
The Journal of Systems and Software 81 (2008) 2237–2251
Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss
An architectural approach to the correct and automatic assembly of evolving
component-based systems

Patrizio Pelliccione a, Massimo Tivoli a,*, Antonio Bucchiarone b, Andrea Polini c

a Dipartimento di Informatica, Università dell’Aquila, Via Vetoio snc, Coppito, 67100 L’Aquila, Italy
b IMT Lucca Institute for Advanced Studies, Piazza S. Ponziano 6, 55100 Lucca, Italy
c Dipartimento di Matematica e Informatica, Università di Camerino, 62032 Camerino, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 December 2006
Received in revised form 26 May 2008
Accepted 27 May 2008
Available online 4 June 2008

Keywords:
Software architecture
Verification and validation
Component based software engineering
Component assembly
Component adaptation
0164-1212/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jss.2008.05.030

* Corresponding author.
E-mail addresses: pellicci@di.univaq.it (P. Pel

(M. Tivoli), a.bucchiarone@imtlucca.it (A. Bucchiaro
(A. Polini).
Software components are specified, designed and implemented with the intention to be reused, and they
are assembled in various contexts in order to produce a multitude of software systems. However, in the
practice of software development, this ideal scenario is often unrealistic. This is mainly due to the lack of
an automatic and efficient support to predict properties of the assembly code by only assuming a limited
knowledge of the properties of single components. Moreover, to make effective the component-based
vision, the assembly code should evolve when things change, i.e., the properties guaranteed by the assem-
bly, before a change occurs, must hold also after the change. Glue code synthesis approaches technically
permit one to construct an assembly of components that guarantees specific properties but, practically,
they may suffer from the state-space explosion phenomenon.
In this paper, we propose a Software Architecture (SA) based approach in which the usage of the system
SA and of SA verification techniques allows the system assembler to design architectural components
whose interaction is verified with respect to the specified properties. By exploiting this validation, the
system assembler can perform code synthesis by only focusing on each single architectural component,
hence refining it as an assembly of actual components which respect the architectural component obser-
vable behaviour. In this way code synthesis is performed locally on each architectural component, instead
of globally on the whole system interactions, hence reducing the state-space explosion phenomenon.
The approach can be equally well applied to efficiently manage the whole reconfiguration of the system
when one or more components need to be updated, still maintaining the required properties. The spec-
ified and verified system SA is used as starting point for the derivation of glue adaptors that are required
to apply changes in the composed system. The approach is firstly illustrated over an explanatory example
and is then applied and validated over a real-world industrial case study.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Software components composition has been advocated as a
software development approach allowing software engineers to
manage the continuously raising software complexity, the increas-
ing software dependability requirements, and the reduced time-to-
market. In the last decade, researchers and practitioners have put a
big effort on trying to make real the software ‘‘componentization”
vision (see Schmidt et al., 2007 and its previous editions since
2004). In the same period a new discipline, called ‘‘Component
Based Software Engineering” (CBSE), has been introduced Szyper-
ski, 1998; Heineman and Councill, 2001). A Component-Based
ll rights reserved.

liccione), tivoli@di.univaq.it
ne), andrea.polini@unicam.it
(CB) software system is an assembly of software components (usu-
ally implemented by means of either third-party libraries or in-
house components), designed to meet the system requirements
that were identified during the analysis phase (Crnkovic, 2002).

The definition of software as a composition of software elements
could certainly take advantage from languages and techniques iden-
tified within the ‘‘Software Architecture” (SA) research domain
(Shaw and Garlan, 1996). In particular, the notion of SA assumes a
key role in component-based software development since it repre-
sents the reference skeleton used to compose components and to
let them interact. It is worth noticing that within the SA discipline,
the interactions among components are first class citizens and are
specifically represented by the notion of software ‘‘connector”
(Shaw and Garlan, 1996). Beyond the concepts of component and
connector there is also another basic element that characterizes an
SA, which is the system configuration. In other words, components
and connectors can be composed together to make up different

mailto:pellicci@di.univaq.it
mailto:tivoli@di.univaq.it
mailto:a.bucchiarone@imtlucca.it
mailto:andrea.polini@unicam.it
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

2238 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
system configurations. As a result, a component based software sys-
tem can be designed specifying its architecture in terms of compo-
nents, connectors and its (architectural) configuration.

Indeed, different architectural configurations guarantee differ-
ent behavioural properties. Therefore, further elements that need
to be taken into account are the properties that an SA configuration
has to satisfy. Two complementary approaches can be used to
guarantee that a software system satisfies a set of properties:

(1) Architectural analysis: The analysis process is based on
checking if the specified properties hold in the SA design
of the assembled system via, e.g., model-checking tech-
niques (Clarke et al., 2001).

(2) Code synthesis: a code synthesis technique can be defined in
order to generate the ‘‘correct” assembly code for the (pre-
selected and pre-acquired) components forming the specified
system. This code is derived in order to force the composed
system to exhibit only the specified interactions. In our con-
text, the synthesis techniques we refer to belong to the
domains of discrete controller synthesis (Brandin and Wonham,
1994; Ramadge and Wonham, 1987), converter synthesis
(Passerone et al., 2002), and protocol adaptor synthesis (Yellin
and Strom, 1997; Bracciali et al., 2005; Inverardi and Tivoli,
2003; Bracciali et al., 2002).

Both approaches have advantages and drawbacks.
On the one hand the architectural analysis permits to formally

prove that an SA satisfies given properties, under the assumption
that the running version of the system will completely conform
to its SA. Unfortunately, this is not always the case. As a result
the verification step might loose much of its power, being con-
ducted on an SA that might refer to a system that is different from
the ‘‘implemented” one, e.g., the SA might refer to only an abstrac-
tion of the actual system. On the other hand, performing automatic
verification of an SA that is too close to its implementation may
lead to the state-space explosion phenomenon hence making the
analysis useless.

On the contrary, code synthesis approaches technically permit
to construct an assembly of components satisfying specific proper-
ties. This approach may nevertheless automatically produce a non-
tractable model of the assembly. This is due to the, in general,
unavoidable need of taking into account all possible interactions
of the components in the assembly. That is, to guarantee some spe-
cific properties at the level of the whole assembly, it is not always
possible to operate locally on each single component. This is partic-
ularly true to guarantee specific interaction and safety properties,
e.g., deadlock-freedom. This kind of problem generally leads to
the well-known state-space explosion phenomenon, in which the
dimension of the model and its number of states prevent the appli-
cability of any analysis technique. This problem becomes particu-
larly relevant when run-time re-factoring is required, asking, in
general, for a complete revision of the whole system when compo-
nents need to be added, substituted, or updated.

Hence, if we want to automatically assemble a set of possibly
third-party components to form a system in such a way that it
guarantees specific properties of interaction, neither architectural
analysis nor code synthesis (taken in isolation) are ideal due to
the above discussed limitations. As a consequence, in this work,
we propose an SA-based approach that combines architectural
analysis and code synthesis in order to efficiently and correctly
assemble a system out of a set of already implemented compo-
nents. The assembled system must be synthesized in such a way
that it can evolve, at run-time, to possible changes (e.g., component
replacement).

Firstly, the system’s SA is verified and refined with respect to a
set of properties of interest (i.e., standard analysis). Successively, an
initial version of the composed system is built by taking into ac-
count both the models of the architectural components in the SA
and the ones of the actual components. Actual components are se-
lected and acquired on the market in order to implement a verified
architectural component. The actual components’ assembly code is
automatically synthesized (i.e., code synthesis) in order to be cor-
rect-by-construction, i.e., it adapts the actual components and com-
poses them in order to produce an assembly that behaves
equivalently to an architectural component. The assembly code,
supporting the implementation of an architectural component, is
derived as an adaptor acting as coordinator of the actual compo-
nents’ interaction behaviour.

The approach brings many advantages with respect to a more
‘‘traditional” component-based software development process.
First, the approach we propose forces a correspondence among
the architectural specification and the real implementation, with
obvious positive consequences in particular with reference to pos-
sible re-factoring phases. The second important characteristic con-
cerns the fact that the synthesis step (acting locally with respect to
each single architectural component) deals with ‘‘smaller” and,
hence, more tractable software models, therefore reducing the ef-
fects of the state-space explosion phenomenon. Finally, the system
is assembled in order to be modified at run-time, updating or
substituting a component with reduced effects on the overall sys-
tem, and still guaranteeing the properties that were verified during
the analysis phase.

Our approach builds on two existing approaches that have been
developed by some of the authors. One has been implemented in
the CHARMY tool (Charmy Project, 2004; Inverardi et al., 2005)
(architectural analysis) and the other in the SYNTHESIS tool (Synthesis
Project, 2004; Tivoli and Autili, 2006, 2007) (code synthesis). These
two approaches take advantage from each other. On the one hand,
CHARMY provides SYNTHESIS with an already verified system’s SA.
SYNTHESIS can exploit this system’s SA to perform adaptation locally
on each architectural component rather than at the level of the glo-
bal system interactions, thus reducing the state-space explosion
phenomenon. On the other hand, SYNTHESIS adds to CHARMY automa-
tion in assembling and implementing the designed and verified
system as third-party components. Indeed, in CHARMY this task is
completely delegated to the developer. Our approach shares some
problems that are typical to the area of architectural mismatch
detection and recovery. We will address the relation between the
work in architectural mismatch and our work in Section 5.2.

The applicability of the synthesis leads us to make one basic
assumption on the artefacts that we are considering. That is, it is
necessary that the interface definition of an actual component
encapsulates information on the interaction protocol assumed by
the component when it interacts with the expected environment
(i.e., it is a so-called ‘‘behavioural interface”). This information is gi-
ven in the form of a state machine. According to ‘‘design by con-
tract” approaches (Szyperski, 1998), we can assume that the IDL
file of a component is augmented, by the component developer,
through a commented header. Such a header encodes somehow
(e.g., by using XML) a state machine that models the observable
behaviour performed by the component when it interacts with
its expected environment. Note also that, in our context, a compo-
nent always respects its interaction protocol specification since it
is provided by the developer of the same component, who is aware
of the information needed to specify the component protocol.

