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Abstract

The Unified Modeling Language (UML) is a standardised notation for creating

software application designs in a object-oriented manner. Developers should be

able to model complete interactive systems using UML. However, interactive sys-

tem models in UML describe few aspects of user interfaces (UIs). Model-based

user interface development environments (MB-UIDEs) are a state-of-the-art ap-

proach to user interface development, which provide the ability to model and

implement user interfaces in a systematic way. However, current MB-UIDE tech-

nologies can only be used to model user interfaces and not complete interactive

systems. Therefore, there is a clear dichotomy between the state-of-the-art ap-

proaches to modelling user interfaces and their underlying systems.

The work conducted in this thesis investigates enhancing UML support for

user interface design by incorporating MB-UIDE technologies into UML, provid-

ing in this way the necessary integration between user interfaces and their under-

lying systems. In particular, this thesis describes the specification and assessment

of the Unified Modelling Language for Interactive Applications (UMLi) – a con-

servative extension of UML. UMLi provides a diagram notation for modelling

user interface presentations. Further, it provides additional activity diagram no-

tation for describing common behaviours of interactive systems and collaboration

between interaction and domain objects. In fact, UMLi addresses the difficulties

identified in a case study where standard UML was used to model aspects of a

user interface typically specified in surveyed MB-UIDEs.

By having a single modelling notation, common structures and behaviours

of user interfaces and their underlying systems can be shared, verified and sup-

ported in an integrated way at design time. The description of UMLi includes its

grammar specified in terms of the UML metamodel, which provides the ability

to implement ARGOi , a UMLi -based tool that can import UML models from

ArgoUML, a tool based on standard UML. This ability demonstrates that UMLi
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is a truly conservative extension of UML. The description of UMLi includes its

semantics specified in terms of the Language of Temporal Ordering Specifica-

tions (LOTOS), which provides the ability to generate LOTOS specifications

for complete interactive systems that can be model checked. This ability fully

demonstrates that: UMLi constructs are integrated with UML constructs; and

both UMLi and UML constructs can have a precise meaning. Finally, a metric

study suggests that the inherent structural, behavioural and visual complexity of

UMLi models of an interactive application are significantly lower than in UML

models describing the same set of properties of the application.

UMLi is one of several approaches towards the integration of MB-UIDE facil-

ities with a standard object-oriented modelling language. However, it is the most

comprehensively specified, implemented and assessed approach to date.
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Chapter 1

Introduction

UML [18, 99] is the notation most widely used for modelling entire software

systems. An interactive software system consists of application functionality and

the user interface. Therefore, the user interface, as an important part of an

interactive system, should also be included as part of a UML model of the system.

However, UML has not been widely accepted by user interface developers, which

hints at its lack of support for modelling interactive systems [75, 97, 108]. In

fact, it is by no means universally agreed how best to model user interfaces using

UML. Therefore, there is a need to enhance UML with better support for the

design of interactive systems.

1.1 Object Modelling of User Interfaces

Object modelling of user interfaces was introduced by Smalltalk [61, 44] during

the 70s. In fact, Adele Goldberg, Daniel Ingalls and Alan Kay among other re-

searchers at Xerox PARC introduced the use of graphical user interfaces (GUIs)

in Smalltalk as an alternative to the textual user interfaces in use in those days.

Furthermore, these developers incorporated into Smalltalk the ideas of Engel-

bart [35] on using windows to support the consultation of multiple sources and

on using the mouse as the principal pointing device.

The object modelling and implementation of user interfaces is undoubtedly

a story of success in computer science. This fact can be corroborated by ob-

serving the GUIs available in almost every computer these days. To reach this

level of prevalence, several complex problems have been overcome relating to

17



CHAPTER 1. INTRODUCTION 18

visual interface development. For instance, almost every large company devel-

oping software has spent many years developing user interface style guidelines,

e.g., Microsoft Windows [90] and IBM Common User Access [60], to facilitate

the development of interfaces with a consistent look-and-feel. Further, the devel-

opment of interface architectures, e.g., Model-View-Controller (MVC) [76] and

Presentation-Abstraction-Control (PAC) [29], have also demanded years of prac-

tical work and research to explain the dependencies among the different categories

of objects used to compose user interfaces. Interaction objects that embed within

them complex behaviours and graphical algorithms for rendering their visual ap-

pearance have been developed in parallel with the style guidelines and interface

architectures. These interaction objects are popularly called widgets and they are

collectively referred to as toolkits.

Object modelling of user interfaces could be defined as the specification of

user interfaces based on the properties of the artifacts such as widgets, interface

architects and style guidelines actually used to implement user interfaces. For a

comprehensive discussion on the evolution of user interfaces in general we suggest

Shneiderman [125]. For a discussion of the evolution of object modelling of user

interfaces we suggest Collins [28].

1.2 Object Modelling of Software Systems

The non-object-oriented design methods used during the 80s, e.g., [43], started to

present difficulties for specifying software systems that eventually would be coded

in object-oriented programming languages (OOPLs). In fact, such specifications

were not based on the concepts of classes and objects used by OOPLs. To cope

with this mismatch, many object-oriented methods, e.g., Coad and Yourdon’s

Object Oriented Analysis and Design (OOAD) [26, 27], Rumbaugh et al.’s Object

Modeling Technique (OMT) [121], Jacobson et al.’s Object-Oriented Software

Engineering (OOSE) [66], and Booch’s method [17], were developed during the

80s and early 90s. Each of these methods was based on a slightly different set of

notations and processes. The large number of methods and notations, however,

was confusing for organisations (and people) involved in the object modelling of

software systems. The Unified Modelling Language (UML) [18] proposed in 1994

is the most significant attempt to establish a widely accepted object modelling

method. UML is the result of integrating Booch’s method, Rumbaugh’s OMT
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and Jacobson’s OOSE. Later, in 1997, the Object Management Group (OMG) of

organisations working with object-oriented technologies became responsible for

carrying out improvements to standardisation of the UML specification [99].

Modelling methods based on UML constitute the typical approach to object

modelling of software systems these days. The object modelling of interactive

systems could be defined as the object modelling of systems and their user inter-

faces, preferable performed in an integrated way. A noteworthy point, however,

is that object modelling of user interfaces is largely ignored by object-oriented

methods, including the UML.

1.3 User Interface Development Tools and En-

vironments

The development of user interfaces is challenging due to the necessity of matching

concepts understood by users with concepts implemented by systems [71]. In

fact, users tend to make use of concepts that are much more complex than those

implemented in user interfaces. The development of new interaction facilities

such as GUIs and windows has improved the match between user concepts and

system implementation of concepts. For instance, such facilities can help the

implementation of concepts that are much more complex than those that could be

implemented, for example, in textual user interfaces. From a user’s point-of-view,

these new interaction facilities may give rise to interfaces that are more flexible

and easier to interact with. However, from a user interface developer’s point-of-

view, such facilities may indicate the necessity of modelling and implementing

objects that can deal, for example, with multiple asynchronous input devices,

multiple strategies for accepting commands, and complex graphics [93].

User interface development tools are widely used these days. Toolkits con-

stitute a category of software for developing user interfaces. Many toolkits are

supported by user interface builders that simplify the task of handling the large

number of widgets normally available in toolkits. Indeed, developers can select,

combine, and customise widgets directly in a GUI using interactive techniques

such as direct manipulation. Toolkits and UI builders are probably the most

popular tools for object modelling of user interfaces. The big shortcoming of

such toolkits and UI builders, however, is that they do not specify the behaviour

of widgets in interacting with users and collaborating with other objects. For
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example, using a UI builder a developer can specify the placement and visual

appearance of a button in a user interface. However, the developer may not be

able to specify when the button may be active and when it may be inactive.

To cope with such limitations, UI development tools evolved into user interface

management systems (UIMS). The main idea behind UIMS was to provide a

runtime component responsible for managing running interfaces generated from

user interface specifications. The use of some notations mainly for specifying UI

behaviour, e.g., Statecharts [53, 52] and User Action Notation (UAN) [54, 56],

was introduced by UIMSs. Thus, such a runtime component would promote some

measure of independence between applications and their user interfaces. Never-

theless, UIMSs would be able to generate code or prototypes of user interfaces

early in the development process. One of the major shortcoming of UIMSs, how-

ever, was the difficulty of abstracting their user interface specifications, making

the task of creating these specifications too difficult.

Model-Based User Interface Development Environments (MB-UIDEs) are a

state-of-the-art approach for modelling and implementing running user interfaces

from user interface models. The possibility of specifying user interface properties

in an abstract way has facilitated a more systematic modelling of user interfaces.

Nevertheless, MB-UIDEs have inherited from UIMSs the benefits of prototyping

and generating user interface code. Two distinct generations of MB-UIDEs can

be identified. In the first generation of MB-UIDEs, user interface structures

were much more abstract than those used in UIMSs. User interface behaviours,

however, were mainly specified in terms of dialog diagrams based on concepts

such as states, transitions, pre-conditions, post-conditions and side-effects. In

the second generation of MB-UIDEs, the replacement of dialog models by task

models has simplified the specification of user interface behaviours.

For a comprehensive discussion about user interface tools and development

environments we suggest the reading of Myers [93]. Chapter 2 in this dissertation

provides a comprehensive discussion of user interface models in MB-UIDEs.

1.4 Motivation for Work

From the point of view of a system designer, UML [18, 99] is the notation most

widely used for modelling entire software systems. Therefore, the user interface,

as a significant part of most software systems [95], should also be modelled using
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UML. In fact, UML is a natural candidate notation for object modelling of user

interfaces. However, it is by no means clear how best to model user interfaces

using UML [75, 97, 103, 108].

From the point of view of a user interface designer, a MB-UIDE may be an

appropriate approach for modelling user interfaces. In fact, the potential benefits

of MB-UIDEs are apparent, but to date research has not yet matured sufficiently

to make such systems widely adopted in practice. However, believing in the

potential of the model-based approach, we still face the problem that they are

not well-integrated with techniques for modelling mainstream software systems.

In fact, the modelling of user interfaces is not at all well handled using standard

object modelling techniques. As Collins [28] states, “published methods for user

interface design largely ignore the fact that it is part of product development”.

This is still a problem that can be corroborated in classical object-oriented design

methods [17, 26, 27, 66, 121] as in UML [18, 99].

Considering the poor integration of the facilities for modelling interactive sys-

tems, the main aim of this dissertation is to remove this dichotomy between

object modelling of user interfaces and mainstream systems by integrating the

new facilities provided by MB-UIDEs with the standard object modelling tech-

niques provided by the UML. Moreover, this dissertation aims to amass as much

evidence as possible that demonstrates the benefits of such an integration.

1.5 The Unified Modeling Language for Inter-

active Systems (UMLi)

This dissertation proposes a set of extensions to UML in order to improve the

support that the language provides for modelling interactive systems. The neces-

sity of extending UML comes from the shortcomings of UML identified in a case

study developed in Chapter 3. The case study is an attempt to model the user in-

terface aspects usually described in MB-UIDEs, as identified in Chapter 2, using

standard UML. The identified shortcomings can briefly be described as follows.

• The diagrams of UML for structural modelling, i.e., class diagrams and ob-

ject diagrams, do not provide much support for modelling the structural

properties of user interfaces, which correspond to the visual part (presenta-

tion) of user interfaces. For instance, both containment among interactive
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objects and the abstract roles that interaction objects can play in the com-

position of user interfaces are unclear in UML models.

• The diagrams of UML for dynamic modelling, i.e., sequence diagrams, col-

laboration diagrams and activity diagrams, do not provide much support

for modelling certain categories of behaviour commonly observed in interac-

tive systems. For instance, it is difficult to model functionalities achieved,

for example, through the execution of an activity which can be performed

many times (repeatable), or through the execution of a set of activities each

of which must be performed once, but in any order (order independent).

• The diagrams of UML in general do not provide much support for modelling

the collaboration among interactive objects. For instance, it is not trivial

to specify that the activity or inactivity of an interaction object depends

on the activity or inactivity of the interaction object that contains it.

• The diagrams of UML in general do not provide much support for modelling

the collaboration between interactive objects and non-interactive objects.

For instance, it is difficult to model the part of the system data-flow that

includes the process of storing in domain (non-interactive) objects infor-

mation provided by users using interactive objects. Furthermore, it is also

difficult to keep structural and behavioural diagrams consistent with re-

spect to the dependencies created by the collaboration of domain objects

with interactive objects.

The proposed extension improves the support that UML can provide for the

identified problems, as assessed by the implementation of a UMLi -based tool

(presented in Chapter 6) and by a metric comparison of UML and UMLi diagrams

(demonstrated in Chapter 7). The proposed extension is named the Unified

Modeling Language for Interactive Systems (UMLi). Its graphical notation and

syntax specified in terms of the UML metamodel are presented in Chapter 4 and

its semantics is presented in Chapter 5.

This dissertation, and UMLi as a consequence, are developed within the fol-

lowing scope.

• Focus on modelling rather than implementing user interfaces. The

identification of a better way of specifying user interfaces and generating



CHAPTER 1. INTRODUCTION 23

running user interfaces from user interface specifications are two major con-

cerns in the context of MB-UIDEs. In this dissertation the focus is on

specifying user interfaces.

• Focus on describing user interface aspects rather than on the pro-

cess of constructing user interface descriptions. The identification

and validation of processes for modelling user interfaces is as important

as the development of facilities for modelling user interface. In the case

of UMLi , the focus is on the development of facilities for describing user

interface aspects. Nevertheless, a process describing the use of the UMLi fa-

cilities is outlined in Section 4.5, although the specific merits of this process

and its evaluation have not been a major focus.

• Focus on the UML notation. This is the object modelling notation

widely used by practitioners and researchers. Further, UML is the lan-

guage that is intended to be an industrial standard for modelling software

systems. Thus, classical object modelling notations, e.g., OMT [121], are

not considered in this dissertation.

• Focus on form-based user interfaces. This is the category of user inter-

faces most used in important data intensive applications such as database

systems and web-based applications. Moreover, the problem of how best to

model form-based user interfaces using UML is unsolved (as is the modelling

of any other category of user interface in UML). Thus, the identification of

significant benefits for modelling an impoverished UI style using UML can

be even more significant for modelling more complex interfaces. Restricting

the scope to form-based user interfaces means that interfaces for systems

such as games, word processors and simulators are beyond the scope of this

dissertation.

1.5.1 Principles

There are five principles which have guided the development of UMLi [109].

Principle 1 The UMLi proposal should be a conservative extension of UML –

standard UML should be retained as a subset, in which existing constructs keep

their roles and semantics.
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Principle 2 The UMLi proposal should introduce as few new models and con-

structs into the UML as possible.

Principle 3 The UMLi proposal should support the expectations of current UML

modellers, whose experience with UML should be of benefit when using user inter-

face-specific extensions.

Principle 4 The UMLi proposal should support the expectations of user interface

modellers who have experience using existing user interface modelling techniques.

Such users should not feel that they are having to design interfaces with less

supportive facilities than are provided by MB-UIDEs.

Principle 5 The UMLi proposal should support the modelling of complete in-

teractive systems, so the links between user interface models and existing UML

models should be well-defined and close.

1.5.2 Contributions

The major contribution of this dissertation is the development and assessment

of the UMLi , a comprehensive proposal for improving the support that UML

provides for modelling interactive systems. The modelling of interactive systems,

however, is a complex task that creates many difficulties for model developers.

Therefore, many contributions have been achieved during the process of develop-

ing, assessing and using UMLi . These contributions are:

• The development of a comparison framework for MB-UIDEs used to identify

a set of common modelled characteristics of user interfaces.

• The identification of the strengths and weaknesses of UML for modelling

user interfaces.

• The development of a semantics for UMLi based on the LOTOS specifica-

tion language [16, 63], which brings the formalisation of interactive systems

proposed by Markopoulos [82] and Paternò and Faconti [104] into the con-

text of UML.

• The development of a UMLi development environment:

– Demonstrating how UMLi can be implemented in a generic UML-

based tool;
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– Identifying a set of tool facilities (wizards) that can be implemented

for UMLi in order to simplify some tasks frequently performed during

the modelling of user interfaces;

– Demonstrating that UMLi is an conservative extension of UML. (1)

UMLi models can be developed from UML models developed originally

in a standard UML tool. (2) The textual format for model exchange

of UMLi , UMLi XMI, can be implemented by extending the textual

format of UML, UML XMI [99].

• The development of a case study comparing the cost in terms of design

metrics of modelling an interactive system with UMLi and standard UML.

This study demonstrates that (1) standard UML does not scale up well

for modelling interactive systems, and that (2) UMLi actually reduces the

complexity of modelling interactive systems when compared with UML.

In addition, there is an auxiliary contribution that has resulted from the

development of UMLi .

• The development of a strategy for mapping UML models into LOTOS spec-

ifications. Further, using such a strategy it is demonstrated how some

structural and behavioural constructs of UML can be mapped into LOTOS

specifications.

1.6 Thesis Overview

The remainder of this dissertation is organised as follows:

Chapter 2 surveys the MB-UIDE literature identifying the aspects usually de-

scribed by user interface models in MB-UIDEs. A comparison framework

for MB-UIDEs identifies these common user interface aspects.

Chapter 3 exploits the facilities provided by the standard UML to model the

user interface aspects identified in Chapter 2. The result of this study is

the identification of UML’s strengths and weaknesses for modelling user

interfaces.
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Chapter 4 proposes UMLi , a conservative extension of UML, that provides new

constructs and models to cope with the weaknesses of UML identified in

Chapter 3.

Chapter 5 proposes a syntax for UMLi based on the UML metamodel [99].

Further, a semantics based on the LOTOS specification language [16, 63] is

provided for the UMLi constructs.

Chapter 6 presents the design and implementation of ARGOi , a UMLi -based

modelling environment. Some modelling facilities which can be provided

exploiting UMLi are also presented in this chapter.

Chapter 7 describes a metric evaluation of UMLi models when compared with

their corresponding models described using standard UML. A metric eval-

uation is provided for each UMLi construct.

Chapter 8 concludes the dissertation by discussing the contributions achieved

throughout this research. Finally, future work related to this dissertation

is presented.



Chapter 2

UI Models and Development

Environments

Model-based user interface development environments (MB-UIDEs) belong to a

new category of tools for developing user interfaces (UIs) through the construction

of user interface models (UIMs). These models describe, for example, the domain

over which the user interface acts, the tasks that the user interface supports,

and various aspects of the display presented to the user (e.g., the windows and

interface components used). These models are typically at a conceptual level,

and thus are potentially implementable in different ways on different delivery

platforms. The ability to specify user interfaces in a conceptual manner, and to

verify and deploy user interfaces from the models, are the major benefits of MB-

UIDEs. Thus, MB-UIDEs can assist developers in the process of specifying UIMs,

e.g., by using sophisticated techniques for exploiting the relationships between

model’s constructs, and can deploy user interfaces from UIMs, e.g., by generating

user interface code.

Model-based user interface development technologies aim to provide an envi-

ronment where developers can design and implement user interfaces in a profes-

sional and systematic way, more easily than when using traditional UI develop-

ment tools. To achieve this aim, UIs are described using models. There are three

major advantages that derive from use of user interface models.

• They can provide a more abstract description of the UI than those provided

by UI development tools such as Visual Basic and Tcl/Tk [145, 115].

• They facilitate the creation of methods for designing and implementing the

27
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UI in a systematic way, since they offer capabilities: (1) to model user

interfaces using different levels of abstraction; (2) to incrementally refine

the models; and (3) to re-use UI specifications.

• They provide the infrastructure required to automate tasks related to the

UI design and implementation processes [135].

A major disadvantage of the model-based approach is the complexity of the

models and their notations, which are often hard to learn and use [93, 135].

However, it is expected that an appropriate environment should help to overcome

the complexity problem, by providing features such as graphical editors, assistants

and design critics to support UI designers. Moreover, it is expected that the use of

standard notations in this environment may also ease the process of learning how

to construct UIMs. The development of model-based user interface development

environments is still challenging since some problems related to this technology

are not completely solved.

• It is difficult to demonstrate that UIMs describe the aspects of the UI

required to generate running user interfaces, although there are a few ex-

amples of systems for generating running interfaces from UIMs [144, 131].

• The problem of how best to integrate UIs with their underlying applications

is introduced in many papers [30, 31] but is not entirely addressed for user

interfaces generated by MB-UIDEs.

• There is no consensus as to which set of models is the most suitable for

describing user interfaces. Indeed, there is no consensus as to which aspects

of user interfaces should be modelled.

This chapter is structured as follows. Section 2.1 describes the evolution of

MB-UIDE. Section 2.2 introduces a framework for comparing and analysing the

architectural components of the UIMs. Section 2.3 presents how user interfaces

are described through models in 15 MB-UIDEs. Conclusions are presented in

Section 2.4.

2.1 Background

The literature contains many papers describing MB-UIDEs and their UIMs. The

following classification of MB-UIDEs is presented to show how this category of
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UI development tool has been introduced and evolved by both academic and

industry communities.

The first generation of MB-UIDE appeared as improvements to the earlier

user interface management systems (UIMSs) since they sought to execute user

interfaces represented in a more abstract way. The main aim of the MB-UIDEs of

this generation was to provide a strategy to execute a UI from the UIM. Examples

of the the first generation of MB-UIDEs are COUSIN [55], HUMANOID [133],

MIKE [100], UIDE [72, 41, 40] and UofA* [129]. However, the UIMs of the

first generation of MB-UIDEs did not provide a high-level of abstraction for

the description of the UI. For instance, behavioural models focused on dialogue

description required the specification of many operations in objects represented in

UI models that may be embedded in widgets these days. Further, user interface

aspects like layouts and widget customisation appeared early during the UI design

process.

A second generation of MB-UIDEs provided mechanisms for describing UIs

at a higher level of abstraction [146]. In particular, they consolidated the use

of task models as the primary model for behavioural modelling. The dialogue

models that were often used for behavioural modelling in MB-UIDEs of the first

generation were either removed or preserved as a complementary mechanism for

refining task specifications. Examples of the second generation of MB-UIDEs

are ADEPT [85], AME [86], DIANE+ [137], FUSE [80], GENIUS [68] MAS-

TERMIND [135], MECANO [111], MOBI-D [115], TADEUS [34], Teallach [47]

and TRIDENT [13]. With MB-UIDEs of the second generation, developers have

been able to specify, generate and execute user interfaces. Further, this second

generation of MB-UIDE has a more diffuse set of aims than the previous one.

Some MB-UIDEs, e.g., AME and TADEUS, consider the use of computer-aided

software engineering (CASE) tools and notations such as OMT [121] in their

development environment. Others, e.g., MODI-D and Teallach aim to achieve

complete UI development.

A subset of the MB-UIDEs of the second generation is characterised by the

adoption of UML or by an attempt to adopt UML as the underlying notation for

UIMs. Examples of these UML-concerned MB-UIDEs are ConcurTaskTree [101],

Markopoulos’ approach [84] and WISDOM [97]. By contrast with the other MB-

UIDEs of the second generation, the UML-concerned MB-UIDEs are less focused
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on tools and more focused in the exploitation of the UML notation for represent-

ing UIMs. One reason for this is that UML-based tools, e.g, Rational Rose [116]

and Argo/UML [118], can be used for modelling UIs once it is explained how the

UML notation can be used for modelling UIs. UML-concerned MB-UIDEs also

address the problem of representing task models using UML constructs [103]. In

fact, the use of task models has been sufficiently successful in many non-UML-

concerned MB-UIDEs of the second generation to suggest that they should be

retained in UML-concerned MB-UIDEs.

Most of the papers describing the MB-UIDEs listed above compare some of

their features with other MB-UIDEs, showing the differences among them. How-

ever, they are focused more on introducing the new approach than on compar-

ing MB-UIDE proposals. There are a few papers that provide overviews of the

MB-UIDE field: Schlungbaum [122], Vanderdonckt [141] and Griffiths et al. [49]

provide comparisons among many MB-UIDEs, and Szekely [135] provides an ex-

cellent insight into what an MB-UIDE is. Pinheiro da Silva [106] provides a

generic description of user interface design processes in MB-UIDEs, on which

this chapter is based.

2.2 A Comparison Framework for User Inter-

face Models

User interfaces convey the outputs of applications to users and the inputs from

application users. For this reason, UIs have to cope with the complexity of both

the applications and the users. In terms of MB-UIDE’s architectures, the prob-

lem of accommodating application complexity and user interaction complexity is

reflected in the fact that MB-UIDEs usually have several models, referred to in

this chapter as component models or models, describing different aspects of the

UI. Table 2.1 presents the four categories of model considered in the framework,

also presenting which aspects of the user interface are described by each model.

As the purpose of this framework is to provide a comparison among different

UIMs, four points should be considered:

• Task models and dialogue models are classified within a single model called

the Task-Dialogue model. Both task models and dialogue models describe

the possible tasks that users can perform during the interaction with the
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Component Model Abbrev. Function

Application model AM Describes the properties of the application
relevant to the UI.

Task-Dialogue model TDM Describes the tasks that users are able to
perform using the application, as well as
how the tasks are related to each other.

Abstract presentation model APM Provides a conceptual description of the
structure of the visual parts of the user
interface. The UI is described in terms
of abstract objects.

Concrete presentation model CPM Describes in detail the visual parts of the
user interface. It is explained how the UI
is composed in terms of widgets.

Table 2.1: Component models of a user interface.

application, but at different levels of abstraction. The reason for classifying

them together is that UIMs often only have one of them. Further, the

possible constructs of task and dialogue models may have similar roles.

• User models are supported in some UIMs (e.g, ADEPT, MECANO and

TADEUS). Indeed, user models are important for model-based user inter-

face technologies since they can provide a way to model preferences for

specific users or groups of users. However, they are a challenging aspect of

the UI that is generally not well-addressed in MB-UIDEs, and not clearly

described in the literature. Moreover, in those UIMs that have a user model,

it appears that the user model can be replaced by design guidelines. In fact,

design guidelines usually contain user preferences that can be considered as

a model of a group of users.

• Requirements models are supported by few MB-UIDEs. The elicitation of

top-level functionalities and actors (or agents) related to these function-

alities provided by use case diagrams is a bonus for UML-concerned MB-

UIDEs. Furthermore, there are MB-UIDEs such as TRIDENT that analyse

ergonomic, functional and user interface requirements to construct UIMs.

However, it is not clearly described in the literature how requirements can

be modelled in MB-UIDEs.

• Platform models, as in MODI-D [115], are not included in the framework

since they are considered by few MB-UIDEs and they are not clearly de-

scribed in the literature.
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Comp. Construct Abbrev. Function
model

AM class CLASS An object type defined in terms of attributes,
operations and relationships.

attribute ATTR A property of the thing modelled by the objects
of a class.

operation OPER A service provided by the objects of a specific
class.

relationship RELAT A connection among classes.
TDM task TASK An activity that changes the state of specific

objects, leading to the achievement of a goal.
Tasks can be defined at different levels of
abstraction, which means that a task can be a
sub-task of a more abstract class.

goal GOAL A state to be achieved by the execution of a
task.

action ACTION A behaviour that can be executed. Actions are
the most concrete tasks.

sequencing SEQ The temporal order that sub-tasks and actions
must respect when carrying out the related
high-level tasks.

task pre-condition PRE Conditions in terms of object states that must
be respected before the execution of a task or
an action.

task post-condition POST Conditions in terms of object states that must
be respected after the execution of a task or
an action.

APM view VIEW A collection of abstract interaction objects
(AIOs) logically grouped to deal with the inputs
and outputs of a task.

abstract interaction AIO A user interface object without any graphical
object representation and independent of any

environment.
CPM window WINDOW A visible and manipulable representation of a

a view.
concrete interaction CIO A visible and manipulable user interface object
object that can be used to input/output information

related to user’s interactive tasks.
layout LAY An algorithm that provides the placement of

CIOs in windows.

Table 2.2: User interface model constructs.

Models are primarily composed of constructs. Table 2.2 shows the constructs

considered in the framework. The table also gives a possible distribution of these

constructs into the component models, a concise description of each construct,

and abbreviations for future reference. The distribution of the constructs into

component models, as presented in Table 2.2, helps to clarify their function in

the framework. Definitions of application model constructs are partially extracted

from UML [18]. Definitions of task model constructs are partially extracted from

Johnson [69]. Definitions of abstract and concrete interaction objects are partially

extracted from Bodart and Vanderdonckt [15].

One point that should be considered in terms of constructs is that MB-UIDEs

do not need to have all constructs presented in the framework. Further, constructs
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can be distributed in a different manner from that proposed in Table 2.2.

MB-UIDE References Generat. Organisation

ADEPT [85, 70, 146] 2nd Queen Mary and Westfield College, UK
AME [86] 2nd Fachhochschule Augsburg, Germany
CTT [101, 103] 2nd University of Pisa, Italy
FUSE [123, 124, 80] 2nd Technische Universität München, Siemens AG, Germany
HUMANOID [133, 134, 81] 1st University of Southern California, USA
JANUS [5, 6] 2nd Ruhr-Universität Bochum, Germany
ITS [144, 145] 1st IBM T.J. Watson Research Center, USA
MASTERMIND [135, 22, 131] 2nd University Southern California, Georgia Inst. Tech., USA
MECANO [111] 1st/2nd Stanford University, USA
MODI-D [115, 113, 114] 2nd Stanford University, Redwhale Software, USA
TADEUS [34] 2nd Universität Rostock, Germany
TEALLACH [47, 48] 2nd Univ. Manchester, Univ. Glasgow, Univ. Napier, UK
TRIDENT [13, 12, 15] 2nd Facultés Universitaires Notre-Dame de la Paix, Belgium
Markopoulos [84] 2nd Technische Universiteit Eindhoven, The Netherlands
WISDOM [98, 97] 2nd Universidade de Madeira, Universidade do Porto, Portugal

Table 2.3: Surveyed MD-UIDEs.

2.3 A Survey of User Interface Models

This section provides a review of the model-based user interface technologies,

summarising related information available from the literature. Relevant aspects

of fifteen MB-UIDEs, as presented in Table 2.3, are compared and analysed.

Details of how specific MB-UIDEs are implemented are not presented here, and

nor are specific notations or tools.

2.3.1 Modelled Aspects of User Interfaces

Table 2.4 presents the terms used in the literature to identify the models of the

MB-UIDEs according to the framework.

The application model is present in every user interface model. In fact, the

MB-UIDE technology appeared initially as successors to user interface manage-

ment systems (UIMS), where a clear distinction between the user interface and

the mainstream application is required. For UML-concerned MB-UIDEs, the ap-

plication model is the actual model of the application domain rather than a UI

view of the application. This is a reason why UML-concerned MB-UIDEs tend

to be more integrated with the design of the mainstream application than other

MB-UIDEs.

The presentation model, like the application model, is always included in UI

models. However, there are MB-UIDEs that do not have an abstract presentation
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MB-UIDE Application model Task-Dialogue model

ADEPT problem domain task model
AME application model object-oriented design (OOD)
CTT domain model task model
FUSE problem domain model task model
HUMANOID application semantics design manipulation, sequencing,

action side effects
JANUS problem domain (none)
ITS data pool control specification in dialog
MASTERMIND application model task model
MECANO domain model user-task model/dialog model
MOBI-D domain model user-task model/dialog model
TADEUS problem domain model task model/navigation dialogue
TEALLACH domain model task model
TRIDENT application model task model
Markopoulos domain model task model/activity diagram/use cases
WISDOM information dialogue

MB-UIDE Abstract presentation model Concrete presentation model

ADEPT abstract user interface model prototype interface
AME object-oriented analysis prototype
CTT presentation model concrete user interface
FUSE logical user interface user interface
HUMANOID presentation presentation
JANUS (none) user interface
ITS frame specification in dialog style specification
MASTERMIND (none) presentation model
MECANO (none) presentation model
MOBI-D presentation model presentation model
TADEUS processing dialogue processing dialogue
TEALLACH presentation model presentation model
TRIDENT (not surveyed) presentation model
Markopoulos abstract interaction model detailed interaction model
WISDOM (none) presentation

Table 2.4: MB-UIDE’s component models.

model, such as MASTERMIND and MECANO. In other MB-UIDEs such as

HUMANOID, TADEUS and Teallach, the distinction between the abstract and

concrete presentation models is not clear. In the last case, designers normally have

the flexibility to gradually refine the presentation description from an abstract

model to a concrete model.

Finally, UIMs also include the use of a task-dialogue model to describe the

possible interactions between users and applications using the presentation and

application models. Some MB-UIDEs describe these interactions at a dialogue-

level, such as HUMANOID, MASTERMIND and ITS. Other MB-UIDEs, espe-

cially those developed after ADEPT, describe the interactions at a task-level,

which is more abstract than the dialogue-level. However, there are MB-UIDEs

such as MECANO, TADEUS and Markopoulos’ approach that describe the pos-

sible interactions at both dialogue and task levels.
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2.3.2 Constructs of User Interface Models

Having identified the models, we need to identify the model constructs. As we

did for models, Table 2.5 presents the model constructs using the terminology

available in the literature for the specific proposals. The column construct refers

to the abbreviation for constructs introduced in the framework (Table 2.2). Con-

structs not present in Table 2.5 are not used in the specific system, or at least

were not identified in the literature.

2.3.3 Notations Utilised in User Interface Models

While Section 2.3.1 has indicated what models are present in different proposals,

the semantics of the individual models in different contexts has not yet been

touched on. Table 2.6 shows the several different notations used by the models

of different proposals.

We notice in Table 2.6 that there are UIs entirely described by models using

a single notation. In general, these notations have been developed specifically for

the MB-UIDE. They can be completely new as in ITS’s style rules [144, 145], or

they can be extensions of other notations, as in MASTERMIND’s MDL, which is

an extension of CORBA IDL [128]. The use of a single notation can be useful to

describe how the models collaborate with each other. However, especially due to

the requirement of graphical notations, UI models tend to use different notations.

For example, JANUS, TADEUS, TRIDENT, Teallach and Adept models use more

than one notation. It is not feasible to provide a categorisation of these UIMs in

terms of their notations here because they tend to be specific to each proposal.

For instance, there are many MB-UIDEs that use a hierarchical task notation

to model their task-dialogue models, however, the notation may not be precisely

formalised, as in Teallach.

The use of standard notations is a tendency guiding the development of UML-

concerned MB-UIDEs such as CTT and Markopoulos’ approach, which are trying

to integrate task models with UML. This tendency to use standard notations

can also can be observed in MB-UIDEs of the second generation. For instance,

MASTERMIND’s notation is based on CORBA IDL, and AME and TADEUS

apply OMT [121] in some of their component models, since these are notations

available for describing other parts of the application. In fact, OMT can be used

during the analysis and design of the mainstream application, and CORBA IDL
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MB-UIDE Construct Name

Adept TASK task
GOAL goal
SEQ ordering operator +

sequencing
AIO user interface object
CIO UIO

AME CLASS OOA class
ATTR slot/OOA attributes
OPER OOA operation
RELAT relation type
ACTION behaviour
AIO AIO
WINDOW OOD class
CIO CIO
LAY layout-method

CTT CLASS class
RELAT association,

generalisation
TASK task
ACTION basic task
SEQ temporal-relationship
AIO presentation object
CIO widget

Humanoid CLASS object type
ATTR slot
OPER command
TASK data flow constraints
GOAL goal
ACT behaviour
SEQ guard slots’ constraints,

triggers
PRE sequential pre-condition
POST action side-effect
AIO template
WINDOW display
CIO display, interaction

technique
LAY layout

Janus CLASS class
ATTR attribute
OPER operation
RELAT association, aggregation
CIO interaction object
WINDOW dialog widow (UIView)

ITS CLASS data table
ATTR field
VIEW frame
AIO dialog object
EVENT event
ACT action
WINDOW root unit
CIO unit
LAY style attribute

MB-UIDE Construct Name

Mastermind CLASS interface
ATTR attribute
OPER method
TASK task
GOAL goal
SEQU connection type
WINDOW presentation
CIO presentation part
LAY guides, grids,

conditionals
MOBI-D CLASS object

ATTR attribute
RELAT relationship
TASK task
ACTION action
SEQ subtask ordering
AIO presentation element
WINDOW window
CIO widget
LAY presentation attribute

Teallach CLASS class
ATTR attribute
OPER operation
TASK task
SEQ task temporal

relation
VIEW free container
AIO AIO
WINDOW window
CIO CIO

TRIDENT CLASS entity
RELAT relationship
TASK dialog object
GOAL goal
SEQ link
VIEW presentation unit
AIO abstract interaction

object
CIO concrete interaction

object
LAY placement of CIOs

Markopoulos TASK task activity
ACTION elementary task

activity
SEQ temporal ordering
AIO interactive object

WISDOM CLASS entity class
TASK task class
SEQ temporal dependency
CIO interaction space class
LAY user interface style

Table 2.5: MB-UIDE’s constructs.



CHAPTER 2. UI MODELS AND DEVELOPMENT ENVIRONMENTS 37

MB-UIDE Notation Models

ADEPT task knowledge structures (TKS) [65] TDM
LOTOS [16] TDM
Communicating Sequential Process (CSP) [57] TDM, APM

AME OOA/OOD [27] AM
OMT [121] AM

CTT CTT [101] TDM,APM, CPM
UML [99] AM

FUSE algebraic specification [147] AM
HTA [69] TDM, UM
Hierarchic Interaction graph Template (HTI) APM, CPM

HUMANOID uses a single notation which was not specified all models
JANUS JANUS Definition Language (extended AM

CORBA IDL and ODMG ODL)
ITS Style rule [144, 145] all models
MASTERMIND MDL [131] (extended CORBA IDL [128]) all models
MECANO MIMIC [111] (extended C++) all models
MOBI-D MIMIC (see MECANO’s notation) all models
TADEUS specialised HTA TDM

OMT [121] AM, UM
Dialogue Graph (specialised Petri net) TDM

TEALLACH hierarchical tree with state objects TDM
hierarchical tree AM, APM, CPM

TRIDENT Entity-Relationship-Attribute (ERA) AM
Activity Chaining Graph (ACG) TDM, APM, CPM

Markopoulos CTT TDM
UML TDM, AM
UAN [54, 56] TDM

WISDOM UML AM, TDM, CPM

Table 2.6: Model notations.

can be used during the implementation of the mainstream application.

A comprehensive explanation of the semantics of these notations is outside of

the scope of this survey. The references required to find out more about these

notations are provided in Table 2.6.

