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ABSTRACT

With the growth and commercialization of the Internet, the security of communication between computers
becomes a crucial point. A variety of security protocols based on cryptographic primitives are used to establish
secure communication over insecure open networks and distributed systems. Unfortunately, security protocols
often contain serious errors. Formal verification can be used to obtain assurance that a protocol cannot be
attacked by an intruder.

In this paper, we present how the process-algebraic language uCRL can be used to specify and analyze
security protocols. To illustrate the feasibility of our approach, we analyze the Needham-Schroeder public-key
protocol and reproduce the error found by Gavin Lowe [Low96a]. Two more definitions of authentication are
studied. We give some remarks on our approach and discuss some possible directions for future work.
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1. INTRODUCTION

With the growth and commercialization of the Internet, the security of communication between com-
puters becomes a crucial point. A variety of security protocols based on cryptographic primitives are
used to establish secure communication over insecure open networks and distributed systems. Secu-
rity protocols generally also provide authentication. Unfortunately, open networks and distributed
systems are vulnerable to hostile intruders, and security protocols often contain serious errors.

Formal methods are mathematically based techniques for specifying and verifying software and
hardware systems. Their mathematical underpinning allows formal methods to specify systems in a
more precise, more consistent and non-ambiguous fashion. Also, formal methods allow to formally
simulate, validate and reason about system models. This makes it possible to use formal description
and verification to obtain assurance that a protocol cannot be attacked by an intruder.

Algebraic approaches to the study of concurrent systems focus on the manipulation of process
descriptions. Process algebras such as ccs [Mil89], csp [Ros98] and Acp [BK84, Fok00] are well suited
for the study of elementary behavioral properties of distributed systems. However, when it comes
to the study of more realistic systems, these languages turn out to lack the ability to handle data
adequately.

In order to solve this problem, the language pCRL [GP95] has been developed. This language
combines the process algebra ACP with equational abstract data types [LEW96]. This is done by
parameterizing actions and process terms with data. To each uCRL specification there belongs a
transition system, in which the states are process terms and the edges are labeled with actions.



The uCRL toolset [Wou01l, BFG*01] (see http://www.cwi.nl/~mcrl) supports the analysis and
manipulation of uCRL specifications. A uCRL specification can be automatically transformed into a
linear process operator (LPO). All other tools in the pCRL toolset use LPOs as their starting point.
There are a number of tools that allow optimizations on the level of LPOs. The instantiator can
generate a labeled transition system (LTS) from an LPO if this transition system consists of finitely
many states. The LTS can be visualized, analyzed and minimized by the yCRL toolset in combination
with the CESAR ALDEBARAN DEVELOPMENT PACKAGE (CADP) [FGK197].

In this paper, we present how the process-algebraic language pCRL can be used to specify security
protocols. The behavior of participants of a security protocol can be modeled by processes. The
abstract data types in uCRL can be used to abstract from the complex cryptographic primitives
and to model the knowledge databases of agents. We define some security actions to indicate the
critical points in the protocol and these security actions can contain the information relevant to the
properties we want to verify. The resulting specification is analyzed with the yuCRL toolset and
cADP. To illustrate the feasibility of our approach, we analyze a standard case study, the Needham-
Schroeder public-key protocol, and reproduce a known error. We also study two other definitions of
authentication and the property of secret. Our approach resembles the method used by Leduc and
Germeau [LGO0O].

RELATED WORK

Over the past twenty years, many methods have been developed for mechanically analyzing security
protocols. In this part, we restrict ourselves on those works using general verification methods to
analyze security protocols.

Among these methods, model checking uses general purpose tools to treat a protocol as any other
program and attempts to prove its correctness. LOTOS [Var90], state machines [Var89] and Petri nets
[NT95] have been used for this purpose. The protocol and its correctness requirements are specified,
and then they are investigated by using tools that are available for the formalism used.

The Failures Divergences Refinement Checker (FDR), a model checker for CsP, is used to analyze the
Needham-Schroeder public-key protocol in [Low96a]. The agents of the protocol and an intruder are
modeled as CSP processes. FDR takes an implementation and a specification of the protocol as input,
and checks whether the implementation refines the specification. A security error was discovered.
They adapted the protocol to remove this error and detected no further attacks. They also prove
correctness of the protocol of arbitrary size. A compiler CASPER has been designed for the analysis
of security protocols, which takes a description of a security protocol and produces a CSP description
of the same protocol, suitable for checking using FDR. This approach has been applied to several
protocols, and has produced a number of attacks [Low96b].

In [MMS97], a finite state exploration tool, Mur¢, is used to analyze several security protocols. A
methodology is also presented there. In Mur¢, a process is modeled by a set of related rules. The
parallel composition of two processes is modeled by a simple union of the rules of the two processes.
The correctness properties can be specified as invariants in Mur¢. When the system reaches a state
where some invariant does not hold, an error trace can be given. The Needham-Schroeder public-key
protocol was analyzed. Mur¢ was able to reproduce the error found by Gavin Lowe [Low96a] and no
additional attack could be found.

How LOTOS can be used to specify security protocols is presented in [LG00]. Security properties can
be modeled as safety properties and checked automatically by a model-based verification tool. This
technique is illustrated on a concrete registration protocol. An error is found and corrected.

The model checking techniques can be used to find subtle errors in a system or protocol, but it
cannot prove correctness when no error is found. Another approach is using theorem provers to state
and prove the properties of security protocols.

Schneider developed a specific theory based on the cSP semantic framework [Sch97]. The language
of CsP can be used to specify the security protocols precisely and this theory can reason about the
properties formally. It has been successfully applied on analysis of a fair non-repudiation protocol
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[Sch98].

[Pau98] describes how a security protocol can be inductively defined as sets of traces, where a
trace is a list of communication events, and properties can be proved by rule induction, with machine
support from the proof tool Isabelle/HOL. Both the original version and improved version of the
Needham-Schroeder public-key protocol are studied in [Pau97]. The properties proved by Isabelle
highlight the distinctions between these two versions. In this approach, the human effort required to
analyze a protocol can be little, and yielding a proof script only takes few minutes to run. The author
also points out that the inductive method performs a better analysis than model checking, but the
cost of using is greater.

More thorough state-of-the-art surveys in the application of formal methods to the analysis of
cryptographic protocols can be found in [Mea95, GNG97, GSG99, But99].

STRUCTURE OF THE PAPER

In Section 2, we give a brief overview of the uCRL specification language and its toolset. The
Needham-Schroeder public-key protocol is introduced in Section 3. Then in Section 4, we give the
algebraic specifiation of this protocol. The analysis process is presented in Section 5. We show that the
improved Needham-Schroeder public-key protocol with a rational intruder meets all the requirements
in Section 6. In Section 7, we give some remarks on our approach. And we draw some conclusions
and discuss possible directions for future work in Section 8.

