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1 Introduction 

Models of business processes capture events that may occur and activities that need to be 

performed within the context of an organization, often represented in a graphical form. Relying 

on models of business processes can be risky if these models entail invalid or even harmful 

sequences of activities. 

One such risk is causing injuries to people involved in sectors requiring high security, for 

example railroad systems (International Union of Railways (UIC) et al. 2009), or nuclear 

facilities (Lahtinen et al. 2012). Another type of risk is legal prosecution, for example because 

of violation of regulatory requirements (compliance), e.g. in financial institutions (Becker et al. 

2014). Yet another kind of risk is suffering financial losses, e.g. because fraud was not properly 

prevented or confidentiality was not guaranteed (Arsac et al. 2011), or because of unreasonably 

handling “edge cases” that were not properly considered during process design. To give an 

example for such edge cases: An analysis of the SAP reference process models in 2007 found 

that the models entail activities that possibly lead to financial losses: In the context of 

procurements, the models elicit payments for goods that were never received. In the context of 

subcontracting, the process models allow to issue a second payment for some invoice when an 

identical copy is received a second time. (van Dongen et al. 2007) 

When people rely on models of business processes, they may want to reduce or even rule out 

risks resulting from models entailing invalid or harmful activities. To reduce these risks, users 

of business process models may want to ensure that the used process models fulfill specific 

properties that characterize correct and safe processes. We call checking whether a business 

process model fulfills such properties “business process analysis”. One approach for performing 

business process analysis is a manual one: A person or a group of people manually reviews 

process models to identify aspects that cause relevant properties to be violated. This may be a 

feasible solution when a low number of small business processes needs to be analyzed. With 

higher numbers and larger models, manual analysis may not be feasible anymore. A computer-

supported analysis approach may be required in such cases. 

Model checking is a concept that may allow supporting business process model analysis with 

automatic computations. Given a temporal property stated as a temporal logic formula and 

given a labeled state-transition system, the model checking problem asks to find all states of 

the system that fulfill the property. Algorithms exist for solving the model checking problem 

automatically. (Clarke 2008)  

Multiple standardized languages exist for representing business process models. For some of 

such standardized business process modeling languages, model checking approaches were 

presented, e.g. for BPMN (Raedts et al. 2007) and BPML (Brambilla 2005), or for EPC (van 
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Dongen et al. 2007). A survey in the financial industry however indicates that a non-negligible 

amount of processes in practice is modeled with proprietary notations. (Becker et al. 2010) 

Meta modeling is an approach that allows to specify conceptual modeling languages (e.g. 

process modeling languages) and to create models in these languages. (Becker et al. 2004) Since 

the concept of meta modeling allows to specify custom modeling languages, the concept is not 

restricted to a specific set of business process modeling languages. Tools exist implementing 

the concept of meta modeling, for example the tool [em]. (Delfmann et al. 2008)  

In this thesis, we present an approach that allows to translate business process model analysis 

problems into model checking problems and to solve these problems in such a way that the 

computed results are useful for a business process model analyst. We describe an 

implementation of our approach as a plugin for [em]. We demonstrate the application of our 

approach and our implementation in exemplary case studies. We compare our approach with 

other meta model-based process model analysis approaches, and derive ideas for potential 

future work from a discussion of the applicability of our approach. The core idea of our 

approach is defining behaviors for models and elements in a generic fashion on the language 

level. Generic formulaic expressions describe the conditions which elements should be enabled 

and which behaviors should be triggered. These conditions are formulated over the attributes 

of and relationships between models and their elements. 

With our approach and our implementation, we provide a solution that easily allows a business 

process model analyst 1) to specify formal execution semantics for business process models of 

arbitrary process modeling languages on the language level, 2) to define properties that models 

with defined execution semantics can be checked for, 3) to automatically solve model checking 

problems derived from selected properties and models with defined execution semantics, and 

4) to derive information from the model checking results that allows understanding which 

model elements were responsible for the computed result. 

The remainder of this thesis is structured as follows. In the second chapter, we introduce basic 

concepts in detail that form the foundations of our work. In the third chapter, we introduce our 

general idea and the resulting high-level approach by explaining in natural language how to 

translate a business process model analysis problem into a model checking problem. In the 

fourth chapter, we formalize our approach and make it more concrete by introducing additional 

concepts and languages for describing models’ formal execution semantics on a meta-level in 

an automatically processable form. In the fifth chapter, we lay the foundations for an 

implementation of our theoretical approach. In the sixth chapter, we describe how we 

implemented our approach as a plugin for [em]. In the seventh chapter, we demonstrate the 

applicability of our approach by describing how a set of exemplary artificial case studies can 

be solved with the implementation of our approach. In the eight chapter, we discuss our results, 

give an outlook and summarize our work. 



3 

 

2 Basic Concepts 

In this chapter, we introduce basic concept that our work is based on. We describe which aspects 

we put our focus on and in what regard we restrict our perspective. We give definitions and 

name basic assumptions. Where necessary, we explain why a concept or an assumption is 

important for our work.  

In the first section, we introduce concepts from the domain of meta model-based business 

process model analysis. In the second section, we introduce concepts from the domain of model 

checking. 

2.1 Concepts around Analysis of Meta Model-Backed Business Process Models 

Meta Modeling, Modeling Languages, and Models. “Meta modeling” means using a model 

to formally define relevant aspects of a modeling language in which models can then be created. 

A modeling language captures common aspects of the models that are created in this language. 

(Becker et al. 2004) 

Meta modeling provides a way to specify types of elements that a model in the respective 

language may contain. Among these types may be “object types” and “relationships types”. An 

instance of an object type is called an “object”. An instance of a relationship type is called a 

“relationship”. Collectively, objects and relationships are called “elements”. 

Relationships represent connections between elements in a model. Relationship types specify 

what and how instances of element types can be put into a relationship with each other. On this 

basis, we define a model as a subset of the set of elements where each object is an instance of 

an object type, and relationships are restricted according to the language’s relationship type 

specifications. 

The structure of a model as defined here with elements and relationships resembles a graph 

with nodes and edges, respectively. We therefore call modeling languages that follow our 

definition “graph-based modeling languages”. 

The Meta Modeling Tool “[em]”. The concept of meta modeling was implemented in 

software. An example for such an implementation is “[em]”. (Delfmann et al. 2008) [em] is a 

meta modeling tool that allows a user to create a definition of a modeling language and then 

use this language definition to create models in the defined language. The implementation of a 

model checking plugin in [em] being one of the core intentions of our work, we focus on [em] 

in our thesis. 

Business Process. The term “business process” has been defined in different ways, for example 

as a “collection of activities that takes one or more kinds of input and creates an output that is 
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of value to the customer” (Hammer and Champy 1993), as a “a specific ordering of work 

activities across time and place, with a beginning, an end, and clearly defined inputs and 

outputs: a structure for action” (Davenport 1993) or as a “a completely closed, timely and 

logical sequence of activities which are required to work on a process-oriented business object” 

(Becker and Schütte 2004) as cited and translated in (Mendling 2007). 

For our purposes however, we use a highly simplified definition for a business process: We 

define it as a sequence of observable events. While most of the aspects that express relevance 

towards a business need are lost in our definition, we nevertheless use the term “business 

process” to allow a clear differentiation from other terms containing the word “process” that 

are introduced and used later, especially “formal process specifications” and LNT processes. 

In subsection 8.2.3, we discuss impacts of this simplification. 

Business Process Model. Following (Wikipedia contributors 2017c), we define a business 

process model as a description of business processes of the same nature that are classified into 

a model. In other words, a business process model describes or entails possibly occurring 

sequences of observable events. In this context, an instantiation or an “execution” of a business 

process model is some business process that is entailed by that model. 

Process Modeling Languages. To create business process models in a standardized fashion, 

various process modeling languages have been proposed, e.g. Business Process Modeling 

Language and Notation (BPMN) as specified in (Object Management Group 2011), Event-

Driven Process Chains (EPC, “Ereignisgesteuerte Prozessketten” in German) as specified in 

(Keller et al. 1992) or Unified Modeling Language (UML) Activity Diagrams as specified in 

(Object Management Group 2015), to name just a few. Process modeling languages introduce 

standardized concepts that process models can be created with, for example the concept of an 

“activity” or of a “sequence flow”. 

We call a business process model “meta model-backed” if its process modeling language can 

be described with a meta model according to our definition. In our work, we focus only on 

process models in such languages. 

Execution Semantics. By itself, a process model is just a graphic or a concept. To give meaning 

to a process model, “execution semantics” or “operational semantics” is required. Execution 

semantics describe implicitly or explicitly how a process model must be interpreted, i.e. 

execution semantics specify what processes are entailed by a process model. As such, execution 

semantics provides a means to systematically derive possible processes (i.e. possible series of 

events) from the structure of a process model. (Bolognesi and Brinksma 1987) Formally we 

define execution semantics as a function with the set of business process models as its domain 

and the set of sets of sequences of observable events as its codomain. 
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Some process modeling language specifications explicitly provide execution semantics 

specifications for models in their respective language – in various degrees of precision and 

formalism. For all process modeling languages with explicitly given execution semantics 

known to us, a large part of the execution semantics is defined on the element type level. For 

example, BPMN’s “Activity” element type or EPC’s “Function” element type roughly 

characterizes things that are to be done, and BPMN’s “Sequence Flow” element type or EPC’s 

connecting line element type introduce the concept of “flow order” into the process. 

For some process modeling languages, it may even possible to define the execution semantics 

entirely on the element type level of the language. This is not universally true however: BPMN 

for example allows to define some aspects of models using a natural-language descriptive text, 

e.g. to annotate under which conditions a Process Flow is to be triggered. This is shown to be a 

challenge later in this thesis, leading to some restrictions with regard to what process models 

can meaningfully be checked using our approach. 

Process Model Analysis. We define process model analysis as checking if a business process 

model fulfills given properties. There are several motivational drivers for process model 

analysis, such as compliance checking, weakness identification, or “semantic soundness” 

checking. (Becker et al. 2014; Delfmann, Steinhorst, et al. 2015) 

Different kinds of properties can be relevant for process model analysis. For example, the 

number of process model elements or their degree of connectivity might be relevant to estimate 

the complexity of a process model. The average length of characters in labels might be relevant 

to estimate its easiness to understand. The positions and sizes of the elements in a graphical 

model might be relevant to check its well-formattedness. 

In our thesis, we focus on temporal properties formulated over the sequences of events entailed 

by a process model through its execution semantics. We give a more detailed introduction into 

temporal properties in section 2.2. 

2.2 Concepts around Model Checking 

Temporal Properties. When referring to process model analysis in our work, we focus on 

checking the fulfilment of temporal properties. Temporal properties are expressions evaluating 

to a Boolean value that are formulated over the sequences of events entailed by a business 

process model. 

To make it easier to understand what such a temporal property might be, we give an example: 

Following (Delfmann and Hübers 2015) we use a provision of the German Geldwäschegesetz 

(Money Laundering Act) to derive a potentially interesting property from it that one might want 

a process model to be checked for its fulfillment. Translated from German to English, the first 
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paragraph of the Geldwäschegesetz reads: “In the context of this law, [the process of] 

identification consists of (1) the determination of the identity by data collection and (2) the 

check of the identity.” This provision can be interpreted as: Whenever identification data of a 

person (e.g. a customer of a bank) is collected, this data must be verified before the data may 

be used in any other action. 

We attempt to re-formulate the exemplary informal legal provision as a temporal property. In 

natural language the property could be specified as: “In any execution of the process model that 

is to be checked, the ‘Identification data is used’ event may not occur after the ‘Identification 

data collected’ event, until an ‘Identification data was successfully verified’ event occurs.” 

Formulating the property in this way is later shown to be easily formalizable and therefore 

becomes automatically checkable with our implementation. 

From a more general perspective, it is possible to put temporal properties into different classes. 

Two important basic classes are “liveness properties” and “safety properties”. A liveness 

property states that an event is required to happen, whereas a safety property states that an event 

is required to not happen. (Lamport 1977) To give examples for these two classes, we consider 

the operation of a nuclear reactor. A safety property could be: “Executing the nuclear reactor 

operation process model should never lead to the occurrence of the event ‘A person near the 

reactor received a radiation of more than 50,000 μSv’.” A liveness property on the other hand 

could be: “If the auxiliary feed-water pumps fail, the reactor will shut down within 10 minutes.” 

Temporal Property Algebras. To allow for algorithmic processing of temporal properties, a 

formal way of expressing them is required. Different temporal property algebras were suggested 

that allow to formally express temporal properties. Notable early temporal algebras were Linear 

Temporal Logic (LTL) (Pnueli 1977), Computational Tree Logic (CTL) (Clarke and Emerson 

1981) and the modal µ-calculus (Kozen 1982; Stirling 1996). 

The modal µ-calculus was identified to have a higher expressivity than other proposed algebra 

and was even described as subsuming “virtually all other temporal logics defined in the 

literature”. (Mateescu and Thivolle 2008) This high level of expressivity comes with a price: 

Solving a model checking problem with properties expressed with the modal µ-calculus has a 

high computational complexity. However, when restricting the modal µ-calculus to an 

“alternation-free” fragment, model checking problems can be solved in polynomial time 

without losing expressive power as required in practice. (Emerson and Lei 1986) 

Labeled Transition System. A labeled transition system (LTS) is a concept that allows 

capturing business processes in a formal way. We follow (Mateescu and Thivolle 2008) and 

define a labeled transition system as a tuple consisting of a set of states 𝑆, of a set of labels 𝐿, 

of a set of transitions 𝑇 where 𝑇 is a subset of 𝑆 × 𝐿 × 𝑆, and of an “initial” state 𝑠0 where 𝑠0 

is an element of 𝑆. 
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Figure 1 An exemplary LTS 

A LTS can be interpreted as a directed graph. In Figure 1, we give a visualization for an LTS 

that captures the meaning of an exemplary process model that describes how a received invoice 

needs to be handled. The boxes in the figure represent states and the labeled directed arrows 

between two boxes represent transitions. The initial state s0 is highlighted in blue. 

