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Abstract
Modern copying machines are versatile and complex systems in which embedded
software plays an essential role. The progress towards faster and more stable ma-
chines that can satisfy ever growing customers’ needs, places strict requirements
on the efficiency and quality of such software. In order to meet these requirements,
the software should be well-designed and this design should be free of errors. Us-
ing modern formal verification techniques, software designs can be checked for
errors and deadlocks so that their quality can be assessed and improved at an early
stage of the development process.

In this report, we analyze the embedded software of an Automatic Document
Feeder (ADF). ADFs are important components of many copier machines. The
ADF studied here is a prototype developed by Océ–Technologies B.V., a company
that develops professional printing systems. We construct a model of the ADF
in µCRL, a process algebra-based specification language, and express the system’s
requirements in the modal µ-calculus. Next, we use the µCRL and CADP toolsets to
check whether the system meets its requirements. This analysis reveals important
errors in the ADF and we propose solutions to these problems. Also, we show that
some requirements that engineers assumed to be valid, are too strict. We present
slightly weaker versions of these requirements and show that these do hold. In this
sense, in addition to finding errors in the ADF, our analysis also led to a better
understanding of the behaviour the system.

1 Introduction
At the Research & Development (R&D) department of Océ–Technologies B.V. in
Venlo, the Netherlands, various professional document systems are developed. Océ’s
product line ranges from wide format to cut sheet and from full colour to black-and-
white printing systems. In all of these machines, embedded software is used to control
the hardware and provide functionalities to the user. The progress towards faster and
more stable machines that can satisfy ever growing customers’ needs, places increas-
ingly higher requirements on the efficiency and quality of that software. In order to
meet these requirements, it is important that the software is well-designed and that this
design is free of errors.

Typically, the embedded software is a distributed system: it consists of a number
of components that are running in parallel. The behaviour of such systems tends to
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become very complex as more components are added. Consequently, trying to under-
stand or describe all situations that may possibly occur in the system, in order to check
whether errors can occur, becomes a formidable task.

In this report, we apply formal verification techniques to find errors in the embed-
ded software of a copier machine. In particular, we study a prototype of an Automatic
Document Feeder (ADF). The ADF automatically feeds sheets of paper to the scanner
of the copying machine. It moves the sheets in its input tray over the scanner one at a
time and places every sheet into an output tray after it has been scanned1. We construct
a model of the ADF’s embedded control software by specifying the behaviour of each
of its components in a specification language called µCRL. Next, we formulate the
system’s requirements in a formal logic called the µ-calculus and verify whether the
specified system meets its requirements using model checking techniques.

The µCRL language and the µ-calculus are introduced shortly in Section 2. In Sec-
tion 3 we describe the ADF and we translate its behaviour to µCRL in Section 4. Sec-
tion 5 contains the requirements that the ADF should meet, along with their translations
to the µ-calculus. We also report the results of model checking the requirements on the
specification of Section 4 and propose solutions to the problems that are found. We
conclude in Section 6.

2 Languages and tools

2.1 µCRL

For the specification of the ADF behaviour we use µCRL [7] which is based on the
process algebra ACP [1], with extensions to support abstract data types. The language
and its accompanying toolset [2] have been used successfully for the analysis of various
real-life distributed systems and protocols [4, 6, 9, 11]. For a more thorough treatment
of the language we refer to [7]. A µCRL specification mainly consists of two parts: a
data type specification and a process specification.

The data type specification defines sorts (abstract data types) that can be used in the
specification of the processes. Functions on sorts can be declared and their meanings
can be defined using equations. For example, the following sort defines the natural
numbers 0, S(0), S(S(0)), . . . :

sort Nat
func 0 :→ Nat

S : Nat → Nat

The process specification defines the processes that model the behaviour of the system
under scrutiny. Processes are defined using process terms that can be built from actions
and other process terms using operators. Given processes p and q, operators include
sequential composition p ·q (first p then q), alternative composition p + q (either p or
q), summation over a sort D ∑d:D p(d) (that is p(d0)+ . . .+p(dn) if D = {d0, . . . ,dn})
and conditional p / b . q (if b then p else q). The action δ denotes deadlock. The
parallel composition p ‖ q of p and q denotes all possible interleavings of the action
sequences of p with those of q. In addition, actions from p and q may synchronize to
a communication action if a communication rule has been defined for them. Actions
may carry data parameters and two actions can only synchronize if all of their data
parameters have the same values. To prevent the separate actions of a communication

1Note that it is not the responsibility of the ADF to actually scan the sheet.
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action from occurring in isolation, they can be blocked using the encapsulation ∂H(p)
which replaces every occurrence of an action from set H in p by δ.

For example, the following is a specification of two buffers in sequence. Buffer
B1 repeatedly receives a natural number over channel 1 and sends it to buffer B2 over
channel 2. On receipt of a number over channel 2, B2 sends the number over channel 3
to the outside world.

act rcv1,snd2,rcv2,cmm2,snd3 : Nat
comm snd2 | rcv2 = cmm2
proc B1 = ∑n:Nat rcv1(n) · snd2(n) ·B1

B2 = ∑n:Nat rcv2(n) · snd3(n) ·B2
init ∂{snd2,rcv2}(B1 ‖ B2)

The µCRL toolset includes tools with which a labelled transition system (LTS) can be
generated from a µCRL specification. An LTS contains all states that the modelled sys-
tem can reach via any number of transitions, which correspond to actions in the µCRL
specification. This LTS can be used for model checking of temporal logic formulas.

2.2 The µ-calculus
For expressing the requirements of the system we use the µ-calculus of Kozen [8],
although we do not use propositional constants in our formulas. Given µ-calculus for-
mulas f and g, action a and propositional variable X , this logic includes:

• constants T (true) and F (false);

• boolean negation ¬ f , disjunction f ∨g and conjunction f ∧g;

• diamond modality 〈a〉 f (there is an a-transition to a state in which f holds) and
box modality [a] f ( f holds in every state that is reachable via an a-transition);

• least fixpoint µX . f and greatest fixpoint νX . f in which cases f may contain free
occurrences of X and every occurrence of X in f falls under an even number of
negations in f .

It is possible to check whether the system satisfies or violates its requirements using an
automatic model checker. In this report, we use the EVALUATOR model checker of the
CADP toolset [3, 5].

3 System Description

3.1 Hardware components
An overview of the ADF is given in Figure 1 (this figure is not to scale). The ADF
consists of pinches (K1, K2, . . . ), a shoe pressure (S1), sensors (O1, O2, . . . ), clutches
(C1, C2, . . . ), motors (M1, M2, . . . ), belts and trays. A pinch can hold a sheet of paper
and can be connected to a motor. Pinch K1 is accompanied by shoe pressure S1 that
can provide extra pressure when grabbing a sheet of paper. A sensor can be either
covered or uncovered, which is indicated by its high or low electronic output signal,
respectively. A clutch can be set to either on or off. If on, the motor on one side of the
clutch is connected to the pinch on the other side. If off, the motor and the pinch are
disconnected, meaning that no transmission between them is possible. There are two
types of motor: motors that can run at one speed and in one direction only (M4 and
M5) and motors that can run at various speeds and in two directions (M1, M2 and M3).
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Figure 1: An overview of the ADF
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Figure 2: An example of a motor profile

Motors of the former type can be switched either on or off. Every motor of the
latter type has a controller (indicated by suffix ‘C’) and an encoder (indicated by suffix
‘E’) attached to it. The encoder monitors the distance that the motor has covered thus
far and can be asked to return this value. The controller can be in one of two states:
Controlled and Idle. In the Controlled state the motor can receive instructions to exe-
cute profiles; in the Idle state it cannot. A profile (from here on indicated by X1, X2,
. . . ) is a sequence of commands that instruct the motor to start/stop accelerating or
decelerating at a certain rate. These commands are separated by specific time intervals.
An example of a profile is depicted in Figure 2. Commands are given to the motor at
time stamps t0, t1, t2 and t3 to accelerate, stop accelerating, decelerate and stop decel-
erating, respectively. Between t1 and t2 the motor runs at a constant speed vc. The turn
direction of the motor is indicated by the sign of the speed (positive or negative).

3.2 Embedded software
At any point in time, three instances of the control software are running in parallel.
Every instance is responsible for guiding one sheet through the ADF. Hence, at most
three sheets can be inside the ADF at the same time. Apart from the hardware compo-
nents, the instances use a global boolean variable FirstSheet, semaphores sem1, sem2
and sem3 to ensure that some sections of the paper path contain at most one sheet at
a time and a semaphore semN that is used to register the number of sheets inside the
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machine.
The behaviour of the instances is described in an execution sheet, which is a table of

state–trigger–response combinations. Intuitively, the table specifies that if the control
software is in a certain state and it receives a certain trigger, it responds by executing a
series of actions, after which it goes to the next state which usually is the state of the
next row of the table. The comment column is used to provide additional information
and can specify that the control software should go to another state than the one on
the next row. Unless indicated otherwise by the comments, the software traverses the
execution sheet from top to bottom. The execution sheet is included in Appendix A. A
global description of the behaviour is included in the next section.