2. A SHORT INTRODUCTION TO THE pCRL LANGUAGE

The pCRL language is based on the process algebra ACP extended with a formal treatment of data. It
is a language for specifying distributed systems and protocols in an algebraic style. The uCRL specifi-
cation consists of two parts. One part specifies the data types, the second part specifies the processes.
Processes are represented by process terms. Process terms consist of action names and process names
with zero or more data parameters combined with process-algebraic operators: sequential composition
(+), non-deterministic choice (+), parallelism (||) and communication (|), encapsulation (8), hiding (7),
renaming (p) and recursive declarations. The data part contains equational specifications: one can
declare sorts and functions working upon these sorts, and describe the meaning of these functions by
equational axioms. A conditional expression (_<I_[>_) enables that data elements influence the course
of a process, and an alternative quantification operator () provides the possibly infinite choice over
some sort. The syntax and semantics of uCRL are given in [GP95].

The uCRL toolset is a collection of tools for analyzing and manipulating uCRL specifications. An
overview of the toolset is given in Appendix I. pCRL and its toolset have been successfully used to
analyze a wide range of protocols and distributed systems; recent case studies are described in the
literature [AL99, AL01, GPWO01, Use01].

3. NEEDHAM-SCHROEDER PUBLIC-KEY PROTOCOL

The Needham-Schroeder public-key protocol [NS78] aims to provide mutual authentication between
an initiator A and a responder B, after which some session involving the exchange of messages can
take place. Both the initiator and the responder want to be assured of the identity of the other.
The formal presentation of this protocol can be decomposed into several meaningful parts. As in
[Low96a, MMS97], we present a simplified form of the protocol, which can be described by the following
three steps.

In step 1, the initiator A seeks to establish a connection with the responder B by selecting a nonce
N,, and sending it along with its identity to B, both encrypted with B’s public key K (Message 1).
When B receives this message, it decrypts the message to obtain the knowledge of N,. It then returns
the nonce N, with a new nonce N, to A (Message 2). Both nonces are encrypted with A’s public key.
When A receives this message, it decrypts it and concludes that it is talking to B, since only B should
be able to decrypt A’s initial message containing nonce N,; B is authenticated. A then returns the



Message 1. A — B:{N,, A}ks
Message 2. B — A:{Ny, Np}Kka
Message 3. A — B:{Np}ks

Table 1: Needham-Schroeder Public-Key Protocol

nonce N, to B, encrypted with B’s public key (Message 3). In the same fashion, A is authenticated
after step 3.

4. ALGEBRAIC SPECIFICATION

The starting point of verifying a protocol or a distributed system with yCRL is to get its algebraic
specification. This generally involves the work to abstract the protocol by identifying the key behaviors
of the protocol participants', and to understand the way that each participant will respond to any
possible message.

4.1 Data types

As explained in Section 2, every uCRL specification has two parts, one defines the data types and
the other gives the specification of behavior. The behavior part describes the exchange of messages.
It does not consider the data transferred by these messages. The data part expresses which kinds of
data are used and the operations on them. By this, we can abstract away the complex cryptographic
primitives, such as encryption and decryption. Agents can access and achieve information from the
encrypted message if and only if they have the right private key. In our specification, we model the
knowledge database for agents as a set. The specification of a set in yCRL is defined as follows:

sort DSet
func ema: —DSet
set: DxDSet—DSet
map add: DxDSet—DSet
remove: DXDSet—DSet
test: DXDSet—Bool
empty: DSet—Bool
if: BoolxXDSetxDSet—DSet
var dd: D
s,s': DSet
rew add(d,s) = if(test(d,s),s,set(d,s))
remove(d,ema) = ema
remove(d,set(d’s)) = if(eq(d.d’),s,set(d’,remove(d,s)))
test(d,ema) = F
test(d, set(d’,s)) = if(eq(d,d’),T,test(d,s))
empty(ema) =T
empty(set(d,s)) = F
if(T,s;s’) =s
if(F,s;s') =

DSet is defined as a set of elements, which are of type D. The constructors of this sort are ema and
set(d,s). ema stands for the empty set, while set(d,s) inserts an element d into a set s. The function
remove(d,s) removes all occurrences of d in set s. Function test(d,s) tells us whether the element d is

In the rest of this paper, we prefer to use ‘agent’ instead of ‘protocol participant’.
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in set s. The function empty(s) is used to judge whether a set is empty, or not. The choice between
two sets is achieved by the function if(b,s,s’), where b ranges over Bool. It means that if b holds then
s is selected, otherwise s’. And the function add(d,s) only inserts the element d into set s if test(d,s)
fails. By this, we guarantee that an element can appear only once in a set.

To specify the Needham-Schroeder public-key protocol, we assume that there are processes of Ini-
tiator, Responder and Intruder. Each of them is assigned with a unique identity, which is specified by
the sort Identity. We define the set of Nonce instead of random nonce generation. Each nonce can only
be used once. In one instance of the protocol, there are three kinds of messages exchanged between an
initiator and a responder. They are specified as sorts of Messagel, Message2 and Message3. The sets
of these three types of message are defined as MessagelSet, Message2Set and Message3Set. We use
the identity of an agent as its public key and private key instead of explicit definitions. The message
is encrypted by adding the identity of the receiver as a part of this message. (Here, the identity plays
the role of a public key.) When an agent gets a message, it will try to decrypt the message by checking
whether the key of the message equals its identity. (Here, the identity plays the role of a private key.)
The details of the data part of the uCRL specification can be found in the Appendix II.

4.2 Process behavior
In this section, we focus on the behavioral part of the algebraic specification.

Adding an intruder To verify the correctness of a security protocol, normally we need to put the
agents into a hostile environment by adding an intruder into the protocol. In uCRL, we can model
an intruder as a process which can mimic attacks of a real-world intruder. We refer to a general set
of modeling assumptions with wider applicability as the Dolev-Yao model [DY83]. In this model, the
protocol intruder has the following capabilities:

1. It is a user of the computer network, the other agents may try to set up a session with it;
2. It can overhear any message exchanged among the agents;

3. It decrypts messages that are encrypted with its own public key and store parts of a message in
its knowledge database;

4. It may replay an old message it has seen before, even if it cannot decrypt the encrypted part;
5. It can generate messages using any combination of its knowledge database and send them.

In uCRL specification, the intruder process typically consists of a set of variables that contains the
intruder’s knowledge and a set of actions that the intruder may take. The introduction of an intruder
into a protocol will change the communications between agents as shown in Figure 1.

,,,,,,,,,,,,,,,,,,,

Figure 1: Agents with an intruder



Specifying the agents Agents in a security protocol are linked together by communication channels.
These channels are insecure, meaning that they can be eavesdropped by an intruder. This means that,
the communication between two agents A and B can be divided into communication between agent A
and an intruder and communication between an intruder and agent B. By the encapsulation operator
in uCRL, we can enforce the actions of the agents A, B and the intruder into communication.

