code by value while nameStr is passed by reference so that nameStr
will contain the name as soon as the call is returned to the ASD component. When the
call is returned from the handwritten code, the ASD component passes the name to the
component responsible of displaying the name on the terminal.

The values of parameters can be stored in the ASD components at some states and re-
trieved later at some other states, if needed. Currently, the parameters and their values
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are not considered during the formal verification using model checking so correctness are
checked by other means, for instance testing. Furthermore, checking refinement of the
handwritten code against the interface model is not supported.

2.3 Related work

The ASD approach has been inspired by the formal Cleanroom software engineering
method [59, 71] which is based on systematic stepwise refinement from formal speci-
fication to implementation. As observed in [19], the method lacks tool support to perform
the required verification of refinement steps. The tool ASD:Suite can be seen as a remedy
to this shortcoming. The additional code generation features of the tool make the ap-
proach attractive for industry. Related to this combination of formal verification and code
generation are, for instance, the formal language VDM++ [32] and the code generator of
the industrial tool VDMTools [27]. Similarly, the B-method [3], which has been used to
develop a number of safety-critical systems, is supported by the commercial Atelier B
tool [24]. The tool ProB provides facilities to model-check and animate models speci-
fied in the B specification. ProB was used in a number of critical systems, most notably
railway control. The SCADE Suite [30] provides a formal industry-proven method for
designing critical applications with both code generation and verification. Compared to
ASD, these methods are less restricted and, consequently, correctness usually requires
interactive theorem proving. ASD is based on a careful restriction to data-independent
control components to enable fully automated verification.

2.4 Incorporating ASD in industrial practices

The development process of software used in projects within the context of iXR is an
evolutionary iterative process. That is, the entire software product is developed through
accumulative increments, each of which requires regular review and acceptance meet-
ings by several stakeholders. Figure 2.4 outlines the flow of activities in a development
increment, including the steps required to develop ASD components.
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Developers are divided into groups, each of which is responsible for developing a software
unit. Each unit is developed by a team of 2-5 members. Each unit comprises modules
which in turn consist of components with well-defined interfaces and responsibilities.

Each increment starts after lead architects and project leaders identify a list of features to
be implemented by the development team. As soon as the features and the corresponding
requirements are approved, the development team is required to provide work breakdown
estimations that include, for instance, required functionalities to be implemented, neces-
sary time, potential risks, and efforts.

Team and project leaders take these work breakdown estimations as an input for preparing
an incremental plan, which includes the list of functions to be implemented in a chrono-
logical order, tightly scheduled with strict deadlines to realize each of them. The plan
is used as a reference during a weekly progress meeting for monitoring the development
progress.

The construction of software components starts with an accepted design, i.e., a decom-
position into components with clear interfaces and well-defined responsibilities. Usually
such a design is the result of iterative design sessions and approved by all team members.

The design clearly distinguishes between control (state machines) and non control com-
ponents (e.g., data manipulation, computation and algorithms). Non control components
are always developed using conventional development methods, while control component
are usually constructed using ASD.

Given a software design, the manually written components and ASD components can be
constructed in parallel, as depicted in Figure 2.4. For the manually coded components,
checking coding standards is mandatory. Such a check is performed automatically using
the TIOBE technology [81], and required by quality management. After that, the code is
thoroughly reviewed by team members before it becomes a target of coverage testing.

Development teams are required to provide at least 80% statement coverage and 100%
function coverage for the manually written code. Upon the completion of coverage test-
ing, the code is integrated with the rest of product code, including the automatically gen-
erated code from ASD models. The steps performed to develop ASD components are
introduced in the subsequent section.

After that, the entire unit becomes a target of unit test, usually accomplished as a black-
box testing. Then, the entire code is delivered to the main code archive, managed by the
IBM clearcase technology, where the code is integrated with the code delivered by other
team members responsible for developing other units.

At the end of each increment, the units of the Frontend including the ASD components are
thoroughly and extensively tested by specialized test teams, using various type of testing
such as smoke test, regression test, performance test, statistical test etc, of which details
are outside the scope of this thesis. Testing usually reveals some coding errors which are
communicated to and resolved by the responsible team.

In the subsequent section, we describe the steps required to develop ASD components in
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a given design.

2.4.1 Steps of developing ASD components

When the aim is to use ASD, a common design practice is to organize components in
a hierarchical control structure. Typically, there is a main component at the top which
is responsible for high-level, abstract behavior, e.g., dealing with the main modes and
the transitions between these modes. More detailed behavior is delegated to lower-level
components which deal with a particular mode or part of the functionality.

ASD components are created and verified in isolation. The compositional design and veri-
fication of isolated components in ASD is essential to circumvent the state space explosion
problem. The typical steps required for developing an ASD component are summarized
below, according to the steps 1 through 6 of Figure 2.5. We consider developing the Ctr
component depicted in Figure 2.1 at the right as an example.
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Figure 2.5 Steps to develop a component using the ASD approach

1. Specification of externally visible behavior. Initially, an ASD interface model of the
component being developed is created. Note that this interface model might already
exist if the component is used by a component that has been developed already, as
explained in the next step.

For instance ICtr in Figure 2.1 is the interface model of the Ctr component, where
concrete interactions with the sensor and the motor interfaces are not included. ICtr
specifies how the clients are expected to use Ctr.

2. Specification of external behavior of used components. Similarly, ASD interface
models are constructed to formalize the external behavior of components that are
used by the component under development. These models describe also the external
behavior exposed to the component being developed.

For example, the Imotor and Isensor interface models describe the external behav-
ior related to the Ctr component. All other internal interactions not visible to Ctr
are not present.
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3. Model component design. On completion of the external behavior specification, an
ASD design model of the component is created. It describes the complete behavior
of the component, including calls to used interface models (as created in step 2) to
realize proper responses to client calls.

For instance the design model of Ctr includes method invocations from and to the
lower level Motor and Sensor components.

4. Formal verification of the design model. Through this step CSP processes are gen-
erated automatically from the interface and design models created earlier by the
ASD:Suite. These processes form a combined model that includes the parallel
composition of the design model process plus the processes of the used interface
models. The combined model is used to verify that the design model uses its used
interfaces correctly. This is done by checking a fixed set of properties including
searching for deadlocks, livelocks, and illegal invocations using FDR2. We detail
these properties in Section 3.2. The ASD verification is compositional [49] in the
sense that the design model is verified only with the used interfaces, which are
refined by other design models.

To clarify this step using the Ctr component example, a combined model that
includes Ctr and Imotor and Isensor is constructed. The behavioral verification
checks whether Ctr uses the motor and the sensor interfaces correctly, such that no
deadlocks, livelocks, race conditions, etc. are present.

5. Formal refinement check. In this step the ASD:Suite is used to check whether the
design model created in step 4 is a correct refinement of the interface model of
step 1. As in the previous steps, errors are visualized and related to the models
to allow easy debugging. When the check succeed, the interface model of step 1
replaces all lower level components. It can be used when constructing upper level
components. The refinement check is formally established in ASD using the failure
or failures-divergence refinement supplied by the FDR2 model checker, where the
interface process is the specification and the combined model is the implementation.

For instance, when the combined model constructed in step 4 is a valid refinement
of the ICtr process, ICtr formally represents all lower level components during the
verification with upper-level client components.

6. Code generation and integration. After all formal verification checks are success-
fully accomplished, source code can be generated from the model. The generated
code can be integrated with the rest of the code in the target programming language.
Furthermore, for every interface model constructed earlier, the previous steps can
be repeated until all components are developed.

2.4.2 Roles of the interface models within iXR

The ASD interface model plays important roles along the development of software in iXR
projects. Below, some of these roles are summarized.
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1. The interface model is used as a formal document that specifies the protocol of
interaction between two or more components or subsystems (e.g., between the
Backend and the Frontend subsystems). It provides a shared understanding and
simplifies communication among independent software architects, designers and
engineers, responsible of developing different parts of the system.

2. The interface model is used to formally represent all lower level components. Since
all internal details are abstracted away, the interface behavior is often easy to un-
derstand. Furthermore, the formal description of the interface reduces the risk of
misunderstanding of certain behavior or critical design decisions.

3. When the interface model is formally refined by other lower-level complex models,
the model is used for verification with the design models of upper level clients. The
interface behavior tends to be simpler than its corresponding composed model, so
that verification of clients using model checking can be a straightforward activity.
For verification substantially fewer states are generated compared to combining all
design models at once.

4. When a formally refined interface model of a component is used correctly by ASD
clients, the integration of clients’ code with the ASD code of the component is
typically done without errors (especially during the compilation and the building
process of the code).

5. The interface model can represent foreign components (hardware devices, legacy
code or handwritten code) developed outside ASD by describing the externally vis-
ible behavior. Doing this simplifies understanding and implementing the internal
code, regardless of the programming language being used.

2.5 A short introduction into mCRL2

We give a short exposition of the specification language mCRL2. We only restrict our-
selves to the parts of the language that we need in this thesis. At www.mcrl2.org the
toolset for mCRL2 is available, as well as lots of documentation and examples.

The abbreviation mCRL2 stands for micro Common Representation Language 2. It is a
specification language that can be used to specify and analyse the behavior of distributed
systems and protocols. mCRL2 is based on the Algebra of Communicating Processes
(ACP, [8]), which is extended to include data and time.

We first describe the data types. Data types consist of sorts and functions working upon
these sorts. There are standard data types such as the booleans (B), the positive numbers
(N+) and the natural numbers (N). All sorts represent their mathematical counterpart.
E.g. the number of natural numbers is unbounded.

All common operators on the standard data sorts are available. We use ≈ for equality
between elements of a data type in order to avoid confusion with = which we use as
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equality between processes. We also use if (c, t, u) representing the term t if the condition
c holds, and u if c is not valid.

For any sort D, the sorts List(D) and Set(D) contain the lists and sets over domain D.
Prepending an element d to a list l is denoted by d.l. Getting the last element of a list is
denoted as rhead(l). The remainder of the list after removing the last element is denoted
as rtail(l). The length of a list is denoted by #(l). Testing whether an element is in a set
s is denoted as d∈s. The set with only element d is denoted by {d}. Set union is written
as s1∪s2 and set difference as s1\s2.

Given two sorts D1 and D2, the sort D1→D2 contains all functions from the elements
from D1 to elements of D2. We use standard lambda notation to represent functions. E.g.
λx:N.x+1 is the function that adds 1 to its argument. For a function f we use the notation
f [t→u] to represent the function f , except that if f [t→u] is applied to t, the value u is
returned. We call f [t→u] a function update.

Besides using standard types and type constructors such as List and Set, users can define
their own sorts. In this thesis we most often use user defined sorts with a finite number
of elements. A typical example is the declaration of a sort containing the three aspects
green , yellow and red of a traffic light.

sort Aspect = struct green | yellow | red ;

A more complex user defined sort that we use is a message containing a number that can
either be active or passive. The number in each message can be obtained by applying
the function get number to a message. The function is active is true when applied to a
message of the form active(n) and false otherwise.

sort Message = struct active(get number :N)?is active | passive(get number :N);

Using the map keyword elements of data domains can be declared. By introducing an
equation the element can be declared equal to some expression. An example of its use is
the following. The constant n is declared to be equal to 3 and f is equal to the function
that returns false for any natural number.

map n : N;
f : N→ B;

eqn n = 3;
f = λx:N.false;

This concise explanation of data types is enough to understand the specifications pre-
sented in this thesis.

The behavior of systems is characterised by atomic actions. Actions can represent any
elementary activity. Here, they typically represent setting a traffic light to a particular
colour, getting a signal from a sensor or communicating among components. Actions
can carry data parameters. For example trig(id , false) could typically represent that the
sensor with identifier id was not triggered (indicated by the boolean false).
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In an mCRL2 specification, actions must be declared as indicated below, where the types
indicate the sorts of the data parameters that they carry.

act trig : N× B;
send : Message;
my turn;

In the examples in this thesis we have omitted such declarations as they are clear from the
context.

If two actions a and b happen at the same time, then this is called a multi-action, which is
denoted as a|b. The operator ‘|’ is called the multi-action composition operator. Any num-
ber of actions can be combined into a multi-action. The order in which the actions occur
has no significance. So, a|b|c is the same multi-action as c|a|b. The empty multi-action is
written as τ . It is an action that can happen, but which cannot directly be observed. It is
also called the hidden or internal action. The use of multi-actions can be quite helpful in
reducing the state space, as indicated in guideline II in section 6.4.

Actions and multi-actions can be composed to form processes. The choice operator, used
as p+ q for processes p and q, allows the process to choose between two processes. The
first action that is done determines the choice. The sequential operator, denoted by a dot
(‘·’), puts two behaviors in sequence. So, the process a·b+ c·d can either perform action
a followed by b, or c followed by d.

The if-then-else operator, c → p � q, allows the condition c to determine whether the
process p or q is selected. The else part can always be omitted. We then get the conditional
operator of the form c → p. If c is not valid, this process cannot perform an action. It
deadlocks. This does not need to be a problem because using the + operator alternative
behavior may be possible.
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can carry data parameters. For exampletrig(id , false) could typically represent that the
sensor with identifierid was not triggered (indicated by the booleanfalse).

In an mCRL2 specification, actions must be declared as indicated below, where the types
indicate the sorts of the data parameters that they carry.

act trig : N× B;
send : Message;
my turn;

In the examples in this thesis we have omitted these declarations as they are clear from
the context.

If two actionsa andb happen at the same time, then this is called a multi-action, which is
denoted asa|b. The operator ‘|’ is called the multi-action composition operator. Any num-
ber of actions can be combined into a multi-action. The orderin which the actions occur
has no significance. So,a|b|c is the same multi-action asc|a|b. The empty multi-action is
written asτ . It is an action that can happen, but which cannot directly beobserved. It is
also called the hidden or internal action. The use of multi-actions can be quite helpful in
reducing the state space, as indicated in guideline II in section 6.4.

Actions and multi-actions can be composed to form processes. The choice operator, used
asp+ q for processesp andq, allows the process to choose between two processes. The
first action that is done determines the choice. The sequential operator, denoted by a dot
(‘ ·’), puts two behaviours in sequence. So, the processa·b+ c·d can either perform action
a followed byb, or c followed byd.

The if-then-elseoperator,c → p ⋄ q, allows the conditionc to determine whether the
processp or q is selected. The else part can always be omitted. We then get the conditional
operator of the formc → p. If c is not valid, this process cannot perform an action. It
deadlocks. This does not need to be a problem because using the+ operator alternative
behaviour may be possible.

Figure 2.6 The transition system of the process Counter

The following example shows how to specify a simple recursive process. It is declared
using the keyword proc. It is a timer that cyclically counts up till four using the action
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tick, and can be reset at any time. Note that the name of a process, in this case Counter,
can carry data parameters. The initial state of the process is Counter(0), i.e., the counter
starting with argument 0. Initial states are declared using the keyword init. As explained
below, we underline actions, if they are not involved in communication between pro-
cesses.

proc Counter(n:N)
= (n<4)→ tick ·Counter(n+1) � tick ·Counter(0)
+ reset ·Counter(0);

init Counter(0);

In Figure 2.6 the transition system of the counter is depicted. It consists of five states and
ten transitions. By following the transitions from state to state a run through the system
can be made. Note that many different runs are possible. A transition system represents
all possible behaviors of the system, rather than one or a few single runs. The initial
state is state 0, which has a small incoming arrow to indicate this. The transition systems
referred to in this article are all generated using the mCRL2 toolset [63].
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The following example shows how to specify a simple recursive process. It is declared
using the keywordproc. It is a timer that cyclically counts up till four using the action
tick, and can beresetat any time. Note that the name of a process, in this caseCounter,
can carry data parameters. The initial state of the process isCounter(0), i.e., the counter
starting with argument0. Initial states are declared using the keywordinit . As explained
below, we underline actions, if they are not involved in communication between pro-
cesses.

proc Counter(n:N)
= (n<4) → tick ·Counter(n+1) ⋄ tick ·Counter(0)
+ reset ·Counter(0);

init Counter(0);

In figure 2.5 the transition system of the counter is depicted. It consists of five states and
ten transitions. By following the transitions from state tostate a run through the system
can be made. Note that many different runs are possible. A transition system represents
all possible behaviours of the system, rather than one or a few single runs. The initial
state is state0, which has a small incoming arrow to indicate this. The transition systems
referred to in this article are all generated using the mCRL2toolset [36].

Sometimes, it is required to allow a choice in behaviour, depending on data. E.g., for the
counter it can be convenient to allow to set it to any value larger than zero and smaller
than five. Using the choice operator this can be written as

set(1)·Counter(1) + set(2)·Counter(2) + set(3)·Counter(3) + set(4)·Counter(4)

Especially, for larger values this is inconvenient. Therefore, the sum operator has been
introduced. It is written as

∑
x:N p(x) and it represents a choice among all processesp(x)

for any value ofx. The sortN is just provided here as an example, but can be any arbitrary

Figure 2.7 The Counter extended with set transitions

Sometimes, it is required to allow a choice in behavior, depending on data. E.g., for the
counter it can be convenient to allow to set it to any value larger than zero and smaller
than five. Using the choice operator this can be written as

set(1)·Counter(1) + set(2)·Counter(2) + set(3)·Counter(3) + set(4)·Counter(4)

Especially, for larger values this is inconvenient. Therefore, the sum operator has been
introduced. It is written as

∑
x:N p(x) and it represents a choice among all processes p(x)

for any value of x. The sort N is just provided here as an example, but can be any arbitrary
sort. Note that the sort in the sum operator can be infinite. To generate a finite state space,
this infinite range must be restricted, for instance by a condition. The example above uses
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such a restriction and becomes:∑
x:N

(0<x ∧ x<5)→ set(x)·Counter(x)

Just for the sake of completeness, we formulate the example of the counter again, but now
with this additional option to set the counter, which can only take place if n equals 0. This
example is a very typical sequential process (sequential in the meaning of not parallel).
In Figure 2.7 we provide the state space of the extended counter.

proc Counter(n:N)
= (n<4)→ tick ·Counter(n+1) � tick ·Counter(0)
+

∑
x:N(n≈0 ∧ 0<x ∧ x<5)→ set(x)·Counter(x)

+ reset ·Counter(0);
init Counter(0);

Processes can be put in parallel with the parallel operator ‖ to model a concurrent system.
The behavior of p ‖ q represents that the behavior of p and q is parallel. It is an interleav-
ing of the actions of p and q where it is also possible that the actions of p and q happen at
the same time in which case a multi-action occurs. So, a ‖ b represents that actions a and
b are executed in parallel. This behavior is equal to a·b+ b·a+ a|b.
Parallel behavior is the second main source of a state space explosion. The number of
states of p ‖ q is the product of the number of states of p and q. The state space of n
processes that each have m states is mn. For n and m larger than 10 this is too big to be
stored in the memory of almost any computer in an uncompressed way. Using the allow
operator introduced in the next paragraph, the number of reachable states can be reduced
substantially. But without care the number of states of parallel systems can easily grow
out of control.

In order to let two parallel components communicate, the communication operator ΓC
and the allow operator∇V are used where C is a set of communications and V is a set of
data free multi-actions. The idea behind communication is that if two actions happen at
the same time, and carry the same data parameters, they can communicate to one action.
In this article we use the convention that actions with a subscript r (from receive) com-
municate to actions with a subscript s (from send) into an action with subscript c (from
communicate). Typically, we write Γ{ar|as→ac}(p ‖ q) to allow action ar to communi-
cate with as resulting in ac in a process p ‖ q. In order to make the distinction between
internal communicating actions and external actions clearer, we underline all external ac-
tions in specifications (but not in the text or in the diagrams). External actions are those
actions communicating with entities outside the described system, whereas internal ac-
tions happen internally in components of the system or are communications among those
components.

To enforce communication, we must also express that actions as and ar cannot happen
on their own. The allow operator explicitly allows certain multi-actions to happen, and
blocks all others. So, in the example from the previous paragraph, we must add ∇{ac} to
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block ar and as enforcing them to communicate into ac. So, a typical expression putting
behaviors p and q in parallel, letting them communicate via action a, is:

∇{ac}(Γ{ar|as→ac}(p ‖ q))

Of course, more processes can be put in parallel, and more actions can be allowed to
communicate.

Actions that are the result of a communication are in general internal actions in the sense
that they take place between components of the system and do not communicate with
the outside world. Using the hiding operator τI actions can be made invisible. So, for a
process that consists of a single action a, τ{a}(a) is the empty multi-action τ , an action
that does happen, but which cannot directly be observed.

If a system has internal actions, then the behavior can be reduced. For instance in the
process a·τ ·p it is impossible to observe the τ , and this behavior is equivalent to a·p. The
most common behavioral reductions are weak bisimulation and branching bisimulation
[67, 82]. We will not explain these equivalences here in detail. For us it suffices to
know that they reduce the behavior of a system to a unique minimal transition system
preserving the essence of the external behavior. This result is called the transition system
modulo weak/branching bisimulation. This reduction is often substantial.

Finally, the mCRL2 toolset supports analyzing systems using a number of nice visual-
ization tools and the possibility of verifying properties of systems using the modal µ-
calculus. Since these means were not used in this work we instead refer to [38, 40, 56]
for more information.
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3.1 Introduction

The BasiX project aims at developing a number of infrastructural services of the X-ray
machine, such as the systematic startup/shutdown of devices, installation and upgrading
of software. The startup/shutdown service is responsible of providing facilities related to
the powering aspects between a central power distribution unit (PDU) and a number of
PCs that host the clinical applications through a power and a control network.

The BasiX also provides other important services used for automatic installation of both
required operating systems and clinical applications on the PCs through the network.
Moreover, it provides generic services for logging to allow easy debugging by field service
engineers, and for tracing to facilitate debugging by the in-house developers.

In this chapter we introduce two industrial cases where the ASD technology has been
applied to the development of control components. In each case we concentrate on distinct
aspects related to the application of ASD to the development process.

The first industrial case is introduced in Section 3.2 and is concerned with detailing the
steps performed to specify and formally verify a controller of the PDU that supplies the X-
ray machine with the required power. In this industrial case, there was no code generated
from the specified models; therefore, the ASD formal techniques were merely used for
formal specification and verification.

We exploit the PDU controller design to show how interface and design models were
specified using the ASD:Suite, how ASD components interact with one another and what
types of formal properties are provided by the ASD technology. As a result, two errors
were detected in the design of the controller, although the design was thoroughly reviewed
by development team before ASD was used.

The second industrial case is introduced in Section 3.3 and is concerned with detailing
the processes accomplished for developing the power control service (PCS). This ser-
vice is replicated and deployed on the PCs of the X-ray machine and interact with the
PDU through a communication network. Through this project we propose a workflow to
combine ASD and the test driven development approach, answering a few questions re-
garding the challenges of incorporating ASD to industrial practices and integrating ASD
with other tools and methods being currently applied in industry.

3.2 The Power Distribution Unit

3.2.1 Introduction

The X-Ray system consists of a number of distributed devices and computers that require
a reliable source of power control. The distribution of power to these components is
controlled by a power distribution unit (PDU) attached to the main source of power in
hospitals.
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External users of the system interact with the PDU through an external console, which
includes a number of buttons. The console is attached to an embedded controller that
controls the flow of power to the components through a number of power taps. The
controller communicates with the devices via a network regarding required changes to the
powering status of the system. If the PDU does not function correctly components may
unpredictably be with or without power when they desire, rendering the system useless or
even dangerous.

Throughout this section we illustrate the verification steps of the PDU controller using
the ASD approach. Although the design of the controller was thoroughly reviewed, the
design included two previously uncovered errors, detected via model checking and spec-
ification review enforced by ASD, prior to implementation, at the phase where designers
and architects explored various design alternatives.

As will be demonstrated below, specification completeness, specification review and for-
mal behavioral verification provided a key benefit by easily locating design errors in the
PDU controller that would be hard to find through conventional testing.

We report about the work accomplished for verifying the controller in this industrial
project as follows. Section 3.2.2 introduces the context of the PDU controller. Our
experimental method of modeling and verifying the PDU controller is demonstrated in
Section 3.2.3, where we further explain the unveiled errors and how precisely they had
been discovered. The efforts of modeling and verifying the PDU controller are described
in Section 3.2.4.

3.2.2 The design description

We provide an overview of the design context, hardware and software components, and
the signals exchanged through the system. Figure 3.1 demonstrates the structure of the
X-ray system depicting a number of distributed devices and PCs connected to a Power
Distribution Unit (PDU).

The PDU is attached to an external power source, via a mains switch. The PDU is respon-
sible for distributing power and related communication signals to the attached devices and
PCs. Below we detail these components to the extent relevant for this work.

The Power Distribution Unit The PDU interacts with its external users by a user con-
sole, which contains a number of buttons: PowerOn, PowerOff and EmergencyOff. The
PDU also comprises a base module that hosts a number of power taps. It further houses
internal units: a Power Control Unit, which controls the flow of network messages, and a
Power Distribution Unit, which controls the distribution of power (Figure 3.1).

Through switching the power taps the PDU controls the flow of power to the devices and
the PCs. The type of power taps can either be switchable or permanent. The switchable
taps can potentially be switched on/off by the PDU upon requests of external users, issued
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Figure 3.1 Power, network, and device distribution

by pressing the buttons. For example, when the X-ray system is operational and an exter-
nal user presses the PowerOff button for 3 seconds, all switchable taps are switched off so
that all attached components are powered off except those attached to the permanent taps
(powering off the system in an orderly fashion).

The permanent taps constantly supply power to a number of components that must always
be up-and-running (e.g., for remote access purposes). The permanent taps can also be
switched off in some special cases. For example the PDU switches off all taps when the
external user presses the PowerOff button for 10 seconds (forcing all components to be
powered off).

The PDU comprises a controller that includes a state machine for maintaining the states
of the system. The state machine is introduced below.

For supplying power to the system in case of failure of the main source of power in the
field, an uninterruptible power supply (UPS) is attached to the PDU.

Devices and PCs A number of devices and PCs are connected to the PDU, each of
which has distinct responsibilities for achieving the required clinical application. All
components exhibit the same start-up and shutdown behavior (e.g., powering up, starting
the operating system (OS) and the clinical applications, shutting down OS, etc.), con-
trolled systematically by the PDU. The high-level behavior of these devices by means of
state machines are introduced below.

All PCs depicted in Figure 3.1 are attached to switchable taps except the ControlPC which
is attached to a permanent tap.

The GeoPC (Geometry PC) is responsible for controlling motorized movements of a num-
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ber of movable parts, such as the table where patients can lay and the X-ray stands. The
movable parts are supplied with emergency Stop buttons, attached to their bodies. The
clinical users can press these buttons to stop any movement in order to avoid any potential
damage that might occur because of the motorized movements. Upon pressing a Stop
button, the GeoPC instructs the PDU to switch off the taps connected to the motor drives
of the movable parts.

External user commands As a consequence of pressing the buttons on the user con-
sole, user commands are generated and received by the PDU controller. The controller
processes the commands and, depending on the command and the state, decides to send
messages (introduced below) around to the devices and the PCs through the network or to
switch the taps on/off.

By pressing the PowerOn button, a powerOn command is fired. Pressing the PowerOff
button for 3 seconds generates a powerOff command while pushing the button for more
than 10 seconds fires a forcedPowerOff command. The EmergencyOff completely cuts
down any source of power (including the UPS) to the system, via an internal switch,
positioned inside the PDU. The EmergencyOff button is pressed to ensure that the system
is immediately powered off in the presence of calamities.

Internal system messages The PDU can send and receive the following messages
through the network: shutdown, restart, controlPowerOff, and stop.

The shutdown and restart are broadcast messages sent from the PDU to the PCs. The
shutdown message instructs the devices to gradually shutdown their running applications
and then the operating systems. The restart message requests the PCs to reboot their
operating systems.

ControlPowerOff is a message sent from the ControlPC to the PDU, while stop is a mes-
sage sent from the GeoPC to the PDU. Through the controlPowerOff message users of the
ControlPC can instruct the PDU to systematically power off the entire system. The stop
signal is sent by the GeoPC when any of the Stop buttons on the movable parts is pressed,
so the PDU directly switches off all taps that supply the motor drives. The motor drives
are powered on again when the user presses the powerOn button on the console.

The state transition diagrams Figure 3.2 depicts the high-level behavior of the PDU
controller from a system-level perception after implementation details are abstracted away
[60]. The user and system signals introduced earlier constitute stimuli and responses
of the state machine. In addition to these events, the PDUswitchOn and PDUswitchOff
events are used for modeling purposes to indicate switching the external mains switch on
and off, respectively.

The effects of these signals on the behavior of the system differ upon the present state of
the PDU. For example, when the PDU is in System Standby and the powerOn signal is
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Figure 3.2 The high-level behavior of the PDU [60]

received, it switches on the switchable taps, so that the attached PCs and devices start up.
But, if the PDU is in the System On state and the powerOn signal is received, then the
PDU broadcasts the restart message across the network. The detailed activities required
for each transition of the state machine of Figure 3.2 are depicted in Table 3.1.
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Figure 3.3 The external behavior of all PCs

Here, the PDU, the devices and the PCs are assumed to be well functioning. All error
handling details or recovery operations are removed from the state machine.

The state machine of Figure 3.2 depicts only the stable states of the system. The tran-
siting states between any two stable states are excluded from the diagram. For example,
when the PDU is off and then is switched on, the PDU transits to the System Standby
state, where the ControlPC is assumed to be successfully started and fully operational.
The intermediate transiting state between the PDU Off and the System Standby state that
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Transition Activity
1 Boot PDU; the PDU switches on all permanent power taps; the Con-

trolPC is operational.
2 The PDU switches on all switchable taps, one by one to avoid a big

inrush current; all devices are operational.
3 The PDU broadcasts a “shutdown” message to shutdown all control

devices except the ControlPC; the PDU switches off all switchable
taps when power load is below a threshold or when the timer expires.

4 The PDU immediately switches off all power taps.
5 The PDU broadcasts a “shutdown” message to shutdown all control

devices including the ControlPC; the PDU switches off all taps when
power load is below threshold or when the timer expires.

6 The PDU switches on all taps, one by one to avoid a big inrush cur-
rent; all devices are started (all devices are operational including the
ControlPC).

7 The PDU broadcasts a “restart” message; the operating systems of all
control devices are restarted.

8 Disconnect the PDU internal power bus and UPS.
9 The PDU switches on all taps, one by one to avoid a big inrush cur-

rent; all devices are started (all devices are operational including the
ControlPC).

10 The PDU switches off the power taps that supply motor drives of mov-
able parts.

11 The PDU switch on the power taps that supply motor drives of mov-
able parts.

12 The PDU is switched off; all taps are switched off.

Table 3.1 The activities required for each transition of the PDU state machine
[60]

ensures that the ControlPC is fully operational is removed. The same assumption applies
to other states. For example, the System On state implies the situation where all PCs are
fully operational. All intermediate transiting states, which ensure that the PCs are fully
operational, leading to System On are removed.

We introduce the external behavior of the PCs with respect to the PDU. All PCs exhibit
almost the same startup and shutdown behavior, see Figure 3.3. Initially, they are all in the
Off state. Once a tap of a PC is switched on, the PC automatically launches its operating
system and then starts up its clinical applications. When the applications are successfully
started, the PC transits to the Operational state; this is indicated by the powerOn tran-
sition from the Off to the Operational states. If a PC receives a restart message at the
Operational state, it restarts the operating system and the applications. But, if the shut-
down message is received, the PC closes all running applications and shuts the operating
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system down.

The ControlPC and the GeoPC have two additional transitions:CB.controlPowerOff and
CB.stop. The CB.controlPowerOff and CB.stop signals are callback (CB) events sent to
the PDU, where the first indicates that the user of the ControlPC has requested the PDU to
entirely power off the system, and the second indicates that the Stop button on a movable
segment has been pressed.

The movable parts can be powered on or off by the PDU. They don’t receive or send
the PDU any signal through the network. The behavior of these segments is straightfor-
ward, and hence the corresponding specification is omitted (two actions of powerOff and
powerOn affecting two states Segmentx Off and Segmentx On, where x is the device id).

3.2.3 Modeling and analyzing the PDU behavior

In this section our experimental methodology is sketched, summarizing the series of steps
followed through the experiment of verifying the PDU design. We used the ASD:Suite
version 6.1.0 for describing the behavior of our components. The features supplied by
this version seemed to be a good fit to our aim at modeling the PDU behavior.
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Figure 3.4 The structure of ASD models

The structure of the ASD models of the PDU is depicted in Figure 3.4. Following the ASD
recipe we modeled the external behavior of the PDU first. Then, we separately described
the external behavior of the PCs located at the subsequent level of the PDU. After that,
we modeled the PDU design such that it refines the IPDU specification and includes all
interactions with the PCs. Below we individually introduce these models in more detail.

The external behavior of the PDU (the IPDU interface model). The specification in
Figure 3.5 describes the external behavior with respect to the external users of the PDU,
according to the original state machine of Figure 3.2. The specification is described using
an ASD interface model. The specification is straightforward and self-explainable.
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 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l  UUUUtetllelt  tyttlt>ttlleyy   

3 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

4 UUUU eenle>l  UUUUtetllelt  UUU>>>>   

5 UUUU eenle>>>  UUUUtetllelt  UUU>>>>   

6 UUUU >eeeleUenle>>>  UUUUtetllelt  UUU>>>>   

7 UUUU ltleglley>>>  UUUUtetllelt  UUU>>>>   

8 Ule>Ul>Ueg eenle>>>  yleedle  +   

9 UTle>Ul>Ueg glettee  yleedle  +   

10 tyttlt>ttlleyy>UUUUtUUUtnttel>l>

11 UUUU UUUtnttel>l  UUUUtetllelt  tyttlt>ttlleyy   

12 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

13 UUUU eenle>l  UUUUtetllelt  tyttlt>>l   

14 UUUU eenle>>>  UUUUtetllelt  tyttlt>ttlleyy   

15 UUUU >eeeleUenle>>>  UUUUtetllelt  tyttlt>ttlleyy   

16 UUUU ltleglley>>>  UUUUtetllelt  ftleglley>>>>   

17 Ule>Ul>Ueg eenle>>>  yleedle  +   

18 UTle>Ul>Ueg glettee  yleedle  +   

19 tyttlt>>l>UUUUtUUUtnttel>l>UUUUteenle>l>

20 UUUU UUUtnttel>l  UUUUtetllelt  tyttlt>>l   

21 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

22 UUUU eenle>l  UUUUtetllelt  tyttlt>>l   

23 UUUU eenle>>>  UUUUtetllelt  tyttlt>ttlleyy   

24 UUUU >eeeleUenle>>>  UUUUtetllelt  tyttlt>>>>   

25 UUUU ltleglley>>>  UUUUtetllelt  ftleglley>>>>   

26 Ule>Ul>Ueg eenle>>>  etll  tyttlt>>>>   

27 UTle>Ul>Ueg glettee  etll  Tle>ttee   

28 ftleglley>>>>>UUUUtUUUtnttel>l>UUUUtltleglley>>>>

29 UUUU UUUtnttel>l  UUUUtetllelt  ftleglley>>>>   

30 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

31 UUUU eenle>l  UUUUtetllelt  tyttlt>>l   

32 UUUU eenle>>>  UUUUtetllelt  ftleglley>>>>   

33 UUUU >eeeleUenle>>>  UUUUtetllelt  ftleglley>>>>   

34 UUUU ltleglley>>>  UUUUtetllelt  ftleglley>>>>   

35 Ule>Ul>Ueg eenle>>>  yleedle  +   

36 UTle>Ul>Ueg glettee  yleedle  +   

37 tyttlt>>>>>UUUUtUUUtnttel>l>UUUUteenle>l>UUUUt>eeeleUenle>>>>

38 UUUU UUUtnttel>l  UUUUtetllelt  tyttlt>>>>   

39 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

40 UUUU eenle>l  UUUUtetllelt  tyttlt>>l   

41 UUUU eenle>>>  UUUUtetllelt  tyttlt>>>>   
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47 UUUU UUUtnttel>l  UUUUtetllelt  Tle>ttee   

48 UUUU UUUtnttel>>>  UUUUtetllelt  UUU>>>>   

49 UUUU eenle>l  UUUUtetllelt  tyttlt>>l   

50 UUUU eenle>>>  UUUUtetllelt  Tle>ttee   

51 UUUU >eeeleUenle>>>  UUUUtetllelt  Tle>ttee   

52 UUUU ltleglley>>>  UUUUtetllelt  ftleglley>>>>  

53 Ule>Ul>Ueg eenle>>>  yleedle  +   

54 UTle>Ul>Ueg glettee  yleedle  +  

Figure 3.5 The external behavior of the PDU towards the external users
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Internal events of the PDU interface model represent detailed activities that may internally
occur by the implemented system, not visible to the external world. For example, rule case
26 indicates that something internally might happen in the system that lead the PDU to
transit to the System Off state. The detailed behavior that matches this internal event in
the design of the PDU is that the ControlPC may send the controlPowerOff callback to
the PDU and then the PDU will process this callback by sending the shutdown message
and powering off all PCs.