3.2.1 Global description

Initialization and aligning: Every instance starts in a deactivated state, except for
instance I0 which is already activated initially. If activated, the instance waits for a high
signal from O1 (any low signals from this sensor are received but ignored). On receipt
of a high signal, the instance continues with separation immediately if the FirstSheet
flag is false. Otherwise, the set of sheets needs to be aligned and the instance waits for
a fixed time interval. If O1 is still high after that interval, M5 is switched on, M1C,
M2C and M3C are brought to the Controlled state and FirstSheet is set to false. The set
of sheets is aligned by switching on C2 and S1, switching off C1 and executing profile
X1 on motor M1. When M1 has finished executing the profile, the instance continues
with separation.

Separation: The instance first reserves semaphore sem1 and increases semN by one,
after which a short move to the right is executed on M1 (profile X2), followed by a
move to the left (profile X3). This separates the sheet guided by the instance from the
set. The sheet continues to move to the left until it covers O2. In the meanwhile, the
instance monitors the value of M1E to determine when C1 should be switched on, S1
can be switched off and an error situation has occurred: if M1E exceeds some error
value before O2 has become covered, M1 is stopped and the process halts.

Turning and blousing: The instance reserves semaphore sem2 and moves the sheet
towards O3 and pinch K3: M1 and M2 start running at corresponding speeds and
directions (profiles X4 and X5 respectively). An error check is performed to stop the
motors at any time when O2 is covered, O3 is uncovered and M2E’s value indicates
that O3 should have been covered. When O3 becomes covered, the sheet is about to be
moved by two motors at the same time: M1 and M2. When O2 becomes uncovered,
M1 is stopped and the next instance is activated (the next sheet can be separated from
the set in the input tray). The sheet proceeds until O3 becomes uncovered, upon which
M2 is ordered to change its direction (profile X6). The sheet moves over O3 towards
pinch K7. Every time the instance waits for O3 to become covered or uncovered, error
checks are performed similar to those described earlier. As the sheet approaches K7,
the speed of M2 is lowered (profile X7) and C4 and M4 are switched on, which makes
K7 run in opposite direction to that of K3. This makes the sheet blouse (bulge and
tremble) as soon as it hits K7. This ensures that the sheet is straightened before it is
placed onto the scanner, as it may have become skewed on its way to K7. The instance
stops the blousing process after a certain time period.

5



Scanning and finalization: The instance reserves semaphore sem3 and it moves the
sheet towards O4 and the glass plate: M2 and M3 start running at corresponding speeds
and directions (profiles X8 and X9 respectively). Error checks are performed to stop
the motors at any time when:

• O3 is covered and M2E’s value indicates that O3 should have been uncovered, or

• O4 is uncovered and M3E’s value indicates that O4 should have been covered.

When O4 becomes covered (which happens before O3 becomes uncovered), we know
that the sheet is being moved by two motors (M2 and M3). When O3 becomes uncov-
ered, M2 is stopped and sem2 is released. When O4 becomes uncovered, the sheet is
moved a bit further (so it is completely on top of the glass plate), after which M3 is
stopped and the scanning process begins. Upon termination of the scanning process
(modelled by a timeout that occurs after 500 ms), semN is decreased by one and sem3
is released. The instance now proceeds as follows, depending on the value of semN:

• If semN > 0, it does not take any further action: the sheet will be removed from
the scanner by the next instance that executes profile X9 on M3.

• Otherwise (semN = 0), the sheet is moved to the right (profile X9 is executed on
M3) in order to remove it from the ADF, after which M3 is stopped, FirstSheet is
set to true, M5 is switched off and M1C, M2C and M3C are brought to the Idle
state.

Finally, the instance returns to its initial state (deactivated), ready to guide another sheet
through the ADF.

3.2.2 Constraints.

The following constraints and assumptions apply:

• The real-time behaviour is not taken into account. By this we mean that we only
consider the sequences of events an actions that can occur and their relative order,
not the time they take or the time in-between them.

• Only simplex (one-sided) scanning is analyzed.

• Measuring the sheets before they enter the ADF is not taken into account. (It is
assumed that all sheets are of size A4.)

4 Specification
The µCRL model of the ADF system contains processes that model the global variables,
semaphores and three instances of the control software. The system as a whole consists
of the parallel composition of these processes. We do not translate the full execution
sheet of Appendix A to µCRL here. Instead, we translate a part of the execution sheet
(see Figure 3) to illustrate the general idea. The full µCRL specification is included in
Appendix B.

4.1 Data types
Booleans and natural numbers We define a sort Bool representing booleans, along
with the ∧, ∨ and = relations and a sort Nat representing natural numbers, along with
the > and = relations and the dec function which decreases a natural number by 1.
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Figure 3: Part of the execution sheet of Appendix A

Identifiers For every type of component and for the motor profiles, we introduce
a sort that contains the names of the components of that type and of the profiles, re-
spectively. As the shoe pressure, clutches and motors M4 and M5 are all on/off compo-
nents, we introduce one sort for all of these components. The sorts are called SensorID,
OnOffID, ControllerID, EncoderID and ProfileID.

The sorts containing the identifiers of the instances and semaphores (InstanceID
and SemaphoreID respectively) are defined similarly, yet in combination with an equal-
ity relation =, because they are used in the types of some synchronizing actions. In
addition, functions next,prev : InstanceID → InstanceID are defined as:

next(I0) = I1 next(I1) = I2 next(I2) = I0
prev(I0) = I2 prev(I1) = I0 prev(I2) = I1

Sorts TimePeriod and Distance contain the time periods and distances respectively.
The specific values have been replaced by dummy identifiers in the execution sheet of
Appendix A for confidentiality reasons and because the specific values are irrelevant to
the analysis.

4.2 Processes
4.2.1 Global variables

The value of the FirstSheet boolean variable can be set and read. This behaviour is
specified by the FirstSheet process as follows:

act setFirstSheet,SetFirstSheet,getFirstSheet,GetFirstSheet : Bool× InstanceID
comm setFirstSheet | setFirstSheet = SetFirstSheet

getFirstSheet | getFirstSheet = GetFirstSheet

proc FirstSheet(b : Bool) =
∑i:InstanceID(∑c:Bool(setFirstSheet(c, i) ·FirstSheet(c))+
getFirstSheet(b, i) ·FirstSheet(b))

A semaphore can be reserved, released and checked for zero-valuedness (needed for
semN). The behaviour is specified in the Semaphore process:
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act reserve,Reserve,release,Release : SemaphoreID× InstanceID
semValueZero,SemValueZero : SemaphoreID×Bool× InstanceID

comm reserve | reserve = Reserve
release | release = Release
semValueZero | semValueZero = SemValueZero

proc Semaphore(s : SemaphoreID,n : Nat) =
∑i:InstanceID(reserve(s, i) ·Semaphore(s,dec(n)) / n > 0 . δ+

release(s, i) ·Semaphore(s,S(n))+
semValueZero(s,n = 0, i) ·Semaphore(s,n))

4.2.2 Instances

The behaviour of an instance is specified by 37 processes named Instance, Instance0,
. . . , Instance35. The following parts of the behaviour are modelled by the following
µCRL processes:

• Initialization and aligning: Instance, Instance0, . . . , Instance3;

• Separation: Instance4, . . . , Instance13;

• Turning and blousing: Instance14, . . . , Instance23;

• Scanning and finalization: Instance24, . . . , Instance35.

In addition to the actions that correspond to actions or triggers in the execution sheet,
we define the following actions that we will need for the verification of some of the
requirements of Section 5:

act LEAVE K2,ENTER K3,LEAVE K3,ENTER K7,LEAVE K7,ENTER M1,
LEAVE M1,ENTER M2,LEAVE M2,ENTER M3,LEAVE M3 : InstanceID

The actions represent the following events, for any i : InstanceID:

ENTER Mx(i): i enters the part of its behaviour in which it needs motor Mx;

LEAVE Mx(i): i leaves the part of its behaviour in which it needs motor Mx;

ENTER Kx(i): i’s sheet enters pinch Kx;

LEAVE Kx(i): i’s sheet leaves pinch Kx.