2.3.4 Integration of User Interface Models

Models are integrated, although it is not unusual for the literature to be unclear

on the precise nature of the integration. Indeed, Puerta and Eisenstein [114] said

that there is a lack of understanding of UIM integration, denoting this problem

as the mapping problem.

One strategy to finding out how these models are integrated is through the

compilation of the relationships of constructs in different component models.

Table 2.7 shows some of those inter-model relationships, relating the relationship

constructs with their multiplicity. The multiplicity between brackets is described

in UML notation [18]. Additionally, Figure 2.1 shows graphically how the models

are related to each other in the MB-UIDEs.
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MB-UIDE Inter-model relationship
Construct Construct

ADEPT ACTION (1) AIO (*)
AME CLASS (1) AIO (1..*)

CLASS (1) WINDOW (0..1)
ATTR (1) AIO (1)
WINDOW (1) AIO (1..*)
ACTION (1) AIO (1)

CTT TASK (1) CLASS (0..*)
CLASS (1) AIO (0..*)

HUMANOID CLASS (1) CIO (1)
AIO (1) CIO (1)

JANUS WINDOW (1) CLASS (*)
AIO (1) ATTR (1)

ITS VIEW (1) ATTR (*)
CLASS (1) AIO (*)
AIO (1) CIO (1..*)

MASTERMIND TASK (1) OPER (0..1)
TASK (1) CIO (0..1)
root TASK (1) WINDOW (1)

MECANO WINDOW (1) CLASS (1)
AIO (1) ATTR (1)

MOBI-D CLASS (*) TASK (*)
ATTR (1) AIO (1)
TASK (1..*) WINDOW (1)

TEALLACH TASK (1) CLASS (0..*)
TASK (1) AIO (0..*)
TASK (1) VIEW (0..1)
WINDOW (1) AIO (0..*)
AIO (1) CIO (1..*)

TRIDENT TASK (1) VIEW (1)
WINDOW (1..*) VIEW (1)
AIO (1) CIO (0..*)

Markopoulos ACTION (1) CLASS (0..*)
TASK (1) AIO (1)

WISDOM CLASS (1..*) TASK (1)
TASK (1..*) CIO (1)

Table 2.7: Discrete representation of the inter-model relationships.

The presentation model can be considered as a set composed of the APM,

the CPM, and the relationships between the APM and CPM. Our strategy for

analysing Table 2.7 is based on the identification of how AMs relate to presenta-

tion models. There are two approaches to relating AMs and presentation models.

The first approach, mainly used by MB-UIDEs of the first generation, is creating

direct relationships between the two models, such as in HUMANOID, JANUS,

ITS and MECANO. The second approach, mainly used by MB-UIDEs of the sec-

ond generation, is using the TDM. In this case, there are relationships between

the AM and the TDM, and between the TDM and the presentation model, such

as in CTT, MASTERMIND, Teallach and Markopoulos’ approach.

In AME and ADEPT, for instance, there are relationships between the APM

and the TDM, but these relationships do not provide a link with the AM that is
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Figure 2.1: Graphical representation of the inter-model relationships.

directly linked with the APM. In this case, the link is more between the AM and

the TDM than between the AM and the presentation model.

2.4 Summary

MB-UIDEs seek to provide a setting within which a collection of complementary

models can be used as a description of UI functionalities. The survey in this

chapter has compared the models and tools provided by 15 MB-UIDEs. A com-

parative framework composed of the elements in Tables 2.1 and 2.2 was used to

present the user interface models of the surveyed MB-UIDEs. Table 2.1 presents

four categories of models often used to describe relevant aspects of user inter-

faces: application models, task-dialogue models, abstract presentation models and

concrete presentation models. Table 2.2 presents 15 categories of constructs used

to compose the models in Table 2.1. This framework is important for relating

the MB-UIDE and techniques developed in the work described in this thesis to

the research work on MB-UIDEs available in the literature.

The MB-UIDE technology is just now becoming stable enough to be commer-

cialised as products e.g. Systemator [4]. Indeed, this is the result of practical

experiences with this technology, e.g. ITS was used by IBM to produce the UI of

the visitor information system of EXPO’92 [144, 145], and FUSE has been used
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by Siemens to simulate an ISDN telephone.

However, there are many aspects of MB-UIDE technology that must be stud-

ied in order to increase the acceptance of MB-UIDEs at the level of other spe-

cialised UI development tools [93].

• Standard notations for UIMs. The use of a standard notation may be use-

ful for describing different UIMs using a common set of constructs. In

fact, these constructs may facilitate the comparison of UIMs and their MB-

UIDEs. For instance, the use of results achieved in one MB-UIDE by an-

other MB-UIDE may be difficult these days since they are based on several

notations, as presented in Table 2.6.

• Mapping between models. The aspects of UIs that it is relevant to model

in UIMs are well-understood. In fact, most of the surveyed MB-UIDEs can

describe a similar set of UI aspects, as observed in Table 2.4. However,

there is less agreement on how best to model the relationships between the

constructs of the models used to describe UIs, as observed in Table 2.7. The

mapping between models in the context of UML is discussed in Chapters 4

and 5.

• UIM post-editing problem. Automatically generated drafts of UI designs

may be manually refined in order to generate final designs. However, manual

refinements to generated designs are lost when developers regenerate other

draft designs. Therefore, it is an open issue how best to cope with post-

editing refinements. This is an aspect of MB-UIDEs not addressed in this

thesis.

The use of UML for modelling UI aspects described in the framework pre-

sented in this chapter is discussed in the next chapter.



Chapter 3

User Interface Modelling with

UML

This chapter presents a description of a comprehensive UI modelling case study

using UML. This case study has the purpose of identifying:

1. common UI modelling difficulties when using UML;

2. a set of UML constructs and diagrams that may be used by application

developers to design UIs.

From 1 we can identify some aspects of UIs that are not covered by the UML.

From 2 we can identify the aspects of UIs that are covered by the UML. Therefore,

the case study produces an insight into the ease with which the UML can be used

to model UIs. Moreover, it provides elements that may be used to develop a

strategy for extending UML in order to provide better support for user interface

design.

3.1 Library System Case Study

A library case study is used to identify user interface modelling problems [49, 110].

A use case diagram in Figure 3.1 shows the actors of the Library System and their

use cases. Actors are Librarians and Borrowers. The actor LibraryUser is a

generalisation of Librarian and Borrower.

Librarians use the Library System to manage the loan records, the book cata-

logue and the user records. Librarians only need to inform to the Library System

41
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Figure 3.1: The use case diagram.

when books are checked into and checked out of the system to be able to manage

loan records. Thus, the use cases CheckBookOut and CheckBookIn, associated

with �actor� Librarian, are specified. Librarians can extend expiry dates of

loans. Thus, the use case RenewLoan, associated with �actor� Librarian, is

specified. Librarians need to add, update and remove book records and library

user records from the Library System. Thus, the use cases MaintainBooks and

MaintainUsers are specified, associated with �actor� Librarian.

LibraryUsers can connect to the system, list the books borrowed by a li-

brary user, check the availability of a book, browse the book catalogue without

specifying any condition, and search for books by author, title, year or a combina-

tion of these. Thus the use cases ConnectToSystem, ListBooksBorrowedByUser,

CheckBookStatus, BrowseBooks and SearchBook, associated with �actor� Li-

braryUser, are specified. ConnectToSystem is considered as a use case since a

LibraryUser can login to the system just to check his/her password.

The use case CollectBook, associated with �actor� Borrower, is modelled

to represent a task performed by Borrowers, although it is not implemented in

the Library System. For this reason, the use case CollectBook does not have a

�communicates� stereotype attached to it.
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Some use cases have similar features in their behaviour. For instance, Browse-

Books and SearchBook are both use cases where books can be specified. Thus,

a use case called SpecifyBook has been created to model this shared behaviour.

Unidirectional associations are specified to model the �uses� relationship be-

tween BrowseBooks and SpecifyBook, and between SearchBook and Specify-

Book.

3.2 Domain Modelling

The class diagram in Figure 3.2 represents the domain model of the Library Sys-

tem. The class diagram is composed of �entity� classes that model things or

objects that exist on their own right, and �control� classes that perform system

behaviour. From a strict interpretation of the term domain, the model in Fig-

ure 3.2 could be composed of �entity� classes only. However, the specification

of �control� classes in the model is relevant to the description of other models

of the Library System presented in this thesis. The �entity� and �control�

stereotypes used throughout this chapter were introduced by Ivar Jabcobson et

al. [66] in their Object-Oriented Software Engineering (OOSE), and incorporated

by UML. The �entity� stereotype identifies classes of the domain of the Library

System and the �control� stereotype identifies classes that perform system be-

haviour. The �boundary� stereotype, although not used in Figure 3.2, is also

introduced in OOSE and used later in this chapter. The �boundary� stereotype

identifies classes that handle the interaction between system users and systems.

LibraryUser, Librarian, Borrower, Book, BookCollection, Loan, Loan-

Collection and BookCopy are the �entity� classes of the Library System. The

three first �entity� classes correspond to the LibraryUser, Librarian and

Borrower actors, respectively. The existence of an instance of Book means that

the book has an entry in the library catalogue. A BookCollection object is

a set of Book objects which can be empty. To manage its stock, the Library

System has a BookCopy class that represents copy versions of the books the library

has. It is possible, however, that some books in the library catalogue are not in

stock, e.g. when newly ordered books have not yet been delivered, or when

books are damaged. An instance of Loan is created by the process modelled

by the CheckBookOut use case and destroyed in the process modelled by the

CheckBookIn use case. A Loan object indicates essentially the day a book should
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Figure 3.2: The domain model.

be returned. A LoanCollection object is a set of Loan objects, which can be

empty.

TemporaryBook, TemporaryBookCopy, TemporaryUser, SearchQuery, Book-

CopyQuery, LoanQuery and UserQuery are responsible for supporting part of

the behaviour elicited by the use cases in Figure 3.1. A TemporaryBook ob-

ject supports the performance of the MaintainBooks functionality providing the

addBook() and updateBook() methods to store new Books and update stored

Books, respectively. In a similar way that the MaintainBooks functionality is

supported by a TemporaryBook object, a TemporaryBookCopy object supports

the performance of the MaintainCopies functionality for BookCopies, and a

TemporaryUser object supports the performance of the MaintainUsers function-

ality for LibraryUsers. A SearchQuery object supports the performance of the

SearchBook and BrowseBook functionalities. A BookCopyQuery object supports

the performance of the CheckBookStatus functionality. A LoanQuery object

supports the performance of the CheckBookOut, CheckBookIn and RenewLoan
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functionalities. Finally, a UserQuery object supports the performance of the

ConnectToSystem and ListBooksBorrowedByUser functionalities.

The case study description provides the context for the introduction of the UI

design using UML.

3.3 Behaviour Modelling

The SearchBook use case in Figure 3.1 shows that a library user can search for

books. However, library users must be logged in to perform system functions.

Using UML terminology, this means that the �actor� LibraryUser can only

use the SearchBook use case if he/she previously used the ConnectToSystem use

case. In fact, the situation is slightly more complex than that. The fact that a

borrower has used ConnectToSystem does not mean that s/he has logged into the

system since, for instance, the attempt to login could have failed. This difficulty in

interpreting Figure 3.1 can arise because use cases were conceptualised for eliciting

services (or functionalities), but not for providing control flow information related

to tasks.

UI Modelling Difficulty 1 Use cases do not provide temporal dependency fea-

tures like pre-conditions and post-conditions often associated with user require-

ments.

Temporal dependencies, however, can be specified between activities in activ-

ity diagrams. The activity diagram in Figure 3.3 shows how a user can interact

with the user interface of the Library System. There, Connect is the first ac-

tivity to be performed. The activity SelectFunction is reached if an object cu

of the LibraryUser class is successfully instantiated1 within the Connect activ-

ity. The application can be finished by having its control flow diverted to a final

state if the object cu is not instantiated. Once the SelectFunction activity

is reached, the InitiateMainUI activity responsible for instantiating and mak-

ing visible the widgets of the MainUI, i.e., qt of the class Quit, sb of the class

SearchBook and cs of the class CheckBookStatus, is performed. The invocation

of the qt.setActive(true) and sb.setActive(true) operators allows users to

interact with the qt and sb objects respectively. Thus, finishing the execution of

the InitiateMainUI, the user can finish an interaction with the application by

1The explanation of how the object cu can be instantiated is presented in Section 3.3.1.
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triggering the qt.invokeAction() operation. The user, however, may prefer to

search for a book by triggering sb.invokeActon(), which results in the execution

of the SearchBook activity.

Figure 3.3: A partial top-level activity diagram of the Library System.

The activity diagram in Figure 3.3 is a partial view of the Library System,

since it only specifies the SearchBook and CheckBookStatus activities corre-

sponding to the SearchBook and CheckBookStatus use cases. The specification

of a complete top-level activity diagram of the Library System can be achieved

by including new activities and widgets in the model for modelling the other use

cases in Figure 3.1, in the same way as the activities and widgets of the for the

SearchBook and CheckBookStatus use cases are organised in Figure 3.3. In fact,

a set of activity diagrams containing the diagram in Figure 3.3 could describe all

possible user interactions, since it could describe all the possible ways the applica-

tion control flow can navigate between activities where users may interact with the

application. For example, transitions in activity diagrams are inter-object transi-

tions, such as those transitions between interaction and domain objects that can

describe interaction behaviours. However, initial states (or pseudo-states of kind

initial) used to indicate the entry-points of activity diagrams do not identify



CHAPTER 3. USER INTERFACE MODELLING WITH UML 47

application entry-points. For example, it may be impossible to assure that the

initial state in Figure 3.3 is an entry-point of the Library System. Thus, the

process of identifying in which activity diagram interactions start is unclear.

The identification of entry points is not a problem in activity diagrams de-

fined in the scope of structural elements such as classes and packages. In fact,

initial states identify the entry points of these activity diagrams. However, the

identification of entry points is a problem in activity diagrams defined in the

scope of entire systems, whether interactive or not. Although the problem of

identifying entry points for this category of activity diagrams is easily solved by

the introduction of a new construct, such entry points cannot be identified at all

in standard UML models [99].

UI Modelling Difficulty 2 UML does not specify any construct for modelling

application entry points.

Applying activity diagrams to control user interface navigation resembles tra-

ditional Hierarchical Task Analysis (HTA) [69, 73, 28], which is widely used to

describe user task models. However, activities and tasks are not exactly the

same thing although they have similar characteristics. For instance, the name

of the ConnectToSystem use case suggests it represents a system’s functional-

ity where users can try to log into the system. The Connect activity, however,

provides a more detailed specification for the functionality represented by the

ConnectToSystem use case. The specification of the Connect activity in Fig-

ure 3.3 says that the activity is the first bit of functionality to be performed by

the system. Furthermore, the specification says that if no cu object is instan-

tiated at the end of the Connect activity then the application finishes. As a

consequence of these observations, the Connect functionality is completed before

the start of any other functionality in the system. Moreover, from what is pre-

sented in this section we can see that a combination of use cases and activities

can allow designers to use the simplicity of use case diagrams to elicit system

functionalities and top-level goals, and to use the expressiveness of activities to

refine the specification of the elicited functionalities.

3.3.1 Activity Refinement and Object Flows

Activities can be decomposed to specify more details about the behaviour of

systems. For instance, the Connect activity initially specified in Figure 3.3 can
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be decomposed into less abstract activities as presented in Figure 3.4. There, the

decomposed Connect activity shows that the cu object which was not related to

any activity as specified in Figure 3.3 can be, in fact, instantiated as a result of

performing the new UserQuery activity. Moreover, the InitiateConnectUI and

TerminateConnectUI activities in Figure 3.4 are still too abstract to explain how

widgets of the ConnectUI user interface can be instantiated, made visible, made

invisible and destroyed. Thus, the Connect activity can be further detailed by

decomposing the InitiateConnectUI activity, as presented in Figure 3.5(a), and

TerminateConnectUI, as presented in Figure 3.5(b). In fact, a similar modelling

strategy for instantiating, making visible and invisible, and destroying the widgets

of the ConnectUI user interface is implemented within the InitiateMainUI and

TerminateMainUI activities in Figure 3.3 for the widgets of the MainUI user

interface.

Returning to Figure 3.4, the uq object of class UserQuery is instantiated by

new UserQuery, which is an action state performing a create action. Action

states are activities that do not require further decomposition since they are

responsible for the execution of a action that can, for example, be the invocation

of an object operation or the raising of an event. Following the control flow in

the diagram, the cn.invokeAction() and ok.invokeAction() operations can be

triggered once the cn and ok objects are activated. Thus, the triggering of these

operations results in the cancelling or confirming of an attempt to connect to the

system, respectively. Concurrently, users can provide their login identification

and password by interacting with the pt and lt objects. These interactions are

performed during the execution of the uq.setPassword(pt.getValue()) and

uq.setLogin(lt.getValue()) action states. The confirmation of an attempt to

connect into the system results in the invocation of the uq.CheckUser() action

state, which may instantiate a valid cu object of the LibrarySystem.

Many tasks require information from the domain model as well as information

provided by the users [47]. Object flows are used for indicating which objects

are related to each activity, and if the objects are generated or used by the

related activities. Thus, object flows specify how information from the domain

can be used by activities. However, object flows do not describe the behaviour

of related objects within their associated activities. For example, in Figure 3.4

the uq object of class UserQuery instantiated as a result of the execution of the

new UserQuery action state is used by the uq.setPassword(pt.getValue()),
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Figure 3.4: A decomposition of the Connect activity of Figure 3.3.

uq.setLogin(lt.getValue()) and uq.CheckUser() action states later in the

activity diagram. These action states explain how the uq object can be used. In

fact, they specify when and how the operations of uq can be performed. Thus, a

complete decomposition of activities into action states may be required to achieve

such object behaviour description. However, the following problem is identified.

UI Modelling Difficulty 3 The complete decompositions required to explain

object behaviours tend to overload activity diagrams by increasing the number of

graphical elements composing the diagrams, and consequently making the activity

diagrams more complex.

3.3.2 Interactive Application Behaviour

Activity diagram constructs for modelling transitions are powerful since they can

be combined in several ways, producing many different compound transitions.

Simple transitions are suitable for relating activities that can be executed se-

quentially. A combination of transitions, forks and joins is suitable for re-

lating activities that can be executed in parallel. A combination of transitions

and branches is suitable for modelling the situation when only one among many

activities is executed (choice behaviour).
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(a)

(b)

Figure 3.5: The instantiation (a) and destruction (b) of ConnectUI and its com-
ponents.
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(a) (b)

(c)

Figure 3.6: The UML modelling of three common interaction application be-
haviours. An order independent behaviour is modelled in (a). A repeatable

behaviour is modelled in (b). An optional behaviour is modelled in (c).

The following behaviours are common interactive application behaviours [47].

• The order independent behaviour, as presented in Figure 3.6(a). There,

activities A and B are called selectable activities since they can be activated

in either order on demand by users triggering the a.invokeAction() and

b.invokeAction() operations when interacting with the application. Thus,

every selectable activity should be executed once during the performance of

an order independent behaviour. Further, users are responsible for choosing

the execution order of selectable activities since they are responsible for trig-

gering a.invokeAction() and b.invokeAction(). An order independent

behaviour should be composed of two or more selectable activities.

• The repeatable behaviour, as presented in Figure 3.6(b). A repeatable
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behaviour should have only one associated activity. A is activity associated

with the repeatable behaviour in Figure 3.6(b). The looping created by the

transition leaving activity A and going to activity A should not be considered

a livelock, as the library user is able to leave activity A by triggering the

a.invokeAction() operation.

• The optional behaviour, as presented in Figure 3.6(c). There, users can

execute any selectable activity any number of times, including none, by

triggering a.invokeAction() and b.invokeAction(). In this case, users

should explicitly specify when they are finishing the activity by triggering

qt.invokeAction(). Like the order independent behaviour, the optional

behaviour should be composed of one or more selectable activities.

These behaviours are common in interactive systems. For instance, both ac-

tivity diagrams in Figures 3.3 and 3.4 implement an order independent behaviour.

Despite the fact that it is possible to model these behaviours in UML, a problem

can be identified from them.

UI Modelling Difficulty 4 Activity diagram constructs can be held to be rath-

er low-level for modelling order independent, optional and repeatable behaviours,

leading to complex models.

3.4 Abstract Presentation Modelling

The need to model UI presentation arises naturally while modelling interactive

applications. Even for very simple scenarios, the modelling of part of the UI

presentation is essential. For instance, the ok, cn, ud, lt and pt objects in

Figure 3.4 are elements of a UI presentation. At this stage we do not need a

detailed model of the UI presentation, but only to know what kinds of components

compose the UI, how many components there are, and how they may be grouped.

We also need to know which abstract operations these UI elements should have.

The modelling of the ConnectUI user interface used by the Library System

to interact with users trying to log into it can be used to exemplify the use of an

abstract presentation model. Further, it can lead to an explanation of how the

ok, cn, ud, lt and pt objects in Figure 3.4 are used to compose the ConnectUI

presentation.
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PASSWORD

LOGIN

LIBRARY SYSTEM

OK CANCEL

Figure 3.7: The display of the ConnectUI.

The ConnectUI object presents to the user a connection user interface re-

questing a login name and a password. This user interface can be something like

the form shown in Figure 3.7, which is not a UML diagram. However, it would be

good to have a notation that allows designers to specify widgets and their layout

or to abstract over such details, should they choose to do so.

A description of how UML constructs can be used to model UI presentations

is presented in the next section.

3.4.1 Abstract Presentation Pattern

The abstract presentation pattern (APP) in Figure 3.8 provides a generic descrip-

tion of classes and their relationships used to represent abstract widgets. There

the APP has a top-level container, the FreeContainer, that can have many

components from the classes ActionInvoker, PrimitiveInteractionClass, and

Container. A Container defines an area in a presentation device, e.g. the

screen. The visual presentation of the Container itself and the widgets con-

tained by it are restricted to this area. A FreeContainer is a Container that

cannot be contained by any other Container, e.g., a top-level frame (or window).

In the model, Containers provide a grouping mechanism for the structural el-

ements of the UI presentation. All such structural elements are represented by

the abstract component InteractionClass. The ActionInvoker sub-category

of InteractionClass represents those components that can receive information

from users in the form of events, such as buttons. The PrimitiveInteraction-

Class sub-category of InteractionClass can be further specialised into Dis-

player, Inputter and Editor.

• The Displayer category represents those components that can present in-

formation to users, such as labels.
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Figure 3.8: The abstract presentation pattern.

• The Inputter category represents those components that can receive infor-

mation from users, such as text fields.

• The Editor category represents those components that have the properties

of both Displayers and Inputters, such as combo boxes and selectable

lists.

Five operations are defined in the APP: setVisible(), setActive(), get-

Data(), setData() and invokeAction(). These are the abstract operations of

UI presentation elements that should be implemented in some way by widgets.

• setVisible() has a boolean parameter. Invoked with a true value the

method makes the InteractionClass visible for users. Invoked with a

false value the method makes the InteractionClass invisible for users.

• setActive() has a boolean parameter. Invoked with a true value the

method enables the InteractionClass to interact with users by updat-

ing its visual appearance, if it has one, and updating its state, if there is

any. Invoked with a false value, the state of the InteractionClass is

preserved unchanged from the time the method is invoked, preventing the

InteractionClass from interacting with users. The visual appearance of

the InteractionClass, if there is any, may change to notify users about

its disabled status. This method has no effect if the InteractionClass is

not visible.
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• setValue() updates the state of the PrimitiveInteractionClass. As a

result, the visual appearance of the PrimitiveInteractionClass is up-

dated according to the updated state, if it depends on the state.

• getValue() returns the state of the PrimitiveInteractionClass that

could be updated, collecting information provided by a user during an in-

teraction.

• invokeAction() puts the ActionInvoker in a state waiting for a specific

user event assigned to the ActionInvoker. The method finishes when the

ActionInvoker senses the event during an interaction with the user.

3.4.2 Using the Abstract Presentation Pattern

The APP is the framework used to describe conceptual user interface presenta-

tions. A class diagram extending the APP provides a conceptual description of a

user interface presentation. Thus, the ConnectUI can be conceptually described

by the abstract presentation model shown in Figure 3.9. There the APP is the

top of the hierarchy of classes. The other classes are specialisations of the APP’s

classes. For example, ConnectUI is a FreeContainer, Options is a Container

and OK is an ActionInvoker. The specification of which InteractionClass

is contained by each Container is explicitly specified by the compositions be-

tween the subclasses of the APP in Figure 3.9. Thus, it can be observed that

ConnectUI contains Options, UserDetailsCN and Feedback, and that Options

contains Cancel and OK. Although the compositions between interaction classes

in Figure 3.9 are correct, it is difficult to see that they are actually representing

the containment among interaction classes. Thus, it is difficult to group interac-

tion classes in UML class diagrams, one of the essential tasks for modelling UI

presentations.

UI Modelling Difficulty 5 The notion of containment among classes is not

represented graphically in UML class diagrams.

The selection of interaction classes is another essential task for modelling UI

presentations. However, it is usually difficult to perform this task due to the large

number of interaction classes with different functionalities provided by graphical

environments. In a UML-based environment, the selection of interaction classes
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Figure 3.9: The abstract presentation model of the ConnectUI.

tends to be even more complex than in UI design environments because of an

additional difficulty:

UI Modelling Difficulty 6 The UML class diagram has a single notation for

class, which does not provide a visual distinction between (1) interaction and non-

interaction classes, and (2) interaction classes playing different abstract roles in

a user interface.

Unlike in the modelling of the domain, the use of class diagrams for presen-

tation modelling is not a popular choice. Indeed, it is difficult to realise that the

class diagram in Figure 3.9 represents the presentation of a user interface, mainly

due to modelling difficulties 5 and 6. However, this kind of abstract UI presenta-

tion is conceptually equivalent to the abstract presentation in MB-UIDEs [15, 48].

Further, the classes of the APP specify methods similar to those presented by

Holub [58].
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3.5 Concrete Presentation Modelling

Abstract presentation models do not describe which components compose each

�boundary� class. They also do not provide any description of layout. There-

fore, concrete presentation models are sometimes required during the UI design

process.

From a concrete presentation point of view, the abstract presentation model

presented in Figure 3.9 is the design pattern specification for the concrete pre-

sentation model of ConnectUI. In fact, the design pattern approach, as presented

in Gamma et al. [42] and incorporated by UML, provides a way to describe how

different environments can be accommodated within the diagrams that use ele-

ments of the abstract presentation model, e.g., the activity diagram in Figure 3.4.

Indeed, concrete presentation models are environment-dependent since they are

described in terms of environment classes and components. An environment in

our terminology can be classes of an object-oriented programming language, com-

ponents or both. We will use the Swing components of Java [45] to illustrate how

UI classes can be related to environment classes. The �cpm� stereotype is used

to identify these environment classes.

Figure 3.10 shows the concrete presentation model using the ConnectUI ab-

stract presentation model and some Java Swing components. Abstract presenta-

tion models have been called abstract presentation frameworks (APFs) when used

as design patterns. In the ConnectUI concrete presentation model, the ConnectUI

APF is represented using the collaboration symbol of UML. Thus, any name in

the ConnectUI APF can be used to specify a framework role. Then, the role can

be associated with any other element of the same type. For example, an APF

class can be associated with a widget and an operation of an APF class can be

associated with a widget’s operation.

In Figure 3.10, the ConnectUI APF is specified with seven different roles:

UserDetailsCN, Options, FreeContainer, PasswordText, LoginText, Action-

Invoker and Displayer. The use of the APF in concrete presentation models

provides a clear description of how abstract presentation elements are replaced

by concrete presentation elements, respecting the relationships of the abstract

presentation model. In fact, the UserDetailsCN extending the �cpm�JPanel

is bound to the UserDetailsCN, the Options extending the �cpm�JPanel is

bound to the Options, the �cpm� JFrame is bound to the FreeContainer, the
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�cpm� JPasswordText is bound to the PasswordText, the �cpm� JText-

Field is bound to the LoginText, the �cpm� JTextButton is bound to the

ActionInvoker, and the �cpm� JLabel is bound to the Displayer.

Figure 3.10: The concrete presentation model.

The concrete presentation model, as presented in Figure 3.10, provides what

is required to model our case study. Additionally, the concrete presentation

model shows how presentation layout can be specified. Every class acting as a

Container should have an instance of LayoutImplementation aggregated to it.

Several categories of layout classes can be added to the concrete presentation

model by adding them as subclasses of LayoutImplementation. Thus, the UI

presentation layout is specified by compositions connecting a layout class to each

Container in the concrete presentation model. The modelling of the UI presenta-

tion layout, however, is not entirely explained in Figure 3.10. Indeed, the concrete

presentation model relies on the semantics of the environment. In the case of the

concrete presentation model of Figure 3.10, Java provides algorithms embedded

in methods that work as templates to model layouts for the presentation model

of the UI.

Concrete presentation models based on the APFs do not cause large parts of

the design to be environment-dependent, providing models with a flexible and

well-established relationship between the abstract presentation elements and the

component classes. For example, the binding of Container classes to �cpm�
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classes is specified through the Options and UserDetailsCN classes rather than

through the Container class itself. The reason for this is that Options and

UserDetailsCN can have different layouts. In fact, the APF role has provided

a powerful mechanism for diagrammatically specifying mapping rules between

abstract and concrete presentation models.

Concrete presentation models are not discussed any further in this thesis.

Additionally, it is assumed that the strategy of using design patterns and frame-

works to map abstract presentation elements into concrete presentation elements

can be used for producing concrete presentation models from any of the abstract

presentation models presented later in this thesis.

3.6 An Integrated View of UI Behaviour and

Structure

The necessity of reviewing the behavioural and structural aspects of user inter-

faces in an integrated way provides an opportunity to exploit the use of sequence

diagrams for modelling UIs.

Figure 3.11 shows a sequence diagram for the ConnectToSystem use case.

According to the use case diagram in Figure 3.1, ConnectToSystem is associated

with the �actor� LibraryUser. Thus, a LibraryUser actor initiates this in-

teraction, sending a message to an instance sys of LibrarySystem, which acts as

the whole Library System.

Practically speaking, the request connection message can be, for example,

a double click on the Library System’s icon in a Windows environment. The sys

object creates the ui1 object of class ConnectUI. The creation of an object is

modelled by one object sending a message �create� to the new object. The

objects lt of class LoginText, pt of class PasswordText and ok of class OK are

instantiated before the execution of the setVisible() method by the sys object.

In fact, the classes of these objects compose the ConnectUI abstract presentation

model, as described in Figure 3.9. The uq object of class UserQuery is directly

instantiated by the sys object.

Interacting with the UI, the user updates the state of the lt object which sends

the setLogin(getData()) message to the uq object. Further, the user updates

the state of the pt object which sends the setPassword(getData()) message to

the uq object. After providing his/her login and password by interacting with
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Figure 3.11: A sequence diagram for the ConnectToSystem use case.

the lt and pt objects, the user triggers the ok object which notifies this fact

to the sys object by sending an invokeAction() message to it. Thus, the sys

object sends a checkUser() message to the uq object. As a result of receiving

the checkUser() message, the cu object of LibraryUser is instantiated, if there

is a library user in the system’s database with the provided login and password.

In this case, at the end of the execution of the checkUser() method, the sys

object makes invisible and destroys the ui1 object, and creates the ui2 object of

class MainUI .

The sequence of actions in Figure 3.11 is a possible sequence of actions in

Figures 3.3 and 3.4. In fact, sequence diagrams are snapshots of a possible inter-

action scenario, and consequently their specification is a subset of the specification

provided by activity diagrams. For example, the sequence diagram presented is

restricted to the scenario where the user successfully logs into the system pro-

viding the login before the password. This interaction scenario, however, is one

of the many possible scenarios modelled by the Connect activity in Figure 3.4.
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Moreover, the sequence diagram does not describe when the lt, pt and ok ob-

jects are ready to interact with the users as in Figure 3.4. Indeed, the sequence

diagram just makes explicit that its sequence of actions is a possible one in the

Library System.

UI Modelling Difficulty 7 Sequence diagrams present possible sequences of ac-

tions but without specifying the temporal dependencies between the actions.

Actions in sequence diagrams, as presented above, and abstract presentation

models, as presented in Figure 3.9, are connected by objects of sequence dia-

grams. Actions in activity diagrams, as presented in Section 3.3, and abstract

presentation models are connected by object flows of activity diagrams. Thus,

it may be difficult to construct integrated behavioural and structural models of

UIs, but it is possible.

3.7 Event Modelling

As described in Booch [18], events are “things that happen”. Indeed, many

things happen when we are using an application: keys and buttons are pressed,

the mouse is moved, messages are sent to the network, etc. We call these things

that happen events. In an object-oriented user interface, inputs and outputs

are streams of events [46]. Figure 3.12 shows a general event model where user

actions and synchronisation events are sent to an object-oriented user interface

as input events. The application, through its user interface, reacts to these input

events by generating output events that are presented as visual feedback. Visual

feedback can be normal feedback or abnormal feedback. Abnormal visual feedback,

such as error messages, is that associated with difficulties encountered during the

enactment of a user’s activity.

abnormal feedback

normal feedback

user interface
object-oriented

user actions

synchronisation
events

Figure 3.12: The event model.

Abnormal visual feedback can happen with exceptions, and synchronisation

events can be generated from system actions. Although involving a significant
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amount of effort, the modelling of exceptions and synchronisation events using

standard UML is a straightforward task. This is illustrated through the modelling

of exceptions using UML. Thus, exceptions, as defined by Meyer in [89], are

run-time events “that may cause a routine call to fail”. Moreover, a routine

call fails when it terminates its execution in a state not satisfying the routine’s

contract. These definitions are complex since they require further definitions

such as the routine’s contract definition, which is itself complex. Despite the

formal definition, exceptions here are more akin to those used in object-oriented

programming languages such as Java [45] and C++ [132].

In terms of user interfaces, the important aspect of exceptions is that some-

times they are not entirely solved by exception handlers, leading the application

to provide visual feedback to users that something is going wrong (or, at least,

not going as expected). In fact, once activated, the exception handlers try to

solve the problems identified by the exceptions without notifying the users. Un-

fortunately, exception handlers do not solve every kind of problem. Therefore,

the user should be notified of those unsolved exceptions or involved in choosing

a solution to the problem.

The problem now is how to model the aspects of the user interface that are

related to exception handling.

Structural Aspects of the UI of Exception Handlers

In the application model there are many situations where exceptions and excep-

tion handlers can be used. For example, the designer could choose to display

an error message somewhere in the ConnectUI form due to an exception raised

during the execution of a database query.

In UML notation, exceptions are modelled as a stereotyped �send� depen-

dency from a class operation to an exception handler class [18]. Figure 3.13 shows

a �send� dependency that links the operation checkUser() in the UserQuery

class with the �exception� DatabaseFail class. Moreover, Booch et al. [18]

proposes a hierarchy of exception handlers identified by the �exception� stereo-

type. Usually, uncaught exceptions are sent to higher-level exception handlers

in the hierarchy until they are caught by an exception handler or until they

reach the top-level handler of the hierarchy. If some exception is not handled

by �exception� DatabaseFail in Figure 3.13, then it must be handled by

�exception� Exception.
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Figure 3.13: The relationship between a UI and an exception handler.

Exceptions can be generated in any class, since classes generally have methods

(that are routines), which have contracts that can be broken. Despite the fact

that exception handlers can act as �control� classes, they are not modelled

exactly as �control� classes. Instead, they can catch exceptions (events) from

classes of any category. In this case, �exception� classes are introduced. The

operations of these classes can be called from any method of any class, even from

methods of other �exception� classes.

One of the roles of �exception� classes is to act as �control� classes to

�boundary� classes when exceptions happen. However, there are situations

where �exception� classes cannot control a �boundary� class. For instance,

if the exception handler requires some decision such as quit or retry from the

user, and the original �boundary� object does not have components to deal

with such an interaction, then a new �boundary� object should be created to

provide the communication between exception handlers and users.

In terms of the user interface, however, it is important to know how �bound-

ary� classes are related to this hierarchy of exceptions. Objects of �exception�

classes can act as objects of �control� classes. Therefore, �boundary� classes

can be aggregated to �exception� classes. In Figure 3.13, the �exception�

DatabaseFail acts as a �control� class, handling the �boundary� Database-

FailUI class. The �handles� stereotype is used to identify the relationship

between �boundary� classes and their controllers.

Behavioural Aspects of the UI of Exception Handlers

Exceptions also affect the activity diagram of the user interface since they can

modify the flow of control from activity to activity during a user interaction. For

instance, the uq.checkUser() action state in Figure 3.4 can raise a database

exception [23] since a query is performed there. Indeed, the cu is a persistent
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object.

Figure 3.14: Exceptions in activity diagrams.

The modelling of possible modifications to the flow of control of the activ-

ity diagram is a straightforward task since UML’s activity diagrams provide a

branching notation. The outgoing transitions can be re-routed to different ac-

tivities, depending on boolean guard expressions. Figure 3.14 shows the activity

diagram of Figure 3.4 extended to model exception handling. The branch after

the action state uq.checkUser() re-routes the flow of control to the transition

with an [exists non-solvedODMGExceptions] guard when an ODMGExcep-

tion is not solved by its handler. Otherwise, the flow of control follows the usual

route identified by the unguarded transition.

3.8 Summary

This chapter discussed user interface modelling using a Library System case study.

The application system was entirely modelled using the Unified Modeling Lan-

guage, which has proved to be capable of modelling user interfaces. In fact, UML
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has a rich set of constructs that is comprehensive enough to model behavioural

and structural aspects of form-based user interfaces. However, such UI modelling

may not be as straightforward a process as expected and desired, since some

modelling difficulties were identified from the case study.

Concerning the behavioral aspects of user interfaces, the case study has dem-

onstrated the difficulty of:

• modelling tasks using use cases, as suggested by UI Modelling Difficulty 1;

• identifying application entry-points, as suggested by UI Modelling Diffi-

culty 2;

• specifying actions that instances of interaction classes can perform when

collaborating with other interaction classes and with domain classes, as

suggested by UI Modelling Difficulty 3;

• specifying some categories of interactive behaviours, e.g., optional and or-

der independent behaviours, using activity diagrams, as suggested by UI

Modelling Difficulty 4;

• specifying temporal dependencies using sequence diagrams, as suggested by

UI Modelling Difficulty 7.