To “extract” the underlying business processes from this LTS, we can now start at the initial 

state and record all series of labels we encounter when recursively following transitions from 

there. By interpreting each series of labels as a series of events, we have a set of business 

processes according to our definition. 

LTS can be used as a finite description for business processes with sub-sequences of events that 

are repeated infinitely often. Such processes can be described as an LTS by introducing cycles 

in the transitions, i.e. sequences of transitions that start at some state and finally return to the 

same state again.  

Reduction of LTS. When working with an LTS in the context of model checking, its number 

of states and transitions can become an important complexity driver. Therefore, it can be helpful 

to reduce the number of states and transitions while keeping the captured semantics intact. This 

can be realized by “reducing” an LTS according to some equivalence relation. Reducing an 

LTS formally means generating a new LTS so that the new LTS is equivalent to the original 

LTS according to the given equivalence relation and the new LTS has at most the same number 

of states and/or of transitions as the original one. 

Assuming an equivalence relation that considers two LTS to be equal if they produce the same 

result when recursively following all possible transitions from the start event and recording the 

encountered labels, Figure 2 shows the representation of a reduced version of the LTS from 

Figure 1 according to the equivalence relation. While the original LTS has eight states and eight 

transitions, the reduced LTS only has five states and seven transitions. 
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Figure 2 A reduced version of the LTS as in Figure 1 

Multiple equivalence relations have been proposed for LTS. The interested reader is suggested 

to refer to (CADP manual authors 2017d) for more information on some relevant relations. 

Formal Process Algebras. When working with business processes that have a lot of parallelism 

or with business processes requiring an infinite number of states, it may be impractical to work 

with LTS directly. Formal process algebras were suggested as formal mathematical structures 

for modeling LTS, i.e. representing an LTS in an abstract form. According to (Technische 

Universiteit Eindhoven 2017, chap. History), notable formal process algebras were Calculus of 

Communicating Processes (Milner 1980), Algebra of Communicating Processes (Bergstra and 

Klop 1984), and Communicating Sequential Processes (Hoare 1978,  1980). 

Model Checking and Counterexample / Witness Graphs. Given a model of an LTS and 

given a temporal property, the “model checking problem” asks to determine if the property is 

fulfilled by the LTS model. (Clarke 2008) On this basis, model checking is defined as an 

automatic, cost-effective method for verifying a temporal property of an LTS model, i.e. a 

method to solve the model checking problem. (Mateescu and Thivolle 2008) An important 

verification result is a Boolean value that indicates if the temporal property is fulfilled by the 

model. A “counterexample graph” or a “witness graph” is a second result that can be of interest 

for some applications. 

A counterexample graph is a subgraph of the checked LTS consisting of states and transitions 

that allow explaining the non-fulfillment of a temporal property. A witness graph is a subgraph 

of the checked LTS consisting of states and transitions sufficient for explaining the fulfilment 

of a temporal property. Counterexample graphs can be interpreted as a proof for the model’s 

violation of the property, whereas witness graphs can be interpreted as a proof that something 

“exists” in the model that was required to exist. Some model checking approaches and 

implementations allow to compute such counterexample or witness graphs. 

Model Checker. A model checker is a tool for solving the model checking problem. In our 

work, we focus on two model checkers: the Construction and Analysis of Distributed Processes 
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(CADP) model checker and the micro Common Representation Language 2 (mCRL2) model 

checker. We describe them in more detail in subsection 5.1.2. The CADP model checker is part 

our implementation’s foundation. 

Formal Process Specifications and Formal Process Specification Languages. To make 

models of LTS automatically processable by a computer, various formal process specification 

languages based on formal process algebras were proposed. We call a model of an LTS in such 

a language a “formal process specification”. 

As one of such languages, the “Language of Temporal Ordering Specification” (LOTOS) was 

created with the intention to be a formally well-defined standard language that is unambiguous, 

precise, complete, and implementation-independent. (Bolognesi and Brinksma 1987) LOTOS 

was further revised in the following years and new languages were created based on different 

revisions of LOTOS and their underlying concepts. One of these languages is “LNT”, originally 

an abbreviation for “LOTOS New Technology”. (Champelovier et al. 2017) 

As the CADP model checker accepts models specified in the formal process specification 

language LNT, we primarily focus on LNT in the remainder of this thesis. In its current 

implementation, the model checking framework automatically translates LNT to LOTOS and 

uses the generated LOTOS code for further processing. As such, we also refer to LOTOS to 

some extent. 

Temporal Property Specification Languages. To make temporal properties available for 

computer-based processing, multiple temporal property specification languages based on 

temporal property algebras were proposed. In our work, we focus on languages that are based 

on the modal µ-calculus or a derivative of it because of high expressivity. 

One of these temporal property specification languages is the Model Checking Language 

(MCL) that is supported by the CADP model checker. MCL was proposed as an extension of 

the alternation-free fragment of µ-calculus with the goal to improving conciseness, readability, 

and expressiveness of temporal formulas. (CADP manual authors 2017f; Mateescu and Thivolle 

2008) We use MCL as the basis for temporal properties that are to be checked with our 

implementation. 
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3 Model Checking for Meta Model-Backed Business Process 

Models  

In this chapter, we introduce our general idea in natural language and develop our high-level 

approach to reach our goal: Given a model, its meta model, and given some temporal property, 

we want to use model checking to determine if the model fulfills the property and to get a hint 

why the property is fulfilled or why it is not, respectively. Starting from a model, its meta model 

and a property, we develop additionally required inputs required to reach the goal. 

In the first section, we introduce the foundation of our idea for enabling model checking with 

meta model-backed business process models. In the second section, we introduce our idea for 

making the results of model checking more understandable in the context of business process 

models. In the third section, we bring our ideas together and present our combined overall high-

level approach. 

3.1 Towards Specifying Execution Semantics for Process Modeling Languages 

As introduced in section 2.2, model checking requires two inputs: an LTS and a temporal 

property. To apply model checking, it is therefore required to derive an LTS from a given model 

and its meta model. In this section, we review existing approaches for deriving such an LTS 

and develop our idea behind our approach. 

In the first subsection, we discuss the applicability of existing approaches in the context of meta 

model-backed business process models. In the second subsection, we introduce our idea of 

assigning behaviors to model elements for describing the model’s execution semantics. In the 

third subsection, we generalize our idea and describe how behaviors can be assigned to elements 

of a model’s meta model. 

3.1.1 Discussion of Existing Approaches 

One type of approaches to derive a LTS from a business process model is based on pre-defined 

static language-specific rules for translating a process model into a formal process specification. 

For some popular process modeling languages, corresponding formal semantics were specified 

by the language creators. This applies to BPMN (Object Management Group 2011) and UML 

Activity Diagrams (Object Management Group 2015) for example. Static pre-defined 

transformation rules to transform process models into forma process specifications have been 

proposed and applied at least for BPMN. (Raedts et al. 2007) 

For some other popular process modeling languages, only informal semantics were specified 

by the language authors. This applies to EPC for example. (Keller et al. 1992) For informally 
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specified semantics it can be difficult to find formal semantics. For EPC it was even shown to 

be impossible to define sound formal semantics that is fully compliant with the informal 

semantics. (van der Aalst et al. 2002) 

For other process modeling languages, neither formal nor informal semantics may be specified 

yet. Also, meta modeling allows to create new process modeling languages with new execution 

semantics that cannot be anticipated in pre-defined rules. The approach of using pre-defined 

static rules therefore does not work well with the flexible concept of meta modeling. 

For this reason, we develop a more flexible approach in our thesis that allows the creation and 

modification of custom execution semantics. 

3.1.2 Idea of Assigning Behaviors to Model Elements 

At the core of our approach towards specifying execution semantics we introduce the concept 

of a “behavior”. We further introduce the idea that each model element can be enabled, leading 

to some behaviors to be triggered. Types of behaviors include “report some event”, “enable 

some model element”, “check if some condition is met and – if it is – trigger another behavior”, 

or “choose between multiple behaviors”. By assigning behaviors to model elements, the model 

of LTS is implicitly specified: The events that are reported by behaviors triggered through 

enablements of model elements become the LTS transitions. 

We give an intuition for this concept with an example. Consider Figure 3 for an exemplary 

process model in EPC where an “XS” element represents an XOR split and an “XJ” represents 

an XOR join. Each model object has an identifier given in black text next to the respective 

model element. A sketch of what behaviors could be assigned for this process model is given 

in Table 1. 

 

 

Figure 3 An exemplary process model 

Lower Event 

Some Event Some Function XS
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Upper Event 

XJ Some Function Some Event 

E1 F1 
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E2b 

F2 E3 
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Element Assigned Behaviors 

E1 1.  Report event “Some Event” 

2.  Enable element F1 

F1  Enable element XS 

XS Choose between the following two behaviors: 

a.  Enable element E2a 

b.  Enable element E2b 

E2a 1.  Report event “Upper Event” 

2.  Enable element XJ 

E2b 1.  Report event “Lower Event” 

2.  Enable element XJ 

XJ  Enable element F2 

F2  Enable element E3 

E3  Report event “Some Event” 

Table 1 Exemplary assignments of behaviors to elements of the model in Figure 3 

Using the model elements and the behaviors, we can now follow the sequence of behaviors that 

are to be triggered when enabling model elements. For now, we assume that we always enable 

the model element that does not have any “incoming” relationships first, i.e. the one that does 

not have any predecessors. We lose this assumption later during the design of our actual 

implementation. 

When starting with enabling E1, the event “Some Event” will be reported, followed by enabling 

the element F1. When F1 is enabled, XS will be enabled next. When XS is enabled, a choice 

will be made to either enable the element E2a or the element E2b. When enabling E2a or E2b, 

an event according to the element’s label will be reported, followed by enabling the element 

XJ. This chain is continued until E3 is enabled and finally the event “Some Event” is reported 

again, this time without any other element enabling following. 

From the possible chains of triggerings, two event sequences can be derived: (“𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”, 

“𝑈𝑝𝑝𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) and (“𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”, “𝐿𝑜𝑤𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”). This 

demonstrates that introducing behaviors and assigning them to model elements allows to 

implicitly describe a set of event sequences and therefore fulfills one requirement for model 

checking. 

3.1.3 Moving Behaviors to the Meta-Level of Process Models 

Directly assigning concrete behaviors to model elements as proposed in the last section has 

disadvantages: When analyzing multiple models using model checking, each model would 

require explicit specification of behaviors for each model element. Simply put, each model 

would have to be prepared individually, causing a high preparation effort. 

Also modifying models would result in additional effort: Assume that a new event model 

element and a new function model element should be inserted in the process model of Figure 3 

“in between” the elements F1 and XS. To get a correct behaviors assignment that fits to the new 

model, not only new behaviors need to be explicitly specified and assigned to the new elements 
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but also the existing behavior that is assigned to F1 needs to be updated so that it does not 

enable XS anymore but the newly introduced event model. Generally speaking, changing a 

model requires the behavior assignments to be explicitly updated when using the approach of 

assigning behaviors directly to model elements. 

This additional effort would make this naïve approach impractical. A more generic approach 

would therefore be helpful that involves less effort when changing models or their elements. 

To create such an approach, we generalize our behavior-based approach in two ways: Instead 

of specifying a behavior with concrete input data (like E1, F1, E2a, “Some Event”, “Some 

Function” etc.), we use formulaic expressions to describe the required input data for behaviors 

in a more generic way (e.g. “successor of current element”, “label of current element”). And 

instead of assigning behaviors directly to model elements, we associate behaviors with model 

element types, thereby making use of the meta model to define behaviors in a more generic 

fashion. With this meta model-based approach, the enablement of a model element of some 

type now means that those behaviors are to be triggered that are associated with this type. 

To give an intuition for this new approach, we pick up the exemplary process model in Figure 

3 again and now specify behaviors using generic formulas on meta model level. We give a 

possible behavior assignment in Table 2. We use curly brackets to indicate generic formulaic 

expressions (stated in natural language) that play the role of placeholders. 

Model Element Type Assigned (Generic) Behaviors 

Event 1.  Report event {label of current element} 

2.  If {number of successors of current element greater than 0} then: 

  Enable element {first successor of current element} 

Function  Enable element {successor of current element} 

XOR Split 1.  Choose any one of {successors of current element} and designate it as ‘e’ 

2.  Enable element {e} 

XOR Join  Enable element {successor of current element} 

Table 2 Exemplary assignment of behaviors to model elements on their meta level 

It is left to the reader to verify that recording reported events from enabling model elements 

based on the given assignment would result in the same event sequences as given at the end of 

section 3.1.2 for the model in Figure 3.  

Having defined this assignment of behaviors to model element types once, we can now create 

new or modify existing well-formed EPC models that make use of only the specified four 

element types without the need for any adjustments to make such models analyzable with model 

checking. 

So far, we have specified the formulaic expressions in natural language. To allow a computer 

to automatically process such formulaic expressions, a formalized expression language is 

required that a computer can read and interpret.  



14 

 

As the core idea of our approach, we introduce meta model-based execution semantics as a new 

input parameter and can now rephrase our overall goal: Given a model, given its meta model, 

given meta model-based execution semantics specified through behaviors using generic 

formalized formulas, and given a formal temporal property, we want to use model checking to 

determine the fulfillment of the given temporal property by the given model, and to get a hint 

why the property is fulfilled or why it is not, respectively. 

3.2 Making Model Checking Results More Understandable 

As established in our goal description, we want to use model checking to find out if a property 

is fulfilled or not and to get a hint why a property is fulfilled or why it is not. Until now we did 

not specify explicitly what we mean with “getting a hint why a property is fulfilled or why it is 

not”. In this section, we explain what such a hint may be, why it can be useful, and how our 

approach must be adjusted to be able to produce it. 