In order to translate the execution sheet of Figure 3 to µCRL, we have to interpret the
behaviour described in the execution sheet. This is because some parts of the control
software behaviour may be described by comments or other constructs that are less
suitable for translation by automatic procedures or algorithms. For the greater part,
the translation is straightforward, but we have to pay special attention to actions such
as the fourth action from the top of the execution sheet. This action says that as soon
as sensor O3 becomes covered (its signal becomes high) the value of encoder M2E
should be captured. All this is done “via an interrupt service routine”, as noted by
the comment. This means that while the control software is waiting for sensor O2 to
become uncovered, it should also check whether O3 has become covered after which
the value of M2E should be captured. Furthermore, we note that after O3 has become
covered, the condition for “Error check 2” can no longer be true as the second conjunct
will always be false. The execution sheet of Figure 3 is now modelled by processes
Instance14, . . . , Instance17:
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proc Instance14(id : InstanceID) =
reserve(sem2, id) ·Enter(M2C, id) ·CaptureValue(M2E, id)
·ExecuteProfile(X4,M1C, id) ·ExecuteProfile(X5,M2C, id)
· Instance15(id)

proc Instance15(id : InstanceID) =
SignalHigh(O2, id) ·
( SignalHigh(O3, id) ·ENTER K3(id) ·CaptureValue(M2E, id)
· Instance16(id)+

SignalLow(O3, id) ·
(NotTooHigh(M2E, id) · Instance15(id)
+TooHigh(M2E, id) ·Stop(M1C, id) ·Stop(M2C, id) ·δ))

+SignalHigh(O3, id) ·ENTER K3(id) ·CaptureValue(M2E, id)
· Instance16(id)

proc Instance16(id : InstanceID) =
SignalHigh(O2, id) · Instance16(id)+
SignalLow(O2, id) ·LEAVE K2(id) ·Stop(M1C, id)
·CaptureValue(M2E, id) · Instance17(id)

proc Instance17(id : InstanceID) =
Stopped(M1C, id) ·Leave(M1C, id) ·activate(next(id), id)
· release(sem1, id) · Instance18(id)

5 Verification
In this section we list the requirements that the ADF should meet and report on the
verification of these requirements on the model discussed in Section 4. We propose
solutions to any problems that are uncovered by the verification process, and show that
these solutions indeed solve all problems.

5.1 Requirements
The following requirements have to be verified for the ADF. These requirements are
made more explicit and formulated in the µ-calculus in the next section.

R1: Whenever a sheet approaches the scanner, motor M5 is on.

R2: As long as a sheet is in pinch K7, motor M4 is off.

R3: Two motors transporting the same sheet at the same time are not in conflict.

R4: Every sheet that enters the ADF, eventually passes sensor O4.

R5: Clutches C3 and C4 are not on at the same time.

R6: A motor does not get conflicting commands from two instances.

R7: Every sensor is always uncovered between two sheets.

5.2 Model checking
Using the INSTANTIATOR tool of the µCRL toolset, an LTS was generated from the
specification of Appendix B on a Pentium 4 (3 GHz) machine with 1 GB of RAM. Gen-
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eration took about two minutes and produced an LTS of 358.153 states and 1.101.648 tran-
sitions. The requirements were translated to the µ-calculus. These formulas were then
checked on the LTS using the EVALUATOR tool of the CADP toolset. For each require-
ment we give a µ-calculus formula that expresses it and comment on the result of model
checking the requirement on the LTS.

Notation In the µ-calculus formulas below, we allow ourselves to use sets of actions
between the brackets of the diamond and box modality operators. For instance, for any
set of actions A and formula ϕ, [A]ϕ denotes the property that ϕ holds in every state
that is reachable via an action that is in A.

Let Act denote the set of all parameterised actions, a ∈ Act and A,B ⊆ Act. We
shall use the following shorthands to denote sets of actions: T denotes Act, a denotes
{a}, ¬A denotes Act−A, A∧B denotes A∩B and A∨B denotes A∪B. Moreover, we
shall use the notation Actx1,...,xn to denote “any action in which components x1, . . . ,xn
are involved” or, more formally, “any action a(p1, . . . , pm) for which there are i1, . . . , in
such that pi1 = x1 ∧ . . .∧ pin = xn”. The asterisk ∗ is used as a parameter to actions to
denote “any value of type D” in places where a specific value of type D is expected.

5.2.1 R1

R1 is formulated by the following property: always after M5 is switched off, O4 is not
covered before M5 is switched on and M5 is always switched on at least once before
O4 becomes covered:

νX .[T]X ∧ [Off (M5,∗)] νY.( [¬On(M5,∗)]Y ∧ [SignalHigh(O4,∗)]F)(1.1)
∧ νX .[¬On(M5,∗)]X ∧ [SignalHigh(O4,∗)]F

Result: Using the EVALUATOR model checker, we have proven that formula (1.1)
does not hold. Consider the following processes from the µCRL specification:

proc Instance0(id : InstanceID) =
SignalLow(O1, id) · Instance0(id)+
SignalHigh(O1, id) ·
(getFirstSheet(T, id) · InformIn(1s, id) · Instance1(id)+
getFirstSheet(F, id) ·ENTER M1(id) · Instance4(id))

proc Instance33(id : InstanceID) =
semValueZero(semN,F, id) ·Leave(M3C, id) · Instance(id)+
semValueZero(semN,T, id) ·ExecuteProfile(X9,M3C, id)
· InformIn(500ms, id) · Instance34(id)

proc Instance34(id : InstanceID) =
Timeout(id) ·Stop(M3C, id) · setFirstSheet(T, id) ·Off (M5, id)
· Instance35(id)

proc Instance35(id : InstanceID) =
Stopped(M3C, id) ·ActivateIdleState(M3C, id)
·ActivateIdleState(M1C, id) ·ActivateIdleState(M2C, id)
·Leave(M3C, id) · Instance(id)

Suppose instance i has executed semValueZero(semN,T, i) in Instance33 but has not yet
executed setFirstSheet(T, i) in Instance34 and instance j executes getFirstSheet(F, j) in
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Instance0. Next, j can execute an arbitrary number of actions of its normal behaviour
(process Instance4 and beyond), before i switches off M5 in Instance34 and executes
the actions in Instance35. When j’s sheet approaches the scanner, M5 is still switched
off which violates requirement R1.

This corresponds to the situation in which instance i has decided to move its sheet
into the output tray (as it assumes its sheet is the last of the set) and right after that
decision has been made, a new sheet is put into the input tray. Instance j guides the
new sheet into the machine, assuming it belongs to the same set as i’s sheet. When j’s
sheet reaches the scanner, i has already switched off M5 which complicates movement
of the sheet over the glass plate as the sheet is not sucked against the transport belt.

However, j’s sheet may not even reach the scanner: when i’s sheet has reached the
output tray, i brings M1C, M2C and M3C to the Idle state in which these motors are
unable to respond to commands, in particular those issued by instance j. Hence, j’s
sheet gets stuck halfway through the ADF. Obviously, this is an situation that should be
avoided at all times. This counter example and violation of R1 thus indicates a serious
error in the system. We fix this error in Section 5.3.

5.2.2 R2

R2 is formulated by the following property: for any i : InstanceID, always after M4 is
switched on, i’s sheet does not enter pinch K7 before M4 is switched off and always
after i’s sheet enters pinch K7, M4 is not switched on before i’s sheet leaves K7:

νX .[T]X ∧ [On(M4,∗)] νY.( [¬Off (M4,∗)]Y ∧ [ENTER K7(i)]F)(2.1)
∧ νX .[T]X ∧ [ENTER K7(i)] νY.( [¬LEAVE K7(i)]Y ∧ [On(M4,∗)]F)

Result: Formula (2.1) does not hold, because the second conjunct evaluates to false.
Consider the following processes from the µCRL specification:

proc Instance14(id : InstanceID) =
reserve(sem2, id) ·ENTER M2(id) ·CaptureValue(M2E, id)
·ExecuteProfile(X4,M1C, id) ·ExecuteProfile(X5,M2C, id)
· Instance15(id)

proc Instance21(id : InstanceID) =
PosReached(M2E, id) ·Stop(M2C, id) ·On(M4, id) · InformIn(50ms, id)
· Instance22(id)

proc Instance28(id : InstanceID) =
Stopped(M2C, id) ·Leave(M2C, id) · release(sem2, id) ·LEAVE K7(id)
· Instance29(id)

Suppose instance i has released semaphore sem2 in process Instance28. Then an
instance j can reserve semaphore sem2 (Instance14) and execute all actions in sub-
sequent processes up to and including On(M4, j) in Instance21, before i executes
LEAVE K7(i). This is a counter example to (2.1) and a violation of R2. It corresponds
to the situation in which i’s sheet is in pinch K7 (moving towards the scanner) and has
just stopped covering sensor O3. Instance j can have its sheet move over O3 towards
K5, turn back, move towards pinch K7 and start blousing, which involves switching
off C3 and switching on C4 and M4. This happens while i’s sheet is still in pinch K7
and moving onto the glass plate. Under influence of M4, K7 starts turning in oppo-
site direction making i’s sheet move backward towards O3. This situation is clearly
undesired and indicates an error in the system. We fix this error in Section 5.3.
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5.2.3 R3

R3 is formulated by the following properties:

• For any i : InstanceID, whenever i’s sheet enters pinch K3, M1 is executing pro-
file X4 and M2 is executing X5 and whenever i’s sheet enters pinch K7, M2 is
executing profile X8 and M3 is executing X9:

νX .[T]X ∧ [ActM1C ∧ ¬ExecuteProfile(X4,M1C,∗)](3.1)
νY.( [¬ExecuteProfile(X4,M1C,∗)]Y ∧ [ENTER K3(i)]F)