The paper is organized as follows. Section 2 introduces some
background notions needed for the understanding of the approach
presented in this paper. It also recalls the approaches implemented
in CHARMY and in SYNTHESIS. Section 3 describes the method that our
approach is based on, by distinguishing four main phases of utiliza-
tion. The approach is described by means of a running example.
Section 4 applies the described approach to a real-scale industrial

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2239
case study concerning a spacecraft system. Due to the size of the
case study, Section 4 just describes the considered spacecraft sys-
tem and reports the results of the application of our method to that
system. Section 5 discusses related work. In Section 6, we discuss
the kind of systems that we are able to manage and we summarize
the advantages obtained, with our approach, by combining archi-
tectural analysis and code synthesis. These advantages have been
experienced while applying our approach to the considered case
study. Section 7 concludes and discusses future work.
2. Background

In this section we introduce some background notions needed
for the understanding of the approach presented in this paper. In
particular, in Sections 2.1 and 2.2, we briefly recall those aspects
of CHARMY and SYNTHESIS that are relevant for the approach presented
in this paper.

2.1. CHARMY: A tool for SA designing and model-checking

CHARMY (Charmy Project, 2004; Inverardi et al., 2005) is a project
whose goal is to apply model-checking techniques to validate the
SA’s conformance to certain properties. In CHARMY the SA is specified
through state machines used to describe how architectural compo-
nents behave. Starting from the SA description CHARMY synthesizes,
through a suitable translation into Promela (the specification lan-
guage of the SPIN (Holzmann, 2003) model checker) an SA model
that can be executed and verified by SPIN. This model can be ver-
ified with respect to a set of properties, e.g., deadlock-freedom, cor-
rectness of functional properties, starvation, etc., expressed in
Linear-time Temporal Logic (LTL) (Manna and Pnueli, 1992) or in
its Büchi Automata representation (Buchi, 1960). Instead of writing
directly temporal properties, which is an inherently error prone
task, CHARMY permits to describe them by using an extension of a
subset of UML 2.0 Sequence Diagrams. These diagrams are called
Property Sequence Charts (PSCs) (Autili et al., 2007). CHARMY automat-
ically translates a PSC into a Büchi automaton. The model checker
SPIN is a widely distributed software package that supports the
formal verification of concurrent systems. SPIN is the core engine
of CHARMY and it is not directly accessible by a CHARMY user.

The state machine-based formalism used by CHARMY is an ex-
tended subset of UML state machines: labels on arcs uniquely iden-
tify the messages exchanged and each message allows the
communication only between a pair of components. The labels
are structured as follows: ‘[‘guard‘]‘event‘(‘parameter_list‘)‘‘/
‘op1‘;‘op2‘;‘� � �‘;‘opn where guard is a Boolean condition that denotes
the transition activation, an event can be a message sent or re-
ceived, or an internal operation (s) (i.e., an event that does not re-
quire synchronization between state machines). Sent messages of a
component are prefixed by an exclamation mark (i.e., ‘‘!”), while
received messages are prefixed by a question mark (i.e., ‘‘?”). An
event can have several parameters as defined in the parameter list.
op1,op2, � � �,opn are the operations that are executed when the tran-
sition is performed. By exploiting SPIN, the parallel interaction of
the components in the designed SA is modelled, in CHARMY, by using
the state machine parallel composition operator (Keller, 1976). The
parallel composition operator combines the behaviours of two
state machines by synchronizing their shared/common actions
(i.e., sent and received messages with the same label) and inter-
leaving their non-shared and internal actions.

PSCs are an extension of a subset of the UML 2.0 Sequence Dia-
grams stereotyped such that: (i) each rectangular box represents
an architectural component, (ii) each arrow defines a message ex-
changed among two components. Between a pair of messages we
can select whether other messages can (loose relation) or cannot
(strict relation) occur. Message constraints are introduced to define
a set of messages that may never occur in between the message
containing the constraint and its predecessor or successor. The pre-
decessor of the first message of a PSC is the start-up of the system.
Messages are typed as regular messages (optional messages), re-
quired messages (mandatory messages), or fail messages (messages
representing a fault).

2.2. Synthesis: A tool for synthesizing failure-free component adaptors

SYNTHESIS (Synthesis Project, 2004; Tivoli and Autili, 2006; Autili
et al., 2007) is a tool for assembling component-based systems
out of a set of already implemented heterogeneous components
by ensuring the correct functioning of the system at the level of
the component interaction protocol. Its aim is to analyze and pre-
vent interaction mismatches (i.e., deadlocks, livelocks, etc.) that
can arise from components composition. It implements an archi-
tectural ‘‘coordinator-based” approach. The idea is to build applica-
tions by assuming a formal architectural model of the system
representing the components to be integrated and the connectors
(i.e., communication channels) over which the components will
communicate. Using SYNTHESIS the developer, whenever it is possi-
ble, can derive in an automatic way, from third-party (or COTS)
components, the code that implements a new component that
has then to be inserted into the composed system. This new com-
ponent implements a software coordinator (also called adaptor).
The coordinator mediates the interaction among the components
in order to prevent possible integration failures.

SYNTHESIS assumes that a specification of the observable behav-
iour of each actual component (forming the system to be assem-
bled) is available in the form of a state machine. With observable
behaviour of the component, we mean the behaviour of the com-
ponent in terms of the messages exchanged with its expected envi-
ronment (i.e., the interaction protocol assumed by the component).
Under this assumption, SYNTHESIS is able to automatically derive the
correct assembly code (i.e., the coordinator’s actual code) for a set
of components. This code is derived in order to obtain a deadlock-
free system that performs specified coordination policies. A coordi-
nation policy is a functional property of interaction given in the
form of a state machine.
3. Method description

Our method is composed of four main phases organized as
shown in Fig. 1. In the following the description of the method as-
sumes that an SA has been modelled by using CHARMY (System SA +
properties of interest in Fig. 1).

Design-time phase: The first phase concerns the system SA ver-
ification. This phase is performed by using CHARMY and it is de-
scribed in Section 3.1. The input of this phase is an SA and the
properties that one wants to check. The output is a system SA spec-
ification that respects the properties of interest (Verified system SA
in Fig. 1).

For each verified architectural component that has not yet been
implemented, the Actual components selection phase is performed.
After that all the architectural components have been imple-
mented, they are deployed (Re-implemented components deploy-
ment in Fig. 1) hence producing a first running version of the
system (Running system in Fig. 1).

Actual components selection phase: As already mentioned in Sec-
tion 1, our method implements each architectural component as an
assembly of actual components acquired from a third-party, when
possible. This phase aims at selecting third-party components by
looking at their interfaces and functionalities. This phase and the
selection criteria used to establish which actual components have

Fig. 1. Our method.

Fig. 2. SA of the running example.

Fig. 3. State machines of the running example.

2240 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
to be acquired to implement an architectural component are de-
scribed in Section 3.2. This phase takes as input a verified architec-
tural component and it is performed with respect to a repository of
actual components acquired from a third-party (Oreizy et al., 1998)
(black-box components). The output is the set of actual compo-
nents selected as possible candidates for the implementation of
the architectural one or an empty set. In case of an empty set,
the architectural component is manually implemented (Manually
implemented architectural component in Fig. 1) since we did not find
suitable components that can be assembled to implement the con-
sidered architectural component. In this case it is up to the devel-
oper to guarantee that the component implementation conforms
to its architectural specification, e.g., via verification techniques.

If possible candidates are found (Selected actual components in Fig.
1) they could still need some adaptations (e.g., they might provide
more functionalities as needed or interaction mismatches might oc-
cur). The compile-time phase and the run-time phase will automati-
cally manage that in the first implementation of the architectural
component and in its further implementations, respectively.

Compile-time phase: In order to correctly implement the consid-
ered architectural component, this phase, described in Section 3.3,
automatically produces an assembly of the selected actual compo-
nents that is correct with respect to the architectural component’s
observable behaviour (Automatically implemented architectural
component in Fig. 1).

Run-time phase: When a new implementation of an architectural
component is needed (the transition Need of a new implementation
outgoing from Running system), the correct (re-)implementation of
the considered architectural component is produced analogously to
what is done in the compile-time phase. The run-time phase, which
is described in Section 3.4, performs additional operations with re-
spect to the compile-time phase. These operations are the stop of
the running system in a consistent state and the transfer of the
computational state.

In the following subsections we will detail each single phase
that composes our method by making use of a simple explanatory
and running example.

This example is concerned with the automatic assembly of a
component-based system made of two components C1 and C2.
When assembling these components we want to automatically en-
sure deadlock-freedom and other specified behavioural properties.
Moreover, we wish to obtain a system which can tolerate changes
at run-time. Fig. 2 shows the SA of this system. The components
communicate by means of communication channels that are
implicitly defined through provided/required interface matching.
As shown in Fig. 2, the provided (resp., required) interface of C1
matches with the required (resp., provided) interface of C2. The
components communicate by exchanging messages a, b, c, and
d. The state machines describing the behaviour of each component
and thus the explanation of the communication among these com-
ponents will be described in Section 3.1.

Fig. 4. (A) C2 modified to validate the desired property, and (B) PSC of the desired property.

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2241
3.1. Design-time phase

We recall that, at design-time, our approach assumes that the SA
specification of the system to be assembled is provided in terms of
state machines and PSCs. Fig. 3 shows the state machines that describe
the desired behaviour of the components C1 and C2 shown in Fig. 2.

These state machines are designed by using CHARMY that gener-
ates the Promela code needed for the verification with SPIN. At
the beginning it is not sure that the desired behaviour specified
by the designer is correct (especially for large systems). Therefore,
the intention of the designer is to verify the correctness of the
model in order to refine it and produce the correct specification
of the system that must be assembled.

The verification step is to check if the model is deadlock-free
and if it satisfies the properties of interest.

Regarding deadlock-freedom, nothing has to be shown because
by using CHARMY we automatically verify that the parallel interac-
tion of the components shown in Fig. 3 is already deadlock-free.

For the sake of simplicity, we consider only one desired prop-
erty. This property represents a desired interaction protocol for
C1 and C2. That is, a failure occurs if message b is exchanged (be-
tween C2 and C1) before a has been exchanged.

The property is described in Fig. 4B in the form of a PSC diagram.
By referring to Section 2.1, in this example we use one fail message
(the message prefixed by the label ‘‘f:”). We recall that fail mes-
sages are used to identify messages that should never be ex-
changed. We use also one constraint to impose a ‘‘restriction” on
the set of messages that can be exchanged before the considered
message and after its predecessor. Coming back to the desired
property, referring to the PSC notation, b is the considered message.
It has a as its constraint. The constraint implements the restriction
imposed on the interaction among C1 and C2 in order to let the ex-
change of b happen only after the exchange of a.1 CHARMY and its en-
gine SPIN return a ‘‘not valid” result for this property, essentially
caused by either C1 or C2 that, with respect to the specified desired
interaction, are too simple and without logic, i.e., no order is imposed
on the exchange of a and b messages.