In the first subsection, we establish the reasons why a hint for a fulfillment or non-fulfilment of 

a property can be helpful and explain how such a hint may be represented. In the second 

subsection, we extend the idea developed in section 3.1 to allow deriving such a hint from 

model checking of meta model-backed business process models. 

3.2.1 Responsibility-Explaining Model Element Sequences 

The helpfulness of understanding why a property is fulfilled or not fulfilled can be motivated 

with an example: Take a property that specifies that the event “Upper Event” needs to happen 

at least once in every process entailed by a given process model. Now assume the exemplary 

process model from section 3.1 as given in Figure 3 should be analyzed if it satisfies this 

property. 

We have shown earlier that “Upper Event” does not occur for one of the two event sequences 

entailed by the process model. We therefore already know that the process model does not 

satisfies the property. Also, in this simple example it may become clear simply from looking at 

the model why the property is not fulfilled: There is no model element whose enablement would 

result in a report of the event “Upper Event” on the lower path that branches off from the XOR 

split in the model. Finding out the reason why a property is not satisfied can however become 

more difficult for larger and more complex models and properties. 

We assume that business process model analysis is usually done to identify needs for changing 

a model: If an analyzed model does for example not fulfill some property, a business process 

model analyst may want to change or fix the model so that the new model version does fulfill 

the property, for example because of legal requirements. 
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Fixing our exemplary model could be done by inserting a model element in the lower branched-

off path that would report “Upper Event” when enabled. So, while it is already helpful to know 

that the property is not fulfilled, it might be even more helpful to get information that is helpful 

for fixing the model. 

We propose that a sequence of enabled model elements that are “responsible” for the violation 

(or fulfillment) of the given property may be of help in such situations. 

In our example, this can be the sequence (𝐸1, 𝐹1, 𝑋𝑆, 𝐸2𝑏, 𝑋𝐽, 𝐹2, 𝐸3) or – if restricted to event-

reporting model elements only – the sequence (𝐸1, 𝐸2𝑏, 𝐸3). When following one of these two 

sequences, the model creator can identify a path through the model where a model element that 

reports “Upper Event” is missing. In Figure 4, we give a version of the process model as in 

Figure 3 where the event-reporting model elements that are “responsible” for the violation of 

the given property are highlighted. Using this visualization, the model analyst can see visually 

elements that are involved and not involved in the non-fulfillment of the property. This allows 

easy identification of “problematic” paths. 

 

Figure 4 The process model as in Figure 3 with highlighted elements 

For some properties, sequences of elements responsible for their violation or fulfillment may 

not be finite. This applies for example to a property describing the existence of an infinite loop 

of some event reported by some element. We therefore generalize our proposal to provide 

sequences of enabled model elements: Instead of providing sequences of elements, we propose 

to provide subgraphs of elements based on the model’s LTS: If a LTS entailed by a process 

model contains a subgraph that explains the fulfillment or violation of the property, then we 

assume that a graph of elements corresponding to the LTS subgraph may be helpful for fixing 

the model according to the requirements that the property is based on. 

We assume such graphs of model elements to be of more help for business process analysts 

than just Boolean values indicating property fulfillment or nonfulfillment. We further assume 

visualizing the elements in the graph by highlighting them in the model to be even more helpful 

for such analysts. We call such a graph of model elements and its visualization in the model 

collectively “counterexample information” or “witness information”, respectively. 
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3.2.2 Ability to Map Analysis Results Back to Conceptional Process Models 

In the last subsection, we have established that it can be helpful for a business process analyst 

to get a graph of model elements that are “responsible” for the model checking result. In this 

subsection, we explain how our approach from section 3.1 needs to be adjusted to produce such 

a graph. 

As introduced in section 2.2, some model checking approaches and implementations allow to 

derive counterexample or witness graphs. We pick up our example of section 3.1 again and 

assume to check our exemplary model given in Figure 3. We check if it satisfies a property that 

requires “Upper Event” to occur in every execution of the model. If the used model checking 

approach supports the generation of counterexample and witness graphs, the respective 

resulting graph would be the path (“Some Event”, “Lower Event”, “Some Event”) as this is the 

path of events that shows the violation of the property. 

If we now want to derive the “responsible” model element sequence from this event sequence, 

we face a problem with the approach established so far: The events reported through our 

approach miss any connotation of the model elements that the events were reported for. In our 

example, a possible solution for the problem of deriving model elements from the events would 

be identifying a model element from an event by comparing the label of each element with the 

event. The solution of such an naïve approach could however be ambiguous. We can show this 

with our example: The event “Some Event” could have been reported both from E1 and from 

E3. Therefore, this naïve approach is not a generally applicable solution. 

We propose an alternative solution. Assume that we have a model element ME that can uniquely 

identified by identifier 𝑖. Further assume that an event 𝐸 is to be reported for ME. We call 𝐸 

the “public” event. Instead of reporting 𝐸, we ensure in our solution that the derived LTS 

actually reports the “private” event (𝑖, 𝐸), i.e. a tuple event consisting of a value that allows 

identification of both the model element and the original event. 

Picking up our example once again using this solution, the respective resulting counterexample 

graph would now be the path ((𝐸1, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”), (𝐸2𝑏, “𝐿𝑜𝑤𝑒𝑟 𝐸𝑣𝑒𝑛𝑡”), 

(𝐸3, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”)). With the model element identifiers included in the counterexample 

graph, it now becomes trivial to derive the graph of “responsible” model elements from it. 

By “rewriting” events in the described way, we introduce the requirement of placeholder 

support for the underlying specification language. Assume that we want to formulate a property 

that the public event “Some Event” needs to happen twice in every process entailed by a given 

process model. If this property should now be used in model checking based on a model with 

rewritten events, the property needs to be rewritten so that it uses private events. A rewritten 

version of our example property could now read like this: At some point the private event 
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(𝑖1, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) needs to occur, and then at some later point, the private event 

(𝑖2, “𝑆𝑜𝑚𝑒 𝐸𝑣𝑒𝑛𝑡”) needs to occur, for any 𝑖1 and for any 𝑖2 in every process entailed by a 

given process model, 𝑖1 and 𝑖2 being the two placeholders. 

When rewriting events from public to private versions in a specification language, the model 

element in each private event needs to be a placeholder. Consequently, the used specification 

language needs to support such placeholders. 

While private events can be helpful to get insight when analyzing a model checking result, we 

assume them to be of little use during property creation. We assume a property creator to 

consider public events as more interesting than the private ones. To give an intuition for this 

assumption: It may be more interesting to check if the event “Money was received” will always 

occur after “Invoice is sent” instead of checking if model element 123 will always be enabled 

after model element 456. 

As such, it may be helpful for property creators if the specification language supports a “macro” 

that rewrites a given public event to a construct that matches a private event corresponding to 

the public event and a placeholder for any model element. In our implementation, we provide 

such an extension for the language supported by the model checker that we use. 

3.3 High-Level Process Logic Transformation and Evaluation Process 

In section 3.1, we have presented an idea that allows us to specify execution semantics for a 

model on its meta-level in such a way that we can derive an LTS from a model, its meta model 

and the specified execution semantics that can be used for model checking. In 3.2 we have 

presented an event rewriting approach as an extension of our initial idea that allows a user to 

understand a model checking result better. 

In this section, we derive abstract mechanisms from these ideas that process the described inputs 

to finally generate the wanted outputs. By putting these mechanisms together, we develop our 

overall abstract approach. 

Our overall approach requires the following inputs: 1) A model and its meta model. 2) Formal 

execution semantics for the meta model. 3) A temporal property formulated in some 

specification language that might use of event rewriting macros as introduced in subsection 

3.2.2. 

At the core of operationalizing our approach, we need a model checker that takes in a 

description of an LTS in a supported specification language and a temporal property in a 

supported specification language. This model checker needs to generate a Boolean result 

indicating if the given property is fulfilled by the given model and should generate a 

counterexample or witness graph. 
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To generate the LTS description for the model checker, we need a transformer that takes in a 

model, its meta model and the meta model-based execution semantics. The transformer needs 

to generate a LTS description in a formal process specification language that is supported by 

the model checker. 

To generate the temporal property, we need a macro expander that takes in a temporal property 

in a model checker-supported specification language that was extended with a macro construct 

as introduced in subsection 3.2.2. The macro expander should expand each macro so that the 

generated property formulation complies with the non-extended, standard version of a 

specification language that is supported by the model checker. 

 

Figure 5 The high-level workflow of our approach  

With the employed mechanisms introduced, our overall abstract data processing approach can 

now be explicitly stated: Provide a model, its meta model and meta model-based execution 

semantics to the transformer. Provide a temporal property that can contain unexpanded macros 

to the macro expander. Provide the formal process generated by the transformer and the macro-

expanded temporal property to the model checker. The final results of our approach are the two 

model checker’s outputs. 

A graphical representation of the overall data processing approach is given in Figure 5. We use 

boxes with rounded corners to represent data, and ovals to represent components that process 

data. Connections with open arrows represent that the source element is an input for the target 

element. Connections with closed arrows represent that the source element provides the target 

element as output. 
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4 Introducing “Meta Semantics” Languages for Specifying 

Semantics of Process Models on the Meta Model Level 

In this chapter, we formalize our high-level approach and refine details of it by describing and 

introducing formal concepts that can be used in an implementation. We introduce “meta 

semantics” languages, i.e. languages allowing to define execution semantics for a model on its 

meta-level.  

The idea behind our meta semantics languages is based on assigning information to instances 

of types in a data model that allows to represent meta models (i.e. modeling languages) and 

their instances (i.e. models). The general idea behind our languages is not dependent on a 

specific data model and we expect it to be implementable with different data models that allow 

representing modeling languages and models. 

We nevertheless base the descriptions and specifications of our languages specifically on the 

data model of [em], for two reasons: 1) The descriptions and specifications are more concise 

when reducing the level of abstraction, especially because the domain of meta modeling is filled 

with many abstractions already. 2) Our work has the goal of implementing our approach in a 

plugin for [em], so selecting [em]’s data model as the base of our languages makes them more 

directly implementable. If our approach should be implemented with a different base data model 

than [em]’s one, it would have to be adopted accordingly. 

In the first section, we present the [em] data model that allows representing meta models and 

models. In the second section, we introduce the data types supported by our languages. In the 

third section, we introduce our formulaic expression language that allows to formulate model 

checking-relevant values in an abstract way. In the fourth section, we introduce our Execution 

Semantics Description Language that allows to formulate behavior sequences that can be 

assigned to models and their elements on a meta-level to describe a model’s execution 

semantics. 

Since this section introduces formalisms that may be difficult to understand without examples, 

it may be helpful to read this chapter in parallel to chapter 7 where we present examples through 

our case studies. 

4.1 [em]’s Data Model for Representing Meta Models and Models 

In this section, we present the data model of [em] for representing meta models (i.e. modeling 

languages) and their instances (i.e. models). 

An abstract description of this data model is given in (Delfmann et al. 2008). The 

concreteimplementation of [em] however diverges from this abstract description to some extent. 
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As our intended implementation of our approach needs to operate with [em] data as provided 

by the implementation of [em] and not by its abstract description, we adopt a perspective for 

our description that is closer to the implementation of the tool. 

We present our perspective on [em]’s data model as an UML Class Diagram as given in Figure 

6. All composition and aggregation associations in the diagram are to be interpreted as one-to-

many relationships, whereas all other associations are to be interpreted as many-to-many 

relationships. In the remainder of this section, we explain the shown aspects shortly. 

 

Figure 6 Our perspective on [em]’s data model as an UML Class Diagram 
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A Language in [em] consists of ElementTypes. An ElementType is either a ObjectType or a 

RelationshipType. ObjectTypes can be used to form an object inheritance hierarchy using the 

association “ChildTypes”/“ParentType”. 

ObjectTypes and RelationshipTypes can be instantiated as Objects and Relationships, 

respectively. Collectively, Objects and Relationships are Elements. Each Element belongs to 

some Project. 

An Element can play different Roles as defined for its type. On this basis, a RelationshipType 

is specified in such a way that its instances can only be formed between Elements whose types 

agree with the specified Roles. 

Models can be created in a Project. A Language is specified for each Model. A Model contains 

ElementOccurrences of the instantiated Elements in the Model’s Project. An 

ElementOccurrence is either an ObjectOccurrence or a RelationshipOccurrence that is an 

occurrence of some Object or Element, respectively. It is possible to refer to the same Element 

multiple times in the same Model by having multiple occurrences of the respective Element. 

An ObjectType can allow its instances to be “refined” by Models in specific Languages. An 

instance of an ObjectType allowing refinements can then be associated with Models of the 

allowed Languages. The idea behind refinements can be explained with an example: Consider 

two process models where the first is an abstract, generic description how to work in word 

processing applications, and the second one is a detailed description what mouse clicks and key 

strokes must be performed to execute the “save” command in the application. Assume one 

object in the first process model refers to saving the document. Assume that this object is 

labelled with “Save document”. Then the second process model can be said to “refine” the 

“Save document” object of the first model because the whole second model provides a more 

detailed view on the respective single object of the first model. 

The full data model of [em] allows Objects to not just carry a name but also additional values 

of specific types. For simplicity, we do not take values carried by Objects into account in our 

work; such value-carrying Objects are not required for demonstrating that our idea can 

successfully be implemented and used. In section 8.2.2, we explain that it would be possible to 

extend our approach and our implementation to also support values carried by Objects.  

4.2 Languages’ Data Types and Default Values 

In this section, we introduce and formally define the data types that are supported by our 

languages. First, we define several data types that we call “primitive types”. Second, we specify 

the set of [em] data types. Third, we introduce data types that ElementTypes of an [em] 



22 

 

Language can be referenced with. Fourth, we introduce a set of data types that we call “runtime-

relevant types”. Finally, we introduce the concept of default values for several of the data types. 

Primitive Types. Primitive types of our language are Boolean, integer, double, string, and 

collection. 

Boolean values in our language are elements of the set 𝐵𝑜𝑜𝑙 = { 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒, 𝑛𝑢𝑙𝑙 }. 