Each of the two agents is defined as a process. As expressed in Figure 1, a message between an
initiator and a responder can be eavesdropped by an intruder. For example, we define an action for
an initiator of sending a Messagel in the form of s_mes1_i_to_t(ini,mes1), where ini is the identity of
the sender, mes! is of data type Messagel, s_mes! means sending a message of type Messagel, and
i_to_t indicates that this communication happens between an initiator and a intruder and the direction
is from the initiator to the intruder. By this way, we can define the behavior of agents by actions
parameterized with data. The three key steps of the protocol are modeled by the communications of
actions.

comm smeslitot |rmesltfromi = c_mesl.it
s.mesl t tor |rmeslrfromt = cmesl tr
smes2r tot |rmes2tfromr = cmes2rt
smes2 t toi |rmes2ifromt = c_mes2_ti
smes3_ito.t |rmes3_tfromi = c_mes3._it
smes3_t_tor |rmes3rfromt = c.mes3_tr

The behavior of an initiator is modeled by a process parameterized with an identity ini and a nonce
set naset, which starts the protocol by sending an initial message Messagel to some responder. The
action Irunning(ini,res) reports that the initiator has recently run the protocol with a responder with
identity res. After that, it waits and checks the reply. If it can decrypt the message and succeed in
checking the included nonce, it concludes that it completes a run with the responder by an action
Icommit (This action can be parameterized with any data relevant to the properties we want to
verify.), and replies by sending a message Message3 (modeled by an action s-mes8_i_to_t), after which
it removes the used nonce from the set; otherwise, it only removes the used nonce. This is specified
in yCRL as follows:

Initiator(ini:ldentity,naset:NonceSet)=

Zres:ldentity Zn:Nonce I_running(ini,res).

s-mes1_i_to_t(ini,mes1(res,n,ini)).
Zint:ldentity Zm2:MessageZ r_mes2_i_from_t(ini,m2).
(I_commit(ini,res).s_mes3_i_to_t(ini,mes3(res,getNonce2(m2))).
Initiator(ini,remove(n,naset))
< and(eq(getKey(m2),ini),eq(n,getNoncel(m2))) >
Initiator(ini,remove(n,naset)))

< and(not(isInitiator(res)), test(n,naset)) > §

We present the responder, with an identity res and a nonce set nbset, by the process Responder. The
responder is supposed to wait for Messagel. It decrypts the message, obtains the nonce and returns
it with its own nonce nb (sending a message Message2). It also will indicate that it has recently
been running the protocol with an initiator by an action R_running. After that, it waits and checks
the reply of a Message3. If it succeeds, it concludes that it is talking with the initiator by an action
R_commit, and then it removes the used nonce from the set; otherwise, it only removes the old nonce.

Responder(res:ldentity,nbset:NonceSet)=
> ml:Message1 -Mesl.r_from_t(int,res,m1).
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> n:Nonce R-running(getlD(m1),res).
s_mes2_r_to_t(res,getld(m1),mes2(getld(m1),getNonce(m1),n)).
Y m3:Messagea'-mes3-r_from_t(int,res,m3).
( R-commit(getld(m1),res).Responder(res,remove(n,nbset))
< and(eq(getKey(m3),res),eq(getNonce(m3),n)) >
Responder(res,remove(n,nbset)))
< eq(getKey(m1),res) > Responder(res,nbset)
< test(n,nbset) > §

Modeling the intruder In our model, we consider an intruder with a unique identity. The state of
an intruder is represented by the knowledge it has acquired. The process is parameterized by the
three sets of messages m1s, m2s, m8s and a set of nonces ncset. The sets m1s, m2s and m3s store
the old messages that it has overheard but it cannot decrypt. ncset contains the nonces of itself and
the nonces of the initiators and responders that it has learned by decrypting the messages it has seen
before. The leakage of a secret (e.g. nonce na) is represented by an action 7T_leaking(na) when the
intruder knows a nonce by decrypting a message and stores the nonce into its set ncset. This process
is defined in pCRL as follows:

Intruder(int:Identity, m1s:MessagelSet,m2s:Message2Set,
m3s:Message3Set,ncset:NonceSet)=

Zini:ldentity Zml:Messagel r-mesl_t_from_i(ini,m1).
(T-leaking(getNonce(m1)).
Intruder(int,m1,m2s,m3s,add(getNonce(m1),ncset))
< eq(getKey(ml),int) >
Intruder(int,add(m1,m1s),m2s,m3s,ncset)) +

Zres:ldentity ZmQ:Message? r_me52_t_from_r(res,m2).
(T_leaking(getNoncel(m2)). T _leaking(getNonce2(m?2)).
Intruder(int,m1s,m2s,m3s,add(getNonce2(m2),add(getNoncel(m2),ncset)))
< eq(getKey(m2),int) >
Intruder(int,m1s,add(m2,m2s),m3s,ncset)) +

Zini:ldentity ZmS:Message3 r_mes3_t_from_i(ini,m3).
(T_leaking(getNonce(m3)).
Intruder(int,m1s,m2s,m3s,naset,add(getNonce(m3),ncset))
< eq(getKey(m3),int) >
Intruder(int,m1s,add(m3,m2s),m3s,ncset)) +

Zres:ldentity Zml:Messagel s_mesl_t_to_r(res,ml).
Intruder(int,m1s,m2s,m3s,ncset)
< and(test(m1,m1s),isResponder(res)) > § +

Zres:ldentity Zini:ldentity Zn:Nonce S_mesl_t_to_r(res,mesl(res,n,ini)).
Intruder(int,m1s,m2s,m3s,ncset)
< and(and(test(n,ncset),isResponder(res)),islnitiator(ini)) > & +

Zini:ldentity Zm2:Message2 s_mes2_t_to_i(ini,m2).
Intruder(int,m1s,m2s,m3s,ncset)
< and(test(m2,m2s),isInitiator(ini)) > § +

Zini:ldentity an:Nonce ZnQ:Nonce S‘meS3‘t‘to—i(ini'meS2(ini'n1'n2))'
Intruder(int,m1s,m2s,m3s,ncset)
< and(and(test(n1,ncset),test(n2,ncset)),isInitiator(ini)) > § +

Ereszldentity Zm3:Message3 s_mes3_t_to_r(res,m3).
Intruder(int,m1s,m2s,m3s,ncset)
< and(test(m3,m3s),isResponder(res)) > § +

2 res:Identity 2_n:Nonce S-Mes3-t-to_r(res,mes3(res,n)).



Intruder(int,m1s,m2s,m3s,ncset)
< and(test(n,ncset),isResponder(res)) > &

4.8 A small system
We define a small Needham-Schroeder public-key protocol with one initiator, one responder and one
intruder:

Asmallsystem=0g (Initiator(al,set(na,ema)) || Responder(bl,set(nb,ema))
|| Intruder(cl,emal,ema2,ema3,set(nc,ema)))

Here,

s_mesl_i_to_t, r.mesl_t_from_i, s_-mesl_t_to_r, r_.mesl_r_from_t,
H=4.;. s_mes2_r_to_t, r-mes2_t_from_r, s_mes2_t_to_i, r_.mes2_i_from_t,
s_mes3_i_to_t, rrmes3_t_from_i, s_mes3_t_to_r, r_mes3_r_from_t

Initially, both initiator and responder have only one nonce, the intruder’s its knowledge of the world
is empty, and it has a nonce nc.

