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ABSTRACT
This paper presents first experimental results on uniform
random generation of paths in very large graphs that model
concurrent systems, as it was presented in [3]. The approach
is based on techniques and tools for counting and drawing
uniformly at random in combinatorial structures. It exploits
the fact that in a system made of several concurrent com-
ponents, local uniform drawings of component paths can be
combined into a very good approximation of uniform draw-
ing of paths in the global system, without constructing the
global model. The paper describes some implementation of
the methods presented in [3], reports results on a first suite
of benchmarks, exploring the limits and the possibility of
this new approach to uniform random walks.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

Keywords
random walk, uniform generation, modular models, model-
checking, model-based testing

1. INTRODUCTION
Random walks are widely used for software simulation,

testing (structural testing or model-based testing), and more
recently, model checking. In general, classical random walks
cannot guarantee good coverage of the underlying graph.

In [2, 8], Denise, Gaudel, and Gouraud show how to use
techniques for counting and drawing uniformly at random in
combinatorial structures for drawing paths either uniformly,
or biased toward a given coverage criteria. The AuGuSTe
tool [7] was a first application of this approach to statis-
tical structural testing. It was experienced on several C
programs, with control graphs up to hundred nodes.
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To deal with larger graphs, such as those modelling con-
current systems, Denise, Gaudel, Gouraud, Lassaigne, and
Peyronnet had the idea of using the set of concurrent, smaller
models that compose the very large global model. In [3],
they approximate the number of (fixed-length) paths with-
out constructing the global model using techniques from an-
alytic combinatorics [4]. This results in a very good approx-
imation (see details in [3]) of uniform paths drawing in very
large graphs.

In this paper, we first explore the limit of the method
used in AuGuSTe for drawing paths uniformly at random
in a single graph. Section 2 describes our implementation
and reports experimental results on medium-sized graphs,
up to 18746 nodes for paths of length 2000. Then, Sec-
tion 3 presents the implementation of approximate uniform
drawing in very large graphs that are asynchronous product
of concurrent, medium-sized models, as those considered in
Section 2. The biggest considered graph is of size 4.1024

for paths of length 8000, but it is by no means a limit of
what can be dealt with. Finally, Section 4 makes use of the
above results to approximate uniform drawing in a system of
concurrent models in presence of synchronization. The pre-
sented results are limited to one synchronization per model.
The biggest considered graph is of the same size as above,
for paths of length 500. Improvements of the implementa-
tion to take into account several synchronizations and longer
paths are in progress. Part of them can be found in [9].

2. EXACT UNIFORM DRAWING IN ONE
GRAPH

This section describes the implementation for drawing
uniformly paths of a given length from a single graph de-
scribed in the BCG format (Binary Coded Graphs [6]).

2.1 Principle
The first step is to build a combinatorial structure from

the BCG file that describes the graph. A C++ program,
which uses the CADP toolbox, creates a MuPAD-Combinat
[10] script that contains the combinatorial structure related
to the graph. The MuPAD-Combinat library, based on the
computer algebra system MuPAD [1], can handle combi-
natorial objects and generate C programs for drawing uni-
formly paths among those of length n in the combinatorial
structure. This program takes as input the length and the
number of paths that must be generated.

2.2 Results and Benchmarks
Benchmarks have been realized on an Intel 2.8GHz with
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Table 1: Elapsed time for the MuPAD-Combinat
script to generate a C program drawing uniformly
paths

# states # transitions MuPAD → C
vasy 0 1 289 1224 2s
vasy 1 4 1183 4464 20s
vasy 5 9 5486 9676 10m
vasy 8 24 8879 24411 43m
vasy 8 38 8921 38424 17m
vasy 10 56 10849 56156 34m
vasy 18 73 18746 73043 4h

Table 2: Elapsed time to build the counting table.
200 1000 2000 3000 5000 8000

vasy 0 1 0.1s 0.3s 0.9s 1.5s 3.7s 8.8s
vasy 1 4 0.2s 1.1s 2.8s 5.1s 11.9s ∞
vasy 5 9 0.3s 4.9s 12.2s 22.0s ∞ ∞
vasy 8 24 1.0s 9.0s 22.0s ∞ ∞ ∞
vasy 8 38 0.6s 4.4s 11.4s 22.9s ∞ ∞
vasy 10 56 3.2s 22.5s ∞ ∞ ∞ ∞
vasy 18 73 2.7s 20.0s 50.2s ∞ ∞ ∞

1GB of RAM. Each BCG graph comes from the VLTS (Very
Large Transition Systems [5]) benchmark suite. These mod-
els are from the industrial world.