Concerning the structural aspects of user interfaces, the case study has demon-

strated the difficulty of:

• identifying containment among interaction classes, as suggested by UI Mod-

elling Difficulty 5;

• identifying abstract roles that interaction classes can play in user interfaces,

e.g., displaying information to users, receiving information from users, trig-

gering actions, etc., as suggested by UI Modelling Difficulty 6.

Additionally, the case study provides an illustrative example of the use of

many UML constructs, in terms of diagrams, for modelling the user interface.

The summary of the UML diagrams used is presented in Table 3.1, and the

constructs are those used in the diagrams presented throughout the chapter.

There are also some lessons that can be learned from the modelling of the

Library System:



CHAPTER 3. USER INTERFACE MODELLING WITH UML 66

User Interface Aspects UML Resource

Requirements Model use case diagram

Domain Model class diagram

Task Model use case diagram + activity diagram
sequence (interaction) diagram

Abstract Presentation Model class diagram

Concrete Presentation Model class diagram with design patterns

Table 3.1: Summary of the UML diagrams used to model many aspects of UIs.

• The design of an user interface is a complex process since it requires com-

plete comprehension of the elements that compose the user interface. In-

deed, UIs in general have many elements that are not obviously required

from the beginning of the design.

• The elements of the user interface have many dependencies among them.

Therefore, the design process should consider UI modelling as integral.

There is room for further discussion of how to model user interfaces using

UML. Indeed, there will be other ways of representing user interfaces using

UML [97]. The study in this chapter presents some alternatives which seem

to comprehend the more natural combinations of UML constructs and diagrams

to model user interfaces, as identified in [58, 64].

In the next chapter an approach is presented based on the use of the diagrams

identified in Table 3.1 to improve support provided by UML for modelling UIs.

The expected improvement is to address the specification of UI aspects that are

difficult to model using the standard UML, as suggested by the UI modelling

difficulties presented in this chapter.



Chapter 4

UMLi Notation and Metamodel

The Library System case study has demonstrated that aspects of UIs often spec-

ified in MB-UIDEs, as described in Chapter 2, can be modelled using standard

UML constructs. The case study has also demonstrated that there are inconve-

niences in the use of UML for modelling UIs, as summarised by the UI modelling

difficulties in Chapter 3. UMLi aims to show that the set of diagrams in Fig-

ure 4.1 can be used to build UI models addressing the identified UI modelling

difficulties. UMLi , however, does not aim specifically to develop new user inter-

face modelling constructs, but to adapt or reuse models and techniques proposed

for use in MB-UIDEs in the context of UML (Principle 1 in Section 1.5.1). Thus,

observations resulting from the survey of MB-UIDE proposals in Chapter 2 can

be used to explain how the UMLi UI models are used together to provide a de-

scription of user interfaces. For instance, the diagram in Figure 4.1 shows UMLi

diagrams representing aspects of user interfaces. There, the arrows represent de-

pendencies between properties of UMLi diagrams. Thus, the arrow (c) shows a

dependence between properties of class diagrams and properties of user interface

diagrams. Moreover, the arrow (a) shows an inter-dependence between proper-

ties of use case diagrams, activity diagrams and class diagrams. Dependencies

similar to those represented by the arrows in Figure 4.1 can be observed in the

MB-UIDEs proposals in Chapter 2. For example, the arrows (a) and (b) in Fig-

ure 4.1 can represent the dependencies between models created by state objects

in Teallach [47]. In fact, state objects in Teallach are either domain objects or

interaction objects that belong to a specific task. Therefore, the specification of

which objects belong to each task creates the dependencies (a) and (b).

The comparison of the UMLi models in Figure 4.1 with the selection of UML

67
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Figure 4.1: UMLi user interface models. There, the enclosing rounded box repre-
sents the complete specification of a user interface. The internal boxes represent
sets of UI properties distinct from the other boxes. The arrows connecting the
boxes represent dependencies between properties of distinct boxes. For example,
properties of the task model depend on properties of the functional model.

diagrams in Table 3.1 shows that the user interface diagram replaces the class

diagram for abstract presentation modelling, and that sequence diagrams are not

considered for task modelling. A description of the user interface diagram nota-

tion explaining how it addresses some of the identified UI modelling difficulties is

presented in Section 4.1. Concerning sequence diagrams, they are not excluded

from UMLi , since UMLi is a conservative extension of UML. However, as pre-

sented in Section 4.2, a combination of use case diagrams and activity diagrams is

used for task modelling in UMLi . Section 4.2 also presents the UMLi constructs

for activity diagrams, which have been introduced to address the UI modelling

difficulties not covered by user interface diagrams. A description of the UML

metamodel features required for describing the UMLi metamodel is presented in

Section 4.3. The UMLi metamodel is introduced in Section 4.4. A proposal for

a UMLi method is presented in Section 4.5. A summary of how UMLi addresses

the UI modelling difficulties from Chapter 3 is presented in Section 4.6.

4.1 User Interface Diagram Modelling

This section introduces the UMLi user interface diagram, a specialised class di-

agram used for the conceptual modelling of user interface presentations. The

UI diagram provides a visual representation for containment between interaction



CHAPTER 4. UMLi NOTATION AND METAMODEL 69

Figure 4.2: The ConnectUI presentation modelled using the UMLi user interface
diagram.

classes, addressing UI Modelling Difficulty 5. The UI diagram provides distinct

visual representations for abstract roles that interaction classes can play in UI

presentations, addressing UI Modelling Difficulty 6.

4.1.1 User Interface Diagram Notation

Recalling the Library System case study, the ConnectUI abstract presentation

initially modelled as a class diagram, as in Figure 3.9, can be modelled as a user

interface diagram, as in Figure 4.2. The two ConnectUI abstract presentation

models are equivalent in terms of UI presentation specification. Moreover, it can

be observed that, for example, the ConnectUI, UserDetailsCN and LoginText

classes have distinct graphical representations in Figure 4.2, although they have

the same graphical representation in Figure 3.9. Indeed, they have the same

representation in Figure 3.9 since they are classes. However, they are also in-

teraction classes, a category of classes responsible for an average of 50% of the

deliverable code of interactive systems [95]. Therefore, considering the relevance

of the interaction classes and the difficulty of visualising their abstract roles in

class diagrams (UI Modelling Difficulty 6), UMLi proposes the following six con-

structs for representing interaction classes.

• FreeContainers, , are rendered as dashed cubes. They are top-level

interaction classes that cannot be contained by any other interaction class,

e.g. top-level windows. They are also called presentation units, since the

interaction classes in a FreeContainer are always presented at the same

time. An instance of an interaction class can be visible and disabled, which
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means that the user can see the object but cannot interact with it.

• Containers, , are rendered as dashed cylinders. They can group inter-

action classes that are not FreeContainers. Containers provide a group-

ing mechanism for the designing of UI presentations, addressing UI Mod-

elling Difficulty 5. Thus, the Login subclass of Displayer contained by

the UserDetailsCN subclass of Container, as indicated by the composi-

tion between them in Figure 3.9, is represented by the placement of the

Login element inside the UserDetailsCN Container in Figure 4.2.

• Inputters, ∇, are rendered as downward triangles. They are responsible

for receiving information from users.

• Displayers, 4, are rendered as upward triangles. They are responsible for

sending visual information to users.

• Editors, �, are rendered as diamonds. They are interaction classes that

are simultaneously Inputters and Displayers.

• ActionInvokers, , are rendered as a pair of semi-overlapped triangles

pointing to the right. They are responsible for receiving information from

users in the form of events.

Graphically, Containers, Inputters, Displayers, Editors and Action-

Invokers must be placed, directly or indirectly, into a FreeContainer. Ad-

ditionally, the overlapping of the borders of interaction objects is not allowed. In

this case, the “internal” lines of Containers and FreeContainers, in terms of

their two-dimensional representations, are ignored.

The approach of specifying concrete presentation models from user interface

models can be based on the use of UML frameworks to create patterns from user

interface diagrams in the same way that UML frameworks are used to create pat-

terns from class diagrams representing abstract presentation models, as presented

in Section 3.5. In fact, the user interface diagram is a specialised class diagram

preserving the same facilities available for class diagrams.

4.1.2 Using the User Interface Diagram

The elicitation of objects can take place early during requirements analysis using

scenarios [120]. In UMLi , particularly, use cases can be used for the elicitation
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of interaction objects. Indeed, scenarios can be used for the elicitation of actions

by scanning scenario descriptions looking for verbs [136]. Thus, actions may be

classified as Inputters, Displayers, Editors or ActionInvokers. For example,

Figure 4.3 shows a scenario for the SearchBook use case in Figure 3.1. Three

interaction classes can be identified in the scenario: ∇providing that receives

a book’s title, author and year information; ∇specify that specifies some query

details; and 4displays that presents the results of the query. Therefore, UMLi can

start the elicitation of interaction classes, using this association of actions with

interaction classes, during requirements analysis. These action associations are

often possible since the interaction classes of UMLi are abstract ones. Therefore,

user interface diagrams can initially be composed of interaction classes elicited

from scenarios, as in Figure 4.4.

John is looking for a book. He can check if such book is in the library
catalogue ∇providing its title, authors, year, or a combination of
this information. Additionally, John can ∇specify if he wants an
exact or an approximate match, and if the search should be over
the entire catalogue or the result of the previous query. Once the
query has been submitted, the system 4displays the details of the
matching books, if any.

Figure 4.3: A scenario for the SearchBook use case.

Figure 4.4: A preliminary version of the SearchUI presentation modelled using
the UMLi user interface diagram.

Figure 4.5 presents a refined version of the SearchUI presentation initially

modelled as in Figure 4.4. Indeed, the elicited interaction classes in Figure 4.4

were decomposed into other interaction classes towards a more atomic descrip-

tion of the information provided by users. For example, ProvideBookDetails

was decomposed into BookAuthor I, BookTitle I and BookYear I. The grouping



CHAPTER 4. UMLi NOTATION AND METAMODEL 72

of interaction classes logically organises the new atomic interaction classes result-

ing from the decomposition of interaction classes. For example, Database and

PreviousQuery derived from SpecifyQueryDetails were grouped into Query-

Domain. The refinement of UI presentations can be performed in an incremental

way to support and be supported by the activity diagrams. Moreover, new inter-

action classes, especially ActionInvokers, are modelled in order to support the

system control flow. For instance, OK and Cancel in Figure 4.5 were modelled to

allow users to provide control flow information to the Library System.

Recalling the benefits of using the user interface diagram notation, it would be

a complex task to realise that the Year class is contained by the BookDetailsSB

class, that is contained in the QueryForm class, that is contained in the Search-

BookUI class, when using class diagrams to model the SearchUI presentation.

Figure 4.5: A refined version of the SearchUI presentation modelled using the
UMLi user interface diagram.

4.2 Activity Diagram Modelling

Table 3.1 shows activity diagrams and sequence diagrams as alternative nota-

tions for task modelling using UML. Both diagrams suffer from most of the UI

modelling difficulties relating to the specification of behavioural aspects of UIs

identified in Chapter 3. However, the inappropriateness of sequence diagrams for

modelling temporal dependencies between actions (UI Modelling Difficulty 7) has

been the crucial factor in selecting activity diagrams as the notation for modelling

UI behaviour in UMLi .
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A more detailed analysis concerning the specification of temporal dependen-

cies between actions in sequence diagrams may be required to confirm the selec-

tion of activity diagrams. In the sequence diagram in Figure 3.11, the fact that the

setLogin(getData()) action is performed before the setPassword(getData())

action does not mean that they cannot be performed in a different order. The

activity diagram in Figure 3.4 specifies that these two actions can be performed in

any order and many times before the Connect activity is confirmed or cancelled

(optional behaviour). Thus, these actions can be performed in the way specified

in Figure 3.11. However, they may also be performed in an inverse order, they

may be partially performed (if the Connect activity is confirmed or cancelled

after the execution of one of the actions), or they may not be performed at all

(if the Connect activity is confirmed or cancelled before the execution of the ac-

tions). Nevertheless, the same difficulty in modelling an optional behaviour also

happens when modelling sequential behaviours since, for example, Figure 3.11 is

not specifying that setLogin(getData()) and setPassword(getData()) must

be performed in this specific order.

A modification to the UML specification stating that actions in sequence

diagrams can only be performed in the order that they are specified would be a

partial solution for specifying temporal dependencies using sequence diagrams.

However, this solution would violate Principle 1 from Section 1.5.1, which requires

that UMLi be a conservative extension of UML.

UMLi is concerned about the specification of temporal dependencies, since

this is one of the UI features modelled by MB-UIDEs in Chapter 2. Thus, in the

context of UMLi , UI Modelling Problem 7 is solved by specifying a combination

of use case diagrams and activity diagrams as its notation for task modelling. The

UMLi approach for the other behavioral UI modelling difficulties are discussed

in the rest of this section.

4.2.1 From Use Cases to Activities: A Task Modelling

Approach

Concerning the difficulty of identifying application entry-points (UI Modelling

Difficulty 2), UMLi introduces the InitialInteraction construct used for identifying

entry points for interactive applications in activity diagrams. This construct is

rendered as a solid square,
�

, and is used like the UML Initial PseudoState [99],
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except that it cannot be used within states. In an interactive system, a top level

activity diagram must contain at least one InitialInteractionState. Figure 4.6 shows

a top level activity diagram for the Library System using a InitialInteraction. This

is an entry-point of the Library System.

Figure 4.6: Modelling an activity diagram from use cases using UMLi .

Stereotyped �communicates� associations between use cases and actors,

such as the association between the SearchBook use case and the LibraryUser

actor in Figure 3.1, indicate that use cases can communicate directly with users

when actors are representing users. Furthermore, associations between activ-

ities and instances of interaction classes, such as the association between the

SearchBook activity and the SearchBookUI FreeContainer in Figure 4.6, indicate

that these activities can communicate directly with users. Therefore, relation-

ships between activities and use cases communicating with users could be created.

In fact, use cases interacting with users and activities associated with instance of

interaction classes may be specifying the same functionality at different levels of

abstraction. In UMLi this relationship is graphically described by a realisation

relationship. The diagram in Figure 4.61 makes clear which activity realises which

use case. For instance, the SearchBook activity realises the SearchBook use case

modelled in Figure 3.1. The implementation of realisations between use cases

and activities is the UMLi approach to overcoming UI modelling Difficulty 1.

1This diagram is using the UMLi activity diagram notation explained throughout in this
chapter.
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For example, Figure 4.6 explicitly specifies that the ConnectToSystem use case

in Figure 3.1 must be successfully performed by way of the Connect activity be-

fore the SearchBook use case can be performed by performing the SearchBook

activity. In this way, the imprecise, but nevertheless useful, nature of use cases

is preserved, thus abiding by Principle 1.

In terms of UI presentation design, interaction classes elicited in scenarios are

non-container interaction classes that must be contained by FreeContainers (see

the APP in Figure 3.8). Further, FreeContainers should be associated with ac-

tivities, in the same way as the SearchBookUI FreeContainer is associated with

the SearchBook activity in Figure 4.6, in order to be used by interactive sys-

tems. Therefore, interaction classes elicited from scenarios are initially contained

by FreeContainers that are related to top-level activities through the use of a

�presents� object flow, as described in Section 4.2.3. In that way, UI elements

can be imported from scenarios to activity diagrams.

4.2.2 Selection States

Concerning the difficulty of modelling common interactive behaviours (UI Mod-

elling Difficulty 4), UMLi introduces a simplified notation for order independent,

repeatable and optional behaviours. The notation used for modelling an order

independent behaviour is presented in Figure 4.7(a). There an OrderIndepen-

dentState is rendered as a circle overlying a plus signal, ⊕, connected to the

activities A and B by ReturnTransitions, rendered as solid lines with a single ar-

row at the SelectionState end and a double arrow at the selectable activity end.

The double arrow end of ReturnTransitions identifies the selectable activities of

the SelectionState. The distinction between the SelectionState and its selectable

activities provided by the arrows in ReturnTransitions is required when Selection-

States are also selectable activities. Furthermore, a ReturnTransition is equivalent

to a pair of statechart Transitions, one Transition connecting the SelectionState to

the selectable activity, and one non-guarded Transition connecting the selectable

activity to the SelectionState.

The notations for modelling repeatable and optional behaviours are similar,

in terms of structure, to the order independent behaviour. The main difference

between the notations for SelectionStates is in the symbols used for their selectors.
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(a) (b) (c)

Figure 4.7: The UMLi modelling of an OrderIndependenState in (a), a Repeata-
bleState in (b), and an OptionalState in (c). These notations can be considered
as macro-notations modelling the behaviours presented in Figures 3.6(a), 3.6(b)
and 3.6(c), respectively.

The RepeatableState2 is rendered as a circle overlaying a times signal, ⊗. The

OptionalState is rendered as a circle overlaying a minus signal, 	. The Repeata-

bleState requires a �confirms� interaction object flow, as shown in Figure 4.7(b),

allowing users to interrupt the execution of A proceeding to the following activity.

The OptionalState also requires a �confirms� interaction object flow, as shown

in Figure 4.7, allowing users to finish the selection of selectable activities. The

meaning and use of the �confirms� interaction object flow is discussed in the

following section.

4.2.3 Interaction Object Flows

Concerning the necessity of a complete decomposition of activities into action

states to achieve a description of object behaviours (UI Modelling Difficulty 3),

there are common functionalities related to interaction objects that do not need

to be modelled in detail to be understood. This fact is exploited by UMLi

through the provision of five specialised stereotypes for object flows indicating

the specification of such common functionalities. Object flows are informally

called interaction object flows when they are related to interaction classes and

have one of the stereotypes presented as follows.

• An �interacts� interaction object flow relates an interaction object to an

ActionState or to a PseudoState3. If the associated state is an ActionState,

2UMLi considers a RepeatableState as a “selection” state since users might have the possi-
bility of either confirming or cancelling the repeatable state iteration.

3PseudoStates are discussed in Section 4.3.2.
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Figure 4.8: The Connect activity.

the object flow indicates that the state is responsible for an interaction be-

tween a user and the application. Thus, the ActionState can be an interac-

tion where the user is invoking an object operation or visualising the result

of an object operation. The ActionStates in the GetUserDetails activity in

Figure 4.8 are examples of Inputters assigning values to some attributes of

the UserQuery object from the domain. The 4 Feedback in Figure 4.8 is

an example of a Displayer used for visualising the “Invalid Information”

message, if required. As can be observed in Figure 4.8, two abstract oper-

ations specified in the APP (Figure 3.8) have been used along with these

interaction objects. The setValue() operation is used by Displayers and

Editors for setting values to be presented to the users. The getValue()

operation is used by Inputters and Editors for passing values obtained from

users to domain objects. If the associated state is a PseudoState, the object

flow indicates the enactment of the interaction object for interaction. If the

interaction object is an instance of Container, such as the object indicated

by the UserDetailsCN in Figure 4.8, then its contained objects are also

activated for interaction.

• A �presents� interaction object flow relates an instance of FreeContainer

to an activity. It specifies that the instance of FreeContainer should be

visible while the activity is active and that the instance of FreeContainer

should be invisible when the control flow leaves the activity. This behaviour

of the ConnectUI FreeContainer is represented by the InitiateConnectUI



CHAPTER 4. UMLi NOTATION AND METAMODEL 78

and TerminateConnectUI activities in Figure 3.4 that are replaced by the

�presents� interaction object flow in Figure 4.8. Moreover, invocations of

the abstract setVisible() operation of the FreeContainer in Figures 3.5(a)

and 3.5(b) are no longer required in UMLi since they are implicitly specified

by the �presents� interaction object flow in Figure 4.8. Therefore, the

�presents� interaction object flow specifies that the ConnectUI FreeCon-

tainer and its contents are visible while the Connect activity is active.

• A �confirms� interaction object flow relates an instance of ActionInvoker

to a SelectionState. It specifies that the SelectionState has finished normally.

In Figure 4.8, an event associated with the OK is responsible for finishing

the execution of its related SelectionState normally. An OptionalState and a

RepeatableState must have one �confirms� interaction object flow directly

related to it, or indirectly related to it as in the case that the SelectionState

is a selectable activity of another SelectionlState.

• A �cancels� interaction object flow relates an instance of ActionInvoker

to any composite activity or SelectionState. It specifies that the activity or

SelectionState has not finished normally. The flow of control should be re-

routed to a previous state. The Cancel object in Figure 4.8 is responsible

for allowing the user to cancel the Connect activity.

• An �activate� interaction object flow relates an instance of ActionInvoker

to an activity. In that way, the associated activity becomes a triggered

activity, that, after being activated, waits for the raising of the event asso-

ciated with the ActionInvoker before starting.

4.2.4 The UMLi SearchBook Activity Diagram

In the same way that the user interface diagram has simplified the appearance

of UI presentations, the facilities of UMLi have also simplified the appearance

of activity diagrams, as presented in Figure 4.8. These UMLi simplifications

enable a discussion about the modelling of an activity diagram for the Search-

Book functionality.

For the SearchBookUI in Figure 4.5, for example, the InitiateSearchUI

and TerminateSearchUI activities would be visually more complex4 than the

4In this thesis, the visual complexity of an activity diagram is defined as the result of dividing
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InitiateConnectUI and TerminateConnectUI in Figures 3.5(a) and 3.5(b). In

fact, the SearchUI presentation is composed of 22 interaction classes against the

10 of the ConnectUI, and the cyclomatic complexity of activity diagrams initiating

and terminating UI presentations as shown in Figures 3.5(a) and 3.5(b) is 1.

Thus, the �presents� SearchUI interaction object flow provides a significant

simplification to the modelling of the SearchBook functionality. Nevertheless, the

specification of the �presents� SearchUI interaction object flow in Figure 4.9

is redundant there, since it was previously specified in Figure 4.6.

Figure 4.9: The SearchBook activity.

Another point that we would like to emphasise in Figure 4.9 is the composition

of SelectionStates. For example, the OptionalState in SpecifyBookDetails

is a component of the OptionalState in SpecifyDetails. This means that

the selectable states of both OptionalState are activated at once, and that the

OptionalState in SpecifyBookDetails relies on the �confirms� OK interaction

object flow of the OptionalState in SpecifyDetails. This composition mech-

anism is important since it allows, for example, an incremental decomposition

the number of visual elements of the diagram by the cyclomatic complexity of the diagram, as
discussed in Section 7.2.
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of the SpecifyDetails activity through the decomposition of the SpecifyBook-

Details, SpecifySearchPrecision and SpecifySearchDomain activities, as pre-

sented in Figure 4.9. Otherwise, the action states of the subactivities of Specify-

Details related to its OptionalState would need to be modelled in Specify-

Details itself, as required in UML.

This concludes the introduction to the UMLi notation. The following sec-

tions in this chapter explain how the UMLi notation can be supported by the

UMLi metamodel, an extended version of the UML metamodel. This explanation

aims to clarify the relationship between UML and UMLi , and to establish the

foundations for implementing tool support for UMLi . This explanation starts by

presenting some features of the UML metamodel required to describe the UMLi

extensions in the UML metamodel.

4.3 UML Metamodel Architecture

UML has been revised several times since the elaboration of its first proposal

submitted to the OMG in 1997 [74]. A description of the structural aspects of

the UML diagrams is an outcome of these revisions. This description is called the

UML metamodel, as it is partially composed of UML class diagrams and Object

Constraint Language (OCL) constraints. The complete specification of the UML

metamodel is described in the “UML Semantics” chapter in [99], which is organ-

ised by the Packages that compose the UML metamodel. The specification of

the OCL is described in the “Object Constraint Language Specification” chapter

in [99]. The UML metamodel is important since it plays a key role in the de-

velopment of many UML tools, e.g., Rational Rose [116] and ARGO/UML [119],

facilitating the modelling, handling and sharing of UML models.

Figure 4.10 presents the UML Packages which are partially organised by both

the participation of the metaclasses in the UML diagrams and the dependencies

among the metaclasses. For each Package, the UML documentation provides three

informal and complementary descriptions of the metamodel: the abstract syntax,

well-formedness rules and modelling element semantics. The class diagrams, that

can properly be called the UML metamodel, are part of the abstract syntax. The

abstract syntax also provides a description in prose of each element that composes

the UML metamodel. The well-formedness rules are written in OCL. These rules

provide additional constraints concerning the metaclasses of the abstract syntax
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Figure 4.10: Packages of the UML metamodel.

that cannot be expressed using the class diagram constructs alone. These well-

formedness rules are also supported by textual descriptions of their meaning. The

“semantics” of a modelling element is a description, once again in prose, about

the meaning of the Package itself.

Most of the metaclasses of the class diagram are specified in the Core Package

within the Foundation Package, as in Figure 4.10, where the structural constructs

of UML are specified. Metaclasses of dynamic (or behavioural) diagrams are spec-

ified in Packages within the BehavioralElements Package. The metaclasses of

the collaboration and sequence diagrams are specified in the Collaborations

Package. The metaclasses of the use case diagram, state diagram (or state-

chart) and activity diagrams are specified in the UseCases, StateMachines and

ActivityGraphs Packages, respectively.

A comprehensive presentation of the UML metamodel is beyond the scope of

this thesis. However, a presentation of part of the Core Package in Section 4.3.1

and the StateMachines and ActivityGraphs Packages in Section 4.3.2 provides a

context for explaining how UMLi constructs are incorporated into the UML spec-

ification. In fact, the UMLi UserInterfaces Package depends on the Core Pack-

age, and the IntegratedActivities Package depends on the StateMachines
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and ActivityGraphs Packages.

4.3.1 The Core Package

A UML diagram is a set of elements related to each other according to the UML

metamodel. A description of the Core Package can clarify how UML elements

are inter-related. Figure 4.11 is a partial representation of the abstract syntax of

the Core Package extracted from [99]. There, an element in a UML diagram is an

instance of ModelElement which may belong to a Namespace (a Namespace is also

a ModelElement). Classifier is an important category of Namespace since it can be

composed of many Features required, for example, to enable a ModelElement to

represent entities of the domain being modelled. An Attribute is an example of

a StructuralFeature. An Operation is an example of a BehavioralFeature. A Class

and an Interface (the Interface metaclass is not in Figure 4.11) are specialised

Classifiers.

Figure 4.11: Partial representation of the Core Package of the UML metamodel.

For an in-depth description of the Core Package and the other Packages of the

UML metamodel, we suggest the reading the UML specification [99] since it is,

to the best of our knowledge, the sole document comprehensively presenting the

UML metamodel.

Relying on its metamodel, the UML specification [99] introduces the OMG
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XML5 Metadata Interchange (XMI) format which is specified by a document

type definition (DTD). In fact, the XMI DTD is the grammar of documents in

the XMI format. Therefore, UML-based tools can save, load and exchange UML

models using XMI files. For instance, UML models can be saved by writing the

XMI text for each instance of ModelElement (see Figure 4.11) to a text file.

A UML construct in this thesis is a metaclass, or in other words, a class in a

class diagram of the UML metamodel. This is the definition of UML construct

used to explain the semantics of UMLi in Chapter 5. In this thesis, the names

printed using a sans serif font are either names of UML constructs, as specified

in [99], or names of UMLi constructs, as specified in Section 4.4.

4.3.2 The StateMachines and ActivityGraphs Packages

State diagrams (statecharts) and activity diagrams are state-transition diagrams

composed of nodes inter-connected by arcs. Figure 4.12 presents a partial and

merged representation of the abstract syntax diagrams of the StateMachines

and ActivityGraphs Packages used to support the modelling of state-transition

diagrams in UML. There, nodes are modelled using the StateVertex construct

and arcs are modelled using the Transition construct. Figure 4.12 also shows

that the StateVertex construct can be specialised into a State or a PseudoState

construct. A StateMachine can be associated with a StateVertex that is a top State

in a statechart. PseudoState constructs are used to model statechart constructs

that are neither States nor Transitions. Thus, PseudoStates of statecharts are, for

example, Forks, Joins, InitialStates and FinalStates, depending on the value of their

kind Attribute. The type of kind is PseudoStateKind specified in the DataTypes

Package.

As explained in the text of the UML documentation, but not in Figure 4.12, a

State construct can be used to represent both a statechart’s states and an activ-

ity diagram’s activities. In fact, the relationship between activity diagrams and

statechart diagrams is unclear in Figure 4.12. This relationship may be better

understood by initially ignoring the ActivityGraphs metaclasses in Figure 4.12.

In this case, the context of a StateMachine is a single ModelElement. This means

that the diagram aggregated to the StateMachine through its top StateVertex can

describe the behaviour of a single element. Then, the State construct is used to

5Extensible Markup Language.
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Figure 4.12: Partial representation of the StateMachines and ActivityGraphs

packages of the UML metamodel.

specify states of the elements represented by the ModelElement construct. Fur-

ther, the Transition construct is used to represent transitions between states of

the same instance of ModelElement. Considering the ActivityGraphs metaclasses

back in the metamodel, as presented in Figure 4.12, it is possible to use a com-

mon set of constructs of both StateMachines and ActivityGraphs Packages to

describe the behaviour of any subset of instances of the ModelElement construct.

In this case, the diagram aggregated to the ActivityGraph subclass of StateMa-

chine, can describe the behaviour of a set of elements represented by the Partition

class. Then, the State construct is used to specify states of the set of elements

represented by the Partition construct. Further, the Transition construct is used

to represent transitions between states of the same instance of Partition. It is

important to observe that transitions between the same instance of Partition

include transitions between different ModelElements, which are essential to ex-

plain, for instance, how functionalities are implemented in terms of collaborations

between objects.

Figure 4.12 also helps to explain how object flows are implemented in a UML

metamodel, a common difficulty in understanding activity diagrams. There, the
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ObjectFlowState and ClassifierInState metaclasses are used to implement object

flows. In this case, the ObjectFlowState is rendered as an arrow connecting ele-

ments of the ClassifierInState to action states, as emphasised in Figure 4.13. If

the arrow of the ObjectFlowState is from an action state to the ClassifierInState

it means that an object of the type of ClassifierInState is created and allocated

before the execution of the action state. If the arrow is from the ClassifierInState,

to an action state, it means that the object that is already instantiated is allo-

cated before the execution of the action state, probably supporting the execution

of the action state.

Figure 4.13: The UML constructs of an object flow.

From the description of the UML metamodel above it is possible to specify

the UMLi metamodel.

4.4 UMLi Metamodel Architecture

The UMLi metamodel is composed of few new constructs and few new OCL rules

when compared to the number of constructs and OCL rules of the UML meta-

model. Indeed, Principle 2 says that UMLi should introduce as few additional

constructs as possible into UML. However, despite the fact that there are few

extensions, these additions require some more explanation in terms of how they

are incorporated into UML. Thus, Figure 4.14 identifies where in the package

diagram of the UML metamodel the UMLi additions are incorporated. There,

four tags (numbered black disks) identify the UMLi additions.

Tag 1 identifies the UserInterfaces Package used to support the modelling

of user interface diagrams. The UserInterfaces Package is specified in Sec-

tion 4.4.1. Tag 2 identifies the IntegratedActivities Package used to support

the modelling of selection states. The IntegratedActivities Package is speci-

fied in Section 4.4.2. Tag 3 identifies the additions in the DataTypes Package used

to support the modelling of InitialInteractions. Tag 4 identifies the relaxation of
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Figure 4.14: Packages of the UMLi metamodel.

some OCL constraints in the StateMechines Package to support the modelling of

interaction object flows. Additions in both DataTypes and StateMachines Pack-

ages are specified in Section 4.4.3. Finally, a discussion about how the stereotypes

of the interaction object flows are supported in the UML metamodel is presented

in Section 4.4.4.

4.4.1 The UserInterfaces Package

Tag 1 in Figure 4.14 identifies the UserInterface Package in the UMLi meta-

model. The contents of the Package describing the abstract syntax of user inter-

face diagrams is presented in Figure 4.15. There, the InteractionClass metaclass

is a specialisation of the Class metaclass of the Core package. Moreover, the other

metaclasses in Figure 4.15 are subclasses of InteractionClass. This means that the

user interface diagram can be considered as a specialised class diagram.

The InteractionClass metaclass in Figure 4.15 corresponds to the Interaction-

Class of the abstract presentation pattern (APP) in Figure 3.8. The main dif-

ference between the diagram of the UserInterface Package and the APP is

that operations of the APP classes are not specified in UMLi metaclasses of the
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Figure 4.15: UserInterfaces package of the UMLi metamodel.

Package. The necessity of such operators is partially substituted by the speci-

fication of the interaction object flow stereotypes, as discussed in Section 4.2.3.

The substitution is completed by the implicit introduction of the the getValue()

and setValue() operations, that do not need to be supported by any additional

construct. The invocation of these operations corresponds to the invocation of

obj.getValue() and obj.setValue(), where obj is the associated ClassifierIn-

State of type InteractionClass.

4.4.2 The IntegratedActivities Package

Tag 2 in Figure 4.14 identifies the IntegratedActivities Package in the UMLi

metamodel. The contents of the IntegratedActivity Package describing its

abstract syntax is presented in Figure 4.16. There, the ReturnTransition and

SelectionState constructs are the basic constructs used to implement selection

states.

The ReturnTransition Construct

A ReturnTransition construct is a metaclass composed of two Transitions, one from

the SelectionState to a selectable activity (that is a StateVertex), and the other

from the selectable activity to the SelectionState. The ReturnTransition can accept
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Figure 4.16: IntergratedActivities package of the UMLi metamodel.

one Guard that affects only its outgoing Transition, since its returning Transition

is a non-guarded one, as presented in Figure 4.16.

The SelectionState Construct

The SelectionState construct is a subclass of the State metaclass composed of

one SelectionState and one or more selectable activities. A selectable activity is a

StateVertex that can be activated, and consequently reached, when the application

workflow is in a SelectionState. The target of the default outgoing Transition of

a selectable activity identifies its SelectionState. Figure 4.16 additionally shows

that a SelectionState is specialised into OptionalState, OrderIndependentState

and RepeatableState.
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4.4.3 Extensions in the DataTypes and StateMachinesPack-

ages

Tags 3 and 4 in Figure 4.14 identify the DataTypes Package where the InitialInter-

action construct is specified, and the StateMachines Package where some OCL

rules enable the construction of interaction object flows.

The InitialInteraction Construct

The InitialInteraction construct is modelled as an additional value for the Pseu-

doStateKind class specified in the DataTypes package. Thus, the addition of the

new value InitialInteraction for the PseudoStateKind metaclass specifies the

InitialInteraction construct (or a PseudoState construct of the kind InitialInterac-

tion), as shown in Figure 4.16. Some additional OCL rules are required in con-

structs of the StateMachine Package.

Interaction Object Flow Constraints

The UML specification says that a ClassifierInState can be associated with an

ActionState only. However, there is no OCL rule in the documentation speci-

fying such a constraint. Thus, the following constraint could be an OCL rule of

the ClassifierInState construct:

• A ClassifierInState cannot be associated with a State that is not an Action-

State.

self.inState.forAll(s | s.oclIsKindOf(ActionState))

Object flows that are interaction object flows are useful if they can be asso-

ciated with other categories of states, as indicated in Section 4.2.3. Therefore,

based on the fact that InteractionClasses are UMLi constructs, the ClassifierInState

rule above can be relaxed as follows:

• A ClassifierInState that is not an InteractionClass cannot be associated with

an ActionState.

(not self.type.oclIsKindOf(InteractionClass)) implies

self.inState.forAll(s | s.oclIsKindOf(ActionState))
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• A ClassifierInState that is an InteractionClass can be associated with Action-

States, CompositeStates, SelectionStates and PseudoStates.

self.type.oclIsKindOf(InteractionClass) implies

self.inState.forAll(s | s.oclIsKindOf(ActionState) or

s.oclIsKindOf(CompositeState) or

s.oclIsKindOf(SelectionState) or

s.oclIsKindOf(PseudoState))

4.4.4 Interaction Object Flows and Their Stereotypes

The extensions in the UML metamodel presented so far are based on the fact that

new graphical notations were needed. Any visual indication that the meaning of

a particular construct is being extended, however, is enough to identify inter-

action object flows. The Stereotype construct is powerful enough to specify the

extended meaning of interaction object flows. Therefore, the interaction object

flow stereotypes, e.g., �presents�, informally introduced in Section 4.2.3, can

address the necessity of visually identifying interaction object flows.

The good thing about using Stereotype, when its notation is appropriate, is

that it is one of the standard extension mechanisms of UML. This means that

the UML metamodel does not need to be modified to accommodate extensions

based on this mechanism. In fact, according to Figure 4.11, every ModelElement

can have one Stereotype6 attached to it. Therefore, an interaction object flow

is composed of an ObjectFlowState that (i) is associated with a ClassifierInState

of an InteractionClass, and (ii) is associated with a Stereotype of one of the five

interaction object flow stereotypes introduced in Section 4.2.3.

4.5 A Proposal for a UMLi Method

The proposed UMLi method is composed of eight steps. These steps are not

intended to describe a comprehensive method for the modelling of a UI in an

integrated way with the underlying application. For example, these steps could

be adapted to be incorporated by traditional UML modelling methods such as

Objectory and Catalysis [32].

6The Stereotype metaclass belongs to the ExtensionMechanisms Package of the UML meta-
model.
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Part of the Library System case study is used for exemplifying the use of the

UMLi method.

Step 1 User requirement modelling. Use cases can identify application function-

alities. Use cases may be decomposed into other use cases. Scenarios provide a

description of the functionalities provided by use cases.

The use cases in Figure 3.1 identified some application functionalities. Scenarios

can be used as a textual description of the use case goals. For instance, the

scenario presented in Figure 4.3 is a textual description of the SearchBook use

case in Figure 3.1. Further, scenarios can be used for the elicitation of sub-goals

that can be modelled as use cases. Use cases that are sub-goals of another use

case can be related using the �uses� dependency. Thus, the use of �uses�

dependencies creates a hierarchy of use cases. For instance, SpecifyBook is a

sub-goal of BorrowBook in Figure 3.1.

Step 2 InteractionClass elicitation. Scenarios of less abstract use cases may be

used for InteractionClass elicitation.