5. ANALYSIS PROCESS

Several approaches have been developed for analyzing security protocols. We take the explicit intruder
method [DM99] as the basis of our analysis approach and adopt it with our verification experience based
on uCRL and its toolset. The whole process may have this sequence of steps: specify the protocol;
model the intruder; state the correctness properties and verify the protocol. This verification process
is described in Figure 2.

Modiify

‘ (Optimized) uCRL LPO

HCRL

Modify
LTS Properties
Simulation
CADP Toolset

Find an error?

-

Figure 2: Verification (model checking) process in yCRL
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The specification of the Needham-Schroeder public-key protocol has been discussed in Section 4. In
this section, we will give the requirements of this protocol and present our verification result. Before
that, we will show how to state the correctness properties and verify a protocol in our approach.

5.1 Stating the correctness properties

Model checking is an automatic technique to determine whether a state transition system satisfies
certain requirements [CW96]. It has been successfully applied to a large number of communication
protocols. In order to check whether a certain requirement holds, it should be expressed as a temporal
logic formula first. A model checker searches the reachable states of a certain labeled transition system
to determine whether this formula holds. If the model checker finds that the formula does not hold,
it presents a fragment of the transition system that violates the requirement.

The temporal logic used as input language for EVALUATOR? is called regular alternation-free -
calculus. It is an extension of the alternation-free fragment of the modal p-calculus with action
predicates and regular expressions over action sequences. The syntax of this logic is expressed in
[MS00].

Similar to what Leduc and Germeau have done [LGO00], we need to define some security actions
(e.g. actions I_running, I_commit and T_leaking in the pCRL specification of Section 4.2) for agents
to determine the critical points in the specification. These actions can be parameterized with any
data relevant to the properties we want to model check. The parameters of these actions play an
important role when model checking the properties. This is illustrated in the following discussion (see
Section 5.3). By this, we can abstract away from the details of communication and only focus on
these actions.

The correctness requirements of a security protocol are always related to authentication and rely
on the fact that the intruder does not know some secret. In this paper, we study three kinds of
authentication, and show that the Needham-Schroeder public-key protocol and its improved version
can or cannot guarantee secure communication at different level. The property of authentication in our
approach has the form “whenever agent A completes a run ..., then agent B has recently been running
the protocol ...”. The ‘...’ part stands for the precise information relevant to different definitions of
authentication. The fact that the intruder does not know some secret can be characterized as safety
properties, stating that “nothing bad will ever happen”.

5.2 Verifying the protocol

The puCRL specification can be automatically linearized into an LPO, and we generate the transition
system from an (optimized) LPO. The generated LTS and the properties that we want to verify for
this LTS, formulized in temporal logic, are treated as input to the model checker EVALUATOR. When
we find a violated property, we analyze a number of diagnostic sequences produced by EVALUATOR or
the simulator in the pCRL toolset in order to find out whether it is one among the following:

1. Property error: the property is incorrectly stated;
2. Specification error: the specification itself is not a correct representation of the protocol;
3. Protocol error: the error is with the protocol’s design.

Most of the property errors we find are due to the fact that we define them too strongly. The
specification errors can be corrected by modifying the corresponding parts in the specification, as long
as we figure out the reasons. The protocol errors are most interesting to us. Much effort is spent
on finding the real causes and the solutions to them. After repairing the detected errors, the whole
process is repeated until no more errors can be found.

2A model checker among the the CESAR ALDEBARAN DEVELOPMENT PACKAGE (CADP).
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5.8 Requirements of the protocol

Since the Needham-Schroeder public-key protocol has been studied by many researchers, using differ-
ent formal analysis approaches, the correctness requirements are already well known. We catch three
kinds of definition for authentication from [Low96b] and formulate them in the regular alternation-free
p-calculus.

The mostly investigated definition of authentication is: Whenever an agent A completes a run
apparently with B, then agent B has recently been running the protocol apparently with A. The
attack on the Needham-Schroeder public-key protocol [Low96a] will break this. The properties of
authentication are defined in regular alternation-free p-calculus as follows:

A3: The Responder is correctly authenticated.
[(= R-running(al,bl))* - |_commit(al,bl)] F

It says that if an execution sequence does not contain an action R_running(al,b1), then in the
resulting state an initiator (with identity al) cannot believe that it is talking with a responder
(with identity b1).

A4: The Initiator is correctly authenticated.
[(— L_running(al,bl))* - R_.commit(al,bl)] F

It sates that if an execution sequence does not contain an action Irunning(al,b1), then in the
resulting state a responder (with identity b1) cannot believe that it completes a run with an
initiator (with identity al).

A stronger definition insists that the two agents agree on each other’s state, there is a one-one rela-
tionship. It is expressed as follows: Whenever an agent A completes a run apparently with B, then
agent B has recently been running the protocol apparently with A; and the two agents agree upon all
data values used in the run. The regular alternation-free p-calculus code is given below:

Al: The Responder is strongly authenticated.

[(— I.commit(al,bl,na,nb))* - |_commit(al,bl,na,nb)]
w X - (<T>T A [- R.commit(al,bl,na,nb)] X)

It states that after an action I_commit(al,b1,na,nb), the reachability of an action R_commit(al,b1,na,nb)
is inevitable. This is expressed using fixed point operators.

A2: The Initiator is strongly authenticated.
[(= l.commit(al,bl,na,nb))* - R_commit(al,bl,na,nb)] F
A weaker definition is: Whenever an agent A completes a run apparently with B, then agent B has

recently been running the protocol. Note that agent B may run the protocol with some other agent
and never have heard of A.

A5: The Responder is weakly authenticated.
[(= R_running(b1))* - l_commit(al,bl)] F

A6: The Initiator is weakly authenticated.
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[(= I_running(al))* - R_commit(al,bl)] F

The fact that the intruder does not know some secret can be expressed in regular alternation-free
p-calculus as follows:

S1: na is a secret.

[(= I_running(al,c1))* - T_leaking(na)] F
S2: nb is a secret.

[(— R_running(c1,bl))* - T_leaking(nb)] F

5.4 Verification results

In our verification, we were able to discover the protocol error described in [Low96a]. Property A3, S1
and S2 were proved as false by the model checker. The diagnostic sequence produced by EVALUATOR
is shown in Table 2. It means that the responder b1 commits to a session with an initiator a! even
though this initiator al is not trying to establish a session with the responder b1. After fixing the
protocol as Gavin Lowe did in [Low96a] (see Table 3), the improved protocol was shown to satisfy the
properties (A3 and A4) of authentication and the properties S1 and S2.

initial state

I_running(al,cl)
c_mesl_it(al,mesl(cl,na,al))
T_leaking(na)
c_mesl_tr(b1,mesl(bl,na,al))
R_running(al,bl)
c_mes2._rt(b1,mes2(al,na,nb))
c_mes2_ti(al,mes2(al,na,nb))
I_commit(al,cl)
c_mes3_it(al,mes3(cl,nb))