∧ νX .[T]X ∧ [ActM2C ∧ ¬ExecuteProfile(X5,M2C,∗)]
νY.( [¬ExecuteProfile(X5,M2C,∗)]Y ∧ [ENTER K3(i)]F)

∧ νX .[T]X ∧ [ActM2C ∧ ¬ExecuteProfile(X8,M2C,∗)]
νY.( [¬ExecuteProfile(X8,M2C,∗)]Y ∧ [ENTER K7(i)]F)

∧ νX .[T]X ∧ [ActM3C ∧ ¬ExecuteProfile(X9,M3C,∗)]
νY.( [¬ExecuteProfile(X9,M3C,∗)]Y ∧ [ENTER K7(i)]F)

• For any i : InstanceID, always after i’s sheet enters pinch K3, no command is sent
to M1C or M2C before i’s sheet leaves pinch K2 and always after i’s sheet enters
pinch K7, no command is sent to M2C or M3C before i’s sheet leaves pinch K3:

νX .[T]X ∧ [ENTER K3(i)] νY.( [¬LEAVE K2(i)]Y ∧ [ActM1C ∨ActM2C]F)(3.2)
νX .[T]X ∧ [ENTER K7(i)] νY.( [¬LEAVE K3(i)]Y ∧ [ActM2C ∨ActM3C]F)(3.3)

Result: Formulas (3.1) and (3.2) hold, but (3.3) does not hold. Consider the follow-
ing processes from the µCRL specification:

proc Instance25(id : InstanceID) =
Timeout(id) ·Enter(M3C, id) ·ExecuteProfile(X8,M3C, id)
·ExecuteProfile(X9,M3C, id) ·ENTER K7(id) ·CaptureValue(M3E, id)
· Instance26(id)

proc Instance26(id : InstanceID) =
SignalLow(O4, id) ·
( NotTooHigh(M3E, id) · Instance26(id)

+TooHigh(M3E, id) ·Stop(M2C, id) ·Stop(M3C, id) ·δ )
+SignalHigh(O4, id) · Instance27(id)

An instance i can first execute ENTER K7(i) in Instance25 and later on send stop com-
mands to M2C and M3C (in Instance26) without executing LEAVE K3(i) first. This is
a counter example to formula (3.3) and a violation of requirement R3. It corresponds
to the situation in which a sheet has entered pinch K7 and is moving towards the glass
plate, driven by motor M3. If M3 has covered a certain distance and O4 has not yet
detected the sheet, the instance assumes something went wrong, stops M2 and M3 and
deadlocks. This is desired behaviour: if an error occurs, stop all running motors and
bail out. Hence, the requirement is too strict and needs to be changed. The following
formula expresses the requirement that for any i : InstanceID, always after i’s sheet
enters pinch K7, no command is sent to M2C or M3C before i’s sheet leaves pinch K3
unless i detects an error. We have verified that this weaker version of (3.3) holds.

νX .[T]X ∧ [ENTER K7(i)](3.4)
νY.( [¬(LEAVE K3(i)∨TooHigh(∗, i))]Y ∧ [ActM2C ∨ActM3C]F)
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5.2.4 R4

R4 is a liveness property which can only be satisfied if the following fairness condition
holds: if an action a is enabled infinitely often, then a is executed infinitely often (see
also [10]). R4 is formulated by the following property, for all i : InstanceID:

νX .[T]X ∧ [ENTER M1(i)] νY.( [¬SignalLow(O4, i)]Y ∧(4.1)
µZ.(〈¬SignalLow(O4, i)〉Z ∨ 〈SignalLow(O4, i)〉T))

Result: Formula (4.1) does not hold. After an instance has detected an error (like the
one in the counter example for R3 above) it will no longer be able to guide its sheet
further towards sensor O4, because it always reaches a deadlock state. For the same
reason as for R3, this is desired behaviour, so the requirement is too strict.

To obtain a weaker version of R4, we reason as follows. If an instance i’s sheet
enters the ADF when another instance j has just detected an error, i’s sheet will not be
able to reach O4. This is because i will at some point be waiting to reserve a semaphore
that j will never release. We have verified this using the CADP toolset. For the same
reason, if i’s sheet has entered the ADF and some instance (either i or another instance)
detects an error, i’s sheet may not reach O4. We have also verified this using the CADP
toolset. Based on these observations, we formulate the following weaker version of
(4.1): for all i : InstanceID, if i’s sheet enters the ADF and no error has occurred, i’s
sheet will eventually pass sensor O4 unless an error occurs. We have verified that this
formula holds for all i : InstanceID:

νX .[TooHigh(∗,∗)]X ∧ [ENTER M1(i)](4.2)
νY.( [¬(SignalLow(O4, i)∨TooHigh(∗,∗))]Y ∧

µZ.(〈¬(SignalLow(O4, i)∨TooHigh(∗,∗))〉Z ∨
〈SignalLow(O4, i)∨TooHigh(∗,∗)〉T))

5.2.5 R5

Initially both C3 and C4 are switched off. Then R5 is formulated by the following
property: always after C3 is switched on, C4 is never switched on before C3 is switched
off and always after C4 is switched on, C3 is never switched on before C4 is switched
off:

νX .[T]X ∧ [On(C3,∗)] νY.( [¬Off (C3,∗)]Y ∧ [On(C4,∗)]F)(5.1)
∧ νX .[T]X ∧ [On(C4,∗)] νY.( [¬Off (C4,∗)]Y ∧ [On(C3,∗)]F)

Result: Formula (5.1) holds.

5.2.6 R6

R6 is formulated by the following properties:

• For any i : InstanceID, always after i commands M1 to execute profile X1 or X2,
M1 does not receive another command (from any instance) before it has finished
executing the profile and always after i commands M2 to execute profile X7, M2
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does not receive another command (from any instance) before i commands M2 to
stop:

νX .[T]X ∧ [ExecuteProfile(X1,M1C, i) ∨ ExecuteProfile(X2,M1C, i)](6.1)
νY.( [¬PosReached(M1C, i)]Y ∧ [ActM1C ∧¬PosReached(M1C, i)]F)

∧ νX .[T]X ∧ [ExecuteProfile(X7,M2C, i)]
νY.( [¬Stop(M2C, i)]Y ∧ [ActM2C ∧¬Stop(M2C, i)]F)

• For any i, j : InstanceID, i 6= j, and c : ControllerID, as long as i needs c, j does
not send a command to c:

νX .[T]X ∧ [Enter(c, i)] νY.( [¬Leave(c, i)]Y ∧ [Actc, j]F)(6.2)

Result: Formulas (6.1) and (6.2) hold.

5.2.7 R7

For any i : InstanceID and s : SensorID,s ∈ {O2,O3,O4}, always after i’s sheet starts
covering s, next(i)’s sheet does not cover s before i’s sheet has stopped covering s:

νX .[T]X ∧ [SignalHigh(s, i)](7.1)
νY.( [¬SignalLow(s, i)]Y ∧ [SignalHigh(s,next(i))]F)

Result: Formula (7.1) holds.

5.3 Solutions
The problem revealed by the violation of R1 stems from the fact that it is possible for
one instance to assume that the set contains no more sheets, while another instance as-
sumes that a newly inserted sheet is still part of that set. In essence, the problem is that
instances do not have exclusive access to the initialization and finalization parts of their
behaviour. These parts contain behaviour (like accessing global variables) that should
not be interleaved as a result of parallelism. Therefore we introduce a new semaphore
sem4, which initially has value 1 and grants instances exclusive access to either the
initialization or the finalization part. Initialization starts when the instance has detected
a sheet in the input tray and ends when either the sheet is no longer detected after time
period t1 (if FirstSheet is true) or the SemN counter has been increased (if FirstSheet
is false). Finalization starts when the instance is about to check whether the value of
SemN equals zero and ends when either SemN is found to be unequal to zero or M1,
M2 and M3 have been brought to Idle (if SemN equals zero).