During the refinement check using FDR2 established by the ASD:Suite, all events not vis-
ible to the client component will be hidden from the interface model: the callback events
ICR PC INT.powerOff and the IGeo PC INT.geoStop, for instance. To reflect these in-
ternal activities on the external specification, one needs to add visible callbacks to the
interface. For example, we can indicate to the user that the system is powered off in the
System On state due to internal activities by replacing the Null response of rule case 26 by
an extra callback (say IUserIndicationCB.systemOff ). This way the deep internal modes
of the system can be reflected on the external specification, making the specification more
strict. We omit such extensions from our specification since we are interested more in
verifying the correctness of the state machine of the internal PDU design.

Callback to the 

PDU queue

Internal 

event

Figure 3.6 The ASD interface model of the GeoPC

The external behavior of the PCs. The external behavior of the PCs was separately
described using ASD interface models in Figure 3.6 and 3.7, matching the state machines
introduced earlier in Figure 3.3.

All PCs receive a number of messages synchronously via a number of channels: ICR PC,
ICR PC Broadcast in the ControlPC interface, for instance. The ControlPC interface
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 Cllllll tttttltt ltllt Celeteltl Clteeltl ttltl teeltl elet ttltl Cettllt glg

1 CCCCCC>>>>>

2 CCCCCC eenle>l  CCCCCCtetllClt  >elelttelll   

3 CCCCCC eenle>>>  Clllgll  -   

4 CCCCCCCteeleeltt elttlet  Clllgll  -   

5 CCCCCCCteeleeltt tltteenl  Clllgll  -   

6 CCCCCCCCeg eelteelCenle>>>  tleedle  +   

7 >elelttelll>CCCCCCteenle>l>

8 CCCCCC eenle>l  Clllgll  -   

9 CCCCCC eenle>>>  CCCCCCtetllClt  CCCCCC>>>   

10 CCCCCCCteeleeltt elttlet  CCCCCCCteeleeltttetllClt  >elelttelll   

11 CCCCCCCteeleeltt tltteenl  CCCCCCCteeleeltttetllClt  >tCtltteenl   

12 CCCCCCCCeg>>edle> eelteelCenle>>>  CCCCCCCCtteelteelCenle>>>  >elelttelll   

13 >tCtltteenl>CCCCCCteenle>l>CCCCCCCteeleelttttltteenl>

14 CCCCCC eenle>l  Clllgll  -   

15 CCCCCC eenle>>>  CCCCCCtetllClt  CCCCCC>>>   

16 CCCCCCCteeleeltt elttlet  Clllgll  -   

17 CCCCCCCteeleeltt tltteenl  Clllgll  -   

18 CCCCCCCCeg eelteelCenle>>>  tleedle  +  

 Cllllll tttttltt ltllt Celeteltl elteeltl ttltl teeltl elet ttltl Cettllt glg

1 CC>>>>>>

2 CCC eenle>l  CCCtetllelt  >elelttelll   

3 CCC eenle>>>  Clllgll  -   

4 CCC>teeleeltt tltteenl  Clllgll  -   

5 CCC>teeleeltt elttlet  Clllgll  -   

6 >elelttelll>CCCteenle>l>

7 CCC eenle>l  Clllgll  -   

8 CCC eenle>>>  CCCtetllelt  CC>>>>   

9 CCC>teeleeltt tltteenl  CCC>teeleeltttetllelt  >t>tltteenl   

10 CCC>teeleeltt elttlet  CCC>teeleeltttetllelt  >elelttelll   

11 >t>tltteenl>CCCteenle>l>CCC>teeleelttttltteenl>

12 CCC eenle>l  Clllgll  -   

13 CCC eenle>>>  CCCtetllelt  CC>>>>   

14 CCC>teeleeltt tltteenl  Clllgll  -   

15 CCC>teeleeltt elttlet  Clllgll  -  

Figure 3.7 External specification of the ControlPC and the normal PC

includes one internal event that models the internal behavior of powering off the entire
system request. The internal event is ‘yoked’ in rule case 12 which means that sending the
ICR PC CB.powerOff callback to the queue of the PDU is restricted (the yoking threshold



36 Chapter 3.

 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l  le>Ul Ule>Ul eenle>l  

UUUU etllelt

 tyttltttlleyy le>Ul el  

3 UUUU UUUtnttel>>>  UUUU etllelt  UUU>>>>   

4 UUUU eenle>l  UUUU etllelt  UUU>>>>   

5 UUUU eenle>>>  UUUU etllelt  UUU>>>>   

6 UUUU >eeeleUenle>>>  UUUU etllelt  UUU>>>>   

7 UUUU ltleglley>>>  UUUU etllelt  UUU>>>>   

8 le>Ul Ule>Ul>lB eelteelUenle>>>  Ulllgll  -   

9 BleUl UBleUl>lB ttee  Ulllgll  -   

10 tyttltttlleyy>UUUU UUUtnttel>l>

11 UUUU UUUtnttel>l  UUUU etllelt  tyttltttlleyy   

12 UUUU UUUtnttel>>>  le>Ul Ule>Ul eenle>>>  

UUUU etllelt

 UUU>>>>   

13 UUUU eenle>l  BleUl UBleUl eenle>l  

 ll UUl eenle>l  

UUUU etllelt

 tyttlt>>l   

14 UUUU eenle>>>  UUUU etllelt  tyttltttlleyy   

15 UUUU >eeeleUenle>>>  UUUU etllelt  tyttltttlleyy   

16 UUUU ltleglley>>>  le>Ul Ule>Ul eenle>>>  

UUUU etllelt

 ftleglley>>>>   

17 le>Ul Ule>Ul>lB eelteelUenle>>>  Ulllgll  -   
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27 BleUl UBleUl>lB ttee  etll  Ble>ttee fetlyll elett e>>  
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is 1 so that only one ICR PC CB.powerOff is allowed at a time in the queue of the PDU).
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33 UUUU >eeeleUenle>>>  UUUU etllelt  ftleglley>>>>   
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2

Figure 3.8 The specification of the PDU state machine

The specification of the PDU controller was described using an ASD design model,
matching the original state machine introduced in Figure 3.2. The complete specifica-
tion is depicted in Figure 3.8.

Modeling the behavior of the PDU controller Using the ASD:Suite, we included the
used interface models of the PCs and explicitly specify the number of instances of each
interface model before describing the behavior of the PDU design model. Obviously, our
design model includes one instance of the ControlPC interface model, one instance of the
GeoPC interface model and five instances of the PC interface models.

To give an example of the usage of these instances in the ASD:Suite consider rule case
26 of Figure 3.8. The rule case specifies that when the PDU controller receives the con-
trolPowerOff asynchronous event from the CR PC:ICR PC CB interface (via its queue),
it executes a list of responses one by one until completion. For example, the response
CR PC:ICR PC Broadcast.shutdown denotes sending the shutdown message to the Con-
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trolPC instance via the ICR PC Broadcast channel synchronously (note that all calls from
client to used components are synchronous in ASD). Similarly, the synchronous response
All:IPC.powerOff in rule case 26 implicitly denotes powering off all five PCs sequentially
one by one, i.e., PC1.IPC.powerOff, .., PC5.IPC.powerOff.

The shutdown message intended for all PCs has to be different than the shutdown mes-
sage intended for all other PCs excluding the ControlPC. But, in our model we don’t use
distinct events. Instead, we synchronously send the message to the intended PCs depend-
ing on the state. For example, rule case 23 depicts sending the shutdown message to the
GeoPC and the normal PCs, while rule case 26 depicts sending the message to all PCs.

During the specification process of the PDU design model, a number of key important
decisions had been discussed early and considered carefully. These decisions had mainly
been raised because the ASD specification process forces specification completeness, by
filling-in and thinking about every possible stimulus in every table. Since the original
state machine of the PDU is not complete, in the sense that not all external calls or internal
callback stimuli events are depicted in every state, a decision was considered to initially
assign the Illegal response to every internal callback stimulus received from the PCs if the
stimulus does not appear in a state of the original state machine.

For example, we assign Illegal responses to the controlPowerOff and the stop callback
stimuli in all states except System On (see rule cases 26 and 27 in Figure 3.8). Similarly,
all external user commands not present in a state are ignored, i.e., they make a self-
transition in the state (see rule case 32 in Figure 3.8, for example). This includes switching
on the PDU even if it is already switched on.

Formal verification of the PDU controller

Upon the completion of all ASD models, the formal verification process using model
checking was started. Figure 3.9 depicts a screenshot of the formal checks performed
remotely by the FDR2 model checker using the ASD:Suite.

The first and the second properties check whether the IPDU interface model is livelock
and deadlock free. The third, fourth and fifth properties verify that the interfaces of the
PCs are livelock free. Verifying the deadlock freedom can be established for each inter-
face model separately using the ASD:Suite.

The sixth property checks whether the combined model is a deterministic design. The pur-
pose of this check is to prevent ambiguities in the generated source code when compiled
with the rest of the product code.

The seventh property searches for illegal and queue overflow scenarios in the combined
model (asd Design). The eighth property verifies that the combined model is dead-
lock free. While the last two properties are used to check whether the combined model
(asd Implementation) refines the IPDU interface model (asd Specification), under both
the Failure and Failures-Divergence models.
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They check whether the IPDU livelock 

and deadlock free

It checks whether the combined model 

(asd_Design) contains illegal scenarios, 

or whether the queue overflows.

They check whether the combined 

model (asd_Implementation) refines the 

IPDU  (asd_Specification).  

Figure 3.9 Formal checks performed by FDR2 for the behavioral verification

We performed the behavioral verification of the PDU step by step. We first began by
checking the existence of illegal scenarios in the combined model of the PDU (the seventh
check). The FDR2 model checker detected a major error embedded in the design of the
PDU. The FDR2 counterexample is visualized in the sequence diagram of Figure 3.10.

Object1User PDU ControlPC GeoPC OtherPCs

PDUswitchOn 
powerOn

powerOn Button

powerOn

powerOn

stop

controlPowerOff

illegal

System_On

Geo_Stop

Figure 3.10 The FDR2 counterexample

The practical scenario of the potential consequences of this error is as follows. During
the regular execution of the system (the PDU is in the System On state), the clinical users
may experience some issues related the movable parts. Consequently, the clinical users
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might choose to press the Stop buttons attached to the body of the movable parts. After
the GeoPC has sent the Stop signal, the PDU immediately switches off the power that
supplies the movable parts, transits to the Geo Stop state, and waits for the subsequent
user input. But the user might desire to entirely power off the system for safety purposes.
This appeared to be impossible in the current design.

More precisely the user of the ControlPC would not be able to power off the system via the
controlPowerOff signal when the PDU is in the Geo Stop state, and also both powerOff
and forcePowerOff commands would have no effect on the PDU. Furthermore, if the
user chooses to strictly cut the power down from the mains switch, the UPS would start
automatically, if it is attached, and the erroneous situation would remain. Only pressing
the Emergency button would rescue the user from this case since it entirely cuts down the
power to the system.

The benefits of specification completeness plus the formal verification using model check-
ing for detecting the error is obvious here. Assigning the Illegal response to the absent
callback stimuli had effectively helped us detecting the veiled error.

Another design error was found during the specification review of the models by team
members, due to a missing requirement. Consider the state machine of Figure 3.2 once
more. The forcedPowerOff and the controlPowerOff transitions from the System Standby
state to System Off state were found missing. This means that the clinical user would not
be able to power off the ControlPC upon pressing the PowerOff button for 10 seconds or
systematically power off the system using the controlPowerOff signal when the system
is in the System Standby state. Initially, this was a desired behavior since the ControlPC
should always be operational, but lately a decision was made to also consider powering
off the ControlPC in the System Standby state.

The improved PDU controller

After the design errors had been communicated to the PDU designers, the design had been
adapted. The modified state machine of the PDU is depicted in Figure 3.11. It includes
the missing forcedPowerOff and controlPowerOff transitions from System Standby state
to System Off state. Additionally, the modified state machine allows the clinical users to
power off the system when the PDU is in the Geo Stop state.

Subsequently, the specification of the PDU design model had been adapted to the changes.
All responses to internal callback stimuli received from PCs not specified in the original
state machine were set to Null. Moreover, the ASD specification of the System Standby
and the Geo Stop states had been adapted. The complete specification of the improved
PDU model is introduced in [43], Appendix A. The corresponding improved specification
of the external behavior is listed in [43], Appendix B.

All properties listed in Figure 3.9 succeeded except the last property, see Figure 3.12. The
succeeded checks are preceded by green ticks signs, while the failed check is preceded
by a cross sign. Upon clicking on the failed check, FDR2 shows another window to
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Figure 3.11 The improved state machine after the formal verification and the
specification review

visualize the counterexamples. For this property FDR2 reports six counterexamples in
total where divergences might occur, which affect the external behavior. The analysis of
these counterexamples reveals that the source of all divergence scenarios is basically the
same. The sequence diagram that explains the erroneous scenario is visualized in Figure
3.13.

Figure 3.12 All checks succeeded except refinement under the Failure-
Divergences model
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The counterexample shows that the GeoPC could continuously inform the PDU about a
pressed Stop button on the body of a movable part. Then, the PDU endlessly treats the stop
signals, with the possibility that the external user commands are not treated immediately.

Object1User PDU ControlPC GeoPC OtherPCs

PDUswitchOn powerOn

powerOn Button
powerOn

powerOn

stop

Geo_Stop

stop

Repeats 
Movable 

parts Off

Figure 3.13 Example of a divergence that affects the external behavior of the
PDU

We don’t really consider these divergences as critical errors. They are rather benign, but
they can happen indeed.

3.2.4 Modeling and verification efforts

The activities of modeling and verifying the behavior of the PDU were conducted part
time in parallel with other traditional activities devoted to the PDU development. Under-
standing the PDU domain plus studying various design documents [55, 54, 60] for the
purpose of modeling the behavior of the PDU took approximately 35 hours.

The modeling and verification efforts of all ASD models took 32 hours in total. In general,
the effort of creating the ASD models was not a time demanding process, because of the
high-level description provided by the ASD:Suite. The team involved in the modeling,
specification, verification and review processes were highly skilled in traditional develop-
ment methods, but had limited knowledge in formal methods. But despite this limitation,
team members were able to quickly understand and review the ASD specification, and to
favorably provide their feedbacks and suggestions for improvements although no one of
the reviewers had previously been exposed to any ASD training courses.

Table 3.2 depicts the statistical data of the ASD models. The first column lists the name
of all ASD interface and design models, related to the PDU and the PCs. The second
column contains the total number of rule cases, specified and reviewed by team members.
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The third, fourth, and fifth columns include statistical data produced by the FDR2 model
checker for checking deadlocks of each model independently. All models are deadlock
free. Note that the data presented for the PDU (design) model is related to the com-
bined model that includes the parallel composition of the PDU design plus the interface
models of the PCs. The third column depicts the number of generated states, while the
fourth column presents the number of generated transitions. The time in seconds spent
for verification by FDR2 is depicted in the fifth column.

Model Rule
cases

States Transitions Time

IPDU 54 16 67 <1 sec
PDU 54 824 1,360 <1 sec
ICRPC 18 16 25 < 1 sec
IGeoPC 18 16 25 < 1 sec
OtherPCs 15 15 23 < 1 sec

Table 3.2 Statistical data related to the ASD models of the PDU

The PDU team decided to continue the development of the PDU controller using the ASD
technology and to further investigate other design alternatives. The development process
of the PDU was continued by other team members newly introduced to the ASD method.
The team investigated further other design alternatives, and applied the technology on the
development of various parts of the X-ray system, especially on the services deployed on
the PCs that communicate with the PDU.

Such a service is called the power control service (PCS). The following section provides
details of developing the PCS. We show how both ASD and the test driven development
were combined in the development process of the power control services.

Finally, the formal behavioral verification, team reviews and the specification complete-
ness processes performed throughout this project provided a proper framework, for as-
sisting the work, and decreasing potential efforts, devoted to error fixing at later stages of
the project.

The work performed after verifying the PDU controller. The behavior of the PDU
and the PCs were extended such that they include intermediate transiting states. The
external specification and the design of the PDU were extended with extra callback events
that reflect the internal states of the system: callbacks indicating that the system is on, off,
starting up or in Geo Stop state, for instance. The details can be found in Chapter 7.

When extending the design of the PDU we did not only consider the transiting states
but also applied a number of specification techniques to avoid the state space explosion
problem [75, 41]. We compared a number of design and specification styles, for ex-
ample between a design of the PDU that uses a pushing strategy (where PCs notify the
PDU about their states) and another alternative design that employs a polling mechanism
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(where the PDU queries the states of the PCs when needed).

Since not all specification guidelines of [75, 41] can be modeled using the current ASD
tool, we instead used mCRL2, CSP/FDR2 and CADP and exploited some of their useful
features of verification and formal refinement. The details are provided in Chapter 7.

3.3 The Power Control Service

3.3.1 Introduction

In the previous section we showed that employing the ASD techniques for the formal
specification and verification was beneficial for the behavioral correctness of the PDU in
the sense that errors were detected earlier during the design phase, and in a very short
time. Furthermore, we elaborated more on how ASD components were specified and
formally verified.

In this section we show how the ASD techniques were tightly integrated with the devel-
opment processes in a real industrial development project. We present a workflow which
combines test-driven development of components with the commercial formal approach
of ASD and describe experiences with them at Philips Healthcare.

An analysis of the first usage of the ASD approach at Philips Healthcare shows that it
leads to the development of components with fewer reported defects compared to com-
ponents developed with more traditional development approaches [45, 42]. Therefore,
formal methods are gradually becoming more and more credible in developing software
within Philips Healthcare. However, in the healthcare domain this requires validated tools
and the incorporation of these new techniques into well-defined development and quality
management processes. This requires an answer to a number of questions such as:

• How can formal techniques be tightly integrated with standard development pro-
cesses in industry? To which extent does the formal verification affect the test and
integration phase? Are certain tests no longer needed? Which tests are still essen-
tial to guarantee the quality of components? Can formal interface models be used
to generate test cases?

• What is the impact of the modeling and formal verification on the project planning?
Is more time needed during the design phase? Can the test and integration phase be
shortened?

• Which artifacts have to be included in the version management system; do we need
the models, the generated code, or also the version of the tool?

• How to deal with changes; how flexible is the approach?

• How does the approach fit into the existing quality management system, e.g., con-
cerning the required review procedures.
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We report about the experiences with these issues during the development of components
of the power control service (PCS) for the interventional X-ray system. Note that this is
not a case study, but a real development project for a service that is used by different parts
of the system which are developed at different sites.

This section is structured as follows. Section 3.3.2 introduces the PCS and its role in
the interventional X-ray system. Section 3.3.3 describes the application of the proposed
workflow of combining the test-driven development with ASD to develop the PCS. In
Section 3.3.4 we discuss the results achieved in this project. Section 3.3.5 contains our
main observations and current answers to the questions raised above.

3.3.2 Context of the Power Control Service

The embedded software of the interventional X-ray system is deployed on a cluster of
PCs and devices that cooperate with one another to achieve various clinical procedures.
As mentioned in the previous section, the control of power to these components is the
responsibility of a central power distribution unit (PDU). Clinical users of any individual
PC cannot control the power of the PC without using the PDU. The PDU also controls
communication signals related to the startup and shutdown of the PCs. Figure 3.14 depicts
the deployment of the PCS in the PCs and the relation to the PDU.

PDU

UIM

PC PCPCPC PC

MAINS

Power

Ethernet

Power 

Taps
PCS PCS PCS

Controller

PCS PCS

Figure 3.14 The PCS in the context of power distribution

As can be seen in Figure 3.14, each PC includes a PCS which is used for exchanging
power-related communication commands between running applications within a PC and
the PDU through an Ethernet network. As a typical example of powering off the system,
the PDU sends a message instructing all PCSs to gradually shutdown first the running
applications and next the operating systems (OS), in an orderly fashion.

Figure 3.15 sketches the PCS in a PC as a black-box, surrounded by a number of internal
and external concurrent components, located inside and outside the PC. For instance,
the PDU interacts with the PCS to reboot or shutdown the PC. Moreover, the PCS can
also send events to the PDU to enable or disable a number of buttons on the UIM (User
Interface Module).

Another example of a concurrent component is the InstallApplication which is an external
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PDU Applications InstallApplication

Power Control Service

LogOn PDU’ Applications’

Figure 3.15 The PCS as a black-box surrounded by concurrent components

component used to install and upgrade software on the PC. During the installation of
software on a PC, the PCS instructs the running applications to stop, start or restart.

The main function of the PCS is to coordinate all requests to and from these parallel
components. Due to the concurrent execution, controlling the flow of events among the
components is rather complex, and since the PCS is deployed on every PC, any error is
replicated on every PC and potentially leads to serious problems of the entire system.

Moreover, the PCS may lose connection with other components at any time due to a
failure of other components (e.g., applications) or with the PDU (e.g., due to a network
outage). The PCS has to be robust against such failures, especially when it is in the
middle of executing a particular scenario. When the PCS detects that the system is in a
faulty state, it should take appropriate actions and log the events for further diagnostics
by the field service engineer. As soon as the cause of a malfunction has disappeared, the
PCS ensures that all its internal components are synchronized back with other external
components to a predefined state.

Due to the highly complex behavior of the PCS and the many possible regular and excep-
tional execution scenarios that need to be considered carefully, the ASD technology has
been used to develop the control part of the service, and to specify the external behavior
of the components on the boundary of the PCS. The TDD approach has been applied to
develop the non-control part of the service and the components on the boundary of the
PCS.

3.3.3 Steps of developing components of PCS

In this section we report about the component-based development of the PCS from Oc-
tober 2010 till October 2011. The development process contained five increments, each
implementing a part of the PCS functionality. The ASD-based development of control
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components and the development of other components using TDD has been carried out in
parallel, as depicted in Figure 3.16.
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Figure 3.16 Steps performed in a development increment

Requirements and incremental planning. The development process was started by
identifying the scope and the requirements of the PCS. At early stages of development
it was difficult to reach agreement with all stakeholders, since they had different wishes
concerning the required functionality. The process of getting consensus took up to two-
thirds of the total time. During this negotiation phase, requirements and design documents
were iteratively written and reviewed by team members to reflect the current view of the
solution and as input for further discussions.

Hence, the development process initially took place in a context where scope and require-
ments were very uncertain and changed frequently - even within a single increment. Ad-
ditionally, the features required to be implemented in every increment were only known at
a very abstract level, such as: “In increment 2 automatic logon of the default user of a PC
has to be implemented”. The requirements of each increment were only acquired just at
the beginning of the increment, which put more pressure on meeting the strict deadlines.

Software design. The design of the PCS consists of a hierarchy of components, as de-
picted in Figure 3.17. In this decomposition, ASD components are depicted in a gray
color, whereas light colored components have been developed using TDD. Not shown in
the picture are commonly used components such as tracing (to facilitate in-house diag-
nostics by developers) and logging (to facilitate diagnostic by field service engineers).

The ASD components of the PCS have been realized in a top-down order. Each ASD
component is designed as a state machine that captures the global states of lower level
components. Starting point is the PduEventController component which is modeled as
a top-level state machine that captures overall global states (or modes) of a PC: normal
mode, installing, starting/stopping applications, etc. Later, lower-level components are
realized. For instance, the component InstallTransitioning implements detailed behavior
of the installation mode of the top-level state machine and is responsible of safeguarding
detailed transitions from normal mode to installation mode, and vice versa.

Experience shows that most novice ASD users tend to design rather large components
leading to large ASD models [80, 42]. Although this might be acceptable in traditional
development methods, it leads to serious problems when using formal techniques such as
ASD:Suite. The key issues encountered with large models were as follows.
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Figure 3.17 Components of the PCS

• Verifiability: while verifying large models one quickly runs into the main limitation
of model checking, namely the state-space explosion problem. Verification may
take a large number of hours or might even be impossible for large models.

• Maintainability: design models which contain a substantial number of input stimuli
and states are difficult to adapt or to extend. This leads to problems when require-
ments change or functionality has to be added.

• Readability: large design models are hard to read and to understand. Design re-
views will consume a large amount of time.

During the development of the PCS, the first point was the main concern. Earlier expe-
rience showed that as soon the state space explosion problem is faced, the development
process is blocked and components have to be refined and redesigned from scratch. Since
code generation is only allowed when the formal verification checks succeed, this causes
an unacceptable delay to the tight schedules of the project and its deliverables.

Therefore, the design of the PCS has been decomposed into rather small components,
described using small models following the ASD recipe. Although the ASD approach
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shown in Figure 2.5 does not prescribe an order in which the components are realized, we
used a top-down, step-wise refinement approach. This effectively helped us distributing
responsibilities and maintaining a proper degree of abstraction among all components. In
this way we obtained a set of formally verifiable components.

ASD specification and formal verification. The ASD models were specified using the
ASD:Suite version 6.2.0. An example of a very small ASD interface model is shown in
Figure 3.18. The model represents the interface of the Starting component and consists of
two sub-tables, representing the states Idle and Initialized, each having three rule cases.

Figure 3.18 Interface model of the Starting component

The corresponding design model of the Starting component is depicted in Figure 3.19.
It extends the interface model with calls to its used components LogOn, Filter v1.0, and
Filter v1.1.
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Figure 3.19 Design model of the Starting component

After the completion of the design model of a component, given interface models of a
component and its used components, the ASD:Suite has been used to formally verify
absence of deadlocks, livelocks, illegal calls, and conformance of the design model with
respect to the interface model. Usually this revealed quite a number of errors, both in the
design model and the interface models. Since changes in interface models affects other
components this sometimes leads to a chain of changes. However, since our components
are kept small, it is easy and fast (usually less than a second) to re-check these other
components.
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Specification review, code generation and integration. Although the formal verification
is very useful to detect errors, it does not guarantee that the design model realizes the
intended behavior. For instance, the correct relation between client calls and calls to used
components is not checked. Also the value of parameters is not verified. Hence, when
all formal checks succeed, the ASD models were reviewed by the project team. The
review process performed for the ASD models was similar to the review process of any
normal source code developed manually. After the team review, including corrections and
a re-check of the formal verification, C# source code was generated automatically using
ASD:Suite. This code is then integrated with the manually coded components.

Testing. At the end of each increment the ASD generated code plus the manually coded
components were exposed to black-box testing. Corresponding test cases were specified
and implemented before and in parallel with the implementation of the increment. As
a result of the black-box testing, a total of three errors were found, two of which were
related to ASD components and one to the manually coded components. Note that the
manually coded components are rather straightforward and less complex than the control
part developed in ASD. The error in the manually coded components was due to the
existence of a null reference exception.

The first error in the ASD components was caused by a wrong order in the response list
of a stimulus event of a rule case. This error caused ASD components to log messages in
a reverse order. The second error was due to the invocation of an illegal stimulus event in
one of the Filter components, which unexpectedly received an initialize request from one
of its client components although it was already initialized. Such a multi-client scenario
is not checked by ASD:Suite.

The entire PCS code was exposed to further testing on module level at the end of all
increments. After that, both production code and test code were carefully reviewed by
team members. As a result of review, some minor issues were identified and immediately
resolved. Test cases were rerun in order to assure that the rework after review did not
break the intended behavior of the service.

3.3.4 Results

Throughout all increments, no major redesign was needed. In general, the construction
of all PCS components was rather smooth and gradually evolved along the development
increments. The IBM ClearCase [51] code management system was used to store the
code and the ASD models.

Since Philips quality management enforces developers to comply with coding standards
provided by the TIOBE technology [81, 1], this created a problem, because the ASD
generated code did not comply to the required coding standard. However, changes of ASD
components will always be carried out on the level of the design models and changing the
generated code directly is not allowed. Hence it was acceptable to exclude the generated
code from the checks on the coding standard.
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During the development of ASD components, we took care that the interface and design
models remained small. Hence, the formal verification of interface and design models
took less than a second. In this way, the approach is more efficient compared to traditional
development.

Feedback from independent test teams was positive and the service runs stable and reli-
able. Team members of the PCS project appreciated the quality of the service, and decided
to further incorporate the ASD technology to the development of other parts of the sys-
tem. The behavioral verification and the firm specification and code reviews provided a
suitable framework for increasing the quality, assisting the work, and decreasing potential
efforts devoted to bug fixing at later stages of the project.

The end quality result of the PCS service is remarkable, and the entire service exhibited
only 0.17 defect per KLOC. This level of quality favorably compares to the industry
standard defect rate of 1-25 defects per KLOC [61]. The PCS service was deployed on
all PCs, and further tested by independent teams responsible of developing the clinical
applications on each PC. The result of testing was that no errors were found and the
service appeared to function correctly on every PC, from the first run.

3.3.5 Concluding Remarks

We have described the experiences at Philips Healthcare with the ASD approach. The
proposed workflow also includes test-driven development. This approach has been used
for the development of a basic power control service. We list our main observations and
lessons learned.

Test and integration. Concerning the code generated by the ASD:Suite, statement and
function tests can be safely discarded since all possible execution scenarios have been
covered by the model checker of this tool. However, it is important to test the combination
of ASD components and hand-written components. In the PCS project this revealed a few
errors.

Experience from other projects using more conventional approaches shows that integrat-
ing concurrent components is usually a challenging task. It is often the case that compo-
nents work correctly on their own, but do not function as expected when they are inte-
grated with one another. Sometimes, errors are profound in length, hard to analyze and
often tough to reproduce due to the concurrent nature of components. Moreover, fixing
an error in the code often causes others to emerge, and others to be unveiled with a great
potential of causing unexpected failures in the field.

Our experience with ASD differs from the observations of the previous paragraph. Design
errors were detected by the model checker early and automatically before any single line
of code is being written or generated. The behavioral verification thoroughly checked
the correctness behavior of components under all circumstances of use. It was often the
case that fixing an error caused other errors to emerge, which were deeper in length and
complexity than a previous one, but these design errors were detected with the click of a
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button. Fixing these errors was done iteratively until components became neat and clean
from all sources of errors. Since formal verification of each ASD design model was done
with the interface specification of the boundary components, integrating the code of all
ASD design models is often quick and accomplished without errors.

Quality management. While applying the proposed workflow, we observed a few ten-
sions with the current quality management system. The code generated by ASD:Suite
does not comply to the required coding standards provided by the TIOBE technology.
Moreover, the fact that ASD forces the designer to define the response to all possible
stimuli in all states leads to very robust code, but it decreases the test coverage. In our
case, it is acceptable for quality managers to exclude ASD generated code from coverage
metrics and coding standards. In fact, the quality of the generated code turned out to be
very good, since the PCS components have been used frequently by several parts of the
system without any problem report.

In the version management system, ASD models and code are stored. Code is used for fast
build process, independent of the ASD:Suite tool. The models are used for maintenance
and to include change requests. New versions of the ASD:Suite tool accept models from
previous versions.

Workflow. In the PCS project a lot of time was needed to clarify the requirements, since
there were many stakeholders at different sites. We believe that in such a situation the
formal ASD interface model are very useful. Since ASD requires complete interface
models, requirements have to be complete and clear. Discussions to clarify the require-
ments resulted into new and changed requirements and certainly improved the quality of
the requirements.

Moreover, after identifying parts of the system that are most likely rather stable, these
parts can already be implemented using ASD in parallel with ongoing discussions about
unclear requirements. If the design is based on a set of small components this can be
done, since adapting and extending small ASD models has proven to be easy. When large
models are being used, this could prove to be cumbersome. Further, the definition of ASD
interfaces enables concurrent engineering of components.

As mentioned above, an important benefit of the proposed workflow is that the test and
integration phase becomes more predictable.

Design. The use of ASD has a clear impact on the design and the definition of com-
ponents. Because formal verification and code generation is only possible for control
components, the design should make a clear separation between data and control. Control
components are generated using ASD:Suite whereas test-driven development is used for
the data components. Especially for designers used to object-oriented design this requires
a paradigm shift.

Another important aspect is that ASD requires small components; as a guideline a design
model should not contain more than 250 rule cases, a few asynchronous callbacks, leading
to nearly 3000 lines of code. With these restrictions, the formal technique is rather easy
to use without much training and models are easy to understand and to modify.
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4.1 Introduction

The industrial project established for the Backend subsystem aims at developing a number
of application services that realize the procedures, rules, algorithms and workflow steps
required to accomplish clinical examinations. The Backend project involves the develop-
ment of an architecture that consists of 12 concurrent software units that include multiple
parallel components (i.e., multiple processes that include multiple threads). The project
includes approximately 33 software engineers, designers and architects.

The purpose of this chapter is to provide an experience report on the application of formal
methods to the development of two units of the Backend subsystem. We show that formal
techniques could substantially influence the quality of the developed software of the two
units. Furthermore, since formal methods enforce rigorous disciplined processes, the
errors found after applying such methods tend to be simple errors, easily detected and
fixed, and not profound design or interface errors.

The first unit is called the Frontend Client (FEClient) and is detailed in Section 4.3. The
unit is used to safeguard interactions towards the Frontend subsystem. Using the FE-
Client we demonstrate steps that were followed to develop the unit and we report about
the percentage of time spent for each software related deliverable such as requirements,
specification, design, etc. We discuss typical errors found in the ASD components, and
then show that such errors were easy to find and to fix.

In Section 4.4 we introduce the Orchestration module in the Backend Controller unit. This
unit is the central part of the X-ray machine used for accomplishing the required clinical
examinations through coordinating predefined workflow steps. Using the Orchestration
case we elaborate more on the design steps followed to obtain verifiable components
using model checking. More importantly, we illustrate the peculiarities of the resulting
components demonstrating how they were easily verified following the ASD recipe. We
further show that the components were easy to maintain and extend when the requirements
evolved. Similar to the FEClient, we demonstrate typical errors encountered during the
construction of the components.

Finally, we show that the ASD technology eliminated errors earlier in the design phase
so that the resulting quality of ASD components was remarkable. We provide supporting
statistical data for both the FEClient and the Orchestration components.

4.2 The Context of the BackEnd Subsystem

Figure 4.1 depicts the deployment of the three main subsystems of the X-ray machine.
The subsystems communicate with one another via standardized, formally verified ASD
interfaces (e.g., the BEFEInterface). These interfaces are made formal in order to en-
sure equal understanding of the intended behavior among separate teams developing the
subsystems and to reduce communication overhead.
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Below we briefly address the functionality of the subsystems from a high-level perspective
to the extent required for introducing components of the FEClient and the Orchestration
module.

The Backend subsystem houses graphical user interfaces (GUI), patients databases and
a number of predefined X-ray settings, used to achieve required clinical examinations.
Through the user interface clinical users can manage patients’ data and exam details and
can review related X-ray images. The Backend is also responsible of supporting different
types of Frontends.
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Figure 4.1 Subsystems with distinct responsibilities and formal interfaces

The Frontend subsystem controls motorized movements of the table where patients can
lay and the stands that hold the X-ray collimators and the image detectors. It is also
in charge of calibrating these components upon requests sent remotely by the Backend,
based on the predefined X-ray settings, selected by clinical users from the GUI.