Scenarios can be used for the elicitation of InteractionClasses , as described in

Section 4.1.2. In this case, elicited InteractionClasses are related to the associated

use case. Relating InteractionClasses directly to use cases can prevent the elicita-

tion of the same InteractionClass in two or more scenarios related to the same use

case. Considering that there are different levels of abstraction for use cases, as

described in Step 1, it was identified by the case study that InteractionClasses of

abstract use cases are also very abstract, and may not be useful for exporting to

activity diagrams. Therefore, the UMLi method suggests that InteractionClasses

can be elicited from less abstract use cases.

Step 3 Candidate interaction activity identification.

Candidate interaction activities are use cases that communicate directly with

actors, as described in Section 3.1.

Step 4 Interaction activity modelling. A top level interaction activity diagram

can be designed from identified candidate interaction activities. A top level inter-

action activity diagram must contain at least one initial interaction state.
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Figure 4.6 shows a top level interactive activity diagram for the Library case

study. Top level interaction activities may occasionally be grouped into more

abstract interaction activities. In Figure 4.6, many top level interaction activi-

ties are grouped by the SelectFunction activity. In fact, SelectFunction was

created to gather these top level interaction activities within a top level interac-

tion activity diagram. However, the top level interaction activities, and not the

SelectFunction activity, remain responsible for modelling some of the major

functionalities of the application. The process of moving from candidate interac-

tion activities to top level interaction activities is described in Section 4.2.1.

Step 5 Interaction activity refining. Activity diagrams can be refined, decompos-

ing activities into action states and specifying object flows.

Activities can be decomposed into sub-activities. The activity decomposition

can continue until the action states (leaf activities) are reached. For instance,

Figure 4.8 presents a decomposition of the SearchBook activity introduced in

Figure 4.6. The use of �interacts� object flows relating instances of Interaction-

Classes to action states indicates the end of this step.

Step 6 User interface modelling. User interface diagrams can be refined to sup-

port the activity diagrams.

User interface modelling should happen simultaneously with Step 5 in order to

provide the activity diagrams with the instances of InteractionClasses required for

describing action states. There are two mechanisms that allow UI designers to

refine a conceptual UI presentation model.

• The inclusion of complementary InteractionClasses allows designers to im-

prove the user’s interaction with the application.

• The grouping mechanism allows UI designers to create groups of Interac-

tionClasses using Containers.

At the end of this step it is expected that we have a conceptual model of the

user interface. The InteractionClasses required for modelling the user interface

were identified and grouped into Containers and FreeContainers. Moreover, the

InteractionClasses identified were related to domain objects using action states

and UMLi flow objects.
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Step 7 Concrete presentation modelling. Concrete interaction classes can be

bound to abstract InteractionClasses.

The concrete presentation modelling begins with the binding of concrete interac-

tion classes (widgets) to the abstract InteractionClasses that are specified by the

APP. Indeed, the APP is flexible enough to map many widgets to each abstract

InteractionClass.

Step 8 Concrete presentation refinement. User interface builders can be used

for refining user interface presentations.

The widget binding alone is not enough for modelling a concrete user interface

presentation. Ergonomic rules presented as UI design guidelines can be used

to automate the generation of the user interface presentation. Otherwise, the

concrete presentation model can be customised manually, for example, by using

direct manipulation.

4.6 Summary

The UMLi notation is introduced in Sections 4.1 and 4.2. There, the UI mod-

elling difficulties described in Chapter 3 were addressed by the UMLi extensions

summarised as follows.

• UI Modelling Difficulty 1 is addressed by the well-established links between

use case diagrams and activity diagrams that explain how user requirements

identified during requirements analysis are described in the application de-

sign.

• UI Modelling Difficulty 2 is addressed by the InitialInteraction construct that

provides a way for modelling application entry-points.

• UI Modelling Difficulty 3 is addressed by the use of both interaction object

flows and object flows in UMLi activity diagrams that provide the relation-

ship between visual components of the user interface and domain objects.

• UI Modelling Difficulty 4 is addressed by the use of selection states in

UMLi activity diagrams that simplify the modelling of interactive system

behaviour.



CHAPTER 4. UMLi NOTATION AND METAMODEL 94

• UI Modelling Difficulty 5 is addressed by the notation for Containers that fa-

cilitates the grouping of widgets. Further, the UMLi user interface diagram

introduced for modelling abstract user interface presentations simplifies the

modelling of the use of visual components (widgets).

• UI Modelling Difficulty 6 is addressed by the notation for InteractionClasses

that facilitates the visual identification of the abstract roles of widgets in

user interfaces.

A brief description of the UML metamodel was presented in Section 4.3. Based

on the UML metamodel, the UMLi syntax described in terms of the UMLi meta-

model is introduced in Section 4.4.

The UMLi specification introduced so far is equivalent in its level of detail

to the UML specification in [99]. The specification of the UMLi notation pro-

vides sufficient detail to allow developers to design interactive systems using pen

and paper. The specification of the UMLi metamodel may facilitate the identi-

fication of disallowed relationships between constructs in UMLi diagrams when

implemented in UML-based tools.

The proposal for a semantics for UMLi is presented in the next chapter to

complete the specification of UMLi introduced in this chapter.



Chapter 5

UMLi Semantics

The UML metamodel can provide a framework for semantic description. Thus,

the metamodel is used by UML to informally provide a semantics for UML

describing the meaning of the UML metamodel constructs using English lan-

guage [99]. In this chapter, the metamodel is used by UMLi to formally provide

a semantics for UML and UMLi .

The lack of a formal semantics is an identified difficulty related to the use of

UML [19, 36, 37, 88]. Indeed, this lack of a formal semantics allows ambiguous

interpretations of UML models, and consequently, of UMLi models. This may

lead to disputes over the interpretation of the models, and to the implementation

of systems that do not fulfill the intentions of the designers. A formal semantics

for UMLi could help to solve this problem of contradictory interpretations of UML

and UMLi models. Further, such a semantics could be useful for implementing

automated verification of models to identify incorrect uses of the notation, as well

automated as interpretation of models to generate software code.

This chapter is structured as follows. Section 5.1 presents an overview of cur-

rent work on providing a semantics for UML. Section 5.2 gives a brief introduction

to LOTOS, the formal specification language used to describe a UMLi semantics.

Section 5.3 establishes the foundations of the Φ function introduced in this thesis

that translates UMLi models into LOTOS specifications, building on the UMLi

metamodel. Section 5.4 presents a part of the Φ function for some structural

aspects of UMLi models. Section 5.5 presents a part of the Φ function for some

behavioural aspects of UMLi models. Conclusions are presented in Section 5.7.

95
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5.1 Approaches For a UMLi Semantics

Any approach to the development of a UMLi semantics should consider the still

open question of how best to provide a formal description of the semantics of

UML. For example, a specification of UML in terms of a mathematical nota-

tion or a formal specification language could provide a semantics for UML. The

expressiveness gap between UML and a mathematical notation may be bigger

than between UML and a formal specification language. Indeed, the semantics of

specification languages are often provided by their mathematical specifications.

Thus, the approach in this chapter is based on the use of a formal specification

language. Such a specification language should be powerful enough to specify the

behavioural and structural aspects that can be described by UMLi models. Most

formal specification languages provide facilities for modelling and verifying be-

havioural and structural aspects of software systems. Some formal specification

languages, e.g., Z [130], are appropriate while describing structural aspects of

software systems. However, it may be difficult to check some behavioural proper-

ties, such as concurrency, since these languages do not describe any computation

that explains how their specifications can be executed [50]. A combination of

specification languages could be considered, e.g., Z [130], CCS [91] and CSP [57].

However, it would be most desirable to use just one specification language to

provide the required formalism.

In this chapter, a LOTOS [16, 63] approach for specifying the semantics of

UML is presented. LOTOS is a specification language that has succeeded in

the challenging task of describing structural and behavioural aspects of software

systems using a single notation. Indeed, LOTOS has incorporated the specifica-

tion facilities of CCS and CSP, as well the facilities for specifying the abstract

data types of ACT-ONE [33]. Moreover, LOTOS is an International Standardiza-

tion Organization (ISO) standard specification language developed for the formal

description of the Open System Interconnection (OSI) architecture that is appli-

cable to distributed, concurrent systems in general. Thus, through the Library

System case study it is described how LOTOS can be used to specify a seman-

tics for representative class and activity diagram constructs. Furthermore, object

flows described in this chapter and used in activity diagrams provide a connec-

tion between structural models, e.g., class diagrams, and behavioural models,

e.g., activity diagrams without object flows.

Previous approaches to providing a formal semantics for the UML can be
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classified in many ways. In this chapter, related work is presented emphasising the

existing dichotomy between approaches formalising structural and behavioural

aspects of the UML.

There are many approaches to formalising structural aspects of UML. Evans et

al. [36] is an example of one of the two approaches of the precise UML group [138]

of researchers concerned about the lack of a semantics for UML. In this ap-

proach, a semantics for UML is expected to be achieved by the formalisation of

some class diagram constructs used to build the UML metamodel, as described

in [99]. Therefore, the semantics of the other constructs of UML can follow from

the previously formalised constructs, specifying in this way a semantics for the

entire UML. Particularly in Evans et al. [36], Z [130] is used to formalise the class

diagram. In Evans and Kent [37], the use of set theory embedded in Object Con-

straint Language (OCL) [143] constraints is used to provide a semantics for the

generalisation and package concepts. The Action Semantics proposal originated

by Mellor et al. [88] also aims to achieve a formalisation of the OCL. Further,

Richters and Gogolla [117] have proposed a formalisation of the OCL in an in-

tegrated way with some constructs of class diagrams. [37, 117] are examples of

the second approach of the precise UML group, where a semantics for UML is

expected to be achieved by the formalisation of the OCL.

There is much work on formalising behavioural aspects of UML. The first

mention in this context should probably be of David Harel’s work which has

influenced the development of the UML [51]. Considering this, we can say that the

descriptions in [52, 53] of the statechart semantics are partial descriptions of the

semantics of UML. There are other results on a formalisation of the behavioural

aspects of UML. For instance, one of the final aims of having a formal specification

is the possibility of verifying if a model is correct. Latella et al. [77] and Lilius and

Paltor [79] present robust work that describes how statecharts can be verified.

Both of them are based on the use of the SPIN model checker [59]. Moreover,

Latella et al. [77] indicates several points where the informal specification of UML

is silent in terms of a proper specification.

There is a concern about this dichotomy between the distinct formalisation

of the structural and dynamical aspects of UML. Wang et al. [142] describes a

formalisation of the dynamic models of the OMT [121]. This work is considered

in this proposal since the OMT is one of the three major predecessors of the

UML, and its formalisation is based in LOTOS. More recently, Breu et al. [19]
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have proposed another use of mathematical models, denoted system models, to

describe most of the constructs of UML. It looks like a promising approach for

a mathematically-grounded semantics for UML. The approach, however, is cur-

rently a long way from being complete enough to provide a verification facility for

UML. This dichotomy between the formalisation strategies of the dynamic and

structural parts of UML models may be a problem for a complete verification of

UML models. Keeping the semantics tractable at a certain level, as described in

Latella et al. [77], may be an appropriate strategy for the verification of UML

models. However, dynamic and structural models are interdependent, and as

such they might usefully be verified at once.

Finally, Clark and Moreira [25] have an approach based on LOTOS-E [62],

an enhanced version of LOTOS, for a UML semantics. Very promising in terms

of describing dynamic and structural aspects of UML models using a single no-

tation, the approach is similar to that adopted for UMLi in this chapter, e.g.,

for translating Classes and Attributes. The lack of details about the mapping of a

significant number of UML constructs, however, makes it difficult to use the ap-

proach in [25] either to translate the Library System into LOTOS-E specifications

or as a basis for describing the semantics of UMLi .

5.2 The LOTOS Specification Language

5.2.1 Basic LOTOS

A system S can be specified by a LOTOS process that might be composed of

other LOTOS processes. A LOTOS process P [G] has a set of observable gates

G = {g1, g2, ..., gn}. LOTOS assumes that an environment associated with the

process P exists that is composed of the process P , its subprocesses, and an un-

specified observer process that is always ready to observe anything the system

S may do. Thus, a LOTOS action can be defined as the interaction between a

defined process and, at least, the observer process. The behaviour of a process

is defined by an algebraic expression composed of: actions that may be observed

at the gates (unary operators); internal actions that cannot be observed at any

gate (nullary operators); and of other processes that specify their own algebraic

expressions (composed operators). All these operators are connected by binary
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operators, as presented in Table 5.1. These algebraic expressions are called be-

haviour expressions.

Figure 5.1: Definition of a LOTOS process extracted from [16].

Figure 5.1 shows an example of a LOTOS process definition. There, the MAX3

process is defined that has MAX2 as a subprocess. The observable gates of MAX3

are in1, in2, in3 and out, and the observable gates of MAX2 are a, b and c. The

behaviour of MAX3 is defined by the behaviour of the two instances of the MAX2

process that are synchronised on the mid gate, as specified by the interleaving

binary operation (|[]|) connecting the two instantiations of MAX2. Further, an

operation that is expected to terminate has the exit functionality, as in the MAX3

process specification. Otherwise, the process can have a noexit functionality. As

a LOTOS convention, action names are written in lowercase letters and process

names are written in uppercase letters. To facilitate the reading of this chapter,

words in bold fonts are reserved words of LOTOS.

5.2.2 Full LOTOS

The LOTOS presented so far is basic LOTOS, since only behavioural aspects

can be specified. The specification of observable actions, however, can be refined

with the use of abstract data structures and values. Thus, the abstract data

type specification language ACT-ONE [33] has been integrated with LOTOS,

specifying full LOTOS. New interprocess communications can be achieved in full

LOTOS.
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Category Operator Notation Description

Action prefix ; The expression a; C means that the process behaves
like C after the execution of a.

Enabling >>
The expression C >> D means that the process D is
enabled if, and only if, C terminates successfully.

Choice []

The expression a; C[]b;D means that the process can
start to behave like either C or D depending on the
next actions provided by the interaction of the
current process with its environment. If the
environment offers an action a then the process
starts to behave like C. If the environment offers an
action b, then the process starts to behave like D.

Binary
Operators

Interleaving |||
The expression C|||D means that the actions of the
processes C and D do not need to synchronise
(completely independent).

Interleaving
with syn-
chronisation
gates

|[]|
if a is an observable action in both C and D

processes, then the expression C|[a]|D means that C

and D must synchronise in order to perform a.

Hiding hide ... in

The expression hide x in C means that the action x

originally specified as observable by any other process
interacting with the current process at the gate x

now can only be observable from the process C.

Disabling [>

The expression C[> D means that the process C can
be interrupted any time before its successful
termination in the case that the environment
provides an unspecified interrupting action called a
disabling operator. In this case, the process starts to
behave like D.

Unary
Operators

stop stop
This operator, which offers no event to the
environment, means that the process becomes
inactive.

exit exit

This operator offers an special event to the
environment notifying the successful termination of
the process. After raising this special event, the
process also becomes inactive as a result of the stop

operator.

Table 5.1: Unary and binary operators of LOTOS. It is assumed that a and b

are LOTOS observable actions and that C and D are LOTOS processes in the
descriptions.
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• Value passing: Suppose that the processes C and D are synchronised on the

gate x, e.g. C|[x]|D. Moreover, suppose that the process C is performing

x!TRUE and the process D is performing x?b :Bool. We can say that C

is passing the value TRUE to the process D. Moreover, this TRUE value

is assigned to the b variable of the process D.

• Signal matching: Once again, suppose C|[x]|D. This time, suppose that C

is performing x!z1 and D is performing x!z2. This means that C and D will

only be synchronised if the values of z1 and z2 become the same (z1 = z2).

The type of the b variable in the value passing example is Bool (that means,

Boolean). Full LOTOS, or just LOTOS, provides a set of primitive types for

modelling simple data structures. For instance, the LOTOS primitive nat denotes

a type the domain of which must be a natural number. LOTOS also provides the

ability to specify more complex data structures composed of primitive types and

other complex data structures. For example, the PERSON type definition presented

as follows describes a type that might be used by objects of a class PERSON.

type PERSON is String

sorts Person
opns mk Person: −> Person

mk Person2: String , String −> Person
setname: Person , String −> Person
getname: Person −> String

s e t c od e : Person , String −> Person
getcode : Person −> String

eqns foral l name1 , name2 , code1 , code2: String

ofsort String

getname ( mk Person2 ( name1 , code1 )) = name1 ;
getcode ( mk Person2 ( name1 , code1 )) = code1 ;

ofsort Person
setname ( mk Person2 ( name2 , code2 ) , name1 ) = mk Person2 ( name1 , code2 ) ;
setcode ( mk Person2 ( name2 , code2 ) , code1 ) = mk Person2 ( name2 , code1 ) ;

endtype

Figure 5.2: Person type specification.

The PERSON in Figure 5.2 is a type specification. The String after the is

indicates that PERSON incorporates the specification of the String type. If re-

quired, other type specifications could be incorporated along with the String

type. Further, the eqns operator indicates equations used to specify constraints

relating intrinsic operations. Equations can be complex since they can specify

complex constraints. However, only a set of simple equations required to provide
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meaningful type specifications such as those presented in Figure 5.2 are consid-

ered in this chapter. Table 5.2 provides a brief explanation of the type operators

in Figure 5.2.

Operator Description

sorts Specifies data carriers of a type.
opns Specifies the intrinsic operations that can be performed over variables of a

type.
eqns Begins the specification of equations where constraints relating intrinsic

operations are specified.
forall Declared under an eqns operator, it specifies free variables used in equations.
ofsort Declared under an eqns operator, it specifies the outermost operation in its

following equations.

Table 5.2: Some type operators of LOTOS.

Thus, for a given variable aPerson of the type Person, for example, the oper-

ation getname(aPerson) returns a value of type String that is stored in Person.

From the definition of getname(aPerson) it is possible to identify the declarative

nature of LOTOS. The specification of the getname() operation specifies what is

wanted rather than how the value can be retrieved from aPerson. Two special

operations are considered in the type specifications presented in this chapter. In

the case of the type Person, the mk Person operation is a default construct that

does not require any parameter to create a value of type Person. The mk Person2

operation is also a construct, but one that requires the constituent values (at-

tributes) of Person to create a composite value of type Person. Therefore, using

mk Person2, it is possible to see in Figure 5.2 that, for example, the getname()

operations can be used to get an attribute of type String from Person, and

the setname() operation can be used store a String value as an attribute in

Person. The String type is presented as a reserved word in Figure 5.2 since it

is a primitive type of LOTOS.

The LOTOS processes in this chapter are built in an incremental way and

using mainly the basic constructs of LOTOS. Thus, it may be expected that

readers without prior experience of LOTOS can understand the LOTOS notation

from the description of LOTOS presented in this section. Nevertheless, Bolognese

and Brinksma [16] is a suggested introductory paper on LOTOS.

A semantics for UMLi models can be provided by LOTOS specifications gen-

erated from these UMLi models. Starting in this section, we explain how UML

models can be translated into LOTOS specifications.
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5.3 From UMLi Models to LOTOS Specifica-

tions: Foundations

The strategy of this LOTOS-based proposal for a UMLi semantics follows the

core meta-modelling strategy described in [37]. Basically, the idea is to provide

an initial semantics for some UMLi constructs considered essential for modelling

most UMLi diagrams. The semantics specified for these constructs can then

be used as a framework for specifying a semantics for the other constructs. For

example, a formalisation for Class might be required in order to formalise Package.

This chapter is organised to present the set of constructs specific to UMLi with

respect to UML. However, the original UML constructs required to support the

definition of the UMLi specific constructs and the UMLi to LOTOS mapping

example in this chapter are also presented. Appendix A presents some core UML

constructs not introduced in this chapter. The following definitions are required

to explain how a semantics for such UMLi constructs can be specified.

LOTOS has a context-free grammar. According to [1], a context-free grammar

has a set of terminal symbols; a set of non-terminal symbols; a set of productions

where each production is composed of a non-terminal symbol, an arrow, and

a sequence of terminals and/or non-terminals; and a designation of one of the

non-terminals as the start symbol. Thus, a non-terminal symbol of LOTOS is a

LOTOS construct. Assuming that U is a UMLi construct and that L is a LO-

TOS construct, a semantics for UMLi can be provided by the LOTOS semantics

contained in the specification generated through the use of Φ(U) = L. The Φ

function is specified through the definition of UMLi construct definitions (UCDs),

which are definitions of UMLi constructs in terms of sets of at least one LOTOS

construct.

From this UCD we can see that our approach conforms with the official UML

approach for the UML part of UMLi . In fact, we are respecting the UML spec-

ification in the sense that we are neither modifying nor removing any element

of UML. Moreover, we are using the UML specification as a foundation for the

proposed semantics for UMLi .

5.3.1 The Activity Specification

From this point in the chapter we start to introduce a set of 45 UCDs consisting

of the UMLi specific constructs and the original UML constructs required to
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explain the translation of the Library System into LOTOS specifications. Thus,

the Library System, or any system S, can be specified from a top-level activity

diagram. In the case of the Library System, for example, it can be specified from

its top-level activity diagram as shown in Figure 3.3. The Activities in this top-

level activity diagram can be recursively decomposed into less abstract Activities

and ActionStates connected by Transitions and PseudoStates. The decomposition

of the top-level activity diagram is considered complete when the Activities are

entirely described in terms of ActionStates, which are the “leaves” of the tree of

Activities. Thus, the UMLi Activity construct can be specified as follows.

UCD 1 An Activity that has subactivities Sub1..SubX is defined by a LOTOS
process definition specified as follows.

process ACTIVITY ACT [ . . . , abort ] ( . . . ) : exit :=

<f i n a l a c t i v i t y b e h a v i o u r >

where

process SUB1 ACT [ . . . , abort ] : exit ( . . . ) :=

. . .

endproc

. . .

process SUBX ACT [ . . . , abort ] : exit ( . . . ) :=

. . .

endproc

endproc

The <final activity behaviour> in the ACTIVITY ACT process above is a text
defined by a BNF grammar specified as follows.

<f i n a l a c t i v i t y b e h a v i o u r > ::= < a c t i v i t y b ehav i ou r >

‘ ‘ [> abort ; exit ’ ’

<a c t i v i t y b ehav i ou r > ::= < a c t i v i t y > |

<a c t i v i t y b ehav i ou r > <operat ion > <a c t i v i t y >

<a c t i v i t y > ::= < ac t i on s ta t e imp > | < ac t i v i ty imp >

<ac t i on s ta t e imp > ::= <CALL SEND ACTIONSTATE> |

<CREATE ACTIONSTATE>

<ac t i v i ty imp > ::= <LOTOS PROCESS>

<operat ion > ::= ‘ ‘ [ ] ’ ’ | ‘ ‘ ||| ’ ’ | ‘ ‘ � ’ ’

In the grammar above: <CALL SEND ACTIONSTATE> is a non-terminal; and

<LOTOS PROCESS> is the specification of a LOTOS process instantiation.

Hereafter, underlined words in UCDs represent placeholders which vary ac-

cording to the instance of the UMLi construct represented by the UCD. For
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example, for an Activity named SelectFunction the ACTIVITY ACT in UCD 1 is

replaced to SELECTFUNCTION ACT, as presented later in Figure 5.3.

From UCD 1 we can see that the processes of the subactivities, which can be

ActionStates, are defined as subprocesses of the ACTIVITY ACT process. Reuse [67]

can be achieved in LOTOS specifications of UMLi models by defining Activities

and ActionStates in common higher-level Activities of the Activities that share

the same functionality. Still in UCD 1, ACTIVITY ACT has a standard abort

gate which is responsible for finishing the process. The abort gate allows any

process synchronised to it to finish the ACTIVITY ACT process at any time. Thus,

such a gate may be useful for handling abnormal situations such as a premature

destruction of an Object or an error message from the operating system. Further

discussion about the abort gate is provided in Section 5.5.8.

To conform with the LOTOS specification, an additional UCD should be

specified for top-level activities.

UCD 2 An InitialInteraction identifies top-level Activities that have their process

and endproc terminators and the first appearance of the := terminator in UCD 1

replaced by the specification, endspec and behaviour terminators respectively.

The InitialInteraction itself is not translated into LOTOS specifications.

ActionStates and Classes should also be translated into LOTOS specifications

in order to describe S as a LOTOS process. In fact, ActionStates specify the

Objects where Actions are performed, and Objects are specified by their Classes.

Classes can be specified in term of LOTOS processes, as explained in Section 5.4.1.

Actions can be specified in terms of LOTOS processes as discussed in Section 5.5.3.

However, there are two mapping techniques between U and L, which we are call-

ing foundation mappings, that need to be presented before the introduction of

the Class and Object constructs. The first foundation mapping technique pre-

sented in Section 5.3.2 explains how the connections provided by Transitions and

PseudoStates in activity and statechart diagrams can be translated into binary

operators of LOTOS. These binary operators are used to compose the behaviour

expressions of processes. The second foundation mapping technique presented in

Section 5.3.3 explains how types, implicitly specified by Classes in UMLi , can be

specified by LOTOS primitive types and type specifications.

Concerning the behaviour of S, a translation of interaction diagrams, viz.

sequence and collaboration diagrams, into LOTOS specifications is not described
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in this chapter. Indeed, despite the fact that interaction diagrams may often be

felt to be more useful for developers using UMLi than activity and statechart

diagrams, we can observe that interaction diagrams are partial representations of

activity and statechart diagrams [105]. Nevertheless, the semantics provided in

this chapter for constructs used in both activity and statechart diagrams can be

used for specifying a semantics for constructs used to build interaction diagrams.

5.3.2 The Transition and PseudoState Specifications

Activity and statechart diagrams are composed of instances of StateVertex con-

nected by instances of Transition. Recalling Figure 4.12, PseudoState and State are

subclasses of StateVertex. Further, Branch, Fork, Join, InitialState and FinalState

are categories of PseudoState. Thus, a specification of Transition, Branch, Fork,

Join, InitialState and FinalState in terms of LOTOS operators provides the foun-

dation required to map UMLi models describing behavioural aspects of software

systems into LOTOS specifications.

Let A, B, C and D be Activities and a and b be States. Table 5.3 presents the

mapping of Transition, Fork, Join, Branch, InitialState and FinalState into LOTOS

behaviour expressions. A State can be defined either as visited or non-visited

with respect to its immediate superstate. Thus, a State that can only be reached

once during any execution of its immediate superstate is defined as a non-visited

State. Otherwise it is defined as a visited State, even if it is not reached during a

particular execution of its immediate superstate. Therefore, mapping of a visited

State into LOTOS expressions requires a recursive invocation of the generated

LOTOS process, as described by the UCD 6 in Table 5.3.

The LOTOS specification in Figure 5.3 for the top-level activity diagram in

Figure 3.3 is produced using the UCDs already presented. The InitialInterac-

tion identifies the top-level activity diagram mapped as the LIBRARY ACT spec-

ification (UCD 2). Then, a navigation through the activity diagram should be

performed. The navigation starts at the InitialInteraction that acts as an Initial-

State for top-level activity diagrams. The InitialInteraction itself is not mapped

into the behaviour expression of LIBRARY ACT (UCD 2). Following the Transition

leaving the InitialInteraction, which is also not mapped in LIBRARY ACT (UCD 5),

the connect Activity is reached, which is mapped as the CONNECT ACT process

(UCD 1). The Transition leaving the connect Activity, mapped as >> (UCD 4),

reaches the SelectFunction Activity, mapped as SELECTFUNCTION ACT (UCD 1).
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UCD U Φ(U) a generic example
UMLi LOTOS

3

Transition between
two non-PseudoStates
to a non-visited State
in a statechart
diagram

action
prefix

a;b

4

Transition between
two non-PseudoStates
to a non-visited State
in an activity diagram

enabling A >> B

5

Transition to or from
a PseudoState going
to or coming from a
non-visited State

considered
as part of
the Pseu-
doState

— —

6
Transition from a
Branch to a visited
State

recursive
process

A >> REC ACT
where

process REC ACT[abort]:
exit :=

B >> (C [] [B]REC ACT)
endproc

7 Branch choice A >> (B[][C]C) >> D

8 Fork and Join

interleave
with
parenthesis

A >> (B|||C) >> D

9 InitialState
not
mapped

—

10 FinalState
not
mapped

—

Table 5.3: UCDs related to Transition, Branch, Fork, Join, InitialState and Final-
State constructs.
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Finally, following the Transition leaving the SelectFunction Activity, which is

not mapped in LIBRARY ACT (UCD 5), a FinalState is reached, which is also not

mapped in LIBRARY ACT (UCD 10).

To facilitate the identification of the roles that LOTOS processes are playing

in the specification of UMLi constructs, process names are suffixed by “ ACT” if

the processes are modelling Activities, by “ AS” if they are modelling ActionStates,

and by “ CLS” if they are modelling Classifiers or their subclasses, i.e., Classes and

Interfaces.

specif ication LIBRARY ACT[ abort ] : exit

behaviour

CONNECT ACT[ abort ] >> SELECTFUNCTION ACT[ abort ]
[> abort ; exit

where

process CONNECT ACT[ abort ] : exit :=
(∗ CONNECT ACT sp e c i f i c a t i o n ∗)

endproc

process SELECTFUNCTION ACT[ abort ] := exit :=
(∗ SELECTFUNCTION ACT sp e c i f i c a t i o n ∗)

endproc

endspec

Figure 5.3: The LOTOS specification of the Library Activity.

5.3.3 Type Mappings

Both UMLi and LOTOS provide a set of primitive types and allow the specifi-

cation of complex types from these primitive types. Primitive types in UMLi are

specified by the constructs in the UML DataType package. Primitive types in

LOTOS are provided along with the specification of LOTOS. Complex types in

UMLi are specified by the specification of Classes, where their Attributes can be

primitive types, defined in terms of elements of DataType, or other Classes. In

the same way, complex types in LOTOS can be specified by a type specification,

as introduced in Section 5.2. Further, these type specifications can be composed

of primitive types or other complex types.

There is almost a complete match between the primitive types of UMLi and

LOTOS. For example, Boolean matches with Bool, and Integer matches with

nat. Few primitive types of UMLi do not match with any primitive type of

LOTOS. In this case, we can use a LOTOS specification type to define these non-

matching types. For example, Enumerate can map to a LOTOS type definition
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as in Figure 5.4. There, an element can be retrieved from the enumeration using

the getnext operation. In fact, element is a parameterised sort specified by

the formalsort operator, and getnext is a parameterised opn specified by the

formalopn operator.

type ENUMERATE is

formalsorts element
formalopns ge tnext : −> element
sorts Enumerate
opns hasnext : −> Bool

endtype

Figure 5.4: Enumerate type specification.

Further, the Enumerate type can be used as the Enumerate to specify different

enumerations. For instance, the ENUMERATE BOOKCOPY type definition in

Figure 5.5 can be specified from the BOOKCOPY type definition. The actual-

izedby and using operators define that BOOKCOPY should provide the param-

eters specified in Figure 5.4. Then, the sortnames and for operators specify that

BookCopy is the value for the element sort parameter. The opnames and for

operators specify that the nextBookCopy is the value for the getnext operation

parameter.

type ENUMERATEBOOKCOPY is

Enumerate actualizedby BOOKCOPY using

sortnames BookCopy for element
opnames nextBookCopy for getnext

endtype

Figure 5.5: Specification of EnumerateBookCopy from the Enumerate type.

Doing these type mappings as presented here, a complete translation of the

types specified by Classes into LOTOS type specifications can be achieved.

5.4 Semantics for Structural Aspects of UMLi

5.4.1 The Classifier Specification

An informal definition of Classifier may be appropriate for readers not familiar

with the UMLi metamodel terminology. Class is a common term when mod-

elling and implementing object-oriented software systems. In terms of the UML
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metamodel, however, it is common to use Classifier rather than Class in certain

circumstances. In fact, Classifier is the construct that has StructuralFeatures such

as Attributes, and BehavioralFeatures such as Operations. Class is a specialisa-

tion of Classifier that specifies that it can be instantiated into an Object. The

main reason for the distinction between Class and Classifier is that there are other

constructs that are Classifiers other than Class such as the Interface construct.

Considering that Class is the major construct for specifying structural aspects

of software systems in UML, and that the Classifier is a generalisation of Class, a

UML construct definition for Classifier can provide a semantics for many structural

aspects of UML. In this section, the features of the BookCopy Class in Figure 3.2

are gradually translated into LOTOS in order to introduce a generic LOTOS

specification for Class, Classifier, and their related constructs.

Classifier is frequently used as a type specification in UML since it plays the

type role several times in the UML metamodel. In fact, a Classifier is an implicit

definition of type in the UML context. In LOTOS, types are explicitly declared.

The BookCopy class in Figure 3.2 has the attributes status and copyCode. Thus,

a BookCopy type can be specified as in Figure 5.6. This means that BookCopy is

the type of the BookCopy class.

type BOOKCOPY is enum , String

sorts BookCopy
opns mk BookCopy: −> BookCopy

mk BookCopy2: enum , String −> BookCopy
s e t s t a t u s : BookCopy , enum −> BookCopy
ge t s t a tu s : BookCopy −> enum
setcopycode : BookCopy , String −> BookCopy
getcopycode: BookCopy −> String

(∗ eqns s p e c i f i c a t i o n ∗)
endtype

Figure 5.6: BookCopy type specification.

A Classifier can specify behaviour in addition to the type specification, as

indicated by the BOOKCOPY CLS process in Figure 5.7. There, the copyCode at-

tribute of BookCopy is defined as a pair of low-level operations defined in the

type definition, viz., setcopycode and getcopycode, that are used by a pair of

observable actions, viz., cci and cco, to update and retrieve the current value of

the attribute. Moreover, the BOOKCOPY CLS process specifies that the attributes

of the BookCopy’s instance are ready to be updated, e.g., cci?new cc : String, or

retrieved, e.g., cco!getcopycod(bc), while the process is active. The same strategy
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is used to specify the status attribute of BookCopy.

process BOOKCOPY CLS[ s i , so , c c i , cco , destroy bookcopy ] ( bc:BookCopy ) :
exit :=
( s i ? new status:enum ;

BOOKCOPY CLS[ s i , so , c c i , cco , destroy bookcopy ]
( s e t s t a tu s ( bc , new status ) ) [ ]

so ! ge t s ta tus ( bc ) ;
BOOKCOPY CLS[ s i , so , c c i , cco , destroy bookcopy ]

( bc ) [ ]
c c i ? new cc :S t r ing ;

BOOKCOPY CLS[ s i , so , c c i , cco , destroy bookcopy ]
( setcopycode ( bc , new cc ) ) [ ]

cco ! getcopycode ( bc ) ;
BOOKCOPY CLS[ s i , so , c c i , cco , destroy bookcopy ]

( bc ) )
[> destroy bookcopy ; exit

endproc

Figure 5.7: Specification of Attributes in the BookCopy process.

A generic Classifier type and process can be defined from the BOOKCOPY type

and BOOKCOPY CLS process examples.

UCD 11 A Classifier is defined by the specification of a LOTOS type definition
and a LOTOS process definition. The type definition is specified as follows.

type CLASS is

sorts Class

opns mk class −> Class

endtype

The process definition is specified as follows.

process CLASS CLS[ destroy class ] ( c : Class) : exit :=

i ; CLASS CLS

(∗ t h i s i n t e rna l ac t ion i r epre sen t s

a c l a s s with an under spec i f i ed behaviour ∗)

[> destroy class ; exit

endproc

The destroy class gate in UCD 11 corresponds to the abort gate of ACTIV-

ITY ACT in the context of Classifiers as discussed in Section 5.5.8.

Hereafter, the CLASS and CLASS CLS names denote the generic type and pro-

cess definitions, respectively, of a Classifier. Complete specifications of CLASS and

CLASS CLS are presented in Section A.5. Considering CLASS and CLASS CLS, it is

possible to define the mappings for Object, Class and Attribute.
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UCD 12 An Object is a LOTOS process variable of the CLASS type and is used

by an instance of the CLASS CLS process.

UCD 13 A Class is a Classifier that can be used by a CreateAction ActionState

(UCD 23) to specify Objects in LOTOS processes.

UCD 14 An Attribute Attr of type AttrType is specified by a pair of type op-
erations in CLASS, e.g., setAttr and getAttr, and a pair of observable actions,
e.g., attri and attro, in CLASS CLS. The CLASS type with an Attr attribute is
specified as follows:

type CLASS is AttrType

sorts Class

opns mk Class: −> Class

mk Class2 : AttrType −> Class

set Attr : Class , AttrType −> Class

get Attr : Class −> AttrType

(∗ eqns specs ∗)

endtype

The CLASS CLS process with an Attr attribute is specified as follows:

process CLASS CLS [ attr i , attro , dest roy class ] ( c : Class) : exit :=

( attri ?new attr : AttrType;

CLASS CLS [ attri , attro , dest roy class]

( se t Attr( c , new attr ) ) [ ]

attro ! get Attr ( ) ;

CLASS CLS [ attri , attro , dest roy class ] ( c ) ) [ ]

. . . ) [ > destroy class ; exit

endproc

The pair consisting of the BOOKCOPY type and the BOOKCOPY CLS processes

provide an incomplete specification of the BookCopy Class in Figure 3.2. For

instance, the Operations of BookCopy are not specified in Figure 5.7.

5.4.2 The InteractionClass Specification

The semantics of the InteractionClass is based on the LOTOS specification of the

Abstraction-Display-Controller (ADC) interactors [82, 83]. Figure 5.8 provides

a schematic view of the ADC interactor that may be useful to visualise its top-

level structural components before discussing other features. There, an ADC

process is represented as a big box (light shadowed area). The top of the box is

its abstraction side, the bottom of the box is its display side and the right side
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Figure 5.8: An schematic view of the ADC interactor [83].

of box is its controller side. The abstraction side is where the communication

between the interactor and other objects, which may be domain objects or other

interactors, can occur. The display side is where the communication between the

interactor and system users can occur. In other words, the interaction between

objects of the user interface and other objects of the application can only occur

on the abstraction side of interactors. The interaction between users and objects

of the user interface can only occur on the display side of interactors. The con-

troller side is responsible for the handling of some specific actions provided by

the environment which comprehends domain, interactors and users among other

agents.

Figure 5.8 still shows the Abstraction and Display Unit (ADU) and Con-

straints Component (CC) processes represented as the two boxes within the ADC

process, process gates represented as small black discs, and internal compositions

represented as thin lines connecting the CC process to the ADU gates. The ADU

and CC processes are represented within the ADC interactor since the interactor

is the result of their parallel composition, as presented in Figure 5.9. There, Gio

is the ordered set of gates {intClass, dinp, dout, ainp, aout} and G = Gio∪Gcc

where Gcc is the ordered set of gates {start, suspend, restart, resume, abort}.