Therefore, the interaction behaviour of, e.g.,C2has to be changed.
Fig. 4A reports the modifications we made on C2. Now, C2 explicitly
contains an order for the a and b messages exchanged with C1.

At this point the design-time phase of our method is terminated
and we have obtained a correct specification of the system that we
want to assemble. This system is formed by the architectural com-
ponents C1 (shown in Fig. 3) and C2 (shown in Fig. 4A). The con-
nectors that we consider are simple communication channels
connecting C1 with C2.

3.2. Actual components selection phase

Within our approach, actual components are selected and ac-
quired on the market in order to implement a verified architectural
1 The meaning of the label C1.a.C2 in the constraint of the failure message b in Fig.
4B is that the sender of message a is C1 while the receiver is C2.
component. Note that it might be the case that a component avail-
able on the market, for our purposes, does not exist. In this case,
the only choice that we have is to implement it by scratch and con-
form to its specification in the verified SA. For our purposes, the
third-party components are selected by looking at their interfaces
and functionalities. That is, the component selection criterion that
we consider is that the actual components have to ‘‘contain” (pos-
sibly by putting their execution in parallel) the same functional-
ities implemented by the corresponding architectural component.

Furthermore, a mapping must exist between the different com-
ponent interfaces. This mapping can be empty, meaning that it is
not required since the message names of the architectural compo-
nent interface match with the ones of the actual components’ inter-
face (i.e., a syntactical and semantic one-to-one correspondence
exists). It can be a trivial mapping, meaning that there exists a
one-to-one correspondence between messages of the architectural
component interface and the ones of the actual components’ inter-
face except for their names (i.e., a semantic one-to-one correspon-
dence exists). In this case, the needed message relabeling is
realized by means of trivial component wrappers that directly dele-
gate messages without any particular message routing logic. In the
most general case that mapping can also be complex, meaning that
there exists a many-to-many correspondence between messages of
different components. In that case, the component wrappers imple-
menting such a mapping also have a complex message routing logic.
In general, this interface mapping cannot be built automatically and
it requires to develop (by hand) component wrappers solving, e.g.,
syntactical mismatches, as done in previous work by some of the
authors (Autili et al., 2004; Tivoli and Autili, 2006). Since in this work
we focus on automatically preventing interaction protocol mis-
matches, we consider this problem out of the scope of this paper
and, hereafter, we will assume that component messages syntacti-
cally and semantically match since either they already match or
suitable component wrappers have been previously developed by
the system assembler (i.e., a possible user of our approach).

In the literature, one can find semi-automatic approaches for
automatically solving mismatches at the level of the interface’s
syntax (Yellin and Strom, 1997; Bracciali et al., 2005; Canal et al.,
2006). They use LTSs and a means to define syntactical correspon-
dences (Yellin and Strom, 1997; Bracciali et al., 2005), e.g., a set of
synchronous vectors (Arnold, 1994; Canal et al., 2006) that is as-
sumed to be given as input to the approach. The knowledge that
is required to give synchronous vectors or, in general, syntactical
mappings as input is the same as the one required for developing
a suitable component wrapper. Therefore, the previously consid-
ered assumption is not a limitation of our work with respect to
the work described in Yellin and Strom (1997), Bracciali et al.
(2005), Canal et al. (2006).

Other criteria should be considered for a more accurate compo-
nent selection process (Ghosh et al., 2005; Wallnau et al., 2001),
e.g., criteria that are based also on QoS constraints. However, in this
work we only focus on the component interaction protocol and we
will consider more complex selection criteria as possible future
work.

Fig. 5. State machines of AC2.1 and AC2.2.

Fig. 6. State machine of the parallel composition of AC2.1 and AC2.2.

2242 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
Although we make the assumption to be only interested on the
component protocol, it might be the case that we are not able to
find, for each component in the verified SA, directly corresponding
ones on the market (although there is a valid interface mapping
among them). In fact, the interaction protocol of one or more coop-
erating actual components might not ‘‘fit” the one of an architec-
tural component. Therefore, once we have selected a set of actual
components as possible candidates for implementing an architec-
tural component, we check if the parallel execution (Keller, 1976)
of the selected actual components, A, fits the observable behaviour
of an architectural component I (i.e., the interaction protocol spec-
ified through its state machine). This is done by automatically
building the state machine A and by testing two conditions: (i) A
does not contain the observable behaviour of I; (ii) A either con-
tains or is equivalent to the observable behaviour of I. In case (i),
there is nothing that we can do since the assembly A cannot imple-
ment I in any way, i.e., A is not a behavioural subtype of I (George et
al., 2006; Oreizy et al., 1998). Therefore, we have to proceed man-
ually implementing the architectural component. In case (ii), as de-
scribed in Section 3.3, we use SYNTHESIS to automatically produce a
centralized adaptor to be composed with A. The adaptor guaran-
tees that A (plus the same adaptor), once put in execution, will ex-
hibit only the behaviour of I (obviously if A exactly behaves as I the
adaptor construction is trivial). The behaviour containment check
is performed automatically by using the CADP toolbox (Garavel
et al., 2002) in order to check if A simulates I under the well-known
weak-trace equivalence (Park, 1981).

Now, continuing our explanatory example, let us consider three
third-party components that we have selected and acquired in or-
der to assemble the verified system. Let us suppose that we found
on the market the component AC1 that behaves exactly as speci-
fied for C1. On the contrary, suppose that we did not find on the
market a component that corresponds exactly to C2. The best thing
that we could do is to find two components (i.e., AC2.1 and AC2.2)
whose interfaces2 contain, in conjunction, the same interface as C2.
The interaction protocol specification of these two components is
shown in Fig. 5 in the form of state machines. The states drawn with
a thicker border are the so-called quiescent states. For a formal defi-
nition of a quiescent state, we refer the reader to Kramer and Magee
(1990). In our context, it is sufficient to say that a component is in a
quiescent state whenever it has completed all component interac-
tions required to perform some complex task and it has not yet
started component interactions required for a new complex task.
Quiescent states play a key role in performing the third phase of
our method that will be described in Section 3.4.

By using the EXP.OPEN tool of the CADP toolbox, we can auto-
matically build the state machine of the parallel composition of
AC2.1 and AC2.2. This state machine is shown in Fig. 6 as it is dis-
played by CADP.3 The state labelled with 0 is the initial state.

In order to use CADP to build the state machine of the parallel
composition of AC2.1 and AC2.2, we have implemented an exten-
sion of CHARMY that allows one to export the component state ma-
chines into .aut files. The .aut notation represents one of the
file formats supported by the CADP toolbox. Now, by using the
BISIMULATOR tool of the CADP toolbox we can check whether or
not the state machine shown in Fig. 6 simulates the state machine
of C2 (exported from CHARMY and given as input to CADP) under
weak-trace equivalence. BISIMULATOR returns TRUE as result of
the trace containment check, thus confirming that AC2.1 and
AC2.2 are good candidates for implementing C2.
2 Here, a component interface is seen as a list of provided/required methods.
3 Note that in CADP the sent and received messages are denoted analogously to

what is done in CHARMY. The only difference is that the symbols ‘?’ and ‘!’ are message
label suffixes instead of prefixes.
3.3. Compile-time phase: component composition through static
adaptation

The compile-time phase of our method uses SYNTHESIS to auto-
matically synthesize an adaptor that, in our example, we denote
as AdtC2. AdtC2 is built to implement C2 as an assembly of
AC2.1 and AC2.2 (the adaptor represents the glue code). Further-
more, it prevents safety violations that may raise from possible
interaction mismatches (e.g., deadlock, violation of the C2 observa-
ble behaviour and, hence, possibly, violation of the verified prop-
erty). That is, AdtC2 is synthesized in a way that the parallel
composition of it with AC2.1 and AC2.2 is deadlock-free and be-
haves as specified by C2.

In Fig. 7 we show the state machine of AdtC2 that has been
automatically synthesized by using SYNTHESIS. The thicker state is
the quiescent state of the adaptor. It is worth mentioning that a
state of the adaptor state machine is a tuple of states of the actual
component state machines. A quiescent adaptor state is a tuple of
quiescent component states.

For the sake of brevity, we do not show the application of SYN-

THESIS in detail here, but we describe only the steps needed for
the comprehension of the approach that we are presenting.

Informally, the adaptor state machine is automatically built by
considering the following criteria: (i) an adaptor has a strictly
sequential input-output behaviour. That is, each message it re-
ceives is sent to the right component (that expects to receive that
message). For instance, the adaptor shown in Fig. 7 can receive,
from its initial state (i.e., S1), a request of a from the environment
of C2. After receiving this request, the adaptor delegates it to AC2.1
(i.e., the message !a_AC2.1 from S2); (ii) at a first stage, the adap-
tor has to model all possible component interactions, i.e., it is anal-
ogous to the product automaton (Keller, 1976; Arnold, 1994) of the
state machines modelling the observable behaviour of the compo-
nents assembled by the adaptor. As mentioned before, this product
automaton must take into account the input-output interaction
model of the adaptor. For instance, let us denote by Env(C2) the
state machine of C2 where sent messages have been converted into
received ones, and vice versa. This is an ideal environment for C2

Fig. 7. Behavioural model of AdtC2.

4 The current version of the system is still running.

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2243
since it completely preserves the C2 observable behaviour. In other
words, Env(C2) models the less permissive environment expected
by C2 in order not to block.

The adaptor, shown in Fig. 7, is built by considering the product
automaton of AC2.1, AC2.2, and Env(C2) (module a suitable mes-
sage relabelling of AC2.1 and AC2.2), and by imposing on it an in-
put-output structure (i.e., one transition of the standard product
automaton becomes two transitions of the adaptor’s state machine,
i.e., receive and send transitions).

By referring to Fig. 7, at this stage, the adaptor simply routes
component messages and each message it receives is strictly sent
to the right component. If there are deadlocks in the interaction
among the actual components (AC2.1 and AC2.2) and the ideal
environment of an architectural component (Env(C2)), SYNTHESIS

detects them. Each ‘‘deadlocking” state is denoted by a dark-gray
filled node. A deadlocking state is a sink state or a state leading
only to deadlocking states.