R2 is violated because sheets do not have exclusive access to pinch K7. We in-
troduce a new semaphore sem5 which initially has value 1 and grants instances ex-
clusive access to K7. The first time an instance influences K7 is when it executes the
Off (C3, id) action in process Instance18, which is right after the sheet has turned and
starts moving towards K7. Semaphore sem5 should be reserved before the sheet turns.
Because it is moving in the other direction at that time, the sheet should also be stopped
before sem5 can be reserved. We introduce a new process Instance18A for this purpose.
Naturally, sem5 can be released after the sheet has left K7. Action LEAVE K7(id) in
Instance28 would be an obvious choice for marking this event, but as this is not an
action of the real system, we take SignalLow(O4, id) in Instance29 instead.
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5.4 Revised specification
The solutions described above involve the following additions to the µCRL process
definitions (additions listed in bold):

proc Instance0(id : InstanceID) =
. . .+SignalHigh(O1, id) · reserve(sem4, id) · . . .

proc Instance1(id : InstanceID) =
Timeout(id) ·
(SignalLow(O1, id) · release(sem4, id) · Instance0(id)+ . . .)

proc Instance4(id : InstanceID) =
reserve(sem1, id) ·Off (S1, id) ·On(C2, id) ·On(C1, id) · release(semN, id)
· release(sem4, id) · . . .

proc Instance18(id : InstanceID) =
. . .+SignalLow(O3, id) ·Stop(M2C, id) · Instance18A(id)

proc Instance18A(id : InstanceID)=
Stopped(M2C, id) · reserve(sem5, id) ·CaptureValue(M2E, id)
·ExecuteProfile(X6,M2C, id) ·Off (C3, id) · Instance19(id)

proc Instance29(id : InstanceID) =
. . .+SignalLow(O4, id) · release(sem5, id) · . . .

proc Instance32(id : InstanceID) =
Timeout(id) · reserve(semN, id) · release(sem3, id) · reserve(sem4, id)
· Instance33(id)

proc Instance33(id : InstanceID) =
semValueZero(semN,F, id) · release(sem4, id) · Instance(id)+ . . .

proc Instance35(id : InstanceID) =
Stopped(M3C, id) ·ActivateIdleState(M3C, id)
·ActivateIdleState(M1C, id) ·ActivateIdleState(M2C, id)
·Leave(M3C, id) · release(sem4, id) · Instance(id)

Other changes include additions to the data specification and the initial process specifi-
cation. The full revised µCRL specification is included in Appendix C. We have model
checked all formulas of Section 5.2 against the LTS of the revised specification, which
has 78.751 states and 231.456 transitions. The model checker returns false only on for-
mulas (3.2) and (4.1), for the same reasons as described in Sections 5.2.3 and 5.2.4. The
weaker versions of these properties (formulas (3.4) and (4.2), respectively) do hold.

6 Conclusions
We have analyzed the embedded software of an Automatic Document Feeder by apply-
ing formal verification techniques. We have given a system description, requirements,
a specification in µCRL and the results of model checking the requirements using the
CADP model checker. If requirement violations indicated errors in the system, we sug-
gested solutions to these problems and showed that a system that incorporates these
solutions meets all of the requirements. We formulated weaker versions of two re-
quirements that were found to be too strict. Our analysis revealed errors in the ADF
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prototype that would have been difficult to find otherwise. This indicates that formal
specification and verification is a very powerful and effective method for finding errors
in systems.

Regarding the problem found by the violation of requirement R2, we note that it
may very well be that this situation cannot occur if real time is taken into account, as
the amount of time needed for a sheet to move from O2 to K7 (paths A and B) may
exceed the amount of time needed for another sheet to move onto the glass plate (path
C). As we did not consider real time in the analysis, we have not been able to verify this
claim and cannot guarantee that R2 is never violated. To be 100% sure, we have solved
the problem for either case (whether the timed behaviour allows R2 to be violated or
not).

We have shown that both problems that were found, can be resolved very easily
and efficiently by adding only two semaphores to the system and applying minor mod-
ifications to the behaviour. As can be seen from the fact that the LTS belonging to the
revised system is more than four times as small as that of the original system, these
solutions simplify the behaviour of the system as a whole.

For the verification of untimed properties on the ADF, µCRL and CADP are very
well suited: generation of the LTS and model checking of the modal properties was
easily done on a contemporary desktop computer. The fact that timed behaviour could
not be taken into account, meant that no timed properties could be checked for the
ADF. On the other hand, it allowed us to abstract away from irrelevant details and to
focus on those parts of the behaviour that were relevant to the requirements we wanted
to verify.

An important issue is that the execution sheet in which the behaviour of the embed-
ded software is specified, is at some points unclear or ambiguous. A more strict and
formal specification style or language can aid engineers in describing the behaviour
of the system more precisely and unambiguously. It helps in the communication of
system designs between engineers as it prevents misinterpretations and requires less
additional explanation. Indeed, one of the greatest difficulties in this analysis was to
gain a precise and correct understanding of the behaviour of the system.

Formal behavioural descriptions may also be better suited for the automatic trans-
lation of system descriptions to µCRL specifications. Regarding this issue we note
however, that the real challenge and difficulties stem from the fact that the specifica-
tions are aimed at modelling the real behaviour and, hence, are usually at a higher level
of abstraction. This often requires model design issues regarding the appropriate level
of abstraction to be properly resolved, which is arguably a task at which humans per-
form better than machines. An example of such a model design issue is the decision
to abstract away from specific time periods and distances if they are irrelevant to the
requirements that will be checked.
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A Execution sheet
Reservation of a semaphore semS is denoted by S - and release by S � in
the margin on the lefthand side of the execution sheet. Some of the behaviour is not
specified explicitly or clearly. For example, in the “alignOriginalSet” state, if O1’s
signal is high and the value of FirstSheet is true then the instance continues at the line
where sem1 is reserved; if FirstSheet is false it continues as normal (switch on M5,
etc.).
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state trigger Action comment 
 Device/Timer  Result/Reply Device/Timer action  

“Framework” Initialisation  O1 Poll for high signal start-up (first 
sheet) 

 

O1 Sensor is high Timer InformIn(t1) t1 delay (avoid 
signal 
chattering) 

 Timer Timeout  O1 Check if still high  
Sensor is low O1 Poll for high signal  

M5 On  
C2 On  
C1 Off  
S1 Off  
M1C Activate control state  
M2C Activate control state  
M3C Activate control state  
Flag FirstSheet=false  

O1 
Sensor is high 

Timer InformIn(t2)  

alignOriginalSet 
 

Timer Timeout  M1C Move left (execute Profile 
X1) 

 M1C Pos. reached   

 

If the set is already aligned, the next separation starts from here (realised with flag FirstSheet) 
and as precondition Activated & O1 true 

S1 Off  
C2 On  
C1 On  
SemN Increase  

   

Timer InformIn(t3)  
Timer Timeout M1C Move right (execute Profile 

X2) 
 

C2 Off  

ShakeOriginalSet 

M1C  Pos. reached 
Timer InformIn(t4)  
S1 On  
C2 On  
C1 Off  

Timer Timeout  

Timer InformIn(t5)  
M1C Move left (execute Profile 

X3) 
 

M1E Capture value = p1 Needed for 
error check 1 

Timer Timeout  

M1E InformAfter(d1)  
C1 On  M1E  Pos. reached 
M1E InformAfter(d2)  
S1 Off  M1E  Pos. reached 

 O2 Poll for signal  
Stop sensor is not covered 

&& (M1E_value > p1 
+ ed1) 

M1C 
Exception 

Error  check 1 

Sensor is covered C1 Off  

O2  

 Timer InformIn(t6)  
C2 On   
Timer InformIn(t7)  

separateSet 

Timer Timeout  

M1C Stop  
 M1C & Timer Stopped & Timeout Sem2 Request  

M2E Capture value = p2 Needed for 
error check 2 

M1C Start (execute Profile X4)  
M2C Start (execute Profile X5)  
O3 If signal is high capture 

M2E value = p3 
Via interrupt 
service routine 
done 

Sem2 Receive 

O2 Poll for signal  
M1C Stop 

Stop 
(O2 is covered) && 
(O3 is not covered) 
&& (M2E_value > p2 
+ ed2) 

M2C 
Exception 

Error  check 2 

M1C Stop  

ExportToTurn 
ImportFromSep 

O2: 

O2 is uncovered  
M2E 
 

Capture value = p4 Needed for 
error check 3 

Flag ActivateFlag  = true 
 

next separation 
is possible ->  
Activate next 
instance 

 M1C Stopped 

O3 Poll for signal  

1 

2 

1 
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Stop (sensor is covered) 
&& (M2E_value > p4 
+ ed3) 

M2C 
Exception 

Error  check 3 

M2E Capture value = p5  This value is 
used to 
calculate the 
actual paper 
length 

M2C Change turn direction 
(execute Profile X6) 

 

O3 Poll for low to high  

Sensor is not covered 

C3 Off  
Stop 

O3: 

M2E_value > p5 + 
ed4 

M2C 
Exception 

Error  check 4 

M2E Capture value = p6 
Calculate paper length = pl 

Needed for 
error check 5 

O3: Sensor is high 

M2E InformAfter(d3) Each time in 
exe.: check >= 
p6 + d3 

M2C Change speed (execute 
Profile X7) 

 

C4 On  

M2E Pos. reached 
 

M2E InformAfter(d4)  
M2C Stop  
M4 On  

M2E Pos. reached 
 

Timer InformIn(t8)  
C4 Off  
M4 Off  

Timer Timeout  

Timer InformIn(t9)  

TurnCW 

Timer Timeout  Sem3 Request  
C3 On   Sem3 Receive 
Timer InformIn(t10)  
M2C Start (execute Profile X8)  
M3C Start (execute Profile X9)  
O3 Poll for signal  

Timer Timeout  

M3E 
 

Capture value = p7 Needed for 
error check 6 

M2C Stop 
Stop 

(O3 is covered) && 
(M2E_value > pl + 
ed5) 