T _leaking(nb)
c_mes3_tr(b1,mes3(b1,nb))
R_commit(al,bl)

goal state

NN N N

Table 2: One diagnostic sequence produced by EVALUATOR on property A3

Message 2. B — A:{Ny;, Ny,Bl}ka

Table 3: Message2 in improved Needham-Schroeder Public-key Protocol

Table 4 summarizes the verification result on all the properties listed in Section 5.3. It shows that
both the protocol and its improved version can satisfy the properties of weaker authentication (A5
and A6). The protocol satisfies neither Al nor A2, while the improved version satisfies A2 but not
Al.
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Al A2 A3 A4 A5 A6 S1 S2
Improved NS-PKP | False | False | False | True | True | True | False | False
NS-PKP False | True | True | True | True | True | True | True

Table 4: Verification result on the properties

6. THE IMPROVED PROTOCOL WITH A RATIONAL INTRUDER

When we verified the improved Needham-Schroeder public-key protocol on property A1, one diagnostic
sequence produced by EVALUATOR was found as in Table 5. It says that the run of the protocol goes
very well except for the last step, where the intruder sends one Message3 composed by its nonce, while
the reponder is expecting a nonce of itself. It fails since as the intruder’s behavior is nondeterministic,
it can send any message based on its knowledge. But most of the messages may not be actually
accepted by the agents. If we have an intruder who is rational, meaning that the intruder will use
information that the other agents will actually accept, then we can show that the improved protocol
can satisfy property Al. In [MMS97], it is said to be an efficient way to improve the running time
and space of analysis by letting the intruder avoid the generation of useless messages.

initial state

Irunning(al,bl)
c_mesl_it(al,mes1(b1,na,al))
c_mesl_tr(b1l,mes1(bl,na,al))
R_running(al,bl)
c-mes2_rt(b1l,mes2(al,na,nb,bl))
c_mes2 _ti(al,mes2(al,na,nb,bl))
I_commit(al,bl,na,nb)
c-mes3_it(al,mes3(b1,nb))
c_mes3_tr(b1l,mes3(bl,nc))

goal state

Table 5: One diagnostic sequence produced by EVALUATOR on property Al

To achieve a rational intruder, we only need to change the specification of the intruder slightly. We
parameterized the process with another two new sets, naset and nbset. The nonces of the initiators
that it has learned from the system are stored into naset; while the nonces of the responders are put
into nbset. When the intruder fakes a Message2, it will use the nonces in naset, since an initiator
is expecting a Message2 containing its nonce. When the intruder fakes a Message3, it will use the
nonces in nbset, since a responder is expecting a Message3 with its nonce. After this, the improved
protocol with a rational intruder was shown to meet property Al.

7. DISCUSSION
This is the first time that yCRL and its toolset were used to verify security protocols. In this section,
we make some remarks on our approach.

7.1 Do we model the intruder powerful enough?

In our analysis, we refer to a general model of the intruder. And initially, the knowledge databases of
the intruder are empty. The question is: do we model the intruder powerful enough? Our answer is
no. In the real world, the situation is more complex. When the intruder gets to know some private key,
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it can achieve more information by decrypting the old messages it has seen before. We don’t consider
this in our specification of the intruder. In fact, this will lead to the problem of state explosion and
make our approach infeasible.

7.2 Can we use the proof theory in pCRL?

The model checking technique can only find errors of a system or protocol, but it cannot prove there
is no error in a system or protocol. In addition, it can only deal with finite state systems. Proving a
system correct is more convincing. The language pCRL has also been the basis for the development of
a proof theory (the cones and foci method) [GP94] that has enabled the formal verification of protocols
and distributed systems in a precise and logical way. To prove a system correct, the axioms of uCRL
are applied to a pCRL specification of that system (i.e. the implementation of the system) to show
that the specification is branching bisimular [GW96] with a specification of the intended external
behavior (i.e. the specification of the system). It can be written in uCRL notation as follows:

T1(0m (Implementation)) ~ Specification

A prototype tool [Pol01] based on an extension of binary decision diagrams has been implemented,
which can check invariants and the correct criteria associated with a state mapping between a speci-
fication and its implementation.

However, security protocols in practice tend to be very complicated, and it is difficult to identify
the external behavior relevant to security properties. One could formulate the properties S1 and S2
as invariants, which one could then try to prove using the yCRL theorem prover. To achieve such
a correct proof requires a lot of information at LPO level, this is time consuming and needs analysis
experience with pCRL specifications. We leave this as future work.

7.8 Can we reduce the transition system?

The running time and space of analysis of a distributed system or a protocol can be decreased if we
reduce the size of the generated transition systems. But usually we want to run the protocol against
the most powerful and most nondeterministic intruder, this will cause the size of transition system to
be very large.

The first way of reduction is that we can model the behavior of the intruder less nondeterministic,
while the intruder’s capabilities are not weakened. In our study on the Needham-Schroeder public-
key protocol, we slightly changed the specificaiton of the intruder by allowing the intruder to send a
message only when it receives a message of the same type. By this way, we could reduce the transition
system to an extremely small size. In Section 6, a rational intruder is introduced. This is another
efficient way to improve the running time and space of analysis by letting the intruder avoid the
generation of useless messages. This is also metioned in [MMS97]. Experiments have shown that by
adding more agents into the protocol, the size of transition systems can increase very fast. Hence,
restricting the number of agents in the system can be another way to fight state explosion. But in the
meanwhile, we need to be sure that if there is an attack on a system running this protocol, it can be
found in a smaller system (as Gavin Lowe did in [Low96a]). In uCRL specification, the initial state of
the agents and the intruder decides the size of the generated transition system. By carefully assigning
values to the parameters, we can also reduce the transition systems.

8. CONCLUSION AND FUTURE WORK
This paper presents a formal analysis approach to verify security protocols with pCRL and its toolset.
We take the Needham-Schroeder public-key protocol as a case study. The algebraic specification and
the analysis process are given in details. The known error can be reproduced by model checking.
Furthermore, we also can study another two definitions of authentication and discuss the improved
Needham-Schroeder public-key protocol with a rational intruder can meet all the requirements.
Compared with works using general purpose verification methods to analyze security protocols, our
approach has achieved some success. There are two weaknesses in our approach, the second one is
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also true with other approaches based on finite state exploration techniques:

1. The data types in pCRL language can only contain finitely many elements. Due to this, we
cannot model the generation of nonces from an infinite domain in yCRL;

2. Modeling the intruder in full generality and adding more agents into the protocol can lead to
the problem of state explosion and make our approach infeasible.

Encouraged by the work presented in this paper, we can list some further directions of research.
1. Try to specify and analyze other security protocols, and hope to discover new errors;

2. Apply our approach to more complicated e-commerce protocols, where security plays an impor-
tant role, e.g. the electronic payment protocols;

3. Combine the approach with the design of new security protocols;

4. Applying techniques from process algebra and theorem proving for the formal analysis of security
protocols.
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Appendix |
Overview of the uCRL Toolset

The pCRL toolset is a collection of tools for analyzing and manipulating pCRL specifications. A
1CRL specification can be automatically transformed into a LPO. All other tools in the uCRL toolset
use LPOs as their starting point. The uCRL toolset comprises five tools (constelm, sumelm, parelm,
structelm and rewr) that target the automated simplification of LPOs while preserving bisimilarity
[GLO1]. These tools do not require the generation of the LTS belonging to an LPO, thus circumventing
the ominous state explosion problem. The simplification tools are remarkably successful at simplifying
the LPOs belonging to a number of existing protocols. In some cases these simplifications lead to a
substantial reduction of the size of the corresponding LTS. The main relations between the tools is
described in Figure I.1.