In our example, a deadlock occurs when the message a from
Env(C2) is sent to AC2.1 after that the message c from Env(C2)

has been sent to AC2.2 (see the paths from S1 to S6 and from S6 to
S10 shown in Fig. 7). Indeed, this deadlock models a safety viola-
tion concerning the possibility, for AC2.1 and AC2.2, to violate
the observable behaviour specified for C2. For instance C2 behaves
in a way that after the exchange of c followed by a, it is mandatory
to exchange d. This implicit desired interaction can be violated if
we implement C2 by composing AC2.1 and AC2.2 in an uncon-
trolled way (i.e., without an adaptor/coordinator). To prevent this
violation, SYNTHESIS automatically prunes all the deadlocking paths
of the adaptor state machine (i.e., the transition from S7 to S10).
In this way, the state machine of the deadlock-free adaptor is auto-
matically obtained.

Before deriving the actual code of the deadlock-free adaptor,
there is a last check that must be performed. That is, the parallel
composition of AC2.1, AC2.2, and the deadlock-free adaptor AdtC2
has to simulate C2 under weak-trace equivalence. Let us denote
that parallel composition by S. This check is required because, after
all the violations have been prevented, C2 might exhibit behav-
iours that cannot be performed by S. Note that checking if C2 sim-
ulates S is useless since it is guaranteed by the construction of
AdtC2. Analogously to what has been done for the actual compo-
nent selection phase (Section 3.2), by using CADP, it is possible
to automatically perform that check. To do this, we have imple-
mented an extension of SYNTHESIS to support the exporting of the
component state machines into .aut files.

By referring to the deadlock-free version (i.e., the one without
finite paths) of the adaptor state machine shown in Fig. 7, S has
the same state machine where all the transitions labeled with ac-
tions performed by AC2.1 and AC2.2 (i.e., the ones terminating
with ‘‘AC2.1” and ‘‘AC2.2”, respectively) are s transitions. CADP al-
lows us to confirm that S simulates C2 under weak-trace
equivalence.

Using the same technique as described in Tivoli and Autili
(2006); Autili et al., 2007, from the state machine of the dead-
lock-free AdtC2, SYNTHESIS is able to derive the actual code imple-
menting the deadlock-free adaptor. The compile-time phase
concludes by assembling the third-party components and the
adaptor together. At this point, a running implementation of the
verified system is automatically obtained and it is correct by
construction.

The synthesized adaptors play an important role in supporting
the run-time replacement of architectural components (as de-
scribed in Section 3.4). In deriving the actual code of an adaptor,
SYNTHESIS implements suitable mechanisms to bring the adaptor
execution in a consistent state before architectural components
replacement (Kramer and Magee, 1990). Furthermore, since the
adaptor code is white-box, we can assume that a general-purpose
adaptor manager can be built (Wang et al., 2006). The adaptor man-
ager is used to orchestrate the system evolution at run-time.

3.4. Run-time phase: Architectural component replacement through
dynamic adaptation

The dynamic adaptation phase of our method does not consider
other possible system changes beyond architectural component
replacement that could mean actual component addition, suppres-
sion, and replacement. In other words, at run-time, we can auto-
matically generate new implementations of the SA that has been
designed and verified during the design-time phase of the process.
During the execution of the system, we keep stored both the state
machines of the actual components {ACi} and the state machines of
the architectural components {Ci}. Let us consider an architectural
component Ci implemented (by means of the compile-time phase)
as an assembly of actual components ACi1 ; . . . ;ACin and an adaptor
Adti. When a developer decides to update the implementation of Ci

with a new assembly made of the actual components ACj1 ; . . . ;ACjm ,
the adaptor manager performs off-line4 the adaptor construction
process described in Section 3.3. This is done to derive a new adap-
tor, Adt0i, that serves as assembly code for the components
ACj1 ; . . . ;ACjm in order to correctly implement Ci.

Fig. 8. State machines of (A) AC2.3 and (B) AC2.4.

2244 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
Once Adt0i has been built, it is time (for the adaptor manager) to
stop the execution of Adti in order to substitute it with Adt0i, and to
deploy the new actual components ACj1 ; . . . ;ACjm in place of
ACi1 ; . . . ;ACin . Indeed, the adaptor manager invokes a stop method
of Adti. The code of the stop method has been automatically de-
rived by SYNTHESIS in order to prevent Adti to instantaneously stop,
and make it wait to achieve a quiescent state, i.e., Adti will stop only
when a quiescent state has been reached. In other words, by look-
ing at the components quiescent states, it is possible to establish
the system states in which a change can be applied without dis-
turbing the system execution. As done in Section 3.3, in our meth-
od the system engineer specifies, for each actual component, the
set of quiescent states.5 The quiescent state specification is used
by Adti (during the execution of its stop method) in order to identify
a quiescent state and, hence, establish when to stop.

Once Adti stops, it implicitly blocks received messages. At this
point, the adaptor manager deploys ACj1 ; . . . ;ACjm and Adt0i. Then,
the adaptor manager uses the component reflection facilities to ex-
tract the current state of Adti and of ACi1 ; . . . ;ACin , and to transfer
these states to Adt0i and ACj1 ; . . . ;ACjm , respectively. The state trans-
fer is based on a state mapping function, furnished by the software
engineer, that takes into account the results of the reflection and
the state machines of the new actual components. Further investi-
gation will be able to fully automate this step as in the case of the
state mapping algorithm described in Vandewoude and Berbers
(2005). This algorithm uses the ‘‘direct state transfer” technique
requiring that a new component provides the necessary function-
alities to import and interpret the state of its predecessor. Finally,
the adaptor manager removes Adti and ACi1 ; . . . ;ACin from the sys-
tem, and starts the new version of the system by activating the
execution of Adt0i that starts to process component messages.

In this way, the initial version of the system is dynamically con-
verted into a new one by still ensuring the verified properties. Note
that this solution is not suitable for systems that specify ‘‘hard”
timing constraints, e.g., real-time systems.

By continuing our explanatory example, we want to update the
implementation of the architectural component C2. To do this, let
us consider a scenario in which AC2.1 and AC2.2 must be replaced
(at run-time) by two different components, i.e., AC2.3 and AC2.4.
The state machines of AC2.3 and AC2.4 are shown in Fig. 8A and
B, respectively.

The adaptor manager starts the off-line synthesis of a new ver-
sion of AdtC2 (i.e., AdtC2New). Then, it calls the stop method on
AdtC2. The adaptor AdtC2 (see Fig. 7) will stop its execution only
when it will reach a quiescent state (i.e., S1). During the period in
which AdtC2 is stopped, it blocks the messages from and towards
AC2.1 and AC2.2. The adaptor manager uses reflection to retrieve
the state of AC2.1, AC2.2, and of AdtC2. The system engineer ap-
plies the state mapping function (previously built off-line) to trans-
fer those states to AC2.3, AC2.4, and AdtC2New, respectively. When
the old components are removed the new ones are added, and Ad-

tC2New is deployed in place of AdtC2, AdtC2New starts to consume
the blocked messages hence following the normal execution flow.
5 Although the actual components are black-box, the system engineer can identify
the quiescent states by looking at the components’ documentation and state
machines.
4. Case Study: the SA.X project

In this section we report the main results that we obtained by
applying our method to a real-world project based on an indus-
trial-scale spacecraft system. In doing this, we also point out the
size of the generated models. This size should not be considered
as an evaluation criterion. It is reported just to give a little bit of
evidence of the applicability of our approach. The case study orig-
inates from a collaboration between the Dipartimento di Informati-
ca, Università dell’Aquila, and the German subsidiary of Terma
located in Darmstadt (Cardone et al., 2005; TERMA Corporate,
2006). The initial goal of the collaboration was to formally verify
SA.X with CHARMY (SA.X stays for Software Architecture for XASTRO
which is a project developed in Terma). In this paper we borrowed,
with minor modifications, the XASTRO system in order to use it in
the context of dynamic evolution of component-based systems.
The required modifications have been conducted maintaining the
original size and complexity of the system. However, by exploiting
the method described in Section 3, at design-time (see Section 4.1)
we are allowed to consider a high level architectural description of
the system that is reduced in complexity and size. The real size and
complexity of the system will be taken into account in the com-
pile-time phase (see Section 4.2). During this phase the verified
architectural description has been automatically refined by imple-
menting each component of the verified SA with a set of actual
components acquired from a third-party.

The SA.X-TC_Chain system is an abstraction of the Commanding
Chain of the SCOS_2000 spacecraft control system framework
(SCOS2000, 2002; SCOS2000, 2002). The SA.X-TC_Chain acts as a
communication bridge between a user (hereafter denoted by User),
the Network Control and Telemetry Router System (denoted by
NCTRS), and the Parameter InterFace (denoted by PIF). SA.X-
TC_Chain allows one to create, dispatch and release a tele-com-
mand (TC), and to perform some checks during the release phase,
up to the reception of messages by the Space Craft (see Fig. 9).

A TC is an atomically executable entity with a certain number of
attributes called parameters. The parameters concern not only
argument values, but also some directives used during the TC re-
lease end execution, such as release time (e.g., ASAP, Time-tagged,
WAIT), execution time (for time-tagged TC), or conditions related
to the TC validation and verification criteria. A TC, when emitted,
might not be processed immediately and, hence, it is firstly loaded
in a stack structure waiting to be processed later.

4.1. Design-time phase

In Fig. 10, we show the SA of the SA.X-TC_Chain system that is
composed by four different components: User, PIF, TC_Chain, and
NCTRS. NCTRS, PIF, and User communicate only with TC_Chain.
The interface required by User defines six messages: TC_Load,
Fig. 9. The SA.X-TC_Chain.

Fig. 10. The SA.X-TC_Chain Software Architecture.

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2245
ARM, DISARM, STOP, RESUME, and GO. The provided interface of
User defines the Stack_Disarm message. The required interface of
NCTRS defines UV_Msgs, and OK_Release while the provided one de-
fines TC_Release. TM is the message defined by the required inter-
face of PIF. The provided (resp., required) interfaces of TC_Chain
match with the required (resp., provided) interfaces of the compo-
nents connected to it.