When all components are calibrated and prepared, the Frontend demands the Backend to
prepare its internal units before it asks for permission to start image acquisition. Upon
obtaining permission, the Frontend starts acquiring X-ray images and sends related data to
the IP subsystem for further processing. After that, the IP subsystem sends the processed
images to the Backend for viewing on various screens and for local storage to facilitate
future references.

The two units of the Backend incorporated the ASD technology are detailed in the subse-
quent sections, namely the FEClient and the Orchestration.
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4.3 The Frontend Client

4.3.1 Introduction

The purpose of this section is to report on the experiences with developing the control
part of the FEClient units. The control part was developed using the ASD approach in a
pipeline of consecutive increments. As we will demonstrate shortly, the control part of this
unit exhibits good quality results compared to the non-control part which was developed
using traditional development methods.

This section is structured as follows. The context of the FEClient unit and its responsibil-
ities are described in Section 4.3.2. The steps accomplished for developing the FEClient
using ASD are demonstrated in Section 4.3.3, highlighting the time required by each step
and the issues encountered. In Section 4.3.4 we discuss the nature of the errors found
during the construction.

4.3.2 Context of the FEClient unit

Figure 4.2 depicts the deployment of the FEClient unit in the Backend subsystem and
its position with respect to the Frontend subsystem. The FEClient mediates messages
between various units of the Backend and the Frontend subsystem across a physical net-
work. The interaction between the two subsystems is standardized by a predefined com-
munication protocol, specified in the BEFE ASD interface model, which is used by the
components of the FEClient and is implemented by other components developed by other
teams in the Frontend (detailed in the subsequent chapter).

FEClient 

state 

machine

FEClient 

unit

BackEnd subsystem FrontEnd subsystem

BEFE Interface

BackEnd units

ASD interfaces C# Interfaces Components developed manually 

Figure 4.2 Deployment of the FEClient in the Backend

The challenges imposed on the FEClient is that any of the following components may fail
during the execution of the system: any unit of the Backend; the Frontend subsystem; the
network connection between the Frontend and the Backend subsystems. For example, if
the Backend loses its connection to the Frontend subsystem, the problem may be that the
Frontend subsystem has a major failure, or that there is a network outage between the two
subsystems.
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In either case the failure may be temporarily or persistent. The FEClient knows whether
the Frontend subsystem is at fault, and therefore must correctly respond to internal Back-
end requests, by providing proper handlings: viewing of patients’ images and data, re-
gardless of the presence or absence of the Frontend subsystem, for instance. Once the
source of failure has disappeared, the FEClient must ensure that both subsystems are syn-
chronized back to a predefined state. Briefly, the FEClient provides numerous benefits
such as:

- manipulation of data in readable formats comprehensible for the communicating
subsystems,

- guaranteeing the consistency of states between the external subsystems and internal
Backend units,

- exchanging of patients’ data and exams, constructed and originated by Backend
units, and sent towards the Frontend subsystem,

- processing of X-ray settings, constructed and exchanged by the Backend and the
Frontend subsystems,

- and handling the requests for acquiring X-ray images from the Frontend subsystem.

The FEClient includes a complex control part (a state machine), which maintains the
current state of the system, and enables units on the Backend to correctly communicate
with the FronEnd and vice versa. The control part comprises a total of 88 different stimuli,
211 responses and 26 distinct states. The impetus of the FEClient state machine was the
need of safeguarding the flow of information between the fully concurrent subsystems, by
preventing potential deadlocks, livelocks, race conditions, and illegal interactions. Due to
the distributed nature of the system, each component has only partial information about
the state of the system, raising the complexity of providing correct interactions among the
concurrent, interacting parties.

4.3.3 The application of ASD for developing the FEClient

We report about the activities accomplished for developing the FEClient, starting from
January 2008 till the end of 2010. The development of the FEClient involved 3 full-
time and 1 part-time team members. All had sufficient programming skills, but limited
background in formal methods. The team had been exposed to ASD training courses, to
learn the fundamentals of the method and its technologies. The ASD method required a
learning curve because it was new to the development team. Therefore, time, investments
and experience were required before developers became skilled in the technology.

At the beginning of incorporating ASD to the development of FEClient, two ASD consul-
tants were present, who devoted roughly half of their time to the project, helping devel-
opers to rapidly learn the technology and its practices. The unit was developed in a small
team to afford greater quality and control, compared to larger teams or individuals.

The traditional development process was adapted to fit the ASD method. Table 4.1 briefly
describes these processes plus the percentage of time conducted for developing the control
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part of the FEClient throughout all of its increments. Below, we briefly describe these
processes and refer to [45] for more details.

5% Incremental
planning

Formation of teams and their responsibilities; work breakdown
estimation for each function including time, efforts, deadlines,
risks, etc. for each planned function

10% Software
design

Decomposition of the unit into ASD and manually developed
components; assigning responsibilities to components; adapting
design to new planned functions

25% Functional
specification

Specifying the external behavior of the FEClient towards its
clients; describing the ASD design model of FEClient; speci-
fying the interface models of the used components

24% behavioral
verifica-
tion

Searching for deadlocks, livelocks, illegal calls; detecting race
conditions and violation of protocol of interactions; formally
check the refinement correctness of FEClient internal implemen-
tation against its external specification

5% Specification
review

Team review of interface specifications for all specified rule-
cases; checking traceability to informal requirements; checking
naming consistencies

10% Code gen-
eration and
integration

Generating code in C# language; integrating the generated code
to the system; implementing glue code

20% Testing Unit test of generated and manually written code; function and
coverage test for manually written code

1% End of
increment

Problems solving; bug fixing

Table 4.1 Time and activities of developing FEClient

Requirements and incremental planning. To ensure that the development team clearly
understands the essential functions of the system before development activities begin,
Philips chose to formally express the requirements of the system in tags using CaliberRM,
a software requirements management tool. To increase their awareness even more, the
development team is required to reference the tags in the specification of ASD models.
As soon as the requirements of the FEClient had been clarified, the planning and the work
breakdown estimations were prepared.

FEClient design. On completion of incremental planning, the design of FEClient com-
ponents started as working drafts, reviewed by team members in a number of sessions.
Feedback from each team review session was incorporated to further improve the informal
designs. Team reviews provided opportunities for code economy by identifying reusable
modules (or common services) such as tracing and logging. At the end of the design
step the distribution of components was accomplished, with well-defined interfaces and
responsibilities.

Functional specification. After the design step was accomplished, fifteen ASD interface
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models that capture the external behavior of the FEClient state machine component and
the internally used components were described using the ASD:Suite. The structure of
the ASD models is depicted in Figure 4.3. The FEClient state machine was described
using an ASD design model, implementing both the external behavior towards the clients
and the internal behavior of the FEClient towards the internal components and towards
the Frontend subsystem. The development of the manually coded modules was done in
parallel to the ASD modeling.

The first column of Table 4.2 lists the ASD models, from which code was generated and
correctness verification was checked. The second column reports the total number of rule
cases, specified and reviewed by team members.

The IFECSM (Interface FEClient State Machine) model is the interface model that cap-
tures the external behavior of the FEClient unit. This model is used by other ASD clients
located in the Orchestration module (we detail them in the subsequent section). As can be
seen from the table the model comprises a substantial number of specified rule cases. This
directly affected the description of the FEClient design model (FECSM), which is clearly
the most complex model among all others. The reason of this complexity is that ASD
allows only one design model for refining any interface model, which means that a de-
composition of an interface model to a number of simple design models is not supported
at the moment of writing this thesis.

Behavioral verification. After all models were specified, the formal behavioral verifica-
tion process using model checking was started. Race conditions, deadlocks, livelocks,
and illegal scenarios violating the communication protocols were discovered early, caus-
ing either to adapt the specification or to redesign the components. The verification of the
FEClient included the interface model of the BEFE interface. The communication proto-
col specified in the early BEFE interface model contained some errors discovered during
the behavioral verification and specification reviews. Such errors were communicated to
the team involved in the development of the interface.
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ITracing IBEFE

Manually coded 

components 
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subsystem

Upper level clients 

of FEClient 
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Figure 4.3 The structure of the FEClient
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The third, fourth and fifth columns of Table 4.2 demonstrate statistical outputs for check-
ing deadlock freedom: the generated states, the generated transitions and the time in
seconds required for verification respectively. All models are deadlock free.

The verification of all interface models were accomplished separately, except for the state
machine, which was verified as a combined model that includes the state machine design
plus all interface models of used components. As can be inferred from the table roughly
8.5 thousand states can be generated per second by FDR2, but this number was not con-
stant for all remote verification sessions of the state machine. In some circumstances the
remote verification process was slow, and the ASD users were forced to wait longer until
verification results appeared on their screens.

Specification review. When the behavioral verification process had been completed, spec-
ification reviews of ASD models were conducted to verify completeness, correctness, and
traceability to the original tagged requirements. Participants in review sessions varied,
but always included the owner of the specification and one or more persons who had
previously been trained in ASD. In general it was difficult for non ASD users to follow
the review process. The early lack of systematic compare and merge of models in the
ASD:Suite complicate the review process further. Reviews were performed in a number
of sessions of roughly half an hour each, and documented in dedicated separate review
sheets.

Code generation and code integration. Once specification reviews were accomplished,
the models were automatically translated into the target language, in this case, C#. The
last column sketches the generated lines of code (LOC), in the C# programming language,
excluding blank and comment lines. The generated code was integrated with the manu-
ally written code by implementing glues of appropriate adapter and wrapper code. The
integration process of the FEClient generated code with the generated code of other ASD
components was remarkably smooth.

The interface model of the FEClient is used by 5 fully concurrent ASD client components
(located in the Orchestration module), which use the interface model for the behavioral
verification, according to the ASD recipe. Consequently only one error had been reported
(detailed in the subsequent section) during the integration of the FEClient generated code
with the code of the ASD client components.

FEClient test. Unit testing was started after the generated code was integrated with the
manually written code. The FEClient state machine always passed its unit test, and only
few errors were discovered during system test. During the construction of the FEClient
few errors had been committed; fixing these errors often commenced at the end of each
increment. We discuss these errors in subsequent section.

The total number of hours spent for specifying and verifying ASD models plus generating
and integrating code of all the FEClient increments was nearly 700 hours. Table 4.2
depicts statistical data of the FEClient state machine and the interface models of the used
components.
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Model Rule
cases

States Tran. Time
(sec)

Exe.
LOC

FECSM 2376 1996830 5249538 230 11121
IFECSM 1068 3028 7,112 0 173
IBEFE 2,183 931 8537 0 129
ICTFFacade 51 6 28 0 70
IConfigRepository 8 2 7 0 53
IServiceFactory 8 4 4 0 49
IEnumConversions 16 2 15 0 61
IParameters 18 7 22 0 88
IParameterCache 4 2 3 0 49
IPerformance 5 2 4 0 50
IReportLogging 3 2 2 0 48
IRunTag 12 15 33 0 53
ISystemType 4 3 4 0 48
ITracing 3 2 2 0 48
IUserGuidance 16 18 64 0 65
IVersionExchange 4 3 4 0 48
ASD run-time - - - - 701

Table 4.2 The ASD models of the FEClient

4.3.4 Type of errors found during developing the FEClient

The FEClient development team prepared careful reports of all errors found during the
construction of the unit. These defects were submitted to a defect tracking system, which
is part of a sophisticated code management system. For scrutiny purposes, Philips opened
their error reports, and we carefully investigated them trying to determine the impact of
formal methods on the quality of the code. Our analysis reveals the followings.

A total of eleven errors related to both ASD and the manually written code were reported
along the construction of the unit. Four errors were found during implementation, five
during integration, and two during system testing.

Three of the eleven errors were caused by design, e.g., missing a response to a test compo-
nent in the ASD state machine; and eight errors introduced during implementation, e.g.,
a redundant “WARNING” word in some traces, which complicated the analysis of other
traces.

Of the eleven errors, four would have caused failures during system execution. One of
the four errors is severe and most likely to occur, e.g., misspellings in data could cause a
crash at the Frontend subsystem. One error is average with low probability of occurrence,
e.g., a race condition between a request to acquire images from the Frontend subsystem
and a request to exchange X-ray settings from the Backend clients. The remaining two
are minor errors, e.g., a crash due to a failure to load a missing dll file during version
exchange with the Frontend subsystem.
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Figure 4.4 The order of activating boundary components caused an error

Figure 4.4 depicts a specification of a rule case that caused an unintended behavior of
the system, during the integration phase in one of the project increments, due to a wrong
order in the responses list. The rule case specifies that when the Frontend subsystem is
activated, it sends the Activated event to the Backend via the BEFE callback interface;
this is indicated by the channel and the stimulus event of the rule case. Upon receiving
the Activated event, the FEClient sequentially executes a list of responses, each until
completion.

The order of the depicted responses was not correct since one concurrent external client
component (called the Activation controller) was activated before the internal components
of the FEClient. The order was initially made this way to shorten the time required for
activating the units of the Backend. But, if the client component was quick, it could send
events to the internal components which were not activated yet. The consequence was
that the user interface, on the screen of the Backend, shows an indication that acquiring
images is not possible, while it should be.

Due to the concurrent nature of the client component, the error was hard to reproduce
manually, but locating the source of the error was easy. Correcting the activation order,
such that the external client is activated after the internal components, was straightfor-
ward, and indeed solved the issue.

A summary of all discovered errors is given in Table 4.3. We use the error categories
defined by Basili and Selby in [10]. The error severity codes are as follows.

M Major error,
N Minor error,
V Average error,
H High probability of occurrence,
L Low probability of occurrence,
F Error would have caused a failure during system

execution.
Four extra codes specify whether the error was caused/found during design (“D”), imple-
mentation (“I”), integration (“G”) or system testing (“T”).
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Category Error
severity

Caused
/Found

ASD Description of error

Control V/L/F D/I Yes Race condition between exchanging X-ray settings and
a request to acquiring X-ray images

V D/T Yes Missing a response to test component in a rule case
M/L D/G Yes Not possible to generate images although it should be

possible
Data V I/G No Test interface is exposed in deployment environment

M/H/F I/G No Misspelling in DataDictionary caused exception at the
Frontend subsystem

V/L I/G No Image Acquisition indicator is not enabled
Initial-
ization

N/L/F I/T No Missing configuration file caused exception in test sys-
tem at startup

V/L/F I/G No Exception when version exchange assembly loading
fails

External V I/I No Tracing shows up in logging database
V I/I No Coding standard violation

Cosmetic N I/I No Redundant WARNING word in tracing
Computation - - - No errors
Interface - - No errors

Table 4.3 Summary of errors found during the construction of the FEClient
unit

In general, the errors reported during the development of the FEClient are simple goofs,
easily found and fixed, and not critical design or interface errors. Fixing these errors was
generally quick and rarely caused other errors to appear as a consequence of the fix.

4.4 The Orchestration Module

4.4.1 Introduction

The purpose of this section is to report on the steps followed to design components of the
Orchestration module. These steps preceded the steps of modeling and developing the
components using the ASD technology. We discuss how these design steps effectively
helped us constructing verifiable components. We illustrate the peculiarities that facili-
tate verifying the components compositionally without facing the state space explosion
problem of model checking.

Finally, we investigate the effectiveness of using ASD to the quality of the module,
demonstrating the defects reported along the development. In this project we also show
that the errors that escaped the ASD formal verification were easy to locate and to fix, not
deep design or interface errors.

This section is structured as follows. In Section 4.4.2 the context of the Orchestration



64 Chapter 4.

module within the X-Ray system is introduced. Section 4.4.3 details steps accomplished
for designing components of the Orchestration module, and the peculiarities that facilitate
verifying them easily using model checking. In Section 4.4.4 we detail typical errors left
behind by the ASD formal techniques.

4.4.2 The context of the Orchestration module

One of the key units of the Backend is the Backend controller (BEC), which includes the
Orchestration module as one of its control modules. Figure 4.5 depicts the deployment
of the Orchestration module in the Backend surrounded by a number of concurrent units
(i.e., multiple processes include multiple threads) on the boundary.
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Figure 4.5 Relation of Orchestration as a black-box with other units

The impetus of introducing the Orchestration module was the result of migrating from de-
centralized architecture, where units were working on their own, observing changes in the
system through a shared blackboard and then react upon them, to a more centralized one.
The main challenge imposed on the decentralized architecture was the need to know the
overall state of the entire system and whether all units are synchronized with one another
in predefined states. Further, extensibility and maintainability were complex to achieve
and utterly challenging. The Orchestration module is mainly responsible of coordinating
a number of phases required to achieve the clinical examinations and harmonizing the
flow of events between the concurrent interacted subsystems. These phases are depicted
in Figure 4.6 and summarized below.

Initialization Selection Preparation Acquisition

Figure 4.6 Global system phases
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The Initialization phase. At the start up of the system, the system controller instructs the
Orchestration module to start the initialization phase of the system. Consequently, the
Orchestration module initializes and activates a number of internal units of the Backend
and the external subsystems through boundary units (e.g., the Frontend subsystem via the
FEClient unit). This includes ensuring that all required services and configurations are
loaded, proper messages and indicators are displayed on user terminals and further that
the Backend is connected to compatible, supported subsystems.

The Selection phase. After the Orchestration module ensures that all components of the
system are fully activated, the Orchestration accepts selection requests related to patients
and to clinical examinations and subsequently enters the Selection mode. In this mode
patient’s data can be selected and sent by the GUI to the Orchestration module through
the workflow controller. At the moment of receiving a selection request, the Orchestration
checks whether it is allowed to start the selection procedures (e.g., there is no active
image acquisition) and then distributes the data to internal units of the Backend and to the
external subsystems.

The data includes information about a patient and is applied throughout the system in
steps. This briefly starts by distributing personal data of the patient followed by the pre-
defined exam and then the X-ray settings (called also X-Ray protocols) to internal units of
the Backend and to the external subsystems. Based on these settings various software and
hardware components are calibrated and prepared such as the X-ray collimators, image
detectors and performing proper automatic positioning of the motorized movable parts
such as the tables and the stands.

The Preparation and Image Acquisition phases. When the selection procedures are suc-
cessfully accomplished, the Orchestration module can enter the preparation phase. This
starts when the Frontend sends corresponding settings back to the Backend in order to
properly prepare and program the IP subsystem. After that the Frontend asks permission
to start the generation of X-ray for image acquisition.

When the Orchestration module ensures that all internal units of the Backend and the IP
subsystem are prepared for receiving incoming images, the Orchestration module gives
permission to the Frontend subsystem to start image acquisition. After that, the Frontend
acquires image data and sends them to the IP subsystem for further processing. The
processed images are sent to the Backend for viewing on different terminals synchronized
and controlled by the Backend.

4.4.3 Developing and designing the Orchestration module

The control part of the Orchestration module was developed following the workflow il-
lustrated previously in Section 2.4. The development activities went through a total of six
consecutive increments, involving 2 full-time and 2 part-time team members.

Each increment included two members who were involved not only in developing the
Orchestration module but also in building other modules of the BEC unit. All members
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attended ASD training courses, to learn the fundamentals of the ASD approach and its
accompanying technologies. Team members of the Orchestration had sufficient program-
ming skills, but limited background in formal mathematical methods.

The Orchestration module was one of the first modules which were built using ASD. Al-
though the ASD approach hides all formal details from end-users, the team members were
confronted with the steep learning curve. As a result the first version of the Orchestration
module suffered from some problems. For example, some models were over-specified,
too complex to understand and model checking took a substantial amount of time for
verification.

Below we discuss the steps we took to get to a better (ASD) design. After that, we demon-
strate peculiarities of design components that facilitate verifying them compositionally
following the previously addressed ASD recipe (see Section 2.2).

Design Steps Designing software is a creative process and typically requires several
iterations to come to a final design. So although there is no fixed recipe there are steps
that can guide this process. Below we address the steps applied to design the Orchestration
module. Consider that although the steps are described in a linear fashion the process is
rather iterative. Even the requirements phase might be revisited because of questions arise
during design.

Setting the stage: the context diagram. As a first step we defined the context diagram of
the Orchestration module as a black-box. The context diagram depicts the module and its
external environment i.e., all other components it interacts with. Using the requirement
documents we constructed the list of messages/stimuli that the module exchanges with the
external environment, in other words its input and outputs. The context diagram was used
to draw the main sequence diagrams (between the module and its external environment)
including the sequence diagrams for the non-happy flow.

Divide and concur: decomposition. As a second step we decomposed the black box from
step 1 into smaller components. The decomposition was done by identifying different
aspects of the problem domain. As Orchestration is about controlling and coordinating
changes in the overall system state (e.g., selecting a new patient or starting image acqui-
sition) we decided to use one overall controller controlling the system state and separate
controllers which control details of the state transition when moving from one state to
another.

Defining responsibilities. We then re-iterated the list of requirements allocated to the
Orchestration module and allocated each requirement to one (if possible) or more of its
components. While doing so new components were identified, e.g., the one guarding the
connection to the frontend subsystem.

Repeat the process. For each of the individual components the process was repeated. We
defined the context diagram, input and output messages/stimuli and the main sequence
diagrams for each individual component.
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Define Interfaces. Based on the previous step we identified the provided and used inter-
faces of each component. After that we prepared initial drafts of state machines for each
component.

Identify hand written components and their interfaces. As we are using ASD which does
not deal very well with data it is important to factor out code that is responsible for data
related operations or code that interfaces to legacy code. In the case of Orchestration the
module distributes information which is needed for the state transition (e.g., a reference to
the patient to be selected for acquisition). This requires retrieving data from a repository
which has to be written by hand.

Constructing ASD models. After all these steps the ASD models (interface and design)
were constructed based on draft state machine for each component. In parallel, the code
of handwritten components was written.

The resulting ASD components

The final structure of the Orchestration components is depicted in Figure 4.7. Below we
detail their peculiarities that effectively had helped verifying them compositionally in a
reasonable time using the ASD:Suite.

Figure 4.7 Decomposition of the Orchestration components



68 Chapter 4.

The BEFacade component includes a high abstract state machine that captures the overall
system states, seen at that level. This state machine knows only whether the system
is initialized, activated or deactivated. It includes events that only affect these global
states. The detailed behavior that refines these states is pushed down to the Orchestration
controller component.

The Orchestration controller state machine includes states that capture the overall modes
of the system. That is, whether the system is busy activating, performing selection proce-
dures, or performing image acquisition. The Orchestration controller, for instance, does
not know which particular type of selection is performed but it knows that the selection
procedure is active or has finally succeeded or failed. Detailed procedures of these phases
are the responsibility of lower-level components. The same concept applies to all other
modes, e.g., activation and acquisition. The Orchestration controller component mainly
coordinates the behavior of the used components positioned at the lower-level, give per-
missions to start certain phase and ensures that certain procedures are mutually exclusive
and run to completion. It also ensures that units are synchronized back to a predefined
state when a connection with other subsystems is re-established (e.g., reselecting previ-
ously selected patient).

The Activation controller is responsible of handling detailed initialization behavior, in-
cluding ensuring that connection to subsystems is established and periodically checking
if there is network outage between the Backend and other subsystems. The Activation
controller retries to establish the connection with other subsystems and informs Orches-
tration when this is done. When activation is succeeded, the Backend knows that com-
patible, supported subsystems are connected, and thus accepts requests to proceed to the
following phase.

The Selection controller is in charge of performing detailed selection procedures with
other subsystems after getting permission from the Orchestration controller. The selection
controller knows which part of the system has succeeded with the selection. It includes
internal components (e.g., the SelectionMux) used to distribute selection related signals
to other units, gather their responses and reports back the end result to the selection con-
troller. The selection controller informs the Orchestration controller about the end result
of the selection, i.e., whether succeeded or failed.

The BlockPrepare controller prevents any possible race conditions between selection pro-
cedures and image acquisition procedures to prevent mixing of patients’ cases.

The Acquisition controller is responsible of preparing all internal components of the Back-
end and other subsystems for image acquisition and reports the end result back to the
Orchestration controller. The controller includes also internal components (e.g., Prepare-
Mux) to distribute preparation related signals to various units, gather related results, and
sends back the end result to the Orchestration controller.

Each ASD component uses common modules (or reusable components) such as those
used for tracing (to allow in-house diagnostics by developers) and logging (to facilitate
diagnostics by field service engineers in the field) and displaying user guidance to indicate
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the progress of certain procedures. The ASD components may include a timer or a queue
to store incoming callback events sent by lower-level components.

Constructing the ASD components following the ASD recipe

Components of the Orchestration module were realized in a mixture of top-down and
bottom-up fashions. Each ASD design model is verified in isolation with the direct inter-
face models of lower-level components, providing that these interface models are refined
by corresponding design and other interface models. The compositional construction and
verification is visualized in Figure 4.8 and is self-explainable. Both Orchestration and
FEClient units were constructed concurrently. The FEClient team provided the IFECSM
ASD interface model to the Orchestration team as a formal external specification describ-
ing the protocol of interaction between the two units, and the allowable and forbidden
sequence of events crossing the boundary.
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Figure 4.8 Compositional construction and verification of components. Hand-
written components are hidden.

Table 4.4 depicts the final statistical data of components of the Orchestration module. It
mainly shows that components were verified in a reasonable time using model checking.
The first column lists the names of the components. The second column represents the
total number of ASD models of each component, presenting the sum of one design model
plus the interface models of the boundary ASD and non ASD components.

The third column demonstrates the total number of rule cases, specified and thoroughly
reviewed by team members. The fourth, fifth and sixth columns reports statistical outputs
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for merely checking deadlock freedom using the model checker FDR2: the generated
states, the generated transitions and the time required for verification in seconds respec-
tively. All models are deadlock free.

The last two columns present the automatically generated lines of code (LOC), in C#. The
total LOC represents all source lines of code, including blank and comment lines. The
executable LOC includes all executable source lines excluding comments and blanks.

Component ASD
models

Rule
cases

States Transitions Time
(sec)

Total
LOC

Exec.
LOC

AcquisitionController 9 458 576296 2173572 30 4151 3891
ActivationController 5 622 351776 1512204 28 2188 2062
BECFacadeICC 2 85 28 33 1 590 502
BlockPrepareController 2 33 16484 55298 1 838 784
OrchestrationController 8 448 9948256 42841904 1111 2940 2580
SelectionController 8 807 2257180 9657242 110 3450 3190
SelectionState 2 42 665 2393 1 622 566
ASD runtime - - - - - 852 746
Total 36 2495 - - - 15631 14321

Table 4.4 The ASD models of the Orchestration

The total sum of hours spent for designing, specifying and verifying ASD models plus
generating and integrating code was nearly 1290 hours.

One drawback of the ASD compositional verification is that it is difficult to known whether
all components work together as intended. This tends to be hard or even impossible to
establish using model checking because of the limitation of the state space explosion.
Therefore, the entire unit hosting the Orchestration module was exposed to a model-based
testing technology, supported by ASD, called the compliance test framework.

Using this technology, the entire unit was systematically tested under a statistical quality
control, based on usage models that specify the usage scenarios as state machines. The
description of usage models is similar to the ASD tabular specification but extended with
probabilities of usage. The use of this technology revealed a few errors but most were
not directly related to ASD code. For example, incorrect handling of data in the manually
written code and cases were usage models specify additional behavior not implemented
yet by the Orchestration.

4.4.4 Type of errors found during developing the Orchestration

The development team of the Orchestration also found a number of errors during the
construction of the Orchestration module. This includes errors discovered not only during
testing but also during implementation and integration in case such errors hinder other
teams developing other units. Similar to the FEClient case, we detail the nature of these
errors that escaped the formal techniques of ASD.
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Eight errors related to both ASD and the manually written components were reported
along the construction of the module. Six of these errors are related to ASD while two re-
lated to the manually coded components. Two errors were found during implementation,
five during integration, and one during subsystem testing.

Five of the eight were design defects, e.g., the GUI loses connection with Orchestra-
tion after it prematurely restarts; and three errors introduced during implementation, e.g.,
sending a wrong user guidance to the GUI.

Of the eight errors, two would have caused failures during system execution. The two
errors are severe and most likely to occur in the field, e.g., an exception raised while
selecting X-ray protocol that causes the process hosting the Orchestration module to un-
expectedly terminate.

One error is minor, e.g., the GUI shows that two patients are on the table due to a wrong
response sent from Orchestration to the GUI.

After carefully analyzing the detailed reports of these defects we found that the errors
were easy to find and to fix, not profound design or interface errors. Table 4.5 depicts a
summary of these errors. We use the error severity codes mentioned in Section 4.3.4.

No. Description of error Error
severity

Caused
/Found

ASD

1 Orchestration logging: invalid user guidance sent to GUI. V/H I/G N
2 When GUI restarts connection is lost with Orchestration. M/H/F D/G N
3 Assertion during selection of X-ray protocol. V/H/F I/G Y
4 Failing protocol selection not correctly handled. V/L I/G Y
5 Incorrect state update in ASD Selection Controller model. M/H D/I Y
6 Possible to get two patients on the table. N/L D/T Y
7 Case selection request received before reselection. M/H D/G Y
8 When connection re-established, old case was not reselected. M/L D/I Y

Table 4.5 Summary of errors found during the construction of the Orchestra-
tion module

4.5 Quality results of the FEClient and the Orchestration

The code developed for the FEClient and the Orchestration through the first three incre-
ments is part of the X-ray machines released to the market. The other three increments
were devoted to extending the module with additional functionalities and new features for
a more sophisticated X-ray machine planned to be released in the future.

It is notable that ASD components were easy to maintain and to extend due to the high-
level description of ASD specification, and the high abstract behavior of the components.
In general, it was easy to adapt the models and generate new verified code.

For example, in the fifth increment there were serious changes in the standard interface
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between the Backend and the Frontend subsystems (the IBEFEInterface), due to evolution
of requirements. The changes propagated to a number of units including the FEClient and
the Orchestration module. These changes caused substantially adapting existing compo-
nents and introducing new components (e.g., the BlockPrepare controller).

At the end of that increment it was of a surprise to the FEClient team and the Orchestration
team that all units worked together correctly after integration, from the first run, without
any visible errors in the execution of the system. They spend a substantial effort to bring
units together based on their experience with more conventional development approaches.

The feedbacks and comments from the project and team leaders were very positive, and
the units appeared to be stable and reliable. But the project leaders wanted to know more
about whether the use of formal methods affected the quality of the code.

Parameter FEClient Orchestration
ASD ELOC 12,854 15,631
Handwritten ELOC 15,462 3,970
Total ELOC 28,316 19,601
ASD defects 3 6
Handwritten defects 8 2
Total defects 11 8
ASD defect/KLOC 0.23 0.38
Handwritten defect/KLOC 0.52 0.5
Total defect/KLOC 0.4 0.41
Test ELOC 10,943 3,966

Table 4.6 Summary of the end quality of the units

Table 4.6 summarizes the end quality of the units. When comparing the quality of ASD
code with the manually written code it appears that the ASD code is better although the
manually written code is very simple. Nevertheless, the entire developed code exhibits
high quality figures and favorably compares to the standard of 1-25 defects per KLOC for
software developed in industrial settings [61].

The quality of the ASD developed code depends on many factors, including thorough
specification reviews and behavioral verification. The model checking technology cov-
ered all potential execution scenarios, so that defects were found early and quickly with
the click of a button. It further took the place of manual coverage testing which is typically
time consuming and uncertain.

The quality of the manually coded components depends on many other factors such as
external specification of components, code reviews, automatic code standard checks and
coverage testing. For the FEClient case, it appeared to us that code review was far more
effective than coverage testing, and that more issues had been found during review than
in testing. But, unit testing had provided key benefits of preparing coverage reports,
detecting potential memory leaks and optimizing memory usage.

Developers of the unit were committed to 100 percent function coverage and 80 percent
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statement coverage. The team had tracked coverage testing using the NCover tool, which
reports the percentage of functions and statements covered by sets of tests. Such reports
are mandatory for other test teams before they can start the subsystem and system tests.

Although more effort and time were spent to obtain the ASD code compared to other
manually coded components, project and team leaders were positive about the end result
since there were only few errors submitted along the construction of the module.

Although there were some delays on the deliverable of the ASD components due to spend-
ing more time in learning ASD and obtaining verifiable designs, there was less time spent
in testing compared to the other manually coded modules. This at the end led to less time
spent to resolve problems found in testing at later stages compared to manually coded
modules [33].

Finally, the ASD components were robust against the increasing evolution and the fre-
quent changes of requirements. Team members appreciated the end quality of the soft-
ware, relating that to the firm specification and formal verification technologies provided
by the ASD approach.

Team members appreciated the ultimate quality of the developed software. The behavioral
verification and the firm specification and code reviews provided a suitable framework for
increasing the quality, assisting the work, and decreasing potential efforts devoted to bug
fixing at later stages of the project.
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5.1 Introduction

In this chapter we evaluate the effectiveness of applying the formal techniques of ASD to
the quality and the productivity of the developed units of the Frontend and the Backend
subsystems. We compare the units that incorporate ASD with others that were developed
in more traditional development methods, highlighting the main challenges and the key
issues encountered during the application.

In Section 5.2 we detail the steps accomplished to empirically evaluate the ASD tech-
niques in the Frontend subsystem. Furthermore, we compare the resulting quality and
productivity against the industry standards used in Philips Healthcare and also those oth-
ers reported worldwide in the literature. In Section 5.3 we detail the resulting units in the
Backend subsystem, comparing the quality of the units incorporating ASD with the units
that do not.

5.2 Evaluating the Formal Techniques in the Frontend

5.2.1 Introduction

The focus of this section is to investigate whether the use of the ASD formal techniques
actually resulted in visible improvements for the software units of the Frontend subsys-
tem, demonstrating key issues encountered when incorporating the techniques with the
industrial development processes.

As discussed in the previous chapters, the ASD technology was successful in a number of
projects at Philips [42, 70, 74]. In this chapter, we investigate whether the approach is also
successful in other projects with other environments, circumstances and backgrounds.
Moreover, we provide a more detailed quantitative analysis of the effectiveness of these
techniques.

In order to determine any major improvement to the software developed by these formal
techniques, we first need to collect quantifiable evidences and analyze these techniques
empirically and rigorously. Therefore, this requires answering the following research
questions:

• Can these formal techniques deliver product code? And if so, is the code of high or
low quality?

• Do these formal techniques require more time in development compared to tradi-
tional development?

• What about the productivity using these techniques?

• Do the techniques require specialized mathematicians for a successful application?
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• Do these techniques always produce zero-defect software? If not, which type of
errors is expected and how many compared to industrial standards?

• Which artifacts should we consider when evaluating these techniques empirically?
Should we include the formal models or the related code?

This section is structured as follows. Section 5.2.2 briefly sketches the industrial context.
Section 5.2.3 details the phases of developing the ASD components and the main issues
and limitations encountered. We analyze the data related to the developed code to evaluate
the ASD approach in Section 5.2.4. In Section 5.2.5 we extend our analysis to study
the cause and the type of errors that could escape the formal techniques. Section 5.2.6
details the end results comparing the ASD code with other code developed at Philips and
also with the industry standards reported worldwide. Finally, Section 5.2.7 contains our
conclusions by answering the research questions mentioned earlier.

5.2.2 Description of the project

Due to migrating to the component-based centralized architecture, some of the units of
the Frontend subsystem were redesigned in order to adapt to the required changes. Other
units were kept intact and were entirely reused in the new architecture (e.g., the units that
control the hardware devices).

The Frontend subsystem includes nearly 1030K of effective lines of code (excluding
blanks and comments). It consists of 22 units in total, two of which are the target of
this study: the Application State Controller (ASC) and the Frontend Adapter (FEA).
Both units comprise a number of modules that includes concurrent components with well-
defined interfaces and responsibilities.

One of the key responsibilities of the ASC is managing the external X-ray requests, sent
by the clinical operators via dedicated X-ray pedals and hand-switches. The unit counts,
filters, and ensures priorities of such requests. It is also responsible for maintaining the
overall system state and coordinating interactions with units surrounding the Frontend
subsystem (e.g., the Backend subsystem).

The FEA unit is mainly responsible for the interfaces with the Backend external subsys-
tem, through a network. Its functionality is to some extent similar to the FEClient unit
presented earlier but it is located in the Frontend subsystem (FEClient is located in the
Backend subsystem). The unit exchanges information related to patients and their exam
details, issued by the Backend subsystem. Furthermore, it is responsible for monitoring
the presence of other remote subsystems and converting incoming information to readable
xml and string formats.