Table 1 shows execution time for the MuPAD-Combinat
script that generates the C program for drawing paths uni-
formly. This execution time is at worst quadratic in the
graph’s size (it is linear for graphs with a bounded edge de-
gree), but it must be done only once before drawing as many
paths as needed.

The generated C program can draw paths of various lengths.
So, it has to build the counting table (i.e., the numbers of
paths of length i for all 0 ≤ i ≤ n starting from each state)
before drawing one or several paths. The number of arith-
metic operations needed to compute this table is O(n×|G|)
where |G| is the graph’s size [4]. Table 2 shows the needed
time to build these counting tables. The ∞ symbol means
there is not enough memory for the table.

Finally, after building the counting table, drawing several
paths of length n can be done in O(n) arithmetic operations.
Table 3 shows the elapsed time for generating 100 paths of
length n (n varies from 200 to 8000) minus the preprocessing
time for building counting tables.

Those tables show the efficiency of our approach: the pre-
processing stage can be slow (4h for the biggest tested model
that has 18746 states) but is done once, and the generation
step is extremely fast. Hence, a lot of paths can be gener-

Table 3: Elapsed time to generate 100 paths.
200 1000 2000 3000 5000 8000

vasy 0 1 0.0s 0.9s 2.9s 6.3s 15.9s 40.1s
vasy 1 4 0.1s 1.0s 3.2s 6.7s 18.2s ∞
vasy 5 9 0.0s 0.9s 2.4s 5.2s ∞ ∞
vasy 8 24 0.2s 0.8s 2.4s ∞ ∞ ∞
vasy 8 38 0.1s 1.6s 5.5s 10.8s ∞ ∞
vasy 10 56 0.0s 1.3s ∞ ∞ ∞ ∞
vasy 18 73 0.2s 0.9s 3.3s ∞ ∞ ∞

ated and the graph can be intensively explored. However,
those tables also demonstrate the limits of this approach: it
is necessary to hold huge counting tables in memory. And
even if a large memory is available, generation time is linear
in the graph’s size, so dealing with very large graphs will
still be impracticable.

3. APPROXIMATE UNIFORM DRAWING IN
A SYSTEM OF MODULES WITHOUT SYN-
CHRONIZATION

In the previous section, we draw uniformly at random
paths in medium-sized graphs. In this section, we deal with
larger graphs, that are the result of asynchronous compo-
sition of r modules (M1, . . . , Mr). To each module corre-
sponds a medium-sized graph. The result of asynchronous
composition is the product of r models. A path in the global
model is the shuffle of paths drawn in each of the r models.
We have implemented the solution provided by [3] in order
to handle very large models from concurrent systems. The
main idea is to avoid the construction of the global model by
suitably combining local uniform drawings of module paths
to get a very good approximation of uniform drawing of
paths in the global system.

Considering asynchronous composition is a first step: the
algorithm presented in this section will also be useful for the
synchronization case.

3.1 Principle
The uniform generation from asynchronous composition

of r modules can be summarized in 4 steps:

1. set the length n of the path,

2. choose the lengths (n1, . . . , nr) of the r paths that are
drawn in each module with a suitable probability,

3. for each module Mi draw a path of length ni (using
the algorithm of the previous section),

4. shuffle the r paths for getting a path of length n.

We show below a simple algorithm that shuffles the r
paths in such a way that uniformity is ensured [3], thus
Item 2 is the most difficult one.

A C++ program was created for drawing a r-uple (n1, . . . , nr)
such that n1 + · · ·+ nr = n. This r-uple corresponds to the
lengths of paths that are drawn in each module.

The r-uple (n1, . . . , nr) has to be chosen with the proba-
bility:

P (n1, . . . , nr) =

`
n

n1 ··· nr

´
l1(n1) · · · lr(nr)

l(n)

where li(k) is the number of paths of length k in the module
Mi and l(n) is the number of paths of lengths n in the global
model. But, computing l(n) is too time consuming as it
needs the global model. So we should approximate it using
a theorem in [4] and the fact that the global model is the
result of the composition of r modules:

l(n) ∼ (C1 . . . Cr)(ω1 + · · ·+ ωr)
n

where Ci and ωi are computed from the generating series of
the module Mi.