Integer values are elements of the set 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 = { −(2𝑏), −(2𝑏) + 1, … , (2𝑏) − 1, 𝑛𝑢𝑙𝑙 } 

where 𝑏 is the bit length that the underlying system is set to use. In our current implementation, 

𝑏 is set to 16. 

Double values in our implementation are floating-point numbers as realized by the double 

implementation of the underlying C compiler, or 𝑛𝑢𝑙𝑙. The C11 standard promotes the double 

format as presented in (International Organization for Standardization 1989) to realize double. 

(International Organization for Standardization 2011) Assuming modern C compilers 

compiling for modern hardware follow this proposal, double values in our implementation are 

typically 64-bit floating-point values or 𝑛𝑢𝑙𝑙. We denote the set of all possible double values 

with 𝐷𝑜𝑢𝑏𝑙𝑒. 

String values are elements of the set 𝑆𝑡𝑟𝑖𝑛𝑔 = ⋃ 𝐶𝑛
𝑛 ∈𝑁0

∪ {𝑛𝑢𝑙𝑙} where 𝐶 is the set of all 

characters supported by the underlying architecture. The underlying model checker of our 

implementation supports the ASCII character set as specified in (American National Standard 

for Information Standards 1986). (Champelovier et al. 2017, pp. 25–26) 

Collection values for a type 𝑇 are elements of the set that encompasses 𝑛𝑢𝑙𝑙 and all sequences 

of elements in 𝑇. We denote the set of all possible collection values for a type 𝑇 with 

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉. We use the term “members” to refer to the elements in a collection’s element 

sequence. 

[em] Data Types. Each class in the data model of [em] as introduced in section 4.1 becomes 

an [em] data type of our language. Instances of these classes become elements of the respective 

type sets in our language together with the element 𝑛𝑢𝑙𝑙. We denote the set of instances of an 

[em] class and 𝑛𝑢𝑙𝑙 with its [em] class name in italics. For example, the set 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 encompasses 𝑛𝑢𝑙𝑙 and all [em] Element Occurrences that are available 

in [em] when model checking processes start. 

Runtime-relevant types. Runtime-relevant types of our language are RuntimeInstance, 

CustomEnablementData, and CustomStorageData. 

RuntimeInstance values are elements of the set 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = {𝑟𝑖0, 𝑟𝑖1, … }. Intuitively, 

a RuntimeInstance is a storage frame for a set of behaviors that need to keep their stored 
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information separate from other behaviors. This is especially helpful for languages that use 

model-overarching behavior chains: If a behavior of a model element in one model enables an 

element in another model, then it might be required for the two models to keep the data stored 

for their elements separated from one another. In such a case, both models could maintain their 

individual RuntimeInstances. The concept of RuntimeInstances is described in more detail in 

section 4.4. 

The other two additional runtime-relevant types, namely CustomEnablementData and 

CustomStorageData, are to be specified by a user before model checking processes start. 

CustomEnablementData is a type for data that is passed to an [em] element’s or model’s 

behavior when it is enabled as described in section 4.4. Passing data to an [em] element for 

example allows to keep track over some source element in case this element must be enabled 

again later.  This is especially helpful for implementing jumps from one process model to 

another and back. 

Intuitively, CustomEnablementData is a struct, i.e. a collection of fields. A language user 

specifies its fields, each with a name and a type. Our current implementation allows to specify 

fields of the types Boolean, integer, double, string, RuntimeInstance, Model, and Element 

Occurrence. 

Formally, 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 is the product of types as selected by a language user 

from the list 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝐷𝑜𝑢𝑏𝑙𝑒, 𝑆𝑡𝑟𝑖𝑛𝑔, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑀𝑜𝑑𝑒𝑙, 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒. The fields names can be captured as a sequence of identifiers that has 

equal length equal as the number of terms in the type product. 

CustomStorageData is a type of data that is to be temporarily stored for a RuntimeInstance and 

an ElementOccurrence. Storing data for example allows to keep track over the number of times 

an ElementOccurrence has already been enabled. This is especially helpful for implementing 

the Simple Merge workflow pattern as specified in (van der Aalst and ter Hofstede 2017; van 

der Aalst et al. 2003). 

CustomStorageData can be interpreted as an extension of CustomEnablementData. Its 

definition is equal to CustomEnablementData with the exception that it also allows to specify 

CustomEnablementData as field type. 

Default Values. For data types that can be used for fields in CustomEnablementData types and 

CustomStorageData types, we define a default value. When one of these two types is 

instantiated, its fields will have their types’ respective default value. We define the default 

values in the function 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 that maps a data type to its default value: 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐵𝑜𝑜𝑙𝑒𝑎𝑛) = 𝑡𝑟𝑢𝑒, 
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 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐼𝑛𝑡𝑒𝑔𝑒𝑟) = 0, 

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐷𝑜𝑢𝑏𝑙𝑒) = 0.0, 

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑆𝑡𝑟𝑖𝑛𝑔) = ””, 

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑟𝑖0, 

 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎) = (𝑓0, … , 𝑓𝑛) where 𝑓𝑖 = 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝑓𝑡𝑖) and  𝑓𝑡𝑖 is 

the type of the 𝑖th CustomStorageData 

field. 

4.3 Formulaic Expression Language 

In subsection 3.1.3 we have established that a formulaic expression language can be helpful to 

specify inputs for behaviors. In this section, we introduce a concrete expression language that 

can be used for this purpose. 

In the first subsection, we give an informal introduction into the language. In the second 

subsection, we specify the language’s syntax. Due to space constraints, we give a formal 

specification for the language’s semantics only in Appendix A. 

4.3.1 Informal Introduction 

In this subsection, we informally introduce our formulaic expression language. We first give 

general information explaining the design of our language. We then give example formulaic 

expressions and explain their meaning to convey a “feeling” for the language. 

Early during our work, we realized that we needed to create a custom parser for a formulaic 

expression language. We give reasons for this need in subsection 6.4.2. Custom parser 

implementation is a time-consuming task. We needed a language with an expressivity that is 

powerful enough to reach the project’s goal. Because of time constraints for our work, we had 

to do a compromise between conciseness of formula language and of easiness of 

implementation. 

We therefore created a language that has a very simple syntax with only few constructs. For a 

user of the language, the simple syntax can both be considered an advantage and a disadvantage. 

As an advantage, the simple syntax makes the language arguably easy to learn. As a 

disadvantage, the lack of concise constructs requires the user to express some aspects more 

verbose than it might be necessary in other languages.  

-1234 

Listing 1 Formula evaluating to an integer value 
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{4.34e1} 

Listing 2 Formula evaluating to a double value 

"This is a string" 

Listing 3 Formula evaluating to a string value 

true 

Listing 4 Formula evaluating to a Boolean value 

Our language natively supports syntactic constructs to describe integers, doubles, strings and 

Boolean values. Listing 1 evaluates to the integer −1234, Listing 2 evaluates to the double 

43.4, Listing 3 evaluates to the string enclosed within the two quotation marks, and Listing 4 

evaluates to the Boolean value for truth. 

exampleValue 

Listing 5 Formula consisting of an identifier 

Each formulaic expression is evaluated in a so-called “environment”. An environment is a 

construct that allows mapping identifiers to values. Assuming Listing 5 is evaluated in an 

environment that maps the identifier exampleValue to the integer 3, then the formula evaluates 

to the integer 3. 

Values of additional types other than the presented four ones can be accessed through an 

environment if provided by it. In some of the following examples, we make use of the generic 

type called “collection” that allows to represent sequences of values of a single pre-defined 

type. 

To describe the deviation of a new value from some other value, our formulaic language 

introduces the syntactic construct “accessor”. The notation of accessors in our language is 

inspired from the dot notation often used by object-oriented programming languages like Java 

or C#. Our language supports three types of accessors: property accessors, function accessors 

and lambda accessors. 

"demo".Length 

Listing 6 Formula with an application of a property accessor on a string 

-1234.Negation 

Listing 7 Formula with an application of a property accessor on an integer 

A property accessor yields information that is directly derivable from the base value. For 

example, appending the property accessor .Length to an expression that evaluates to a string 
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describes the length of that string. As such, Listing 6 evaluates to the integer 4 because the word 

“demo” consists of four characters. Listing 7 evaluates to negation of the integer −1234, i.e. to 

the integer 1234. 

-1234.Plus(234) 

Listing 8 Formula with an application of a single-argument function accessor on an 

integer 

"This is a string".Substring(0, 4) 

Listing 9 Formula with an application of a double-argument function accessor on a string 

A function accessor yields information that can be derived from the base value and from 

arguments that are provided with the function accessor. For example, appending the accessor 

.Plus(2) to an expression that evaluates to an integer describes the summation of the base value 

and the integer 2. As such, Listing 8 evaluates to the sum of −1234 and 234, i.e. to the integer 

−1000. Listing 9 evaluates to the substring consisting of the first four characters of the provided 

string, i.e. to This. 

exampleCollection.All[ member | member.GreaterThan(3) ] 

Listing 10 Formula with an application of a lambda accessor 

A lambda accessor yields information that can be derived from the base value and from a 

parametrized formulaic sub-expression that is provided with the lambda accessor. For example, 

if an expression evaluating to a collection of integers is appended with the accessor .All[ 

member | member.GreaterThan(3) ], the resulting expression describes the truth of all integers 

in the collection being greater than three. As such, assuming the environment maps 

exampleCollection to a collection of the integers 5, 4, 3 and 2, then Listing 10 evaluates to 

𝑓𝑎𝑙𝑠𝑒 because the collection members 3 and 2 are not greater than three. 

exampleCollection.All[ item | item.GreaterThan(3) ] 

Listing 11 Formula with an application of a lambda accessor, using a different parameter 

name 

Parameter names can be chosen freely in lambda accessors (under the syntactic constraints as 

introduced in subsection 4.3.2), so Listing 10 and Listing 11 are equivalent. 

"This is a string".Substring(0, 4).Equals("This").Inverse 

Listing 12 Formula with an accessor chain 

Accessors can be chained: Listing 12 evaluates to the inverse of the truth of the first four 

characters of This is a string being equal to This, i.e. to false. 



27 

 

exampleCollection.First 

Listing 13 Formula possibly resulting in 𝒏𝒖𝒍𝒍 result 

Our language uses a notion of nullable types as described in (Wikipedia contributors 2017b) so 

that each type does not just encompass primitive values but also a special 𝑛𝑢𝑙𝑙 value. This 𝑛𝑢𝑙𝑙 

value is typically used to denote an evaluation error. As such, assuming the environment maps 

emptyCollection to an empty integer collection, then Listing 13 evaluates to 𝑛𝑢𝑙𝑙 because there 

is no first element in an empty collection. 

emptyCollection.First.Plus(1) 

Listing 14 Extension of Listing 13 with a following accessor 

When applying an accessor to a 𝑛𝑢𝑙𝑙 value, the result will always be a 𝑛𝑢𝑙𝑙 value again. As 

such, if Listing 13 results in 𝑛𝑢𝑙𝑙, then Listing 14 evaluates to 𝑛𝑢𝑙𝑙 as well. 

Note that even though the language contains “lambda accessor”, it is not equivalent to Lambda 

calculus. In particular, functions are not first-class values in our language. As such, it is not a 

Turing-complete language. 

All available accessors are documented in Appendix C. 

4.3.2 Syntax 

In this section, we formally introduce the syntax of our formulaic expression language. We 

specify elements of the syntax as Extended BNF (International Organization for 

Standardization 1996) syntax rules and informally explain the syntactic constructs. 

Formula = Base | Formula, ".", Accessor 

Listing 15 Formula syntax rule 

The root syntactic element of our language is a Formula as specified in Listing 15. A Formula 

either is a Base or consists of a dot-prefixed Accessor following a Formula. 

Base = Boolean | Integer | String | Double | Identifier 

Listing 16 Base syntax rule 

A Base allows to instantiate some of the language’s primitive types and to refer to an identifier 

of the environment. As specified in Listing 16, a Base is either of Boolean, Integer, String, 

Double, or Identifier. We call non-Identifier Bases “constants”. 

Boolean    = "true" | "false” 
Integer    = /([+-]?[0-9]+)/ 
String     = /("(?:[^"\\]|\\"|\\\\)*")/ 
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Double     = /({[+-]?[0-9]+\.[0-9]*(e[+-]?[0-9]+)?})/i  
Identifier = /([A-Za-z_][A-Za-z_0-9]*)/ 

Listing 17 Syntax rules for Bases 

The syntax rules for the Bases are collectively specified in Listing 17. For the Bases different 

from Boolean we deviate slightly from the Extended BNF notation for improved conciseness: 

In the respective syntax rules we make use of regular expressions as specified in (.NET Docs 

contributors 2017). To further improve the reader’s reading experience, we show these regular 

expressions with highlighted syntax through colorization. 

A Boolean is either of the strings true or false. An Integer is a non-empty sequence of 

numeric digits, optionally prefixed with a plus or a dash sign. A String is a sequence of 

arbitrary characters enclosed in double quotes. If a " or \ character is to be used within the 

sequence of arbitrary characters of a String’s value, it needs to be escaped with a prefix \. For 

the Double syntax rule we give an intuitive description: A Double equals a curly bracket-

enclosed string representation of a double value in a C-like language. An Identifier starts with 

a character of the basic Latin alphabet or an underscore, and continues with a sequence of 

further basic Latin alphabet characters, underscores, and numeric digits. 

Accessor = PropertyAccessor | FunctionAccessor | LambdaAccessor 

Listing 18 Accessor syntax rule 

As specified in Listing 18, an Accessor is either a PropertyAccessor, a FunctionAccessor or a 

LambdaAccessor. 

PropertyAccessor = Identifier 

Listing 19 PropertyAccessor syntax rule 

Each PropertyAccessor has an identifier. To avoid duplicate specifications, the 

PropertyAccesor’s specification as given in Listing 19 reuses the Identifier specification. 