The ASD technology was used to formally develop the internal components of the units,
expecting that this formal technique detects and prevents any potential errors at early
stages of the project. For example, clinical users can press the pedals or the switches at
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any time, even if the internal components or the hardware are not prepared or configured
yet for image acquisition (i.e., before the Backend exchanges all patient related details).

5.2.3 The development process of ASD components

In this section we report about the effort spent during three increments for developing
ASD components of both the ASC and the FEA units, starting from January 2011 till Au-
gust 2011. The effort was accomplished by 5 full-time team members, who had sufficient
programming knowledge, but limited skills in formal methods.

Along the three increments, the ASD formal technology was smoothly and tightly inte-
grated with the traditional development processes, but the related details are outside the
scope of this section. We instead refer to [74, 70] or to the previous chapters for more
information on how the technology was incorporated and exploited in other projects of
iXR.
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Figure 5.1 Summary of main challenges and issues when incorporating ASD
in industry

This section concentrates more on the main challenges and the key issues encountered
when incorporating the ASD approach for the first time to the projects of the Frontend.
Figure 5.1 visualizes the phases of the ASD development processes and the main chal-
lenges encountered during each phase. Below they are briefly described.

Pre-study phase. The three increments were preceded by a pre-study period, during
which the team attended a one week ASD course to get familiar with the approach and its
related technologies. The course was limited to learning how to use the ASD:Suite (e.g.,
how to fill-in the tables and verify them compositionally using model checking and how
to generate and integrate the code).

Furthermore, during the pre-study period the entire reference architecture of the Frontend
subsystem has been discussed, to get consensus about the functionality concerns among
all teams.
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After the responsibility of the units that incorporate ASD was clarified, the ASD team ex-
plored various design alternatives and approaches to compose suitable ASD components.
During that time, the team was still confronted with the steep learning curve of how to
make a design that fits ASD, so that ample time was required before the team became
skilled in the technology. The problem was not in the ASD tooling itself but in the design
philosophy behind ASD which required certain architectural patterns to enable efficient
model checking.

As there was a lack of ASD design guides, cookbooks or patterns that could aid the team
to incorporate the technology in the way of working and to prepare formally verifiable
components, team members initially tried to adapt the ASD technology to the existing
way of developing software at Philips Healthcare.

Since the object-oriented method was the dominating approach of design and imple-
mentation, team members started investigating the suitability of ASD for developing
Object-Oriented designs. For this purpose, the team reviewed and thoroughly studied
the well-known object-oriented design patterns [35], trying to model them alternatively
using ASD.

As a result, the team realized that developing object-oriented designs with using ASD is
not productive since ASD is an action-oriented, component-based technology. Hence, af-
ter quite some time the team understood that the successful application of the technology
requires changing the development culture and the mind-sets.

Design phase. Based on the knowledge gained, team members prepared initial design
drafts containing hierarchal components with well-defined interfaces and responsibilities,
without using object-oriented patterns. The designs were iteratively reviewed and re-
factored until they were approved by team members.

In order to document and increase the awareness of these designs among the team and
other important stakeholders (e.g., external testers), components and their interrelation-
ships were extensively described in informal documents, using Microsoft Word and Visio.
Such documents detailed not only the decomposition of components and their responsi-
bilities but also the happy flow of information crossing their boundaries using a number of
sequence diagrams. Later, the documents were extended with the unhappy flow of mes-
sages. Subsequently, the state machines representing the behaviors of each component
were clearly identified and understood among all members.

However, one drawback encountered was that the informal documents quickly became
substantially big, due to the intensive level of details of (un)happy flow of information
they include. This eventually caused difficulty of reading, understanding, maintaining
and adapting such lengthy documents, especially at later stages were components had
to be redesigned from scratch due to numerous design snags, encountered during formal
verification using model checking.
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Component Models Rule
cases

States Transitions Time
(Sec)

ELOC

ASC unit
AcquisitionController 6 432 16912 79840 2 1685
AcquisitionRequests 5 837 192320 1027032 20 2821
ASCExamEpxManager 4 165 160 339 < 1 928
ASCMisc 4 58 2633 4963 < 1 963
ASCMiscDecoupler 2 13 7 9 < 1 356
RequestCounter 5 113 45560 76233 3 1133
RequestFilter 3 381 51790 226910 1 994
RunController 4 842 8058224 41150288 444 5126
FEA unit
AcqCtrlAcqRequests 3 353 2802 7805 < 1 465
BETStateless 3 404 8640 38704 < 1 518
CmdStateless 3 62 12 24 < 1 704
CxaAdpMain 7 2794 139824 461292 50 5944
DAcqCtrl 4 1300 117412 364066 13 3206
DActivation 3 103 4480 14688 < 1 585
Decoupler 2 11 3 3 < 1 239
DWrapper 4 408 8928 46736 < 1 674
FEProxyVE 6 5270 597096 1764366 289 9645
FEProxyVEStateless 6 202 4976 19320 < 1 1753
FSStateless 3 31 220 636 < 1 554
UGStateless 3 88 44388432 76939995 6853 951

Table 5.1 Modeling and verification statistics of the ASD components

Modeling and verification phase. Next we describe the modeling and the verification
activities.

Modeling the ASD components. When the informal documents had been reviewed
and approved by team members, the team started specifying the state machines of each
component, using the ASD:Suite version 6.2.0. Following the ASD recipe, the models
of the components were specified stepwise, in a top-down fashion, starting with interface
models and refining them by detailed design models and other interfaces.

In general, filling-in the ASD tables was a straightforward task. The team carefully filled-
in and thought about every stimulus in every state, asking questions of what must be done
as responses to stimulus events not addressed by the incomplete informal documents and
the state machines.

Indeed, the technology consequently helped the team finding omissions and gaps in the
initial set of requirements and the designs and hence initiated early discussions with vari-
ous stakeholders. Subsequently, this increased the quality of requirements and designs at
early phases of development, and saved development time, comparing to addressing these
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issues at later stages of the project, using a more traditional development method.

However, due to the specification completeness some ASD interface models were too big,
hard to review and to maintain since the specified protocols included too detailed behavior,
although the ASD:Suite was lately extended with a nice filtering feature. This resulted in
decomposing the components further into smaller components, to increase readability and
maintainability.

Moreover, specification completeness forces having complete requirements at early stages
of development, and this is relatively challenging especially for a complex system like the
Frontend (lead architects often tend to concentrate on important, high abstract aspects of
the system and to leave the details to later stages of the project). Although one could
choose to work on a subset of the interface, still the corresponding specification must be
complete.

Table 5.1 lists the developed ASD components for the ASC and the FEA units, demon-
strating the number of ASD design and interface models for each component (column
3), and the sum of specified rule-cases (column 4). Each component includes one im-
plemented interface model, one design model, and a number of used and implemented
interface models.

Formal verification. Formal verification started with reviewing the ASD specifications,
which were checked row-by-row for correctness and traceability to the informal require-
ments. After specification reviews, the models were verified using model checking.

With a click of a button, the model checker detected various deadlocks, livelocks, illegal
scenarios, and race conditions, which required immediate fixes in the models. In some
cases, solving these errors caused redesigning the ASD components, especially when the
fix made model checking impossible.

Another important factor of redesigning was the lack of abstraction in the behavior of the
components. For example, the use of substantial number of stateless callback events en-
tering a queue in any order may take FDR2 hours or days to calculate the state space that
captures all possible execution scenarios. Adding a new event, due to the evolution of re-
quirements for instance, may make verification virtually impossible. Hence, components
were re-factored to remedy this shortcoming and to eventually accomplish verification in
shorter time.

During the formal verification, the state space explosion problem was frequently encoun-
tered although FDR2 could favorably handle billions of states. Note that, within our
industrial context, waiting for a very long time is usually not acceptable due to the tight
deadlines of the incremental planning. Worst, before an error is discovered, the model
checker may have already taken a substantial time. Hence, developers are forced to wait
for the model checker repeatedly during the process of removing errors.

During formal verification, the team realized that different design styles could substan-
tially influence the verifiability of components using formal techniques [75]. Hence, they
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avoided a number of design styles that may needlessly increase the state space and the
time required for verification [50].

Based on the knowledge gained, the team could eventually obtain a set of formally ver-
ified components. Each ASD component was verified using the predefined set of ASD
properties. Table 5.1, columns 5-7, includes the output data from FDR2 related to the
refinement check (since it is most time consuming) for the design model of each ASD
component, showing the states, transitions, and time in seconds. The data indicates that
most of the components were verified within acceptable range of states and transitions,
calculated in a reasonable time by FDR2. Note that, some components took less than a
second for verification, covering all possible execution circumstances of the component.

Coding and testing phases. Finally we describe the code generation, integration and
testing.

Code generation and integration. As soon as ASD components had been formally
verified and further reviewed to ensure that fixing the model checking errors did not break
the intended behavior, the code was generated automatically and integrated with the code
of other components via glue code. The last column of Table 5.1 quantifies the number
of the effective lines of code, automatically generated in the C++ programming language,
excluding blank and comment lines.

Experience shows that, in a more conventional development method, integrating com-
ponents is a nightmare, due to the substantial effort required to bring all components
to correctly work together. Therefore, it was surprising that integrating ASD components
with one another was always smooth, did not require any glue code, and often was accom-
plished without any visible errors. However, integrating ASD code with the surrounding
components that did not undergo formal verification (e.g., manually developed or legacy
code) caused some errors and delays.

In some cases, we needed to review the generated code when integrating the code or
when analyzing and debugging some error traces. In general, the generated code was
comprehendible. The main advantages of the generated code over the handwritten code
are:

• The code of all components has the same coding shape and structure, following
similar coding standards;

• All generated code is readable and is constructed using well-known patterns, such
as the object-oriented State and Proxy patterns;

• The code does not contain ad-hoc solutions, workarounds or tricks;

• The structure of the code allows systematic translation to other languages or other
type of models, if needed;



5.2 Evaluating the Formal Techniques in the Frontend 83

• Changes are done at the model level, not at the low-level code;

• The code is thoroughly verified using model checking; previous and current expe-
riences [74, 70] indicate that errors left behind are simple to find and to fix;

• The support for different programming languages makes models more platform-
independent than hand-written code.

Testing. An apparent limitation of the ASD compositional verification is that it is im-
possible to formally establish whether the combination of ASD components yields the
required behavior. It is not possible to express domain specific properties or to relate
events in implemented and used interfaces. However, at the end of each increment, the
Frontend units including the ASD components were thoroughly and extensively tested by
specialized test team, using various types of testing such as model-based statistical test,
smoke test, regression test, performance test, etc, of which details are outside the scope
of this thesis. As a result of testing, a few errors were detected; details will be given in
subsequent sections.

5.2.4 Data analysis

In this section, we analyze the project data in order to compare the end quality of the units
which incorporate ASD with the other units of the Frontend. The purpose is to establish
whether the use of ASD formal techniques had a positive or negative impact on the quality
of the developed software, within the organization.

To accomplish this goal, we took several steps. We started with collecting the total number
of effective lines of code that had been newly introduced plus the changed legacy code,
for every unit separately. We restricted ourselves to the period bounded by two baselines
representing the start and the end of the three increments.

After that, we carefully investigated the reports of 202 submitted defects, and partitioned
them in order to individually analyze the coding defects and others arising due to, for
instance, documents, requirements or designs issues. We then considered a total of 104
reports related to coding, and distributed them to the respective units. These errors were
unveiled during the in-house subsystem tests and are not post-release defects or found
after delivery.

Table 5.2 depicts the results of our data collection, showing only a subset of the Frontend
units. The units that exhibit similar results or were not changed during the increments
have been excluded for readability purposes. Hidden from the table is also the amount of
reused or legacy code, developed and verified during previous projects.

Given the obtained data, we could estimate the overall defect density of each unit sepa-
rately, as depicted in the last column of Table 5.2. Although the ASD units appeared to be
slightly better than some other units, at that stage of the analysis process, the effectiveness
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of the ASD formal techniques were controversial so we felt that more refined analysis is
needed to obtain more insight. Note that some of the manually coded units exhibit zero
defects, but the reason was that most of the changes were on the level of interfaces and
not on the core internal behavior of the units.

Unit ASD
ELOC

HW
ELOC

ASD
Defects

HW
Defects

ASD D/
KELOC

HW D/
KELOC

D/KELOC

ASC 14006 5784 13 10 0.92817 1.72891 1.16
FEA 25238 9489 1 18 0.03962 1.89693 0.55
IGC 0 6,326 0 35 N/A 5.53272 5.53
SC 0 3,340 0 0 N/A 0 0
SIModel 0 6,202 0 0 N/A 0 0
IDS 0 2,650 0 7 N/A 2.64151 2.64
NGUI 0 2,848 0 0 N/A 0 0
PandB 0 3,161 0 1 N/A 0.31636 0.31

Table 5.2 Statistical data of some units of the Frontend

Therefore, we decided to separate the ASD code and the handwritten (HW) code and
analyze them in isolation. The ASD code and the manually written code are quantified in
the second and third column of Table 5.2. Then, we studied the defects of ASD units once
more, distinguishing ASD defects from those related to the handwritten code, as listed in
the fourth and fifth columns. Consequently, we could estimate the defect rate of ASD and
non ASD code, as depicted in columns six and seven.

As can be inferred from the table, for the two units that incorporate ASD, the quality of
ASD code seems to be better than the corresponding manually written code, especially for
the FEA unit, which received only one defect. After studying the corresponding defect
report we found that the error was not only related to ASD components but rather to
a chain of ASD and non ASD components, due to a missing parameter in a method.
Nevertheless, developers of the FEA unit, clearly, could deliver close to zero defects per
thousand ASD lines of code.

However, the FEA unit received more errors related to the handwritten code. More than
half of these errors were caused by a component responsible of string and xml manipula-
tions. This consequently was the reason of degrading the quality of the entire unit.

This is different for the ASD unit, which included numerous errors in the ASD code,
but still the end quality was slightly better than the manually written code. The amount
of ASD errors in the ASC unit motivated us to further investigate the behavior of the
components in depth and also to study the nature and the type of the detected errors,
which were left behind by the ASD formal technologies. We detail this in the subsequent
section.

The reason of why these errors were not detected using ASD is that the ASD technology
does not support any means to define and verify system-specific properties. Although the
ASD:Suite allows uploading CSP code, by which verifiers can specify additional proper-
ties, this is very impractical since the internal structure of the CSP model is totally hidden
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from verifiers and requires a CSP expert to be present at the Verum company.

External testers have different mindsets and attitudes of looking at the behavior of the
components than the development team and hence they could detect some error scenarios
not addressed by the development team. Most of the detected errors were due to experi-
encing unintended, unexpected behaviors (e.g., after a user presses and releases a number
of pedals and switches it was expected that a particular type of X-ray resumes but it did
stop). But, as a result of the fixed set of properties the ASD technology currently sup-
ports, none of these errors was due to deadlocks or illegal interactions (e.g., there were no
crashes due to null reference exceptions or illegal invocation of methods at some states).

The reason that the FEA unit included fewer defects is that the unit implements a protocol
of interaction between the Frontend and the other subsystems and does not include a com-
plex functional behavior compared to the ASC unit. Hence, the main specification of the
FEA unit is represented by the protocol specified in its ASD interface model. Moreover,
this interface model has been reviewed frequently because it is used by other subsystems.

5.2.5 Analyzing the cause of ASD errors

The purpose of this section is to figure out the root cause of the errors in the ASD com-
ponents that escaped the ASD formal techniques. To do so, we began with analyzing the
ASD components individually, especially those related to the ASC unit, trying to identify
the responsible component that contributed much to the defects and why. Moreover, we
investigated whether there is a correlation between the complexity of ASD components
and the volume of received errors.

Initially, this appeared to be challenging since we did not possess any systematic means to
measure the complexity of components at the model level. Therefore, we alternatively as-
sessed the components using two other means. First, we evaluated the models concerning
understandability and the review easiness, based on our “common sense”. Second, we
chose to systematically analyze the generated code, using available code analysis tools
and techniques. The two steps are detailed below.

In the first step, we evaluated the readability of the design model of each component,
and assigned review codes based on the degree of complexity in reviewing and compre-
hending the models: VE= Very easy, E=Easy, M= Moderate, C= Complex and VC= Very
Complex. Table 5.3 column 3 includes the result of the assessment.

For example, the RunController component is considered to be complex since it includes
23 input stimuli, for which a response is required to be defined in 16 states, and 10 state
variables being used as predicates in almost all rule-cases. Often there are several rule-
cases for a certain stimulus in a state, to distinguish combinations of values of variables.

A sample of a complex specification of rule-cases in the RunController design model is
depicted in Figure 5.2. Visible in the figure are only 5 rule-cases related to the FailedSC
stimulus event, which had been duplicated 31 times with different combinations of predi-
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Component Review Avg
M/C

Avg
S/M

Max
CC

Avg
depth

Avg
CC

Defects

ASC unit
AcquisitionController E 3.42 3.3 16 1.03 1.41 1
AcquisitionRequests M 5 6.3 18 1.26 2.26 3
ASCExamEpxManager E 3.17 2.8 4 0.88 1.25 0
ASCMisc VE 3.62 2.2 5 0.79 1.08 0
ASCMiscDecoupler VE 3.5 1.7 3 0.73 1.14 0
RequestCounter M 3.57 5 13 1.17 1.90 1
RequestFilter M 4.38 7 18 1.33 2.73 1
RunController C 7.61 10.5 157 1.42 5.71 7
FEA unit
AcqCtrlAcqRequests VE 4.08 2.3 3 0.99 1.17 0
BETStateless VE 2.57 1.5 3 0.84 1.13 0
CmdStateless VE 4.05 2.2 3 0.8 1.09 0
CxaAdpMain C 7.44 5.5 13 1.09 2.08 0
DAcqCtrl M 7.95 3.7 16 0.95 1.27 1
DActivation VE 3.1 2.1 5 0.84 1.17 0
Decoupler VE 3 1.4 3 0.7 1.14 0
DWrapper VE 2.46 1.6 4 0.84 1.16 0
FEProxyVE M 16 3.9 13 0.9 1.12 0
FEProxyVEStateless VE 4.4 2.5 9 0.85 1.12 0
FSStateless VE 2.82 1.6 3 0.8 1.11 0
UGStateless VE 4.58 2.3 4 0.84 1.07 0

Table 5.3 Statistical data of ASD components

cate values in the original model.

On the other hand, the user-guidance UGStateless component of the FEA unit is consid-
ered to be very easy since it contains only two states without the use of any predicates.
The component is enabled or disabled to allow the flow of information traffic to other
components. Although the component is easy to read and to understand, it was the most
time-consuming component when verified using model checking, as can be seen in Table
5.1. The reason is that the component receives a large number of callback events stored in
a queue. Therefore, FDR2 calculates all possible orders these callbacks may take in the
queue.

We distributed the errors to the respective components, as depicted in Table 5.3 column 9.
As can be seen, most of the ASD errors reside in the RunController component, unveiling
an apparent correlation between the complexity of the component and the errors found.

In the second step, we performed a static analysis on the generated code, seeking similar
correlations between complex code and the error density. The motivation was that the
complexity of the models can also be reflected in the corresponding generated code. We
used the SourceMonitor tool Version 3.2 [48] to analyze the generated code since the
features catered by the tool seemed to be a good fit to our aim.
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Figure 5.2 An example of complex rule-cases

Table 5.3 includes some selected code metrics produced by the tool: the average num-
ber of methods per class (Avg M/C), the average statements per method (Avg S/M), the
maximum cyclomatic complexity (Max CC), the average block depth, and the average
cyclomatic complexity (Avg CC).

As can be seen in the table, the RunController component also appears to be very complex
compared to other generated code of other components. Notable is that the 157 max
complexity of the RunController component resides in the corresponding code of the
rule-cases of the FailedSC stimulus event presented earlier in Figure 5.2. In the code,
the rule-cases are represented by a single method (called FailedSC) containing 30 related
if-else statements.

The amount of errors of the RunController component motivated us to study the type of
these errors and their evolution. Four of the seven errors had a similar cause, namely
missing updates of state variables before a state transition. The team solved these errors
by adding more rule-cases with different predicates and also additional state variables,
which increased the complexity even more.

Another error was caused by missing storing values in the data part of the component.
Two errors were caused due to missing requirements, where external verifiers tested some
behavior not yet implemented in the units.

5.2.6 The quality and performance results

In this section, we evaluate the end quality and productivity of the developed ASD units,
by comparing them against the industry standards reported worldwide in the literature.
The best sources we could find are [53, 61, 66, 62], where interesting statistics related to
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a number of projects of different types and sizes are thoroughly described. We concentrate
more on those statistics revealed for software systems analogous to the Frontend.

In [76], Linger and Spangler compared the quality of code developed under the Clean-
room software engineering formal method to the industry standard of 30-50 defects per
KLOC. Jones in [53] presents an average of 1.7 coding errors per function point (p. 102,
Table 3.11), which roughly corresponds to a range of 14-58 defects per C++ KLOC (after
consulting Table 3.5 on p. 78 of [53]).

Furthermore, McConnell presents in [62] (page 242, Table 21-11) a breakdown of indus-
try average defect rate based on software size, where our type of software is estimated
to include 4-100 defects per KLOC. In [61] McConnell explicitly states an industry av-
erage of 1-20 defects per KLOC during the construction of software (p. 521), and also
mentioned a range of 10-20 defects per KLOC, in the Microsoft Applications Division,
during in-house testing. McConnell classifies the expected error density based on the
project size, where our system is expected to include 4-100 errors per KLOC (p. 652,
Table 27-1).

At Philips Healthcare, project and team leaders are often concerned with delivering the
features and function planned at the start of the incremental development. The corre-
sponding delivered code should exhibit 6 allowable defects per KLOC with an average
productivity of 2 LOC per staff-hour, at the end of each increment. Any code that in-
cludes more errors, during the in-house construction, can be rejected and sent back to the
developers, but this rarely happened.

From the data presented earlier in Table 5.2, we conclude that the ASD technology could
deliver quality code, averaging the ASD code of the ASC and FEA units to only 0.36
defects per KLOC. The entire code of the two units reveals an average of 0.86 defects
per KLOC. Hence, if we consider the range of 4-10 defects per KLOC presented by
McConnell in [61], the ASD code appears to be nearly 10 times better in quality.

Similar to comparing the quality of the units, we compare the productivity in terms of
the number of lines of code per staff-hour (hours per month = 132, based on 22 days, 6
hours a day). McConnell in [61] (p. 522) confirms that it is cheaper and better to develop
high-quality software than it is to develop and mend low-quality software, so that it was of
no surprise that a formal Cleanroom project could deliver nearly 5.61 LOC per staff-hour
[77]. He also mentioned an industry average of 250-300 LOC per work-month (1.9-2.3
LOC per staff-hour), including all non-coding overhead.

Furthermore, McConnell in [61] (p. 653 Table 27-2) lists the expected productivity based
on the size of the software product. Given these statistics, the productivity of software
similar to the Frontend subsystem ranges between 700 to 10,000 LOC per staff-year with
a nominal value of 2,000 LOC per staff-year (i.e., 0.4 to 6.3 with a nominal value of 1.3
LOC per staff-hour).

In [53], Jones presents a productivity figure of 435 ELOC for C++ per staff-month (page
73, Table 3.4), which is equal to 3.3 ELOC per staff-hour. Furthermore, he provides
figures for the average and best practices for systems software (p. 339, Table 9.7). There,
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Jones presents a 4.13 and 8.76 as an average and best-in-class function points per staff-
month (which is equal to 1.7 and 3.5 as an average and best-in-class LOC per staff-hour,
after consulting Table 3.5 on p. 78).

Cusumano et al., in [28] studied the data of a number of worldwide projects, and found a
median of 450 LOC per staff-month (3.41 LOC per staff-hour) for the data sample related
to the Japanese and European projects. The projects include roughly 48 percent generated
code.

Consequently, we can use the above measures to compare the productivity of ASD de-
veloped units. The total time spent for developing the ASD components is 2378 hours,
affording an average of 16 ELOC per staff-hour. The total time spent for developing the
two units, including the time spent for non-coding overhead, is 5701 hours, which favor-
ably yields 9.6 ELOC per staff-hour. Therefore, if we consider the range of 0.4 to 6.3
LOC per staff-hour, provided by McConnell in [61], the productivity of ASD appears to
be nearly 3 times more.

The ASD productivity is increased due to many factors, we briefly address them below.

• The ASD:Suite is a model-based tool that provides easy to use graphical user in-
terface. Specification of models is done by filling the ASD tables with actions
selected form an ordered list and using clicks. Compared to traditional text editors,
the graphical interface of ASD is more productive.

• The code is obtained automatically by a click of a button so manual coding overhead
is reduced.

• Integrating ASD components is automatic and requires no overhead at all.

• The internal structure of ASD generated code is not tested since it is formally veri-
fied (but black-box testing is required).

• Bugs (if any) are easy to locate and to fix.

However, the ASD generated code is made more general so that it includes some code
that can be removed in some cases. As estimation, nearly one third of the code size can
be removed in case the code is manually tuned but changing the generated code manually
is not allowed.

Finally, the developed units appeared to be stable and reliable against the frequent changes
of requirements. Team and project leaders were satisfied with the results and decided to
exploit the ASD technology for developing other parts of the system.

5.2.7 Conclusions of applying ASD in the Frontend

We demonstrated a formal component-based approach called ASD and how its formal
techniques were exploited for developing control components of two software units of the
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Frontend subsystem. We elaborated more on the issues encountered during its application.
The result of our investigation shows that the ASD technology could effectively deliver
quality software with high productivity. Below, we answer the questions raised in the
introduction.

Can these formal techniques deliver product code? And if so, is the code of high or
low quality? Compared to the industry standards of Philips and worldwide, the ASD
technology could clearly deliver product code that exhibits good quality figures. But,
obtaining this level of quality depended on many factors like the experience of users and
the level of abstractions in designs, for instance.

Notable is that a widespread view in industry is that formal methods are immature and
impractical and may not scale to industrial applications. But, as we previously showed,
the ASD technology could scale due to the use of the compositional development and
verification of components. Although this allows parallel developments of components,
establishing formally whether the entire system is behaving as expected is still challenging
and currently requires other informal means such as testing.

Do they require more time in development compared to traditional development? Another
common view in industry is that formal methods consume plenty of the development time
and often cause delays to software delivery. But, on the contrary, the ASD technology
could save the development time, although a lot of time was spent in the pre-study period
to learn the fundamentals of the technology. Experiences show that after acquiring the
learning curve, experienced ASD teams with sufficient knowledge of the technology and
the context can achieve considerably shorter development cycles. This is because the
ASD technology systematically allows preventing problems earlier rather than detecting
and fixing problems at later stages, which is time-consuming and very costly.

What about the productivity using these techniques? As can be inferred from the presented
data, developers were 3-5 times more productive compared to industrial standards. This
resulted from the fact that developers were only concerned with models, from which
verified code is generated automatically with the click of a button, and hence reducing
implementation overhead. Another important fact is that less or even no time was spent
for integration and manual testing, which are usually time consuming and uncertain.

Do the techniques require specialized mathematicians for a successful application? Some
of the team members had formal methods skills limited to few courses at the university
level, but others had no previous knowledge in formal methods at all. The ASD technol-
ogy was very utilizable since all formal details were hidden from end-users. Our experi-
ences also show that software engineers in industry are often very skilled and proficient
in programming but not as well at constructing abstract designs and formal specification
and verification.

Do these techniques always produce zero-defect software? If not, which type of errors is
expected and how many compared to industrial standards? As we saw before, although
the components were formally specified and verified, still errors were found during test-
ing. Hence, the used techniques do not always lead to defect-free software. However, our
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study shows that the formally developed software contains very few defects.

Which artifacts should we consider when evaluating these techniques empirically? Should
we include the formal models or the related code? Evaluation requires a product in hand
to be analyzed so that a challenging task was analyzing the product and the complexity at
the models level. As there was no systematic means to analyze the models, we analyzed
the corresponding code. An interesting future direction is to develop tools and techniques
for establishing static analysis of models.

5.3 Evaluating the Formal Techniques in the Backend

Below we report about the end quality results of the developed units during two consec-
utive projects of the Backend subsystem, starting from January 2008 till the end of 2010.
We compare the quality of the ASD code and the manually written code for each unit and
also compare the units that incorporate ASD with the others that were developed using the
traditional development methods. The data presented in this section represents statistical
data of the developed units including the Orchestration and the FEClient units, detailed in
the previous chapter. The data is related to only the first four increments since this work
was accomplished before the work of the previous chapter.

Effective lines of code Defects Defects/ KELOC
ASD
used

Unit HW ASD ASD% HW ASD HW ASD Total

Yes FEClient 15,462 12,153 44.01% 9 2 0.582 0.1646 0.398
Yes Orchestration 3,970 8,892 69.13% 3 4 0.757 0.45 0.544
Yes XRayIP 14,270 2,188 13.29% 27 0 1.892 0 1.641
No Acquisition 6,140 0 00.00% 33 0 5.375 NA 5.375
No BEC 7,007 0 00.00% 44 0 6.279 NA 6.279
No EPX 7138 0 00.00% 7 0 0.981 NA 0.981
No FEAdapter 13,190 0 00.00% 18 0 1.365 NA 1.365
No QA 23,303 0 00.00% 90 0 3.862 NA 3.862
No Status Area 8,969 0 00.00% 52 0 5.798 NA 5.798
No TSM 6,681 0 00.00% 7 0 1.048 NA 1.048
No UIGuidance 20,458 0 00.00% 23 0 1.124 NA 1.124
No Viewing 19,684 0 00.00% 294 0 14.936 NA 14.936

Table 5.4 Statistical data during in-house construction of the Backend units

For the Backend subsystem we also analyzed every defect submitted along the develop-
ment process of the units and excluded those related to documentation (e.g., specification
or requirement documents) from the calculations.

Table 5.4 summarizes the accomplished work and reports about the quality results of the
Backend software units. For each unit the number of effective (logical) lines of code
(ELOC) written manually, and those generated automatically from ASD models are re-
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ported. The total number of submitted defects against the ASD code and the handwritten
code of each unit is depicted in the table. These numbers represent the errors captured
during in-house design, implementation, integration, and testing phases (i.e., not post-
release errors). The last three columns contain defect rates for the ASD and the non-ASD
code. The lase column represents the defect rate for the entire unit, e.g., the rate for the
Orchestration unit is 0.5 errors per KLOC, and for the Viewing unit is 14.9 errors per
KELOC.

To compare the quality of ASD code with the handwritten code we select the FEClient, the
Orchestration and the XRayIP units as representative cases in order to establish a pairwise
comparison. Each unit was developed by an independent team who was responsible for
constructing the ASD components and the other components of the unit. The teams had
attended ASD courses and had the same domain knowledge and expertise. For each unit
the extent of applying ASD varies and hence the units differ in the percentage of ASD
code. So, we consider not only one unit developed by one team but we perform multiple
comparisons. This avoids selection bias and reduces variations. Hence, it gives a more
accurate view of the outcomes.

As can be seen from Table 5.4 the size of ASD code and the handwritten code in the
FEClient unit are nearly the same but there were more errors found in the handwritten
code. The quality of ASD code appears to be roughly 4 times better than the handwritten
code in this unit.

The Orchestration includes more ASD code but still the error density in the handwritten
code is relatively higher. It is notable that most of the handwritten components can be
implemented using ASD but the team decided to rather develop them conventionally.
Both the ASD components and the handwritten components include state behavior but
clearly the formally developed part appears to be better.

The XRayIP unit includes more handwritten code. The unit represents a case with a
significant reduction in the amount of errors in the control part. It exhibits zero defects
in the ASD components while there were substantial errors discovered in the handwritten
code.

Thus, we can conclude that the ASD technology improved the quality of the developed
units. It is also clear that the units that incorporate ASD are of better quality compare to
the others. Therefore, it seems that applying ASD to develop the control part of the other
units that do not undergo formal techniques may improve their quality.

The members of teams attribute the ultimate quality of the developed units to the rigor
and disciplines enforced by the ASD technology. The conventionally developed units did
not undergo formal correctness verification. However, the units were strictly examined
at different levels of code and design reviews, unit test, integration test, and system test.
Traditionally developed units of the Backend are already of good quality.

Other factors besides software errors can play a key role for defects to emerge. For exam-
ple, some defects of the Viewing unit appeared due to migrating to new services supplied
by external suppliers. Over 40% of the depicted defects of this unit are cosmetic errors
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(e.g., “Annotation text: font size not changed”), which do not cause potential failures
during the execution of the system.

Evaluating ASD in the Backend is reported in detail in [42]. At the time of writing the
paper, calculating the productivity figure was not of our main concern as we were more
interested in comparing the quality of the ASD code. However, we can calculate the
productivity of the ASD code given the reported hours in the paper.

Unit DM IM Rule
cases

States Time
(sec)

Hours

Orchestration 8 26 2,857 15,954,291 1,847 1288
FEClient 1 15 5779 1,996,830 230 696
XrayIp 1 6 1,051 2,874 0 268

Table 5.5 Statistical data of ASD models in the Backend

Table 5.5 presents statistical data related to ASD models and the hours spent in develop-
ing the ASD components. The productivity of the ASD code of FEClient is 17.5 ELOC
per staff-hour while it is 6.9 and 8.2 for the Orchestration and the X-rayIP respectively,
averaging the productivity to 10.9 ELOC per staff-hour. Comparing the productivity of
these representative units of the Backend to the average standard of 3.4 presented previ-
ously in this chapter we can conclude that the productivity of ASD is nearly 3 times better
than the average standard.

5.4 Other formal techniques used in other projects

In this section we present a number of worldwide industrial projects that incorporated
formal techniques in software development and report about their achieved quality and
productivity. We considered the work accomplished in [86] and its references (over 70
publications) as a starting point to seek these projects (the work includes a survey and
a comprehensive review of formal methods application in industry). Furthermore, we
searched other projects using web search engines and by visiting a number of home pages
hosting the formal techniques.

We classified all publications based on the year of publication and reviewed them from
2012 backwards until 2002 (10 years). Through this period we found relatively very
few publications reporting quantitative evidences that demonstrate the impact of formal
techniques in industry (most detailing case studies of applying formal methods at different
stages of software development plus the performance of the formal method tools and not
the performance of the projects). This motivated us to search even backwards until late
80s’.

Table 5.6 summarizes the results by listing 14 projects that fit our goal. The projects
are listed in a chronological order, highlighting the used formal technique, the size of
the developed software, the programming language used for implementation, the defect
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density, the productivity in terms of the lines of code produced per staff-hour, and the
phase where the errors were counted.

Year Project Technology Size
(KLOC)

Prog.
Language

D/KLOC LOC/
man-
hour

Phase

1988 IBM
COBOL
Structuring
Facility

Cleanroom 85 PL/I 3.4 5.6 Certification
test

1989 NASA
Satellite
Control

Cleanroom 40 FORTRAN 4.5 5.9 Certification
test

1991 IBM
System
Product

Cleanroom
(partial)

107 Mixed 2.6 3.7 All Testing

1996 MaFMeth VDM + B 3.5 C 0.9 13.6 Unit testing
1998 Line 14,

Paris metro
B method 86 Ada Zero - Testing

+ after
release

1999 DUST-
EXPERT

VDM 17.5
and
15.8

C++ and
Prolog

≤1 - Testing
+ after
release

1999 Siemens
FALKO

ASM 11.9 C++ 0.17 2.2 After
release

2000 VDMTools VDM 23.3 C++ - 12.4 -
2000 TradeOne,

Tax Exem.
VDM 18.4 C++ 0.7 10 Integration

test
2000 TradeOne,

Option
VDM 64.4 C++ 0.67 7 Integration

test
2006 Tokeneer

ID Station
SPARK 10 Ada Zero 6.3 Reliability

test after
delivery

2007 Shuttle,
Paris
airport

B Method 158 Ada - - -

2011 Philips,
Backend

ASD 23.2 C# 0.26 10.9 Along de-
velopment

2012 Philips,
Frontend

ASD 39.2 C++ 0.36 16.5 Subsystem
Test

Table 5.6 List of projects incorporated formal techniques in software devel-
opment

Linger in [77] listed 15 projects where the Cleanroom formal engineering method was
used, summarizing the results achieved for each project. All developed systems exhibit
quality figures that range between 0 to 5 errors per KLOC with an average of 3.3 errors
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per KLOC. Compared to the mentioned range of 30 to 50 errors/KLOC in traditional
development, Linger concluded that the developed systems present remarkable quality.