M3C 
Exception 

Error  check 5 

M2C Stop 
Stop 

(O4 is not covered) 
&& (M3E_value >= p7 
+ ed6) 

M3C 
Exception 

Error  check 6 

ExportToFeed 
Feed 

O3: 

Sensor is not covered M2C Stop  
Sem2 Release Next 

ExportToTurn  
is possible 

 M2C Stopped 

O4 Poll for high to low  
Stop (O4 is covered) && 

(M3E_value > p7 + pl 
+ ed7) 

M3C 
Exception 

Error check 7 O4: 

Sensor is not covered M3E InformAfter(d5)  

 

M3E Pos. reached M3C Stop  
 M3C stopped Timer InformIn(t11) Just a delay to 

simulate the 
scan 

SemN Decrease  
Sem3 Release Next scan is 

possible 

Scan Timer Timeout  

SemN Get value Sheet transport 
is finished 

SemN ≠ 0 - - restart instance
next sheet is 
waiting for 
transport 

M3C Start (execute Profile X9)  

 
 
 
 
Remove original 

SemN 

SemN = 0 

Timer InformIn(t12)  
M3C Stop 
Flag FirstSheet=true 

 Timer Timeout  

M5 Off 
M3C Go to idle 
M1C Go to idle 

 M3C stopped 

M2C Go to idle 

Last sheet 
restart instance
no following 
sheet, just wait 
for next job 

 

2 

3 

3 
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B Original µCRL specification
This is the µCRL specification of the original ADF system as specified by the execution
sheet of Appendix A.

sort Bool
func T,F: ->Bool
map not:Bool->Bool

and,or,eq:Bool#Bool->Bool
var b:Bool
rew not(F)=T not(T)=F

and(b,T)=b and(b,F)=F
or(b,T)=T or(b,F)=b
eq(b,b)=T eq(T,F)=F eq(F,T)=F

sort Nat
func 0:->Nat

S:Nat->Nat
map gt,eq:Nat#Nat->Bool

dec:Nat->Nat
var m,n:Nat
rew gt(0,n)=F gt(S(m),0)=T gt(S(m),S(n))=gt(m,n)

eq(0,0)=T eq(0,S(n))=F eq(S(n),0)=F eq(S(m),S(n))=eq(m,n)
dec(S(n))=n

sort SensorID
func O1,O2,O3,O4:->SensorID

sort OnOffID
func S1,C1,C2,C3,C4,M4,M5:->OnOffID

sort ControllerID
func M1C,M2C,M3C:->ControllerID

sort EncoderID
func M1E,M2E,M3E:->EncoderID

sort ProfileID
func X1,X2,X3,X4,X5,X6,X7,X8,X9:->ProfileID

sort InstanceID
func I0,I1,I2: -> InstanceID
map eq:InstanceID#InstanceID->Bool

next,prev:InstanceID->InstanceID
rew eq(I0,I0)=T eq(I0,I1)=F eq(I0,I2)=F

eq(I1,I0)=F eq(I1,I1)=T eq(I1,I2)=F
eq(I2,I0)=F eq(I2,I1)=F eq(I2,I2)=T
next(I0)=I1 prev(I0)=I2
next(I1)=I2 prev(I1)=I0
next(I2)=I0 prev(I2)=I1

sort SemaphoreID
func sem1,sem2,sem3,semN:->SemaphoreID
map eq:SemaphoreID#SemaphoreID->Bool
rew eq(sem1,sem1)=T eq(sem1,sem2)=F eq(sem1,sem3)=F eq(sem1,semN)=F

eq(sem2,sem1)=F eq(sem2,sem2)=T eq(sem2,sem3)=F eq(sem2,semN)=F
eq(sem3,sem1)=F eq(sem3,sem2)=F eq(sem3,sem3)=T eq(sem3,semN)=F
eq(semN,sem1)=F eq(semN,sem2)=F eq(semN,sem3)=F eq(semN,semN)=T

sort TimePeriod
func t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12:->TimePeriod

sort Distance
func d1,d2,d3,d4,d5:->Distance

act ENTER_K3, LEAVE_K3, LEAVE_K2, ENTER_K7, LEAVE_K7, ENTER_M1, LEAVE_M1,
ENTER_M2, LEAVE_M2, ENTER_M3, LEAVE_M3, Timeout: InstanceID
setFirstSheet, SetFirstSheet, getFirstSheet,GetFirstSheet:Bool#InstanceID
reserve,Reserve,release,Release:SemaphoreID#InstanceID
semValueZero,SemValueZero:SemaphoreID#Bool#InstanceID
activate,Activate:InstanceID#InstanceID
SignalLow,SignalHigh:SensorID#InstanceID
On,Off:OnOffID#InstanceID
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ActivateControlState,ActivateIdleState,PosReached,Stop,Stopped:
ControllerID#InstanceID
CaptureValue,PosReached,NotTooHigh,TooHigh:EncoderID#InstanceID
ExecuteProfile:ProfileID#ControllerID#InstanceID
InformIn:TimePeriod#InstanceID
InformAfter:EncoderID#Distance#InstanceID

comm setFirstSheet | setFirstSheet = SetFirstSheet
getFirstSheet | getFirstSheet = GetFirstSheet
reserve | reserve = Reserve
release | release = Release
semValueZero | semValueZero = SemValueZero
activate | activate = Activate

proc FirstSheet(b:Bool) =
sum(i:InstanceID,

sum(b1:Bool, setFirstSheet(b1,i).FirstSheet(b1))
+getFirstSheet(b,i).FirstSheet(b) )

Semaphore(sid:SemaphoreID,n:Nat) =
sum(i:InstanceID,

reserve(sid,i).Semaphore(sid,dec(n)) <| gt(n,0) |> delta
+release(sid,i).Semaphore(sid,S(n))
+semValueZero(sid,eq(n,0),i).Semaphore(sid,n) )

%% ----- Initialization and aligning ----- %%

Instance(id:InstanceID) =
activate(id,prev(id)).Instance0(id)

Instance0(id:InstanceID) =
SignalLow(O1,id).Instance0(id)
+ SignalHigh(O1,id).

( getFirstSheet(T,id).InformIn(t1,id).Instance1(id)
+getFirstSheet(F,id).ENTER_M1(id).Instance4(id) )

Instance1(id:InstanceID) =
Timeout(id).
(SignalLow(O1,id).Instance0(id)
+
SignalHigh(O1,id).ENTER_M1(id).On(M5,id).On(C2,id).Off(C1,id).On(S1,id)
.ActivateControlState(M1C,id).ActivateControlState(M2C,id)
.ActivateControlState(M3C,id).setFirstSheet(F,id).InformIn(t2,id)
.Instance2(id))

Instance2(id:InstanceID) =
Timeout(id).ExecuteProfile(X1,M1C,id).Instance3(id)

Instance3(id:InstanceID) =
PosReached(M1C,id).Instance4(id)

%% ----- Separation ----- %%

Instance4(id:InstanceID) =
reserve(sem1,id).Off(S1,id).On(C2,id).On(C1,id).release(semN,id)
.InformIn(t3,id).Instance5(id)

Instance5(id:InstanceID) =
Timeout(id).ExecuteProfile(X2,M1C,id).Instance6(id)

Instance6(id:InstanceID) =
PosReached(M1C,id).Off(C2,id).InformIn(t4,id).Instance7(id)

Instance7(id:InstanceID) =
Timeout(id).On(S1,id).On(C2,id).Off(C1,id).InformIn(t5,id)
.Instance8(id)

Instance8(id:InstanceID) =
Timeout(id).ExecuteProfile(X3,M1C,id).CaptureValue(M1E,id)
.InformAfter(M1E,d1,id).Instance9(id)

Instance9(id:InstanceID) =
PosReached(M1E,id).On(C1,id).InformAfter(M1E,d2,id).Instance10(id)
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Instance10(id:InstanceID) =
PosReached(M1E,id).Off(S1,id).Instance11(id)

Instance11(id:InstanceID) =
SignalLow(O2,id).
(NotTooHigh(M1E,id).Instance11(id) + TooHigh(M1E,id).Stop(M1C,id).delta)
+SignalHigh(O2,id).Off(C1,id).InformIn(t6,id).Instance12(id)

Instance12(id:InstanceID) =
Timeout(id).On(C2,id).InformIn(t7,id).Stop(M1C,id).Instance13(id)

Instance13(id:InstanceID) =
(Timeout(id).Stopped(M1C,id)+Stopped(M1C,id).Timeout(id)).Instance14(id)

%% ----- Turning and blousing ----- %%

Instance14(id:InstanceID) =
reserve(sem2,id).ENTER_M2(id).CaptureValue(M2E,id)
.ExecuteProfile(X4,M1C,id).ExecuteProfile(X5,M2C,id).Instance15(id)

Instance15(id:InstanceID) =
SignalHigh(O2,id).