FunctionAccessor = Identifier, "(", ArgumentList, ")" 
ArgumentList = Formula | ArgumentList, "," Formula 

Listing 20 FunctionAccessor and its ArgumentList syntax rule 

A FunctionAccessor consists of an identifier followed by a round bracket-enclosed list of 

arguments. The formal specification is given in Listing 20. 

LambdaAccessor = Identifier, "[", LambdaParameterList, "|", Formula, "]" 
LambdaParameterList = Identifier | LambdaParameterList, ",", Identifier 

Listing 21 LambdaAccessor and its LambdaParameterList syntax rule 
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A LambdaAccessor consists of an identifier followed by an opening square bracket, followed by 

a list of lambda parameters, followed by a vertical bar, followed by a Formula, and finally 

followed by a closing square bracket. The formal specification is given in Listing 21. 

4.4 Execution Semantics Description Language 

In section 3.1, we have established that business process models can be made accessible for 

model checking by assigning sequences of behaviors to such models and to model elements. In 

this section, we introduce the Execution Semantics Description Language (ESDL), a language 

that we developed to specify execution semantics of a process model in a standardized and 

automatically processable way. 

First, we give explain the design of ESDL. Next, we give an informal introduction into the 

language and its behaviors. Due to space constraints, we give a formal specification for the 

language only in Appendix B.  

ESDL is based on the concept of assigning sequences of “behaviors” to Models on the level of 

their modeling Language, and to ElementOccurrences on the level of their Elements’ 

ElementTypes. On this basis, we say that a Model or an ElementOccurrence can be “enabled”, 

thereby triggering the execution of the assigned behaviors. A LTS can be specified based on 

sequences of outputs of relevant behaviors that can be triggered when enabling some initially 

selected Model. 

We designed our language primarily with usability requirements in mind. The language should 

be user-friendly in such a way that a human user can easily specify sequences of behaviors and 

assign them to ElementOccurrences and Models on the ElementType and Langauge level, 

respectively. Our language is not intended to be written in text. Instead, its behaviors are 

intended to be put together in a building block-like fashion using a graphical user interface. We 

therefore do not specify a text-based syntax for ESDL. 

In ESDL we assume that enablements of Models and of ElementOccurrences can be 

“scheduled”. If an enablement is scheduled, it is put into a multiset that we call “task list”. If 

execution of a sequence of behaviors completes, an element in the task list will be enabled. The 

LTS is derived in such a way that all possible execution orders for tasks in task lists are 

considered. 

Behaviors of ESDL allow storing data, accessing stored data, and deleting stored data. Data is 

stored as instances of CustomStorageData for RuntimeInstances and ElementOccurrences. In 

this regard, a RuntimeInstance functions as a dictionary that contains mappings from 

ElementOccurrences to CustomStorageData values. 
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We define nine behavior types for ESDL, each with their own parameters. For some of these 

parameters, the respective argument is to be specified as a formula in our formulaic expression 

language as introduced in section 4.2. For other parameters, the argument is to be specified as 

sequences of behaviors. Other arguments are to be specified as plain strings or as Booleans. 

We introduce these behaviors and their parameters informally in Table 3. In the first column, 

we give the name of the behavior type. In the second column, we list the parameters for the 

behavior. For each parameter, we give its name followed by its type. For parameters taking a 

formulaic expression argument, we write “Formula”, followed by an arrow pointing to the data 

type that the formulaic expression needs to evaluate to. In the third column, we give an 

information description of the behavior’s semantic. 

Behavior 

Type Name 

Parameters  Informal Description 

Enable 

Element 

Occurrence 

Runtime Instance: 

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

Element Occurrence: 

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 

Data to pass on: 

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 

Perform now instead of scheduling it: 

Boolean 

If triggered, the ElementOccurrence will be 

enabled with the RuntimeInstance and the 

CustomEnablementData as specified in the 

respective arguments. If the Boolean flag is 

set, then the enablement will take place 

directly; if it is not set, then the enablement 

will be scheduled. 

Enable 

Model 

Create new runtime instance: 

Boolean 

Runtime Instance: 

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

Model: 

Formula → 𝑀𝑜𝑑𝑒𝑙 
Data to pass on: 

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 

Perform now instead of scheduling it: 

Boolean 

If triggered, the respective Model will be 

enabled with the CustomEnablementData as 

specified in the respective arguments. If the 

Boolean flag is set, the enablement will take 

place directly; if it is not set, the enablement 

will be scheduled. If the “Create new 

runtime instance” flag is set, then the 

enablement will take place with a newly 

created RuntimeInstance; if it is not set, then 

the enablement will take place with the 

RuntimeInstance as specified in the 

respective argument. 

For one item 

in a 

collection 

Item Variable Name: 

String 

Collection: 

Formula → 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 for any 

allowed Type 𝑇 

Child Behaviors: 

Sequence of Behaviors 

If triggered, the Child Behaviors will be 

triggered sequentially for some member of 

the Collection as specified in the respective 

argument. The LTS will be specified in such 

a way that all members of the collection will 

be selected once. Formulas in the Child 

Behaviors will be evaluated in an 

environment that maps the Item Variable 

Name to the selected member and that maps 

all other identifiers of the current 

environment to the respective values of the 

current environment. 
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Behavior 

Type Name 

Parameters  Informal Description 

For each 

item in a 

collection 

Item Variable Name: 

String 

Collection: 

Formula → 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 for any 

allowed type 𝑇 

Child Behaviors: 

Sequence of Behaviors 

If triggered, the Child Behaviors will be 

triggered sequentially, once for each 

member of the Collection as specified in the 

respective argument. Each time the Child 

Behaviors are triggered, Formulas in them 

will be evaluated in an environment that 

maps the Item Variable Name to the 

respective current member and that maps all 

other identifiers of the current environment 

to the respective values of the current 

environment. 

If/Then/Else Condition: 

Formula → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 

Then Behaviors: 

Sequence of Behaviors 

Else Behaviors: 

Sequence of Behaviors 

If triggered when the Condition evaluates to 

𝑡𝑟𝑢𝑒, the Then Behaviors are triggered 

sequentially. If triggered when the Condition 

evaluates to 𝑓𝑎𝑙𝑠𝑒, the Else Behaviors are 

triggered sequentially. 

Load Data Runtime Instance: 

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

Element Occurrence: 

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 

Variable Name: 

String 

Child Behaviors: 

Sequence of Behaviors 

If triggered, the Child Behaviors will be 

triggered sequentially. Formulas in the Child 

Behaviors will be evaluated in an 

environment that maps the Variable Name to 

the CustomStorageData that was stored for 

the ElementOccurrence and the 

RuntimeInstance as specified in the 

respective arguments. If no 

CustomStorageData had been stored for 

them before, then the environment will map 

to the default value for CustomStorageData. 

All other identifiers of the current 

environment will be mapped to the 

respective values of the current environment. 

Release 

Runtime 

Instance 

Runtime Instance: 

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

If triggered, all data that was stored for the 

Runtime Instance will be deleted. 

Report 

Event 

Element Occurrence: 

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 

Event Content: 

Formula → 𝑆𝑡𝑟𝑖𝑛𝑔 

If triggered, an event will be reported as 

output. The LTS will be specified based on 

sequences of this kind of reports. The output 

is a tuple consisting of the Element 

Occurrence and the Event Content as 

specified in the respective arguments. 

Store Data Runtime Instance: 

Formula → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 

Element Occurrence: 

Formula → 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 

Data to be stored: 

Formula → 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎 

If triggered, the CustomStorageData value as 

specified in “Data to be stored” will be 

stored for the tuple of ElementOccurrence 

and RuntimeInstance as specified in the 

respective arguments. 

Table 3 Informal description of ESDL behavior types 

For all formulaic expressions used as arguments in behaviors, a default environment is defined. 

We list and explain its members in Table 4. The CurrentLanguageElementTypes is a special 

identifier that does not have a true data type in the context of our specification. It allows easy 

referencing to ElementTypes of the current [em] Language and behaves like an object with two 

properties: ObjectTypes and RelationshipTypes. The result of the ObjectTypes and the 
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RelationshipTypes properties behave like they have a property for each ObjectType or 

RelationshipType of the current [em] Language, respectively. 

Identifier Type Informal Description 

CurrentRuntimeInstance 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒  The RuntimeInstance that the current 

ElementOccurrence or model was enabled 

with. 

EnablementData 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎  The data that the current ElementOccurrence 

or Model was enabled with. 

NewStorageDataInstance 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎  The default instance of 

𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎, i.e. 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎). 

NewEnablementDataInstance 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎  The default instance of 

𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 , i.e. 

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 ). 

CurrentLanguageElementTypes (special construct) (See description in main text.) 

CurrentModel Model The currently enabled Model; only available 

for behaviors assigned to a Model. 

CurrentObjectOccurrence ObjectOccurrence The currently enabled ObjectOccurrence; 

only available for behaviors assigned to a 

ObjectOccurrence. 

CurrentRelationshipOccurrence RelationshipOccurrence The currently enabled RelationshipOccur-

rence; only available for behaviors assigned 

to a RelationshipOccurrence. 

Table 4 Members of the default environment for formulaic expressions 

We assume most behavior types to be directly understandable from the descriptions in Table 3, 

except for the behaviors “For one item in a collection” and “Release Runtime Instance”. We 

therefore try to facilitate a better understanding for these behaviors and their background by 

giving further information and intuitions. 

We start with an intuition behind the “For one item in a collection” behavior: Assume a process 

model contains an element with three other following elements, and the process flow may 

continue from the first element to either one of these three elements. Then it can be desirable 

that every possible element sequence from the first element to a follower is considered in the 

derived LTS. This situation is an instance of the Exclusive Choice workflow pattern as specified 

in (van der Aalst and ter Hofstede 2017, sec. “Pattern 4 (Exclusive Choice)”; van der Aalst et 

al. 2003). 

The behavior “For one item in a collection” is especially helpful for implementing this pattern. 

In the described situation, a formula specifying the collection of the three followers could be 

used as the behavior’s Collection argument. Then an “Enable Element Occurrence” behavior 

with its Element Occurrence argument set to the Item Variable Name could be used as the only 

child behavior of the “For one item in a collection”. This way, it is ensured that the resulting 

LTS contains all possible sequences from the first element to a follower. 
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We continue with an intuition behind the “Release Runtime Instance” behavior. Consider the 

two BPMN-like process models in Figure 7. The second activity in Process Model I “calls” the 

Process Model II. Activities in Process Model II stores data and later make use of it. Once 

Process Model II was processed, execution returns to the third activity in Process Model I. 

Assume that each of the two Process Models work with their own RuntimeInstance. 

 

Figure 7 Process models for demonstrating unnecessary LTS size increase 

that occurs when not releasing unused RuntimeInstances 

We can distinguish between two scenarios: In the first scenario, data stored for the 

RuntimeInstance of Process Model II is not deleted when returning the third activity in Process 

Model I. In the second scenario, the stored data is deleted when returning. The two different 

LTS that can be derived from the two scenarios are shown in Figure 8, the first one on the left, 

the second one on the right. The boxes with the dashed lines indicate in which states the data 

stored for Process Model II’s RuntimeInstance is kept. 

From inspection of the process models in Figure 7 it can be shown that data stored for Process 

Model II’s RuntimeInstance is not required after execution returns to Process Model I. 

However, generalizing such an analysis is non-trivial and for some situations possibly 

impossible. A LTS is therefore derived in a naïve way: Derivation bases on the assumption that 

data stored for a RuntimeInstance might be used at any point during process model execution. 

Process Model I 

Report “A” 
Enable Process 

Model II, then 

enable follower 
Report “D” Report “E” 

Process Model II 

Report “B” 
Report “C” + 

stored data for 

this element 

Store “X” as 

data for 

follower  

Store “Y” as 

data for 

follower 

Store “Z” as 

data for 

follower 
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As such, all states where data is stored for a RuntimeInstance must be kept on their own LTS 

paths. When data stored for a RuntimeInstance is released however, LTS paths might merge 

again. 
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Figure 8 Two LTS that can be derived from the process models in Figure 7 

This explains the two different LTS sizes: Comparison of the two LTS shows that keeping data 

stored for Process Model II’s Runtime instance instead of deleting it leads to a larger LTS. 

Since smaller LTS allow faster processing, it can be considered good practice to add a “Release 

Runtime Instance” behavior when data is not required anymore that was stored for some 

RuntimeInstance. 
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5 Foundations for Implementing the Theoretical Approach 

In this chapter, we describe the gathering of information and the development of further 

concepts that are required to implement our abstract approach. While the two previous chapters 

remained mostly on the theoretical level, this chapter considers primarily practical problems.  

In the first section, we describe how we searched for model checkers and why we picked the 

Construction and Analysis of Distributed Processes (CADP) model checker for our 

implementation. In the second section, we introduce our approach for translating [em] data and 

assigned behavior sequences into a formal process specification that can be processed by the 

CADP model checker. In the third section, we introduce a CADP-supported temporal property 

specification language modification that extends the language with macros as described in 

subsection 3.2.2. In the fourth section, we collect requirements that an implementation of our 

approach must fulfill to be usable for a user. 

5.1 Searching and Selecting a Suitable Model Checker 

An implementation of the theoretical approach requires a component that performs model 

checking based on the user’s inputs. Such a component could either be implemented from 

scratch or an existing model checker could be integrated into the final implementation. 

To avoid the effort of implementing a complete model checker, we decided to use an existing 

one for our implementation. In this section, we describe how we searched a suitable model 

checker and why we selected the CADP model checker as the basis for our implementation. 

In the first subsection, we describe the requirements we laid down for a model checker to be 

used by our implementation. In the second subsection, we describe the approach we took to 

select a suitable model checker.  

5.1.1 Model Checker Requirements 

In this subsection, we introduce our model checker requirements (RM). 