From the 15 projects, three projects that reveal quality and productivity figures are de-
picted in Table 5.6. The other remaining projects do not include productivity figures so
they were excluded from our consideration.

The first Cleanroom project, the IBM COBOL Structuring Facility, included a team of
6 developers (it was their first development project). The product exhibits 3.4 errors per
KLOC and several major components were certified without experiencing any error. The
average productivity was 5.6 LOC per man-hour.

The second Cleanroom project was concerned with the development of a Satellite con-
troller carried out by the Software Engineering Laboratory at NASA. The system included
40 KLOC of FORTRAN and certified with 4.5 errors/KLOC. The productivity was 5.9
LOC/person-hour, resulting in an 80% improvement over previous averages known in the
laboratory.

The third Cleanroom project included 50 people, developed complex system software
at IBM using various programming languages. The system exhibited 2.6 errors/KLOC,
where five of its eight components experienced no errors during testing. The team used
the Cleanroom method for the first time [46].

The MaFMeth project [13] incorporated VDM and the B method in software develop-
ment. The project included 3500 lines of C code, estimated by the developers from 8000
lines of generated code. The reported errors were found during unit testing. Errors found
during validation testing or errors found after releasing the system were not available.
Productivity was 13.6 LOC per hour with an error density of 0.9 error per KLOC.

The B Method was used to develop safety critical components of the automatic train op-
erating system, the metro line 14 in Paris [4, 11]. Members of the development and vali-
dation teams were newcomers in formal methods, but were supported by B experts, when
needed. The developed components included 86,000 of mathematically verified Ada code
and the system did not experience any error during independent testing or after release.
However, the numbers regarding the effort spent for the entire development were missing
except for the correctness proofs. Nevertheless, the project was completed successfully
and went off according to the schedule [11].

The DUST-EXPERT project incorporated VDM to software development and was suc-
cessfully released with 15.8 KLOC of prolog and 17.5 KLOC of C++ [25]. The system
exhibited less than one error per KLOC. The errors were found during coverage testing
and after product release. Productivity was above industry norms but there were no figures
provided in the paper. Productivity of Prolog was less than C++ due to the high-abstract
level and the rigorous way the core Prolog was generated. Developers involved were
skilled in formal methods.

The Abstract State Machines (ASM) were used in the development of a software package,
developed at Siemens, called FALKO [17]. The package was redesigned from scratch
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due its complexity. The newly developed package included roughly 11900 generated and
manually written C++ LOC, developed in nearly 66 man-weeks effort. Two errors were
found after product release and were fixed directly in the generated code. The end quality
was 0.17 and the productivity was 2.2 LOC per hour.

In [57], VDM was used to formally develop some components of the VDM toolset itself.
Table 5.6 includes some metrics related to the VDM-C++ code generator component,
which was formally specified using VDM but manually implemented using C++. The
productivity was 12.4 LOC per hour but compared with other components the productivity
was less due to its complexity and the involvement of new employees. No figures related
to the errors found were reported.

The VDM toolset was used for developing some components of a business application,
called TradeOne [32]. Two subsystems of the application were developed under the con-
trol of VDM++ where the first exhibits a productivity figure of nearly 10 lines of C++
and Java per staff-hour while the second subsystem 6.1 lines of C++ per staff-hour. The
error rates of both subsystems are less than one error per KLOC. The errors were reported
during integration testing and there were no errors discovered after releasing the product.

The Tokeneer ID Station (TIS) project was carried out by Praxis High Integrity Systems
and accomplished by three part-time members over one year using SPARK [9]. The over-
all productivity of the TIS core system was 6.3 LOC of Ada per man-hour. The system
did not exhibit any error whatsoever during reliability testing and also since delivery.

The B Method was successful in developing software components of a driverless shuttle
at Paris Roissy Airport [4, 7]. The developed software included 158 KLOC of generated
code. The generated code includes lots of duplications due to the lack of sharing in the
code and the intermediate steps performed by the code generator. The code is estimated to
be 60 KLOC in size after tuning. However, there was no data available about the total time
spent in development or the number or type of errors encountered along the construction
of the software.

To this end, we found it rather difficult to compare the quality and productivity of these
projects since they were developed in different programming languages and represent
distinct software domains. Furthermore, the reported errors were counted at different
stages of each project.

But as a general conclusion we can say that the formal techniques used in these projects
had favorably increased the productivity and the quality of the developed systems al-
though there were no discussions regarding the weaknesses and the main difficulties en-
countered when applying the techniques.

Nevertheless, given the level of the gained quality and productivity it is worth investi-
gating why most organizations do not incorporate formal engineering methods in their
development processes. Since the 80’s, it is still difficult to see whether the use of these
techniques in industry is increasing, decreasing or remaining constant over time.
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6.1 Introduction

Components of the early presented projects were mainly verified using model checking
but this often led to the state explosion. In order to avoid this based on the experiences
gained from these projects and others, we propose a number of specification guidelines to
obtain verifiable, model-checkable components.

As commonly known, the model checking tools require a model or specification that
precisely describes the behavior of components to be verified. The model is thoroughly
checked to prove that the components always satisfy certain requirements. The tools per-
form enumerative, systematic exploration of all (or part of) possible execution scenarios
of the modeled system. The set of the execution scenarios are often characterized by an
LTS (label transition system or state space) which contains states and transitions labeled
by actions performed by the components.

But the behavioral verification is limited by the state space explosion problem, which
arises when the verified components include a huge number of states that cannot fit into
memory, despite the use of clever verification algorithms and powerful computers. Al-
though model checking technologies nowadays available can potentially handle billions
of states, they still suffer from this problem. For some practical cases developers have
to wait hours or days for outcomes resulting from the tools when verifying even a single
property of their systems.

We believe that the state space explosion problem must also be dealt with in another way,
namely by designing models such that their behavior can be verified. We call this design
for verifiability or modeling for verifiability.

What we propose is that systems are designed such that the state spaces of their behavioral
models are small. This does impose certain restrictions on how systems can behave. For
instance, maintaining local copies of data throughout a system blows up the state space,
and is therefore not recommended. When modeling existing systems, we advocate that
sometimes the models are shaped such that the state space does not grow too much.

Compared to the development of state space reduction techniques, design for verifiability
is a barely addressed issue. The best we could find is [58], but it primarily addresses
improvements in verification technology, too. Specification styles from the perspective of
expressiveness have been addressed [85], but verifiability is also not really an issue here.

In this chapter we provide seven specification guidelines that we learned by specifying
complex realistic systems (e.g. traffic control systems, medical equipment, domestic ap-
pliances, communication protocols). For each specification guideline we provide an ap-
plication from the domain of traffic light controllers.

For each guideline we give two examples. The first one does not take the guideline into
account and the second does. Generally, the first specification is very natural, but leads
to a large state space. Then we provide a second specification that uses the guideline.
We show by a transition system or a table that the state space that is using the guideline
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is much smaller. The ‘bad’ and the ‘good’ specification are in general not behaviorally
equivalent (for instance in the sense of branching bisimulation) but as we will see, they
both capture the application’s intent. Throughout this chapter we use mCRL2 for formal
specification and state space generation.

In hindsight, we can say that it is quite self evident why the guidelines have a beneficial
effect on the size of the state spaces. Some of the guidelines are already quite commonly
used, such as reordering information in buffers, if the ordering is not important. The use
of synchronous communication, although less commonly used, also falls in this category.
Other guidelines such as information polling are not really surprising, but specifiers ap-
pear to have a natural tendency to use information pushing instead. The use of confluence
and determinacy, and external specifications may be foreign to most specifiers.

Although we provide a number of guidelines that we believe are really important for
the behavioral modellist, we do not claim completeness. Without doubt we have over-
looked a number of specification strategies that are helpful in keeping state spaces small.
Hopefully this chapter will be an inspiration to investigate state space reduction from this
perspective, which ultimately can be accumulated in effective teaching material, helping
both students and working practitioners to avoid the pitfalls of state space explosion.

6.2 Overview of design guidelines

In this section we give a short description of the seven guidelines that we present in
this chapter. Each guideline is elaborated in its own section with an example where the
guideline is not used, and an intuitively equivalent description where the guideline is
used. We provide information on the resulting state spaces, showing why the use of the
guideline is advantageous.

I Information polling. This guideline advises to let processes ask for information,
whenever it is required. The alternative is to share information with other compo-
nents, whenever the information becomes available. Although, this latter strategy
clearly increases the number of states of a system, it appears to prevail over infor-
mation polling in most specifications that we have seen.

II Global synchronous communication. If more parties communicate with each
other, it can be that a component 1 communicates with a component 2, and sub-
sequently, component 2 informs a component 3. This requires two consecutive
communications and therefore two state transitions. By using multi-actions it is
possible to let component 1 communicate with component 2 that synchronously
communicates with a component 3. This only requires one transition. By syn-
chronising communication over different components, the number of states of the
overall system can be substantially reduced.

III Avoid parallelism among components. If components operate in parallel, the
state space grows exponentially in the number of components. By sequentialising
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the behavior of these components, the size of the total state space is only the sum
of the sizes of the state spaces of the individual components. In this latter case state
spaces are small and easy to analyse, whereas in the former case analysis might be
quite hard. Sequentialising the behavior can for instance be done by introducing an
arbiter, or by letting a process higher up in the process hierarchy to allow only one
sub-process to operate at any time.

IV Confluence and determinacy. When parallel behavior cannot be avoided, it is
useful to model such that the behavior is τ -confluent. In this case τ -prioritisation
can be applied when generating the state space, substantially reducing the size of
the state space. Modelling a system such that it is τ -confluent is not easy. A good
strategy is to strive for determinacy of behavior. This means that the ‘output’ behav-
ior of a system must completely be determined by the ‘input’. This is guaranteed
whenever an internal action (e.g. receiving or sending a message from/to another
component) can be done in a state of a single component, then no other action can
be done in that state.

V Restrict the use of data. The use of data in a specification is a main cause for state-
space explosion. Therefore, it is advisable to avoid using data whenever possible.
If data is essential, try to categories it, and only store the categories. For example,
instead of storing a height in millimeters, store too low, right height and too high.
Avoid buffers and queues getting filled, and if not avoidable try to apply confluence
and τ -prioritization. Finally, take care that data is only stored in one way. E.g.,
storing the names of the files that are open in an unordered buffer is a waste. The
buffer can be ordered without losing information, substantially reducing the state
footprint.

VI Compositional design and reduction. If a system is composed out of more com-
ponents, it can be fruitful to combine them in a stepwise manner, and reduce each
set of composed components using an appropriate behavioral equivalence. This
works well if the composed components do not have different interfaces that com-
municate via not yet composed components. So typically, this method does not
work when the components communicate in a ring topology, but it works very
nicely when the components are organized as a tree.

VII Specify the external behavior of sets of sub-components. If the behavior of sets
of components are composed, the external behavior tends to be overly complex.
In particular the state space is often larger than needed. A technique to keep this
behavior small is to separately specify the expected external behavior first. Sub-
sequently, the behaviors of the components are designed such that they meet this
external behavior.
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6.3 Guideline I: Information polling

One of the primary sources of many states is the occurrence of data in a system. A good
strategy is to only read data when it is needed and to decide upon this data, after which
the data is directly forgotten. In this strategy data is polled when required, instead of
pushed to those that might potentially need it. An obvious disadvantage of polling is that
much more communication is needed. This might be problematic for a real system, but for
verification purposes it is attractive, as the number of states in a system becomes smaller
when using polling.

Currently, it appears that most behavioral specifications use information pushing, rather
than information polling. E.g., whenever some event happens, this information is imme-
diately shared with neighboring processes.

Furthermore, we note that there is also a discussion of information pulling versus in-
formation pushing in distributed system design from a completely different perspective
[5]. Here, the goal is to minimize response times of distributed systems. If information
when needed must be requested (=pulled) from other processes in a system, the system
can become sluggish. But on the other hand, if all processes inform all other processes
about every potentially interesting event, communication networks can be overloaded,
also leading to insufficient responsiveness. Note that we prefer the verb ‘to poll’ over ‘to
pull’, because it describes better that information is repeatedly requested.

In order to illustrate the advantage of information polling, we provide two specifications.
The first one is ‘bad’ in the sense that there are more states than in the second specification.
We are now interested in a system that can be triggered by two sensors trig1 and trig2.
After both sensors fire a trigger, a traffic light must switch from red to green, from green
to yellow, and subsequently back to red again. For setting the aspect of the traffic light, the
action set is used. One can imagine that the sensors are proximity sensors that measure
whether cars are waiting for the traffic light. Note that it can be that a car activates the
sensors, while the traffic light shows another color than red. In Figure 6.1 this system is
drawn.

trig1

trig2

set

Figure 3: A simple traffic light with two sensors

red. The booleans becometrue if a trigger is received, and are set tofalse, when the traffic light starts with
agreen, yellow andred cycle.

proc Push(b1, b2:B, c:Aspect)
= trig1·Push(true, b2, c)
+ trig2·Push(b1, true, c)
+ (b1∧b2∧c≈red)→set(green)·Push(false, false, green)
+ (c≈green)→set(yellow)·Push(b1, b2, yellow)
+ (c≈yellow)→set(red)·Push(b1, b2, red);

init Push(false, false, red);

The polling controller differs from the pushing controllerin the sense that the actionstrig1 andtrig2 now
have a parameter. It checks whether the sensors have been triggered using the actionstrig1(b) andtrig2(b).
The booleanb indicates whether the sensor has been triggered (true: triggered,false: not triggered). In
Poll , sensortrig1 is repeatedly polled, and when it indicates by atrue that it has been triggered, the
process goes toPoll1. In Poll1 sensortrig2 is polled, and when both sensors have been triggeredPoll2 is
invoked. InPoll2 the traffic light goes through a colour cycle and back toPoll .

proc Poll = trig1(false)·Poll + trig1(true)·Poll1;
Poll1 = trig2(false)·Poll1 + trig2(true)·Poll2;
Poll2 = set(green)·set(yellow)·set(red)·Poll ;

init Poll ;

The transition systems of both systems are drawn in figure 4. At the left the diagram for the pushing system
is drawn, and at the right the behaviour of the polling trafficlight controller is depicted. The diagram at the
left has 12 states while the diagram at the right has 5, showing that even for this very simple system polling
leads to a smaller state space.

5 Guideline II: Use global synchronous communication

Communication along different components can sometimes bemodelled by synchronising the communi-
cation over all these components. For instance, instead of modelling that a message is forwarded in a
stepwise manner through a number of components, all components engage in one big action that says that
the message travels through all components at once. In the first case there is a new state for every time the
message is forwarded. In the second case the total communication only requires one extra state. The use
of global synchronous communication can be justified if passing this message is much faster than the other
activities of the components, or if passing such a message isinsignificant relative to the other activities.

Several formalisms use global synchronous interactions asa way to keep the state space of a system
small. The co-ordination language REO uses the concept veryexplicitly [2]. A derived form can be found
in Uppaal, which uses committed locations [16].

To illustrate the effectiveness of global synchronous communication, we provide the system in figure 5.
A trigger signal enters ata, and is non-deterministically forwarded viabc or cc to one of the two components
at the right. Non-deterministic forwarding is used, to makethe application of confluence impossible (see
guideline IV). One might for instance think that there is a complex algorithm that determines whether the
information is forwarded viabc or cc, but we do not want to model the details of this algorithm. After being

8

Figure 6.1 A simple traffic light with two sensors

First, we define a data type Aspect which contains the three aspects of a traffic light.

sort Aspect = struct green | yellow | red ;
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The pushing controller is very straightforward. The occurrence of trig1 and trig2 indicate
that the respective sensors have been triggered. In the pushing strategy, the controller
must be able to always deal with incoming signals, and store their occurrence for later
use. Below, the pushing process has two booleans b1 and b2 for this purpose. Initially,
these booleans are false, and the traffic light is assumed to be red. The booleans become
true if a trigger is received, and are set to false, when the traffic light starts with a green ,
yellow and red cycle.

proc Push(b1, b2:B, c:Aspect)
= trig1·Push(true, b2, c)
+ trig2·Push(b1, true, c)
+ (b1∧b2∧c≈red)→set(green)·Push(false, false, green)
+ (c≈green)→set(yellow)·Push(b1, b2, yellow)
+ (c≈yellow)→set(red)·Push(b1, b2, red);

init Push(false, false, red);
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The pushing controller is very straightforward. The occurrence oftrig1 andtrig2 indicate
that the respective sensors have been triggered. In the pushing strategy, the controller
must be able to always deal with incoming signals, and store their occurrence for later
use. Below, the pushing process has two booleansb1 andb2 for this purpose. Initially,
these booleans are false, and the traffic light is assumed to be red. The booleans become
true if a trigger is received, and are set tofalse, when the traffic light starts with agreen,
yellow andred cycle.

proc Push(b1, b2:B, c:Aspect)
= trig1·Push(true, b2, c)
+ trig2·Push(b1, true, c)
+ (b1∧b2∧c≈red)→set(green)·Push(false , false, green)
+ (c≈green)→set(yellow )·Push(b1, b2, yellow )
+ (c≈yellow )→set(red)·Push(b1, b2, red);

init Push(false , false , red);
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Figure 6.2 Transition systems of push/poll processes
Figure 6.2 Transition systems of push/poll processes

The polling controller differs from the pushing controller in the sense that the actions
trig1 and trig2 now have a parameter. It checks whether the sensors have been triggered
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using the actions trig1(b) and trig2(b). The boolean b indicates whether the sensor has
been triggered (true: triggered, false: not triggered). In Poll , sensor trig1 is repeatedly
polled, and when it indicates by a true that it has been triggered, the process goes to
Poll1. In Poll1 sensor trig2 is polled, and when both sensors have been triggered Poll2
is invoked. In Poll2 the traffic light goes through a colour cycle and back to Poll .

proc Poll = trig1(false)·Poll + trig1(true)·Poll1;
Poll1 = trig2(false)·Poll1 + trig2(true)·Poll2;
Poll2 = set(green)·set(yellow)·set(red)·Poll ;

init Poll ;

The transition systems of both systems are drawn in Figure 6.2. At the left the diagram
for the pushing system is drawn, and at the right the behavior of the polling traffic light
controller is depicted. The diagram at the left has 12 states while the diagram at the right
has 5, showing that even for this very simple system polling leads to a smaller state space.

6.4 Guideline II: Use global synchronous communication

Communication along different components can sometimes be modeled by synchronizing
the communication over all these components. For instance, instead of modeling that a
message is forwarded in a stepwise manner through a number of components, all compo-
nents engage in one big action that says that the message travels through all components
at once. In the first case there is a new state for every time the message is forwarded. In
the second case the total communication only requires one extra state. The use of global
synchronous communication can be justified if passing this message is much faster than
the other activities of the components, or if passing such a message is insignificant relative
to the other activities.
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Figure 4: Transition systems of push/poll processes

passed viabc or cc, the message is forwarded to the outside world viad or e. To illustrate the effect on state
spaces, it is not necessary that we pass an actual message, and therefore it is left out.

a

cc
e

bc

d

C1

C2

C3

Figure 5: Synchronous/asynchronous message passing

The asynchronous variant is described below. ProcessC1 performsa, and subsequently performsbs or
cs, i.e. sending viab or c. The processC2 reads viab by br, and then performs ad. The behaviour ofC3 is
similar. The whole system consists of the processesC1, C2 andC3 wherebr andbs synchronise to become
bc, andcr andcs becomecc. The behaviour of this system contains 8 states and is depicted in figure 6 at
the left.

proc C1 = a·(bs + cs)·C1;
C2 = br·d·C2;
C3 = cr·e·C3;

init ∇{a,bc,cc,d,e}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

The synchronous behaviour of this system can be characterised by the following mCRL2 specification.
ProcessC1 can perform a multi-actiona|bs (i.e. actiona andbs happen exactly at the same time) or a
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Figure 6.3 Synchronous/asynchronous message passing

Several formalisms use global synchronous interactions as a way to keep the state space
of a system small. The co-ordination language REO uses the concept very explicitly [6].
A derived form can be found in Uppaal, which uses committed locations [37].
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To illustrate the effectiveness of global synchronous communication, we provide the sys-
tem in Figure 6.3. A trigger signal enters at a, and is non-deterministically forwarded
via bc or cc to one of the two components at the right. Non-deterministic forwarding is
used, to make the application of confluence impossible (see guideline IV). One might for
instance think that there is a complex algorithm that determines whether the information
is forwarded via bc or cc, but we do not want to model the details of this algorithm. After
being passed via bc or cc, the message is forwarded to the outside world via d or e. To
illustrate the effect on state spaces, it is not necessary that we pass an actual message, and
therefore it is left out.

The asynchronous variant is described below. Process C1 performs a, and subsequently
performs bs or cs, i.e. sending via b or c. The process C2 reads via b by br, and then
performs a d. The behavior of C3 is similar. The whole system consists of the processes
C1, C2 and C3 where br and bs synchronize to become bc, and cr and cs become cc. The
behavior of this system contains 8 states and is depicted in Figure 6.4 at the left.

proc C1 = a·(bs + cs)·C1;
C2 = br·d·C2;
C3 = cr·e·C3;

init ∇{a,bc,cc,d,e}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

ad e

bc cc

a ad
ee

d

cc bc

ae d

a|cc|e a|bc|d

Figure 6: Transition systems of a synchronous and an asynchronous process

multi-actiona|cs. This represents the instantaneous receiving and forwarding of a message. Similarly,C2

andC3 read and forward the message instantaneously. The effect isthat the state space only consists of
one state as depicted in figure 6 at the right.

proc C1 = a|bs·C1 + a|cs·C1;
C2 = br|d·C2;
C3 = cr|e·C3;

init ∇{a|cc|e,a|bc|d}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

The operator∇{a|cc|e,a|bc|d} allows the two multi-actionsa|cc|e anda|bc|d, enforcing in this way that in
both cases these three actions must happen simultaneously.

6 Guideline III: Avoid parallelism among components

When models have many concurrent components that can independently perform an action, then the state
space of the given model can be reduced by limiting the numberof components that can simultaneously
perform activity. Ideally, only one component can perform activity at any time. This can for instance
be achieved by one central component that allows the other components to do an action in a round robin
fashion.

It very much depends on the nature of the system whether this kind of modelling is allowed. If the
primary purpose of a system is the calculation of values, sequentialising appears to be defendable. If on
the other hand the sub-components are controlling all kindsof devices, then the parallel behaviour of the
sub-components might be the primary purpose of the system and sequentialisation can not be used.

In some specification languages explicit avoidance of parallel behaviour between components has been
used. For instance Esterel [4] uses micro steps which can be calculated per component. In Promela there is
an explicit atomicity command, grouping behaviour in one component that is executed without interleaving
of actions of other components [15].

As an example we considerM traffic lights guarding the same number of entrances of a parking lot. See
figure 7 for a diagrammatic representation whereM=3. A sensor detects that a car arrives at an entrance.
If there is space in the garage, the traffic light shows green for some time interval. There is a detector at the
exit, which indicates that a car is leaving. The number of cars in the garage cannot exceedN .

The first model is very simple, but has a large state space. Each traffic light controller (TLC ) waits
for a trigger of its sensor, indicating that a car is waiting.Using theenters action it asks theCoordinator
for admission to the garage. If a car can enter, this action isallowed by the co-ordinator and a traffic light
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Figure 6.4 Transition systems of a synchronous and an asynchronous process

The synchronous behavior of this system can be characterized by the following mCRL2
specification. Process C1 can perform a multi-action a|bs (i.e. action a and bs happen
exactly at the same time) or a multi-action a|cs. This represents the instantaneous receiv-
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ing and forwarding of a message. Similarly, C2 and C3 read and forward the message
instantaneously. The effect is that the state space only consists of one state as depicted in
Figure 6.4 at the right.

proc C1 = a|bs·C1 + a|cs·C1;
C2 = br|d·C2;
C3 = cr|e·C3;

init ∇{a|cc|e,a|bc|d}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

The operator ∇{a|cc|e,a|bc|d} allows the two multi-actions a|cc|e and a|bc|d, enforcing in
this way that in both cases these three actions must happen simultaneously.

6.5 Guideline III: Avoid parallelism among components

When models have many concurrent components that can independently perform an ac-
tion, then the state space of the given model can be reduced by limiting the number of
components that can simultaneously perform activity. Ideally, only one component can
perform activity at any time. This can for instance be achieved by one central component
that allows the other components to do an action in a round robin fashion.

It very much depends on the nature of the system whether this kind of modeling is al-
lowed. If the primary purpose of a system is the calculation of values, sequentializing
appears to be defendable. If on the other hand the sub-components are controlling all
kinds of devices, then the parallel behavior of the sub-components might be the primary
purpose of the system and sequentialization can not be used.

In some specification languages explicit avoidance of parallel behavior between compo-
nents has been used. For instance Esterel [12] uses micro steps which can be calculated
per component. In Promela there is an explicit atomicity command, grouping behavior in
one component that is executed without interleaving of actions of other components [47].

As an example we consider M traffic lights guarding the same number of entrances of
a parking lot. See Figure 6.5 for a diagrammatic representation where M= 3. A sensor
detects that a car arrives at an entrance. If there is space in the garage, the traffic light
shows green for some time interval. There is a detector at the exit, which indicates that a
car is leaving. The number of cars in the garage cannot exceed N .

The first model is very simple, but has a large state space. Each traffic light controller
(TLC ) waits for a trigger of its sensor, indicating that a car is waiting. Using the enters
action it asks the Coordinator for admission to the garage. If a car can enter, this action
is allowed by the co-ordinator and a traffic light cycle starts. Otherwise the enters action
is blocked. The Coordinator has an internal counter, counting the number of cars. When
a leave action takes place, the counter is decreased. When a car is allowed to enter (via
enterr), the counter is increased.
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trig
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Figure 7: A parking lot with three entrances

cycle starts. Otherwise theenters action is blocked. TheCoordinator has an internal counter, counting
the number of cars. When aleave action takes place, the counter is decreased. When a car is allowed to
enter (viaenterr), the counter is increased.

proc Coordinator(count :N)
= (count>0)→leave · Coordinator(count−1)
+ (count<N)→enterr·Coordinator(count+1);

TLC (id :N+)
= trig(id)·enters·show(id , green)·show(id , red)·TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}(Coordinator(0)‖TLC (1)‖TLC (2)‖TLC (3)));

The state space of this control system grows exponentially with the number of traffic light controllers. In
columns 2 and 4 of table 1 the sizes of the state spaces for differentM are shown. It is also clear that the
number of parking placesN only contributes linearly to the state space.

Following the guideline, we try to limit the amount of parallel behaviour in the traffic light controllers.
So, we put the initiative in the hands of the co-ordinator in the second model. It assigns the task of
monitoring a sensor to one of the traffic light controllers ata time. The traffic controller will poll the
sensor, and only if it has been triggered, switch the traffic light to green. After it has done its task, the
traffic light controller will return control to the co-ordinator. Of course if the parking lot is full, the traffic
light controllers are not activated. Note that in this second example, only one traffic light can show green
at any time, which might not be desirable.

proc Coordinator(count :N, active id :N+)
= (count>0)→leave·Coordinator(count−1, active id)
+ (count<N)→enters(active id)·∑b:B enterr(b)·

Coordinator(count+if(b, 1, 0), if(active id≈M, 1, active id+1));

TLC (id :N+)
= enterr(id)·

( trig(id , true)·show(id , green)·show(id , red)·enters(true)+
trig(id , false)·enters(false)

)·
TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}
(Coordinator(0, 1)||TLC (1)||TLC (2)||TLC (3)));

As can be seen in table 1 the state space of the second model only grows linearly with the number of traffic
lights.
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Figure 6.5 A parking lot with three entrances

proc Coordinator(count :N)
= (count>0)→leave · Coordinator(count−1)
+ (count<N)→enterr·Coordinator(count+1);

TLC (id :N+)
= trig(id)·enters·show(id , green)·show(id , red)·TLC (id);

init ∇{trig,show,enterc,leave}(Γ{enters|enterr→enterc}
(Coordinator(0)‖TLC (1)‖TLC (2)‖TLC (3)));

The state space of this control system grows exponentially with the number of traffic light
controllers. In columns 2 and 4 of Table 6.1 the sizes of the state spaces for different M
are shown. It is also clear that the number of parking places N only contributes linearly
to the state space.

Following the guideline, we try to limit the amount of parallel behavior in the traffic
light controllers. So, we put the initiative in the hands of the co-ordinator in the second
model. It assigns the task of monitoring a sensor to one of the traffic light controllers at a
time. The traffic controller will poll the sensor, and only if it has been triggered, switch
the traffic light to green. After it has done its task, the traffic light controller will return
control to the co-ordinator. Of course if the parking lot is full, the traffic light controllers
are not activated. Note that in this second example, only one traffic light can show green
at any time, which might not be desirable.
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proc Coordinator(count :N, active id :N+)
= (count>0)→leave·Coordinator(count−1, active id)
+ (count<N)→enters(active id)·

∑
b:B enterr(b)·

Coordinator(count+if(b, 1, 0), if(active id≈M, 1, active id+1));

TLC (id :N+)
= enterr(id)·

( trig(id , true)·show(id , green)·show(id , red)·enters(true)+
trig(id , false)·enters(false)

)·
TLC (id);

init ∇{trig,show,enterc,leave}(Γ{enters|enterr→enterc}
(Coordinator(0, 1)||TLC (1)||TLC (2)||TLC (3)));

As can be seen in Table 6.1 the state space of the second model only grows linearly with
the number of traffic lights.

M parallel
(N = 10)

restricted
(N = 10)

parallel
(N = 100)

restricted
(N = 100)

1 44 61 404 601
2 176 122 1, 616 1, 202
3 704 183 6, 464 1, 803
4 2, 816 244 25, 856 2, 404
5 11, 264 305 103, 424 3, 005
6 45, 056 366 413, 696 3, 606

10 11.5 106 610 106 106 6, 010

Table 6.1 State space sizes of parking lot controllers (M : no. of traffic lights,
N : no. of parking places)

6.6 Guideline IV: Confluence and determinacy

In [39, 67] it is described how τ -confluence and determinacy can be used to assist pro-
cess verification. By modelling such that a system is τ -confluent, verification can become
substantially easier. The formulations in [39, 67] are slightly different; we use the formu-
lation from [39] because it is more suitable for verification purposes.

A transition system is τ -confluent iff for every state s that has an outgoing τ and an
outgoing a-transition, s τ−→ s′ and s a−→ s′′, respectively, there is a state s′′′ such that
s′

a−→ s′′′ and s′′ τ−→ s′′′. This is depicted in Figure 6.6. Note that a can also be a τ , but
then the states s′ and s′′ must be different.
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M parallel (N = 10) restricted (N = 10) parallel (N = 100) restricted (N = 100)
1 44 61 404 601
2 176 122 1, 616 1, 202
3 704 183 6, 464 1, 803
4 2, 816 244 25, 856 2, 404
5 11, 264 305 103, 424 3, 005
6 45, 056 366 413, 696 3, 606
10 11.5 106 610 106 106 6, 010

Table 1: State space sizes of parking lot controllers (N : no. of traffic lights,M : no. of parking places)

7 Guideline IV: Confluence and determinacy

In [14, 18] it is described howτ -confluence and determinacy can be used to assist process verification. By
modelling such that a system isτ -confluent, verification can become substantially easier. The formulations
in [14, 18] are slightly different; we use the formulation from [14] because it is more suitable for verification
purposes.

A transition system isτ -confluentiff for every states that has an outgoingτ and an outgoinga-
transition,s

τ−→ s′ ands
a−→ s′′, respectively, there is a states′′′ such thats′

a−→ s′′′ ands′′
τ−→ s′′′.

This is depicted in figure 8. Note thata can also be aτ , but then the statess′ ands′′ must be different.

s

s′ s′′

s′′′

τ a

a τ

Figure 8: Confluent case

When traversing a state space of aτ -confluent transition system, it is allowed to ignore all outgoing
transitions from a state that has at least one outgoingτ -transition, except one outgoingτ -transition. This
operation is calledτ -prioritisation. It preserves branching bisimulation equivalence [11] andtherefore
almost all behaviourally interesting properties of the state space. There is one snag, namely that if the
resultingτ transitions form a loop, then the outgoing transitions of one of the states on the loop must
be preserved. The first algorithm to generate a state space while applyingτ -prioritisation is described in
[5]. Whenτ -prioritisation has been applied to a transition system, large parts of the ‘full’ state space have
become unreachable. Of the remaining reachable states, many have a single outgoingτ -transitions

τ−→ s′.
The statess ands′ are branching bisimilar and can be mapped onto each other, effectively removing one
more state. Furthermore, all states on aτ -loop are branching bisimilar and can therefore be merged into
one state, too.

If a state space isτ -confluent, thenτ -prioritisation can have a quite dramatic reduction of the size of
the state space. This technique allows to generate the prioritised state space of highly parallel systems
with thousands of components. In figure 9 aτ -confluent transition system is depicted before and after
application ofτ -prioritisation, and the subsequent merging of branching bisimilar states.

To employτ -prioritisation, a system must be defined such that it isτ -confluent. The main rule of thumb
is to take care that if an internal action can be performed in astate of a component, no other action can
be done in that state. These internal actions include sending information to other components. If data is
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Figure 6.6 Confluent case

When traversing a state space of a τ -confluent transition system, it is allowed to ignore
all outgoing transitions from a state that has at least one outgoing τ -transition, except one
outgoing τ -transition. This operation is called τ -prioritization. It preserves branching
bisimulation equivalence [82] and therefore almost all behaviorally interesting properties
of the state space. There is one snag, namely that if the resulting τ transitions form a
loop, then the outgoing transitions of one of the states on the loop must be preserved.
The first algorithm to generate a state space while applying τ -prioritization is described
in [15]. When τ -prioritization has been applied to a transition system, large parts of the
‘full’ state space have become unreachable. Of the remaining reachable states, many have
a single outgoing τ -transition s τ−→ s′. The states s and s′ are branching bisimilar and
can be mapped onto each other, effectively removing one more state. Furthermore, all
states on a τ -loop are branching bisimilar and can therefore be merged into one state, too.

If a state space is τ -confluent, then τ -prioritization can have a quite dramatic reduction of
the size of the state space. This technique allows to generate the prioritized state space of
highly parallel systems with thousands of components. In Figure 6.7 a τ -confluent transi-
tion system is depicted before and after application of τ -prioritization, and the subsequent
merging of branching bisimilar states.

To employ τ -prioritization, a system must be defined such that it is τ -confluent. The
main rule of thumb is to take care that if an internal action can be performed in a state
of a component, no other action can be done in that state. These internal actions include
sending information to other components. If data is received, it must be received from
only one component. A selection among different components offering data is virtually
always non confluent. Note that in particular pushing information generally destroys
confluence. Pushed information must always be received, so, in particular it must be
received while internal choices are made and information is forwarded.

We model a simple crossing system that contains two traffic lights. First, we are not
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Figure 9: The effect ofτ -prioritisation and branching bisimulation compression

received, it must be received from only one component. A selection among different components offering
data is virtually always non confluent. Note that in particular pushing information generally destroys
confluence. Pushed information must always be received, so,in particular it must be received while internal
choices are made and information is forwarded.
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Figure 10: A simple traffic light with two triggers

We model a simple crossing system that contains two traffic lights. First, we are not bothered about
confluence. Each traffic light has a sensor indicating that traffic is waiting. We use a control system with 6
components (see figure 10).