User loads one or more TCs (i.e., TC_Load) onto the stack, and
then arms the TC on top of the stack (i.e., ARM). Finally, it asks
the TC_Chain to dispatch the loaded TCs (i.e., GO). The TC on top
of the stack can be stopped (i.e., STOP) or disarmed (i.e., DISARM).
The Stack_DISARM action is a directive sent by TC_Chain and it
serves to disarm all the loaded TCs. RESUME restarts and disarms
the most recently loaded TC. TC_Load, ARM, GO, STOP, RESUME,
and DISARM messages are requests sent by User to TC_Chain.
Stack_Disarm is a receive event. PIF permits to set the parameters
of a TC (i.e., TM). TM is sent by PIF and received by TC_Chain.

In order to dispatch a TC, NCTRS receives a request for a TC re-
lease from TC_Chain (i.e., TC_Release). Then, NCTRS acknowledges
TC_Chain that the request of a TC release has been processed (i.e.,
OK_Release), and sends information concerning the TC release sta-
tus, such as ‘‘successfully released”, ‘‘unsuccessfully released”, or
other information (i.e., UV_Msgs). Note that processing a TC release
does not assure that the TC will be executed. For instance, in case of
an unsuccessful release, the TC will be not activated by TC_Chain.
Since TC_Chain communicates with all the other components by
Fig. 11. SA.X-TC_Chain
means of the messages described above, its modelled behaviour
does not need further explanations.

With respect to this SA model, we verified two properties.
Property 1 expresses that, after a TC_Load followed by a GO, if STOP
is not exchanged then TC must be released. Property 2 specifies the
following requirement: after a TC_Load, the system fails if a TC_Re-
lease happens and it has not been preceded by GO.

In order to model-check the properties we selected the Liveness
(cycles/sequences) and Apply Never Claim options in the Basic Verifi-
cation Options SPIN panel, and we specified the actual amount of
physical memory available (Physical Memory Available option in
the Advanced Verification Options panel) to 1000 Mb. The experi-
ment has been performed on a Pentium 1.73GHz with 2GB of RAM.

The verification of Property 1 took some seconds with 496 inter-
nal states and using 2.302 MB of memory. SPIN has reported no er-
rors, which gives us the guarantee that the defined SA complies
with the considered requirement. Property 2 has been verified by
taking 408 internal states and almost the same memory as Prop-
erty 1. Also in this case, SPIN has reported no errors.

While running the design-time phase of our approach we expe-
rienced that by combining architectural analysis and code synthe-
sis, at design-time we can consider a very high-level SA model.
Otherwise, if we would have used only CHARMY then we should have
considered the more low-level SA model shown in Fig. 11. This is
due to the fact that, without the support provided by the code syn-
thesis, in order to facilitate the developers tasks, the SA model
should be reasonably close to its implementation (see Fig. 11), as
it is for a standard use of CHARMY in a real-scale context. For evalu-
ation purposes, we tried to verify the SA model shown in Fig. 11
against Property 1 and Property 2. Due to the memory size limit,
CHARMY stopped its verification process without giving an answer
(i.e., the answer was successful but the explored state-space was
only a portion of the total one, thus invalidating the answer).

4.2. Actual component selection and Compile-time phases

When looking for actual components that can implement our
architectural components we found suitable components for User,
actual components.

Fig. 12. Actual components of the new version of SA.X-TC_Chain.

2246 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
NCTRS, and PIF but for the TC_Chain we found seven components
that, hopefully, put in parallel behave as desired. As explained in
the previous sections, SYNTHESIS has been used to automatically build
the assembly code for those seven components and their environ-
ment. This assembly code has been derived deadlock-free and
behaviourally equivalent to the behaviour of the architectural
component TC_Chain.

In Fig. 11, we show the SA model of the system automatically
implemented by considering TC_Chain as an assembly of those se-
ven components (plus the synthesized glue code, i.e., the adaptor).

The description of the seven actual components is not crucial
for the purposes of the case study and, hence, for the sake of brev-
ity, it is omitted.

The adaptor construction process performed by SYNTHESIS took
17 min. The adaptor state machine has 9593 states, and 460 dead-
locking states. The memory usage has been 37 MB. The deadlock
prevention procedure, subsequently performed, took 2.5 s and
the state machine of the resulting deadlock-free adaptor has
9133 states. The memory usage has been 10 MB. Finally, the
weak-trace equivalence check performed by using CADP took 2 s.
It returned TRUE meaning that the protocol equivalence of
TC_Chain has been preserved. This means that the selected seven
components plus the deadlock-free adaptor represent a correct-
by-construction implementation of TC_Chain.

While running the compile-time phase of our approach we
experienced that by combining architectural analysis and code
synthesis, at compile-time we can use SYNTHESIS locally with respect
to each architectural component by reducing the state-space
explosion phenomenon. Otherwise, if we had used only SYNTHESIS

then we should have considered exactly all components of the
SA model shown in Fig. 11 plus Property 1 and Property 2. This is
due to the fact that, without the support provided by the architec-
tural analysis, we cannot consider a (reduced in size) ideal environ-
ment against which to assemble the actual components, but we
have to build it by putting in parallel all the architectural compo-
nents that differ from the one that we want to implement plus
the verified properties. For evaluation purposes, we tried to build
an adaptor for all the components shown in Fig. 11 with respect
to guaranteeing Property 1 and Property 2 (i.e., the standard
approach in SYNTHESIS). Due to the memory size limit, SYNTHESIS exited
unsuccessfully without generating an adaptor.

Note also that the situation considered in this case study is a
limit situation in which one component is substituted by seven dif-
ferent components. We have chosen to do that to show that SYNTHE-

SIS, although it suffers from the state-space explosion phenomenon,
can deal with quite large systems and that the approach we are
presenting in this paper is flexible. In general we expect to manage
smaller reconfigurations.

4.3. Run-time phase

In Fig. 12, we show the SA of the new version of SA.X-TC_Chain.
The applied update concerns the TC validation functionality. Now,
Validater performs a more accurate validation check. Namely, it ex-
ploits additional information stored in DB. After Validater has per-
formed the validation, it sends the validation result to CMD_Model.
Accordingly, CMD_Model is updated as well.

The adaptor manager starts the generation of the new required
adaptor. It took 92 min. The adaptor state machine has 17,837
states and 583 deadlocking states. The memory usage has been
62 MB. The deadlock prevention procedure took 6.8 s by generat-
ing 17,254 states. The memory usage has been 18 MB. Note that,
as explained in Section 3, the adaptor generation phase is per-
formed off-line, i.e., without the need of stopping the system.
5. Related work

The architectural approach to the dynamic and automatic com-
position of software components presented in this paper is related
to a large number of other problems that have been considered by
researchers over the past two decades. For the sake of brevity we
mention below only the works that are closest to our approach.
The most strictly related approaches concern the problem of
dynamically composing and adapting software components, and
the area of protocol adapters. We organize the description of these
works into three main research areas: component frameworks to
the run-time reconfiguration, described in Section 5.1, dynamic

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2247
adaptation of component-based systems, discussed in Section 5.2,
and protocol adapters, discussed in Section 5.3.
5.1. Component frameworks to the run-time reconfiguration

Jadda (Java Adaptive component for Dynamic Distributed Archi-
tectures) (Falcarin and Alonso, 2004) is a framework that relies on
architecture specification to support dynamic reconfiguration. It
uses xADL6 and no formal support is provided for constraining dy-
namic reconfiguration. Jadda’s support for ad-hoc reconfiguration
is accomplished via a console that is used to submit an xADL file
with the specified change. Jadda is limited to ad-hoc reconfiguration
with no formal support. It thus lacks an automatic support to guar-
antee the change consistency with respect to the system properties
of interest.

In Fractal - Specification, a component is both a design and a
run-time entity with explicit provided and required interfaces.
Each component is composed of a finite number of other compo-
nents, which are under the control of the controller of the enclos-
ing component. The Fractal framework is a Java software
framework that supports component-based programming accord-
ing to the Fractal model. It is an open framework that comprises
a core and several increments. The core defines the minimal con-
cepts and the APIs necessary for Fractal-based component pro-
gramming. Increments define additional concepts and the APIs
which extend the core framework to allow for different forms of
component composition, configuration, and administration. A Java
implementation of the Fractal framework has been developed. It is
called Julia (Fractal - Julia) and offers three different forms of con-
figuration: static, dynamic, and partially dynamic. Although, in or-
der to reuse SYNTHESIS as easily as possible, we applied our approach
in the context of both COM/DCOM (Tivoli and Autili, 2006) and EJB
(Autili et al., 2007) systems, we are currently investigating the
usage of Julia as a possible implementation choice for our ‘‘evolv-
ing” glue adaptors.

SOFA (Bures et al., 2006) is a component model with a number
of advanced features. It allows for dynamic evolution of architec-
tures at run-time. The controlled evolution of the SA is driven by
well-defined evolution patterns. These patterns are supported by
the runtime environment which handles reconfigurations accord-
ingly. A factory pattern is used to create and add a new component.
A removal pattern instead is used to destroy a component that was
previously created. In SOFA/DCUP (Plasil et al., 1997, 1998) (Dy-
namic Component UPdating), each component defines one compo-
nent manager (CM) and one component builder (CB), which are
responsible of managing the associated component. A component
may have several implementation objects and/or sub-components
that provide its functionality. A component is divided into two
parts: a permanent part and a replaceable part. Therefore, it provides
two kinds of operations, control operations and functional opera-
tions. Adapting a component means replacing its replaceable part
by a new version at run-time. When a sub-component of a global
component has to be adapted, the whole component is affected,
and its replaceable part is re-deployed, therefore, the entire appli-
cation has to be re-deployed. DCUP does not provide any degree of
automation, i.e., all the adaptation operations must be done by the
administrator.

Batista et al. (2005) propose a meta-framework called ‘‘Plastik”
which supports the specification and creation of component-based
systems by facilitating and managing the run-time reconfiguration
of such systems while ensuring integrity across changes. This
meta-framework is an integration of an architecture description
language (an extension of ACME/Armani Garlan et al., 2000;
6 http://www.isr.uci.edu/projects/xarchuci/.
Monroe, xxxx) and a reflective component framework called Open-
COM (Coulson et al., 2004). Plastik generates component systems
that can be dynamically reconfigured either through programmed
changes or through ad-hoc changes. The run-time level is based on
the OpenCOM framework. Components are encapsulated units of
functionality and deployment that interact with their environment
(i.e., the other components in the system) exclusively through
interfaces. By default, components are written in C++. The Open-
COM framework supports a set of so-called reflective meta-models
which facilitate reconfiguration of systems by permitting different
system aspects to be inspected, adapted, and extended at run-time.
A run-time configurator is responsible for managing the OpenCOM
run-time layer. Although there are many common aspects between
the work described in this paper and the OpenCOM framework,
one main difference is that OpenCOM essentially considers compo-
nents as white-box entities and, hence, it does not allow the han-
dling of third-party and black-box components, which is a key
aspect in our approach.