In section 2.2, we have established that temporal property specification languages vary w.r.t. 

their expressivity. Less expressive languages cannot describe temporal properties of a certain 

complexity. We assume that the usability of an implementation of our approach is higher if it 

enables users to check their models for the fulfillment of more complex temporal properties. 

From this assumption, we derive the first model checker requirement: 

RM 1. The model checker must accept temporal properties that are formulated in an expressive 

temporal property specification language. 
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In subsection 5.1.2, we go into more detail on what we consider an expressive temporal 

specification language. 

In subsection 3.2.2, we have established that a temporal property description language must 

support placeholders. This leads to the second model checker requirement: 

RM 2. It must be possible to introduce placeholders in temporal properties as described in 

subsection 3.2.2 in a way that the model checker accepts these properties. 

As established in section 3.2, our approach relies on the availability of counterexample or 

witness graphs. This leads to another model checker requirement: 

RM 3. The model checker must return a counterexample or witness graph as part of its model 

checking result that allows inference of result-explaining model element sequences as 

described in section 3.2. 

In section 3.3, we have established that a transformer is required to transform models, 

information about modeling languages used by the models, and execution semantics defined 

for these languages, into a formal process described in a formal process specification language 

that the model checker accepts. Many model checkers only accept formal processes specified 

in their respective custom process specification languages and custom file formats. Some of 

these languages and file formats are complex and make generation of the required inputs 

difficult. To complete the work around this thesis within the allocated timeframe, we 

established as a requirement: 

RM 4. The model checker must accept formal processes that are specified in a process 

specification language and in a file format that is designed in such a way that developing 

and implementing a transformer as described in section 3.3 is easily possible. 

Model checkers differ with regards to the systems and platforms they can be run on. If a model 

checker is to be controlled from a tool running on a system that is not supported by the model 

checker, a cross-system or cross-platform communication protocol between the controlling tool 

and the model checker must be developed. In section 8.2.1, we discuss how such a 

communication protocol might make computations faster in future implementations. For our 

work, we decided to save the effort of developing such a protocol. We therefore established as 

a requirement: 

RM 5. The model checker must be runnable on the host system, i.e. the system that the tool 

runs on that controls the model checker. 

During initial research we found several model checkers that were not maintained anymore and 

could not be run on modern machines without investing additional work. Further we assumed 
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that it would be helpful to get support from the model checker developers or maintainers when 

integrating the selected model checker into an implementation and when generating the first 

model checking problems to be solved by it. During our evaluation of model checkers, we 

consequently established as a soft requirement: 

RM 6. The model checker should be actively maintained. 

5.1.2 Surveying Model Checkers 

In this section, we describe our process of finding model checker candidates that we considered 

to use in our implementation, and of selecting a suitable model checker from the candidates. 

To find model checker candidates, we performed an internet search. We used the Google search 

engine with the terms “model checker” and “model checking tool”. Initial searches brought us 

to a list of model checking tools on the English Wikipedia (Wikipedia contributors 2017a). In 

further searches, we did not find any other tools fulfilling our requirements and not being listed 

on the Wikipedia page. We therefore used the entries on the Wikipedia page as our main source 

for candidate model checkers. 

We evaluated the found candidates w.r.t. fulfillment of our requirements as described as 

follows. 

To determine if a model checker supports expressive temporal property specification languages, 

we checked if µ-calculus or similar expressive derivatives from µ-calculus (like alternation free 

µ-calculus) were amongst its supported algebras. To determine if a model checker supports 

placeholders and if it could generate counterexample or witness information as one of its results, 

we checked its documentation. 

We also checked the model checker’s documentation to evaluate the formal process 

specification languages and file formats it accepts w.r.t. simplicity of implementing a 

transformer as described in section 3.3. We assumed that integration of model checkers would 

be difficult if they used binary formats, or formats based on graphical formal process 

specification languages. We assumed that text-based specification languages and file format 

would make our implementation simpler.  

To determine a model checker’s degree of maintenance, we checked the age of the latest 

released version of the respective tool and the age of the newest entries on the maintainer’s 

official communication channels like mailing lists or forums. 

In our evaluation we identified two candidates that we found most interesting: The micro 

Common Representation Language 2 (mCRL2) toolset and the Construction and Analysis of 

Distributed Processes (CADP) software tools. Being Unix-targeted tools, the CADP tools can 
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be run on Windows only in a non-native environment (e.g. using Cygwin or a virtualized Linux 

operating system). Running them on Windows in such an environment makes them operate 

slowly. The mCRL2 toolset on the other hand has the advantage of running natively on 

Windows without negative impacts on model checking speed. 

In the end, we still had to abandon mCRL2 as a candidate because the counterexample and 

witness information generated by it were provided in a way that did not allow inference of 

result-explaining model element sequences as described in section 3.2. Consequently, we 

selected the CADP model checker as the foundation of our implementation. We still consider 

mCRL2 an interesting candidate and further discuss its potential applicability for future 

implementations in section 8.2. 

5.2 Generating Formal Processes from [em] Data and Behaviors 

As established in section 3.3, an [em] Model and further relevant information must first be 

tranformed into a formal process specification before it can be processed by a model checker. 

CADP primarily supports the formal process specification languages LOTOS and LNT. 

LOTOS is a ISO-standardized formal process specification language to describe 

communication protocols and distributed systems. (Bolognesi and Brinksma 1987) LOTOS is 

a complicated language and it can be difficult and laborious to write or generate formal process 

specifications in it. To make specifying LTS models less tedious, LNT was developed as a 

replacement for LOTOS that is equally expressive as LOTOS but easier to use. (Champelovier 

et al. 2017) Being the formal process specification language that was easier to generate code in, 

we picked LNT as our translation target language. 

This section contains some LNT code. LNT resembles a procedural programming language like 

Pascal. For brevity, we do not give a detailed introduction into LNT. An interested reader is 

referred to (Champelovier et al. 2017) for a detailed reference. 

We developed an approach to generate a formal process specification in LNT from a set of [em] 

projects, from custom types specifications for our formulaic expression Language, and from 

sequences of behaviors that are assigned to Models on the level of their modeling Language, 

and to ElementOccurrences on the level of their Elements’ ElementTypes. We present the 

detailed LNT generation approach in the following. A visualization of its workflow is given in 

Figure 9 that follows our notation as introduced in section 3.3.   

The formal process specification is generated as multiple units that are finally assembled as one 

LNT specification. 

The unit “static code” contains foundational LNT specifications that remaining code builds 

upon. It especially contains an LNT implementation of nullable types, of a LNT process to 
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launch a Model’s sequence of behaviors, of another LNT process to launch an 

ElementOccurrence’s sequence of behaviors, and of LNT types and functions required for data 

storage management as well as for scheduling. 

The unit “[em] data” contains a LNT representation of the given [em] Projects with their Models 

and the Languages they use. We explain how the translation of [em] data works and how the 

generated unit is built up in subsection 5.2.1. 

The unit “entry points for [em] Models” contains a LNT root process for each given [em] 

Model. Such a root process can be considered a model checking entry point for the respective 

[em] Model and corresponds to the initial state of a formal process entailed by it. 

The unit “custom types” contains a LNT representation for the custom types that were specified 

for our formulaic expression language. 

The unit “behaviors” contains the LNT representation of the sequences of behaviors specified 

for the ElementOccurrences and Models. As behaviors contain formulaic expressions, 

translating behaviors also involves translating formulaic expressions. We explain how the 

translation of formulaic expression works and how the resulting LNT code is built up in 

subsection 5.2.2. On this basis, we explain the same for the translation of sequences of behaviors 

in subsection 5.2.3. 

 

Figure 9 LNT generation workflow 
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5.2.1 Translation of [em] Data to LNT 

A set of [em] Projects is required as input for the translation of [em] data to LNT. From this 

input, a set of Elements and a set of Models in these Projects can be derived. These sets allow 

deriving remaining required information, especially the set of Languages used by the Models 

and the set of ElementOccurrences in the Models. 

Based on the input and its derived information, the five chunks of LNT code in Table 5 are to 

be generated for each class of [em] data model as introduced in section 4.1. 

Chunk 1. A LNT type declaration corresponding to the [em] data model class. 

type TYPE_ID_EM_OBJECT is 
    NULL_VAL !implementedby "NULL_VAL_TYPE_ID_EM_OBJECT", 
    ID_EM_OBJECT_26738691, 
    ID_EM_OBJECT_26738706, 
    ID_EM_OBJECT_26738697 
    with "==", "!=", "<" 
end type 

Listing 22 Exemplary LNT type declaration for representing [em] Objects 

For each instance of the class, the LNT type corresponding to it must contain a parameter-

less constructor that represents the respective instance. An additional constructor is required 

represent 𝑛𝑢𝑙𝑙. Our LNT code requires each constructor identifier to be unique. Introducing 

the name of the class and [em]’s instance ID into the identifier ensures fulfilment of this 

requirement. We give an example of an LNT type declaration for the [em] Object class with 

three exemplary instances in Listing 22. 

 

 

Chunk 2. A LNT type declaration corresponding to a nullable list of instances of the class. 

type TYPE_IDLIST_EM_OBJECT is 
    list of TYPE_ID_EM_OBJECT 
    with "head", "tail", "length", "append", "union", "empty" 
end type 
type TYPE_NULLABLE_IDLIST_EM_OBJECT is 
    NULL_VAL !implementedby "NULL_VAL_TYPE_NULLABLE_IDLIST_EM_OBJECT", 
    THE_VAL(VALUE : TYPE_IDLIST_EM_OBJECT) 
    with "get" 
end type 

Listing 23 LNT type declaration for a nullable list of instances of the [em] Object class 

Specifications for a list of instances for some [em] class are represented as two LNT types: 

A native LNT list type for instances of the [em] class, and a nullable type that allows storing 

an instance of the native LNT list type. We give the LNT type specifications for a list of 

instances of the [em] Object class in Listing 23. 
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Chunk 3. A function that yields a list of all instances of the respective class. 

function GET_ALL_EM_OBJECT_IDS : TYPE_NULLABLE_IDLIST_EM_OBJECT is 
    return THE_VAL({ 
        ID_EM_OBJECT_26738691, 
        ID_EM_OBJECT_26738706, 
        ID_EM_OBJECT_26738697 
    }) 
end function 

Listing 24 LNT function yielding an exemplary list of all [em] Object class instances 

We give the function yielding a list of all three Object instances of our previous example in 

Listing 24. Note that LNT uses curly braces to specify instances of list types. 

 

 

Chunk 4. For each attribute of the class: An “attribute getter function” that allows retrieving 

the value of the attribute. We consider a relationship member end to also be an attribute if its 

target multiplicity is at most one, i.e. if it links to at most one associated target instance. 

function GET_CAPTION(ID : TYPE_ID_EM_OBJECT) : NULLABLE_STRING is 
    case ID in 
        ID_EM_OBJECT_26738691 -> return THE_VAL("Open file") 
      | ID_EM_OBJECT_26738706 -> return THE_VAL("Do work") 
      | ID_EM_OBJECT_26738697 -> return THE_VAL("Close file") 
      | any -> return NULL_VAL 
    end case 
end function 

Listing 25 Exemplary LNT function yielding the value of an Object’s Caption attribute 

Each of the getter functions accepts an instance of the LNT type corresponding to respective 

class. Its implementation contains a case-based control mechanism that returns the value of 

the attribute of the [em] class instance for the constructor that it represents. We give an 

example of an attribute getter function that yields the Caption attribute’s value of a given 

[em] Object in Listing 25. 

 

 

Chunk 5. For each member end of an association of the class with a target multiplicity greater 

than one: A function that that allows retrieving a list of instances that are linked via the 

respective association to a given instance of the respective class. 

This is implemented using two types of functions: a parameter-less helper function for each 

of the respective class’ instances and a non-helper getter function taking an instance of the 

respective argument.  
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function GET_EM_OBJECT_26738691_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS : 
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is 
    return THE_VAL({ 
        ID_EM_RELATIONSHIP_26738723 
    }) 
end function 
 
function GET_EM_OBJECT_26738706_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS : 
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is 
    return THE_VAL({ 
        ID_EM_RELATIONSHIP_26738726 
    }) 
end function 
 
function GET_EM_OBJECT_26738697_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS : 
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is 
    return THE_VAL({ 
    }) 
end function 

Listing 26 Exemplary LNT helper functions yielding instances linked via the 

“Followers” association for three [em] Objects 

We give such exemplary helper functions for our previous example’s Objects in Listing 26. 

function GET_RELATIONSHIPS_WITH_ME_AS_SOURCE(ID : TYPE_ID_EM_OBJECT) : 
TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP is 
    case ID in 
        ID_EM_OBJECT_26738691 -> return 
            GET_EM_OBJECT_26738691_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS 
      | ID_EM_OBJECT_26738706 -> return 
            GET_EM_OBJECT_26738706_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS 
      | ID_EM_OBJECT_26738697 -> return 
            GET_EM_OBJECT_26738697_RELATIONSHIPS_WITH_ME_AS_SOURCE_MEMBER_IDS 
      | any -> 
            return NULL_VAL 
    end case 
end function 

Listing 27 Exemplary LNT getter function yielding instances linked via the 

“Followers” association for [em] Objects 

The non-helper getter function yields the result of the correct helper function, using a case-

based control mechanism like introduced above in the context of attributes. We give an 

example of such a getter function in Listing 27. 

 

Table 5 Chunks of LNT code to be generated for [em] classes and their instances 

Some classes of the [em] data model have an inheritance hierarchy. While not presented here 

in detail for brevity, our generated LNT code contains additional concepts to convert between 

the different inheritance levels of these classes. 
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5.2.2 Translation of Formulas to LNT 

Several behavior types have formulaic expression parameters. When behaviors of these types 

are to be transformed to LNT, their formulaic expressions must be translated as well. In this 

subsection, we present our translation approach. 