For each traffic light we have a sensor controllerSensorC , a crossing controllerCrossingC , and a
traffic light controllerLightC . The responsibility of the first is to detect whether the sensor is triggered, us-
ing the actiontrig , and forward its occurrence using the actionsens to CrossingC. The crossing controller
takes care that after receiving asens message, it negotiates with the other crossing controller whether it
can turn the traffic light to green (using theturn action), and informsLightC using the actioncycle to
set the traffic light to green. The light controller will switch the traffic light to green, yellow and red, and
subsequently informs the crossing controller that it has finished (by sending acycle message back).

Below a straightforward model of this system is provided. The sensor controllerSensorC gets a trigger
via the actiontrig and forwards it usingsenss. The traffic light controller is equally simple. After a trigger
(via cycler), it cycles through the colours, and indicates through acycles message that it finished.

The crossing controllerCrossingC is a little more involved. It has four parameters. The first one isid
which holds an identifier for this controller (i.e.1 or 2). The second parametermy turn indicates whether
this controller has the right to set the traffic light to green. The third parameter issensor triggered which
stores whether a sensor trigger has arrived. The fourth one is cycle indicating whether the traffic light
controller is currently going through a traffic light cycle.The most critical actions are allowing the traffic

13

Figure 6.7 The effect of τ -prioritization and branching bisimulation compres-
sion
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received, it must be received from only one component. A selection among different components offering
data is virtually always non confluent. Note that in particular pushing information generally destroys
confluence. Pushed information must always be received, so,in particular it must be received while internal
choices are made and information is forwarded.
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Figure 10: A simple traffic light with two triggers

We model a simple crossing system that contains two traffic lights. First, we are not bothered about
confluence. Each traffic light has a sensor indicating that traffic is waiting. We use a control system with 6
components (see figure 10).

For each traffic light we have a sensor controllerSensorC , a crossing controllerCrossingC , and a
traffic light controllerLightC . The responsibility of the first is to detect whether the sensor is triggered, us-
ing the actiontrig , and forward its occurrence using the actionsens to CrossingC. The crossing controller
takes care that after receiving asens message, it negotiates with the other crossing controller whether it
can turn the traffic light to green (using theturn action), and informsLightC using the actioncycle to
set the traffic light to green. The light controller will switch the traffic light to green, yellow and red, and
subsequently informs the crossing controller that it has finished (by sending acycle message back).

Below a straightforward model of this system is provided. The sensor controllerSensorC gets a trigger
via the actiontrig and forwards it usingsenss. The traffic light controller is equally simple. After a trigger
(via cycler), it cycles through the colours, and indicates through acycles message that it finished.

The crossing controllerCrossingC is a little more involved. It has four parameters. The first one isid
which holds an identifier for this controller (i.e.1 or 2). The second parametermy turn indicates whether
this controller has the right to set the traffic light to green. The third parameter issensor triggered which
stores whether a sensor trigger has arrived. The fourth one is cycle indicating whether the traffic light
controller is currently going through a traffic light cycle.The most critical actions are allowing the traffic
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Figure 6.8 A simple traffic light with two triggers

bothered about confluence. Each traffic light has a sensor indicating that traffic is waiting.
We use a control system with 6 components (see Figure 6.8).

For each traffic light we have a sensor controller SensorC , a crossing controller CrossingC ,
and a traffic light controller LightC . The responsibility of the first is to detect whether
the sensor is triggered, using the action trig , and forward its occurrence using the action
sens to CrossingC. The crossing controller takes care that after receiving a sens mes-
sage, it negotiates with the other crossing controller whether it can turn the traffic light to
green (using the turn action), and informs LightC using the action cycle to set the traffic
light to green. The light controller will switch the traffic light to green, yellow and red,
and subsequently informs the crossing controller that it has finished (by sending a cycle
message back).

Below a straightforward model of this system is provided. The sensor controller SensorC
gets a trigger via the action trig and forwards it using senss. The traffic light controller
is equally simple. After a trigger (via cycler), it cycles through the colours, and indicates
through a cycles message that it finished.
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The crossing controller CrossingC is a little more involved. It has four parameters. The
first one is id which holds an identifier for this controller (i.e. 1 or 2). The second pa-
rameter my turn indicates whether this controller has the right to set the traffic light to
green. The third parameter is sensor triggered which stores whether a sensor trigger has
arrived. The fourth one is cycle indicating whether the traffic light controller is currently
going through a traffic light cycle. The most critical actions are allowing the traffic light
to become green (cycles) and giving ‘my turn’ to the other crossing controller (turns).
Both can only be done if no traffic light cycle is going on and it is ‘my turn’.

Note that at the init clause all components are put in parallel, and using the communication
operator Γ and allow operator∇ it is indicated how these components must communicate.

proc SensorC (id :N+) = trig(id)·senss(id)·SensorC (id);

LightC (id :N+)
= cycler(id)·

show(id , green)·
show(id , yellow)·
show(id , red)·
cycles(id)·
LightC (id);

CrossingC (id :N+,my turn, sensor triggered , cycle:B)
= sensr(id)·CrossingC (id ,my turn, true, cycle)
+ (sensor triggered∧my turn∧¬cycle)→ cycles(id)·

CrossingC (id ,my turn, false, true)
+ cycler(id)·CrossingC (id ,my turn, sensor triggered , false)
+ turnr·CrossingC (id , true, sensor triggered , cycle)
+ (¬sensor triggered∧my turn∧¬cycle)→turns·

CrossingC (id , false, sensor triggered , cycle);

init ∇{trig,show,sensc,cyclec,turnc}
(Γ{sensr|senss→sensc,cycler|cycles→cyclec,turnr|turns→turnc}

(SensorC (1)||SensorC (2)||
CrossingC (1, true, false, false)||CrossingC (2, false, false, false)||
LightC (1)||LightC (2)));

This straightforward system description has a state space of 160 states. We are interested
in the behavior of the system where trig and show are visible, and the other actions are
hidden. We can do this by applying the hiding operator τ{sensc,cyclec,turnc} to the process.
The system is confluent with respect to the hidden cyclec action. The hidden sensc and
turnc actions are not contributing to the confluence of the system.

In the uppermost row of Table 6.2 the sizes of the state space are given: of the full state
space, after applying tau-prioritization and after applying branching bisimulation reduc-
tion.
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In order to employ the effect of confluence, we must make the hidden actions turnc and
sensec confluent, too. The reason that these actions are not confluent is that handing over
a turn and triggering a sensor are possible in the same state, and they can take place in
any order. But the exact order in which they happen causes a different traffic light go to
green.

We can prevent this by making the behavior of the crossing controller CrossingC deter-
ministic. A very simple way of doing this is given below. We only provide the definition
of SensorC and CrossingC as LightC remains the same and the init line is almost iden-
tical. The idea of the specification below is that the controllers CrossingC are in charge
of the sensor and light controllers. When the crossing controller has the turn, it polls the
sensor. And only if it has been triggered, it initiates a traffic light cycle. In both cases it
gives the turn to the other crossing controller.

proc SensorC (id :N+) = sensr(id)·
∑

b:B trig(id, b)·senss(id, b)·SensorC (id);

CrossingC (id :N+,my turn:B) =
my turn
→ senss(id)·

(sensr(id , true)·
cycles(id)·
cycler(id)
+
sensr(id , false)

)·
turns·
CrossingC (id , false)
� turnr·

CrossingC (id , true);

The state space of this system turns out to be small, namely 20 states (see Table 6.2, sec-
ond row). It is even smaller after applying τ -prioritization, namely 8 states. Remarkably,
this is also the size of the state space after branching bisimulation minimization.

As the state space is small, it is possible to inspect the state space in full (see Figure 6.9).
An important property of this system is that the relative ordering in which the triggers at
sensor 1 and sensor 2 are polled does not influence the ordering in which the traffic lights
go to green. This sequence is only determined by the booleans that indicate whether the
sensor is triggered or not. This effect is not very clear here, because the sensors are polled
in strict alternation. But in the next example we see that this property also holds for more
complex controllers, where the polling order is not strictly predetermined.

The previous solution can be too simple for certain purposes. We show that the deter-
ministic specification style can still be used for more complex systems, and that the state
space that is generated using τ -prioritisation is still much smaller than state spaces gener-
ated without the use of confluence.

So, for the sake of the example we assume that it is desired to check the sensors while a
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proc SensorC (id :N+) = sensr(id)·
∑

b:B trig(id, b)·senss(id, b)·SensorC (id);

CrossingC (id :N+,my turn:B) =
my turn
→ senss(id)·
(sensr(id , true)·
cycles(id)·
cycler(id)
+
sensr(id , false)
)·
turns·
CrossingC (id , false)

⋄ turnr·
CrossingC (id , true);

The state space of this system turns out to be small, namely 20states (see table 2, second row). It is even
smaller after applyingτ -prioritisation, namely 8 states. Remarkably, this is alsothe size of the state space
after branching bisimulation minimisation. As the state space is small, it is possible to inspect the state
space in full (see figure 11). An important property of this system is that the relative ordering in which the
triggers at sensor 1 and sensor 2 are polled does not influencethe ordering in which the traffic lights go to
green. This sequence is only determined by the booleans thatindicate whether the sensor is triggered or
not. This effect is not very clear here, because the sensors are polled in strict alternation. But in the next
example we see that this property also holds for more complexcontrollers, where the polling order is not
strictly predetermined.
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τ
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trig(2, false)
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Figure 11: The state space of a simple confluent traffic light controller

The previous solution can be too simple for certain purposes. We show that the deterministic speci-
fication style can still be used for more complex systems, andthat the state space that is generated using
τ -prioritisation is still much smaller than state spaces generated without the use of confluence.

So, for the sake of the example we assume that it is desired to check the sensors while a traffic light
cycle is in progress. Both crossing controllers continuously request the sensors to find out whether they
have been triggered. If none is triggered the traffic light controllers inform each other that the turn does
not have to switch side. If the crossing controller whose turn it is, gets the signal that its sensor has been
triggered, it awaits the end of the current traffic light cycle (cycler(id)), and simply starts a new cycle
(cycles(id)). If the sensor of the crossing controller that does not have the turn is triggered, this controller
indicates usingturns(true) that it wants to get the turn. It receives the turn byturnr. Subsequently, it
starts its own traffic light cycle.
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Figure 6.9 The state space of a simple confluent traffic light controller

traffic light cycle is in progress. Both crossing controllers continuously request the sen-
sors to find out whether they have been triggered. If none is triggered the traffic light con-
trollers inform each other that the turn does not have to switch side. If the crossing con-
troller whose turn it is, gets the signal that its sensor has been triggered, it awaits the end
of the current traffic light cycle (cycler(id)), and simply starts a new cycle (cycles(id)).
If the sensor of the crossing controller that does not have the turn is triggered, this con-
troller indicates using turns(true) that it wants to get the turn. It receives the turn by
turnr. Subsequently, it starts its own traffic light cycle.

The structure of the system is the same as in the non-confluent traffic light cycle, and
therefore the init part is not provided in the specification below.

proc SensorC (id :N+) = sensr(id)·
∑

b:B trig(id , b)·senss(id , b)·SensorC (id);

CrossingC (id :N+,my turn:B) =
senss(id)·
( sensr(id , true)·

(my turn→cycler(id)�turns(true)·turnr)·
cycles(id)·
CrossingC (id , true)
+
sensr(id , false)·
( my turn
→ ( turnr(true)·

cycler(id)·
turns·
CrossingC (id , false)
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+
turnr(false)·
CrossingC (id , true)

)
� turns(false)·

CrossingC (id , false)
)

);

LightC (id :N+, active:B) =
active
→ cycles(id)·LightC (id , false)
� cycler(id)·show(id , green)·show(id , yellow)·show(id , red)·

LightC(id,true);

This more complex traffic light controller has a substantially larger state space of 310
states. However, when the state space is generated with τ -prioritisation, it has shrunk
to 56 states, which is also its minimal size modulo branching bisimulation or even weak
trace equivalence.

no
reduction

after
τ -prioritisation

mod
branch bis

Non-confluent controller 160 128 124
Simple confluent controller 20 8 8
Complex confluent controller 310 56 56

Table 6.2 The number of states of the transitions systems for a simple cross-
ing

The complexity of the system is in the way the sensors are polled. Figure 6.10 depicts
the behavior where showing the aspects of the traffic lights is hidden. As in the simple
confluent controller, the relative ordering of the incoming triggers does not matter for the
state the system ends up in. E.g., executing sequences trig(2, false) trig(1, true) and
trig(1, true) trig(2, false) from the initial state lead to the lowest state in the diagram.
This holds in general. Any allowed reordering of the triggers from sensor 1 and 2 with
respect to each other will bring one to the same state.

6.7 Guideline V: Restrict the use of data

The use of data in behavioral models can quickly blow up a state space. Therefore, data
should always be looked at with extra care, and if its use can be avoided, this should be
done. If data is essential (and it almost always is), then there are several methods to reduce
its footprint. Below we give three examples, one where data is categorized, one where the
content of queues is reduced and one where buffers are ordered.
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The complexity of the system is in the way the sensors are polled. Figure 6.10 depicts
the behaviour where showing the aspects of the traffic lightsis hidden. As in the simple
confluent controller, the relative ordering of the incomingtriggers does not matter for the
state the system ends up in. E.g., executing sequencestrig(2, false) trig(1, true) and
trig(1, true) trig(2, false) from the initial state lead to the lowest state in the diagram.
This holds in general. Any allowed reordering of the triggers from sensor 1 and 2 with
respect to each other will bring one to the same state.
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Figure 6.10 The sensor polling pattern of a more complex confluent controller

6.7 Guideline V: Restrict the use of data

The use of data in behavioural models can quickly blow up a state space. Therefore, data
should always be looked at with extra care, and if its use can be avoided, this should be
done. If data is essential (and it almost always is), then there are several methods to reduce
its footprint. Below we give three examples, one where data is categorised, one where the

Figure 6.10 The sensor polling pattern of a more complex confluent controller

In order to reduce the state space of a behavioral model, it sometimes helps to categorize
the data in categories, and formulate the model in terms of these categories, instead of
individual values. From the perspective of verification, this technique is called abstract
interpretation [29]. Using this technique, a given data domain is interpreted in categories,
in order to assist the verification process. Here, we advice that the modeler uses the
categories in the model, instead of letting the values be interpreted in categories during
the verification process. As the modeler generally knows his model best, he also has a
good intuition about the appropriate categories.

Consider for example an intelligent approach controller which measures the distance of
an approaching car as depicted in Figure 6.11. If the car is expected to pass distance
0 before the next measurement, a trigger signal is forwarded. The farthest distance the
approach controller can observe is M . A quite straightforward description of this system
is given below. Using the action dist the distance to a car is measured, and the action trig
models the trigger signal.
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Figure 12: The sensor polling pattern of a more complex confluent controller

almost always is), then there are several methods to reduce its footprint. Below we give three examples, one
where data is categorised, one where the content of queues isreduced and one where buffers are ordered.

In order to reduce the state space of a behavioural model, it sometimes helps to categorise the data in
categories, and formulate the model in terms of these categories, instead of individual values. From the
perspective of verification, this technique is called abstract interpretation [7]. Using this technique, a given
data domain is interpreted in categories, in order to assistthe verification process. Here, we advice that the
modeller uses the categories in the model, instead of letting the values be interpreted in categories during
the verification process. As the modeller generally knows his model best, he also has a good intuition about
the appropriate categories.

AC
trigdist

Figure 13: An advanced approach controller

Consider for example an intelligent approach controller which measures the distance of an approaching
car as depicted in figure 13. If the car is expected to pass distance0 before the next measurement, a trigger
signal is forwarded. The farthest distance the approach controller can observe isM . A quite straightforward
description of this system is given below. Using the actiondist the distance to a car is measured, and the
actiontrig models the trigger signal.

map M : N;
eqn M = 100;
proc AC(dprev :N) =

∑
d:N(d<M)→(dist(d)·(2d<dprev )→trig ·AC (M)⋄AC (d));

init AC (M);
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Figure 6.11 An advanced approach controller

map M : N;
eqn M = 100;
proc AC(dprev :N) =

∑
d:N(d<M)→(dist(d)·(2d<dprev )→trig ·AC (M)�AC (d));

init AC (M);

The state space of this system is a staggering M2+1 states big, or more concretely 10001
states. This is of course due to the fact that the values of d and dprev must be stored in the
state space to enable the evaluation of the condition 2d<dprev . But only the information
needs to be recalled whether this condition holds, instead of both values of d and dprev .
So, a first improvement is to move the condition backward as is done below, leading to a
required M+1 states, or 101 in this concrete case.

proc AC 1(dprev :N) =
∑

d:N(d<M)→((2d<dprev )→dist(d)·trig ·AC 1(M)
�dist(d)·AC 1(d));

init AC 1(M);

But we can go much further, provided it is possible to abstract from the concrete distances.
Let us assume that the only relevant information that we obtain from the individual dis-
tances is whether the car is far from the sensor or nearby. Note that we abstract from
the concrete speed of the car which was used above. The specification of this abstract
approach controller AAC is given by:

sort Distance = struct near | far ;
proc AAC =

∑
d:Distance dist(d)·((d≈near)→trig ·AAC�AAC );

init AAC;

Note that M does not occur anymore in this specification. The state space is now reduced
to two states.

We now provide an example showing how to reduce the usage of buffers and queues.
Polling and τ -confluence are used, to achieve the reduction. We model a system with au-
tonomous traffic light controllers. Each controller has one sensor and controls one traffic
light that can be red or green. If a sensor is triggered, the traffic light must show green. At
most one traffic light can show green at any time. The controllers are organised in a ring,
where each controller can send messages to its right neighbour, and receive messages from
its left neighbour. For reasons of efficiency we desire that there are unbounded queues



116 Chapter 6. Proposed Design Guidelines

The state space of this system is a staggeringM2+1 states big, or more concretely10001 states. This
is of course due to the fact that the values ofd anddprev must be stored in the state space to enable the
evaluation of the condition2d<dprev . But only the information needs to be recalled whether this condition
holds, instead of both values ofd anddprev . So, a first improvement is to move the condition backward as
is done below, leading to a requiredM+1 states, or 101 in this concrete case.

proc AC 1(dprev :N) =
∑

d:N(d<M)→((2d<dprev )→dist(d)·trig ·AC 1(M)⋄dist(d)·AC 1(d));
init AC 1(M);

But we can go much further, provided it is possible to abstract from the concrete distances. Let us assume
that the only relevant information that we obtain from the individual distances is whether the car is far from
the sensor or nearby. Note that we abstract from the concretespeed of the car which was used above. The
specification of this abstract approach controllerAAC is given by:

sort Distance = struct near | far ;
proc AAC =

∑
d:Distance dist(d)·((d≈near)→trig ·AAC⋄AAC );

init AAC;

Note thatM does not occur anymore in this specification. The state spaceis now reduced to two states.
We now provide an example showing how to reduce the usage of buffers and queues. Polling andτ -

confluence are used, to achieve the reduction. We model a system with autonomous traffic light controllers.
Each controller has one sensor and controls one traffic lightthat can be red or green. If a sensor is triggered,
the traffic light must show green. At most one traffic light canshow green at any time. The controllers are
organised in a ring, where each controller can send messagesto its right neighbour, and receive messages
from its left neighbour. For reasons of efficiency we desire that there are unbounded queues between the
controllers, such that no controller is ever hampered in forwarding messages to its neighbour. The situation
is depicted in figure 14.

TLC TLC

TLC TLC

trig

trig

trig

trig

Figure 14: Process communication via unbounded queues

We make a straightforward protocol, where we do not look intoefficiency. Whenever a traffic light
controller receives a trigger, it wants to know from the other controllers that they are not showing green.
For this reason it sends its sequence number with an ‘active’ tag around. If it makes a full round with-
out altering the ‘active’ tag, it switches its own traffic light to green. Otherwise, if the tag is switched to
‘passive’, it retries sending the message around. A formal description is given by the following specifica-
tion. The processQueue(id , q) describes an infinite queue between the processes with identifiers id and
id+1 (modulo the number of processes). The parameterq contains the content of the queue. The process
TLC (id , triggered , started) is the process with idid wheretriggered indicates that it has been triggered
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Figure 6.12 Process communication via unbounded queues

between the controllers, such that no controller is ever hampered in forwarding messages
to its neighbour. The situation is depicted in Figure 6.12.

We make a straightforward protocol, where we do not look into efficiency. Whenever a
traffic light controller receives a trigger, it wants to know from the other controllers that
they are not showing green. For this reason it sends its sequence number with an ‘active’
tag around. If it makes a full round without altering the ‘active’ tag, it switches its own
traffic light to green. Otherwise, if the tag is switched to ‘passive’, it retries sending
the message around. A formal description is given by the following specification. The
process Queue(id , q) describes an infinite queue between the processes with identifiers
id and id+1 (modulo the number of processes). The parameter q contains the content
of the queue. The process TLC (id , triggered , started) is the process with id id where
triggered indicates that it has been triggered to show green, and started indicates that it
has started with the protocol sketched above. In the initialisation we describe the situation
where there are two processes and two queues, but the protocol is suited for any number
of processes and an equal number of queues.
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N Non
confluent

After
branching bis

Confluent With
τ -prioritisation

After
branching bis

2 116 58 10 6 6
3 3.2 103 434 15 9 9
4 122 103 3 103 20 12 12
5 5.9 106 21 103 25 15 15
6 357 106 - 30 18 18
20 - - 100 60 60

Table 6.3 Traffic lights connected with queues

sort Aspect = struct green | red ;
Message = struct active(get number : N)?is active |

passive(get number : N);
map N : N+;
eqn N = 2;
proc Queue(id :N, q:List(Message)) =∑

m:Message qinr (id ,m)·Queue(id ,m.q)+

(#q>0)→qouts((id+1) modN, rhead(q))·Queue(id , rtail(q));

TLC (id :N, triggered , started :B) =
trig(id)·TLC (id , true, started)+
(triggered∧¬started)
→qins(id , active(id))·TLC (id , false, true)+∑

m:Message qoutr (id ,m)·
((started∧is active(m)∧get number(m) 6≈id)
→qins(id , passive(get number(m)))·

TLC (id , triggered , started)
�((started∧get number(m)≈id)
→(is active(m)→show(id , green)·show(id , red)·

TLC (id , triggered , false)
�TLC (id , true, false)

)
�qins(id ,m)·TLC (id , triggered , started)

));

init τ{qinc ,qoutc}(∇{trig,show,qinc ,qoutc}(Γ{qinr |qins→qinc ,qoutr |qouts→qoutc}(

TLC (0, false, false)||TLC (1, false, false)||Queue(0, [])||Queue(1, []))));

Note that the state space of this system is growing very dramatically with the number
of processes. See the second column in Table 6.3. In the third column the state space
is given after a branching bisimulation reduction, where only the actions show and trig
are visible. Even the state space after branching bisimulation reduction is quite large. A
dash indicates that the mCRL2 toolset failed to calculate the state space or the reduction
thereof (running out of space on a 1Tbyte main memory linux machine).
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We will reduce the number of states by making the system confluent. We replace data
pushing by polling. The structure of the protocol becomes quite different. Each process
must first obtain a mutually exclusive ‘token’, then polls whether a trigger has arrived,
and if so, switches the traffic light to green. Subsequently, it hands the token over to the
next process. The specification is given below for two processes. The specification of the
queue is omitted, as it is exactly the same as the one of the previous specification.

sort Aspect = struct green | red ;
Message = struct token;

map N : N+;
eqn N = 2;

proc TLC (id :N, active:B) =
active→(trig(id , true)·show(id , green)·show(id , red) + trig(id , false))·

qins(id , token)·TLC (id , false)
� qoutr (id , token)·TLC (id , true);

init τ{qinc ,qoutc}(∇{trig,show,qinc ,qoutc}(Γ{qinr |qins→qinc ,qoutr |qouts→qoutc}(

TLC (0, true)||TLC (1, false)||Queue(0, [])||Queue(1, []))));

The number of states of the state space for different number of processes are given in
the fourth column of Table 6.3. In the fifth and sixth columns the number of states after
τ -prioritisation and branching bisimulation reduction are given. Note that the number of
states after τ -prioritisation is equal to the number of states after application of branching
bisimulation. Note also that the differences in the sizes of the state spaces is quite striking.

As a last example we show the effect of ordering buffers. With queues and buffers dif-
ferent contents can represent the same data. If a buffer is used as a set, the ordering in
which the elements are put into the buffer is irrelevant. In such cases it helps to maintain
an order on the data structure. As an example we provide a simple process that reads
arbitrary natural numbers smaller than N and puts them in a set. The process doing so is
given below.

map N : N;
insert , ordered insert : N× List(N)→ List(N);

var n, n′ : N; b : List(N);
eqn insert(n, b) = if (n ∈ b, b, n.b);

ordered insert(n, []) = [n];
ordered insert(n, n′.b) = if (n<n′, n.n′.b,

if (n≈n′, n′.b, n′.ordered insert(n, b)));
N = 10;

proc B(buffer :List(N)) =
∑

n:N(n<N)→read(n)·B(insert(n, buffer));

init B([]);

If the function insert is used, the elements are put into a set in an arbitrary order (more
precisely, the elements are prepended). If the function ordered insert is used instead of
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N non ordered ordered
1 2 2
2 5 4
3 16 8
4 65 16
5 326 32
6 2.0 103 64
7 14 103 128
8 110 103 256
9 986 103 512

10 9.9 106 1.02 103

11 109 106 2.05 103

12 1.30 109 4.10 103

Table 6.4 Number of states of an non ordered/ordered buffer with max. N
elements

insert , the elements occur in ascending order in the buffer. In Table 6.4 the effect of
ordering is shown. Although the state spaces with ordering also grow exponentially, the
beneficial effect of ordering does not need further discussion.

6.8 Guideline VI: Compositional design and reduction

When a system that must be designed consists of several components, it can be wise to
organize these components in such a way that stepwise composition and reduction are
possible. The idea is depicted in Figure 6.13. At the left hand side of Figure 6.13 a
set of communicating components C1, . . . , C5 is depicted. In the middle, the interfaces
I1, . . . , I7 are also shown. At the right the system has a tree structure.

ascending order in the buffer. In table 4 the effect of ordering is shown. Although the state spaces with
ordering also grow exponentially, the beneficial effect of ordering does not need further discussion.

9 Guideline VI: Compositional design and reduction

When a system that must be designed consists of several components, it can be wise to organise these
components in such a way that stepwise composition and reduction are possible. The idea is depicted in
figure 15. At the left hand side of figure 15 a set of communicating componentsC1, . . . , C5 is depicted. In
the middle, the interfacesI1, . . . , I7 are also shown. At the right the system has a tree structure.
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Figure 15: The compositional design and verification steps

When calculating the behaviour of the whole system, a characterisation of the simultaneous behaviour
at the interfacesI1, I6 andI7 is required where all communication at the other interfacesis hidden. Un-
fortunately, calculating the whole behaviour before hiding internal communication may not work, because
the whole behaviour has too many states. An alternative is tocombine and hide in an alternating fashion.
After each hiding step a behavioural reduction is applied, which results in a reduced transition system.

For instance, the interface behaviour atI2, I5 andI6 can be calculated from the behaviour ofC2 andC4

by hiding the behaviour atI4. Subsequently,C3 andC5 can be added, after which the communication atI5
can be hidden. At last addingC1 and hiding the actions at the interfacesI2 andI3 finishes the calculation
of the behaviour. This alternation of composing behaviour and hiding actions is quite commonly known
and some toolsets even developed a script language to allow for an optimal stepwise composition of the
whole state space [10].

In order to optimally employ this stepwise sequence of composition, hiding and reduction, it is desired
that as much communication as possible can be hidden to allowfor a maximal reduction of behaviour.
But there is something even more important. If a subset of components has more interfaces that will be
closed off by adding more components later, it is very likelythat there is some relationship between the
interactions at these interfaces. As long as the set of components has not been closed, the interactions at
these interfaces are unrelated, often leading to a severe growth in the state space of the behaviour of this
set of sub-components. When closing the dependent interfaces, the state space is brought to its expected
size. If such dependent but unrestricted interfaces occur,the use of stepwise composition and reduction is
generally ineffective.

As an example consider figure 15 again. IfC2, C3, C4 andC5 have been composed, the system has
interactions at interfacesI2 andI3 that can happen independently. AddingC1 restricts the behaviour at
these interfaces. For instance,C1 can strictly alternate between sending data viaI2 andI3, but withoutC1

any conceivable order must be present in the behaviour ofC2, C3, C4 andC5.
Dependent but unrestricted interfaces can be avoided by using a tree topology. See figure 15 (c) where

the dependency at interfacesI2 andI3 has been removed by duplicating componentC5. If a tree topology
is not possible, then it is advisable to restrict behaviour at dependent but unrestricted interfaces as much as
possible from inside sets of components.

As an example we provide yet another distributed traffic controller (see figure 16). There are a certain
numberN of traffic lights. At the central component (theTopController ) requests arrive using aset(m)
action to switch traffic lightm to green. This request is forwarded via intermediate components (called

21

Figure 6.13 The compositional design and verification steps
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When calculating the behavior of the whole system, a characterization of the simultane-
ous behavior at the interfaces I1, I6 and I7 is required where all communication at the
other interfaces is hidden. Unfortunately, calculating the whole behavior before hiding
internal communication may not work, because the whole behavior has too many states.
An alternative is to combine and hide in an alternating fashion. After each hiding step a
behavioral reduction is applied, which results in a reduced transition system.

For instance, the interface behavior at I2, I5 and I6 can be calculated from the behavior
of C2 and C4 by hiding the behavior at I4. Subsequently, C3 and C5 can be added, after
which the communication at I5 can be hidden. At last adding C1 and hiding the actions
at the interfaces I2 and I3 finishes the calculation of the behavior. This alternation of
composing behavior and hiding actions is quite commonly known and some toolsets even
developed a script language to allow for an optimal stepwise composition of the whole
state space [36].

In order to optimally employ this stepwise sequence of composition, hiding and reduc-
tion, it is desired that as much communication as possible can be hidden to allow for a
maximal reduction of behavior. But there is something even more important. If a subset
of components has more interfaces that will be closed off by adding more components
later, it is very likely that there is some relationship between the interactions at these in-
terfaces. As long as the set of components has not been closed, the interactions at these
interfaces are unrelated, often leading to a severe growth in the state space of the behavior
of this set of sub-components. When closing the dependent interfaces, the state space is
brought to its expected size. If such dependent but unrestricted interfaces occur, the use
of stepwise composition and reduction is generally ineffective.

As an example consider Figure 6.13 again. IfC2, C3, C4 andC5 have been composed, the
system has interactions at interfaces I2 and I3 that can happen independently. Adding C1

restricts the behavior at these interfaces. For instance, C1 can strictly alternate between
sending data via I2 and I3, but without C1 any conceivable order must be present in the
behavior of C2, C3, C4 and C5.

Dependent but unrestricted interfaces can be avoided by using a tree topology. See Figure
6.13 (c) where the dependency at interfaces I2 and I3 has been removed by duplicating
component C5. If a tree topology is not possible, then it is advisable to restrict behavior at
dependent but unrestricted interfaces as much as possible from inside sets of components.

As an example we provide yet another distributed traffic controller (see Figure 6.14).
There are a certain number N of traffic lights. At the central TopController component
requests arrive using a set(m) action to switch traffic light m to green. This request is
forwarded via intermediate components (called Controllers) to traffic light controllers
(TLC s). If a traffic light has been set to green and subsequently to red again, an ac-
tion ready(n) indicates that the task has been accomplished. The system must guarantee
that one traffic light can be green at any time but the order in which this happens is not
prescribed.

We start presenting a solution that does not have a tree topology. Using the principle of
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Figure 16: Distribution of system components

Controllers) to traffic light controllers (TLCs). If a traffic light has been set to green and subsequently to
red again, an actionready(n) indicates that the task has been accomplished. The system must guarantee
that one traffic light can be green at any time but the order in which this happens is not prescribed.

We start presenting a solution that does not have a tree topology. Using the principle of separation
of concerns, we let the traffic light controllers be responsible for taking care that no two traffic lights are
showing green at the same time. The top- and other controllers have as task to inform the traffic light
controllers that they must set the light to green, and they transport the ready messages back to the central
controller.

The traffic light controllers use a simple protocol as described in the queue example in section 8. They
continuously exchange a token. The owner of the token is allowed to set the traffic light to green. The
parameterid is the identifier of the traffic light. The parameterlevel indicates the level of the traffic
light controllers. The top controller has level0. In figure 16 the level of the traffic light controllers is 2.
Furthermore,has token indicates that this traffic light controller owns the token,andbusy indicates that it
must let the traffic light go through a green-red cycle.

The controllers and the top controller are more straightforward. They pass set commands from top to
bottom, and send ready signals from bottom to top. The parameters id low and idhigh indicate the range
of traffic lights over which this controller has control. Thedescription below describes a system with four
traffic light controllers.

sort Aspect = struct green | red ;

proc ControllerTop(id low , idhigh :N) =∑
n:N(id low≤n ∧ n≤idhigh)→(set(n)·sets(n, 1)+readyr(n, 1)·ready(n))·

ControllerTop(id low , idhigh);

Controller(id low , idhigh , level :N) =∑
n:N(id low≤n ∧ n≤idhigh)→
(setr(n, level)·sets(n, level+1)·Controller(id low , idhigh , level)+
readyr(n, level+1)·readys(n, level))·Controller(id low , idhigh , level);

22

Figure 6.14 Distribution of system components

separation of concerns, we let the traffic light controllers be responsible for taking care
that no two traffic lights are showing green at the same time. The top- and other controllers
have as task to inform the traffic light controllers that they must set the light to green, and
they transport the ready messages back to the central controller.

The traffic light controllers use a simple protocol as described in the queue example in
section 8. They continuously exchange a token. The owner of the token is allowed to
set the traffic light to green. The parameter id is the identifier of the traffic light. The
parameter level indicates the level of the traffic light controllers. The top controller has
level 0. In Figure 6.14 the level of the traffic light controllers is 2. Furthermore, has token
indicates that this traffic light controller owns the token, and busy indicates that it must
let the traffic light go through a green-red cycle.

The controllers and the top controller are more straightforward. They pass set commands
from top to bottom, and send ready signals from bottom to top. The parameters id low

and idhigh indicate the range of traffic lights over which this controller has control. The
description below describes a system with four traffic light controllers.

sort Aspect = struct green | red ;
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bottom control bottom + top control top control
4 nodes 8 nodes 4 nodes 8 nodes 4 nodes 8 nodes

Total system 10.0 103 236 106 1.09 103 96.3 103 368 15.6 103

Mod branch. bis. 3.84 103 39.8 106 236 7.42 103 236 7.42 103

Without top controller 1.80 103 25.3 106 1.80 103 25.3 106 - -
Mod branch. bis. 983 5.9 106 983 5.9 106 - -

Half system 131 93.9 103 131 93.9 103 56 16.8 103

Mod branch. bis. 107 44.1 103 107 44.1 103 33 3.06 103

Table 6.5 State space sizes for a hierarchical traffic light controller

proc ControllerTop(id low , idhigh :N) =∑
n:N(id low≤n ∧ n≤idhigh)→(set(n)·sets(n, 1)+readyr(n, 1)·ready(n))·

ControllerTop(id low , idhigh);

Controller(id low , idhigh , level :N) =∑
n:N(id low≤n ∧ n≤idhigh)→
(setr(n, level)·sets(n, level+1)·Controller(id low , idhigh , level)+
readyr(n, level+1)·readys(n, level))·Controller(id low , idhigh , level);

TLC (id , level :N, has token, busy :B) =
setr(id , level)·TLC (id , level , has token, true)+
(has token∧busy)→show(id , green)·show(id , red)·readys(id , level)·

TLC (id , level , has token, false)+
(has token∧¬busy)→tokens((id+1) mod 4)·TLC (id , level , false, busy)+
(¬has token)→tokenr(id)·TLC (id , level , true, busy);

init ∇{setc,readyc,tokenc,show,set,ready}(
Γ{setr|sets→setc,readyr|readys→readyc,tokenr|tokens→tokenc}(

ControllerTop(0, 3)||Controller(0, 1, 1)||Controller(2, 3, 1)||
TLC (0, 2, true, false)||TLC (1, 2, false, false)||
TLC (2, 2, false, false)||TLC (3, 2, false, false)));

In order to understand the state space of components and sets of sub-components, we look
at the size of the whole state space, the size of the state space without the top controller,
and the size of half the system with one controller and two TLCs. The results are listed in
Table 6.5 for a system with four and eight traffic light controllers. In case of four traffic
lights, a half system has two traffic lights and one controller. In case of eight traffic lights,
a half system has four traffic lights and three controllers. The results of the sizes of the
state spaces are given in the columns under the header ‘bottom control’. In all cases the
size of the state space modulo branching bisimulation is also given. Here all internal
actions are hidden and the external actions show , set and ready are visible.