The OSGI Platform (OSGi) provides standardized primitives that
allow applications to be constructed from small, reusable and col-
laborative components (implemented in Java). These components
can be composed into an application and deployed. The OSGI tech-
nology provides a Dynamic (or Service-Oriented) Software Archi-
tecture with functions to change the components composition
dynamically without requiring restarts. The basic unit of deploy-
ment is a bundle, which provides services and which can depend
on and uses other services. A bundle can be seen as a primitive
component and its services as interfaces of the component. More-
over the OSGI framework allows bundles to select an available
implementation at run-time through the framework service regis-
try. Bundles register new services, receive notifications about the
state of services, or look up existing services to adapt to the current
capabilities of the device. This aspect of the framework makes an
installed bundle extensible after deployment: new bundles can
be installed for adding features or existing bundles can be modified
and updated without requiring the system to be restarted. Once a
bundle is started, its functionality is provided and services are ex-
posed to other bundles installed in the OSGI Service Platform. For
each bundle installed in the OSGI framework, there is an associated
Bundle Object (OSGi) that is used to manage its life cycle.

All the presented approaches are based on specific component
models. In our approach we do not make any supposition on the
component model of the application to be adapted, thus providing
a solution that is independent of a specific model.
5.2. Dynamic adaptation of component-based systems

As part of the RAPIDware project, (Zhang et al., 2005) intro-
duced an aspect-oriented approach to add dynamic adaptation
infrastructure to legacy programs in order to enable dynamic adap-
tation. They separate the adaptation concerns from the functional
ones of the program, resulting in a clearer and more maintainable
design. We believe that this concept of separation of concerns is
crucial to perform adaptation, especially when it has to be per-
formed at run-time. In our approach, this concept is implemented
by means of the architectural model that we impose on the SA of
the system to be assembled. That is, each third-party component
(to be adapted) cannot directly communicate to the other third-
party components in the system but all its interactions must go
through its associated adaptor which, in turn, is connected to the
other components (or adaptors) in the system.

Kulkarni and Biyani (2004) propose a distributed approach to
compose distributed fault-tolerant components at run-time. They
use theorem-proving techniques to show that during and after
an adaptation, the adaptive system is always in correct states with

http://www.isr.uci.edu/projects/xarchuci/

2248 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
respect to satisfying specified transitional-invariants. Their ap-
proach, however, does not guarantee the ‘‘safeness” of the adapta-
tion process in the presence of failures during the application of
the adaptation strategy. Although our approach is not able to solve
possible failures during the adaptation phase, differently from their
work we are able to prevent failures during the adaptation phase
and, hence, we can guarantee a safe adaptation process.

Appavoo et al. (2003) propose a hot-swapping technique that
supports run-time object replacement. In their approach, a quies-
cent state of an object is the state in which no other processes
are currently using any function of the object. We argue that this
condition is not sufficient in cases where a critical communication
segment between two components includes a series of function
invocations. Also, they do not address global conditions for safe dy-
namic adaptation.

Amano and Watanabe (2002) introduce a model for flexible and
safe mobile code adaptation, where adaptations are serialized if
there are dependencies among adaptation procedures. Their ap-
proach supports the use of assertions for specifying pre-conditions
and post-conditions for adaptation, where violations will cancel
the adaptation or roll back the system to the state prior to the
adaptation. Their work focuses on the dependency relationships
among adaptation procedures, whereas our work focuses on
dependency relationships among components.

Mechanisms used to interconnect components and their ability
to cope with architectural mismatches is another related research
area. An architectural mismatch occurs when the assumption that
a component makes about another component, or the rest of the
system, does not match. In Gacek’s Ph.D. dissertation (Gacek,
1998) a static mismatch detection method has been proposed.
The overall idea of this work is that by analyzing the characteristics
of the architectural elements to be integrated and the styles from
which these elements were derived, the system architects are able
to localize architectural mismatches during development time. Fi-
nally, the Architect’s Automated Assistant (AAA)7 tool has been
used to detect mismatches during component composition. The limit
of this approach, in comparison with ours, is that it is so specific to
the context of software development that it cannot be used for run-
time detection of error caused mismatches. de Lemos et al. (2003)
starting from the previous work have presented how these mis-
matches can be tolerated during run-time at the architectural level.
They have applied general principles of fault tolerance to deal with
architectural mismatches. With respect to our work, it is only a pre-
liminary analysis showing a number of particular mismatch toler-
ance techniques that can be developed depending on the
application, architectural styles, types of mismatches, redundancies
available, etc. The applicability of this approach to real systems is
still an open issue and the authors are trying to define in a more rig-
orous way the applicability of the approach and its set of general
mismatch tolerance techniques.

5.3. Protocol adapters

Our research is also related to work in the area of protocol adap-
tor synthesis developed by Yellin and Strom (1997). The main idea
of this work is to modify the interaction mechanisms that are used
to glue components together so that compatibility is achieved. This
is done by integrating the interaction protocol into components by
means of adaptors. However, they are limited to only consider syn-
tactic incompatibilities between the interfaces of components and
they do not allow the kind of interaction behaviour that our syn-
thesis approach supports. Moreover, they require a formal specifi-
cation of the adaptor dictating, for example, a mapping function
7 http://sunset.usc.edu/available_tools/AAA/.
among events of different components. Although requiring this
kind of specification enhances applicability of their approach with
respect to the one implemented by SYNTHESIS, it is in contrast with
our need to be as automatic as possible. In fact, even if other kinds
of techniques to specify the adaptor are possible, providing the
adaptor specification requires knowing too many implementation
details, thus missing part of the goals of the work presented in this
paper. However, if we assume to have as input that detailed adap-
tor specification, SYNTHESIS can be used to deal with the kind of
incompatibilities that Yellin and Strom face in their work. In Tivoli
and Autili (2006), we extended the synthesis process implemented
by SYNTHESIS in order not to only restrict the coordinator behaviour
but also to augment it in order to consider also such incompatibil-
ities, e.g., interface signature mismatches.

Spritznagel et al. in Spitznagel and Garlan (2003) propose an ap-
proach to specify wrappers, independent of any particular context
of use, and use this specification to understand things such as the
impact of its use, its effects on the communication protocol be-
tween components, compositional properties, etc. The wrappers
that they consider are connector wrappers that are primarily de-
signed to affect the communication between components. They de-
fine a connector wrapper formally as a protocol transformation and
adopt an approach based on process algebras (e.g., FSP). To describe
a connector protocol in FSP, they use an approach similar to Allen
(1997)); a connector is defined as a set or processes. Moreover
three classes of properties are analyzed (e.g., soundness, transpar-
ency and compositionality). Our notion of an adaptor is similar to
the notion of a ‘‘complex” connector defined in Spitznagel and Gar-
lan (2003). In fact, although in our approach connectors are simple
communication channels, an adaptor can be seen as a first-class
extension of a connector providing coordination facilities.

In work by Bracciali et al. (2002), in the area of component
adaptation, it is shown how to automatically generate a concrete
adaptor from: (i) a specification of component interfaces, (ii) a par-
tial specification of the components interaction behaviour, (iii) a
specification of the adaptation in terms of a set of correspondences
between actions of different components and (iv) a partial specifi-
cation of the adaptor. The key result is the setting of a formal foun-
dation for the adaptation of heterogeneous components that may
present mismatching interaction behaviour. Analogously to the
work of Yellin and Strom, although this work provides a fully for-
mal definition of the notion of component adaptor, its application
domain is different from ours. Since, when specifying a system, we
want to maintain a high abstraction level, assuming a specification
of the adaptation in terms of a set of correspondences between
methods (and their parameters) of two components requires to
know many implementation details (about the adaptation) that
we do not want to consider in order to synthesize the adaptor.

Other strictly related approaches are in the ‘‘scheduler synthesis”
research area. In the discrete event domain they appear as ‘‘super-
visory control” or ‘‘ discrete controller synthesis” problem (Brandin
and Wonham, 1994; Ramadge and Wonham, 1987) addressed by
Wonham, Ramadge et al. In very general terms, these works can
be seen as an instance of a problem similar to the problem treated
in our approach. However, the application domain of these ap-
proaches is sensibly different from the software component
domain. Dealing with software components introduces a number
of further problematic dimensions to the original synthesis prob-
lem. In the scheduler synthesis approaches the possible system exe-
cutions are modelled as a set of event sequences and the system
specification describes the desired executions. The role of the
supervisory controller is to interact with the system in order to
meet system specification. The aim of these approaches is to restrict
the system behaviour so that it is contained in a desired behaviour,
called the specification. To do this, the system is constrained to per-
form events only in strict synchronization with another system,

http://sunset.usc.edu/available_tools/AAA/

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2249
called the supervisor (or controller). This is achieved by automati-
cally synthesizing a suitable supervisor with respect to the system
specification. In contrast to our method, there is one main assump-
tion to deal with deadlocks: in order to automatically synthesize a
supervisor which avoids deadlocks, they need to consider a specifi-
cation of the deadlocking behaviours of the base system (i.e., the
event sequences that might cause deadlocks). This is a problem be-
cause, for large systems, the designers might not know the dead-
locking behaviours simply because they might be unpredictable.