(SignalHigh(O3,id).ENTER_K3(id).CaptureValue(M2E,id)
.Instance16(id)
+SignalLow(O3,id).
(NotTooHigh(M2E,id).Instance15(id)
+TooHigh(M2E,id).Stop(M1C,id).Stop(M2C,id).delta))

+SignalHigh(O3,id).ENTER_K3(id).CaptureValue(M2E,id)
.Instance16(id)

Instance16(id:InstanceID) =
SignalHigh(O2,id).Instance16(id)
+SignalLow(O2,id).LEAVE_K2(id).Stop(M1C,id).CaptureValue(M2E,id)
.Instance17(id)

Instance17(id:InstanceID) =
Stopped(M1C,id).LEAVE_M1(id).activate(next(id),id).release(sem1,id)
.Instance18(id)

Instance18(id:InstanceID) =
SignalHigh(O3,id).
(NotTooHigh(M2E,id).Instance18(id) + TooHigh(M2E,id).Stop(M2C,id).delta)
+SignalLow(O3,id).CaptureValue(M2E,id).ExecuteProfile(X6,M2C,id)
.Off(C3,id).Instance19(id)

Instance19(id:InstanceID) =
SignalLow(O3,id).
(NotTooHigh(M2E,id).Instance19(id) + TooHigh(M2E,id).Stop(M2C,id).delta)
+SignalHigh(O3,id).CaptureValue(M2E,id).InformAfter(M2E,d3,id)
.Instance20(id)

Instance20(id:InstanceID) =
PosReached(M2E,id).ExecuteProfile(X7,M2C,id).On(C4,id)
.InformAfter(M2E,d4,id).Instance21(id)

Instance21(id:InstanceID) =
PosReached(M2E,id).Stop(M2C,id).On(M4,id).InformIn(t8,id)
.Instance22(id)

Instance22(id:InstanceID) =
Timeout(id).Off(C4,id).Off(M4,id).InformIn(t9,id).Instance23(id)

Instance23(id:InstanceID) =
Timeout(id).Instance24(id)

%% ----- Scanning and finalization ----- %%

Instance24(id:InstanceID) =
reserve(sem3,id).On(C3,id).InformIn(t10,id).Instance25(id)

Instance25(id:InstanceID) =
Timeout(id).ENTER_M3(id).ExecuteProfile(X8,M2C,id)
.ExecuteProfile(X9,M3C,id).ENTER_K7(id).CaptureValue(M3E,id)
.Instance26(id)
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Instance26(id:InstanceID) =
SignalLow(O4,id).
( NotTooHigh(M3E,id).Instance26(id)

+TooHigh(M3E,id).Stop(M2C,id).Stop(M3C,id).delta )
+SignalHigh(O4,id).Instance27(id)

Instance27(id:InstanceID) =
SignalHigh(O3,id).
( NotTooHigh(M2E,id).Instance27(id)

+TooHigh(M2E,id).Stop(M2C,id).Stop(M3C,id).delta )
+SignalLow(O3,id).LEAVE_K3(id).Stop(M2C,id).Instance28(id)

Instance28(id:InstanceID) =
Stopped(M2C,id).LEAVE_M2(id).release(sem2,id).LEAVE_K7(id)
.Instance29(id)

Instance29(id:InstanceID) =
SignalHigh(O4,id).
( NotTooHigh(M3E,id).Instance29(id)

+TooHigh(M3E,id).Stop(M3C,id).delta )
+SignalLow(O4,id).InformAfter(M3E,d5,id).Instance30(id)

Instance30(id:InstanceID) =
PosReached(M3E,id).Stop(M3C,id).Instance31(id)

Instance31(id:InstanceID) =
Stopped(M3C,id).LEAVE_M3(id).InformIn(t11,id).Instance32(id)

Instance32(id:InstanceID) =
Timeout(id).reserve(semN,id).release(sem3,id).Instance33(id)

Instance33(id:InstanceID) =
semValueZero(semN,F,id).Instance(id)
+semValueZero(semN,T,id).ENTER_M3(id).ExecuteProfile(X9,M3C,id)
.InformIn(t12,id).Instance34(id)

Instance34(id:InstanceID) =
Timeout(id).Stop(M3C,id).setFirstSheet(T,id).Off(M5,id).Instance35(id)

Instance35(id:InstanceID) =
Stopped(M3C,id).ActivateIdleState(M3C,id).ActivateIdleState(M1C,id)
.ActivateIdleState(M2C,id).LEAVE_M3(id).Instance(id)

init
encap( {setFirstSheet,getFirstSheet,reserve,release,activate,semValueZero},

FirstSheet(T) || Instance0(I0) || Instance(I1) || Instance(I2)
|| Semaphore(sem1,S(0)) || Semaphore(sem2,S(0)) || Semaphore(sem3,S(0))
|| Semaphore(semN,0)

)

C Revised µCRL specification
This is the µCRL specification of the ADF system in which all errors that were found
in the verification process, have been fixed.

sort Bool
func T,F: ->Bool
map not:Bool->Bool

and,or,eq:Bool#Bool->Bool
var b:Bool
rew not(F)=T not(T)=F

and(b,T)=b and(b,F)=F
or(b,T)=T or(b,F)=b
eq(b,b)=T eq(T,F)=F eq(F,T)=F

sort Nat
func 0:->Nat

S:Nat->Nat
map gt,eq:Nat#Nat->Bool
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dec:Nat->Nat
var m,n:Nat
rew gt(0,n)=F gt(S(m),0)=T gt(S(m),S(n))=gt(m,n)

eq(0,0)=T eq(0,S(n))=F eq(S(n),0)=F eq(S(m),S(n))=eq(m,n)
dec(S(n))=n

sort SensorID
func O1,O2,O3,O4:->SensorID

sort OnOffID
func S1,C1,C2,C3,C4,M4,M5:->OnOffID

sort ControllerID
func M1C,M2C,M3C:->ControllerID

sort EncoderID
func M1E,M2E,M3E:->EncoderID

sort ProfileID
func X1,X2,X3,X4,X5,X6,X7,X8,X9:->ProfileID

sort InstanceID
func I0,I1,I2: -> InstanceID
map eq:InstanceID#InstanceID->Bool

next,prev:InstanceID->InstanceID
rew eq(I0,I0)=T eq(I0,I1)=F eq(I0,I2)=F

eq(I1,I0)=F eq(I1,I1)=T eq(I1,I2)=F
eq(I2,I0)=F eq(I2,I1)=F eq(I2,I2)=T
next(I0)=I1 prev(I0)=I2
next(I1)=I2 prev(I1)=I0
next(I2)=I0 prev(I2)=I1

sort SemaphoreID
func sem1,sem2,sem3,sem4,sem5,semN:->SemaphoreID
map eq:SemaphoreID#SemaphoreID->Bool
rew eq(sem1,sem1)=T eq(sem1,sem2)=F eq(sem1,sem3)=F eq(sem1,sem4)=F

eq(sem1,sem5)=F eq(sem1,semN)=F
eq(sem2,sem1)=F eq(sem2,sem2)=T eq(sem2,sem3)=F eq(sem2,sem4)=F
eq(sem2,sem5)=F eq(sem2,semN)=F
eq(sem3,sem1)=F eq(sem3,sem2)=F eq(sem3,sem3)=T eq(sem3,sem4)=F
eq(sem3,sem5)=F eq(sem3,semN)=F
eq(sem4,sem1)=F eq(sem4,sem2)=F eq(sem4,sem3)=F eq(sem4,sem4)=T
eq(sem4,sem5)=F eq(sem4,semN)=F
eq(sem5,sem1)=F eq(sem5,sem2)=F eq(sem5,sem3)=F eq(sem5,sem4)=F
eq(sem5,sem5)=T eq(sem5,semN)=F
eq(semN,sem1)=F eq(semN,sem2)=F eq(semN,sem3)=F eq(semN,sem4)=F
eq(semN,sem5)=F eq(semN,semN)=T

sort TimePeriod
func t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12:->TimePeriod

sort Distance
func d1,d2,d3,d4,d5:->Distance

act ENTER_K3, LEAVE_K3, LEAVE_K2, ENTER_K7, LEAVE_K7, ENTER_M1, LEAVE_M1,
ENTER_M2, LEAVE_M2, ENTER_M3, LEAVE_M3, Timeout: InstanceID
setFirstSheet, SetFirstSheet, getFirstSheet,GetFirstSheet:Bool#InstanceID
reserve,Reserve,release,Release:SemaphoreID#InstanceID
semValueZero,SemValueZero:SemaphoreID#Bool#InstanceID
activate,Activate:InstanceID#InstanceID
SignalLow,SignalHigh:SensorID#InstanceID
On,Off:OnOffID#InstanceID
ActivateControlState,ActivateIdleState,PosReached,Stop,Stopped:
ControllerID#InstanceID
CaptureValue,PosReached,NotTooHigh,TooHigh:EncoderID#InstanceID
ExecuteProfile:ProfileID#ControllerID#InstanceID
InformIn:TimePeriod#InstanceID
InformAfter:EncoderID#Distance#InstanceID

comm setFirstSheet | setFirstSheet = SetFirstSheet
getFirstSheet | getFirstSheet = GetFirstSheet
reserve | reserve = Reserve
release | release = Release
semValueZero | semValueZero = SemValueZero
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activate | activate = Activate

proc FirstSheet(b:Bool) =
sum(i:InstanceID,

sum(b1:Bool, setFirstSheet(b1,i).FirstSheet(b1))
+getFirstSheet(b,i).FirstSheet(b) )

Semaphore(sid:SemaphoreID,n:Nat) =
sum(i:InstanceID,

reserve(sid,i).Semaphore(sid,dec(n)) <| gt(n,0) |> delta
+release(sid,i).Semaphore(sid,S(n))
+semValueZero(sid,eq(n,0),i).Semaphore(sid,n) )

%% ----- Initialization and aligning ----- %%

Instance(id:InstanceID) =
activate(id,prev(id)).Instance0(id)

Instance0(id:InstanceID) =
SignalLow(O1,id).Instance0(id)
+ SignalHigh(O1,id).reserve(sem4,id).