As first step, the given formulaic expression must be parsed, yielding an Abstract Syntax Tree 

(AST) that corresponds to the expression. The AST must then be traversed to generate the 

required outputs. The primary output is an LNT expression that can be inserted into a LNT 

process. A secondary output is a set of LNT helper functions that need to be referred to in the 

primary output’s LNT expression. We describe how the AST needs to be traversed to generate 

both the LNT expression and the code of the additionally required helper functions. 

A mapping of identifiers to LNT expressions is kept in memory during AST traversal. Initially, 

this mapping contains LNT expressions that correspond to the entries of the environment in 

which the formula is evaluated. This mapping is extended as required, especially when 

generating code for the helper functions. 

If a constant node is visited during tree traversal, a LNT representation of the constant is added 

to the primary output. If an Identifier node is visited during tree traversal, an expression is added 

to the primary output according to the mapping of identifiers as described above. 

If a PropertyAccessor node, a FunctionAccessor node, or a LambdaAccessor node is visited 

during tree traversal, an LNT expression is added to the primary output that invokes a LNT 

function yielding a result according to the accessor’s specification. For all three accessor types, 

the respective accessor’s Base is visited to generate the LNT code for one of the arguments of 

the LNT function invocation. 

For FunctionAccessor nodes, also the Argument nodes are visited to generate LNT code for 

further arguments of the LNT function invocation. For LambdaAccessor nodes, a recursive 

helper function is added to the secondary output and an invocation of this function is added to 

the primary output. The helper function contains the LNT translation result of visiting the 

accessor’s sub-Formula. 

CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Count.GreaterThan(0) 

Listing 28 Formulaic expression to determine the existence of outgoing Relationships 

from the current ObjectOccurrence 

To exemplarily demonstrate results of our approach of translating formulaic expressions to LNT 

code, we give a typical expression, then show the LNT code that it translates to, and explain 

relevant aspects of the result. The formulaic expression for our demonstration is given in Listing 

28. 
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(custom_count(OBJECT_OCCURRENCE_ID.RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE)) > 
(THE_VAL(+0)) 

Listing 29 LNT expression corresponding to the formulaic expression in Listing 28 

Assuming the identifier CurrentObjectOccurrence maps to the LNT expression 

OBJECT_OCCURRENCE_ID, we give the translation of the exemplary formulaic expression into 

LNT in Listing 29. 

The identifier CurrentObjectOccurrence translates directly into the mapping’s LNT 

expression. The RelationshipOccurrencesWithMeAsSource property accessor translates into a 

LNT getter function call using dot notation. 

function custom_count(VAL : TYPE_NULLABLE_IDLIST_EM_RELATIONSHIP_OCCURRENCE) : 
NULLABLE_INT is 
    case VAL in 
        NULL_VAL -> 
           return NULL_VAL 
      | any -> 
           return THE_VAL(NatToInt(length(VAL.VALUE))) 
    end case 
end function 

Listing 30 custom_count function for a list of RelationshipOccurrences 

For the Count property accessor working on lists of RelationshipOccurrences, a helper function 

custom_count is required that yields a 𝑛𝑢𝑙𝑙 output for a 𝑛𝑢𝑙𝑙 input and the number of items in 

the collection otherwise. The LNT code for this helper function is given in Listing 30. It would 

be possible to include a function of this kind in the “static code” unit for each class of the [em] 

data model. However, LNT code processing time can be saved when generating this function 

only if some formula requires it for some class. It therefore makes sense to let this function 

become one of the secondary output’s helper functions. 

function _>_(VAL1 : NULLABLE_INT, VAL2 : NULLABLE_INT) : NULLABLE_BOOL is 
    case VAL1 in 
        NULL_VAL -> return NULL_VAL 
      | any -> 
            case VAL2 in 
                NULL_VAL -> return NULL_VAL 
              | any -> return THE_VAL(VAL1.VALUE > VAL2.VALUE) 
            end case 
    end case 
end function 

Listing 31 > function for two nullable integers 

With custom_count generated as a helper function, the Count property accessor translates into 

a call to this function. A helper function > that compares two nullable integers is required for 

the GreaterThan function accessor, similar to the custom_count function introduced above. We 
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give this helper function in Listing 31. With the helper function > generated, the GreaterThan 

function accessor translates into a call to this function using infix notation. 

The constant 0 translates into the corresponding instantiation of the nullable data type with the 

respective value. The + sign is required in LNT to indicate that the number should be interpreted 

as an integer instead of a natural number. Surrounding a function name with two underscores 

in LNT makes the function an infix function, i.e. it can be invoked using infix notation. 

Some helper function may be required by multiple formulaic expressions. If such a function 

was generated multiple times, the required time to process the LNT files processing would be 

longer. To avoid long processing times, we recommend keeping track over the generated helper 

function and add such a function to the secondary output only if it had not been generated 

before. To apply this idea to the given example: If further translations of LNT formulas require 

any of the functions custom_count and >, neither of them should be generated a second time. 

Instead, the existing helper functions should be re-used. 

5.2.3 Translation of Behaviors to LNT 

The translation of behavior sequences assigned to Models and ElementOccurrences on the 

meta-level comprises the core of the LNT code specifying formal processes that can be checked 

with CADP’s model checker. We describe how the translation works in our approach. 

Our approach assumes that behaviors are available as a tree-like structure: To an 

implementation of our approach, a behavior containing a sequence of other behaviors needs to 

be available as a node with a child node for the sequence of other behaviors. Like in our 

approach of translating formulas to LNT, the tree-like behavior structure needs to be traversed 

to generate the LNT code that corresponds to the behavior sequences. The primary output of 

our translation is a sequence of LNT statements that can be inserted into a LNT process. A 

secondary output is LNT helper processes and functions that need to be referred to in the 

primary output expression. 

Many behaviors can be translated to LNT in a straightforward way. For some behaviors, more 

complicated translations are required. We explain notable aspects of our approach’s translations 

for different behavior types in Table 6. 

If/Then/Else: If a “If/Then/Else” node is visited, the “Condition” argument’s formulaic 

expression needs to be translated to LNT and the behaviors in the sequences provided in the 

other two arguments “Then Behaviors” and “Else Behaviors” need to be visited for 

translation to LNT. The resulting LNT code pieces are to be assembled in a suitable LNT 

conditional statement like if or case. This statement finally needs to be added to the primary 

output. 
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Enable Element Occurrence: If a “Enable Element Occurrence” node is visited, the 

formulaic expressions in the arguments “Runtime Instance”, “Element Occurrence”, and 

“Data to pass on” need to be translated to LNT. The resulting expressions need to be 

assembled in a LNT statement. The way how the expressions are assembled depends on the 

value of the “Perform now instead of scheduling it” argument. If this argument is 𝑡𝑟𝑢𝑒, the 

statement must instantiate the “static code” unit’s LNT process that launches a given 

ElementOccurrence’s sequence of behaviors. If the argument is 𝑓𝑎𝑙𝑠𝑒, the statement must 

schedule it, i.e. to add a task to the task list to launch the ElementOccurrence’s sequence of 

behaviors later. 

Report Event: A “Report Event” behavior must introduce the respective event into the LTS 

that is entailed by the process model. We use LNT’s concept of “gates” to introduce events 

into the LTS. For brevity, we do not go into detail how this concept works but only give a 

rough description of how event reporting is realized in our approach. An interested reader is 

referred to (Bolognesi and Brinksma 1987) for an introduction into the concept of gates and 

to (Champelovier et al. 2017) how LNT implements this concept. 

Each of the LNT root processes in the unit “Entry points for [em] Models” needs to contain 

a declaration of a gate that is used for reporting events. In our implementation, we named this 

gate REPORT_EVENT. All other LNT processes that potentially report events need to be 

synchronized with this gate. If any such process offers a communication label via 

REPORT_EVENT, the LTS entailed by the overall formal process contains a transition with a 

label that corresponds to the gate name and the offered communication label. 

In our implementation, we established a convention for communication labels that 

implements the concept of “private” events as introduced in subsection 3.2.2: By our 

convention, each communication label offered via REPORT_EVENT needs to be a pair of 

1. an LNT constructor that corresponds to the ElementOccurrence as specified in the 

formulaic expression of a behavior’s “Element Occurrence” argument, and 

2. a nullable string corresponding to this behavior’s Event Content argument. 

When visiting a “Report Event” behavior during tree traversal, the formulaic expressions in 

the arguments “Element Occurrence” and “Content” need to be translated to LNT. The two 

resulting translations must become the “arguments” of a LNT statement that offers the 

arguments on the REPORT_EVENT gate. This statement needs to be added to the primary output. 

 

 

For one item in a collection: There are different ways to implement the “For one item in a 

collection” behavior in LNT. As one approach, LNT’s “non-deterministic assignment” (using 

the any wildcard construct) can be used to select any number smaller than the collection’s 
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length that then serves as an index to retrieve the respective collection’s member at the index. 

As another approach, recursive helper processes can be implemented that iterate through the 

collections, offering at each item if the current item or some next item should be selected. 

We established the advantages and disadvantages in the context of (Pribnow 2016a). Our 

current implementation uses non-deterministic assignments because it is easier to implement 

and it results in a smaller state space during evaluation, thereby increasing evaluation speed. 

 

 

For each item in a collection: When visiting a “For each item in a collection” behavior 

during tree traversal, a recursive helper process needs to be generated that iterates through 

the collection. This helper process must contain the LNT translation of the behavior’s Child 

Behaviors. A statement invocating this helper process needs to be added to the primary 

output. 

Table 6 Notable aspects on the translation of behaviors to LNT 

A behavior’s argument might contain a formulaic expression resulting in a value of a type that 

does not match the type that is expected for the behavior’s argument. In such a case, the 

generated LNT code might be invalid and could lead to later error messages that are hard to 

understand. To find such errors early and to be able issue understandable error message, we 

recommend checking the result types of formulaic expressions in behavior arguments during 

translation of behaviors to LNT. We further recommend stopping translation of behaviors if a 

formula resulting in an invalid type is found. Our implementation follows this recommendation. 

During model checking, a formulaic expression might evaluate to 𝑛𝑢𝑙𝑙. As handling of null is 

not defined for most behaviors, we recommend adding for each formulaic expression LNT 

statements that check if the expression evaluates to 𝑛𝑢𝑙𝑙. If it does, the statements should 

indicate such a situation as an error in a suitable way. Again, our implementation follows this 

recommendation.  

To demonstrate our approach for translating behaviors to LNT, we give an example behavior 

specification and show its LNT translation. 

The exemplary sequence of behaviors is given in Figure 10. It contains a “Report Event” 

behavior, followed by a “If/Then/Else” behavior that contains an “Enable Element Occurrence” 

behavior in its “Then Behaviors” argument. 
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Figure 10 A simple sequence of behaviors as displayed by our implementation 

The LNT code for the example’s “Report Event” behavior is given in Listing 32. The code 

declares variables for capturing the results of the formulaic expressions in the behavior’s 

arguments. It assigns the results of these formulaic expressions to the variables. The right-hand 

side of each assignment statement is the translation of the respective formulaic expression to 

LNT. Next, the code contains a check of the variables for a 𝑛𝑢𝑙𝑙 value. If any of them has a 

𝑛𝑢𝑙𝑙 value, an error is reported and further processing stops. Otherwise, the values of the 

variables are offered on the REPORT_EVENT gate. 

var elementOccurrence_1 : TYPE_ID_EM_ELEMENT_OCCURRENCE, 
    theContent_1 : NULLABLE_STRING in 
        elementOccurrence_1 := OBJECT_OCCURRENCE_ID.AS_ELEMENT_OCCURRENCE; 
        theContent_1 := OBJECT_OCCURRENCE_ID.OBJECT.CAPTION; 
        if((elementOccurrence_1 == NULL_VAL) or_else 
           (theContent_1 == NULL_VAL)) then 
                ERROR("A null value was provided to a Report Event behavior."); 
                stop 
        end if; 
        REPORT_EVENT(elementOccurrence_1, theContent_1) 
end var 

Listing 32 LNT translation of the “Report Event” behavior of Figure 10 

The LNT code for the example’s “If/Then/Else” behavior is given in Listing 33. The code is 

based on a case-based control mechanism that checks the result of the formulaic expression in 

the behavior’s “Condition” argument. The control expression of the case statement is the 

translation of the respective formulaic expression to LNT.  If the formulaic expression results 

in 𝑛𝑢𝑙𝑙, an error is reported and further processing stops. If it results in 𝑓𝑎𝑙𝑠𝑒, nothing is done 

due to the Else Behaviors being an empty sequence. If it results in 𝑡𝑟𝑢𝑒, the LNT translation of 

the Then Behaviors will be run. In Listing 33, we indicate the LNT translation of the Then 
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Behaviors with the placeholder ThenBehaviors.  In our example, the Then Behaviors is a 

sequence containing a single “Enable Element Occurrence” behavior. 

var condition0 : NULLABLE_BOOL in 
 condition0 := ((custom_count(OBJECT_OCCURRENCE_ID. 
                    RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE)) > (THE_VAL(+0))); 
 if (condition0 == NULL_VAL) then 
             ERROR("The if formula of an if behavior resulted in NULL."); stop 
 elsif (condition0 == THE_VAL(TRUE)) then 
  ThenBehaviors 
 end if 
end var 

Listing 33 LNT translation of the “If/Then/Else” behavior of Figure 10 with a placeholder 

for the LNT translation of its Then Behaviors 

The LNT code for the example’s “Enable Element Occurrence” behavior is given in Listing 34. 

Like in the “Report Event” translation, variables for the two behavior arguments are declared, 

assigned with the results of the respective formulaic expressions, and checked for null. If no 

null value is found, the list in the variable task_list will be extended with a new item that 

corresponds to a task of enabling the given ElementOccurrence with the given Event Content. 