The ADU part of the ADC interactor is responsible for handling the operations

that can affect the state of the interactor. The CC part of the ADC is responsible

for constraining the ADU operations allowing them to be performed according to

a set of temporal dependencies between operations.
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process ADC[ G ] ( IC : in tClas s , A:abs , D:disp ) : noexit :=
ADU[ Gio ] ( IC , A,D,D) | [ Gio ] | CC[ G ]

endproc

Figure 5.9: The ADC interactor.

The ADC interactor requires a particular data structure called Abstraction and

Display (ad) type for supporting the specification of the ADU and CC processes.

Thus, the ad type is presented in the following section in order to introduce the

ADU and CC processes.

The Abstraction and Display Type

The ad type is an abstract specification of the data structure required to support

the ADC interactor functionalities. Figure 5.10 shows the ad type specification.

There, the ad type has six sorts. The intClass, abs and disp sorts are inter-

nally referred in an ADC interactor.

type ad is

sorts i n tC las s , abs , disp , dInpData , aInpData , aOutData
opns mk ad: −> i n tC las s , abs , disp

mk ad2: in tClas s −> i n tC las s , abs , disp
input : dInptData , disp , abs −> abs
echo: dInpData , disp , abs −> disp
render : disp , aInptData −> disp
r e c e i v e : abs , aInpData −> abs
r e s u l t : abs −> aOutData
ge tConta ine r : in tC las s −> i n tC las s
ge tSta tus : in tC las s −> abs , disp
i s I n s i d e : disp , disp −> Bool

hasOver lapping: disp , disp −> Bool

foral l a , b , c : i n tC l a s s , aa , ba , ca : abs , ad , bd , cd: disp
getContainer ( a ) eq c and getStatus ( a ) eq aa , ad and
getStatus ( c ) eq ca , cd

=> i s I n s i d e ( ad , cd ) eq true ;
getContainer ( a ) eq c and getStatus ( a ) eq aa , ad and
getStatus ( c ) eq ca , cd

=> i s I n s i d e ( cd , ad ) eq f a l s e ;
getContainer ( a ) eq c and getStatus ( a ) eq aa , ad and
getContainer ( b ) eq c and getStatus ( b ) eq ba , bd

=> hasOverlapping ( ad , bd ) eq f a l s e ;
endtype

Figure 5.10: The ad type.

• The intClass is the unique identification of an interactor. It corresponds

to the Class sort in UCD 11.
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• The disp is the sort carrying the state of the visual side of the ADC

interator.

• The abs is the sort carrying the state of the abstract side of the ADC

interactor.

In addition to the internal sorts above, the ad type in Figure 5.10 specifies

three other sorts to specify data items that interactors may exchange with users

and other objects.

• The dInpData is the sort carrying raw data received from users when in-

teracting with the display side of the ADC interactor.

• The aInpData is the sort carrying data received from objects interacting

with the abstract side of the ADC interactor. Data item in aInpData is

in the format used by the object interacting with the abstract side of the

ADC interactor.

• aOutData is the sort carrying data to be sent to objects interacting with

the abstract side of an ADC interactor. Data item in aOutData is in the

format used by the object interacting with the abstract side of the ADC

interactor.

The ad type specifies eleven operations used to manipulate the sorts intro-

duced above.

• The mk ad operation instantiates a new interactor which is not contained

by any other interactor. Three variables of type intClass, abs and disp,

which characterise the internal state of the newly created interactor, are

produced as the result of invoking the operation.

• The mk ad2 operation instantiates a new interactor contained by the inter-

actor which provides the intClass parameter. Like the mk ad, the mk ad2

operation also produces three variables carrying the internal state of the

newly created interactor.

• The input operation computes the updated data in abs by interpreting

current data in dInpData with respect to current data in disp and abs.
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• The echo operation computes the updated data in disp by interpreting

current data in dInpData with respect to current data in abs and disp.

• The render operation computes the updated data in disp by interpreting

current data in aInpData. This computation is the process of rendering the

presentation of the interactor.

• The receive operation computes the updated data in abs by interpreting

current data in aInpData and performing required transformations to put

the data in a suitable format for the interactor.

• The result operation computes the updated data in aOutData with respect

to current data in abs, performing any required transformation to deliver

the data in a suitable format for objects interacting with the abstract side

of the interactor.

• The getContainer operation returns the intClass of the interactor which

contains the current interactor.

• The getStatus operation returns the disp and abs of the intClass used

as parameter.

• The isInside operation returns true if the second of its disp parameter

is within the first disp parameter. Otherwise, the operation returns false.

The notion of being “within” is intensionally abstract to make the operation

useful for different kinds of presentations, e.g., two and three dimensional

presentations.

• The hasOverlapping operation returns true if the two disp parameters

are not overlapping. Otherwise, the operation returns false. Similarly

with the isInside parameter, the notion of “overlapping” is intentionally

abstract to make the operation useful for different kinds of presentations.

The intClass sort and mk ad, mk ad2, getContainer, getStatus, isInside

and hasOverlapping operations are not specified in [83]. The intClass sort

and mk ad operation are required to make the ADC interactor a Class used to

instantiate Objects that are uniquely identified. The getContainer, getStatus,

isInside and hasOverlapping operations are required to create the notion of
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containment of interaction objects, abstracted in ADC interactors, that is re-

quired to support the specification of the mk ad2 operation.

From the ad type it is possible to describe the ADU and CU processes that

compose an ADC interactor.

The Abstraction-Display Unit (ADU) Process

The ADU process specifies the relationships between ad operations and actions

resulting from the interaction of objects and users with ADC interactors. The

specification of the ADU process in Figure 5.11 shows these relationships. For

instance, an action on gate ainp produces an x variable of aInpData that is

followed by the performance of the receive and render operations. As can

be observed in Figure 5.11, the ADU process is recursively instantiated for every

interaction performed on its gates.

process ADU[ Gio ] ( i c : i n tC l a s s , a :abs , dc , ds :d i sp ) : noexit :=
( dinp ? x:dInpData ; ADU[ Gio ] ( i c , input ( x , ds , a ) , echo ( x , ds , a ) , ds ) [ ]

dout ! dc ; ADU[ Gio ] ( i c , a , dc , dc ) [ ]
ainp ? x:aInpData ; ADU[ Gio ] ( i c , r e c e i v e ( a , x ) , render ( dc , x ) , ds ) [ ]
aout ! r e su l t ( a ) ; ADU[ Gio ] ( i c , a , dc , ds ) )

endproc

Figure 5.11: The ADU process.

Four local variables carry the current state of the interactor every time the

ADU process is recursively instantiated.

• The ic state parameter of type intClass is the unique identifier of the

current interactor.

• The a state parameter of type abs is the current state of the abstraction of

the interactor.

• The ds state parameter of type disp is the current state of the display of

the interactor.

• The dc state parameter of type disp is an auxiliary state carrying the latest

value computed for the display of the interactor.

A description of the actions recognised by an ADU process can explain the

relationships between actions, named after the gate where they can occur, and

operations. Thus, these are the four actions recognised by an ADU process:
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• An interaction on gate dinp receives data of type dInpData that is used

to update the a state parameter by performing the input operation and to

compute the dc state parameter by performing the echo operation.

• An interaction on gate dout produces data of type disp and update ds

with the data of dc.

• An interaction on gate ainp receives data of type aInpData that is used to

update the a state parameter by performing the receive operation and to

compute the dc state parameter by performing the render operation.

• An interaction on gate aout produces data of type aOutData by performing

the result operation over the a state parameter.

The CC process is the part of the ADC interactor responsible for specifying

temporal constraints between its operations, as described in the following section.

The Constraints Component (CC) Process

From the description of the ADC process presented so far, there is no restriction

on the way that ADC interactors can react to interactions on their gates. For

example, interactors would be ready to interact with users on gate dinp once

they are instantiated. Operations, however, may need to be constrained in order

to become useful. In fact, it may be necessary that an instantiated interactor

may not be ready to interact with users on gate dinp, for example. Recalling

Figure 5.11, the CC process is synchronised with the ADU process by their common

gates Gio. Therefore, the CC process has control of the ADU process since any

condition specified in its behaviour expression is also a condition on the execution

of the ADU process. Figure 5.12 presents the CC process where the behavioural

pattern of the ADC process is specified.

A description of the five gates that the CC process has in addition to those in

the ADU process, viz., start, suspend, resume, restart and abort, can describe

the CC process itself. These gates are derived from the GARNET [94] project,

where they are used to describe user interface dialogs. They are also called

SSRRA gates and can be described as follows:

• An interaction on gate start is required to enable the ADC interactor

by instantiating the RUN process in Figure 5.12. No other action is recog-

nised before this interaction. Once the interaction is performed, the parallel
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process CC[ s tar t , suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ] : noexit :=
s tar t ; RUN[ suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ]

where

process RUN[ suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ] : noexit :=
( CU[ dinp , dout , ainp , aout ]

| [ dinp , dout , ainp , aout ] |
SU RE[ suspend , resume , dinp , dout , ainp , aout ] )

[> INTERRUPT[ suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ]
endproc

process CU[ dinp , dout , ainp , aout ] : noexit :=
ainp ? X:aInpData ; CU[ dinp , dout , ainp , aout ] [ ]
aout ?X:aOutData ; CU[ dinp , dout , ainp , aout ] [ ]
dout ? X:disp ; CU[ dinp , dout , ainp , aout ] [ ]
dinp ?X:dInpData ; CU[ dinp , dout , ainp , aout ]

endproc

process SU RE[ suspend , resume , dinp , dout , ainp , aout ] : noexit :=
ANYORDER[ dinp , dout , ainp , aout ]
[> suspend ; resume ; SU RE[ suspend , resume , dinp , dout , ainp , aout ]

endproc

process ANYORDER[ dinp , dout , ainp , aout ] : noexit :=
ainp ? X:aInpData ; ANYORDER[ dinp , dout , ainp , aout ] [ ]
aout ?X:aOutData ; ANYORDER[ dinp , dout , ainp , aout ] [ ]
dout ? X:disp ; ANYORDER[ dinp , dout , ainp , aout ] [ ]
dinp ?X:dInpData ; ANYORDER[ dinp , dout , ainp , aout ]

endproc

process INTERRUPT[ suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ] :
noexit :=

r e s t a r t ; RUN[ suspend , resume , r e s t a r t , abort , dinp , dout , ainp , aout ] [ ]
abort ; stop

endproc

endproc

Figure 5.12: The CC process.

composition of the CU and SU RE process is instantiated to allow either the

normal execution of the ADU operations due to the ANYORDER process within

the SU RE process or the suspension of the ADU operations.

• An interaction on gate suspend halts the ADU process that is synchronised

with the SU RE process by waiting for an interaction on gate resume.

• An interaction on gate resume re-instantiates the SU RE process, and con-

sequently the ANYORDER process, re-enabling the ADU functionalities.

• An interaction on gate restart, that can happen anytime after the RUN

process is instantiated, is used to reset the interactor to its initial state.

• An interaction on gate abort issues a stop operation that finishes the entire
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ADC interactor.

The InteractionClass as an ADC Interactor

The InteractionClass definition is derived from the ADC interactor specification

as presented in this section. The basic InteractionClass construct is a constrained

version of the ADC interactor. The hide operation of LOTOS is used to constrain

some ADC functionalities by restricting its interaction with other objects on

some gates. For instance, hiding the ainp gate would prevent an ADC interactor

from interacting with other objects on this gate, which eventually prevents the

performance of the receive and render operations.

UCD 15 An InteractionClass is an ADC interactor that, by default, has the ainp

and aout gates hidden, specified as follows:

process ADC[ G - {ainp,aout} ] ( IC : in tC la s s , A:abs , D:disp ) : noexit :=

hide ainp , aout in

(ADU[ Gio ] ( IC , A,D,D) | [ Gio ] | CC[ G ] )

endproc

There, the intClass, abs and disp sorts are specified in the ad type in Fig-

ure 5.10. The ADU process is specified in Figure 5.11. The CC process is specified

in Figure 5.12.

Thus, from the ADC specification in this chapter it can be observed that an

InteractionClass is a specialised Class as defined in UCD 13, and consequently, a

specialised Classifier as defined in UCD 11. Indeed, in terms of type specification,

the ad type of the ADC interactor specifies an intclass sort which corresponds

to the Class sort. Moreover, the mk ad operation of ad type corresponds to the

mk class operation of Class. In terms of process specification, an InteractionClass

specifies an abort gate in its Gcc set of gates with the same functionality as the

abort gate in the Class specification.

According to Figure 4.15, there are seven UMLi constructs derived from the

InteractionClass. These constructs are presented in the following sections.

5.4.3 The PrimitiveInteractionClass Specification

Trees of InteractionClasses can be built using the parallel composition of Inter-

actionClasses. In fact, in addition to the parallel composition, ADC processes

that specify InteractionClasses can be hierarchically organised since some of them
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can be contained by others depending on whether they are instantiated by the

mk ad or mk ad2 operations. PrimitiveInteractionClasses along with ActionInvokers

are the leaves of these trees of InteractionClasses. The PrimitiveInteractionClass is

specified in this section and the ActionInvoker is specified in the next section.

UCD 16 A PrimitiveInteractionClass is an InteractionClass to Objects of which are

instantiated using the mk ad2 operation only. The intClass sort of instances of

PrimitiveInteractionClass cannot be used as the parameter of mk ad2 operations.

An instance of a PrimitiveInteractionClass is always a leaf on trees of Interac-

tionClasses since it must be contained by another InteractionClass, and at the same

time it cannot contain any other InteractionClass. A PrimitiveInteractionClass must

be contained by another InteractionClass since it cannot be instantiated by the

mk ad operation. A PrimitiveInteractionClass must not contain any other Interac-

tionClass since its intclass sort cannot be used as the parameter for any mk ad2

operation.

From the definition of InteractionClass (UCD 15) it can be observed that it

does not need to have the ainp and aout gates hidden. In fact, UMLi constructs

derived from PrimitiveInteractionClass are specified revealing one or both of the

ainp and aout gates of the InteractionClass. Thus, the UMLi constructs derived

from PrimitiveInteractionClass are specified as follows.

UCD 17 A Displayer is a PrimitiveInteractionClass with the ainp gate not used.

Having the ainp gate visible, Displayers can propagate inputs from domain

objects and other InteractionClasses to users. However, inputs from users are not

propagated to any other object by Displayers since their aout gates are hidden.

UCD 18 An Inputter is a PrimitiveInteractionClass with the aout gate not used.

Having the aout gate visible, Inputters can propagate inputs from users to do-

main objects and other InteractionClasses. However, inputs from domain objects

or other InteractionClasses are not recognised by Inputters since their ainp gates

are hidden.

UCD 19 An Editor is a PrimitiveInteractionClass with both the ainp and aout

gates not used.

An Editor can propagate inputs both from users to domain objects and other

InteractionClasses, and from domain objects and other InteractionClasses to users.
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5.4.4 The ActionInvoker Specification

An ActionInvoker is a special kind of InteractionClass that does not receive or send

any data item through its dinp and ainp gates.

UCD 20 An ActionInvoker is an InteractionClass with the aout gate visible and
the ADU process specified as follows:

process ADU[ Gio ] ( i c : i n tC l a s s , a :abs , dc , d s :d i sp ) : noexit :=

( dinp ? x:dInpData ; ADU[ Gio ] ( i c , a , echo ( x , ds , a ) , ds ) [ ]

dout ! dc ; ADU[ Gio ] ( i c , a , dc , dc ) [ ]

ainp ; ADU[ Gio ] ( i c , a , dc , ds ) [ ]

aout ; ADU[ Gio ] ( i c , a , dc , ds ) )

endproc

The CU and ANYORDER subprocesses of CC if Figure 5.12 are specified according to

the ADU specification above. Objects of ActionInvoker are instantiated using the

mk ad2 operation only. The intClass sort of instances of ActionInvoker cannot

be used as the parameter of mk ad2 operations.

The restrictions concerning ActionInvoker’s instantiation and use of the int-

class sort are the same as those of the PrimitiveInteractionClass, as discussed in

Section 5.4.3. The ActionInvoker is very similar to an Inputter since it has the aout

gate visible and the ainp gate hidden. However, it cannot propagate information

to other objects other than the aout signal itself.

ActionInvokers are useful since they allow users to navigate through interactive

applications by modifying the application control-flow according to interactions

on their aout gates that do not require the exchange of any particular data item

such as a mouse click. In UMLi , these ActionInvoker actions are interpreted

according to the kind of interaction object flow the ActionInvoker is associated

with, as discussed in Section 5.5.

The properties of the ADC interactor presented so far describe aspects of

a generic widget. However, in the same way that widgets can be grouped to

build user interfaces, ADC interactors can be combined to build UI specifications.

In the next section it is discussed how UI specifications can be constructed by

composing ADC interactors.

5.4.5 The Container Specification

There are many different ways of composing ADC interactors. These varia-

tions of compositions, however, are of one of the two distinct forms named
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as the distributed form (DF) and the compound form (CF) in [82]. For the

ADCA = ADUA|[G
A
io]|CCA and ADCB = ADUB|[G

B
io]|CCB interactors, the DF

composition is a parallel composition defined as follows:

DF = (ADCA|[G
A
io]|CCA)|[Gcomp]|ADUB|[G

B
io]CCB) (5.1)

where Gcomp ⊆ GA ∩ GB.

The CF composition is defined as follows:

CF = (ADCA|[G
AB
io ]|ADCB)|[GA

io ∪ GB
io]|CCA|[G

AB]CCB) (5.2)

where GAB
io ⊆ GA

io ∩ GB
io and GAB ⊆ GA ∩ GB.

In this section, we are using DF compositions to exemplify the construction

of UI specifications using ADC interactors. The strong bisimulation equivalence

of the DF and CF compositions is demonstrated in [82]. This means that the DF

compositions in this section can be expressed in terms of CF compositions.

As presented in Equation 5.1, DF is a category of compositions since the set

of synchronisation gates Gcomp can vary from a full synchronisation (Gcomp =

GA ∪ GB) to a pure interleaving (Gcomp = ∅). Considering this variability of

Gcomp, Container can be defined as follows.

UCD 21 A Container is an InteractionClass where the Gcomp of any composition

containing it is {start, restart, abort}.

The specification of the Gcomp for compositions containing Containers in UCD 21

means that for any Container the InteractionClasses contained by it and containing

it must be started, restarted and aborted simultaneously. From a presentation

point of view, the Container is an InteractionClass that visually can contain other

InteractionClasses, as identified by the eqns in Figure 5.10. From a behavioural

point of view, the Container is a grouping mechanism that causes a set of Inter-

actionClasses to be initiated and destroyed in a synchronised way.

From UCD 21 we can also observe that there is no restriction on Objects

of Containers being instantiated by the mk ad or mk ad2 operation. Thus, the
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possibility of instantiating Container using the mk ad operation means that a

Container is not required to be contained by another InteractionClass. Further,

the possibility of instantiating Container using the mk ad2 operation means that

a Container can be contained by another Container.

UCD 22 A FreeContainer is a Container that can be instantiated using the mk ad

operation only. A parallel composition of InteractionClasses cannot contain more

than one FreeContainer.

The restriction that a FreeContainer can only be instantiated by the mk ad

operation means that it cannot be contained by any other Container. The re-

striction that compositions of InteractionClass can have only one FreeContainer

means that the FreeContainer is the top-level InteractionClass in any composition

of InteractionClasses. From UCDs 21 and 22 it is observed that a FreeContainer is

a presentation unit as defined in [14]. Indeed, the start, restart and abort of

the FreeContainer of a composition of InteractionClasses corresponds to the start,

restart and abort of all InteractionClasses immediately and non-immediately

contained by the FreeContainer, respectively.

A further discussion about behavioural aspects of UMLi completes the frame-

work required to generate LOTOS specifications from UMLi models.

5.5 Semantics for Behavioural Aspects of UMLi

The UCDs of the behavioural constructs of UMLi presented in this section along

with the structural UCDs presented in the previous section are the mapping

rules required to resume the translation of part of the Library System initiated in

Section 5.3. Thus, the LOTOS translation of the Connect Activity in Figure 4.8

identified as the CONNECT ACT process in Figure 5.3 is presented in full in this

section.

5.5.1 The CreateAction ActionState Specification

CreateActions are performed to instantiate Classes. The specification of when

actions creating objects can take place is required to identify when Objects are

available. Thus, in the Connect Activity in Figure 4.8, new UserQuery is a Cre-

ateAction ActionState that creates the ud instance of Class.
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UCD 23 A CreationAction ActionState for a Class is specified as the CREATE -

CLASS AS process as follows:

process CREATE CLASS AS [ abort ] : exit (Class) :=

( i ; exit (mk class ) )

[> abort ; exit

endproc

A CreateAction ActionState is invoked in its Activity’s behaviour expression
(UCD 1) by the <CREATE ACTIONSTATE> non-terminal specified as follows.

<CREATE ACTIONSTATE> ::=

‘ ‘ CREATE CLASS AS [ abort ] >> accept c : Class in ( ’ ’

<a c t i v i t y b ehav i ou r > ‘ ‘ ) ’ ’

The definition of the types and processes of the modelled Classifiers are spec-

ified in the top-level Activity. Thus, the description of the structural part of

software systems can be used throughout the specification of the behaviour of

the software systems. For instance, CreateActions can be specified within any

Activity.

5.5.2 The ObjectFlowState and ClassifierInState Specifications

UML provides the ObjectFlowState and ClassifierInState constructs to specify ob-

ject flows, as discussed in Section 4.3.2. Thus, in the Connect Activity in Fig-

ure 4.8, the uq ClassifierInState1 of type UserQuery is produced as a result of the

new UserQuery CreateAction ActionState. ObjectFlowStates specify the incoming

and outgoing of objects with respect to the scope of an ActionState. Furthermore,

ObjectFlowStates provide the Object where the associated ActionState takes place,

and optional Objects which can be used as parameters to the Action performed

in an ActionState.

UCD 24 A ClassifierInState is an Object, as specified by UCD 12.

The UCD 24 is introduced since ClassifierInStates and Objects are distinct

constructs in the UML metamodel.

UCD 25 An incoming ObjectFlowState is a synchronisation of a Signal or the

Messages of an Operation between an ActionState process and a Classifier process.

1Figure 4.13 shows the ClassifierInState and ObjectFlowState constructs for building object
flows in the UMLi notation.
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The UCDs defining Signal, Message and Operation are introduced in Ap-

pendix A.

UCD 26 An outgoing ObjectFlowState is the passing of a ClassifierInState to an

ActionState.

5.5.3 The CallAction and SendAction ActionState Specifications

In Figure 4.8, the uq.checkUser() is a CallAction ActionState where the CHECK -

USER operation of a UserQuery Object instantiated in new UserQuery is invoked.

This CHECK USER operation is defined in the USERQUERY CLS. No parame-

ter is passed to this operation, i.e., the getBookCopy action is not followed by any

variable. The result of the operation is the cu Object of the LibraryUser Class.

In fact, this cu should be an Object either previously instantiated in the current

session or produced as the result of a query submitted to an associated database

system. The exactly specification of how the Method of an implementation could

be implemented is under-specified during the design.

A SendAction ActionState has a LOTOS specification quite similar to a CallAc-

tion ActionState. The main differences between these two categories of Action-

States are those differences between SendActions and CallActions. For instance,

if the associated Action is a SendAction, the specification of the ActionState does

not includes the CallInvoker Message. With respect to their ActionStates, Object-

FlowStates and ClassifierInStates are defined in the same way.

UCD 27 An ActionState performing a CallAction or a SendAction that has in-
coming object flows OF IN1 ... OF INM and outgoing object flows OF OUT1 ...
OF OUTN of types OF OUT1 TYPE ... OF OUTN TYPE is defined by a LOTOS pro-
cess definition specified as follows:

process ACTIONSTATE AS [ action , action res ] : exit ( type result ) :=

action ; action res? r e s u l t : type result;

exit ( r e s u l t )

endproc

The ActionState is invoked in its Activity’s behaviour expression (UCD 1) by
the <CALL SEND ACTIONSTATE> non-terminal specified as follows.

<CALL SEND ACTIONSTATE> ::=

<ob j e c t f l ow in > <synch>

‘ ‘ ACTIONSTATE AS[action , action res] accept ’ ’

<ob j e c t f l ow ou t l i s t > ‘ ‘ in ( ’ ’

<a c t i v i t y b ehav i ou r > ‘ ‘ ) ’ ’
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<ob j e c t f l ow in > ::=

<ob j e c t f l ow in name >

‘ ‘ [ ’ ’ < ob j e c t f l ow ga t e s > ‘ ‘ ] ’ ’

<synch > ::= ‘ ‘ |[action , action res]| ’ ’

<ob j e c t f l ow in name > ::= ‘ ‘ OF IN1 ’ ’ − ‘ ‘ OF INM ’ ’

<ob j e c t f l ow ou t l i s t > ::= <> |

<ob j e c t f l ow ou t l i s t > <ob j e c t f l ow ou t >

<ob j e c t f l ow ou t > ::= <object f low out name > ‘ ‘ : ’ ’

<ob j e c t f l ow ou t t yp e >

<object f low out name > ::=

‘ ‘ OF OUT1 ’ ’ − ‘ ‘ OF OUTN ’ ’

<ob j e c t f l ow ou t t yp e > ::=

‘ ‘ OF OUT1 TYPE ’ ’ − ‘ ‘ OF OUTN TYPE’ ’

From the definitions of ClassifierInState, ObjectFlowState, CallAction and Send-

Action it is possible to specify the UMLi stereotypes introduced in Section 4.2.3

that characterise the interaction object flows. The UMLi stereotypes are specified

in the following sections along with the three categories of SelectionState presented

in Figure 4.16.

5.5.4 The �presents� Stereotype Specification

The �presents� stereotype identifies interaction object flows which create the

context where InteractionClasses can be used in Activities, ActionStates and Selec-

tionStates. This is the most complex category of interaction object flows and its

UCD is based on the definition of the INITIATE UI ACT process.

The INITIATE UI ACT process is a sequence of CreateActions of Interaction-

Classes defined within a FreeContainer in a user interface diagram, including

a CreateAction for the FreeContainer itself. The sequence starts with the Cre-

ateAction that instantiates the FreeContainer followed by the instantiation of

the InteractionClasses immediately contained by the FreeContainer. CreateAc-

tions are also performed for each InteractionClass defined within Containers al-

ready instantiated until a CreateAction is performed for each InteractionClass de-

fined within the FreeContainer. Figure 5.13 presents the INITIATE UI ACT for

the Connect user interface in Figure 4.2 named INITIATE CONNECTUI ACT. There

can be observed that the FreeContainer is instantiated by the mk ad operation
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process INITIATE CONNECTUI ACT[ abort ] :
exit ( incClas s , abs , disp , . . . , i n tC las s , abs , disp ) :=

CREATE CONNECTUI AS[ abort ] >>

accept c u i i c : i n t C l a s s , cu i ab s : ab s , c u i d i s p : d i s p in

( CREATE OPTIONS AS[ abort ] ( c u i i c , cu i abs , cu i d i s p ) >>

accept op i c : i n tC l a s s , op abs :abs , op d i sp : d i s p in

( CREATE DETAILS AS[ abort ] ( c u i i c , cu i abs , cu i d i s p ) >>

accept d t i c : i n t C l a s s , d t abs :abs , d t d i s p : d i s p in

. . .
( CREATE CANCEL AS[ abort ] ( op i c , op abs , op disp ) >>

accept c n i c : i n t C l a s s , cn abs :abs , cn d i sp : d i s p in

. . .
exit ( c u i i c , cu i abs , cu i d i s p ,

op i c , op abs , op disp ,
d t i c , dt abs , d t d i sp ,
. . .
cn i c , cn abs , cn disp ,
. . . ) ) ) )

where

process CREATE CONNECTUI AS[ abort ] : exit ( in tClas s , abs , disp ) :=
( i ; exit ( mk ad ( ) ) )
[> abort ; exit

endproc

process CREATE OPTIONS AS[ abort ] ( c u i i c : i n t C l a s s , cu i ab s : ab s , c u i d i s p : d i s p ) :
exit ( in tClas s , abs , disp ) :=

( i ; exit ( mk ad2 ( c u i i c , cu i abs , cu i d i s p ) ) )
[> abort ; exit

endproc

process CREATE DETAILS AS[ abort ] ( c u i i c : i n t C l a s s , cu i ab s : ab s , c u i d i s p : d i s p ) :
exit ( in tClas s , abs , disp ) :=

( i ; exit ( mk ad2 ( c u i i c , cu i abs , cu i d i s p ) ) )
[> abort ; exit

endproc

. . .
process CREATE CANCEL AS[ abort ] ( c n i c : i n t C l a s s , cn abs :abs , cn d i sp : d i s p ) :

exit ( in tClas s , abs , disp ) :=
( i ; exit ( mk ad2 ( cn i c , cn abs , cn disp ) ) )
[> abort ; exit

endproc

. . .
endproc

Figure 5.13: The INITIATE CONNECTUI ACT process.

in CREATE CONNECTUI AS as specified in UCD 22, and that the other Interaction-

Classes are instantiated by the mk ad2 operation in the other CreateAction Action-

States. For instance, it can be observed that the options Container is specified

as contained by the FreeContainer and that the cancel ActionInvoker is specified

as contained by the options Container.

From the definition of the INITIATE UI ACT process it is possible to define the

�presents� stereotype as follows.

UCD 28 The �presents� stereotype is the performing of an INITIATE UI ACT

process for the associated FreeContainer in the definition of the associated Activity
or ActionState, ASSOC ACT, as follows.
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INITIATE UI ACT[ abort ] >>

accept ic1 : i n tC l a s s , a1:abs , d1 :d i sp ,

ic2 : i n tC l a s s , a2:abs , d2 :d i sp ,

. . . ,

icn : i n tC l a s s , an:abs , dn :d i sp in

( ASSOC ACT[ G1

io
∪ G2

io
∪ · · · ∪ Gn

io
,

start , sus1, sus2 , . . . , susn,

restart, resu1, resu2 , . . . , resun, abort ui ]

| [ s t a r t , r e s t a r t , abortu i ] |

FREECONTAINER CLS [ G1

io
, start, sus1, restart, resu1, abort ui ]

( ic1, a1, d1)

| [ start, restart, abort ui ] |

INTCLASS2 CLS [ G2

io
, start, sus2, restart, resu2, abort ui ]

( ic2, a2, d2)

| [ start, restart, abort ui ] |

. . .

INTCLASSn CLS [ Gn

io
, start , susn, restart, resun, abort ui)

>> . . .

where the behaviour expression of the ASSOC ACT process is defined as follows:

start; sus1; sus2 ; . . . ; susn;

(∗ ASSOC ACT sp e c i f i c a t i o n ∗) ;

abort ui

The ASSOC ACT process in UCD 28 is an Activity as defined in UCD 1 with every

gate of the InteractionClasses that compose the Connect user interface visible.

Thus, the functionalities provided by the user interface are made available within

the behavioural expression of the associated activity. The other categories of

interaction object flows presented in this section are defined within the context

of a FreeContainer associated to an Activity by an �presents� interaction object

flow. In this case, the other categories of interaction object flows take advantage

of this visibility of the gates of InteractionClasses.

Considering UCD 28, the LIBRARY ACT process in Figure 5.3 can be refined

as presented in Figure 5.14 to incorporate the �presents� interaction object

flow of the ConnectUI FreeContainer associated to the Connect Activity. It can

be observed there how user interface functionalities are made available to the

CONNECT ACT.
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specif ication LIBRARY ACT[ abort ] : exit

behaviour

INITIATE CONNECTUI ACT[ abort ] >>

accept c u i i c : i n t C l a s s , cu i ab s : ab s , c u i d i s p : d i s p ,
o p i c : i n tC l a s s , op abs :abs , op d i sp : d i s p , . . . in

( CONNECT ACT[ Gcui
io ∪ Gdt

io ∪ · · · , s ta r t , s u s cu i , sus op , . . . ,
r e s t a r t , r e s cu i , res op , . . . , abortui ] | [ s ta r t , r e s t a r t , abortui ] |

CONNECTUI CLS[ Gcui
io , s ta r t , s u s cu i , r e s t a r t , r e s cu i , abortui ]

( c u i i c , cu i abs , cu i d i s p ) | [ s ta r t , r e s t a r t , abortui ] |
OPTIONS CLS[ G

op
io , s ta r t , sus op , r e s t a r t , res op , abortui ]
( op i c , op abs , op disp ) | [ s ta r t , r e s t a r t , abortui ] |

. . . ) >> SELECTFUNCTION ACT[ abort ]
[> abort ; exit

where

process CONNECT ACT[ Gcui
io ∪ Gdt

io ∪ · · · , s ta r t , s u s cu i , sus op , . . . , r e s t a r t ,
r e s cu i , res op , . . . , abortui , abort ] : exit :=

s tar t ; s u s cu i ; sus op ; . . . ;
(∗ CONNECT ACT sp e c i f i c a t i o n ∗) ; abortui
[> abort ; exit

endproc

process SELECTFUNCTION ACT[ abort ] := exit :=
(∗ SELECTFUNCTION ACT sp e c i f i c a t i o n ∗)

endproc

process INITIATE CONNECTUI ACT[ abort ] :
exit ( incClas s , abs , disp , . . . , i n tC las s , abs , disp ) :=
(∗ INITIATE CONNECTUI ACT[ abort ]

endproc
process CONNECTUI CLS[ Gcui

io , s t a r t , sus cu i , r e s t a r t , re s cu i , abor tu i ] := ex i t :=
(∗ FreeContainer s p e c i f i c a t i o n ∗)

endproc

process OPTIONS CLS[ G
op
io , s ta r t , sus op , r e s t a r t , res op , abortui ] := exit :=

(∗ Container s p e c i f i c a t i o n ∗)
endproc

. . .
endspec

Figure 5.14: The INITIATE CONNECT ACT in the LIBRARY ACT process.

5.5.5 The �cancels� Stereotype Specification

The �cancels� stereotype is an interaction object flow stereotype included in

many UI designs. In order to introduce �cancels�, let GENERIC ACT be a generic

Activity, ACTIVITY ACT be an Activity defined within GENERIC ACT, and cancel

be a ClassifierInStates of type ActionInvoker associated with GENERIC ACT by a

incoming ObjectFlowState. Thus, a �cancels� stereotype in the incoming Ob-

jectFlowState is defined as follows.

UCD 29 The �cancels� stereotype in an object flow associated with an Activity
represented by the ACTIVITY ACT process identifies the CANCELLABLE ACT process
presented below.

process GENERIC ACT[ . . . , abort ] : exit :=

. . . >> CANCELLABLE ACT [ . . . , resumecn, suspendcn, aoutcn ] >> . . .

process
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CANCELLABLE ACT [ . . . , resumecn, suspendcn, aoutcn ] : exit :=

resumecn >>

(( ACTIVITY ACT [ . . . , aoutcn] >> exit ) | | |

aoutcn; suspendcn;

(∗ suspend as soc ia t ed In t e r a c t i onC l a s s e s ∗) ; exit )

where

process ACTIVITY ACT[ aoutcn]

. . .

endproc

endproc

endproc

The stereotype also identifies the assignment of the aout, resume and suspend

gates of the associated ClassifierInState of type ActionInvoker to the aoutcn, re-

sumecn and restartcn gates in the CANCELLABLE ACT process.

UCD 29 shows that the aout gate of the associated ActionInvoker becomes

the abort gate of ACTIVITY ACT. This is the precise meaning of the �cancels�

stereotype that enables the ActionInvoker while performing ACTIVITY ACT. Thus,

the CANCELLABLE ACT can finish either by finishing the ACTIVITY ACT or by an

interaction on the aout gate of the associated ActionInvoker.

According to Figure 4.8, the Connect Activity can be cancelled due to the

�cancels� interaction object flow of an instance of the Cancel ActionInvoker.

Thus, the CONNECT ACT process in Figure 5.14 can be refined as presented in

Figure 5.15, assuming that Gconnect is the set of gates of the process as previ-

ously specified in Figure 5.14. Therefore, the CANCELLABLE CONNECT ACT replaces

the original the CONNECT ACT process, taking the original gates and composi-

tions of CONNECT ACT with other processes. Furthermore, the existing behaviour

expression related to the �presents� interaction object flow is also preserved

in CANCELLABLE CONNECT ACT. Finally, the original CONNECT ACT process in Fig-

ure 5.15 becomes a subprocess of CANCELLABLE CONNECT ACT, corresponding to

the ACTIVITY ACT in UCD 29.

5.5.6 The OptionalState Specification

An OptionalState should have at least two selectable Activities. Thus, let a

GENERIC ACT be the process representing a generic Activity having a range of

SUB1 ACT · · · SUBn ACT representing Activities defined within the generic Activ-

ity. Particularly, let SUB2 AS represent an Activity that is an ActionState. In this
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specif ication LIBRARY ACT[ abort ] : exit

behaviour

. . .
( CANCELLABLE CONNECT ACT[ Gconnect ]

| [ s ta r t , r e s t a r t , abortui ] |
CONNECTUI CLS[ Gcui

io , s ta r t , s u s cu i , r e s t a r t , r e s cu i , abortui ]
( c u i i c , cu i abs , cu i d i s p )

| [ s ta r t , r e s t a r t , abortui ] |
. . . )
. . .

where

process CANCELLABLE CONNECT ACT[ Gconnect ] : exit :=
s tar t ; s u s cu i ; sus op ; . . . ;
r e s cn >>

((CONNECT ACT[ Gconnect ] >> exit ) | | | aout cn ; abortui ; exit )
[> abort ; abortui ; exit

where

process CONNECT ACT[ Gconnect ] : exit :=
(∗ the regu lar behav . express ion of CONNECT ACT ∗)

endproc

endproc

. . .
endspec

Figure 5.15: Making the CONNECT ACT cancellable.

context, an OptionalState having the range SUB1 ACT · · · SUBn ACT of Activities

as selectable Activities is defined as follows.