1.

S otk W

merl checks whether a specification in (timed) pCRL is well formed and linearizes certain uCRL
specifications;

msitm allows interactive simulation of a system described in pCRL;

instantiator generates a finite transition system from a linearized uCRL specification;
pp pretty prints a linearized pCRL specification;

rewr normalizes a linearized pCRL specification;

constelm removes from a linearized uCRL specification the data parameters that are constant
throughout any run of the process;

parelm removes from a linearized pCRL specification the data parameters and sum variables
that do not influence the behavior of the system;

structelm expands the composite data types of a linearized yCRL specification;

sumelm replaces in a linearized uCRL specification the sum variables that must be equal to a
certain data term by that data term.
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Figure I.1: The main components of the yCRL toolset
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Appendix Il

The pCRL specification of the Needham-Schroeder Public-key Protocol

T h o ToTo Tt e o 1o 1o To o oo oo 1o T To o T o o o o 1o 1o T T o oo oo oo o o o oo o oo oo 1o o o oo o oo o o o o o o
% This is the specification of the NS public-key protocol in mCRL.
% Jun Pang, Aug 2001, CWI, Amsterdam, The Netherlands

% One Initiator
% One Responder
% One Intruder
Il la T T e Tt s T T To T T o e T T T T o T o T s T o fa T o T o T o T o o T o o T s T e Do e T o o o e o e
Il T T T T Tl et T T T To T T To e T o Fe T o T ol T o T o Y T o VT T s T o o o T o o T s T e Y o e T Do Vo o o o o o o
% Bool
Il T Tl T T T T s T T o T T o T T T T o T s o T s T o T o T o T o T o o T o o T T T o T o e T o o o e o o e
sort Bool
func T,F:->Bool
map if:Bool#Bool#Bool->Bool
not:Bool->Bool
and:Bool#Bool->Bool
or:Bool#Bool->Bool
eq:Bool#Bool->Bool
var b,b’:Bool

rew if(T,b,b’)=b if (F,b,b’)=b’
not (T)=F not (F)=T
and(T,b)=b and(F,b)=F and(b,T)=b and(b,F)=F
or(T,b)=T or(F,b)=b or(b,T)=b or(b,F)=b
eq(b,b)=T eq(T,F)=F eq(F,T)=F

T hto o ToToloto e oo 1o To o oo oo 1o 1o To o To o o o o oo o T o o oo oo oo o o o oo o oo oo 1o o o o oo oo oo o 1o o o o

% Nonce

T b ot Toloto e o 1o 1o To oo oo 1o T T T o o o oo 1o T o o oo oo oo o o oo o oo oo 1o o o oo oo ta o o o o o o

sort Nonce

func na,nb,nc:->Nonce

map eq:Nonce#Nonce->Bool

rew eq(na,na)=T eq(na,nb)=F eq(na,nc)=F
eq(nb,na)=F eq(nb,nb) =T eq(nb,nc)=F
eq(nc,na)=F eq(nc,nb)=F eq(nc,nc)=T
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T T T T It T T T o e T T T T o T T o o T T T o T T T o e T o o T T o o Ve T T o o T T o o T T o o o T T e o e T o o o o o
% NonceSet

Il Tl T Tl et e T T To T T To e T T fe T o e o o T o T o fa T o VTt T s o o o o o o o T s o T o o o Ve T Do o o o o o o o
sort NonceSet

func ema:->NonceSet

map

var

rew

set :Nonce#NonceSet->NonceSet

add:Nonce#NonceSet->NonceSet

remove :Nonce#NonceSet->NonceSet

test:Nonce#NonceSet->Bool

empty:NonceSet->Bool

if :Bool#NonceSet#NonceSet->NonceSet

nl,nl’:Nonce

sl,s1’:NonceSet

empty (ema)=T

empty(set(nl,s1))=F

test(nl,ema)=F

test(nl,set(nl’,s1))=if(eq(nl,n1’),T,test(nl,s1))

add(nl,s1)=if(test(nl,s1),sl,set(nl,sl))

remove (nl,ema)=ema

remove (nl,set(nl’,s1))=if (eq(nl,nl1’) ,remove(ni,sl),
set(nl’,remove(nl,sl)))

if(T,s1,s1’)=s1

if(F,s1,s1’)=s1’

T b toToTo o Toto e 1o 1o o To o oo oo 1o 1o To o Toto o o o o 1o 1o T o o oo oo oo oo o o oo o o e 1o 1o o o oo o o oo o 1o o o oo
% Messagel

bt T oo toTot o 1o 1o Toto o 1o ToTto o T Toto oo 1o o oo oo oo oo T o oo oo oo oo o oo oo o oo o oo oo oo o
sort Messagel

func mesl:Identity#Nonce#Identity->Messagel % Destination is the key

map

var

rew

getNonce:Messagel->Nonce
getId:Messagel->Identity
getKey:Messagel->Identity
eq:Messagel#Messagel->Bool

nl,nl’:Nonce

destl,idl,dest1’,id1’:Identity

getNonce (mes1(dest1,nl,id1))=n1l
getId(mesi(destl,n1,id1))=id1
getKey(mes1(dest1,n1,id1))=dest1
eq(mesi(destl,nl,idl) ,mesi(destl’,nl1’,id1’))=
and(eq(destl,destl’),and(eq(nl,nl1’),eq(idl,id1’)))

hlo T o 1o TototoTotoTo 1o TotoTo oo tototo 1o oo 1o o oo o oo Joto 1o Tt oo oo o o oo oot fo o o T ot ot oo oo o oo o ot
% Message2

Tt T o toTototoToto o Totato To oot oo oot 1o o oo fo oo e 1o Tt o oo oo oo o oo oo o ot o oo o oo o oo o ot
sort Message2

func mes2:Identity#Nonce#Nonce->Message2

map

var

rew

getNoncel:Message2->Nonce
getNonce2:Message2->Nonce
getKey:Message2->Identity
eq:Message2#Message2->Bool
n21,n22,n21’,n22’ :Nonce