Proceedings of the Second International Workshop on Random Testing (RT’07)

27



Table 4: Describing for each test the global model
size and the number of modules. Here, only the
vasy 0 1 model was used as module.

name # states number of modules

test 2 8 · 104 2

test 3 2.4 · 107 3

test 4 7 · 109 4

test 5 2 · 1012 5

test 6 5.8 · 1014 6

test 7 1.7 · 1017 7

test 10 4 · 1024 10

Table 5: Elapsed time for the preprocessing step (i.e.,
all steps that need to be done once whenever the
number of paths).

200 1000 2000 3000 5000 8000
test 2 33.5s 34.3s 34.6s 35.3s 36.5s 39.4s
test 3 50.9s 51.3s 51.4s 52.1s 53.0s 55.3s
test 4 68.1s 68.0s 68.7s 69.3s 69.9s 71.7s
test 5 85.3s 85.2s 85.2s 86.8s 86.8s 88.6s
test 6 94.1s 98.3s 98.3s 99.4s 1m40 1m40
test 7 1m54 1m56 1m54 1m56 1m57 1m57
test 10 2m36 2m36 2m36 2m36 2m37 2m39

Hence, P (n1, . . . , nr) is approximated as follows:

P (n1, . . . , nr) ∼
`

n
n1 ··· nr

´
ωn1

1 · · ·ωnr
r

(ω1 + · · ·+ ωr)n

After computing those values, the algorithm draws an in-
dex i from [1..r] with probability Pr(i) = ωiPr

j=1 ωj
. The

length ni is incremented. This algorithm is repeated n times.
Hence, the final r-uple (n1, . . . , nr) verifies n1 + · · ·+nr = n

and has probability
( n

n1 ··· nr
)ω

n1
1 ···ωnr

r

(ω1+···+ωr)n

Finally, after drawing r paths wi of length ni with the
algorithm of the previous section, a C++ program shuffles
uniformly those r paths. This program takes r paths and
returns a path of length n (because the sum of all path
lengths is equal to n). The algorithm is as follows:

1. w = ε, ni = |wi| ∀i ∈ [1..r], n =
Pr

i=1 ni

2. choose i with probability ni
n

,

3. w = w.f(wi), where f(wi) gets the first letter of wi,

4. n = n− 1 and ni = ni − 1

5. repeat the last 3 operations n times. The result is w.

3.2 Results and benchmarks
Table 4 describes the models that are used to generate

paths from an asynchronous composition of modules.
Then, table 5 summarizes the preprocessing times.
Finally, table 6 shows the elapsed time to draw 100 paths,

minus the preprocessing step. Those values show that the
generation is fast even if the model has more than 1020

states: only module sizes matter (here, 289 states). Note
that the generation is faster when the number of modules
grows, because when there are more modules then the aver-
age length of paths to be drawn in each module decreases.

Table 6: Elapsed time to draw 100 paths, minus the
preprocessing step. This value is the result of tim-
ing the generation of 101 paths and minus it by the
timing for drawing one path.

200 1000 2000 3000 5000 8000
test 2 0.4s 0.9s 2.4s 4.3s 10.2s 23.5s
test 3 0.3s 0.8s 2.3s 3.3s 7.7s 12.9s
test 4 0.0s 1.1s 1.6s 2.8s 6.2s 13.8s
test 5 0.6s 0.2s 1.9s 1.8s 5.5s 12.3s
test 6 0.0s 0.6s 1.6s 1.9s 5.1s 12.0s
test 7 0.6s 0.0s 2.9s 2.7s 5.4s 10.7s
test 10 0.3s 0.3s 1.3s 2.8s 4.6s 9.7s

Finally, those experiments show that drawing paths in the
concurrent modules that describe the global model, makes
possible the exploration of very large models.

4. APPROXIMATE UNIFORM DRAWING IN
PRESENCE OF SYNCHRONIZATION

In the previous section, all modules are completely inde-
pendent. In practice, this assumption is rarely true. Thereby,
modules may wait for one another before taking a transition;
those special transitions are called synchronized transitions.
Now, we suppose that each module contains exactly one syn-
chronized transition, denoted α. Thus, in the global system
all modules must take the α transition at the same time.
This case has been studied in [3]. We explain the algorithm
that we have implemented and analyze the benchmarks.