What we note is that the sizes of the state spaces are large. In particular the size of the state
space modulo branching bisimulation of the system without the top controller multiplied
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with the size of the top controller is almost as large as the size of the total state space.
The state space of the top controller for four traffic lights has 9 states and the one for
eight traffic lights has 17 states. It makes little sense to use compositional verification in
this case, but the fact that the top controller hardly restricts the behavior of the rest of the
system saves the day. If the top controller is more restrictive compositional verification
makes no sense at all.

If we analyse the large state space of this system, we see that the independent behavior
of the controllers substantially adds to the size of the state space. We can restrict this by
giving more control to the top controller. Whenever it receives a request to set a traffic
light to green, it stores it in a set called requests . Whenever a traffic light is allowed to go
to green, indicated by busy equals false, the top controller non-deterministically selects
an index of a traffic light from requests and instruct it to go to green. The specification of
the new top controller is given below.

proc ControllerTop(id low , idhigh :N) = ControllerTop(id low , idhigh , ∅, false);

ControllerTop(id low , idhigh :N, requests:Set(N), busy :Bool) =∑
n:N(id low≤n ∧ n≤idhigh ∧ n/∈requests)→

set(n)·ControllerTop(id low , idhigh , requests∪{n}, busy)+∑
n:N(id low≤n ∧ n≤idhigh ∧ n∈requests ∧ ¬busy)→

sets(n, 1)·ControllerTop(id low , idhigh , requests \ {n}, true)+∑
n:N(id low≤n ∧ n≤idhigh ∧ n∈requests)→

readyr(n, 1)·ready(n)·
ControllerTop(id low , idhigh , requests, false);

The resulting state spaces are given in Table 6.5 under the header ‘bottom and top control’.
The first observation is that the sizes of the state spaces without top control and of a half
system have not changed. This is self evident, as only the top controller has been replaced.
It is important to note that the sizes of the state space modulo branching bisimulation of
the system without top controller is almost as large as the unreduced state space of the full
system for four traffic lights. For eight traffic lights the intermediate reduced state space
is much larger than the unreduced system of the full state space.

We can remove the low level control via the exchange of the token. This is possible be-
cause the top controller now guarantees that at most one traffic light shows green. This is
done by replacing the specification of the traffic light controller by the simple specification
below. Note that the communication topology of the system now has a tree structure.

proc TLC (id , level :N) =
setr(id , level)·show(id , green)·show(id , red)·

readys(id , level)·TLC (id , level);

We are not interested anymore in the behavior of the system with all the traffic light con-
trollers and no top controller. We only need to look at the sizes of the half systems which
can be reduced and both half systems can directly be combined with the top controller.
Note that in this way we circumvent the blow-up of intermediate processes. Note also that
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the resulting state spaces modulo branching bisimulation for the system with ‘top control’
are the same as those for ‘bottom and top control’. This shows that the token exchange
is really immaterial when the top controller guarantees that at most one traffic light goes
to green. Finally, note that the half systems with bottom control are only slightly bigger
than the half systems with top control. From this we can conclude that token exchange by
itself does not contribute substantially to the size of the state space.

6.9 Guideline VII: Specify external behavior of sets of
sub-components

In the previous section we mentioned that stepwise composition and reduction might be a
way to avoid a blow-up of the state space. But we observed that sometimes the composed
behavior of sets of components is overly complex, and contains far too many states, even
after applying a behavioral reduction.

In order to keep the behavior of such sets of components small, it is useful to first design
the desired external behavior of this set of components, and to subsequently design the
behavior of the components such that they meet this external behavior. The situation is
quite comparable to the implementation of software. If the behavior is governed by the
implementation, a system is often far less understandable and usable, than when a precise
specification of the software has been provided first, and the software has been designed
to implement exactly the specified behavior.

The use of external behavior for various purposes was most notably defended in the realm
of protocol specification [84], although keeping the state space small was not one of these
purposes. The word service was commonly used in this setting for the external behavior.
More recently, the ASD development method has been proposed, where a system is to
be defined by first specifying the external behavior of a system, which is subsequently
implemented [20]. The purpose here is primarily to allow a designer to keep control over
his system.

In order to illustrate how specifications can be used to keep external behavior small, we
provide a simple example, and show how a small difference in the behavior of the com-
ponents has a distinctive effect on the complexity in terms of states. From the perspective
of the task that the components must perform, the difference in the description looks rela-
tively minor. The example is inspired by the third sliding window protocol in [73] which
is a fine example of a set of components that provides the intended task but has a virtually
incomprehensible external behavior.

Our system is depicted in Figure 6.15. The first specification has a complex external
behavior whereas the external behavior of the second is straightforward. The system
consists of a device-monitor and a controller that can be started (start) or stopped (stop)
by an external source. The device-monitor observes the status of a number of devices and
sends the defected device number to the controller via the action broken . The controller
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DeviceMonitor Controller
brokenc(n) out

start
stop

Figure 17: A system comprises a controller and a device-monitor

buffer by a function from natural numbers to booleans. Ifbuff (i) is true, it indicates that a fault report has
been received for devicei. The boolean parameterb indicates whether the controller is switched on or off
and the natural numberi is the current position in the buffer, which the controller uses to cycle through the
buffer elements. It sends an actionout whenever it encounters an element that is set totrue. The internal
actionint takes place when the controller moves to investigate the next buffer place.

map M :N+;
eqn M=2;
map buff 0:N→B;
eqn buff 0 = λn:N.false;
proc DeviceMonitor =

∑
n:N(n<M)→brokens(n).DeviceMonitor ;

Controller(buff :N→B, b:B, i:N)
=

∑
n:N brokenr(n)·Controller(buff [n→true], b, i)

+ (¬buff (i)∧b)→stop·Controller(buff , false, i)
+ (¬b)→start ·Controller(buff , true, i)
+ (buff (i)∧b)→out ·Controller(buff [i→false], b, (i+1)modM)
+ (¬buff (i)∧b)→int ·Controller(buff , b, (i+1)modM)

init τ{brokenc,int}(∇{brokenc,out,start,stop,int}(Γ{brokenr|brokens→brokenc}(
Controller(buff 0, false, 0)||DeviceMonitor)));

The total number of devices is denoted byM . All positions ofbuff are initially set tofalse as indicated
by the lambda expressionλn:N.false. In this specification the controller blocks thestop request if there is
a defected device at indexi of the buffer forming a dependency between external and internal behaviour.
If we calculate the state space of the external behaviour of this system withM = 2 and apply a branching
bisimulation reduction, we obtain the state space depictedin figure 18. Note that the behaviour is remark-
ably complex. In particular a number ofτ -transitions complicate the transition system. But they cannot be
removed as they are essential for the perceived external behaviour of the system.
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stop start
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Figure 18: The system external behaviour (first specification)

Table 6 provides the number of states produced as a function of the number of devices monitored in the
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Figure 6.15 A system comprises a controller and a device-monitor

comprises a buffer that stores the status of the devices.

The first specification can be described as follows. The device monitor is straightforward
in the sense that it continuously performs actions brokens(n) for numbers n<M . The
parameter buff represents the buffer by a function from natural numbers to booleans.
If buff (i) is true, it indicates that a fault report has been received for device i. The
boolean parameter bool indicates whether the controller is switched on or off and the
natural number i is the current position in the buffer, which the controller uses to cycle
through the buffer elements. It sends an action out whenever it encounters an element that
is set to true . The internal action int takes place when the controller moves to investigate
the next buffer place.

map M :N+;
eqn M=2;
map buff 0:N→B;
eqn buff 0 = λn:N.false;
proc DeviceMonitor =

∑
n:N(n<M)→brokens(n).DeviceMonitor ;

Controller(buff :N→B, bool:B, i:N)
=

∑
n:N brokenr(n)·Controller(buff [n→true], bool, i)

+ (¬buff (i)∧bool)→stop·Controller(buff , false, i)
+ (¬bool)→start ·Controller(buff , true, i)
+ (buff (i)∧bool)→out ·Controller(buff [i→false], bool, (i+1) modM)
+ (¬buff (i)∧bool)→int ·Controller(buff , bool, (i+1) modM)

init τ{brokenc,int}(∇{brokenc,out,start,stop,int}(Γ{brokenr|brokens→brokenc}(
Controller(buff 0, false, 0)||DeviceMonitor)));

The total number of devices is denoted by M . All positions of buff are initially set to
false as indicated by the lambda expression λn:N.false . In this specification the con-
troller blocks the stop request if there is a defected device at index i of the buffer forming
a dependency between external and internal behavior. If we calculate the state space of
the external behavior of this system with M = 2 and apply a branching bisimulation
reduction [82], we obtain the state space depicted in Figure 6.16 at the left. Note that
the behavior is remarkably complex. In particular a number of τ -transitions complicate
the transition system. But they cannot be removed as they are essential for the perceived
external behavior of the system. Table 6.6 provides the number of states produced as a
function of the number of devices monitored in the system. The table shows that the state
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map M :N+;
eqn M=2;
map buff 0:N→B;
eqn buff 0 = λn:N.false ;
proc DeviceMonitor =

∑
n:N(n<M)→brokens(n).DeviceMonitor ;

Controller (buff :N→B, bool:B, i:N)
=

∑
n:N brokenr(n)·Controller (buff [n→true], bool, i)

+ (¬buff (i)∧bool)→stop·Controller (buff , false, i)
+ (¬bool)→start ·Controller (buff , true, i)
+ (buff (i)∧bool)→out ·Controller (buff [i→false ], bool, (i+1)modM)
+ (¬buff (i)∧bool)→int ·Controller (buff , bool, (i+1)modM)

init τ{brokenc,int}(∇{brokenc,out,start ,stop,int}(Γ{brokenr |brokens→brokenc}(
Controller (buff 0, false , 0)||DeviceMonitor )));

The total number of devices is denoted byM . All positions ofbuff are initially set to
false as indicated by the lambda expressionλn:N.false. In this specification the con-
troller blocks thestop request if there is a defected device at indexi of the buffer forming
a dependency between external and internal behaviour. If wecalculate the state space of
the external behaviour of this system withM = 2 and apply a branching bisimulation
reduction [?], we obtain the state space depicted in figure 6.16 at the left. Note that the
behaviour is remarkably complex. In particular a number ofτ -transitions complicate the
transition system. But they cannot be removed as they are essential for the perceived
external behaviour of the system. Table 6.6 provides the number of states produced as
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a function of the number of devices monitored in the system. The table shows that the
state space of the original system and the state space capturing the external behaviour are
comparable. This indicates a complex external behaviour that might complicate verifica-
tion with external parties and makes understanding the behaviour quite difficult. It might

Figure 6.16 The system external behavior

space of the original system and the state space capturing the external behavior are com-
parable. This indicates a complex external behavior that might complicate verification
with external parties and makes understanding the behavior quite difficult. It might be

M No. of original states No. of external states
1st spec 2nd spec 1st spec 2nd spec

1 4 4 2 2
2 16 16 8 2
3 48 48 16 2
4 128 128 32 2
5 320 320 64 2
6 768 768 128 2
10 20.5 103 20.5 103 2.48 103 2

Table 6.6 Sizes of the original and external state space of the monitor con-
trollers

amazing that the external state space of the system is large. Actual expectation is that
it should be small, matching the specification below, depicted in the transition system in
Figure 6.16 at the right.

proc Stopped = start·Started ;
Started = out·Started + stop·Stopped ;

init Stopped ;

Investigation of the cause of the difference between the actual and the expected sizes of
the transition systems leads to the conclusion that blocking the stop action when buff (i)
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is true is the cause of the problem. If we remove this from the condition of the stop
action, we obtain the mCRL2 specification of the DeviceMonitor process below. In this
specification the stop request is processed independently from the rest of the behavior.

proc DeviceMonitor =
∑

n:N(n<M)→brokens(n).DeviceMonitor ;
Controller(buff :N→B, bool:B, i:N)

=
∑

n:N brokenr(n)·Controller(buff [n→true], bool, i)
+ bool→stop·Controller(buff , false, i)
+ (¬bool)→start ·Controller(buff , true, i)
+ (buff (i)∧bool)→out ·Controller(buff [i→false], bool, (i+1) modM)
+ (¬buff (i)∧bool)→int ·Controller(buff , bool, (i+1) modM)

As can be seen from Table 6.6, the number of states of the non-reduced model remains
the same. However, the reduced behavior is exactly the one depicted in Figure 6.16 at the
right for any constant M .

6.10 Conclusion

We have shown that different specification styles can substantially influence the number
of states of a system. We believe that an essential skill of a behavioral modellist is to make
models such that the insight that is required can be obtained. If a system is to be designed
such that it provably satisfies a number of behavioral requirements, then the behavior must
be sufficiently small to be verified. If an existing system is modeled to obtain insight in
its behavior, then on the one hand the model should reflect the existing system sufficiently
well, but on the other hand the model of the system should be sufficiently simple to allow
to answer relevant questions about the behavior of the system.

As far as we can see hardly any attention has been paid to the question how to make
behavioral models such that they can be analyzed. All attention appears to be directed
to the question of how to analyse given models better. But it is noteworthy that it is
very common in other modeling disciplines to let models be simpler than reality. For
instance in electrical engineering models are as much as possible reduced to sets of linear
differential equations. In queueing theory, only a few queueing models can be studied
analytically, and therefore, it is necessary to reduce systems to these standard models if
analytical results are to be obtained.

We provided seven guidelines, based on our experience with building models of various
systems. There is no claim that this set is complete, or even that these seven guidelines
are the most important model reduction techniques. What we hope is that this chapter will
induce research such that more reduction techniques will be uncovered, described, classi-
fied and subsequently become a standard ingredient in teaching behavioral modeling.
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7.1 Introduction

In the previous chapter we proposed a number of guidelines to tackle the state space
explosion problem, namely by designing software components such that they can easily be
verified. In this chapter we apply a number of these guidelines to the design and the formal
verification of a real industrial system, namely the controller of the power distribution unit
(PDU), we introduced earlier in Chapter 4. Through this work we propose a number of
alternative designs to achieve the required functionality of the controller. We compare
designs that uses the guidelines from those that do not. As a result, we found that the
designs that do not use the guidelines have substantially more states and may easily hit
the limit of state space explosion in case of potential future extensions.

Following the ASD approach, we start by describing a single desired external behavior of
the controller. Then, we provide two main designs, where the first uses a pushing strategy
and the second uses a polling strategy. As explained in previous chapter, by pushing we
mean that components of a system share their information with others when the infor-
mation is available, while polling means that components poll (or ask) information from
others only when it is needed. As will be demonstrated shortly, other guidelines such as
the restricted use of data and the use of global synchronous communication have been
applied further and substantially helped reducing the state space. All design alternatives
refine the external behavior of the controller so that they all provide the intended external
behavior of the system.

Throughout this chapter we use mCRL2 for formal specification and state space genera-
tion. Additionally, we use the refinement concept to prove formal refinement of designs
against the external behavior. For this we use mCRL2, CADP [2] and CSP/FDR2.

The results of this work confirm that different design styles can influence and reduce the
number of the generated states of the modeled systems and that the guidelines are effective
in practical applications.

This chapter is organized as follows. Section 7.2 gives an overview of the context of
the PDU controller. The strategies and tactics used to accomplish the tasks of modeling
and verifying the controller are described in Section 7.3. The external behavior of the
controller is detailed in Section 7.4. The designs of the controller using the pushing
strategy are demonstrated in Section 7.5, while the designs implementing the poll strategy
are described in Section 7.6. In Section 7.7 we give some statistical data, comparing the
push and poll variants and the tools used throughout this work.

7.2 The PDU controller

We start by extending the state machines of both the PCs and the PDU depicted in Figure
3.3 and Figure 3.11 with the transiting states.
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PCs and devices The state machines of the PCs are extended with transiting state to
model the start-up progress of the PC, see the state machines in Figure 7.1.

Initially, a PC is in the Off state. When it is supplied with power, it transits to the Startin-
gUp state where the Operating System (OS) boots up and then the clinical applications
are started. After the OS and the applications are up-and-running, the PC transits to the
Operational state.
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Figure 7.1 The external behavior of all PCs

The clinical applications of a PC are restarted upon receiving a restart message from the
PDU in Operational state. Additionally, when a shutdown message is received from the
PDU, the PC stops all running applications and shuts down the OS.

Behavior of the Power Distribution Controller The PDU controller implements the
extended state machine of Figure 7.2. The state machine distinguishes the following six
stable states as described in Table 7.1, and the two transiting stated as described in Table
7.2.

The state machine includes eight distinct events in total. The events PDUswitchOn and
PDUswitchOff indicate switching the mains disconnector switch on and off, respectively.
The powerOff event indicates that the user presses the PowerOff button for less than 3 sec-
onds, while the forcedPowerOff event denotes that the user presses the same button more
than 10 seconds. Both powerOn and emergencyOff represent pressing the PowerOn and
EmergencyOff buttons, respectively. ControlPowerOff and stop events indicate receiving
callback signals from both the ControlPC and the GeoPC, where the first requests the
PDU to power off the complete system and the second demands the PDU to immediately
cut down the power to the movable segments.

Table 7.3 summarizes the required tasks for each transition of the state machine. For ex-
ample, when the system is in the System Off state and the user presses the PowerOn but-
ton, all permanent and switchable taps are switched on, and therefore all PCs and devices
start-up. Eventually, all PCs and devices are started-up and the system can potentially
move to the System On state.
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Figure 7.2 The high-level behavior of the PDU [60]

State Property
PDU Off The mains disconnector switch is open which means that the

PDU is powerless. All PCs and devices are off.
System Standby The permanent power taps are powered. All switchable taps are

powerless. ControlPC is on.
System On All permanent and switchable taps are powered. All PCs and

devices are on.
GEO Stop Similar to the System On state, only the movable parts are pow-

erless. All PCs and devices are on. Motorized movements are
disabled.

System Off All permanent and switchable taps are powerless. All PCs and
devices are off.

Emergency Off All permanent and switchable taps are powerless. All PCs and
devices are off.

Table 7.1 The stable states of the PDU state machine [60]
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State Property
StartingUpControlPC The permanent power taps are powered. The ControlPC is

starting up.
StartingUpAllPCs All permanent and switchable taps are powered. Not all PCs

or devices are fully operational.

Table 7.2 The transiting states of the PDU state machine [60]

Transition Activity
1 Boot PDU; the PDU switches on all permanent power taps; the Con-

trolPC is starting up.
2 The PDU switches on all switchable taps, one by one to avoid a big

inrush current; all devices are starting up.
3 The PDU broadcasts a “shutdown” message to shutdown all control

devices except the ControlPC; the PDU switches off all switchable
taps when power load is below a threshold or when the timer expires.

4 The PDU immediately switches off all power taps.
5 The PDU broadcasts a “shutdown” message to shutdown all control

devices including the ControlPC; the PDU switches off all taps when
power load is below threshold or when the timer expires.

6 The PDU switches on all taps, one by one to avoid a big inrush cur-
rent; all devices are starting up.

7 The PDU broadcasts a “restart” message; the applications of all con-
trol devices are restarted.

8 Disconnect the PDU internal power bus.
9 The PDU switches on all taps, one by one to avoid a big inrush cur-

rent; all devices are starting up.
10 The PDU switches off the power taps that supply motor drives of

movable parts.
11 The PDU switch on the power taps that supply motor drives of mov-

able parts.
12 The PDU is switched off; all taps are switched off.

Table 7.3 The activities required for each transition of the PDU state machine
[60]

In the System On state, if the user again presses the PowerOn button, the PDU broad-
casts a restart message over the Ethernet network. Consequently, the PCs and devices
shall restart their applications. But, if the user presses the PowerOff button for less than
3 seconds, the PDU broadcasts a shutdown message over the Ethernet network. Upon
receiving the message by the PCs, they gradually shutdown their applications and then
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their OS. When all PCs and devices are shutdown, the taps will be made powerless by the
PDU.

Beside the above mentioned events we introduce a number of indication callback events
that reflect the status (or modes) of the system:

• the startingUp event informs external users that the system is in the process of
starting up its components,

• the systemStandby event notifies users that the system is in the System StandBy
state,

• the off event tells users that the entire system is off,

• the systemOn event informs users that the system is up-and-running and fully oper-
ational,

• and the geoStop event indicates users that all motorized movements are disabled.

7.3 Strategy and tactics

The conceptual structure of the specification of the PDU controller is depicted in Figure
7.3. The external behavior of the PDU and the PCs are depicted as ovals. The design of
the PDU controller is shown as a square shape. The communication channels with the
direction of information flow are depicted using arrows.

IndicationCB

IPDU

PDU

ControlPC GeoPc

IGeoPC

ControlPC GeoPC

The combined model

refines the external

specification of the

PDU. It must be

deadlock, livelock

and illegal free.

External specification

of the PDU

PDU controller

design

PDU

External

specification of

the GeoPC
Other pcs

Other 

Devices 

and PCs

IPC

Other pcsNormal PC

Other 

Devices 

and PCs
PC

IPDU

IndicationCB

IControlPC

Figure 7.3 Conceptual structure of the specification of the PDU controller

The figure shows the structure of a combined model that includes the parallel compo-
sition of the PDU controller and the external specification of the PCs, highlighting the



7.3 Strategy and tactics 135

communication channels used for exchanging information among the components. Each
design alternative of the PDU controller has a different combined model. To construct
these models we have followed a number of steps, summarized below.

Modeling the external behavior of the PDU First, we modeled the desired external
behavior of the PDU with respect to the external users of the system. This specification
includes all external commands issued by the user console plus all indication callback
signals sent to the user. The specification is identical for all design alternatives, and is
used as a guide for implementing the alternative designs we are comparing. This external
behavior excludes any internal interaction with the PCs.

Describing the external behavior of the PCs The external behavior of each PC is
described with respect to the interaction required with the PDU. The description excludes
any activities performed internally by the PC.

Constructing alternative designs for the PDU controller We design the PDU con-
troller in two manners, namely a design where PCs ‘push’ their information to the PDU
when the information is available, and another design where the PDU ‘polls’ information
from the PCs whenever it is required.

For each design manner there are a number of alternatives that assist further reducing the
state space. All design alternatives adhere to the external specification, and provide the
external users of the system with the expected behavior.

Modeling conventions In the specification of all models any action pre-fixed by the
letter ‘r’ denotes the receiving party of a communication whereas actions pre-fixed by ‘s’
denote the sending party. The result of a communication is denoted by an action without
any pre-fixed letter.

Specification completeness In every state of the external behavior of the PCs we assign
illegal responses to the stimuli if they are not expected in a state. The same response
is assigned to callbacks received from the PCs in the specification of the PDU design
for detecting unexpected callbacks. During the behavioral verification we search for the
occurrences of such an event plus deadlock and livelock scenarios.

Refining the external behavior Each design alternative is checked against the exter-
nal specification using a number of refinement models: weak-trace [23], Failures [78],
Failures-Divergence [78], observational [68], safety [18], branching-bisimulation [82]
and Tau* [31]. The reason of choosing refinement over equivalence check is that checking
equivalence may tend to be overly complex. It may require that both the implementation
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and the external behavior to strictly have the same structure, so the external specification
might be forced to be adjusted to satisfy the structure of the design. This is what we are
trying to avoid here.

Instead of using equivalence checks we prove refinement of designs by means of inclu-
sion (or preorder) checks. Precisely, we prove that the behavior of a design is included
in the behavior of the external specification. Upon the success of the check we know
that the design always exposes expected behavior to the external world under the refine-
ment model being used, i.e., no extra unexpected behavior would result from the concrete
implementation of the design crossing the external boundary.

We believe that specifying the external behavior of a system prior to its implementation
assists constructing the system better, but does not guarantee building the internal behav-
ior of the system correctly. Checking correctness of internal behavior of systems can be
accomplished by other means such as searching for deadlocks, livelocks, illegal interac-
tions and verifying properties on systems.

The details of the steps performed throughout this case are addressed in the subsequent
sections.

7.4 The external specification of the PDU controller

We started our modeling activities by considering the fifth guideline. The external specifi-
cation of the PDU controller in the mCRL2 language is listed below. It precisely describes
the external behavior of the PDU, with respect to the external users, reflecting the internal
modes of the system using states and visible indication callbacks, matching the state ma-
chine of Figure 7.2. It includes all user commands as input stimuli, and all user indication
callbacks as responses to the external world. It excludes all internal interactions such as
internal system messages and powering on/off the PCs.

proc ExtSpec(s:State) = (
(s≈PDU Off )→(

IPDU(PDUswitchOn)·IndicationCB(startingUp)·ExtSpec(StartingUpCrPC)
)+

(s≈System StandBy)→(
IPDU(PDUswitchOff)·ExtSpec(PDU Off )

+ IPDU(powerOn)·IndicationCB(startingUp)·ExtSpec(StartingUpAllPCs)
+ IPDU(powerOff)·ExtSpec(System StandBy)
+ IPDU(forcedPowerOff)·IndicationCB(off)·ExtSpec(System Off )
+ IPDU(emergencyOff)·IndicationCB(off)·ExtSpec(Emergency Off )
+ int·IndicationCB(off)·ExtSpec(System Off )

)+
(s≈System On)→(

IPDU(PDUswitchOff)·ExtSpec(PDU Off )
+ IPDU(powerOn)·IndicationCB(startingUp)·ExtSpec(StartingUpAllPCs)
+ IPDU(powerOff)·IndicationCB(systemStandby)·ExtSpec(System StandBy)
+ IPDU(forcedPowerOff)·IndicationCB(off)·ExtSpec(System Off )
+ IPDU(emergencyOff)·IndicationCB(off)·ExtSpec(Emergency Off )



7.4 The external specification of the PDU controller 137

+ int·IndicationCB(off)·ExtSpec(System Off )
+ int·IndicationCB(geoStop)·ExtSpec(Geo Stop)

)+
(s≈StartingUpAllPCs)→(

IPDU(PDUswitchOff)·ExtSpec(PDU Off )
+ IPDU(powerOn)·ExtSpec(StartingUpAllPCs)
+ IPDU(powerOff)·IndicationCB(systemStandby)·ExtSpec(System StandBy)
+ IPDU(powerOff)·ExtSpec(StartingUpCrPC)
+ IPDU(forcedPowerOff)·IndicationCB(off)·ExtSpec(System Off )
+ IPDU(emergencyOff)·IndicationCB(off)·ExtSpec(Emergency Off )
+ int·IndicationCB(off)·ExtSpec(System Off )
+ int·IndicationCB(systemOn)·ExtSpec(System On)
+ int·ExtSpec(StartingUpAllPCs)
+ int·IndicationCB(geoStop)·ExtSpec(Geo Stop)

)+
(s≈Geo Stop)→(
IPDU(PDUswitchOff)·ExtSpec(PDU Off )

+ IPDU(powerOn)·IndicationCB(systemOn)·ExtSpec(System On)
+ IPDU(powerOff)·IndicationCB(systemStandby)·ExtSpec(System StandBy)
+ IPDU(forcedPowerOff)·IndicationCB(off)·ExtSpec(System Off )
+ IPDU(emergencyOff)·IndicationCB(off)·ExtSpec(Emergency Off )
+ int·IndicationCB(off)·ExtSpec(System Off )

)+
(s≈System Off )→(

IPDU(PDUswitchOff)·ExtSpec(PDU Off )
+ IPDU(powerOn)·IndicationCB(startingUp)·ExtSpec(StartingUpAllPCs)
+ IPDU(powerOff)·ExtSpec(System Off )
+ IPDU(forcedPowerOff)·ExtSpec(System Off )
+ IPDU(emergencyOff)·ExtSpec(Emergency Off )

)+
(s≈Emergency Off )→(

IPDU(PDUswitchOff)·ExtSpec(PDU Off )
+ IPDU(powerOn)·IndicationCB(startingUp)·ExtSpec(StartingUpAllPCs)
+ IPDU(powerOff)·ExtSpec(Emergency Off )
+ IPDU(forcedPowerOff)·ExtSpec(Emergency Off )
+ IPDU(emergencyOff)·ExtSpec(Emergency Off )

)+
(s≈StartingUpCrPC)→(
+ IPDU(PDUswitchOff)·ExtSpec(PDU Off )
+ IPDU(powerOn)·ExtSpec(StartingUpCrPC)
+ IPDU(powerOff)·ExtSpec(StartingUpCrPC)
+ IPDU(forcedPowerOff)·IndicationCB(off)·ExtSpec(System Off )
+ IPDU(emergencyOff)·IndicationCB(off)·ExtSpec(Emergency Off )
+ int·IndicationCB(systemStandby)·ExtSpec(System StandBy)

));

To briefly explain the model we choose the System On state as an example. The state
includes seven summands in total. It precisely describes that when the PDU is in the
System On state, it can receive any external command from the users. This is indicated
by the first five summands. Upon receiving an external command the PDU may send
indication callback signals and then transits to a next state. For example, when the PDU
receives the powerOff command, it sends the systemStandby indication to the external
users and then transits to the System StandBy state.
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The last two summands of the state represent the cases where external users can receive
indications that the system is off or transiting to the Geo Stop state, due to some internal
interactions with the PDU. Both int events represent detailed activities performed by the
concrete implementation of the PDU. For example, int.IndicationCB(off) represents the
following internal activities:

1. The user of the ControlPC has requested the PDU to power off the entire system
via the internal controlPowerOff callback event.

2. The PDU treats the signal by sending the shutdown message around to all devices.

3. The PDU switches all taps off.

4. The PDU sends the IndicationCB(off) signal to the external world.

5. The PDU transits to the System Off state.

The same technique had been applied to all states of the PDU, matching the original state
machine of Figure 7.2. The complete specification of the model can be found in [44],
Appendix A.

When the specification of the model was completed, it was checked for absence of dead-
locks and livelocks. The corresponding LTS had been generated, and used at later stages
for the refinement check against the concrete designs of the PDU using mCRL2 and
CADP.

7.5 Implementing the PDU controller using the push strat-
egy

In this variant, the design of the controller utilizes a pushing strategy, in the sense that all
PCs share information with the PDU controller upon changes in their internal states. This
is illustrated in the sequence diagram in Figure 7.4. For instance, when the PDU is in the
System On state and the Stop button is pressed, the GeoPC notifies the PDU controller by
sending the stop callback event. The same applies to the controlPowerOff callback from
the ControlPC. Furthermore, when the PCs are powered on by the PDU, the PDU waits
for callbacks from the PCs indicating that they are ready and fully operational.

7.5.1 The external behavior of the PCs

In this section we introduce the external specification of the ControlPC that describes the
external behavior that is related to the PDU controller. Similarly, the specification of the
remaining PCs is straightforward and therefore omitted from the text, but can be found in
[44], Appendix B. The specification of the PCs are identical for all push design variants.
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Figure 7.4 Example of a scenario where pushing is used

proc ControlPC (s:PCState) = (
(s≈PC Off )→(

rICR PC(powerOn)·ControlPC(StartingUp)
+ rICR PC(powerOff)·Illegal·delta
+ rICR PC Broadcast(restart)·Illegal·delta
+ rICR PC Broadcast(shutdown)·Illegal·delta

)+
(s≈Operational)→(

rICR PC(powerOn)·Illegal·delta
+ rICR PC(powerOff)·ControlPC(PC Off )
+ sICR PC CB(controlPowerOff)·ControlPC(WaitingShutdown)
+ rICR PC Broadcast(restart)·ControlPC(StartingUp)
+ rICR PC Broadcast(shutdown)·ControlPC(OS Shutdown)

)+
(s≈WaitingShutdown)→(
rICR PC(powerOn)·Illegal·delta

+ rICR PC(powerOff)·ControlPC(PC Off )
+ rICR PC Broadcast(restart)·ControlPC(StartingUp)
+ rICR PC Broadcast(shutdown)·ControlPC(OS Shutdown)

)+
(s≈OS Shutdown)→(
rICR PC(powerOn)·Illegal·delta

+ rICR PC(powerOff)·ControlPC(PC Off )
+ rICR PC Broadcast(restart)·Illegal·delta
+ rICR PC Broadcast(shutdown)·Illegal·delta

)+
(s≈StartingUp)→(

rICR PC(powerOn)·Illegal·delta
+ rICR PC(powerOff)·ControlPC(PC Off )
+ rICR PC Broadcast(restart)·Illegal·delta
+ rICR PC Broadcast(shutdown)·Illegal·delta
+ sICR PC CB(started)·ControlPC(Operational)

)
);
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The specification of the ControlPC is straightforward. It includes five states. In any state
the ControlPC can receive a number of legal and illegal stimuli events.

Note that, when the ControlPC is in the StartingUp state, it can send (or push) the
sICR PC CB(started) callback event to the PDU and then transits to the Operational state.
Similarly, when the ControlPC is in the Operational state, it can send the callback event
sICR PC CB(controlPowerOff) to the PDU, as a request to power off the entire system.

7.5.2 The design of the PDU controller

There are mainly four alternative models for the PDU designs that incorporate the push
strategy. The details of each of them are introduced below.

The asynchronous PDU controller In this variant the PDU controller communicates
with the PCs synchronously and sequentially one-by-one, but the PCs communicate with
the PDU asynchronously. The PDU includes a queue to store incoming callback events
from the PCs.

The first issue we encountered when verifying this variant was the queue size and the
large number of interleaving caused by the queue and the external commands. The PCs
can quickly send callback events to the queue leading to filling-up a queue of any arbitrary
size. External commands can arrive while there are still unprocessed callbacks in the
queue, hence verification was initially not doable.

Therefore, we had to limit the behavior of the PCs such that having more than one similar
callback at a time in the queue is prohibited. Furthermore, we give any callback event a
priority to be processed by the PDU over any external user command, so the queue has to
be emptied first.

Below we introduce a part of the design specification, demonstrating only the PDU Off
stable state and the StartingUp CR PC transiting state. The entire specification can be
found in [44], Appendix B.

proc PDU State Machine(s:PDUState,
geopcOn, crpcOn, geoPressed :Bool , startedPc:Nat) = (

(s≈PDU Off )→(
rIPDU(PDUswitchOn)·sICR PC(powerOn)·IndicationCB(startingUp)·

PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,
geoPressed, startedPc)

+ rICR PC CB(controlPowerOff)·
PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)

+ rIGeoPC CB(stop)·
PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)

+ rICR PC CB(started)·
PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)

+ rIGeoPC CB(started)·
PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)
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+
∑

id:N+ ·rIPC CB(id, started)·
PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)

)+
(s≈StartingUp CR PC)→(
rIPDU(PDUswitchOff)·sICR PC(powerOff)·

PDU State Machine(PDU Off , geopcOn, crpcOn, geoPressed, startedPc)
+ rIPDU(powerOn)·

PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,
geoPressed, startedPc)

+ rIPDU(powerOff)·
PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,

geoPressed, startedPc)
+ rIPDU(forcedPowerOff)·sICR PC(powerOff)·IndicationCB(off)·

PDU State Machine(System Off , geopcOn, crpcOn,
geoPressed, startedPc)

+ rIPDU(emergencyOff)·sICR PC(powerOff)·IndicationCB(off)·
PDU State Machine(Emergency Off , geopcOn, crpcOn,

geoPressed, startedPc)
+ rICR PC CB(controlPowerOff)·Illegal·delta
+ rICR PC CB(started)·IndicationCB(systemStandby)·

PDU State Machine(SystemStandby, geopcOn, crpcOn,
geoPressed, startedPc)

+ rIGeoPC CB(stop)·
PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,

geoPressed, startedPc)
+ rIGeoPC CB(started)·

PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,
geoPressed, startedPc)

+
∑

id:N+ ·rIPC CB(id, started)·
PDU State Machine(StartingUp CR PC, geopcOn, crpcOn,

geoPressed, startedPc)
)+

....(the specification of the rest of states follows)
);

The first summand of the PDU Off state specifies that when the PDU is switched on, it
powers on the ControlPC, sends an indication to the user that the system is starting-up
and transits to the StartingUp CR PC state. The other remaining summands of the state
specify that any (late) callback events received in the state are consumed.