UCD 30 An OptionalState is defined as the OPTIONAL ACT process specified as
follows.

process GENERIC ACT[ . . . , abort ] : exit :=

. . . >> OPTIONAL ACT [ . . . , aoutconfirm, abort opt ] >> . . .

where

process OPTIONAL ACT [ . . . , aoutconfirm, abort opt ] : exit :=

resumesub1 ; . . . ; resumesubn; resumeconfirm >>

( aoutsub1; suspendsub1 ; . . . ; suspendsubn; SUB1 ACT [ ]

(∗ SUB2 AS act ion s ta t e behaviour express ion ∗) [ ]

. . . [ ]

aoutsubn; suspendsub1 ; . . . ; suspendsubn; SUBn ACT [ ]

aoutconfirm; suspendconfirm;

suspendsub1 ; . . . ; suspendsubn; exit )

where

process SUB1 ACT [ . . . , abort opt]

(∗ SUB1 ACT sp e c i f i c a t i o n ∗)

>> OPTIONAL ACT[ ]

endproc

process SUB3 ACT [ . . . , abort opt]

(∗ SUB3 ACT sp e c i f i c a t i o n ∗)
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>> OPTIONAL ACT[ ]

endproc

. . .

process SUBn ACT [ . . . , abort opt]

(∗ SUBn ACT sp e c i f i c a t i o n ∗)

>> OPTIONAL ACT[ ]

endproc

endproc

endproc

The resumesub1, suspendsub1, aoutsub1, · · · , resumesubn, suspendsubn and

aoutsubn are gates of either ActionInvokers associated to subactivities by �ac-

tivates� ObjectFlowStates (UCD 45) or PrimitiveInteractionClasses associated to

subactivities that are ActionStates by �interacts� ObjectFlowStates (UCD 33).

The resumeconfirm, suspendconfirm and aoutconfirm are gates of an Ac-

tionInvoker associated to the OptionalState by a �confirms� ObjectFlowState

(UCD 31).

UCD 30 shows that the OptionalState is a special case of the Choice Pseu-

doState (UCD 7). The behaviour expression of the OptionalState, in contrast

with the Choice, depends on the existence of ActionInvokers and PrimitiveAction-

States to provide the gates used in its composition. Further, UCD 30 shows that

only one subactivity can be performed at a time, although every subactivity is

available for selection when none of them is being performed. Thus, the associ-

ated objects of InteractionClass are activated in parallel, as presented in the UML

version of the OptionalState in Figure 3.6(c). However, the subactivities cannot

be performed in parallel as may be suggested in Figure 3.6(c).

Concerning the selection of subactivities in UCD 30, it can be verified that

subactivities that are ActionStates are translated into LOTOS specifications in

a different way from Activities. In fact, UCD 30 relies on the semantics of the

�interacts� stereotype (UCD 33) to specify the behaviour expression for sub-

activities that are ActionStates.

5.5.7 The �Confirms� Stereotype Specification

The set of gates resumeconfirm, suspendconfirm and aoutconfirm are responsi-

ble for normal finishing of the OptionalState in UCD 30. These gates are provided

by the mandatory �confirms� ObjectFlowState in the OptionalState specified as

follows.
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UCD 31 The �confirms� stereotype in an ObjectFlowState specifies the assign-

ment of the resume, suspend and aout gates of an associated ClassifierInState

of type ActionInvoker to the resumeconfirm, suspendconfirm and aoutconfirm

gates, respectively, in the OPTIONAL ACT process of an OptionalState (UCD 30).

5.5.8 The DestroyAction ActionState Specification

ActionStates where DestroyActions are performed could be specified in a similar

way to SendAction ActionStates (UCD 27). However, DestroyActions are not spec-

ified in activity diagrams of UML. This means that no explicit notation exists in

activity diagrams to specify the end of the existence of an Object.

We suggest the LOTOS semantics for UMLi as a feasible formal framework

for discussing such DestroyAction semantics. However, a minimal specification is

required to avoid the creation of deadlocks when checking the generated LOTOS

specification. Therefore, the problem here is the identification of a semantics

for the DestroyAction that does not requires any special notation. The approach

presented is to force a DestroyAction for any Object created in an Activity when

leaving the activity. Thus, a DestroyAction can be specified as follows.

UCD 32 A DestroyAction is the automatic performing of a destroy class ac-

tion of a Class when leaving the Activity where the Object was instantiated.

This approach may present some initial difficulties specifying Objects that

are either persistent or used in many different parts of a system. Concerning

persistent Objects, it can be observed that locally, i.e., in an Activity, they can

be instantiated, re-instantiated, updated and destroyed as a result of database

queries specified whitin Class’s Methods [23]. Moreover, this is the same kind of

limitation as database transactions impose on the use of persistent Objects that

is effective for implementing database systems [23]. Concerning Objects used in

many different parts of a system, they can be defined in the lowest common

Activity containing the parts of the system where they are required.

Therefore, UCD 32 is a simple and apparently feasible definition for Destroy-

Action ActionStates since other UMLi constructs such as Class and Activity provide

the framework required for its specification.
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5.5.9 The �interacts� Stereotype Specification

The �interacts� stereotype can be used for ClassifierInStates that are Primi-

tiveInteractionClasses or Containers.

If the interaction Object is an instance of PrimitiveInteractionClass then the

�interacts� stereotype identifies an ActionState where the Object can exchange

a data item with another Object associated with the associated ActionState. In

this case, the �interacts� stereotype also enables the interaction Object when

the associated ActionState is performed and it disables the interaction Object when

the ActionState finishes. The getValue() and setValue() standard operation

names in UMLi diagrams are used to indicate the assignment of the aout and

ainp gates to gates of the collaborating object, respectively.

UCD 33 The �interacts� stereotype in an ObjectFlowState associated with a
ClassifierInState of type PrimitiveInteractionClass specifying that the ClassifierIn-
State shares its ainp and aout gates with the gates of the process representing
the Object using the getValue() and setValue() operations respectively. Fur-
ther, for the ClassifierInState i sending/receiving a data item x, the behaviour
expression of the associated ActionState is defined as follows.

resumei; < INTERACTION > ; suspendi

where < INTERACTION > is ainpi?x:aInpData and/or aouti!x

If the interaction Object is an instance of Container then the �presents�

stereotypes enables the Object of Container and its contained interaction Objects

before performing any other action within the associated Activity, and disables

them when the Activity finishes.

UCD 34 The �interacts� stereotype in an ObjectFlowState associated with a
ClassifierInState of type Container specifying that the behaviour expression of the
associated Activity is defined as follows.

resumeCont; resumeObj1; resumeObj2 ; . . . ; resumeObjN

(∗ regu lar t r an s l a t i on of a c t i v i t y ’ s cons t ruc t s ∗) ;

suspendCont; suspendObj1; suspendObj2 ; . . . ; suspendObjN

where Cont is an instance of Container which contains the Objects Obj1, Obj2,

· · · , ObjN.

Returning to the running translation of the Library System, the OrderInde-

pendentState constituted the behaviour of the Connect Activity. Moreover, the

selectable activities of the OrderIndependentState are ActionStates where domain
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Objects collaborate with interaction Objects that are associated with the selectable

states through the use of �interacts� ObjectFlowStates. Thus, the current trans-

lation of the Connect Activity in Figure 5.15 can finally be refined as presented in

Figure 5.16. There, the aout lg and aout pw are gates shared with the mapping

of the getLogin() and getPassword() Operations of the uq Object.

process CONNECT ACT[ Gconnect , abor t o i ] : exit :=
( resumesub1 ; aout lg ! l og in ; suspendsub1 | | |

resumesubn ; aout pw ! password ; suspendsubn )
[> abort ; exit

endproc

Figure 5.16: A refinement of the CONNECT ACT process introduced in Figure 5.15.

5.6 Verification of the Library System Specifi-

cation

There are many tools that can perform verification of LOTOS specifications,

making use of the formal properties of LOTOS. Therefore, suppose that the Φ

function introduced in this chapter can be defined for the other UMLi constructs

not considered in this paper. This means that using Φ it may be possible to verify

any UMLi model. Furthermore, problems that may be identified in LOTOS

specifications generated by the Φ function may be interpreted as a semantic

problems in UMLi .

The LOTOS specifications of the UMLi models of the Library System were

checked using a LOTOS verification tool. Thus, a LOTOS specification for the

class diagram in Figure 3.2, the user interface diagram in Figure 4.2 and the

activity diagrams in Figure 4.6 and 4.8 were implemented by applying the UCDs

presented in this paper. Indeed, most of the LOTOS examples in this chapter

are fragments of this LOTOS specification, which has 1632 lines of code.

CADP [39] was selected to verify the LOTOS specification. CADP is a set of

integrated tools with a wide range of functionalities concerning the verification of

LOTOS specifications such as simulation and model checking identifying, for in-

stance, deadlock, livelock and unreached states. EUCALYPTUS is the graphical

environment of CADP responsible for invoking the CADP tools that analyse the

LOTOS specification. Figure 5.17 presents a snapshot of EUCALYPTUS when
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verifying the LOTOS specifications of the Library System. The background frame

in Figure 5.17 is the main user interface of EUCALYPTUS.

Figure 5.17: Snapshot of CADP when analysing the Library System specification.

The CAESAR and CAESAR.ADT tools in CADP are responsible for the

compilation and verification of the LOTOS specification. For instance, using

CAESAR it was possible to verify if the LOTOS specifications were syntactic

correct. Further, it was possible to generate a Binary Coded Graph (BCG),

which is a computer representation for a Labelled Transition System [92] from the

LOTOS specifications. In a BCG, a state is of the entire application rather than

of part of the application such as an object. In the case of the Library System

specifications, we can see in the BCG monitor frame in Figure 5.17. Moreover,

from the BCG generated, it was possible to verify if the LOTOS specifications

did not have deadlocks, livelocks and unreachable states. Still in Figure 5.17, we

can have a partial view of the generated BCG. The arcs in this partial view are

the transitions and they are labelled with their triggering actions. As expected,

most actions in the BCG are internal actions, e.g., i, since Operations are under-

specified in the LOTOS specifications generated from UML models.



CHAPTER 5. UMLi SEMANTICS 138

5.7 Summary

The UMLi specification initiated with the introduction of its notation and meta-

model in Chapter 4 has been concluded in this chapter with the introduction of

the UMLi semantics given in terms of the mapping of its constructs into LOTOS.

In fact, the translation of a UMLi model into LOTOS specifications using the Φ

function provided throughout this chapter means that the UMLi model can have

exactly one interpretation, provided by the formal semantics of the generated

LOTOS specifications. Moreover, the UMLi specification provided in this thesis

is more precise than the UML specification in [99] that relies on the use of the

English language to describe the meaning of the UML constructs. The Φ function

introduced in this chapter improves in the following ways on mappings of object

concepts into LOTOS specifications given in the literature:

• The Φ mappings of Actions and Attributes are partially based on [142].

The mappings of Activities and Transitions in [142] which are related to the

mappings of Actions are not incorporated into Φ since they are restricted to

state diagrams of a single object. Thus, the mapping of Actions in [142] is

improved by the Φ function to fit with more generic mappings of Activities

and Transitions.

• The Φ mapping of Class is based on the ADC interactor [82]. The Φ mapping

of Class, however, is richer than an ADC interactor. For instance, it provides

mappings for Operations. Further, the definition of Attributes in [142] is

improved in the Φ function to be a pair of LOTOS gates, as specified in the

ADC interactor.

• The Φ mapping of InteractionClasses based on the ADC interactor [82] is

improved by the incorporation of the notion of containment between Inter-

actionClasses, as proposed in [104].

Other benefits of having a formal semantics as presented in this chapter are

presented as follows.

• ConcurTaskTree [101] has a LOTOS-based semantics [102]. ConcurTask-

Tree, however, does not provide an integrated specification of the domain

part and the user interface part of an interactive system. In fact, Concur-

TaskTree does support the specification of some domain objects, however



CHAPTER 5. UMLi SEMANTICS 139

it does not support the specification of the entire domain including, for in-

stance, the specification of the associations, generalisations and specialisa-

tions of domain objects. This means that corrections of problems identified

during the verification of the user interface part of an interactive system us-

ing ConcurTaskTree [102] may affect its integration with the domain part

of the system, in the same way that modifications resulting from the veri-

fication of the domain part may affect the user interface part. This kind of

problem does not happen in UMLi since both the user interface part and

the domain part of an interactive application can be specified at once using

a single notation.

• Formal languages have been used for a long time to specify user interfaces,

e.g., [10]. Formal specifications in general, however, may be difficult to

explain to everyone participating in the design of interactive systems, e.g.,

system users and managers. Moreover, formal specifications may become so

detailed that they can become difficult to understand even by people skilled

in the use of formal languages. For instance, the understanding of the formal

specification of the Library System presented in this chapter can be chal-

lenging for people skilled in LOTOS. Thus, the UMLi semantics presented

here provides an approach to formally specify interactive systems using a

diagrammatic notation such as UML that embeds the formal specification

in its semantics.

• The semantics of the InteractionClass construct of UMLi is an ADC inter-

action, which is one of the current approaches to formalising interactive

systems [82]. This demonstrates that the proposal for a UMLi semantics

presented in this chapter is more in line with other approaches to formali-

sation of interactive systems.

• The InitialInteractor (UCD 2) identifies top-level activities that can be used

as the starting point to traverse UMLi model, for example, to perform a

model checking as in Section 5.6, or to generate user interface code [107].

Without the InitialInteractor is unclear how UMLi and UML models can be

traversed.

• The DestroyAction (UCD 32) provides an approach to addressing the de-

struction of Objects that is omitted in the informal description of the UML
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semantics in [99].

• Many potential problems resulting from the design of UMLi models such

as deadlocks, livelocks and unreached states can be identified using LOTOS

tools as discussed in Section 5.6.

From the UMLi specification describing its notation, syntax and semantics,

it is possible to investigate the practical use of the language for developing UIs.

Thus, tool support for UMLi is presented in the next chapter.



Chapter 6

UMLi Tool Support

Fully as important as the identification of appropriate modelling facilities is the

development of effective environments in which to develop the models. Several

tools have been developed for creating and managing UML models (e.g., Rational

Rose [116], ArgoUML [119], Together [140]), and MB-UIDEs are themselves often

associated with interactive model development tools (e.g., [6, 7, 86, 112, 135]).

The focus of this chapter is on the development of a modelling environment for

UMLi . As UMLi is an extension of UML, most application development within

UMLi uses the existing facilities of UML. As such, it seems natural to develop a

tool for UMLi as an extension of an existing development environment for UML,

and in fact, ARGOi , the UMLi environment introduced in this chapter, is an

extension of ArgoUML [119].

This chapter demonstrates that a UMLi -based tool can provide a design en-

vironment:

• where user interfaces and their associated applications can be modelled in

an integrated way;

• that facilitates the design of activity diagrams that simultaneously depend

on interaction and domain objects.

Therefore, the implementation of the features of UMLi in a tool can antic-

ipate in the design the need to specify very precisely the relationship between

interaction and domain objects. In the absence of such support, this integration

is often a costly task performed in the implementation.

This chapter has the following structure. ArgoUML [119] is introduced in Sec-

tion 6.1. Generic aspects of ARGOi are presented in Section 6.2. Tool support

141
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for modelling UI presentations is described in Section 6.3. Tool support for mod-

elling interactive application control-flow and data-flow using activity diagrams

is presented in Sections 6.4 and 6.5. Tool support for modelling the collaboration

between interaction and domain objects is presented in Section 6.6. Conclusions

are presented in Section 6.7.

6.1 ArgoUML: A UML-Based Development En-

vironment

There are two characteristics of ArgoUML that have guided our decision to build

on this specific UML tool:

• ArgoUML is open source software. Thus, we may have the chance to im-

plement the features of UMLi without relying on the sometimes limited

extension mechanisms occasionally provided by other UML-based tools.

• The ArgoUML object model used for handling UML models at runtime

conforms with the OMG UML 1.3 specification [99].

The ArgoUML features required to introduce ARGOi are presented in this

section.

6.1.1 ArgoUML User Interface

ArgoUML is a graphical environment where designers can build UML models

by manipulating graphical elements representing UML constructs. These graph-

ical elements are manipulated by actions performed using pointing-devices on

the ArgoUML user interface that implements a number of direct-manipulation

techniques.

UML tools usually provide additional designer support for handling the inher-

ent complexity of building UML models. For instance, forms are used to refine

the specification of model elements, and trees with collapsible/expandable leaves

representing the UML elements are used to navigate through UML models.

A snapshot of the ArgoUML user interface in Figure 6.1 provides an insight

into the facilities of ArgoUML. There four distinct panels can be observed, each

providing a functionality described as follows.
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Figure 6.1: A snapshot of the ArgoUML user interface.

• Editing panel. This panel is located at the top right of Figure 6.1, and

is where UMLi diagrams are constructed. This panel is composed of the

working area and the selection box. The selection box is used for selecting

a construct creator or an operator. Construct creators are used for adding

new components to the working area. Operators are used for modifying

constructs already created in the working area. The contents of the selection

box, in terms of construct creators and operators, depends on the kind of

diagram that is being edited. For instance, the selection box in Figure 6.1

contains the construct creators for UI diagrams, since this is the kind of

diagram being edited.

• Navigation panel. This panel is located at the top left of Figure 6.1. From

the collapsible/expandable tree representing the UML elements, designers

can navigate through the entire UML model, switching from one diagram

or diagram element to another by selecting tree elements using a pointer-

device. For instance, by selecting a new diagram in the navigation panel
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a designer can set the selected diagram as the current one in the editing

panel.

• Detail panel. This panel is located at the bottom right of Figure 6.1. In this

panel designers can interact with elements of the UML model and ArgoUML

environment that may not be represented graphically in the editing panel.

Different kinds of information can be specified in this panel. A different

form is provided for each kind of information that can be specified. These

forms are selected using the detail panel tabs, i.e. ToDoItem, Properties

and Style, as shown in Figure 6.1. In the case of UMLi , we are particularly

interested in the properties form, where designers can provide additional in-

formation for UMLi constructs. The content of the properties form is based

on the selected component of the current diagram, if any. For example, the

properties form in Figure 6.1 shows details about the selected loginText

Inputter. If no component is selected, the property panel displays the prop-

erty of the current diagram.

• To Do panel. This panel is located at the bottom left of Figure 6.1. Design

critics provided by ArgoUML are presented in this panel. This is a possi-

ble place for implementing some constraints specified in the UMLi model.

Indeed, rather than enforcing the construction of consistent UML models

from the beginning, ArgoUML provides non-compulsory criticism facilities

that may provide guidance for building consistent models in an incremen-

tal way. The version of ArgoUML that implements the UMLi extensions,

v.0.8.1, does not make use of the ArgoUML criticism facilities.

Still in Figure 6.1, there is a menu on top of the panels with the following

options:

• File. Handles Argo/UML projects that are sets of UML diagrams stored in

XMI format [99] along with complementary information stored in PGML

format [2].

• Edit. Cutting, copying and pasting facilities for constructs. Further, this

option allows the removal of objects from UML models in addition to their

removal from diagrams.

• View. Provides options for finding and selecting models and constructs

within models.
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• Create. Provides options for including new instances of UML diagrams in

the current model.

• Arrange. Provides advanced facilities for organising nodes and edges in

diagrams. For instance, it provides the Broom tool which helps the vertical

and horizontal alignment of edges in UML diagrams.

• Generation. Provides facilities to generate Java classes from UML classes.

The generation of code, however, is restricted to Classes. It does not produce

code for Operations, for example.

• Critique. Provides the critiquing facilities that distinguish Argo/UML from

other UML tools. The critiques are guidelines to good practices in UML

modelling and can be verified against the current model. Thus, Argo/UML

can identify and present in the To Do Panel the violation of these guidelines.

• Help. Presents credits for the developers of Argo/UML.

6.1.2 ArgoUML Architecture

A high-level description of the ArgoUML architecture, in addition to the descrip-

tion of the ArgoUML user interface above, is required to explain the implemen-

tation of ARGOi . The components of ArgoUML are presented in Figure 6.2.

There, the packages are composed of Java/Swing classes [45] that may have their

own sub-packages. These packages have the following roles in ArgoUML.

Figure 6.2: A top-level package view of the ArgoUML architecture.
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• The Graph Editing Framework (GEF) package [139] provides a generic set

of graphical constructs for implementing diagrams, nodes and edges.

• The Novosoft UML (NSUML) package [96] implements the UML object model

in Java.

• The XML Parser package is used by classes of the NSUML package for loading

object models from XMI files.

• The Design Perspectives package provides the functionalities required

for supporting the collapsible/expandable tree in the Navigation Panel.

• The UML Diagrams package is responsible for the integration of the UML

object model implemented by the NSUML package to the graphical represen-

tation of the UML model implemented by extended GEF classes.

• The ArgoUML UI package is responsible for the integration of the the panels

supported by the Design Perspectives and UML Diagram packages in a

single user interface, as presented in Figure 6.1.

The snapshot in Figure 6.1 is actually a version of ArgoUML extended to

support UMLi . Indeed, it presents a UI diagram not specified in UML. The

following sections in this chapter discuss the implementation of ARGOi .

6.2 ARGOi : A UMLi-Based Development En-

vironment

ARGOi has been implemented from ArgoUML version 0.8.1 [119]. Thus, some

ARGOi classes have been created from scratch while others are modified classes

of ArgoUML. A discussion about the technical aspects of the implementation is

minimised in the chapter. Nevertheless, there are two reports available in the

ARGOi web-page (http://img.cs.man.ac.uk/umli/software.html) indicating the

differences between ARGOi 0.1 and ArgoUML 0.8.1 and between the UML XMI

DTD and UMLi XMI DTD.

Most of the modifications have been made in the NSUML and UML Diagrams

packages. The UML Diagrams package has been extended to provide the following

facilities for modelling UMLi diagrams:
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• Editing facilities for user interface diagrams, as discussed in Section 6.3;

• Editing facilities in activity diagrams for modelling SelectionStates, InitialIn-

teractions and interaction object flows, as described in Sections 6.4 and 6.5;

• Wizards in activity diagrams for designing control-flow, as discussed in

Section 6.4;

• Wizards in activity diagrams for modelling interaction object flows, as dis-

cussed in Section 6.5.

The NSUML package has been extended to provide the following facilities for mod-

elling UMLi diagrams:

• Support the UMLi constructs in terms of the UMLi metamodel specified

in Section 4.4.

• Support the generation and reading of UMLi XMI DTD conformant files.

6.3 User Interface Diagram Modelling Support

A snapshot of the ARGOi user interface when modelling a UI diagram is pre-

sented in Figure 6.1, which shows the modelling of the ConnectUI diagram from

Figure 4.2. The implementation techniques used in this UMLi -specific diagram

are the same as for other UML diagrams. For instance, the same technique is

used for implementing InteractionClass containment in UI diagrams and State con-

tainment in statechart diagrams. In this section, we present the specifics of UI

diagram editors, rather than generic implementation details of ArgoUML.

The decision about the content of each diagram is one of the first problems

facing the implementor of a UI diagram editor. In fact, the diagram concept is

not explicitly specified in UML. For instance, the Classes of an application can be

modelled in a single class diagram or in several class diagrams. In ARGOi , a UI

diagram has exactly one FreeContainer. Indeed, a FreeContainer is automatically

created when its UI diagram is created, and a UI diagram is deleted when its

FreeContainer is deleted. For this reason, there is no FreeContainer creator in the

selection box of the UI diagram editor, as we can see in Figure 6.1.

The decision that a UI diagram should contain exactly one FreeContainer may

facilitate the selection of a FreeContainer in large-scale models. Indeed, navigation
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panels in UML-tools are usually organised around diagrams. Thus, FreeContainers

can be selected through the selection of their UI diagrams in navigation panels.

Otherwise, a search facility would be required to locate the UI diagram of a

specific FreeContainer.

InteractionClasses that are not FreeContainers are added to a UI diagram using

one of the construct creators in the selection box. InteractionClass containment is

initially specified by the position of the cursor in the working area of the editing

panel when the pointer-device button is pressed. Thus, InteractionClasses are

added into the innermost Container related to the selected position. Designers can

modify InteractionClass containment by dragging and dropping InteractionClasses.

InteractionClass placement (in contrast with containment) is not relevant in UI

diagrams, since layout is normally more a concrete presentation concern than an

abstract presentation one, as discussed in Chapter 2. Therefore, the UI diagrams

need to be refined into concrete presentations, as described in Section 3.5.

6.4 SelectionState Modelling Support

Activity diagram elements can be added to diagrams using the selection box.

Alternatively, activity diagram elements can be added using the temporal-relation

wizard presented in this section.

This wizard is based on task model techniques that exploit extensions to UML

activity diagrams for modelling control-flow. In fact, task modelling is a well

established technique for modelling the behaviour of interactive applications [69,

101]. Designers can build a task hierarchy that models the control-flow of the

application by decomposing tasks into subtasks and specifying temporal relations

between the subtasks. In UMLi , application control-flow can be modelled by

activity diagrams. However, activity diagrams tend to be less abstract than task

models. In particular, inter-object Transitions in activity diagrams tend to be

more complex to model than temporal relations in task models. In fact, the

difficulty of modelling inter-object Transitions using the statechart constructs was

anticipated by Harel and Gery [51] when statecharts were adopted by UML. The

temporal-relation wizard in ARGOi provides at least two benefits for modelling

activity diagrams.

1. It can reduce the effort of modelling control-flow using UML. The selection

of one of the wizard’s options creates a complete set of constructs required
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(a) (b)

Figure 6.3: (a) The unselected S State. (b) The selected S State along with the
ARGOi temporal-relation wizard on its right.

for modelling the behaviour of temporal relations in a task model.

2. It exploits the potential of SelectionStates and ReturnTransitions for mod-

elling abstract inter-object Transitions, simplifying the control-flow mod-

elling process in UML-based tools. Indeed, a facility for modelling Or-

derIndependentStates, OptionalStates and RepeatableStates makes the con-

trol-flow modelling process more similar to the task modelling process in

UI-specific development environments such as CTTE [101], MOBI-D [112]

and Teallach [7].

The temporal-relation wizard appears every time a node in an activity diagram

is selected, such as for the State S in Figure 6.3(b). The wizard is the iconographic

menu to the right of S. We can see the same State S in Figure 6.3(a) before it

was selected. The other wizards in Figure 6.3(b) are standard activity diagram

wizards of ArgoUML. The temporal-relation wizard has six options that perform

the following actions:

• Sequential option (→): This option builds an Activity connected to the

current node by a Transition. This action is represented graphically in Fig-

ure 6.4(a).

• Concurrent option (‖): This option builds two Activities, a Join, and a Fork.

A Transition connects the current node to the Fork. Each Activity built has

two Transitions: one coming from the Fork, and one going to the Join. This

action is represented graphically in Figure 6.4(b).

• Choice option ( ): This option builds two Activities and a Branch. A

Transition connects the current node to the Branch. Each Activity built

has a guarded Transition coming from the Branch. The Transitions are built
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Figure 6.4: The result of each of the six actions that can be performed by the
temporal relation wizard. The S State is that from which the wizard is invoked.

guarded to remind designers that these guards may be required. This action

is represented graphically in Figure 6.4(c).

• OrderIndependent option (⊕): This option builds one OrderIndependentState

and two Activities. One Transition connects the current node to the Or-

derIndependentState. Each Activity built is connected to the OrderIndepen-

dentState by a ReturnTransition. This action is represented graphically in

Figure 6.4(d).

• Optional option (	): This option builds one OptionalState and two Activi-

ties. One Transition connects the current node to the OptionalState. Each

Activity built is connected to the OptionalState by a ReturnTransition. This

action is represented graphically in Figure 6.4(e).

• Repeatable option (⊗): This option builds one RepeatableState and one

Activity. One ReturnTransition connects the current node to the Repeata-

bleState. A ReturnTransition connects the RepeatableState to the new Activ-

ity. This action is represented graphically in Figure 6.4(f).

Figure 6.5 shows an snapshot of ARGOi during the modelling of the activity
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Figure 6.5: The modelling of the activity diagram in Figure 4.8.

diagram in Figure 4.8. The OrderIndependentState in Figure 6.5 was built using

the temporal-relation wizard. In fact, the InitialState of GetUserDetails corre-

sponds to the S State in Figure 6.4(d), and the UserQuery.setLogin(getValue())

and UserQuery.setPassword(getValue()) ActionStates are refinements of the

two SelectableStates created along with the OrderIndependentState.

In terms of control-flow modelling, UMLi still specifies the InitialInteraction.

Thus, ARGOi provides an InitialInteraction creator in the selection box when

editing an activity diagram.

6.5 Interaction Object Flow Modelling Support

Object flows provide the ability to specify data-flows in activity diagrams. For

non-interaction Classes, UMLi specifies that object flows can be connected to

CompositeStates in addition to ActionStates. For InteractionClasses, UMLi speci-

fies interaction object flows that: (1) can have an interaction stereotype; and (2)

can be connected to CompositeStates, SelectionStates and ActionStates.

The modelling of object flows and interaction object flows may not be a simple
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task. Selecting a Classifier, i.e., a Class, UseCase or InteractionClass, to play the

type role in an interaction object flow can be complex due to the number of

Classifiers usually available in interactive application designs. Further, selecting

an appropriate stereotype for an interactive object flow may be complex due

to the rich semantics of the UMLi interaction stereotypes. For instance, the

�presents� interaction stereotype specifies a FreeContainer context as discussed

in Section 5.5.4.

ARGOi provides facilities to cope with the complexity of selecting types and

stereotypes for interaction object flows. Examples of these facilities can be pro-

vided using the activity diagram in Figure 4.8.

6.5.1 Selecting Types for Interaction Object Flows

Classifiers specified in the current UMLi models are provided as options in the

combo box of interaction object flows. For instance, Figure 6.5 shows how the

combo box in the properties form can be used to specify the type of the Classi-

fierInState that is being added to the Connect activity. There, the options in the

combo box, e.g., Book Class and SelectServices UseCase, are Classifiers already

specified in the models of the Library System. Considering this type specification

approach, ARGOi can analyse the current state of the UMLi model to filter those

Classifiers that cannot be a type for the selected ClassifierInState. Two aspects of

a UMLi model analysed by ARGOi for filtering Classifiers are the following:

• FreeContainer context. Figure 4.8 shows the use of the ConnectUI FreeCon-

tainer as a �presents� interaction object flow of the Connect activity. This

means that only the following InteractionClasses in the models can be made

available for selection as a type of interaction object flows used by activities

within the Connect activity:

1. The PrimitiveInteractionClasses contained by ConnectUI (see Fig-

ure 4.2);

2. The specified FreeContainers. This provides the ability to create new

FreeContainer contexts.

• ActionInvoker roles. An instance of an ActionInvoker should not play more

than one role in a FreeContainer, e.g., Cancel in Figure 4.2 should not
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be associated with any other sub-activity of the Connect activity in Fig-

ure 4.8 since it is already responsible for the cancelling behaviour within

the Connect activity. Thus, ARGOi can notify designers when it identifies

an ActionInvoker playing more than one role.

6.5.2 Selecting Stereotypes for Interaction Object Flows

The selection of stereotypes for interaction object flows can be performed in a

property form, like the selection of interaction object flow types. Once again,

ARGOi can analyse the current state of the models in order to filter interaction

stereotypes that do not suit the selected ClassifierInState. An aspect of the UMLi

model analysed by ARGOi for filtering interaction stereotypes is presented as

follows:

• Associated State context. If the State associated with the selected interac-

tion object flow is a CompositeState, the interaction stereotype must be

�presents�, which creates a FreeContainer context, or �cancels�. If

the associated State is a SelectionState, the interaction stereotype must

be �confirms�, which allows users to indicate the finishing of an optional

selection, or �cancels�. If the State is an ActionState, the interaction

stereotype must be �interacts�, which enables the associated Interaction-

Class, or �activates�, which makes the associated InteractionClass a trigger

of the ActionState.

6.6 Domain Modelling Support

Interaction and domain Classes collaborate in UMLi models when they are used

by object flows sharing common ActionStates. For example, an instance of the

loginText Inputter collaborates with an instance of the UserQuery Class in the

Library System since they share the uq.setLogin(getValue()) ActionState in

Figure 4.8. UMLi makes explicit such collaborations since it provides a clear

distinction between interaction and non-interaction Classes. Moreover, UMLi

makes explicit the problem of creating and preserving the integration between

interaction and domain Classes in the designs of interactive applications.

The difficulty of creating this integration can be partially addressed through
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the checking of UMLi models. In fact, ActionStates, as defined throughout Sec-

tion 5.5, are not allowed to be performed over methods of non-instantiated Ob-

jects, as can be verified using the LOTOS semantics and model checking tech-

niques discussed in Section 5.6. The problem of preserving this integration can

be minimised through the use of the integration wizard. This wizard is triggered

every time a designer deletes any Class. Thus, the wizard can check and notify

the designer about ActionStates affected by such Class removal. Indeed, designers

may have different motivations for modifying class diagrams and UI diagrams.

However, they may not be able to evaluate the impact of modifying one diagram

in other diagrams.

Figure 6.6: An attempt to delete the ConnectUI FreeContainer can trigger the
integration wizard.

Considering this difficulty of preserving the collaboration of the interaction

and domain Classes, the integration wizard notifies designers about the effects of

Class removal in the following design scenarios:



CHAPTER 6. UMLi TOOL SUPPORT 155

• Deleting domain Classes. The integration wizard checks in the UMLi models

to see if a domain Class that is to be deleted is a type of a ClassifierInState

that shares at least one common State with an InteractionClass. For example,

the interaction wizard will notify a user deleting the UserQuery Class in a

class diagram about the risk of losing the relationship that this Class has

with the loginText Inputer, as specified in Figure 4.8.

• Deleting InteractionClasses. The integration wizard checks in the UMLi mod-

els to see if a PrimitiveInteractionClass to be deleted is a type of a Classi-

fierInState that shares at least one common State with a Class. For example,

the interaction wizard will notify a user deleting the loginText Inputer in

a user interface diagram about the risk of losing the relationship that this

Inputer has with the UserQuery Class, as specified in Figure 4.8.

• Deleting FreeContainers and Containers. The integration wizard checks in the

UMLi models to see if a Container or a FreeContainer to be deleted contains

PrimitiveInteractionClasses or ActionInvokers that share ActionStates with do-

main Classes, as described in deleting InteractionClasses above. The deletion

of a Container or FreeContainer in ARGOi implies the recursive deletion of

its contained InteractionClasses. Thus, the integration wizard also verifies

recursively the side-effects of such a deletion in terms of interaction and

domain Class integration. For example, Figure 6.6 shows the integration

wizard when deleting the ConnectUI FreeContainer. In this case, the in-

tegration wizard is activated since the loginText, passwordText and OK

InteractionClasses of the ConnectUI FreeContainer are associated to Action-

States, as modelled in the activity diagram in Figure 6.5.

6.7 Summary

This chapter shows that the UMLi specification can be effectively implemented

in a UML-based design environment. Moreover, this chapter shows that ARGOi ,

a UMLi -based tool, can provide support for modelling the aspects of a interac-

tive application usually modelled in MB-UIDEs, e.g., the modelling of abstract

presentation models using the UI diagram and the modelling of the collaboration
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between domain and interaction objects using object flows and interaction ob-

ject flows, by exploiting the UMLi specification. Moreover, this chapter demon-

strates practically that UMLi is a conservative extension of UML able to provide

the UMLi -specific support for user interface design in models initially built in

ArgoUML, a standard UML-based tool.

Compared with other UML tools (e.g., Rational Rose [116], Together [140],

ArgoUML [119]), ARGOi provides additional tool support for:

• modelling abstract user interface presentations using the UMLi user inter-

face diagram (Section 6.3);

• modelling common UI behaviours using the temporal-relation wizard that

exploits the use of the UMLi SelectionStates (Section 6.4);

• modelling in an explicit and effective way the collaboration between inter-

action and domain Classes (Section 6.5);

• preserving, when modelled, the integration between interaction and domain

Classes using the integration wizard (Section 6.6).

Compared with most MB-UIDEs, ARGOi can provide the following distinc-

tive benefits:

• A graphical notation for modelling inter-model relationships, such as the

�presents� object flow shown in Figure 6.5, which explicitly links the

presentation model of a UI with the activity diagram modelling the UI’s

behaviour. Relationships between control-flow models (e.g., task models,

activity diagrams) and structural models (e.g., class diagrams, UI diagrams)

are modelled in a non-graphical way in Teallach [7] and MOBI-D [112].

• It allows the construction of domain models along with the construction of

UI models.

There are MB-UIDEs that integrate a UI design environment with a main-

stream CASE tool. For instance, JANUS [6] uses Together [140] for building its

models, and AME [86] uses the OODevelopTool for building its models. However,

ARGOi models can provide more comprehensive specification of UIs than AME

and JANUS models. Indeed, ARGOi provides support for modelling structural
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and dynamic aspects of interactive applications (Sections 6.3 and 6.4). More-

over, ARGOi provides support for relating structural and dynamic aspects (Sec-

tions 6.5 and 6.6). The AME and JANUS approaches for modelling UIs are quite

limited for describing the behavioural aspects of UIs. Indeed, these approaches

are based on the identification of the operations that can be executed by each

interaction object rather than modelling the application workflow in an abstract

way.

ARGOi has been used to model three comprehensive versions of the Library

System. The first version does not specify any aspect of the system’s user inter-

faces. The second version specifies the system’s user interfaces using standard

UML. The third version specifies the system’s user interface using UMLi . These

models are used to evaluate the benefits of UMLi in terms of design metrics, as

described in the following chapter.



Chapter 7

Metric Assessment of Resulting

Models

This chapter describes a study that analyses the effects of modelling UIs in UML,

and the effects of using UMLi as an alternative to UML when modelling interac-

tive systems. The study analyses these effects via metrics that quantify dimen-

sions of the complexity of models of the Library System. Two hypotheses are

tested through the analysis of this metric study.

Hypothesis 1 Standard UML models that include UI properties are structurally,

behaviourally and visually more complex than standard UML models that do not

include UI properties when describing properties of an interactive system.

Hypothesis 2 Standard UML models are structurally, behaviourally and visually

more complex than UMLi models when describing the same set of properties of

an interactive system.

Hypothesis 1 emphasises the concern about the lack of UI support for UI

modelling in UML. For instance, there is no indication of how much relevant

specification in terms of complexity may be added by modelling UIs along with the

core application. Moreover, considering the current tendency of system designers

using UML to address user interface issues somewhat superficially, there is no

indication of how much relevant specification in terms of complexity may be

missed by not modelling UIs along with the core application functionality.