Promising formal techniques for the compositional analysis of
component-based design have been developed in de Alfaro and
Heinzinger (2001), Passerone et al. (2002). The key of these works
is the modular-based reasoning that provides a support for the
modular checking of behavioural properties. In de Alfaro and
Heinzinger (2001), De Alfaro and Henzinger use an automata-
based approach to capture both input assumptions about the order
in which the methods of a component are called, and output guar-
antees about the order in which the component calls external
methods. The formalism supports automatic compatibility checks
between interface models, and thus constitutes a type system for
components interaction. The purpose of this work is different from
ours. The authors check that two components have compatible
interfaces if a legal environment that lets them correctly interact
exists. Each legal environment is an adaptor for the two compo-
nents. They provide a consistency check only among components
interfaces. That is, they do not deal with automatic synthesis of
component interface adaptors (i.e., automatic synthesis of legal
environments). However, in Passerone et al. (2002) De Alfaro,
Henzinger, Passerone and Sangiovanni-Vincentelli use a game-the-
oretic approach for checking whether incompatible component
interfaces can be made compatible by inserting a converter be-
tween them which satisfies specified requirements. This approach
is able to automatically synthesize the converter. In contrast to the
work presented in this paper, with respect to deadlock-freedom,
the specification of the converter’s requirements is assumed to
be correct. Thus, if for example the specification would erroneously
introduce deadlocks, they would not be prevented by the converter
that it is synthesized in order to be completely compliant to its
requirements specification. In other words, a deadlock preventing
specification of the requirements to be satisfied by the adaptor
has to be provided by delegating to the user the non-trivial task
of specifying it.
6. Discussion

In this section we discuss the kind of system architectural con-
figurations that we are able to manage. Furthermore, we recall the
advantages experienced by combining CHARMY and SYNTHESIS and by
performing the case study described in Section 4.

By considering the component and connector architectural ele-
ments, let us consider the following definitions (Caporuscio et al.,
2004):

Closed system: A Closed System is a system with a fixed number
of component instances and fixed connectors.
Weakly-closed system: A Weakly-Closed System is a system with
a fixed number of component instances.
Weakly-opened system: A Weakly-Opened System is a system
with variable number of component instances and with fixed
connectors.
Open system: An Open System is a system with variable connec-
tors and variable number of component instances.

Our method assures that the architectural component interac-
tions verified on the SA at design-time, are preserved in every
generated implementation of the system. The price to be paid for
this is that, at the architectural level, we can only deal with Closed
Systems although at the implementation level we can deal with
Closed, Weakly-Closed, Weakly-Opened and Open Systems. It is
up to the software engineer that designs the system to decide
the right trade-off between the granularity of the SA design
and the adaptability of its implementation. This is done by choosing
the desired abstraction level that the SA to be verified should have.
The SA could be very close to its implementation (as it is in the case
of the running example described in Section 3). In this case, on the
one hand, it is possible to assure that the SA implementation pre-
serves component interactions specified at a low-level of abstrac-
tion; on the other hand, the adaptability of the implemented
system is low (i.e., the implemented system is Closed). Conversely
to this, the SA could be very far from its implementation (as it is in
the case of the case study of Section 4). In this case, the SA imple-
mentation preserves only component interactions specified at a
high-level of abstraction (e.g., it is not possible to define properties
concerning the interaction of a set of actual components imple-
menting an architectural one) but its adaptability is very high
meaning that the implemented system ranges from Weakly-Closed
to Open Systems.

To make the approach described in this paper as automatic as
possible, we have implemented an integration of CHARMY and SYN-

THESIS in order to make both tools coexist in the same framework
and uniform their state machine notations. By using this integrated
framework, we have experienced that combining architectural
analysis and code synthesis together brings some advantages with
respect to use only one of those approaches in isolation.

Note that, although, in general, the synthesis process suffers
from the state-space explosion phenomenon, our approach makes
it feasible. In fact, it exploits the system SA model (previously ver-
ified) in order to perform adaptation locally to each specified archi-
tectural component rather than at the level of the global system
interactions. In this way, in our approach, the synthesis process
has to face a problem that has a reduced complexity in terms of
its state space. This aspect concerns the advantage that SYNTHESIS

takes from being combined with CHARMY. That is, SYNTHESIS has to
solve a problem that has been reduced in space. As described in
Section 3.3, in order to automatically build the adaptor state ma-
chine, SYNTHESIS can consider as environment for the architectural
component to be implemented its ideal environment, rather than
of the parallel composition of all other architectural components
in the system SA plus the specified properties. Note that, for large
systems, considering as environment a single component instead
of the parallel composition of many components (plus the specified
properties) represents, in general, a significant optimization.
Therefore, in our context, the approach implemented by SYNTHESIS

(that, in general, suffers from the state-space explosion phenome-
non) is more feasible in practice.

The advantage that CHARMY takes from being combined with SYN-

THESIS is that, when possible, the component glue code required for
the SA implementation is automatically built correct by construc-
tion without requiring the developers to work on it. This obviously
reduces the development time as well as the time spent to verify
that the system implementation conforms to its requirements.
7. Conclusions and future work

In this work we proposed an SA based approach for automati-
cally assembling component-based systems out of a set of already
implemented components. By referring to Section 6, the compo-
nent-based systems we deal with can range from Closed to Open
systems. That is, the described approach allows the system to be
able to evolve, at run-time, with respect to architectural updates

2250 P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251
at the actual component level such as component replacement,
addition, or suppression. The models that we use are state ma-
chines and sequence diagrams. The combination of architectural
analysis and code synthesis is performed by combining two ap-
proaches that were previously developed by some of the authors.
One approach is implemented by CHARMY for performing architec-
tural analysis of an SA model. The other one is implemented by
SYNTHESIS for performing code synthesis. CHARMY and SYNTHESIS are inte-
grated in the same framework. In order to make the approach de-
scribed in this paper fully automatic, our framework uses also
some tools of the CADP toolbox.

The approach that we propose promotes engineering ap-
proaches that starting from high-level specifications allow the de-
sign and the implementation of UML state machines and sequence
diagrams, hence providing effective tool support for model analysis
and code synthesis.

Future work concerns the selection criteria used to select and
acquire the actual components from the market. To make our
method a systematic engineering approach, processes that help
the developer in performing a more accurate COTS components
selection phase must be investigated (see Alves and Castro, 2001;
Chung and Cooper, 2004 and the references therein). Another
interesting aspect concerning future work is the possibility to in-
clude in the models not only functional aspects but also extra-
functional ones such as timing information. This would extend
the applicability of our approach to systems in which taking into
account the elapsing of time of a component request is a critical
task, such as embedded real-time systems. Finally, direct automatic
state transfer techniques (see (Vandewoude and Berbers, 2005)
and the references therein) must be investigated in order not to
have to handle the state transfer process manually, hence provid-
ing automatic support also for this phase that may be error-prone
and tedious.
Acknowledgements

This work is partially supported by the PLASTIC project: Provid-
ing Lightweight and Adaptable Service Technology for pervasive
Information and Communication. Sixth Framework Programme.
http://www.ist-plastic.org.

The work is also partially supported by ARTDECO (Adaptive
infRasTructure for DECentralized Organizations), an Italian FIRB
(Fondo per gli Investimenti della Ricerca di Base) 2005 Project.

The authors wish to thank TERMA GmbH, which inspired the
case study, Mariarosaria Cardone who modelled and analyzed the
original version of the SA.X-TC Chain system, and Henry Muccini
that was the responsible of the collaboration in the University of
L’Aquila.

Comments and suggestions of anonymous referees are grate-
fully acknowledged.
References

Allen, R., 1997. A formal approach to software architecture. Carnegie Mellon, School
of Computer Science, Issued as CMU Technical Report CMU-CS-97-144.

Alves, C., Castro, J., 2001. Cre: A systematic method for cots components selection.
In: SBES’01.

Amano, N., Watanabe, T., 2002. A software model for flexible and safe adaptation of
mobile code programs. In: Proceedings of the international workshop on
Principles of software evolution. ACM Press.

Appavoo, K.H.J., Hui, K., Soules, C.A.N., Wisniewski, R.W., Da Silva, D.M., Krieger, O.,
Auslander, M.A., Edelsohn, D.J., Gamsa, B., Ganger, G.R., McKenney, P.,
Ostrowski, M., Rosenburg, B., Stumm, M., Xenidis, J., 2003. Enabling
autonomic behavior in systems software with hot swapping. IBM System
Journal 42 (1).

Arnold, A., 1994. Finite Transition Systems. International Series in Computer
Science. Prentice-Hall.
Autili, M., Inverardi, P., Tivoli, M., Garlan, D., 2004. Synthesis of ‘correct’ adaptors for
protocol enhancement in component-based systems. In: Proceedings of
SAVCBS’04 Workshop at FSE.

Autili, M., Pelliccione, P., Inverardi, P., 2007. Graphical scenarios for specifying
temporal properties: an automated approach. Automated Software Engineering
journal 14 (3), 293–340. Sep.

Autili, M., Inverardi, P., Navarra, A., Tivoli, M., 2007. SYNTHESIS: a tool for
automatically assembling correct and distributed component-based systems.
In: International Conference on Software Engineering (ICSE2007) – Formal Tool
Demos Track, Minneapolis (USA), May.

Batista, T.V., Joolia, A., Coulson, G., 2005. Managing Dynamic Reconfiguration in
Component-Based Systems. EWSA.

Bracciali, A., Brogi, A., Canal, C., 2002. Systematic component adaptation. ENTCS 66
(4).

Bracciali, A., Brogi, A., Canal, C., 2005. A formal approach to component adaptation.
Journal of Systems and Software 74 (1), 45–54.

Brandin, B.A., Wonham, W.M., 1994. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control 39 (2).

Buchi, J.R., 1960. On a decision method in restricted second order arithmetic. In:
Proc. of the International Congress of Logic, Methodology and Philosophy of
Science. Standford University Press, pp. 1–11.

Bures, T., Hnetynka, P., Plasil, F., 2006. SOFA 2.0: balancing advanced features in a
hierarchical component model. In: SERA.

Canal, C., Poizat, P., Salaün, G., 2006. Synchronizing behavioural mismatch in
software composition. In: FMOODS, vol. 4037, LNCS.

Caporuscio, M., Inverardi, P., Pelliccione, P., 2004. Formal analysis of architectural
patterns. In: First European Workshop on Software Architecture – EWSA, 21–22
May 2004, St. Andrews, Scotland.

Cardone, M., 2005. Experiencing Architectural Analysis in Industrial Contexts.
Master’s thesis, Computer Science Department, University of L’Aquila, Italy,
December.

Charmy Project, 2004. Charmy web site. <http://www.di.univaq.it/charmy>.
Chung, L., Cooper, K., 2004. Matching, ranking, and selecting components: A cots-

aware requirements engineering and software architecting approach. In:
MPEC’04.

Clarke, E.M., Grumberg, O., Peled, D.A., 2001. Model Checking. The MIT Press,
Massachusetts Institute of Technology.

Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J., 2004. A component
model for building systems software. In: IASTED Conference on Software
Engineering and Applications.

Crnkovic, I. et al., 2002. Anatomy of a research project in predictable assembly. In:
5th ICSE Workshop on Component Based Software Engineering. ACM. May.

de Alfaro, L., Heinzinger, T., 2001. Interface automata. In: ACM Proc. of the joint 8th
ESEC and 9th FSE. ACM Press. Sep.

de Lemos, R., Gacek, C., Romanovsky, A., 2003. Architectural Mismatch Tolerance.
LNCS 2677. Springer-Verlag.

Falcarin, P., Alonso, G., 2004. Software Architecture Evolution through Dynamic
AOP. LNCS 3047. Springer-Verlag.

Objectweb. Fractal – Julia. <http://fractal.objectweb.org/julia/index.html>.
Objectweb. Fractal – Specification. <http://fractal.objectweb.org/specification/

index.html>.
Gacek, C., 1998. Detecting Architectural Mismatches During Composition. Center for

Software Engineering, University of Southern California, Los Angeles, CA 90089.
Garavel, H., Lang, F., Mateescu, R., 2002. An overview of CADP 2001. EASST

Newsletter, 4. <http://www.inrialpes.fr/vasy/cadp>.
Garlan, D., Monroe, R., Wile, D., 2000. ACME: Architectural Description of

Component-based Systems. In: Leavens, G.T., Sitaraman, M. (Eds.),
Foundations of Component-based Systems. Cambridge University Press, pp.
47–68.

George, B., Fleurquin, R., Sadou, S., 2006. A component-oriented substitution model.
In: ICSR 2006: 9th International Conference on Software Reuse, LNCS 4039,
Turin, Italy, June 12–15.

Ghosh, S., Kelly, J.L., Shankar, R.P., 2005. Enabling the Selection of COTS
Components, COTS-Based Software Systems, LNCS 3412.

Heineman, G.T., Councill, W.T. (Eds.), 2001. Component-Based Software
Engineering. Addison-Wesley.

Holzmann, G.J., 2003. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley. September.

Inverardi, P., Tivoli, M., 2003. Software architecture for correct components
assembly - chapter. In: Formal methods for the design of computer.
communication and software systems: Software architecture. LNCS 2804.
Springer. September.

Inverardi, P., Muccini, H., Pelliccione, P., 2005. Charmy: an extensible tool for
architectural analysis. In: ESEC/FSE-13. ACM Press, New York, NY, USA, pp. 111–
114.

Keller, R., 1976. Formal verification of parallel programs. Communications of the
ACM 19 (7), 371–384.

Kramer, J., Magee, J., 1990. The evolving philosophers problem: Dynamic change
management. IEEE Trans. Softw. Eng. 16 (11), 1293–1306.

Kulkarni, S.S., Biyani, K.N., 2004. Correctness of Component-based Adaptation, in
CBSE7, May.

Manna, Z., Pnueli, A., 1992. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc.

Monroe, R., 1998. Capturing Software Architecture Design Expertise with Armani.
Technical Report CMU-CS-98-163, Carnegie Mellon University.

http://www.ist-plastic.org
http://www.di.univaq.it/charmy
http://fractal.objectweb.org/julia/index.html
http://fractal.objectweb.org/specification/index.html
http://fractal.objectweb.org/specification/index.html
http://www.inrialpes.fr/vasy/cadp

P. Pelliccione et al. / The Journal of Systems and Software 81 (2008) 2237–2251 2251
Oreizy, P., Medvidovic, N., Taylor, R.N., 1998. Architecture-based runtime software
evolution. In: ICSE ’98: Proceedings of the 20th international conference on
Software engineering. IEEE Computer Society, Washington, DC, USA, pp. 177–
186.

Open Services Gateway Initiative (OSGi). <http://www.osgi.org/>.
Park, D., 1981. Concurrency and Automata on Infinite Sequences. In: Theoretical

Computer Science. LNCS, vol. 104. Springer-Verlag, pp. 167–183. March.
Passerone, R., de Alfaro, L., Heinzinger, T., Sangiovanni-Vincentelli, A.L., 2002.

Convertibility verification and converter synthesis: two faces of the same coin.
In: Proceedings of the ICCAD.

Plasil, F., Balek, D., Janecek, R., 1997. DCUP: Dynamic Component Updating in Java/
CORBA Environment. Dep. of SW Engineering. Charles University, Prague, Tech.
Report No. 97/10.

Plasil, F., Balek, D., Janecek, R., 1998. SOFA/DCUP: Architecture for Component
Trading and Dynamic Updating. In: Proceedings of ICCDS’98, IEEE CS Press.

Ramadge, P.J., Wonham, W.M., 1987. Supervisory control of a class of discrete event
processes. Siam J. Control and Optimization 25 (1), January.

Schmidt, W.H., Crnkovic, I., Heineman, G.T., Stafford J.A., (Eds.), 2007. Component-
Based Software Engineering. 10th International Symposium, CBSE 2007,
Medford, MA, USA, July 9–11, 2007, Proceedings, Springer 2007. ISBN 978-3-
540-73550-2.

SCOS2000, 2002. Commanding Architectural Design Document. Technical report,
European Space Agency.

SCOS2000, 2002. Commanding Software Requirements Document. Technical report,
European Space Agency.

Shaw, M., Garlan, D., 1996. Software Architecture: Perspectives on an emerging
Discipline. Prentice Hall, Englewood Cliffs, NJ.

Spitznagel, B., Garlan, D., 2003. A Compositional Formalization of Connector
Wrappers. The 2003 International Conference on Software Engineering
(ICSE’03), Portland, Oregon, USA, May 3–10.

Synthesis Project, 2004. Synthesis web site. <http://www.di.univaq.it/tivoli/
SYNTHESIS/synthesis.php>.

Szyperski, C., 1998. Component Software. Beyond Object Oriented Programming.
Addison Wesley, Harlow, England.

TERMA Corporate Web Site, 2006. <http://www.terma.com>.
Tivoli, M., Autili, M., 2006. Synthesis: a tool for synthesizing correct and protocol-

enhanced adaptors. RSTI L’Objet journal 12 (1), 77–103.
Vandewoude, Y., Berbers, Y., 2005. Component state mapping for runtime evolution.

In: Proceedings of the 2005 International Conference on Programming
Languages and Compilers.

Wallnau, K.C., Hissam, S.A., Seacord, R.C., 2001. Building Systems From Commercial
Components. SEI Series in Software Engineering. Addison-Wesley.

Wang, Q., Shen, J., Wang, X., Mei, H., 2006. A component-based approach to online
software evolution: Research articles. J. Softw. Maint. Evol. 18 (3), 181–205.

Yellin, D., Strom, R., 1997. Protocol specifications and component adaptors. ACM
Trans. on Programming Languages and Systems 19 (2), 292–333. March.

Yellin, D.M., Strom, R.E., 1997. Protocol specifications and components adaptors.
ACM Transactions on Programming Languages and Systems 19 (2). March.
Zhang, J., Cheng, B.H.C., Yang, Z., McKinley, P.K., 2005. Enabling safe dynamic
component-based software adaptation. In: Architecting Dependable Systems III.
LNCS. Springer-Verlag.

Patrizio Pelliccione is an assistant professor at the University of L’Aquila, Computer
Science Department. He got his PhD degree in the University of L’Aquila, computer
science department. The research topics are mainly in Software Architectures,
Software Architectures Analysis, Component-based systems, Fault-tolerance, Mid-
dleware, Model checking, Formal Methods. In its research activity Patrizio collab-
orated with several industries such as Selex Marconi telecommunications, Ericsson,
Siemens, TERMA, etc. Patrizio is chair of the ERCIM international workshop on
Software Engineering for Resilient Systems (SERENE), is editor of a book: Software
Engineering of Fault Tolerant Systems, and is reviewer of several workshops, con-
ferences and journals.

Massimo Tivoli received a first-class honors degree in Computer Science on 2001,
and a PhD in Computer Science on 2005 from the University of L’Aquila, Computer
Science Department. Currently, he is an Assistant Professor at the Computer Science
Department of the University of L’Aquila. His research interests include Formal
Methods to the Automatic Adaptation and Composition of Software Components,
Component Based Software Engineering, Software Architectures, and Service Ori-
ented Architectures.

Antonio Bucchiarone received his first master degree in Computer Science from
the University of L’Aquila (Italy) in April 2003 and the second in Information
Technologies from University of Pisa (Italy) in October 2005. He is finishing him
PhD in Computer Science and Engineering at IMT School of Lucca (Italy) and since
2004 he is a collaborator of Formal Methods and Tools Group at ISTI-CNR of Pisa
(Italy). Antonio’s research interests are in the Computer Science, Software Engi-
neering and Formal Methods Areas. His PhD thesis topic is on Dynamic Software
Architecture-based development and analysis techniques of Global Computing
Systems. In particular, his main research interests are in the field of Dynamic
Software Architecture, Service Oriented Architecture, Formal Methods, Component-
Based Systems, Model-Checking and Testing.

Andrea Polini received a first-class honors degree in Computer Science in 2000
from University of Pisa and a PhD in Computer Engineering in 2004 from Scuola
Superiore Sant’Anna - Pisa. Currently, he is an Assistant Professor at the Computer
Science Department of the University of Camerino. His research interests are mainly
related to Verification and Testing of Complex Software Systems in particular in
relation to Component Based Software Systems and Service Oriented Applications.

http://www.osgi.org/
http://www.di.univaq.it/tivoli/SYNTHESIS/synthesis.php
http://www.di.univaq.it/tivoli/SYNTHESIS/synthesis.php
http://www.terma.com

	An architectural approach to the correct and automatic assembly of evolving component-based systems
	Introduction
	Background
	Charmy: A tool for SA designing and model-checking
	Synthesis: A tool for synthesizing failure-free component adaptors

	Method description
	Design-time phase
	Actual components selection phase
	Compile-time phase: component composition through static adaptation
	Run-time phase: Architectural component replacement through dynamic adaptation

	Case Study: the SA.X project
	Design-time phase
	Actual component selection and Compile-time phases
	Run-time phase

	Related work
	Component frameworks to the run-time reconfiguration
	Dynamic adaptation of component-based systems
	Protocol adapters

	Discussion
	Conclusions and future work
	AcknowledgementAcknowledgements
	References