dest2,dest2’:Identity

getNoncel (mes2(dest2,n21,n22))=n21
getNonce2(mes2(dest2,n21,n22))=n22

getKey (mes2(dest2,n21,n22))=dest2
eq(mes2(dest2,n21,n22) ,mes2(dest2’ ,n21’,n22’))=
and(eq(dest2,dest2’) ,and(eq(n21,n21’),eq(n22,n22’)))
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bl o o toto e 1o 1o Toto oo Tooro o T Tt oo 1o T o oo oo oo T oo o o oo oo o oo oo oo o oo o T oo o
90 % Message3
T oo o oo e o o o oo 1o o 1o 1o 1o 7o 1o o o o o oo oo o o o o o oo oo oo oo oo o oo oo oo oo oo oo oo oo o o
sort Message3
func mes3:Identity#Nonce->Message3
map getNonce:Message3->Nonce
getKey:Message3->Identity
eq:Message3#Message3->Bool
var n3,n3’:Nonce
dest3,dest3’:Identity
rew getNonce(mes3(dest3,n3))=n3
100 getKey(mes3(dest3,n3))=dest3
eq(mes3(dest3,n3) ,mes3(dest3’,n3’))=
and(eq(dest3,dest3’),eq(n3,n3’) )
Tl o o oo e o o e o o o o oo e o oo oo o oo oo o o o o o o oo oo oo o e o e o o e e
% MessagelSet
Tt htoToto e 1o 1o Tota oo To oo o Toto oo 1o T o oo To o oo T o oo oo oo oo o oo oo o oo o oo oo oo o
sort MessagelSet
func emal:->MessagelSet
setl:Messagel#MessagelSet->MessagelSet
map add:Messagel#MessagelSet->MessagelSet
110 remove:Messagel#MessagelSet->MessagelSet
test:Messagel#MessagelSet->Bool
empty:MessagelSet->Bool
if :Bool#MessagelSet#MessagelSet->MessagelSet
var ml,ml’:Messagel
sl,s1’:MessagelSet
rew empty(emal)=T
empty(seti(ml,s1))=F
test(ml,emal)=F
test(ml,seti(ml’,s1))=if (eq(ml,m1’),T,test(ml,s1))
120 add(ml,s1)=if (test(ml,s1),s1,seti(ml,s1))
remove (ml,emal)=emal
remove(ml,set1(ml’,s1))=if (eq(ml,m1’) ,remove(ml,s1),setl(ml’,remove(ml,s1)))
if(T,s1,s1?)=s1
if(F,s1,s1’)=s1’
bt T oo toToto e 1o 1o Tota oo ToTrh o Toto oo 1o o oo o o oo oo T o oo oo oo oo o oo oo oo oo oo o oo oo o
% Message2Set
T otototo e 1o 1o oo oo Tooto o T Tt oo 1o T oot T oo T oo o o oo oo o oo oo o oo oo o oo oo o
sort Message2Set
func ema2:->Message2Set
130 set2:Message2#Message2Set->Message2Set
map add:Message2#Message2Set->Message2Set
remove :Message2#Message2Set->Message2Set
test:Message2#Message2Set->Bool
empty :Message2Set->Bool
if :Bool#Message2Set#Message2Set->Message2Set
var m2,m2’:Message2
s2,s2’ :Message2Set
rew empty(ema2)=T
empty(set2(m2,s2))=F
140 test (m2,ema2)=F
test(m2,set2(m2’,s2))=if (eq(m2,m2’),T,test (m2,s2))
add(m2,s2)=if (test(m2,s2),s2,set2(m2,s2))
remove (m2,ema2) =ema?2
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150

160

170

180

190

remove (m2,set2(m2’,s2))=if (eq(m2,m2’) ,remove (m2,s2) ,set2(m2’ ,remove (m2,s2)))
if(T,s2,s2’)=s2
if(F,s2,s82’)=s82’
T T h o to e to 1o oo oo To oo o T Tt oo 1o T e oo T oo o T oo o o oo oo o oo oo o oo oo o T oo o
% Message3Set
T oo o oo e o o e e o 1o o oo 1o 1o 7o 1o o o o o o o o o o o o o o oo oo oo oo o oo oo oo oo oo oo oo oo oo o o
sort Message3Set
func ema3:->Message3Set
set3:Message3#Message3Set->Message3Set
map add:Message3#Message3Set->Message3Set
remove:Message3#Message3Set—>Message3Set
test:Message3#Message3Set->Bool
empty:Message3Set->Bool
if :Bool#Message3Set#Message3Set->Message3Set
var m3,m3’:Message3
s3,s3’ :Message3Set
rew empty(ema3)=T
empty(set3(m3,s3))=F
test (m3,emal)=F
test(m3,set3(m3’,s3))=if (eq(m3,m3’),T,test (m3,s3))
add(m3,s3)=if (test (m3,s3),s3,set3(m3,s3))
remove (m3,ema3) =ema3
remove (m3,set3(m3’,s3))=if (eq(m3,m3’) ,remove (m3,s3) ,set3(m3’ ,remove (m3,s3)))
if(T,s3,s3’)=s3
if(F,s3,s3’)=s3’
bt T oo toToto oo ToTotato o ToToto 1o Toto oo 1o T ora oo oo oo T o o oo o oo oo o oo oo o oo o oo oo oo o
% Identity
Tt T oo toToto oo 1o oo oo Toorh o Tt oo 1o T o oo oo oo T o oo o o oo oo o oo oo oo oo oo o oo oo o
sort Identity
func al,bl,cl:->Identity
map eq:Identity#Identity->Bool
isInitiator:Identity->Bool
isResponder:Identity->Bool
isIntruder:Identity->Bool

rew eq(al,al)=T eq(al,b1)=F eq(al,c1)=F
eq(bl,al)=F eq(b1l,b1)=T eq(bl,cl)=F
eq(cl,al)=F eq(cl,b1)=F eq(cl,c1)=T
isInitiator(a1)=T isInitiator(b1)=F isInitiator(c1)=F
isResponder (al)=F isResponder (b1)=T isResponder(cl1)=F
isIntruder(al)=F isIntruder(bl)=F isIntruder(cl)=T

bt T oo toTot oo ToTota oo ToToto 1o Toto oo 1o T ora oo o oo o To o o oo o oo oo o oo oo Tt oo o oo oo oo o

% Declaration of actions

Tt T o totoToto oo 1o oo oo Tooth o Tt oo 1o T o oo oo o T o o oo o oo oo o oo oo e oo oo o oo oo o

act s_mesl_i_to_t,r_mesl_t_from_i,c_mesl_it:Identity#Messagel
s_mesl_t_to_r,r_mesl_r_from_t,c_mesl_tr:Identity#Messagel
s_mes2_r_to_t,r_mes2_t_from_r,c_mes2_rt:Identity#Message2
s_mes2_t_to_i,r_mes2_i_from_t,c_mes2_ti:Identity#Message2
s_mes3_i_to_t,r_mes3_t_from_i,c_mes3_it:Identity#Message3
s_mes3_t_to_r,r_mes3_r_from_t,c_mes3_tr:Identity#Message3
I_commit,R_commit:Identity#Identity
I_running,R_running:Identity#Identity
T_leaking:Nonce

T e o o oo e o o e e o o o oo e 2o 2o o oo o o oo o o o o o o o o oo oo o oo oo oo oo oo oo oo oo oo oo o o