Relying on Hypothesis 1, Hypothesis 2 claims that the effects of UIs on the

overall complexity of a model of an application can be reduced by better UML

support for UI modelling.

158
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The metric study is done by comparing design metrics measured from internal

attributes of UML and UMLi models. Initially, three scenarios are considered in

the study, two described by sets of UML models and one described by a set of

UMLi models. In the first set of UML models, UI properties of an interactive

application are not described. In the second set of UML models, the UI properties

are described. In the set of UMLi models, UI properties are described. To

simplify the description of the metric study, these three modelling scenarios are

hereafter called UML noUI, UML UI and UMLi UI models, respectively. Thus, a

comparative analysis of metrics measured in the UML noUI and UML UI models

is used to test Hypothesis 1. A comparative analysis of the metrics measured in

the UML UI and UMLi UI models is used to test Hypothesis 2.

The metric study covers the UML noUI, UML UI and UMLi UI models for

two scenarios: when modelling the ConnectToSystem service, representing a sin-

gle interactive service of the Library System; and when modelling the complete

Library System. The results for the ConnectToSystem service are provided sep-

arately as they (i) allow a focused description of the metric study; (ii) ease the

explanation of certain details, as they are obtained from a specific context. More

generic results can be achieved analysing the nine interactive services that com-

pose the Library System than is the case for the ConnectToSystem service on

its own. The use of typical modelling techniques and similar reuse strategies

for common elements in all models are two aspects of the study where special

attention has been paid in order to produce valid results.

This chapter is organised as follows. Section 7.1 presents related work on

design metrics. Section 7.2 defines the metrics used in this thesis to quantify the

complexity associated with the design of UIs in UMLi and UML. Section 7.3 de-

scribes how the models used in the metric study have been produced. Section 7.4

describes a metric study of the ConnectToSystem service of the Library System.

Section 7.5 shows the accumulative effects in terms of metrics of the models of the

complete Library System. Section 7.6 presents conclusions about the the effects

of UI functionalities in UMLi and UML models.

7.1 On the Assessment of Models using Metrics

Metrics are used in the study in this chapter since they can quantify many dimen-

sions of complexity from internal attributes of designs. There are many proposals
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for metrics that measure complexity, e.g., [8, 11, 20, 21, 24, 87, 127, 148] in object-

oriented designs. The large number of proposals indicates that design metrics is

an evolving area in computer science with many open questions. For instance,

for many metrics, e.g., coupling and cohesion, there is no objective criterion for

choosing which among the alternatives are to be used in any particular circum-

stance. Also, many proposed metrics are not validated as indicators of desirable

characteristics of designs. Moreover, it is unknown exactly how any desirable

characteristic to which metrics have been associated correlate or not with any

observable quality of designs. Thus, it is unknown which combination of met-

rics best correlates with quality of designs. Considering these uncertainties, the

approach in this chapter is to use metrics that, if possible, have been systemat-

ically validated for properties that are well-accepted indicators of quality, e.g.,

low fault-proneness and low demand for maintenance.

In terms of structural complexity, this study uses the suite of metrics proposed

by Chidamber and Kemere (CK metrics) [24] because:

• Basili et al. [8] have validated the CK metrics for class fault-proneness

(except for lack of cohesion on methods LCOM), and Li and Henry [78] have

validated the CK metrics for the number of maintenance modifications.

• Basili et al. [8] have provided a valuable indication of the impact of UI

classes on the validation of each CK metric. Indeed, the experimentation

described there was composed of eight medium-sized interactive systems

built in C++. The user interfaces of those systems were built using the

OSF/MOTIF [149] toolkit. Therefore, due to the controlled nature of the

experiment, it was possible to describe the impact of CK metrics on the

database and user interface classes.

• It is based on Booch’s method and notation [17], a predecessor of UML [99].

• It has influenced many other proposals [11, 148].

Briand et al. [21] is another metric study related to structural complexity

which raises the question about the participation of class libraries on metrics.

The paper concludes that classes that belong to class libraries are important

to making coupling-based metrics relevant. Therefore, in terms of UI design,

toolkits, which are class libraries of interaction classes (or widgets), should be

considered when measuring coupling. For instance, the MotifApp implementation
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of OSF/MOTIF [149] considered in Basili et al. [8] has affected the resulting

metrics. However, the results in Briand et al. [21] raise a question about the

validity of the CK metrics for fault-proneness if coupling involving toolkits is not

counted.

In terms of behavioural complexity, this study uses McCabe’s cyclomatic com-

plexity [87] because it has long been a well-established metric whose original defi-

nition at code-level has been translated to the design level. It has also influenced

other metric studies related to UML [127].

Visual complexity is a dimension of complexity of models of interactive sys-

tems apparently affected by the use of UMLi with respect to UML models, as can

be observed, for instance, by comparing the UI diagram in Figure 4.2 and its cor-

responding class diagram in Figure 3.9. Therefore, this is an aspect of models of

interactive systems that could be analysed in the metric study. However, despite

this potential benefit of UMLi , there is no well-established metric for measuring

the complexity of visual languages [38]. Therefore, although not validated, two

new metrics for visual complexity are proposed in this chapter along with the

definition of the other metrics selected for the study, as described in the following

section.

7.2 Metric Definitions

This section briefly describes the CK metrics, cyclomatic complexity and visual

complexity metrics that are subsequently applied to the UML noUI, UML UI and

UMLi UI models used in the metric study.

Structural Complexity The CK metrics are presented as a suite of 6 struc-

tural metrics used to quantify the complexity of classes and their relationships.

LCOM, one of the CK metrics of the suite, however, is not considered in the case

study since it could not be validated for class fault-proneness [8].

• Weighted Methods per Class (WMC)1 is defined as the number of member

functions (operations and attributes) of a class. This metric measures the

complexity of an isolated class. The assumption regarding this metric is

1The methods were expected to be weighted by an surprisingly undefined “complexity” [24]
which is unconsidered in this study.
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that the more operations and attributes it possesses, the more complex the

class.

• Depth of Inheritance Tree of a Class (DIT)2 is defined as the maximum

depth in the inheritance graph at which the class lies. This metric measures

the complexity of a derived class, i.e., with respect to what it may inherit

from its ancestors. The assumption regarding this metric is that the deeper

in an inheritance hierarchy it is located, the more complex the class.

• Number of Children of a Class (NOC) is defined as the number of direct

descendants of a class. This metric measures the complexity of a superclass,

i.e., with respect to the potential difficulty of modifying and consequently

testing, a class due to the possibility that these modifications can propagate

to its children. The assumption regarding this metric is that the more

numerous the children, the more complex the class.

• Coupling Between Object Classes (CBO) is defined as the number of classes

to which the class is associated, plus the number of classes with which the

class shares methods in action states. This metric measures the complexity

of modifying and testing a class in relation to how changes to the class

may propagate to classes that are not related to it by inheritance. The

assumption regarding this metric is that very coupled classes are more fault-

prone than less coupled classes.

• Response For a Class (RFC) is defined as the number of methods that may

be executed in response to a message received by an object of that class.

This metric measures the number of activities and action states reached by

transitions triggered by operations belonging to the class. The assumption

regarding this metric is that the more responses, the more complex the

class.

Behavioural Complexity McCabe’s cyclomatic complexity metric [87] is de-

fined as the number of decisions (or predicates) in a control flow graph plus 1.

For example, the cyclomatic complexity of the activity diagram in Figure 7.1 is

3 since it has 2 Branches representing decisions. Guarded Transitions may also

2The original name of DIT is preserved although calling it Depth of a Class in the Inheritance
Tree is perhaps less ambiguous.
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Figure 7.1: The Connect activity of ConnectToSystem without its UI.

be used to model decisions in activity diagrams. Since decisions are specified in

behavioural models, this is a metric for behavioural complexity. Moreover, if the

behavioural model is an activity diagram and A is an activity in this activity

diagram, then ν(A) is the cyclomatic complexity of A. The reasoning behind

this metric is that ν(A) corresponds to the number of possible execution paths

specified in an activity. The assumption regarding this metric is that the higher

the ν(A), the more complex the activity.

Visual Complexity. Diagrams in ARGOi are stored and exchanged using the

Precision Graphics Markup Language (PGML) format [2]. Therefore, as PGML

is a textual representation for the diagrams in ARGOi , the number of lines of

code (LOC) of the PGML files is the metric for measuring the size of both the

UML and UMLi diagrams in this study. Size, however, may not be an appropriate

metric for visual complexity since designs with long textual representations can

be very simple ones. Therefore, the following metrics are used in this dissertation

for measuring the visual complexity of the models.

• Density of coupling between objects in diagrams (DCBOD). This is defined

as the ratio of the level of CBO in the models and the total number of LOC

of the PGML files representing the diagrams. The non-validated assumption

is that high densities indicate that more relevant structural specification,

e.g., structural complexity, can be represented by fewer graphical elements

than with low densities.
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• Density of cyclomatic complexity in diagrams (DCCD). This is defined as

the ratio of the cyclomatic complexity in the models and the total number

of LOC of the PGML files representing the diagrams. The non-validated as-

sumption is that high densities indicate that more relevant behavioural spec-

ification, e.g., behavioural complexity, can be represented by fewer graphical

elements than with low densities.

The UMLi model of an interactive systems has the same size or is smaller than

the UML model of the same system, as is shown later in Section 7.3.4. The use

of size as a metric, however, is not considered in this study since the construction

and further uses of UML and UMLi models can be partially supported by tools.

In fact, computer-based tools may analyse big, non-complex models faster than

small, complex models.

7.3 Models Used in the Metric Study

The models used in the metric study are those of the Library System partially pre-

sented throughout the dissertation. In the case of the metric study, they have been

comprehensively modelled in ARGOi in order to specify the functionalities iden-

tified in the use case diagram in Figure 3.1. The actual UML noUI, UML UI and

UMLi UI models are available at http://img.cs.man.ac.uk/umli/metrics.

Moreover, the models can be viewed and adapted using ARGOi , which is also

publicly available from http://img.cs.man.ac.uk/umli/software.html.

Measuring the metrics in models is a straightforward task. A concern re-

garding the use of these design metrics is the production of models that have the

same reuse strategy. In fact, different reuse strategies can significantly affect met-

rics [9]. In the case of the UML UI and UMLi UI models, an additional concern

regarding the use of these design metrics is the production of models using two

different notations to model a common set of properties from the specification of

a system. Therefore, a systematic mapping strategy should be defined in order

to ensure that the services of the UML UI and UMLi UI models are translated

in a consistent way and that the same reuse strategy is adopted in all models.
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7.3.1 UMLi UI Models

The UMLi UI model of the Library System is composed of many diagrams pre-

sented in Chapter 4. The class diagram in Figure 3.2 models the domain of the

system. The UI diagrams in Figures 4.2 and 4.5 are elements of the set of UI

diagrams modelling the structure of the system’s UIs. The activity diagrams in

Figures 4.6, 4.8 and 4.9 are elements of the set of activity diagrams describing

the system’s behaviour.

Concerning the ConnectToSystem service, it must be established which mod-

els are used to represent the service, defining in this way its scope. Thus, the class

diagram in Figure 7.2, that is a subset of the class diagram in Figure 3.2, repre-

sents the domain required to support the ConnectToSystem functionality. It can

be observed that the getUser() and getLoans() operations of the UserQuery

class in Figure 3.2 are not represented in the UserQuery class in Figure 7.2. The

entire set of UI diagrams of the service is composed of the UI diagram in Fig-

ure 4.2. Finally, the entire set of activity diagrams representing the behaviour of

the service is composed of the activity diagram in Figure 4.8.

Figure 7.2: The ConnectToSystem-specific class diagram.

With respect to the metric study in this chapter, the UMLi UI version of

the Library System, including the ConnectToSystem service, is the model that

has been designed directly. The UML UI model has been translated from the

UMLi UI model, and the UML noUI model has been translated from the UML UI

model. The mapping rules used to perform these translations are presented

in the following sections where the translation of the UMLi UI model of the

ConnectToSystem service into the UML UI and UML noUI models of the service

is described. The mapping rules are the same for the other services of the Library

System, making unnecessary a discussion about the production of the models of

the complete Library System. The mapping rules from the UMLi UI model to

the UML UI model are presented in Section 7.3.2. The mapping rules from the
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UML UI model to the UML noUI model are presented in Section 7.3.3.

7.3.2 Mapping UMLi UI Models into UML UI Models

The standard UML diagrams in Figures 3.9 and 3.4 are the models resulting from

a systematic translation of the UMLi diagrams in Figure 4.2 and 4.8, respectively.

Therefore, the mapping rules from UMLi UI models into UML UI models can be

explained with reference to the Figures 3.9, 3.4, 4.2 and 4.8 as follows.

InteractionClasses to Classes. The InteractionClasses in the user interface

diagram in Figure 4.2 are mapped into Classes in the class diagram in Figure 3.9.

This is a natural mapping since the UMLi InteractionClass is a subclass of UML

Class as shown in Figure 4.15. As a consequence of this mapping we can observe

the following.

• Placement to Composition. In UMLi , an InteractionClass which is not a

FreeContainer must be associated with a Container. Thus, the association of

an InteractionClass with its Container is specified in UMLi by the placement

of the InteractionClass into the Container in the diagram. In UML, however,

this association is specified by a composition. Therefore, a composition

is created from each InteractionClass in Figure 3.9 that is not a Free-

Container to its immediate Container. For instance, Cancel is placed

in Options in Figure 4.2, so there is a composition between Cancel and

Options in Figure 3.9.

• Visible(), Active() and InvokeAction() operations to explicit class methods.

These operations originally embedded in the UMLi metamodel are explic-

itly modelled in the UML presentation model in Figure 3.9.

Interaction Object Flow to Object Flow. Interaction object flows in Fig-

ure 4.8 were translated into object flows in Figure 3.4. Despite missing the infor-

mation as to which role each Object can play in a UI, this is a natural mapping

since an interaction object flow is an object flow of a ClassifierInState of type

InteractionClass.

Interaction object flow stereotypes into fragments of a standard activ-

ity diagram. There is no one-to-one mapping between UMLi constructs and
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UML constructs. Thus, the mapping of each stereotype must be individually

explained.

• The �Presents� stereotype in Figure 4.8 specifies that the ConnectUI

FreeContainer is a presentation unit. This means that the widgets directly

and indirectly contained by ConnectUI must be instantiated (if not previ-

ously explicitly instantiated) and must be made visible when the Connect

Activity is reached as specified in UML by the InitiateConnectUI Activity

in Figure 3.4 and refined in Figure 3.5(a). Further, these widgets must be

made invisible and destroyed when the Connect Activity is left as specified

in UML by the TerminateConnectUI Activity in Figure 3.4 and refined in

Figure 3.5(b).

• The �Cancels� stereotype behaviour in Figure 4.8 is modelled in Fig-

ure 3.4 by the Cancel Object that is made active immediately after the

instantiation of ConnectUI.

• The �Interacts� stereotype can be associated with a Container, Prim-

itiveInteractionClass or ActionInvoker. If the stereotype is associated with

a Container, this means that contained InteractionClasses are made ac-

tive when the associated Activity or ActionState is reached. If associated

to a PrimitiveInteractionClass or ActionInvoker, this means that the Object

is made active (if its Container was not previously activated by another

�Interacts�) and ready to interact with a user through the getValue()

and setValue() operations.

• The �Confirms� stereotype in Figure 4.8 is mapped into three sequen-

tial ActionStates associated to the OK ActionInvoker in Figure 3.4. The first

ActionState activates the associated ActionInvoker, the second waits for the

performance of the invokeAction(), and the last deactivates the ActionIn-

voker. Therefore, the performing of an invokeAction() is responsible for

confirming the end of the selection state in Figure 3.4.

• The �Activates� stereotype, not used in Figure 4.8, is mapped into three

sequential ActionStates, as in �Confirms�. The important characteristic

of �Activates�, though, is that these sequential ActionStates are placed

before the Activity to be triggered by the associated ActionInvoker.
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7.3.3 Mapping UML UI models into UML noUI Models

The UML activity diagram in Figure 7.1, which does not encompass any UI

specification, is the diagram resulting form a systematic translation of the UML

activity diagram in Figure 3.4. Further, the class diagram in Figure 3.9 is not

translated at all into the UML noUI models of the ConnectToSystem service since

it is a specific part of the UI specification in UML UI. The mapping rules from

UML UI to UML noUI can be explained as follows.

No Modelling of User Interface Presentations. The user interface presen-

tation in Figure 3.9 is not considered as part of the UML noUI models.

Deletion of interaction object flows. The ClassifierInStates that are of any

type defined in user interface presentations, e.g., the classes in the class diagram in

Figure 3.9, along with their ObjectFlowStates are removed from activity diagrams.

For example, the ok and cn objects of types OK and Cancel in Figure 3.4 are

removed in Figure 7.1.

Deletion of Activities associated only with interaction object flows. The

cn.setActive(true) and cn.invokeAction() ActionStates in Figure 3.4 are

example of ActionStates related to cn of type Cancel specified as an Interac-

tionClass that are removed in Figure 7.1. Moreover, InitiateConnectUI and

TerminateConnectUI Activities are also removed in Figure 7.1 since their Action-

States are related to interaction object flows, as can be observed in Figure 3.5.

Replacement of Forks and Transitions related to cancel, order indepen-

dent, optional and repeatable behaviours by a Branch. The Forks in Fig-

ure 3.4 is removed in Figure 7.1. In fact, the Fork leaving new UserQuery is

related to a cancel behaviour and the other two Forks in Figure 3.4 are related an

order independent behaviour.

Deletion of invocations of methods of InteractionClasses. The uq.setPass-

word(pt.getValue()) ActionState in Figure 3.4 is replaced by the uq.setPass-

word() ActionState in Figure 7.1 that does not invoke the getValue() of pt, an

Object of type PasswordText defined in a user interface presentation.
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7.3.4 Resulting Models of the Metric Study

Six sets of files containing a textual representation of the UML noUI, UML UI

and UMLi UI models of the ConnectToSystem service and of the Library System

were produced using ARGOi . Table 7.1 presents the consolidated size in terms

of LOC of these sets. There, it can be observed the same pattern in terms of

size for models of ConnectToSystem and the complete Library System. Indeed,

the size of the textual representations of UML UI models are much higher than

in UML noUI models for models with the same scope. Furthermore, part of this

increase of size in UML UI models with respect to UML noUI models is reduced in

UMLi UI models. Thus, the hypotheses of the metric study would be confirmed

if size was an appropriate metric for complexity. However, size usually does not

say much about how difficult it is to construct a model of an interactive system

or how difficult it is to understand such models. By contrast, the metrics in this

dissertation are designed to quantify the inherent difficulties of constructing and

understanding models, since they measure many dimensions of the complexity

associated with the models. Therefore, a metric analysis of the six sets of files

in Table 7.1 is performed in the following sections. Nevertheless, the LOC of the

PGML files are considered in the following metrics when it is used to compose

the DCBOD and DCCD metrics.

Scope Model LOC of XMI LOC of PGML

UML noUI 845 1,317
ConnectToSystem UML UI 5,308 9,801

UMLi UI 1,329 2,286
UML noUI 9,608 14,959

Library System UML UI 58,029 125,658
UMLi UI 16,836 31,325

Table 7.1: Size of the models of the ConnectToSystem service.

7.4 A Metric Assessment of the ConnectToSystem

Service Models

The analyses in this section provide an insight into the impact of the many di-

mensions of complexity in models of a typical interactive application. Therefore,

results are superficially analysed in this section, while in-depth analyses of each
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metric over the models of the complete Library System are held over to Sec-

tion 7.5.

Table 7.2 presents the measurements of the CK metrics of the models of the

ConnectToSystem service from where the following can be observed:

Model # Classes Data WMC DIT NOC CBO RFC

UML noUI 2 Mean 4.00 0.00 0.00 1.00 1.50
Sum 8 0 0 2 3

UML UI 15 Mean 0.53 1.27 0.80 1.33 2.33
Sum 8 19 12 20 35

UMLi UI 12 Mean 0.67 0.00 0.00 1.67 1.18
Sum 8 0 0 20 8

UML UI/ 7.5 Mean 0.13 — — 1.33 1.56
UML noUI Sum 1 — — 10 11.67

UML UI/ 1.25 Mean 0.8 — — 0.8 3.50

UMLi UI Sum 1 — — 1 4.37

Table 7.2: CK metrics of the models of the ConnectToSystem service. Values in
bold are rations of metrics higher than 2 or lower than 0.2.

• Measurements of WMC in the models are restricted to the classes origi-

nally belonging to the UML noUI since the consolidated WMC in the three

models are the same (sum of WMC of 8).

• On average each class in UML UI has around one ancestor (mean DIT of

1.27) and one child (mean NOC of 0.80). This means that the inheritance

tree is shallow, as can be observed in Figure 3.9. However, this shallow-

ness does not prevent an increase in the consolidated DIT and consolidated

NOC for classes in UML UI when compared with these measurements for

the classes in UML noUI (consolidated DIT from 0 to 19 and consolidated

NOC from 0 to 12). In UMLi UI models, however, the effects of adding

UIs in UML UI are completely neutralised in UMLi , which returns the mea-

surements of the consolidated DIT and consolidated NOC in UMLi UI to

0, the same value as in UML noUI.

• The mean CBO of classes in UML noUI is slightly lower than the mean

CBO of classes in UML UI and UMLi UI. However, the consolidated CBO

of classes in UML UI, which has the same measurement for the classes in

UMLi UI, is 10 times the consolidated CBO of the classes in UML noUI.
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• In absolute terms, the consolidated RFC of classes in UML UI is 11.67

times the consolidated RFC of classes in UML noUI. Moreover, even con-

sidering that there are 7.5 times more classes in UML UI than classes in

UML noUI, the mean RFC of classes in UML UI is just 1.56 times higher

than of the classes in UML noUI. The consolidated RFC of 35 for the classes

in UML UI is significantly reduced to a consolidated RFC of 8 for the classes

in UMLi UI.

Table 7.3 presents the behavioural and visual metrics of the models of the

ConnectToSystem service where the following can be observed:

Model Behav. Complexity Visual Complexity
ν(ConnectToSystem) DCBOD DCCD

UML noUI 3 0.0015 0.0023
UML UI 5 0.0022 0.0006
UMLi UI 4 0.0087 0.0017

UML UI/UML noUI 1.67 1.48 0.25

UML UI/UMLi UI 1.25 0.26 0.32

Table 7.3: Behavioural and visual metrics of the models of the ConnectToSystem
service.

• The increase of 67% in ν(ConnectToSystem) of the activity diagrams in

UML UI with respect to the ν(ConnectToSystem) of the activity diagrams

in UML noUI is a significant increase in behavioural complexity. This in-

crease in complexity is a result of the necessity of specifying two aspects

of UIs: system feedback to users in case of invalid user details and a pos-

sibility to cancel the service. The implicit modelling of the cancelling of

the service in UMLi reduces the impact of modelling behavioural aspects of

UIs in activity diagrams from an original increase of 67% observed between

the ν(ConnectToSystem) of activity diagrams in UML UI and UML noUI

to a final increase of 33% between the ν(ConnectToSystem) of activity

diagrams in UMLi UI and UML noUI.

• DCBOD in the UMLi UI model is significantly higher than in the UML no-

UI and UML UI models, suggesting that visual complexity is lower in the

UMLi UI model than in the UML noUI and UML UI models.

• DCCD in the UML noUI model is 3.8 times higher than in the UML UI

model. However, DCCD in UMLi UI model is 2.83 times higher than in
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the UML UI model. These measurements suggest that visual complexity in

UML UI is higher than in the UML noUI and UMLi UI models. However,

the UML noUI is less visually complex than UMLi UI.

The measurement of the metrics of the complete Library System is the next

step in order to test Hypotheses 1 and 2 using more generic measurements than

those presented in this section.

7.5 A Metric Assessment of the Library System

Models

Table 7.4 introduced in page 173 presents the values for the CK metrics mea-

sured in the models of the Library System. Table 7.5 introduced in page 178

presents the values for the behavioural and visual metrics measured in the mod-

els of the Library System. There, the consolidated metrics measured in UML UI

quantify dimensions of complexity not lower than those quantified by the values

measured for the same consolidates metrics in UML noUI, confirming Hypothe-

sis 1. Moreover, the values for the consolidated metrics measured in UMLi UI

quantify dimensions of complexity not higher than those quantified by the values

measured for the same consolidated metrics in UML UI, confirming Hypothesis 2.

The following three analyses are provided for each selected metric in order to

characterise better the conclusion above.

i. An analysis of the consolidated metrics of the complete Library System

identifies which properties of the UML models are substantially affected by

the modelling of UIs. This analysis consists of a comparison between the CK

metrics of UML noUI and UML UI models in Table 7.4 and a comparison

between the metrics of UML noUI and UML UI models in Table 7.5.

ii. An analysis of the consolidated metrics of the complete Library System

identifies which properties of models are substantially affected by the use

of UMLi rather than UML for modelling interactive applications. This

analysis consists of a comparison between the CK metrics of UML UI and

UMLi UI models in Table 7.4 and a comparison between the metrics of the

UML UI and UMLi UI models in Table 7.5.
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Model # Classes Data WMC DIT NOC CBO RFC

UML noUI 14 Mean 3.43 0.14 0.14 2.79 4.36
Median 2.5 0 0 2 2.5
Max. 9 1 2 7 10
Min. 0 0 0 0 0
Std.Dev. 2.56 0.36 0.53 1.76 4.09
Sum 48 2 2 39 61

UML UI 91 Mean 0.58 1.40 0.86 2.76 6.76
Median 0 2 0 2 5
Max. 9 2 27 7 63
Min. 0 0 0 0 0
Std.Dev. 1.59 0.73 4.56 1.72 8.40
Sum 53 127 78 251 615

UMLi UI 88 Mean 0.54 0.02 0.02 2.85 1.18
Median 0 0 0 2 0
Max. 9 1 2 7 26
Min. 0 0 0 0 0
Std.Dev. 1.60 0.15 0.21 1.67 3.50
Sum 48 2 2 251 104

UML UI/ 6.50 Mean 0.17 9.77 6.00 0.99 1.55
UML noUI Sum 1.10 63.50 39.00 6.44 10.08

UML UI/ 1.03 Mean 1.07 61.41 37.71 0.97 5.72

UMLi UI Sum 1.10 63.50 39.00 1.00 5.91

Table 7.4: CK metrics of the models of the Library System. Values in bold are
rations of metrics higher than 2 or lower than 0.2.

iii. An analysis of the metrics of the ConnectToSystem service in Section 7.4

against the metrics of the complete case study in Section 7.5 identifies the

accumulative effects on metrics of the UML noUI, UML UI and UMLi UI

models. This analysis consists of a comparison between the CK metrics of

the case study in Table 7.4 and the CK metrics of the ConnectToSystem

service in Table 7.2, and of a comparison between the cyclomatic complex-

ity, DCBOD and DCCD of the complete case study in Table 7.5 and the

cyclomatic complexity, DCBOC and DCCD of ConnectToSystem service in

Table 7.3.

Finally, a conclusion in terms of complexity is suggested from (i), (ii) and (iii)

for each metric.

Structural Complexity Table 7.4 presents the values for the CK metrics mea-

sured in the models of the Library System.

• Analysis of WMC.
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i. The WMC of a class reused verbatim from a pre-defined class is zero.

Thus, the low WMC of the classes in UML UI with respect to the

WMC of the classes in UML noUI indicates that widgets, which are the

77 classes that UML UI has in addition to the 14 classes of UML noUI,

are often reused verbatim from toolkits rather than developed from

scratch.

ii. The slight decrease of mean WMC of the classes in UML UI with

respect to the WMC of classes in UMLi UI (from 0.58 to 0.54) is

insignificant since the mean WMCs in both models are low.

iii. The increase on the mean WMC of classes in UMLi UI with respect

to the mean WMC of classes in UML UI in Table 7.2 (from 0.54 to

0.67) is an insignificant effect specific to the ConnectToSystem service.

Indeed, it is insignificant since the consolidated WMC is the same in

all models of the service in Table 7.2. Further, it is specific to the

ConnectToSystem service since the mean WMC of classes in UMLi UI

is lower than of the classes in UML UI in the context of the Library

System.

The measurements for WMC do not suggest a significant increase in the

complexity of the UML models of the Library System when including UIs

although they do not suggest any decrease in complexity, confirming Hy-

pothesis 1. The measurements for WMC suggest a slight decrease in the

complexity of models when using UMLi rather than UML, neither confirm-

ing nor conflicting with Hypothesis 2.

• Analysis of DIT.

i. Although the mean DIT of classes in UML UI is low, the mean DIT

of classes in UML noUI is much lower. The ratios between the DIT

of classes in UML UI and UML noUI is high due to the fact that the

mean DIT of classes in UML noUI is almost zero (0.14).

ii. The ratio of DIT of classes in UML UI and in UMLi UI is the same as

the ratio of DIT of classes in UML UI and in UML noUI. This means

that UMLi is able to neutralise the effects on DIT of modelling the UI

in UML.
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iii. The slight increase in the mean DIT of classes in Table 7.4 in compar-

ison with the mean DIT of classes in Table 7.2 indicates that there are

proportionally more classes with a DIT of 2 in the case study than in

the service. Actually, DIT in UML noUI appears to be generally low,

but it is zero for the ConnectToSystem service.

The measurements for DIT suggest an increase in the complexity of the

UML models of the Library System when including UIs, confirming Hy-

pothesis 2, and a complete neutralisation of the effects in DIT of modelling

UI when using UMLi , confirming Hypothesis 2. Furthermore, for a more

concrete interaction model, DIT would probably be a decisive aspect of

complexity to impact the specification of UIs.

• Analysis of NOC.

i. The high standard deviation of NOC of classes in UML UI (4.56) indi-

cates that the NOCs of few of the classes in UML UI are significantly

higher than the NOCs of the other classes in the same model. The low

mean NOC of classes in UML UI indicates that the inheritance tree

in the model is shallow, but also confirms that the classes with high

NOC are few. These metrics indicate that the complexity in terms of

inheritance is centred in a few classes, which are probably those of the

class library.

ii. The reduction of the consolidated NOC of classes in UMLi UI with

respect to the consolidated NOC of classes in UML UI (from 78 to 2)

is the same reduction of the consolidated NOC of classes in UML noUI

with respect to the consolidate NOC of classes in UML UI. This means

that UMLi is able to neutralise the effects on NOC of modelling the

UI in UML.

iii. The profiles of the statistics of the NOC metric in the service and in

the case study are similar.

The effects on NOC of modelling UIs using UMLi rather than UML are

similar to these effects on DIT. Thus, recalling the analyses of DIT, Hy-

potheses 1 and 2 are also tested for NOC. However, it must be observed

that the overall impact of NOC on complexity may not be significant.
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• Analysis of CBO.

i. The increase in the consolidated CBO of classes in UML UI with re-

spect to the consolidated CBO of classes in UML noUI is proportional

to the increase in the number of classes between these models (approx-

imately 6), which is significant and noteworthy.

ii. The consolidated CBO of 251 is the same in the classes of both UML UI

and UMLi UI models. The difference in the means of these metrics is

due to the abstract InteractionClass, InvokeActionInteraction-

Class and PrimitiveInteractionClass classes, which are explicitly

specified in the UML models and implicitly specified in the UMLi

metamodel.

iii. The comparison between the CBOs in Tables 7.2 and 7.4 demonstrates

that the CBO of the classes in the ConnectToSystem service is slightly

lower than the CBO of classes of the Library System. However, CBO

is high even for ConnectToSystem.

The measurements of CBOs of the UML noUI and UML UI models suggest

a significant increase of 543% in the CBO dimension of complexity of the

UML models of the Library System when including UIs, confirming Hy-

pothesis 1. Furthermore, it suggests that complexity related to CBO is not

affected at all by UMLi even with a model 29% of the size of the UML UI

model, as indicated in Table 7.1. However, the metrics also show that CBO

has not increased in UMLi UI with respect to UML UI, neither confirming

nor conflicting with Hypothesis 2.

• Analysis of RFC.

i. RFC is 10.08 times higher in classes of UML UI than in classes of

UML noUI. The mean RFC of classes of UML noUI (4.36) is high but

the mean RFC of classes of UML UI is substantially higher (6.76). In

fact, the mean RFC of interaction classes is 1.55 times higher than the

mean RFC of domain classes.

ii. RFC of classes in UMLi UI has been reduced by 83% with respect to

the RFC of classes in UML UI since much of the behaviour of classes in
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UMLi UI is embedded within the UMLi constructs, making the mod-

els more straightforward and easier to maintain. Figure 7.3 presents

a graphical representation of the distribution of RFC per number of

classes. In this distribution, small areas are better than big areas since

low RFCs are better than high RFCs.

Figure 7.3: Distribution histogram comparing the RFC of the UML UI and
UMLi UI models.

iii. The high RFC in Table 7.2 is an indication that RFC could represent

a potential problem for UI designs. The high RFCs in Table 7.4 have

confirmed our suspicions.

The measurements for RFC suggest a substantial increase of 908% in the

RFC dimension of complexity of the UML models of the Library System

when including UIs, confirming Hypothesis 1. The high overall RFCs con-

firm the suggestion that UML may be inappropriate for modelling actions

in both domain and interaction classes, but it suggests how complex the sit-

uation can become when interaction classes are specified. The main reason

for this may be the non-declarative approach used by activity diagrams to

represent actions. Using UMLi , however, a significant reduction of 87% in
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Model Behav. Complexity Visual Complexity
ν(LibrarySystem) DCBOD DCCD

UML noUI 50 0.0026 0.0033
UML UI 77 0.0020 0.0006
UMLi UI 66 0.0080 0.0021

UML UI/UML noUI 1.54 0.77 0.18

UML UI/UMLi UI 1.17 0.25 0.29

Table 7.5: Behavioural and visual metrics of the models of the Library System.

RFC can be observed, confirming Hypothesis 2. Therefore, the reduction

in RFC is a significant achievement of UMLi .

Behavioural Complexity Table 7.5 presents a summary of the cyclomatic

complexity ν(LibrarySystem) measured in the complete case study.

i. The ν(LibrarySystem) is 54% higher in UML UI than in UML noUI. This

increase of ν(LibrarySystem) in UML UI with respect to UML noUI is

due to the specification of the behaviour of the UI to provide: feedback for

user actions; feedback to some users about actions performed in methods

of domain classes; support for cancellation actions. Indeed, different action

results may require different responses that must be specified in behavioural

models.

ii. The ν(LibrarySystem) is 14% lower in UMLi UI than in UML UI. This

is due to the �cancels� and �confirms� stereotypes that eliminate the

necessity of specifying how activities can be cancelled by users and how

OptionalSelectionStates can be confirmed by users. This reduction may have

a significant impact in the design of large-scale interactive systems since it

provides a uniform treatment for the cancelling of tasks in order to allow

users to reverse their actions, a UI usability requirement [126].

iii. The UML UI/UML noUI and UML UI/UMLi UI rations of ν(ConnectTo-

System) in Table 7.3 and ν(LibrarySystem) in Table 7.5 are very similar,

suggesting an increase in behavioural complexity when adding UI compo-

nents in the models, and a partial compensation for this increased com-

plexity to an intermediate value for the behavioral complexity when using

UMLi to specify UI concepts.
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The measurements for ν(LibrarySystem) suggest a slight increase in the com-

plexity of UML models when including UIs, confirming Hypothesis 1. These

measurements also suggest a reduction on the increase in the complexity of mod-

els above when using UMLi , but not compensating the increase caused by the

modelling of UI specifications, confirming Hypothesis 2.

Visual Complexity The values of the DCBOD and DCCD metrics measured

in the Library System are presented in Table 7.5. It may be appropriate to recall

the assumption of these metrics that say that high values for the metrics indicate

low complexity of the diagrams.

i. The DCBOD is insignificantly affected when comparing the values for UML -

UI and for UML noUI. The DCCD, however, is significantly affected by the

modelling of UI specifications in UML UI, resulting in values 5 times lower

than in UML noUI, which means 5 times more complex.

ii. DCCD in UMLi UI (0.0021) reduces the high visual complexity in UML UI

represented by its low DCCD in UML UI (0.0006). Thus, DCCD is im-

proved in UMLi UI with respect to UML UI becoming 3.5 times higher.

There is also an improvement of DCBOD in UMLi UI that is more remark-

able than that of the DCCD in UMLi UI since it reduces by 75% the DCCD

dimension of complexity by increasing DCBOD (from 0.0020 to 0.0080).

iii. There is a proportionality between most of the measurements of DCBOD

and DCCD in Tables 7.3 and 7.5. Actually, the DCBOD in UML noUI is

the only metric that is particularly low in the ConnectToSystem (0.0015)

with respect to the complete Library System (0.0026). As a consequence,

the DCBOD ration between UML UI and UML noUI models are different

in the tables. This difference, however, does not appears to be significant

since the DCBOD in UML noUI has a low variation of less than 0.7.

The measurements of DCBOD and DCCD suggest that the modelling of UI

components in UML models results in diagrams that required more graphical

elements to represent structural and behavioural complexity than required by

the domain part of the models, confirming Hypothesis 1. The measurements of

DCBOD and DCCD, however, suggest that the capability of UMLi to visually

represent both structural and behavioural complexity is higher than that of UML.
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In fact, with a fixed number of graphical elements, UMLi should be able to

represent more relevant information than UML, confirming Hypothesis 2.

7.6 Summary

The modelling of the ConnectToSystem service using standard UML has demon-

strated that the design of UIs has increased by 650% the number of classes re-

quired for modelling such a simple service. Moreover, the metrics for ConnectTo-

System have demonstrated that this increase in classes was followed by an increase

in the measurements of metrics representing the structural, behavioural and visual

complexity of the model. This supports Hypothesis 1, which says that complexity

of UI designs can significantly increase the complexity of standard UML models

that omit UI aspects. Furthermore, these metrics have demonstrated that despite

the overall increase in complexity, that response for a class (RFC) (900% of in-

crease in structural complexity), coupling between object classes (CBO) (1066%

of increase in structural complexity) and density of cyclomatic complexity in di-

agrams (DCCD) (283% of increase in visual complexity) were the most affected

aspects of the models.