4.1 Principle
Let α be the synchronized symbol and w be a path from

the global system. If w contains m synchronizations then
w = w0αw1α . . . αwm and there is no α in any of the wi.
So, we use the algorithm from the previous section to draw
the m+1 sub-paths wi, subject to break each module up into
4 asynchronous modules (Figure 1) because w0 must start
from the initial states of all modules and finish to states that
precede an α transition.

s

pα sα

s′

α1

s

pα sα

s′ s

pα sα

s′

s

pα sα

s′ s

pα sα

s′

Figure 1: A module Mi that contains one synchro-
nized transition denoted α and its four associated,
asynchronous modules.

Finally, if we compute s(n) (resp. s(n, m)), the number
of paths of length n (resp. that contain m synchronizations)
then we can sketch an algorithm for generating a path of
length n:

1. choose m with probability P (m) = s(n, m)/s(n),
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Table 7: Elapsed time for the preprocessing step (i.e.,
all steps that need to be done once whenever the
number of paths).

100 200 300 400 500 600
test 2 3m10 3m25 4m12 5m55 9m06 ∞
test 3 4m45 5m02 5m54 7m46 11m11 ∞
test 4 6m19 6m39 7m34 9m34 13m13 ∞
test 5 7m51 8m16 9m15 11m23 15m18 ∞
test 6 9m24 9m50 10m56 13m12 17m21 ∞
test 7 11m00 11m27 12m35 15m03 19m24 ∞
test 10 12m28 12m31 12m33 12m32 20m26 ∞

Table 8: Elapsed time to draw 100 paths, minus the
preprocessing step. This value is the result of tim-
ing the generation of 101 paths and minus it by the
timing for drawing one path.

100 200 300 400 500 600
test 2 1.9s 2.1s 4.3s 4.7s 4.4s ∞
test 3 0.9s 1.2s 1.2s 2.6s 3.8s ∞
test 4 1.5s 1.5s 0.9s 3.2s 2.5s ∞
test 5 3.0s 0.4s 0.9s 3.1s 2.5s ∞
test 6 4.1s 0.7s 0.9s 3.8s 2.5s ∞
test 7 3.7s 2.9s 1.9s 1.6s 2.4s ∞
test 10 4.6s 0.6s 0.8s 1.5s 2.2s ∞

2. choose the lengths of w0, w1, . . . , wm with a suitable
probability,

3. generate each wk of length ik in the correct modules.

Computing Item 1 requires O(n) arithmetic operations in
the worst case (with O(rn4) arithmetic operations to pre-
compute all of the s(n, m) and s(n)) [3]. And computing
Item 2 requires O(n2) arithmetic operations.

4.2 Results and Benchmarks
The same models as in Table 4 have been used but one

transition in each module was labeled α.
Table 7 shows the elapsed time for the preprocessing steps

and Table 8 shows the elapsed time to draw 100 paths. The
∞ symbol means there is not enough memory to compute
all of the s(n, m) and s(n).

Finally, those experiments show that drawing paths in
very large models is possible even if synchronization exists
between the concurrent modules that describe the global
model. The case where there are several synchronizations
labeled by different symbols is more complex but the algo-
rithm is already presented in [9] and the benchmarks are in
progress.

5. CONCLUSION AND PERSPECTIVES
This paper reports first experimental results on how to

perform globally uniform random walks in very large sys-
tems described as sets of concurrent, smaller components.
By globally uniform random walk, we mean that the choice
of the successor at every step is biased such that all paths
of the global model have equal probability to occur.

Section 2 shows that brute-force method (namely count-
ing the number of paths of the desired length starting from
each successor and adjusting its probability accordingly) is

feasible for medium-sized models only: up to approximately
104 states. For larger systems, experiments in Section 3 and
4 demonstrate how local uniform drawing and estimation
of the number of global paths make possible to uniformly
explore very large models described as sets of concurrent,
smaller models, the complexity being limited to the size of
the biggest component.

More development and experiments are in progress: The
implementation described in Section 4 is under revision for
accepting longer paths; The generalization to several syn-
chronizations is described in [9] and its implementation is
on-going.

This method can be useful for random testing, model-
checking, or simulation of protocols that involve many dis-
tributed entities, as it is often the case in practice.
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