( getFirstSheet(T,id).InformIn(t1,id).Instance1(id)
+getFirstSheet(F,id).ENTER_M1(id).Instance4(id) )

Instance1(id:InstanceID) =
Timeout(id).
(SignalLow(O1,id).release(sem4,id).Instance0(id)
+
SignalHigh(O1,id).ENTER_M1(id).On(M5,id).On(C2,id).Off(C1,id).On(S1,id)
.ActivateControlState(M1C,id).ActivateControlState(M2C,id)
.ActivateControlState(M3C,id).setFirstSheet(F,id).InformIn(t2,id)
.Instance2(id))

Instance2(id:InstanceID) =
Timeout(id).ExecuteProfile(X1,M1C,id).Instance3(id)

Instance3(id:InstanceID) =
PosReached(M1C,id).Instance4(id)

%% ----- Separation ----- %%

Instance4(id:InstanceID) =
reserve(sem1,id).Off(S1,id).On(C2,id).On(C1,id).release(semN,id)
.release(sem4,id).InformIn(t3,id).Instance5(id)

Instance5(id:InstanceID) =
Timeout(id).ExecuteProfile(X2,M1C,id).Instance6(id)

Instance6(id:InstanceID) =
PosReached(M1C,id).Off(C2,id).InformIn(t4,id).Instance7(id)

Instance7(id:InstanceID) =
Timeout(id).On(S1,id).On(C2,id).Off(C1,id).InformIn(t5,id)
.Instance8(id)

Instance8(id:InstanceID) =
Timeout(id).ExecuteProfile(X3,M1C,id).CaptureValue(M1E,id)
.InformAfter(M1E,d1,id).Instance9(id)

Instance9(id:InstanceID) =
PosReached(M1E,id).On(C1,id).InformAfter(M1E,d2,id).Instance10(id)

Instance10(id:InstanceID) =
PosReached(M1E,id).Off(S1,id).Instance11(id)

Instance11(id:InstanceID) =
SignalLow(O2,id).
(NotTooHigh(M1E,id).Instance11(id) + TooHigh(M1E,id).Stop(M1C,id).delta)
+SignalHigh(O2,id).Off(C1,id).InformIn(t6,id).Instance12(id)

Instance12(id:InstanceID) =
Timeout(id).On(C2,id).InformIn(t7,id).Stop(M1C,id).Instance13(id)

Instance13(id:InstanceID) =
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(Timeout(id).Stopped(M1C,id)+Stopped(M1C,id).Timeout(id)).Instance14(id)

%% ----- Turning and blousing ----- %%

Instance14(id:InstanceID) =
reserve(sem2,id).ENTER_M2(id).CaptureValue(M2E,id)
.ExecuteProfile(X4,M1C,id).ExecuteProfile(X5,M2C,id).Instance15(id)

Instance15(id:InstanceID) =
SignalHigh(O2,id).

(SignalHigh(O3,id).ENTER_K3(id).CaptureValue(M2E,id)
.Instance16(id)
+SignalLow(O3,id).
(NotTooHigh(M2E,id).Instance15(id)
+TooHigh(M2E,id).Stop(M1C,id).Stop(M2C,id).delta))

+SignalHigh(O3,id).ENTER_K3(id).CaptureValue(M2E,id)
.Instance16(id)

Instance16(id:InstanceID) =
SignalHigh(O2,id).Instance16(id)
+SignalLow(O2,id).LEAVE_K2(id).Stop(M1C,id).CaptureValue(M2E,id)
.Instance17(id)

Instance17(id:InstanceID) =
Stopped(M1C,id).LEAVE_M1(id).activate(next(id),id).release(sem1,id)
.Instance18(id)

Instance18(id:InstanceID) =
SignalHigh(O3,id).
(NotTooHigh(M2E,id).Instance18(id) + TooHigh(M2E,id).Stop(M2C,id).delta)
+SignalLow(O3,id).Stop(M2C,id).Instance18A(id)

Instance18A(id:InstanceID) =
Stopped(M2C,id).reserve(sem5,id).CaptureValue(M2E,id)
.ExecuteProfile(X6,M2C,id).Off(C3,id).Instance19(id)

Instance19(id:InstanceID) =
SignalLow(O3,id).
(NotTooHigh(M2E,id).Instance19(id) + TooHigh(M2E,id).Stop(M2C,id).delta)
+SignalHigh(O3,id).CaptureValue(M2E,id).InformAfter(M2E,d3,id)
.Instance20(id)

Instance20(id:InstanceID) =
PosReached(M2E,id).ExecuteProfile(X7,M2C,id).On(C4,id)
.InformAfter(M2E,d4,id).Instance21(id)

Instance21(id:InstanceID) =
PosReached(M2E,id).Stop(M2C,id).On(M4,id).InformIn(t8,id)
.Instance22(id)

Instance22(id:InstanceID) =
Timeout(id).Off(C4,id).Off(M4,id).InformIn(t9,id).Instance23(id)

Instance23(id:InstanceID) =
Timeout(id).Instance24(id)

%% ----- Scanning and finalization ----- %%

Instance24(id:InstanceID) =
reserve(sem3,id).On(C3,id).InformIn(t10,id).Instance25(id)

Instance25(id:InstanceID) =
Timeout(id).ENTER_M3(id).ExecuteProfile(X8,M2C,id)
.ExecuteProfile(X9,M3C,id).ENTER_K7(id).CaptureValue(M3E,id)
.Instance26(id)

Instance26(id:InstanceID) =
SignalLow(O4,id).
( NotTooHigh(M3E,id).Instance26(id)

+TooHigh(M3E,id).Stop(M2C,id).Stop(M3C,id).delta )
+SignalHigh(O4,id).Instance27(id)

Instance27(id:InstanceID) =
SignalHigh(O3,id).
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( NotTooHigh(M2E,id).Instance27(id)
+TooHigh(M2E,id).Stop(M2C,id).Stop(M3C,id).delta )

+SignalLow(O3,id).LEAVE_K3(id).Stop(M2C,id).Instance28(id)

Instance28(id:InstanceID) =
Stopped(M2C,id).LEAVE_M2(id).release(sem2,id).LEAVE_K7(id)
.Instance29(id)

Instance29(id:InstanceID) =
SignalHigh(O4,id).
( NotTooHigh(M3E,id).Instance29(id)

+TooHigh(M3E,id).Stop(M3C,id).delta )
+SignalLow(O4,id).release(sem5,id).InformAfter(M3E,d5,id).Instance30(id)

Instance30(id:InstanceID) =
PosReached(M3E,id).Stop(M3C,id).Instance31(id)

Instance31(id:InstanceID) =
Stopped(M3C,id).LEAVE_M3(id).InformIn(t11,id).Instance32(id)

Instance32(id:InstanceID) =
Timeout(id).reserve(semN,id).release(sem3,id).reserve(sem4,id)
.Instance33(id)

Instance33(id:InstanceID) =
semValueZero(semN,F,id).release(sem4,id).Instance(id)
+semValueZero(semN,T,id).ENTER_M3(id).ExecuteProfile(X9,M3C,id)
.InformIn(t12,id).Instance34(id)

Instance34(id:InstanceID) =
Timeout(id).Stop(M3C,id).setFirstSheet(T,id).Off(M5,id).Instance35(id)

Instance35(id:InstanceID) =
Stopped(M3C,id).ActivateIdleState(M3C,id).ActivateIdleState(M1C,id)
.ActivateIdleState(M2C,id).LEAVE_M3(id).release(sem4,id).Instance(id)

init
encap( {setFirstSheet,getFirstSheet,reserve,release,activate,semValueZero},

FirstSheet(T) || Instance0(I0) || Instance(I1) || Instance(I2)
|| Semaphore(sem1,S(0)) || Semaphore(sem2,S(0)) || Semaphore(sem3,S(0))
|| Semaphore(sem4,S(0)) || Semaphore(sem5,S(0)) || Semaphore(semN,0)

)
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