The modelling of the ConnectToSystem service in UMLi UI has demonstrated

that UMLi requires an equivalent number of classes to that required by UML UI

for modelling the service. However, the increase in the number of classes in

UMLi UI with respect to UML noUI has not been followed by an increase of

the measurements of metrics representing the dimensions of the structural, be-

havioural and visual complexity of the models. In fact, the measurements of the

metrics in UMLi UI and UML UI models indicate an overall reduction in com-

plexity of the UMLi UI models. This supports Hypothesis 2, which says that

standard UML models are structurally, behaviourally and visually more complex

than UMLi models when describing the same set of properties of an interactive

system.

Therefore, useful metrics have been obtained by reusing the modelling tech-

niques applied in the ConnectToSystem service in the eight additional services

available in the Library System described in Section 3.1. These metrics have

confirmed the results produced by the modelling of the ConnectToSystem service

confirming Hypotheses 1 and 2 for the Library System. In particular, the metric

study has demonstrated that structural and visual complexity are much more a
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concern when modelling UIs than behavioural complexity (it is important to ob-

serve that structural complexity is represented in both structural and behavioural

diagrams of UML). More precisely, the RFC is the key metric for identifying the

difficulty of specifying actions in UML. Indeed, with a non-declarative approach

used in their behavioural diagrams, UML models tend to be very complex. Fur-

ther, although not increasing as much as RFC, CBO is also significantly affected

by the modelling of UIs. In this case, CBO is affected more by the increase in

the number of interaction classes demanding a lot of collaboration among them

than by the increase in the collaboration between domain and interaction classes.

Indeed, the value of CBO of classes in UML UI and UML noUI are the same.

In terms of the development of interactive systems, the results in this chapter

demonstrated that UMLi reduced the complexity of modelling the Library Sys-

tem when compared with UML. Significant reductions in structural complexity

(reduction of 87% in RFC) and visual complexity (increase of 402% in DCBOD

and 345% in DCCD) along with considerable reductions in behavioral complexity

(reduction of 14% in cyclomatic complexity) were achieved in UMLi models by

improving the support of UML for UI design. Therefore, where developers do not

model UIs, they are neglecting to provide guidance for the implementation of a

substantial and complex part of typical interactive systems. Indeed, this may be

a reason why UIs are often implemented in an ad hoc way.

In terms of user interface design assessments, the metric study in this thesis

is a contribution on its own. Indeed, it demonstrates that quality in UI designs

can be evaluated even before the generation of any other artifact from the models

such as prototypes or UI code.



Chapter 8

Conclusions and Future Work

The thesis concludes with a review of the work presented and an assessment of

the extent to which the objectives set out in Section 1.5.2 have been met. The

principles set out in Section 1.5.1 are revisited. Some reactions of the research

community to the ideas of the dissertation are discussed. Finally, directions for

future work are suggested.

8.1 Work Overview and Contributions

Many issues were addressed during the process of developing and assessing UMLi .

The resulting research contributions are presented along with an overview of the

work developed in this thesis.

Chapter 2 presented a survey of the MB-UIDE literature identifying the as-

pects usually described by user interface models in MB-UIDEs. This chapter

has contributed through the development of a comparison framework for MB-

UIDEs that has identified a set of 15 common modelled characteristics of user

interfaces. The framework is composed of the elements presented in Tables 2.1

and 2.2. Table 2.1 presents four categories of model often used to describe rele-

vant aspects of user interfaces: application models, task-dialogue models, abstract

presentation models and concrete presentation models. Table 2.2 presents 15 cat-

egories of construct used to compose the models in Table 2.1. Table 8.1 presents

the compositions of UMLi constructs representing the categories of constructs in

Table 2.2.
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Comp. Construct UMLi construct(s)
model

AM CLASS Class
ATTR Attribute
OPER Operation
RELAT Association

TDM TASK UseCase and Activity connected by a Realisation
GOAL name of UseCase
ACTION ActionState
SEQ combination of Transition(s) and PseudoState(s)
PRE OCL expression in Activity
POST OCL expression in the default Transition leaving an Activity

APM VIEW FreeContainer
AIO PrimitiveInteractionClass or ActionInvoker

CPM WINDOW Class bound to FreeContainer in a pattern’s Framework
CIO Class bound to PrimitiveInteractionClass or ActionInvoker in

a pattern’s Framework
LAY none

Table 8.1: UMLi user interface model.

Chapter 3 presented a modelling study where the the facilities provided by the

standard UML were exploited to model the user interface aspects identified in the

comparison framework for MB-UIDEs presented in Chapter 2. The major contri-

bution of this modelling study is the identification of the weaknesses of UML for

modelling user interfaces, outlined as UI Modelling Difficulties. Thus, concerning

the behavioral aspects of user interfaces, the modelling study demonstrated the

difficulty of:

• modelling tasks using use cases, as suggested by UI Modelling Difficulty 1;

• identifying application entry-points, as suggested by UI Modelling Diffi-

culty 2;

• specifying actions that instances of interaction classes can perform when

collaborating with other interaction classes and with domain classes, as

suggested by UI Modelling Difficulty 3;

• specifying some categories of interactive behaviours, e.g., optional and or-

der independent behaviours, using activity diagrams, as suggested by UI

Modelling Difficulty 4;

• specifying temporal dependencies using sequence diagrams, as suggested by

UI Modelling Difficulty 7.
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Concerning the structural aspects of user interfaces, the modelling study demon-

strated the difficulty of:

• identifying containment among interaction classes, as suggested by UI Mod-

elling Difficulty 5;

• identifying abstract roles that interaction classes can play in user interfaces,

e.g., displaying information to users, receiving information from users, trig-

gering actions, etc., as suggested by UI Modelling Difficulty 6.

Chapter 4 proposed UMLi , a conservative extension of UML, that provides

new constructs and models for coping with the UI Modelling Difficulties of UML

identified in Chapter 3. The UMLi proposal is the contribution of this chapter

to the thesis. A description of how the UI Modelling Difficulties are addressed in

UMLi is used to summarise the new features of the proposal.

• UI Modelling Difficulty 1 is addressed by well-established links between use

case diagrams and activity diagrams, which explain how user requirements

identified during requirements analysis are described in the application de-

sign.

• UI Modelling Difficulty 2 is addressed by the InitiateInteraction construct in

the UMLi activity diagram that provides a way for modelling application

entry-points.

• UI Modelling Difficulty 3 is addressed by the use of stereotypes in interaction

object flows, which simplify the specification of the relationships between

visual components of the user interface and domain objects.

• UI Modelling Difficulty 4 is addressed by the use of selection states in

activity diagrams, which provide a simplified modelling of interactive system

behaviour.

• UI Modelling Difficulty 5 is addressed by the UMLi user interface diagram

introduced for modelling abstract user interface presentations that simplifies

the modelling of the use of visual components (widgets). The notation for

Containers facilitates the grouping of widgets.
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• UI Modelling Difficulty 6 is addressed by the notation for InteractionClasses

that facilitates the visual identification of the abstract roles of widgets in

user interfaces.

Chapter 4 also described how the UMLi constructs were specified in terms of the

standard UML metamodel.

Chapter 5 proposed a semantics for UMLi based on the UML metamodel [99]

with the specific aim of providing a precise meaning for the UMLi constructs.

Moreover, a one step model checking of complete specifications of interactive

systems is an additional contribution achieved as a side-effect of the provision of a

formal semantics for UMLi . The contributions of this chapter can be summarised

as follows.

• The development of a semantics for UMLi based on the LOTOS specifica-

tion language [16, 63], which provided an opportunity to bring the formal-

isation of interactive systems proposed by Markopoulos [82] and Paternò

and Faconti [104] into the context of UML. Thus, the semantics of the In-

teractionClass construct of UMLi was defined as an ADC interaction [82],

demonstrating that the proposed UMLi semantics is in line with the re-

quirements for developing user interfaces.

• The development of a strategy for mapping UML models into LOTOS spec-

ifications has demonstrated how some structural and behavioural constructs

of UML could be mapped into complete and correct LOTOS specifications.

Moreover, many potential problems resulting from the design of UMLi mod-

els such as deadlocks, livelocks and unreached states can be identified using

LOTOS tools, as discussed in Section 5.6.

Chapter 6 presented the design and implementation of ARGOi , a UMLi -based

modelling environment. The main contributions of the effort of designing and

implementing ARGOi can be summarised as follows.

• ARGOi is an extended version of Argo/UML [119], a generic UML-based

tool. Thus, the implementation of ARGOi demonstrated that concerning

the notation and metamodel, UMLi is an conservative extension of UML

that can be implemented in generic UML-based tools;
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• ARGOi identified two tool facilities (wizards) that can be implemented

for UMLi in order to simplify some tasks frequently performed during the

modelling of user interfaces: the temporal-relation wizard that exploits the

use of the UMLi SelectionStates (Section 6.4) can be used to model common

UI behaviour; The integration wizard (Section 6.6) can be used to preserve,

when modelled, the integration between interaction and domain Classes.

• The use of ARGOi has demonstrated that UMLi is an conservative ex-

tension of UML. Thus, UMLi models can be developed from UML models

developed originally in Argo/UML, a standard UML tool.

Chapter 7 described a metric evaluation of UMLi models when compared with

their corresponding models described using standard UML. The metric study

compared the cost in terms of design metrics of modelling an interactive system

with UMLi and standard UML. Two major results of the metric study constitute

the main contribution of this chapter.

• One part of the metric study demonstrated that the standard UML does

not scale up well for modelling the Library System, a typical interactive

application. In fact, the development of a case study comparing the cost in

terms of design metrics of modelling the Library System with and without

user interface concerns demonstrated that all the metrics considered in the

study were affected. The metrics also demonstrated that despite the overall

increase in complexity, that RFC, CBO, DCBOD and DCCD were the

affected metrics.

• The other part of the metric study demonstrated that UMLi reduced the

complexity of modelling the Library System when compared with UML.

Significant reductions in structural complexity (reduction of 87% in RFC)

and visual complexity (increase of 402% in DCBOD and 345% in DCCD)

along with considerable reductions in behavioral complexity (reduction of

14% in cyclomatic complexity) were achieved in UMLi models by improving

the support of UML for UI design.
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8.2 Revisited UMLi Principles

The UMLi principles for guiding the integration of interface models with UML

introduced in Chapter 1 are as important as the contributions since they have

established the context for the work described in this dissertation. Therefore,

they are now revisited to illustrate how UMLi , as specified in Chapters 4 and 5,

is in conformance with them:

Principle 1 The UMLi proposal should be a conservative extension of UML –

standard UML should be retained as a subset. UMLi makes no changes to the

standard UML metamodel, although it does introduce some extensions. Any model

constructed using the standard Argo/UML tool – which is driven from the UML

metamodel – is also a valid model in ARGOi.

Principle 2 The UMLi proposal should introduce as few new models and con-

structs into the UML as possible. UMLi introduces no truly new models into

UML. User Interface Diagrams are a notational change to class diagrams, and

activity diagrams have simply been extended using a macro notation.

Principle 3 The UMLi proposal should support the expectations of current

UML modellers, whose experience with UML should be of benefit when using

interface-specific extensions. As UMLi supports UML as as subset, all existing

facilities retain their role and semantics. When modelling user interfaces, UML

models can use UMLi facilities as and when they choose, and can link the UMLi

extensions with class diagrams in well-defined ways. Furthermore, task modelling

is supported within the context of familiar activity diagrams.

Principle 4 The UMLi proposal should support the expectations of user inter-

face modellers who have experience using existing interface modelling techniques.

Such users should not feel that they are having to design interfaces with less sup-

portive facilities than are provides by MB-UIDEs. This principle is in tension

with the previous one. UMLi seeks to provide intuitive facilities for task mod-

elling that are familiar to user interface practitioners, but supports these within

the notational context of activity diagrams, with which interface specialists will

not generally be familiar.

Principle 5 The UMLi proposal should support the modelling of complete ap-

plications, so the links between user interface models and existing UML models



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 188

should be well-defined and close. The means by which UMLi models are integrated

with other models in an unambiguous way is by including UMLi into the standard

UML metamodel. Therein, UMLi task modelling is supported through a mapping

to UML activity diagrams, and object flow states associated to interaction objects

make explicit how an interface uses application data.

8.3 Conclusions

The work in this thesis certainly does not provide a definitive answer to the ques-

tion of how best to model user interfaces using UML. However, it does present

a comprehensive approach to improving the design of user interfaces without

needlessly complicating UML with new models that substantially overlap with

existing models in their representational capabilities. For instance, it provides

simple solutions to the questions about how to model UIs in UML raised during

the development of the library case study using standard UML. Further, these

solutions have proved to be effective for reducing complexity of UML-based mod-

els, which is one of the main motivations for providing specialised support for

user interface modelling.

There are people in the HCI community that do not believe in the use of

state-transition diagrams, such as activity diagrams, for modelling the behaviour

of interactive systems. We can identify with their views that the development

of a proper task concept and notation may be a viable alternative to activity

diagrams. However, the study in this thesis provides a framework for comparing

the modelling of interactive systems using task models and activity diagrams by

describing many attributes associated with tasks in activity-based models. Thus,

the study in this dissertation may help to support a proposal of a non-conservative

extension of UML in the future.

A further possible criticism of UMLi from people of the software engineering

community is that the level of detail in the models is more like a visual program-

ming of user interface software that the design of user interfaces. Again, we can

identify with such a position, in this case that the level of detail in UMLi models

may greater than is desirable. Indeed, we believe that the UMLi support for UI

modelling can be further improved.

Finally, the next challenge for UMLi may be outside the research environment.

Indeed, UML designers are struggling to model interactive systems using UML,
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as can be observed in discussion lists of OOPL and UML users. Some designers

are already using UMLi . For instance, 43 users have downloaded ARGOi and

the UMLi web-page was visited 1,170 times between 18th October 2001 and 17th

February 2002.

8.4 Future Work

Concerning the inherent problems of the MB-UIDE technologies presented in

Section 2.4, UMLi is an answer to the problem of not having a common notation

for user interface models. Some inherent problems of MB-UIDEs such as the

post-editing problem also identified in Section 2.4 are not addressed by UMLi ,

which remains a challenging research problem. Indeed, a list of open research

problems is presented as follows.

Developing web applications using UMLi . The web architecture provides

some challenges to the use of UMLi . For instance, it must be observed

that every page of a web application can be used as an entry point to the

application. A solution to this particular requirement of web applications

when using UMLi may not be difficult to be explained. However, an in-

depth study of the use of UMLi for developing web applications may be

required to identify if the web has other special requirements that may not

be addressed by UMLi .

Interpretation of model checking problems. Model checking can be used

to identify problems in LOTOS specifications. However, it would be de-

sirable if model checking problems could be described in terms of UML

constructs when the LOTOS specifications are translations of UML models

using the UMLi semantics. This is not a trivial problem, since the mappings

between LOTOS and UMLi constructs are not one-to-one.

Implementing support for concrete UI presentation. UMLi relies on the

use of design patterns to map UI diagrams into concrete presentation mod-

els, as described in Section 3.5. Thus, it would be desirable if the latest

results in terms of UI design guidelines could be described within the UMLi

framework.

Implementing additional features in ARGOi . New features can be imple-

mented in ARGOi to increase its acceptability by designers of interactive
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systems. The generation of user interface code from the user interface as-

pects modelled in UMLi models is the next natural candidate feature. Sup-

port for a collaborative design environment is another candidate feature

that would have a significant impact for designers, especially for teams

composed of application designers and user interface designers.

Extending UMLi to non-form-based user interfaces. There are important

categories of non-form-based user interfaces that probably cannot be mod-

elled in UMLi . However, it is unclear whether UMLi would be appropriate

to model these other categories of UIs. Thus, the identification of the

problems that UMLi may present when modelling non-form-based user in-

terfaces would be the first step towards a version of UMLi suitable for use

with other kinds of interactive application.



Appendix A

Additional Semantics for UMLi

A.1 Operation Specification

In addition to the attributes, the BookCopy class has seven Operations, as de-

scribed in Figure 3.2. A LOTOS specification for the renewLoan() and get-

CopyCode() Operations is presented in this section. The renewLoan() Operation

implements a functionality of the Library System, as described in Section 3.1.

Rather than implementing Library System functionalities, the getCopyCode()

Operation is responsible for encapsulating the copyCode Attribute.

An explanation of how the renewLoan() and getCopyCode() Operations can

be specified in LOTOS indicates how Classifier’s Operations can be specified in

LOTOS. Each Operation is associated with a CallAction, which is composed of

a pair of Messages. The Message and CallAction and Operation constructs are

defined in terms of LOTOS operators as follows:

UCD 35 A Message is the specification of an observable action of CLASS CLS

in the behaviour expression of CLASS CLS or any of its subprocesses.

UCD 36 A CallAction is a pair of Messages, e.g., < callinvoker , callresponse >.

In the behaviour expression of the Classifier process of an Object invoking the Op-

eration, callinvokers must come before callresponses. In the Classifier process

of an Object where the Operation is invoked, the CallAction Messages are used as

specified in UCD 37.

The accept ... in construct of LOTOS is required to introduce the Operation’s

UCD. The accept ... in is used to assign the results of a process preceding an

191
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enabling (>>) construct to a set of LOTOS variables defined after the accept

keyword. Thus, the Operation construct can be defined in terms of LOTOS

operators as follows.

UCD 37 An Operation is the specification of a subprocess in CLASS CLS, e.g.,
OPERATION, defined as follows:

process CLASS CLS [ callinvoker , callresponse , dest roy class]

( c : Class) : exit :=

( (

. . .

[ ]

( callinvoker;

OPERATION[ callresponse] ( c ) >>

accept upd c: Class in CLASS CLS [ callinvoker,

callresponse , dest roy class ] ( upd c ) )

[ ]

. . . ) [ > destroy class ; exit

where

process OPERATION[ callresponse] ( c ) :

exit (Class) :=

i ; callresponse ; exit (any Class)

endproc

endproc

According to UCD 36, a pair of CallInvoker and CallResponse observable

actions is specified for each Operation. Further, the Operation process, called op-

eration process, preserves the state of its Classifier, receiving and returning the

state of their Classifier’s process, as in UCD 37. For example, in Figure A.1, the

RENEWLOAN process receives the bc object of type BookCopy, returning it on

the exit(any BookCopy). The any operator of LOTOS specifies that any value

in the domain of the specified type, e.g., BookCopy, can be returned. Moreover,

the value of c declared in UCD 11 may be unaffected. For instance, if the Op-

eration in the UML model is specified with the isQuery Attribute set to TRUE

then the any Class in exit must be replaced by the parameter c of CLASS CLS.

An Operation’s parameters are added to the Operation process’s parameter list.

Return values are added as a LOTOS event to the CallResponse action. In the

case of the GETCOPYCODE process, the string returned by the Operation, e.g.,

getccode(bc), is added to getcc res, the GETCOPYCODE’s CallResponse ac-

tion.
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process BOOKCOPY CLS[ getcc , g e t c c r e s , renew , renew res ,
destroy bookcopy ] ( bc: BookCopy ) : exit :=

( getcc ; GETCOPYCODE[ g e t c c r e s ] ( bc ) >>

accept upd bc:BookCopy in

BOOKCOPY CLS[ getcc , g e t c c r e s , renew , renew res ,
destroy bookcopy ] ( upd bc )

[ ]
renew ; RENEWLOAN[ renew res ] ( bc ) >>

accept upd bc:BookCopy in

BOOKCOPY CLS[ getcc , g e t c c r e s , renew , renew res ,
destroy bookcopy ] ( upd bc ) )

[> destroy bookcopy ; exit

where

process GETCOPYCODE[ g e t c c r e s ] ( bc:BookCopy ) : exit ( BookCopy ) :=
i ; g e t c c r e s ! getccode ( bc ) ; exit (any BookCopy)

endproc

process RENEWLOAN[ renew res ] ( bc:BookCopy ) : exit ( BookCopy ) :=
i ; renew res ; exit (any BookCopy)

endproc

endproc

Figure A.1: Specification of Operations in the BookCopy process.

Finally, behavioural expressions of Operation processes are specified by an

i unobservable action of LOTOS prefixing a CallResponse action, prefixing an

exit operation. The i action specifies that some action should happen during

the execution of the method, but nothing can be said about this action. Broadly

speaking, LOTOS can be used for the specification of implemented software sys-

tems. UML, however, is intended to be used during the design phase of the

development process of a software system. Therefore, some under-specifications

are expected in LOTOS specifications generated from UML models [19]. Most

under-specifications are implicitly represented in the LOTOS specification. For

example, Activities that are not refined into ActionStates, such as the connect Ac-

tivity in Figure 5.3, are under-specifications. In the case of Operations, however,

the i actions in their behaviour expressions are explicitly under-specifications.

These i actions are used in LOTOS, in this case, to represent an internal event

that may not be influenced by any process (non-determinism). In fact, it is as-

sumed that the specification of methods is an implementation concern rather than

a design concern. Nevertheless, LOTOS could be used to specify the implemen-

tation of methods.

The BOOKCOPY CLS version with the encapsulated attributes does not

specify attributes. In fact, this is a simplification in order to keep the trans-

lation of operations concise. However, a proper specification of the BookCopy

class should preserve the attribute specification that may be hidden from other
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processes using the hide operator of LOTOS.

A.2 Association and ClassifierRole Specifications

Let C be the finite set of Classifiers of a UML design of S, and A = C × C. Thus,

an Association can be defined as follows.

Definition 1 An Association (α) is a binary relationship between Classifiers (α ∈

A).

An Association, as in Definition 1, is not a UCD. Indeed, in this paper, the

Association’s UCD is defined by the ClassifierRoles related to an Association. Thus,

let R = A × C. From R and Definition 1 we can see that ∀α ∈ A ⇒ ∃ρ1, ρ2 ∈

R • ρ1 6= ρ2 ∧ΠA(ρ1) = ΠA(ρ2) = α, where ΠA(ρz) is a projection of the value in

the domain of A in ρz. Then a ClassifierRole can be defined as follows.

UCD 38 A ClassifierRole (ρ) is a binary relationship between a Classifier and
an Association (ρ ∈ R) specified as a CallAction, where its CallResponse action
returns an Enumeration of related instances of the associated Classifier1 for the
current instance. The Enumeration is generated by a GEN ENUM process which
precedes the CallResponse. For an associated Class2 Classifier, the GEN ENUM
is specified as follows.

process GEN ENUM[ ] : exit ( Enumeration Class2) :=

exit (any Enumeration Class2)

endproc

Association’s UCD can be specified from UCD 38. In fact, ClassifierRoles are

synchronisations between processes that are equivalent to Associations mathe-

matically defined as in Definition 1 [3]. Further, the UML specification says that

there are two instances of AssociationEnd for each instance of Association. More-

over, the AssociationEnd has an attribute aggregation which can have the values

none, aggregate or composite. Therefore, Table A.1 introduces a set of UCDs

based on UCD 38 and the possible combination of types of AssociationEnds in an

Association. There, α1 is an Association between a P1 Classifier playing a ρ1 Classi-

fierRole and a P2 Classifier playing a ρ2 ClassifierRole. Furthermore, the execution

of the CREATE CLASS AS[] instantiates Class, as described in Section 5.5.1.

1As described in Section 5.3, there is an enumeration type definition for every Classifier type
definition translated from a UML model.
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UCD U Φ(U)

39
(∃Φ(ρ1) ∨ Φ(ρ2)) where Φ(ρ1) and
Φ(ρ2) are defined as in UCD 38.

40
(∃Φ(ρ1) ∨ Φ(ρ2)) ∧
(P1 CLS has parameter of P2 type)

41

(∃Φ(ρ1) ∨ Φ(ρ2)) ∧
(P1 CLS has parameter of P2 type) ∧
(execution of CREATE P1 AS[] ⇒
execution of CREATE P2 AS[]) ∧
(execution of destroy p1 ⇒
execution of destroy p2)

Table A.1: Association mapping.

The BookCopy Class is associated to the Loan and Book Classes, as presented in

Figure 3.2. Thus, the example in Figure A.2 presents the LOTOS specification of

the onLoan ClassifierRole in BOOKCOPY CLS. There, the Eloan returned by the

onloan res is an enumeration of type Enumeration Loan. The invocation of the

hasBookCopy ClassifierRole may be specified in the specification of the Methods of

the BookCopy Operations later in the implementation phase of the Library system.

process BOOKCOPY CLS[ se t cc , . . . , onloan , on loan re s , hasbookcopy ,
hasbookcopy res , destroy bookcopy ] ( bc: BookCopy ) : exit :=

( (∗ prev ious l y def ined a t t r i b u t e s and operat ions ∗)
[ ]
onloan ; ONLOAN[ on loan re s ] ( bc ) >>

accept upd bc:BookCopy in

BOOKCOPY CLS[ se t cc , . . . , onloan , on loan re s , hasbookcopy ,
hasbookcopy res , destroy bookcopy ] ( upd bc )

[> destroy bookcopy ; exit

where

(∗ prev ious l y def ined operat ion processes ∗)
process ONLOAN[ on loan re s ] ( bc:BookCopy ) : exit ( BookCopy ) :=

i ; GEN ENUM >> accept Eloan: Enumeration Loan in

on loan re s ! Eloan ; exit (any BookCopy)
where

process GEN ENUM[ ] : exit ( Enumeration Loan ) :=
exit (any Enumeration Loan )

endproc

endproc

endproc

Figure A.2: Specification of Associations in the BookCopy process.



APPENDIX A. ADDITIONAL SEMANTICS FOR UMLi 196

A.3 Signal, Sender and Receiver Specifications

The interaction between objects, as presented so far, is represented by Opera-

tions performed in a synchronous manner. For instance, methods performing

CallActions need to wait for the conclusion of the triggered Operation. How-

ever, there may be actions that must to be performed in an asynchronous way.

In the running case study, for instance, a Signal can be raised every time a

BookCopy object is returned. In fact, returnBook() is the Sender Operation

related to the ReturnedCopy Signal in Figure 3.2. Moreover, the invocation of

the returnBook() Operation that raises the ReturnedCopy Signal is a SendAction

for the Signal. Nevertheless, the Signal construct is responsible for providing such

a facility modelled in Figure 3.2.

UCD 42 A Signal is a Message specified immediately after the in keyword in the

invocation of the Signal’s associated Operation process (UCD 37).

UCD 43 A SendAction is the specification of a Signal in the behavioural expres-

sion of an ActionState (UCD 27).

Thus, UCD 42 can be used to implement the required asynchronous action

presented above. For instance, returnedcopy sig in Figure A.3 is raised every

time the RETURNBOOK operation of BOOKCOPY CLS is performed.

process BOOKCOPY CLS[ . . . , returnbook , r e turnbook re s ,
r e turnedcopy s ig , destroy bookcopy ] ( bc: BookCopy ) : exit :=

( (∗ prev . def ined a t t r i b u t e s , operat ions and a s so c i a t i on s ∗)
[ ]
( returnbook ? new bc: Bookcopy ; RETURNBOOK[ re turnbook re s ] ( bc , new bc ) >>

accept upd bc:BookCopy in r e turnedcopy s ig ! upd bc ;
BOOKCOPY CLS[ . . . , returnbook , r e turnbook re s ,

r e turnedcopy s ig , destroy bookcopy ] ( upd bc ) ) )
[> destroy bookcopy ; exit

where

(∗ other operat ion and assoc ia t ion processes ∗)
endproc

Figure A.3: Specification of Signals in the BookCopy process.

The use of Signals has more impact on the structure of Classes acting as

Receivers than in Operations acting as Senders. Instances of the Reservation

Class must receive the returnedcopy sig Signal raised by BOOKCOPY CLS in

an asynchronous way. In Figure A.4, the interleave operator (|||) specifies that the
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process RESERVATION CLS [ . . . , r e turnedcopy s ig , d e s t r oy r e s e r va t i on ]
( r e s :Re s e r va t i on ) : exit :=

(
(∗ behaviour express ion for a t t r i b u t e s ,

operat ions and a s so c i a t i on s ∗)
)
| | |
( r e turnedcopy s ig ?bc:BookCopy ;

not i fy ! bc ; n o t i f y r e s ;
RESERVATION CLS [ . . . , r e turnedcopy s ig , d e s t r oy r e s e r va t i on ] ( res ))

[> de s t r oy r e s e r va t i on ; exit

where

(∗ d e f i n i t i o n s of operat ion and assoc ia t ion processes ∗)
endproc

Figure A.4: Specification of the Reservation process as a Receiver of the
ReturnBook Signal.

returnbook sig is not synchronised with any other action that may be performed

within RESERVATION CLS.

The RESERVATION CLS is acting as a handler of the returnedcopy sig

since the Signal is invoking a Notify Operation also defined in the RESERVA-

TION CLS. However, it may be the case that RESERVATION CLS could rely

on other Classifiers that could act as Handlers as well.

A.4 Generalisation Specification

As presented so far, a Classifier is defined by its type and process. The BookCopy

classifier is defined by the BOOKCOPY type and the BOOKCOPY CLS process.

Thus, a Classifier can be generalised as long it can inherit the type and process

actions provided by its superclass.

In terms of type there is no difficulty in implementing this. For instance,

supposing that the Person classifier is already specified in LOTOS, the type of

the Borrower classifier can be specified in the way presented in Figure A.5. For

instance, the getname(castPerson(aBorrower)) type operation can return the

name Attribute defined in the Person type specification.

Moreover, Classifier features, viz. Attributes, Operations, Associations and Sig-

nals are specified as observable actions. Therefore, a full synchronisation be-

tween PERSON CLS and BORROWER CLS (e.g., PERSON CLS || BORRO-

WER CLS) makes Borrower inherit the features of Person. In this case, Bor-

rower must only to implement the role actions of its association with the Loan
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type BORROWER is PERSON with

sorts Borrower
opns mk borrower: −> Borrower

i sPe r s on : Person −> Borrower
cas tPer son : Borrower −> Person

endtype

Figure A.5: Specification of Borrower as a specialisation of Person.

class, which is what makes it different from Person.

A.5 A Generic Specification for Classifiers

The presented UCDs have demonstrated how to generate a LOTOS specification

for a Classifier and its Attributes, Operations, Associations and Signals. Thus,

assume that a Classifier can be represented by a tuple T =< Γ, Ω, Σs, Σr >,

where:

• Γ is a finite set of Attributes;

• Ω is a finite set of Operations;

• Σs is a finite set of Signals where the Classifier is a Sender;

• Σr is a finite set of Signals where the Classifier is a Receiver

For each tuple T there exists one LOTOS specification of a CLASS type and

a CLASS CLS process. For instance, suppose that for a specific Classifier, the

cardinality of Γ is w (#Γ = w), which means, Γ = { a1, a2, ..., aw }. Further,

suppose that each attribute of Γ has a corresponding type a1type, a2type, ...,

awtype. Figure A.6 presents the generic CLASS type.

Moreover, suppose that #Ω = x (Ω = { o1, o2, ..., ox }), #Σs = y (Σs = { s1,

s2, ..., sy }); and #Σr = z (Σr = { t1, t2, ..., tz }). Then, a set of parameters and

their types is defined which is provided by each Signal of Σr, {tip1: tip1type, tip2:

tip2type, ... }. So, for each Operation, e.g., oi, is defined:

• a CallInvoke action, oi, and a CallResponse action, oires;

• a set of parameters along with their respective types, {oip1: oip1type, oip2:

oip2type, ... }; and
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type CLASS is a1type , . . . , awtype

sorts Class

opns mk Class: −> Class

mk Class2: a1type , . . . , awtype −> Class

set a1 : Class , a1type −> Class

get a1 : Class −> a1type

set a2 : Class , a2type −> Class

get a2 : Class −> a2type

. . .
set aw : Class , awtype −> Class

get aw : Class −> awtype

(∗ eqns s p e c i f i c a t i o n s ∗)
endtype
.

Figure A.6: A type for a generic Classifier.

• a set of results along with their respective types, {oir1: oir1type, oir2:

oir2type, ... }.

Finally, to simplify the representation of CLASS CLS, let G be the ordered

set of gates: {a1inp, a1out, a2inp, a2out, ..., awinp, awout, o1, o1res, o2, o2res,

..., ox, oxres, s1, s2, ..., sq, ..., sy, t1, t2, ..., tz, destroy class}. Thus, Figure A.7

presents the generic CLASS CLS process.

A.6 The OrderIndependentState Specification

In the context of the GENERIC ACT Activity used to define the OptionalState in

Section 5.5.6, an OrderIndependentState defined within the GENERIC ACT and also

having the range SUB1 ACT · · · SUBn ACT of processes representing its selectable

Activities is defined as follows.

UCD 44 An OrderIndenpendentState is defined as the ORDERINDEPENDENT ACT

process specified as follows.

process GENERIC ACT[ abort ] : exit :=

. . . >> ORDERINDEPENDENT ACT [ . . . , abort oi ] >> . . .

where

process ORDERINDEPENDENT ACT [ . . . , abort oi ] : exit :=

( resumesub1; aoutsub1; suspendsub1;

SUB1 ACT[ abort oi ] | | |

(∗ an act ion s ta t e behaviour express ion ∗) | | |

. . . | | |

resumesubn; aoutsubn; suspendsubn;

SUBn ACT[ aout oi ] )
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process CLASS CLS [ G] ( c : Class ) : exit :=
(

( a1inp?p1 : a1type ; CLASS CLS[G] ( seta1 ( c , p1 ))
[ ] a1out ! a1 ; CLASS CLS[G] ( c )

. . .
[ ] awinp?pw : awtype ; CLASS CLS[G] ( setaw ( c , pw ))
[ ] awout ! aw ; CLASS CLS[G] ( c )
[ ] o1?o1p1 : o1p1type?o1p2 : o1p2type . . . ; OPER1 [ o1res ] ( c , o1p1 , o1p2 , . . . ) >>

accept upd c:Class in CLASS CLS[G] ( upd c )
. . .

[ ] ox?oxp1 : oxp1type?oxp2 : oxp2type . . . ; OPERx [ oxres ] ( c , oxp1 , oxp2 , . . . ) >>

accept upd c:Class in CLASS CLS[G] ( upd c )
| | | ( t1?t1p1 : t1p1type?t1p2 : t1p2type ? . . . ; . . . ; CLASS CLS[G] ( . . . ) )
. . .
| | | ( tz?tzp1 : tzp1type?tzp2 : tzp2type ? . . . ; . . . ; CLASS CLS[G] ( . . . ) )

) [> de s t r oy c l a s s ; exit

where

process OPER1 [ o1res ]
( c : Class , o1p1 : o1p1type , o1p2 : o1p2type , . . . ) : exit ( Class ) :=

i ; o1res ! o1r1 ! o1r2 ! . . . ; exit (any Class )
endproc

. . .
process OPERx [ oxres ]

( c : Class , oxp1 : oxp1type , oxp2 : oxp2type , . . . ) : exit ( Class ) :=
i ; oxres ! oxr1 ! oxr2 ! . . . ; exit (any Class )

endproc

endproc

Figure A.7: A process for a generic Classifier.

[> abort oi ; exit

where

process SUB1 ACT [ . . . , abort oi]

(∗ SUB1 ACT sp e c i f i c a t i o n ∗)

endproc

process SUB3 ACT [ . . . , abort oi]

(∗ SUB1 ACT sp e c i f i c a t i o n ∗)

endproc

. . .

process SUBn ACT [ . . . , abort oi ]

(∗ SUBn ACT sp e c i f i c a t i o n ∗)

endproc

endproc

endproc

The resumesub1, suspendsub1, aoutsub1 · · · resumesubn, suspendsubn and

aoutsubn are gates of either ActionInvokers associated to subactivities by �ac-

tivates� ObjectFlowStates (UCD 45) or PrimitiveInteractionClasses associated to

subactivities that are ActionStates by �interacts� ObjectFlowStates (UCD 33).
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UCD 44 shows that the OrderIndependentState is a special case of the Fork and

Join PseudoStates (UCD 8). In fact, the kind of similarity between the OrderInde-

pendentState and the Fork and Join PseudoStates can be compared to the kind of

similarity between the OptionalState and the Branch PseudoState. For instance,

the behaviour expression of the OrderIndependentState, in contrast with the Fork

and Join, depends on the existence of ActionInvokers and PrimitiveActionStates to

provide the gates used in its composition. Moreover, the same comments concern-

ing the specification of behaviour expressions of subactivities that are ActionStates

of OptionalStates discussed in Section 5.5.6 are valid for OrderIndependentState.

A.7 The �activates� Stereotype Specification

The �activates� stereotype provides a mechanism that allows users to trigger

Activities that can also be ActionStates.

UCD 45 The �activates� stereotype is the prefixing of the aout gate of the
associated ClassifierInState of type ActionInvoker to the ASSOC ACT process of the
associated Activity as follows.

. . . >> resumeactv; aoutactv; suspendactv; ASSOC ACT[ ] > > . . .

In the UCD 45 it can be observed that the �activates� stereotype is also

responsible for enabling and disabling the ActionInvoker in order to make it ready

for interaction just before the performance of the associated Activity.

A.8 The RepeatableState Specification

An Activity having just one outgoing Transition to itself would produce a control-

flow live-lock if it is unable to be confirmed. A RepeatableState, however, allows

the specification of Activities having a self-addressed Transition that does not cre-

ate a control-flow live-lock since it can be confirmed by a �confirms� interaction

object flow (UCD 29). Thus, a RepeatableState is defined as follows.

UCD 46 A RepeatableState is a REPEATABLE ACT process as define in UCD 29
with a SUB1 ACT subprocess defined as follows.

process GENERIC ACT[ . . . , abort ] : exit :=

. . . >> REPEATABLE ACT [ . . . , aoutcn, resumecn, suspendcn ] >> . . .

where
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RETEATABLE ACT [ . . . , aoutcn, resumecn, suspendcn ] : exit :=

resumecn >> (SUB1 ACT [ . . . , aoutcn ] | | |

aoutcn; suspendcn;

(∗ suspend as soc ia t ed In t e r a c t i onC l a s s e s ∗) ; exit )

where

process SUB1 ACT [ . . . , aoutcn]

(∗ SUB1 ACT sp e c i f i c a t i o n ∗) >>

REPEATABLE ACT[ aoutcn, resumecn, suspendcn]

endproc

endproc

endproc

The SUB1 ACT process must represent either an Activity triggered by an �ac-

tivates� ObjectFlowState (UCD 45) or an ActionState with an �interacts� Ob-

jectFlowState (UCD 33).
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