When the PDU is in the StartingUp CR PC, it can process a number of external com-
mands and internal callbacks. All callbacks are ignored except those originating from the
ControlPC. When the PDU knows that the ControlPC is ready and fully operational by
receiving the rICR PC CB(started) from the queue, it sends an indication to the user that
the system is in the SystemStandby state. Receiving a request to power off the system
from the ControlPC is illegal since the ControlPC has to start first, see the summand that
corresponds to the rICR PC CB(controlPowerOff) stimulus event.

The specification of the PDU controller includes a number of data parameters used for
remembering the status of the PCs. For example, the startedPc data parameter is of type
natural number and is used to count how many normal PCs have started.



142 Chapter 7. Applying the Guidelines to the PDU Controller

The asynchronous PDU controller with global synchronous communication The
model of this variant is almost identical to the previous model, except that the fourth
guideline is used. We noticed that powering on/off the PCs can be modeled using multi-
actions. That is, instead of modeling this behavior by sending the powerOn or powerOff
events to the PCs sequentially, all PCs engage into one big action, denoting that the event
occurs at the same time for all PCs.

To clarify the concept, consider the following examples. The following Handler process
communicates with the PDU (via the rcommandhandler and srelease actions) and the PCs
(via the sIPC action), where all communications are done sequentially until completion.
This process is used in the specification of the asynchronous push model addressed earlier.

proc Handler =∑
c:Command ·rcommandhandler(c)|sIPC(1, c)·

sIPC(2, c)·sIPC(3, c)·sIPC(4, c)·srelease|sIPC(5, c)·Handler

Obviously, this process results in five successive states, with the possibility of interleaving
with other processes.

On the other hand, the following Handler process describes the use of multi-actions, used
for this design variant. All communications with PCs are done in one step.

proc Handler =∑
c:Command ·rcommandhandler(c)|sIPC(1, c)|sIPC(2, c)|

sIPC(3, c)|sIPC(4, c)|sIPC(5, c)·Handler

Clearly, this process results in a single state.

Since the number of states are reduced to a single state, the entire state space can also be
reduced, taking into account the reduced interleaving. The complete specification of this
model is listed in [44], Appendix C.

The synchronous PDU controller In this variant all interactions between the PDU and
the PCs are synchronous. In contrast with the previous variants, the PDU does not include
any queue, and all received callbacks from the PCs are processed synchronously. Still,
all PCs inform (or push) the PDU upon the changes of their states, but in a synchronous
manner.

The specification of this variant is listed in [44], Appendix D. The specification is similar
to the asynchronous variant except that the queue placed between the PDU and the PCs is
removed.

The synchronous PDU controller with global synchronous communication Here,
the model of synchronous PDU controller above is adapted, such that powering on/off
PCs is accomplished by multi-actions. The detail of using multi-actions is previously de-
scribed for the asynchronous controller with global synchronous communication variant,
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and hence is omitted here. The complete specification of this variant is introduced in [44],
Appendix E.

7.6 Implementing the PDU controller using the poll strat-
egy

In this section we present a model that describes the implementation of the PDU controller
using a polling strategy. We used the first guideline to accomplish this model. Using this
style, the PDU controller polls the PCs to acquire their states. Figure 7.5 visualizes an
example of polling used for designing the controller.
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Figure 7.5 Example of a scenario where polling is used

7.6.1 The external behavior of the PCs

Before describing the design of the controller, we first need to describe the external be-
havior of the PCs. Below, a fragment of the mCRL2 specification related to the external
behavior of the ControlPC is described. The specification of the GeoPC and the normal
PCs are straightforward and almost identical to this specification.
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proc ControlPC (s:PCState) = (
(s≈PC Off )→(

rICR PC(powerOn)·ControlPC(PC On)
+ rICR PC(powerOff)·Illegal·delta
+ rICR PC(queryCRPCStatus)·Illegal·delta
+ rICR PC(queryCRPCPowerOffF lag)·Illegal·delta
+ rICR PC Broadcast(restart)·Illegal·delta
+ rICR PC Broadcast(shutdown)·Illegal·delta

)+

(s≈PC On)→(
rICR PC(powerOn)·Illegal·delta

+ rICR PC(powerOff)·ControlPC(PC Off )
+ rICR PC(queryCRPCStatus)·sICR PCrV al(IsOperational)·

ControlPC(PC On)
+ rICR PC(queryCRPCStatus)·sICR PCrV al(IsNotOperational)·

ControlPC(PC On)
+ rICR PC(queryCRPCPowerOffF lag)·sICR PCrV al(IsOn)·

ControlPC(PC On)
+ rICR PC(queryCRPCPowerOffF lag)·sICR PCrV al(IsOff)·

ControlPC(PC On)
+ rICR PC Broadcast(restart)·ControlPC(PC On)
+ rICR PC Broadcast(shutdown)·ControlPC(OS Shutdown)

)+
(s≈OS Shutdown)→(
rICR PC(powerOn)·Illegal·delta

+ rICR PC(powerOff)·ControlPC(PC Off )
+ rICR PC(queryCRPCStatus)·Illegal·delta
+ rICR PC(queryCRPCPowerOffF lag)·sICR PCrV al(IsOff)·

ControlPC(OS Shutdown)
+ rICR PC Broadcast(restart)·ControlPC(OS Shutdown)
+ rICR PC Broadcast(shutdown)·ControlPC(OS Shutdown)

) ) ;

As can be seen from the specification, the ControlPC has three main states:

• PC Off: the PC is off, which means that the tap is switched off;

• PC On: the PC is on, which means that the tap is switched on, but the applications
on the PC can be operational or not; and

• OS Shutdown: the tap is on but the OS and the applications are shut down.

Per state it is defined which calls are allowed to be issued by the design of the PDU
controller, and which of them are illegal. Every query (or poll) method has a return value
that is immediately sent back to the PDU.

When the ControlPC is powered on, it can receive a number of signals by polling. The
ControlPC non-deterministically replies to these signals indicating its current state: for
example, observe the summands with queryCRPCStatus and queryCRPCPowerOffFlag
calls which non-deterministically return a value in the PC On state.
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7.6.2 The design of the PDU controller

The PDU controller design has to adhere to the external specification of the PDU on
the one hand, and to correctly use the specifications of the PCs on the other hand. To
implement a polling mechanism, the PDU utilizes internal timers to stimulate the PDU
to poll status of the PCs in certain states. As we will see shortly, the fourth guideline
is employed to abstract from concrete data values of the timer. For example, we abstract
from the progress of timer values in milliseconds by a single event denoting the expiration
of the time.

Moreover, the third guideline is used for modeling the start-up behavior of the system.
Compared to the push model the PDU sequentially polls information about the state of
the PCs, when it is needed. The PDU does not expect any spontaneous information to
be pushed by the PCs. The complete specification of this variant can be found in [44],
Appendix F.

Below we introduce a fragment of the controller design specification, related to PDU Off,
StartingUpCrPC and WaitingCRPCReply states.

proc PDU State Machine(s : PDUState, cRPCstarted , geoPCstarted ,
geoPressed : Bool , state : PDUState) = (

(s≈PDU Off )→(
IPDU(PDUswitchOn)·sICR PC(powerOn)·IndicationCB(startingUp)·

PDU State Machine(StartingUpCrPC, false, false, false, none)
)+

(s≈StartingUpCrPC)→(
IPDU(PDUswitchOff)·sICR PC(powerOff)·

PDU State Machine(PDU Off , cRPCstarted,
geoPCstarted, geoPressed, state)

+ IPDU(powerOn)·
PDU State Machine(StartingUpCrPC, cRPCstarted,

geoPCstarted, geoPressed, state)
+ IPDU(powerOff)·

PDU State Machine(StartingUpCrPC, cRPCstarted,
geoPCstarted, geoPressed, state)

+ IPDU(forcedPowerOff)·sICR PC(powerOff)·IndicationCB(off)·
PDU State Machine(System Off , cRPCstarted,

geoPCstarted, geoPressed, state)
+ IPDU(emergencyOff)·sICR PC(powerOff)·IndicationCB(off)·

PDU State Machine(Emergency Off , cRPCstarted,
geoPCstarted, geoPressed, state)

+ IPDUTimer(pollPC)·sICR PC(queryCRPCStatus)·
PDU State Machine(WaitingCRPCReply, cRPCstarted,

geoPCstarted, geoPressed, state)
)+

...
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(s≈WaitingCRPCReply)→(
rICR PCrV al(IsOperational)·IndicationCB(systemStandby)·

PDU State Machine(System Standby, true,
geoPCstarted, geoPressed, state)

+ rICR PCrV al(IsNotOperational)·
PDU State Machine(StartingUpCrPC, false,

geoPCstarted, geoPressed, state)
)+

...
) ;

The fragment describes that when the system is switched on in the PDU Off state, the
ControlPC is powered on, the user gets an indication that the system is starting up, and
the PDU transits to the StartingUpCrPC state. As can be inferred from the specification,
the StartingUpCrPC state is used to not only monitor the progress of starting up the
ControlPC, but also to react upon the external requests from users.

Then, when the PDU is stimulated by the timer via the pollPC signal, the PDU requests
the state of the ControlPC by sending the queryCRPCStatus signal and transits to the
WaitingCRPCReply state, waiting a response from the ControlPC. As specified in the ex-
ternal behavior of the ControlPC, either IsOperational or IsNotOperational signals are
returned to the PDU. Depending on the return value, the PDU transits back to Startin-
gUpCrPC (and hence can query the status of the ControlPC again), or gives an indication
that the system is in standby and transits to the System Standby state.

Similarly, when the system is in the System Standby stable state and the PowerOn button is
pressed, the PDU transits to the StartingUpAllPCs state where all other PCs are checked,
in the same manner of checking the status of the ControlPC described above.

...
(s≈WaitingPC1statusReply)→(
rIPCrV al(1, IsOperational)·sIPC(2, queryPCstatus)·

PDU State Machine(WaitingPC2statusReply, cRPCstarted,
geoPCstarted, geoPressed, state)

+ rIPCrV al(1, IsNotOperational)·
PDU State Machine(StartingUpAllPCs, cRPCstarted,

geoPCstarted, geoPressed, state)
)+

(s≈WaitingPC5statusReply)→(
(!geoPressed)→rIPCrV al(5, IsOperational)·IndicationCB(systemOn)·

PDU State Machine(System On, cRPCstarted,
geoPCstarted, geoPressed, state)

+ (geoPressed)→rIPCrV al(5, IsOperational)·IndicationCB(geoStop)·
PDU State Machine(Geo Stop, cRPCstarted,

geoPCstarted, geoPressed, state)
+ rIPCrV al(5, IsNotOperational)·

PDU State Machine(StartingUpAllPCs, cRPCstarted,
geoPCstarted, geoPressed, state)

)+
...

That is, the first PC is checked if it is operational or not. If the first PC is not operational,
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the system can transit back to the StartingUpAllPCs state; see for example the specifi-
cation of the WaitingPC1statusReply state above. If the first PC is operational, then the
second PC is checked, and so on until all PCs are operational. When the last PC is oper-
ational, an indication is sent to the user, and then the PDU moves to the System On state,
see the WaitingPC5statusReply state.

During starting up of all PCs, the PDU queries the GeoPC and the ControlPC to check the
status of whether any of the Stop buttons has been pressed or if the user needs to power
off the entire system. If these flags are on, on the respective PCs, the PDU immediately
switches off the taps supply the movable part or starts to power off the entire system.
The PDU remembers the status of the Stop button, and therefore, when the last PC is
operational, the PDU transits to System On or Geo Stop stable states.

The poll controller with global synchronous communication In combination with the
first guideline, we use guideline 2 to model the instantaneous powering on or off the PCs.
The same global synchronous communication concept used for the Handler process of the
push model is also used here. We refer to Appendix G in [44] for the entire specification
of this model.

7.7 Results of the experiments

After the specification of all models were created using the mCRL2 description language,
we started the verification tasks. We used the mCRL2 tool set (July 2011 release) for
performing verification and state space generation on a Unix-based server machine (4
× 2.5 Ghz processor and 46 GB RAM). The generated state spaces of all models were
further analyzed using CADP (June 2011 beta release) for checking deadlocks, livelocks,
illegals and proving refinements of designs against the external specification.

Table 7.4 depicts the activities performed throughout this work together with the tools
used to accomplish each of them. The ‘X’ mark indicates a feature supported by the tool
and being used in this work, ‘−’ denotes that the feature is supported by the tool but is
not being used in this work, and ‘×’ indicates that the tool does not support the feature.
As can be seen from the table, the formal specification using CADP is skipped since we
used the mCRL2 for state space generation. The state space was analyzed later using
both mCRL2 and CADP. We also translated the mCRL2 models to CSP and used FDR2
(FDR2 2.91 academic use release) for state space generation. FDR2 was used to verify
refinements under traces, failures and Failures-Divergence models, of which the last two
are not supported by both mCRL2 and CADP. When the state space of each model has
been generated, branching bisimulation reduction was applied after all internal events not
visible on the external specification are hidden, to facilitate the verification and refinement
tasks.

The three tools were used for searching for occurrences of deadlocks and illegals. All
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Activity mCRL2 CADP CSP/FDR2
Formal specification X − X
State space generation X − X
Branching Bisimulation Reduction X − ×
Checking deadlocks and illegals X X X
Checking livelocks − − X
Checking Weak-traces X X X
Checking Failures (-Divergences) × × X
Checking Observational × X ×
Checking Safety × X ×
Checking Tau* × X ×
Checking Branching × X ×

Table 7.4 List of performed tasks plus the tools used to realize them.

tools provided the same result, namely all models are deadlock and illegal free. After
we hid all events except those exposed in the external specification, we checked for the
occurrences of livelocks. Checking livelocks merely was accomplished using FDR2. The
reason of choosing FDR2 over other tools is that FDR2 provides readable, easy to analyze,
counterexamples in case livelocks exist. The mCRL2 for example can report a sequence
that leads to a cycle of tau events, but one can hardly deduce the corresponding original
actions that form the cycle. The same applies for CADP.

We encountered a similar issue when trying to prove refinement of designs against the
external behavior using both mCRL2 and CADP. The tools can easily find counterexam-
ples when a refinement check is violated, under the refinement models they support. But,
the generated counterexamples were hard to read since all original internal actions were
permanently replaced by the hidden action tau. By using mCRL2 and CADP, we spent
extra time analyzing the counterexamples and to ‘guess’ the correct original events cor-
respond to the hidden events by matching the sequence of tau’s on the original system.
This indeed caused more efforts and time to be spent for modeling and verification since
we did not efficiently know whether the design or the external specification was incorrect.
Notable is that knowing the original actions correspond to the hidden action tau when
checking refinements was straightforward in FDR2.

However, when we attempted to verify an initial model of the push design using FDR2, the
tool quickly crashed during the compilation phase. The reason is that the model initially
implements a list to store the started PCs, see the startedPc data parameter in the push
model introduced earlier. The controller needs this list during the start-up of the system in
order to know that all PCs are fully operational before moving to the System On state. It
seems that having such a list in our model caused FDR2 to crash, and thus when replacing
the list by a counter, the issue was solved indeed. Notable is that mCRL2 dealt with both
types of push models that include either a list or a counter of started PCs effectively.
The last four refinement checks were performed using CADP, which was the only tool
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supporting them.

In Table 7.5 we summarize the end result of checking refinements of designs, under a
number of refinement models. The table is self-explainable. All designs refine the exter-
nal specification under all refinement models, which means that all designs provide the
expected behavior to external users of the system according to the predefined external
specification. The only exception is the refinement of the poll models under the Failures-
Divergence model, which fails due to the presence of a livelock.

Model Weak-
traces

Fail
ures

Fail.
Diverg.

observ
ational

safety Tau* bran
ching

Async. Push X X X X X X X
Async. Push Global Sync. X X X X X X X
Sync Push X X X X X X X
Sync Push Global sync. X X X X X X X
Poll X X × X X X X
Poll Global sync. X X × X X X X

Table 7.5 Results of checking refinements of designs against the external be-
havior

The livelock exists in the poll models since internal tau loops can easily be formed, see
Figure 7.6 for a livelock scenario. For example, in case the ControlPC is not operational,
the PDU controller will query it again. This can continue forever, unless the ControlPC
becomes operational. But, since the external users can still issue external commands even
if the ControlPC is not operational, we consider this livelock to be rather benign, and
indeed the livelock represents a desired behavior.1

Note that all designs are deadlock, livelock and illegal free except the poll designs, which
are not livelock free due to the above mentioned reason.

Model States Transitions BB BBDP
External specification 15 53 13 46 13 47
Async. Push 78,088,550 122,354,296 47 173 47 173
Async. Push Global Sync. 44,866,381 75,945,810 47 173 47 173
Push sync 6,318 8,486 23 111 23 111
Push sync global sync 3,832 6,000 23 111 23 111
Poll 953 1,367 14 54 14 60
Poll global sync 608 1,022 14 54 14 60

Table 7.6 State spaces of all models

1In fact there are additional services deployed on a number of PCs for monitoring the status of PCs. If they
detect that there is some PC has failed to start, they try to start it again using its baseboard management control
(BMC) via its intelligent platform management interface (IPMI), through the Ethernet network. But, the PDU
team is not responsible of implementing these services.
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User PDU ControlPC

PDUswitchOn 

queryCRPCStatus/

IsNotOperational

powerOn

Starting Up ControlPC

ControlPC always replies 

IsNotOperationalTimer expiresRepeats

Figure 7.6 A divergence example

The last table sums up the statistical data related to the size of generated state spaces.
The second and third columns shows the number of generated states and transitions for
the entire state spaces. The branching-bisimulation (BB) columns depict the number of
resulting states and transitions after the branching-bisimulation reduction was applied on
the original state space, while those resulting from branching-bisimulation compression
with divergence preserving (BBDP) are depicted in the last columns.

The difference between the number of transitions of the poll models after compression
using BB and BBDP indicates that the poll model includes divergences. A divergence
scenario of the poll model was discussed earlier.

As can be seen from the table, the poll variants appear to be better than others, with
only 953 and 608 states. They show also fewer states after compression. This favorably
compares to the asynchronous push model which includes 78,088,550 states. Therefore,
it seems that extending the asynchronous push model further with extra details may limit
the verification process, unless the design of the PDU controller is decomposed into a
number of smaller components verified in isolation, or on-the-fly reduction techniques
are used for circumventing a foreseen state space explosion.

Finally, the above results indicate that different design styles can substantially influence
the number of states of the modeled systems. This confirms that these design styles are
effective in practice. Although more experiments need to be done with these design styles,
we are strengthened in our believe that these styles are very important and designers
should be actively aware of such strategies if they want to design verifiable systems.
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8.1 Introduction

In this chapter we summarize the achieved results of this work and the future directions.
The general theme of this thesis is to demonstrate how formal techniques were applied
to the development of industrial control components of an X-ray machine, developed at
Philips Healthcare. The thesis discusses different aspects on how the techniques were
tightly integrated into the development life cycle, investigating in depth the main encoun-
tered issues and their practical solutions. Furthermore, the thesis evaluates the effective-
ness of these techniques to the quality and the productivity of a number of developed
software units. The concept of quality refers here to the error density in terms of the num-
ber of reported defects per thousand lines of code while productivity denotes the number
of lines of code produced per hour.

The general conclusion of this work is that, in the context of Philips Healthcare, formal
techniques could deliver better quality code compared to software developed using the
traditional development methods. In some cases, e.g., the PCS, the techniques could
deliver zero-defects software, especially when they were combined with the test-driven
development method and when the components were small and manageable. Our findings
indicate the possibility of a 10 fold reduction in number of errors and also a threefold
increase in the productivity. We reached this conclusion by thoroughly investigating the
way formal techniques were applied, the peculiarities of ASD models, the related code of
the units and by carefully analyzing over 1400 defect reports. Below we summarize the
main results and the key observations that we obtained during this work.

8.2 Summary of achieved results and observations

In Chapter 3, we detailed the application of the ASD formal techniques in the BasiX
project. The technology was used for developing two software systems, namely the con-
troller of the power distribution unit (PDU) and the power control services (PCS).

First, as a result of applying ASD to formally specify and verify the controller of the
PDU, we detected and corrected two hidden errors in the design of the controller before
the actual implementation was commenced. This clearly leads to reduce the overhead and
the cost of detecting and correcting the errors at later stages of the project or after the
release of the product to the market. Using this case we found that ASD specification
completeness was in particular very effective in assisting the detection of the errors using
both manual inspections and formal verification using model checking.

Second, for the PCS a workflow that combines the ASD technology and the test-driven
development method for developing the control and non-control components of the PCS
was introduced. The main result of combining the two techniques is that the entire PCS
software exhibits zero-defects and the PCS runs correctly after deploying it on every PC
from the first execution. The reason is that the control components were developed under
the control of ASD formal techniques. Another important reason is that the components
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of the PCS were kept small and manageable. However, due to the encountered tensions
regarding the compatibility of the ASD generated code with other used tools and tech-
niques, the ASD generated code was excluded from the coding standards check and all
ASD artifacts including the ASD models were stored in the version management system.

A common view when applying ASD was that there is no need to test the generated code
since it is formally verified. But, this was not totally correct. We found that only statement
and function coverage tests can be excluded but not the black-box test. An advantage of
using the test-driven development method is that few errors in the ASD generated code
were detected by the developer during the black-box test of the PCS.

In chapter 4, we detailed the application of the ASD technology to the development of
sizable software units, namely the FEClient and the Orchestration of the Backend sub-
system. We investigated how the ASD approach was used and the percentage of time
consumed for each development process. We found that the design and formal specifica-
tion and verification processes took a longer time than other development processes such
as testing and integration which were very smooth due to the use of formal techniques.

To calculate the quality figures of the developed code, we analyzed the code and investi-
gated the submitted defects. After that, we could estimate the quality level of the units. By
comparing the quality of the ASD code with other handwritten code we found that ASD
code was better in the sense that fewer defects were submitted along the construction of
the units although the handwritten code was simple. Despite that there were few errors
found, the ASD technology could deliver close to zero defects per thousand lines of code.

Table 8.1 classifies the typical types of errors left behind by the ASD formal verification,
summarizing the potential reasons of why they were not detected using the ASD formal
techniques. In general, we found that nearly 20% of the errors in the ASD code were
related to the data part while 80% were related to the control part.

In Chapter 5, we evaluated the use of ASD formal techniques to the quality and the pro-
ductivity of the developed units, comparing them with the statistics reported for world-
wide projects. We started by considering each subsystem in isolation, starting with the
Frontend subsystem and then the Backend subsystem. By comparing the quality and the
productivity of the units incorporating formal methods with others, we found that formal
methods could deliver nearly 10 times better quality code and led to better productivity.

Despite that the units exhibit high quality figures, the incorporation of ASD in the Fron-
tend initially was not very smooth and developers ran into a number of issues, which we
detailed in Chapter 6. When developers became skilled in the technology, they could
eventually compose verifiable components.

However, we noticed that when the specification of ASD models was too complex and
an error was found, developers tend to ignore the complexity and fix these errors by
adding more details to the models. This increased the complexity of the models and made
comprehensibility and maintainability even worse.

A potential solution was to pull out some of the details from the complex components to
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Defect Type Reason of overlooking
1 Misspellings in data parameters causes the

generation of independent variables in the
code.

ASD does not check consistency of the vari-
ables declared in the data parameters passed
in calls and callbacks.

2 Incorrect data values were passed in the pa-
rameters of the calls.

Correctness of the data values in parameters
is not checked in ASD.

3 Waiting in a state for a timeout while over-
looking to start the timer.

Models in this case can be deadlock and il-
legal free since in the state where a timeout
is expected it is still possible to react to ex-
ternal stimuli.

4 Wrong order in the response list. Compositional verification does not include
the design models of other components.

5 Incorrect behavior at some states. Lack of formulating and verifying system
specific properties.

6 Missing responses in rule cases. Lack of formulating and verifying system
specific properties.

7 Missing requirements. Behavior is not implemented.
8 Incorrect invocations at some states. Incorrect used interfaces.

Table 8.1 Summary of the type of errors that escaped formal techniques

other new or existing components as early as possible, but this rarely happened. Conse-
quently, as we show in Chapter 6, complex models contributed more to the errors in the
control part of the units and decreased the quality.

Another example is that the BEFE interface model specifying the interaction between the
Fronend and the Backend subsystems was overly complex. The advantage of using formal
techniques here is that they give an early warning about the complexity of the proposed
architecture. The amount of details the BEFE interface had indicated very early in the
development cycle that the reference architecture has to be considered again to find the
sources of complexity and the potential solutions.

But similarly, developers ignored this, continued the development of the subsystems and
realized the complexity at very late stages of the project. Although the units that in-
corporate formal methods were complex, the end quality was good and they were very
robust against the frequent changes of the requirements. This was not the case for other
units developed manually since they were redesigned again from scratch, for example the
Viewing and the X-ray IP units in the Backend.

All team members involved in developing the ASD components in the BasiX, the Fron-
tend and the Backend had nearly the same experience and skills in developing software
systems as well as the same level of domain knowledge. The knowledge of formal meth-
ods was limited to some courses at the university level and none of the development team
had substantial mathematical skills. Despite this limitation the team could deliver good
quality software regardless of the issues encountered at the start of applying the formal
techniques, and hence the successful use of these techniques did not require expert math-
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ematicians.

Chapters 3,4, and 5 of this thesis treated different aspects of the application of ASD formal
techniques to the development of software components in three different projects. From
the perspectives detailed in the chapters, the pros and the cons of these techniques were
highlighted. Table 8.2 summarizes some of the strengths and the weaknesses of the ASD
technology, ordered by the development phases.

Pros Cons
Design
- Designs are constructed as highly cohesive,
low-coupled components with well-defined
interfaces.
- Step-wise refinement of systems from exter-
nal behavior to concrete behavior allows the
technology to scale to industrial applications.
- Components are structured in strict layers.
This decreases dependencies among the com-
ponents.
- Less freedom in designing components makes
designs more easy to understand.
- Suitable to design event-based reactive sys-
tems.
- Action-oriented, state-based approach.

- Hard to obtain verifiable designs due to the
lack of design guidelines.
- Time is needed for paradigm shifting from
object-orientation to component-based, action-
oriented approach.
- Not every developer can compose designs with
verifiable components.
- Not suitable for designing low-level real-time
controllers.
- Not suitable for designing algorithms or sys-
tems require data computations such as im-
age processing, construction of compilers or
databases...etc.

Formal Specification
- Formal specification provides a shared under-
standing among all involved stakeholders.
- Specification completeness forces thinking of
every possible scenario.
- Completeness of specification leads to find
omissions and gaps in requirements early in
development.
- The quality of requirements increases.
- Critical design decisions are reflected in the
specification of the models and not in the minds
of the developers or in the code.

- Models may become over-specified (big
tables) due to completeness.
- Requirements evolve, hard to obtain a com-
plete set at early stages.
- No means to calculate the complexity of
components from the specified models.
- Currently, not possible to refine a single
interface model by multiple design models.
- Big models are hard to review, adapt, change,
or understand.

Formal Verification
- No manual intervention is required for verifi-
cation and verification is automatic performed
with the click of a button.
- All formal details are hidden from normal
developers, facilitating industrial usages.
- FDR2 checks all possible execution scenarios
of a component, searching for deadlocks,
livelocks and illegal interactions.

- When preparing work breakdown estimations
it is hard to estimate the time required for
verification.
- Model checking may take hours or may even
be impossible causing delays to deliverables.
- Verification completeness by model checking
may cause fixing race conditions which hardly
occur in practice.



156 Chapter 8 Conclusions

- Counterexamples are traced back to the ASD
models.

- Verification of system-specific and timing
properties are not supported.

Implementation
- The generated code completely represents
what was specified and verified without ab-
stracting or excluding any behavioral details.
- No tricks, workarounds, or cleaver solutions
are in the generated code.
- Code has the same shape and structure,
facilitating debugging and navigation through
the code.
- All code follows the same coding style and
standards, enabling systematic translation to
other formats.

- Names of methods, variables, parameters and
the lines of code are long.
- Since the behavior of run-time creation or
disposing of ASD components is not formally
checked, some related, unforeseen issues may
appear. For example, the system may hang
since components instances are not disposed
due to the presence of active ASD timers (can-
celing the timer is required first).

Integration
- Integrating ASD generated code is often
smooth, quick and does not require glue code.
- No errors during integrating ASD compo-
nents.
- Integration time and cost reduces significantly.

- If handwritten code or legacy code is not
formally checked, integration may introduce
some unforeseen errors.
- Some errors may appear when combining
all ASD components together, especially if
components do not take a strict hierarchical
shape.

Testing
- No white-box testing is required for the gen-
erated code (development time is shortened)

- Testing ASD components as a black-box is
still required to guarantee correctness.
-Testing the data part using traditional testing
methods is required.

Table 8.2 Summary of the strengths and the weaknesses of the ASD technol-
ogy

In Chapter 6 we introduced a number of specification and design guidelines to circum-
vent the state space explosion problem using the mCRL2 toolset. In brief, for each de-
sign guideline we introduce two different designs, both are correct in the sense that they
maintain the same application intent. But, the first design overlooks the guideline so it
subsequently produces a large state space. The second design uses the guideline so the
resulting state space is substantially less compared to the first design.

The reason of choosing mCRL2 over ASD is that some of the guidelines may not be eas-
ily realized using the current ASD:Suite. For example, the guideline global synchronous
communication may require a manual intervention to the underlying CSP code. The same
applies to the compositional design and reduction since there is currently no means to
compress a set of ASD components and compose the reduced system with other compo-
nents.
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All the guidelines abstract away any implementation details and focus mainly on con-
structing verifiable components. Therefore, generating high-level code from the specifi-
cation was not our main concern but we may consider this as a future step.

We felt the need to establish a framework to design verifiable systems based on the ex-
periences gained from industry and academia. We do not claim that the guidelines are
complete and would provide solutions to all design cases but, hopefully, they will provide
an inspiration to further investigate state space reduction, by academia and industry, from
this perspective, which ultimately can help software practitioners to avoid the pitfalls of
state space explosion.

In fact, our experience shows that most developers tend to design software components
that usually overlook the guidelines, so that their initial models usually suffer from the
state space explosion. As a next logical step, they gradually and iteratively modify their
designs, migrating to other alternatives where usually our proposed guidelines can be
inferred.

However, such a transition is done in a heuristic way and also by a manner of trial and error
that consume plenty of the development time. Consequently, this may cause tensions with
team and project leaders concerned with meeting their tight deadlines of the incremental
planning. Therefore, we believe that considering the guidelines before the actual design of
components may reduce the time and the overhead that will be devoted to obtain verifiable
components.

In Chapter 7 we applied some of the above mentioned guidelines to the controller of the
power distribution unit. As a result we found that the design alternative of the controller
that overlooks the guidelines produces over 70 million states while the design that uses
the guidelines produces only 608 states. Both designs are correct in the sense that they
will provide the external users the expected behavior described in a single external speci-
fication. Note that, the original design of the PDU controller provided by the responsible
team did not undergo the guidelines especially the first guideline related to pushing ver-
sus polling. Indeed, this is in line with our observation that designers often tend to use
pushing of information instead of polling.

An important result achieved in Chapter 7 is that we found that the guidelines are effec-
tive for designing verifiable components in industrial settings, and hence could provide a
suitable framework to design verifiable components of real industrial cases.

8.3 Future work

We introduce the future directions for each work reported in the previous chapters. We
start by the work accomplished in the BasiX project. As a future work of the PDU con-
troller case introduced in Chapter 3, we consider extending the specification of the con-
troller and the PCs with the emergency and error recovery modes. Since the ASD:Suite
does not support verifying properties of systems (at the time of writing this thesis), we
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may translate the ASD specification to a corresponding mCRL2 model and verify the
system properties.

Considering the PCS project, a disadvantage of having many small components is that it is
less clear whether together they realize the desired functionality. In future work we would
like to investigate whether additional formal techniques can help to check the overall
functionality of a set of components. Another relevant direction that will be explored is
the use of formal interface models for conformance testing, using model-based testing
techniques.

An issue we encountered when developing the FEClient was that the design model was
substantially big. In future work we will investigate how a single interface model can be
refined by not only one design model but by a number of design models. Furthermore,
the activation error caused by the wrong ordering in the responses list is motivating us to
find additional means to formally verify a group of design models using model checking.
Since the state space may occur in this case, we would like to investigate the possibil-
ity to iteratively compress a design model with its used interface on the fly and use the
compressed system to verify the design of other components automatically.

Considering the Orchestration project, we introduced a number of steps we followed to
design the components and their responsibilities. An interesting future direction is to
extend and define concrete steps to be followed, especially for novice developers, which
would lead to decompose highly-abstract, component-based verifiable software.

ASD is suitable for control components that include discrete behavior. During the de-
velopment process accomplished along this work, it was not required to consider perfor-
mance or real time aspects. In fact there were some performance targets that have been set
for certain scenarios (e.g., X-ray settings must be applied within a specified time). In gen-
eral, ASD was not used to model performance aspects but there were some performance
issues in the handwritten part especially when accessing databases. As a future work
triggered by the above, we would like to investigate extending the ASD specification and
verification to include timing details, so that we can verify real time requirements.

With respect to the application of the ASD technology in the Frontend subsystem, we
could not find a systematic means to compute the complexity of components at the models
level. Additionally, we found that big models are not necessarily complex models as
there were a few smaller models which were higher in complexity. An interesting future
direction is to find means to perform static analysis on the models. For example, we
could define limits of number of stimuli events in a component (similar to methods per
class in the code), a bound for the number of replicated rule cases caused by state variables
(similar to the control structure in the code), maximum number of responses in a stimulus
(similar to number of statements per method), etc.

As a further future work, we would like to perform an empirical evaluation of various
verification techniques used to verify the ASD models and figure out which technique is
more successful of detecting the veiled errors and under which circumstances. For ex-
ample, we would like to compare the following techniques: specification completeness,
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thorough inspection and review, model checking and verification of properties, statistical
model-based testing supported by ASD and random testing by means of the Input Out-
put Conformance Testing technology. The early results in this area show that thorough
inspection was far more effective in detecting design issues than verifying formal proper-
ties, especially when the models are small, but more work need to be done before drawing
any general statements or conclusions.

With respect to the specification guidelines that we introduced in Chapter 6, we would like
to investigate the possibility of adding more guidelines to the list. Furthermore, we would
like to find a means to relate the designs of each guideline by proofing some equivalence
relations. Since applying the guidelines to the PDU controller in Chapter 7 was benefi-
cial, we would like to apply them to other industrial design cases. Hopefully, we could
provide a suitable framework to design verifiable components of real industrial cases and
to enhance the quality of future industrial software products.
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Summary

Formal Development of Control Software in the Medical Systems Domain

In this thesis we describe the effectiveness of applying a number of formal techniques
to the development of industrial control software at Philips Healthcare. We demonstrate
how these techniques were tightly incorporated to the industrial workflow and the issues
encountered during the application.

The work was established in an industrial context, dealing with real industrial projects
and a real product concerning the development of interventional X-ray systems.

The results are very conclusive in the sense that the used formal techniques could de-
liver better quality code compared to the code developed in conventional development
methods. Also, the results show that the productivity of the formally developed code is
better than the productivity of code developed by projects at Philips Healthcare or projects
reported worldwide.

The thesis also includes a number of design and specification guidelines that assist con-
structing verifiable components using model checking. The guidelines were successful in
designing and verifying a controller component developed at Philips Healthcare. Hence,
the guidelines can provide an effective framework to design verifiable control components
in industrial settings.
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