% Initiator

bt T oo toToto e 1o 1o Tota oo ToToro o Tt oo 1o T oo oo oo oo T o oo o o oo oo o oo oo oo oo oo oo o oo o
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24 Appendix Il. The pCRL specification of the Needham-Schroeder Public-key Protocol

proc Initiator(ini:Identity,naset:NonceSet)=
200 sum(res:Identity,
sum(n:Nonce,
I_running(ini,res).
s_mesl_i_to_t(ini,mes1(res,n,ini)).
sum(m2:Message2,
r_mes2_i_from_t(ini,m2).
(
I_commit(ini,res).
s_mes3_i_to_t(ini,mes3(res,getNonce2(m2))).
Initiator(ini,remove(na,naset))

210 <|and(eq(getKey(m2),ini),eq(n,getNoncel(m2))) [>
Initiator(ini,remove(na,naset)
)
)

)

<| and(not(isInitiator(res)), test(n,naset)) |[>

delta

)

)

It to oot ToToToTototo 1o o e o oo ToTo o 1o o o o o T Ta o 1o oo o o T T o 1o o oo o o T o o o o o o T o o o oo o oo
220 7 Responder
T T o T T oo to oo e e T T T o o o o e e T T T o o o o T T T T o o o oo e T o oo o T T 2 s o oo o o
proc Responder(res:Identity,nbset:NonceSet)=
sum(ml:Messagel,
r_mesl_r_from_t(res,ml).
sum(n:Nonce,
(
R_running(getId(ml),res).
s_mes2_r_to_t(res,mes2(getId(ml) ,getNonce(ml) ,n)).
sum(m3:Message3,
230 r_mes3_r_from_t(res,m3).
(
R_commit (getId(ml) ,res).
Responder (res,remove(n,nbset) )
<| and(eq(getKey(m3) ,res),eq(getNonce(m3),n)) [>
Responder (res,remove(n,nbset) )
)
)
<|eq(getKey(ml) ,res)|>
Responder (res,nbset)

240 )
<| test(n,nbset) |>
delta
)
)

T hto o ToToToto e o 1o 1o To o oo oo 1o T To o Tt o o o o 1o o T o o oo oo oo o o oo o oo oo 1o o o o oo oo oo o o o o o
% Intruder
Tt I Tl h o 1o 1o To oo oo 1o 1o To T Tt o o o o 1o 1o T T o oo oo o oo o o oo o oo oo o o o oo o oo o o o o o o
proc Intruder(int:Identity,

mls:MessagelSet,

250 m2s :Message2Set,
m3s:Message3Set,
ncset:NonceSet)=
% Intruder gets message 1



260

270

280

290

300

sum(ini:Identity,
sum(m1:Messagel,

r_mesl_t_from_i(ini,ml).

( T_leaking(getNonce(mi)).
Intruder(int,mls,m2s,m3s,add(getNonce(ml) ,ncset))
<| eq(getKey(ml),int) [>
Intruder(int,add(ml,mls) ,m2s,m3s,ncset)

)+
% Intruder get messages 2
sum(res:Identity,
sum(m2:Message2,

r_mes2_t_from_r(res,m2).

( T_leaking(getNoncel(m2)).
T_leaking(getNonce2(m2)).
Intruder(int,mls,m2s,m3s,

add(getNoncel (m2) ,add(getNonce2(m2) ,ncset)))
<| eq(getKey(m2),int) [>
Intruder(int,mls,add(m2,m2s) ,m3s,ncset)

)+
% Intruder get message 3
sum(ini:Identity,
sum(m3:Message3,

r_mes3_t_from_i(ini,m3).

( T_leaking(getNonce(m3)).
Intruder(int,mls,m2s,m3s,add(getNonce (m3) ,ncset))
<| eq(getKey(m3),int) [>
Intruder (int,mls,m2s,add(m3,m3s) ,ncset)

)+
% Intruder fake message 1
sum(res:Identity,
sum(ml:Messagel,
s_mesl_t_to_r(res,ml).
Intruder (int,mls,m2s,m3s,ncset)
<| and(test(ml,mis),isResponder(res)) |> delta

)+
sum(res:Identity,
sum(ini:Identity,
sum(n:Nonce,
s_mesl_t_to_r(res,mesl(res,n,ini) ).
Intruder (int,mls,m2s,m3s,ncset)
<| and(and(test(n,ncset),isResponder(res)),
isInitiator(ini)) [>delta

)+
% Intruder fake message2
sum(ini:Identity,
sum(m2:Message2,

25
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320

330

340

350

360

Appendix Il. The pCRL specification of the Needham-Schroeder Public-key Protocol

s_mes2_t_to_i(ini,m2 ).
Intruder (int,mis,m2s,m3s,ncset)
<| and(test(m2,m2s),isInitiator(ini)) |[>delta
)
)+
sum(ini:Identity,
sum(n1:Nonce,
sum(n2:Nonce,
s_mes2_t_to_i(ini,mes2(ini,n1,n2)) .
Intruder (int,mls,m2s,m3s,ncset)
<| and(and(test(nl,ncset),test(n2,ncset)),
isInitiator(ini)) |[>delta

)
)+
% Intruder fake message3
sum(res:Identity,
sum(m3:Message3,
s_mes3_t_to_r(res,m3).
Intruder (int,mis,m2s,m3s,ncset)
<| and(test(m3,m3s),isResponder(res)) |>delta
)
)+
sum(res:Identity,
sum(n:Nonce,
s_mes3_t_to_r(res,mes3(res,n)).
Intruder (int,mis,m2s,m3s,ncset)
<| and(test(n,ncset),isResponder(res)) |>delta
)
)
Toto oot s T T To T o T To o Yo To o T o Vo o o o o T o o T s o T o o To s o o o o o oo o oo o o s oo o Yo T o o o o o o o o o
% Communication
Tt Toto o To loTo s Toto Toto T o Yo o T to To 0o Fo T o o Yo T Yo o o o o o o o o o oo To o Fo o Yo o Yo s Yot o o o o o o o Yo o Yoo o o o

comm s_mesl_i_to_t | r_mesi_t_from_i = c_mesl_it

s_mesl_t_to_r | r_mesl_r_from_t c_mesl_tr
s_mes2_r_to_t | r_mes2_t_from_r c_mes2_rt
s_mes2_t_to_i | r_mes2_i_from_t c_mes2_ti

s_mes3_i_to_t | r_mes3_t_from_i = c_mes3_it
s_mes3_t_to_r | r_mes3_r_from_t = c_mes3_tr
T T T T Tt T o T oo T T To o o fe T o o T e T o e T T o e T o o T T o o VT T o o e T o o P T o o o T T o o T o o ol o
% A small system
It T Tt oo T T T o e T T T T o T T o o T e T o T T T o o T o o T T o o P T T o o T T o o T T o o o T o s o T T o o o o
init encap(
{s_mes1_i_to_t,r_mesi_t_from_i,
s_mesl_t_to_r,r mesl r from_t,
s_mes2_r_to_t,r_mes2_t_from_r,
s_mes2_t_to_i,r_mes2_i_from_t,
s_mes3_i_to_t,r_mes3_t_from_i,
s_mes3_t_to_r,r_mes3_r_from_t},
Initiator(al,set(na,ema) )||
Responder (bl,set(nb,ema) ) ||
Intruder(cl,emal,ema2,ema3,set(nc,ema)) )