The variable task_list maintains the scheduler’s list of tasks. It is available to all LNT 

processes generated from behavior specifications. 

var RuntimeInstance_3 : RUNTIME_INSTANCE_TYPE, 
    elementOccurrence_3 : TYPE_ID_EM_ELEMENT_OCCURRENCE in 
        RuntimeInstance_3 := INSTANCE_NUMBER; 
        elementOccurrence_3 := custom_head(OBJECT_OCCURRENCE_ID. 
                RELATIONSHIP_OCCURRENCES_WITH_ME_AS_SOURCE).AS_ELEMENT_OCCURRENCE; 
        if((RuntimeInstance_3 == NULL_VAL) or_else 
           (elementOccurrence_3 == NULL_VAL)) then 
                ERROR("A null value was provided to a Enable Element Occurrence behavior."); 
                stop 
        end if; 
        task_list := append(ELEMENT_OCCURRENCE_TASK(RuntimeInstance_3, 
                            elementOccurrence_3, ENABLEMENT_DATA), task_list) 
end var 

Listing 34 LNT translation of the “Enable Element Occurrence” behavior of Figure 10 

5.3 Making the Model Checker’s Property Specification Language Support Macros 

In subsection 3.2.2, we established that it may be helpful for a temporal property specification 

language to support “macro” that allow easy element-independent event specifications. In this 

section, we introduce a modification of the CADP-supported temporal property specification 

language. Our modification extends the language with the described macros. 

In the first section, we present our macro extension from a user perspective. In the second 

section, we show how we internally expand macros written with our extension. 
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5.3.1 Our Macro Extension for the Property Specification Language MCL 

CADP’s supported temporal property description language is MCL. (CADP manual authors 

2017f; Mateescu and Thivolle 2008) Based on the ideas described in subsection 3.2.2, we 

wanted our plugin’s users to work with a temporal property specification language that supports 

macros for rewriting public events into their private equivalents. As such, we defined a slightly 

extended version of MCL that introduces the wanted macro support. For realizing this macro 

support, our MCL extension introduces a pattern that can easily be found and replaced using a 

regular expression and replacement of some special characters.  

To refer to a public event in our MCL extension, a user surrounds the relevant event content in 

a triple of curly braces. For example, if a temporal property should refer to a public event with 

the content Some Event, then the public event can be specified as {{{Some Event}}}. We wanted 

to avoid our pattern conflicting with the syntax of plain MCL. We therefore designed out pattern 

so that it was unlikely that it would need to appear in a temporal property. Since MCL does not 

have any syntactic construct involving three curly braces, we considered our pattern to be “safe 

enough” in this regard. 

This design choice results in public events with an Event Content that contains three closing 

curly braces not being specifiable with a macro as described here. We assume however that, in 

practice, Event Contents do not contain three closing curly braces. Therefore, we do not 

consider this restriction to be relevant for practical use. And even if Event Contents with three 

curly braces were relevant, there would be alternative ways to handle Event Contents with three 

curly braces. For example, a user could adjust the behavior specifications to escape character 

sequences of three closing curly braces in Event Contents. Alternatively, a user could write a 

relevant temporal property directly in the expanded version, i.e. without using macros. 

\{\{\{((?:[^}]|\}(?!\}\}))*)\}\}\} 

Listing 35 Regular expression to capture a macro as introduced by our MCL extension 

The pattern for a macro as introduced here is given in Listing 35 as a regular expression 

according to the specification in (.NET Docs contributors 2017). To further improve the 

reader’s reading experience, we show the regular expression with highlighted syntax through 

colorization. The pattern matches a string consisting of 1) three opening curly braces, followed 

by 2) a sequence of characters that are each either a) no closing curly brace or b) a closing curly 

brace that is not followed by two additional closing curly braces, and finally ended with 3) three 

closing curly braces. The macro’s Event Content is captured as a “regular expression subgroup” 

between the initial three opening curly braces and the three closing curly braces. A captured 

subgroup is used when expanding the macro. 
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5.3.2 Translating from Macro-Extended MCL to Plain MCL 

CADP’s model checker requires an input temporal property to be specified in plain MCL. A 

temporal property that is specified in our extended version of MCL therefore needs to be 

converted into plain MCL before it can be used for model checking with CADP. 

We convert from extended MCL to plain MCL by “expanding” macros. Expansion means to 

replace each macro instance with a plain MCL construct that matches the given public event. 

In subsection 5.2.3, we have introduced our approach of using a gate REPORT_EVENT to entail an 

event as a transition in the modeled LTS. So, when using our approach, the MCL construct we 

want our macros to substitute should match a suitable transition label generated through a 

communication offer via REPORT_EVENT. 

CADP offers a text-based encoding for transition labels. In we Listing 36 give a template of a 

transition label’s encoding in an LTS entailed by a formal process specified as LNT code that 

is generated by our implementation. In this template, ElementOccurrenceConstructor and 

EncodedEventContent serve as placeholders for the identifier of the LNT constructor 

corresponding to an ElementOccurrence and for the encoded value of the nullable string 

corresponding to an Event Content of some “Report Event” behavior, respectively. 

REPORT_EVENT !ElementOccurrenceConstructor !THE_VAL (EncodedEventContent) 

Listing 36 Template of CADP’s string encoding of a LTS transition label entailed by our 

implementation’s LNT code 

Thanks to this text-based encoding, we can leverage MCL’s regular expression feature for 

matching suitable communication labels. When enclosing a string in single quotes (') in MCL, 

the quote-enclosed string is interpreted as a regular expression as specified in (CADP manual 

authors 2017h) for matching a communication label. (CADP manual authors 2017f)  Note that 

the regular expressions used in MCL that are specified in (CADP manual authors 2017h) are 

significantly different from the ones used by C#/.NET as specified in (.NET Docs contributors 

2017). 

 ('REPORT_EVENT !.* !THE_VAL (PreparedEventContent)') 

Listing 37 Substitute template for occurrences of the macro pattern 

Following this idea, we replace each pattern instance with the plain MCL construct given in 

Listing 37 where PreparedEventContent is a placeholder that needs to be substituted with the 

result of the following preparation process: 

1. Take the Event Content string as captured by the regular expression subgroup in Listing 35. 
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2. Normalize it according to CADP’s bcg_write normalization rules for string values as 

specified in (CADP manual authors 2017b). 

3. Escape sequences of characters that have a special meaning in regular expressions 

according to the specification in (CADP manual authors 2017h), i.e. prepend each 

occurrence of the characters \, [, *, and . with a backslash.  

4. Escape each occurrence of a single quote character (') by prepending it with a backslash. 

Once the placeholder is substituted with a string according to these rules, the overall resulting 

MCL expression describes a regular expression-based “action predicate”. This predicate is 

satisfied by a transition of the respective given LTS if its string representation matches the 

regular expression within the two single quotes at the start and the end of the expression. 

5.4 User-Perspective Requirements for an Implementation 

We describe user-perspective requirements (RU) for an implementation of the theoretical 

approach described in previous sections. An implementation must fulfill these requirements to 

enable users to apply our theoretical approach in practice. Our requirements assume that an 

implementation of an [em]-like meta modeling tool with the data model as described in section 

4.1 exists as a foundation for the implementation of our approach. The requirements are as 

follows: 

RU 1. A user must be able to specify sequences of behaviors with our ESDL as described in 

section 4.4 for Models and ElementOccurrences on the level of the meta modeling tool’s 

Languages and their ElementTypes, respectively. 

RU 2. A user must be able to specify the fields of the formulaic expression language’s custom 

types, i.e. of CustomStorageData and of CustomEnablementData. 

RU 3. A user must be able to initiate checking the fulfillment of temporal properties by the 

meta modeling tool’s Models in Languages and with ElementTypes for that sequences 

of behaviors have been defined. 

RU 4. Once model checking is completed, the user must be informed about its result, both as 

a Boolean value representing fulfillment or non-fulfillment of the given property, and 

as a graph of model elements that are “responsible” for the result as described in section 

3.2. 

Additionally, an implementation of our approach should have a good usability, i.e. users should 

be able to easily apply our approach in practice with the implementation. We recognize that this 

is not a strict or precise requirement. To illustrate our point of view on usability, we outline our 

usability considerations for our implementation in section 6.5. 
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6 Implementing the Approach and Integrating it into [em]  

In this chapter, we describe our implementation of the approach developed in the previous 

chapters as a plugin for [em]. 

In the first section, we give basic information on our plugin’s functionality and implementation. 

In the second section, we introduce the plugin’s architecture. In the third section, we give details 

about user-relevant data persisted by the plugin. In the fourth section, we introduce the main 

components of our plugin and describe them in detail. In the fifth section, we name aspects of 

our plugin that should ensure good usability. 

6.1 Basic Details on Plugin Implementation 

In this section, we give an overview over the functionality offered by our plugin and explain 

general aspects about its implementation. 

Our plugin implementation fulfills the requirements from section 5.4. It allows defining formal 

temporal properties in our macro-extended version of MCL and storing these properties. It 

transforms models, their meta models and the assigned behaviors into LNT. It transforms 

macro-extended temporal properties into plain MCL properties. It launches CADP tools, 

especially the CADP model checker to perform model checking with the LNT specification and 

the MCL property. It translates model checking results back into a format that allows 

highlighting element occurrences that events relevant for proving the fulfillment or 

nonfulfillment of a property were reported for. 

The provided functionality is available from our plugin’s easy-to-use user interfaces that are 

integrated accessibly into the main [em] user interface. 

The meta modeling tool [em] is implemented in C#. While plugins for [em] can be implemented 

in any .NET language, we decided to implement our plugin in C# as well because we were most 

familiar with this language. 

Multiple parts of our implementation rely on the “visitor pattern”. We give a brief description 

of this pattern. An implementation of visitor pattern defines an abstract visitor interface that 

provides a method signature for each kind of class whose instances may be “visited”. Each of 

such instance may be asked to accept a visitor. When asked to accept such a visitor, the instance 

calls the visitor’s method that corresponds to its class. This pattern allows to implement class-

specific external behavior in an object-oriented way. A more detailed description of this pattern 

is available in (Gamma et al. 1994, pp. 331–344) . 

For the architecture behind the user interface of our implementation we made use of the “Model-

View-ViewModel” pattern. (Smith 2009) 
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6.2 Overview of Plugin Architecture, Persistent Data, and Data Flow 

In this section, we describe the architecture of our plugin and explain how it integrates into [em] 

by describing its high-level data flow through its components. A visualization of the 

architecture and the high-level data flow is given in Figure 11. For the visualization, we extend 

our notation as introduced in 3.3: We use boxes with sharp corners to represent high-level 

components. Dotted connections with a black circle as target connector represent that the source 

element is attached to the target element. Green elements are native [em] components, blue 

elements are components we developed in our plugin, and orange elements (used in later 

figures) are CADP components. 

 

Figure 11 The plugin architecture and its high-level data flow 

Our plugin is composed of five main components: the Properties Manager, the Configurator, 

the Process Model Checker, the Result Visualizer and the Formulaic Expression Processor. 

The Properties Manager component provides a user interface for specifying temporal properties 

and storing their specifications. It also provides the Temporal Property Specification Wizard 

sub-component (abbreviated with “Propert. Wizard” in Figure 11) that allows a user to generate 

specifications of selected temporal properties by filling out a questionnaire. 

The Configurator component provides a user interface for specifying the two custom types 

CustomEnablementData and CustomStorageData and for defining behavior sequences for [em] 

Models and Element Occurrences on the Language level. It loads the [em] Languages to provide 

information for the user interface that are required during the definition of behavior sequences. 
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The Process Model Checker (abbreviated with “Proc. Model Checker” in Figure 11) is the core 

component of our plugin. It provides a user interface for creating and issuing model checking 

tasks. A model checking task consists of a reference to an [em] Model, a temporal property 

specification, and additional parameters. When a model checking task is to be performed, the 

Process Model Checker’s sub-components Process Model Translator (abbreviated with 

“Translator” in Figure 11), Evaluation Preparer (abbreviated with “Eval. Preparer”), and 

Evaluation Runner (abbreviated with “Eval. Runner”) perform the required work. They read 

the referenced [em] Model, its parent Project and all other Models in the Project, their 

Languages, their assigned behaviors, and the specified custom types. From these pieces of 

information, they prepare LNT code for the CADP model checker, and start the model checking 

process for the respective model checking task. Once a model checking task completes, the 

Process Model Checker passes its Evaluation Results (abbreviated with “Eval. Results” in 

Figure 11) to the Result Visualizer component. To avoid unnecessary re-computations, the 

Process Model Checker orders model checking tasks in such a way that the CADP tools can re-

use data that was generated for the respective previous task. 

The Result Visualizer component receives model checking results from the Process Model 

Checker to visualize the counterexample or witness information as a tree in a sidebar of [em]’s 

Model Editor and by highlighting Element Occurrences in the Editor itself. To display the tree 

and to highlight Element Occurrences, the Result Visualizer attaches itself to [em]’s Model 

Editor. 

The Formulaic Expression Processor processes formulaic expressions to return data that can be 

used to assist the user in expression specification and to convert formulaic expressions into 

LNT. The formulaic expression processer is used within the Configurator to provide user 

assistance, and within the Process Model Checker to provide data required for LNT translation. 

6.3 Details on Plugin’s Persistent User Data 

In this section, we introduce the types of user-relevant data that our plugin persists. We describe 

the classes and their structure we created for data that is to be persisted. 

Temporal Properties. To represent temporal properties, we created the class ModelProperty. 

This class has three string properties: one for a name for the property, one for its description, 

and one for the property specification as specified in our macro-extended version of MCL as 

described in subsection 5.3.1. 

Custom Types. To represent the specifications for a Custom Type, we created the classes 

CustomDataType and CustomDataTypeEntry. We store names of custom type fields and their data 

types as string properties in CustomDataTypeEntry. We store a collection of 

CustomDataTypeEntry instances and a timestamp of the latest change in CustomDataType. 
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Behaviors. To represent ESDL behaviors, we created a class for each ESDL behavior type. We 

wanted our software architecture to ensure that all behavior types would be handled by relevant 

components, such as the user interface or the LNT Generator as described in subsection 6.4.3. 

As such, we implemented a visitor pattern with a IBehaviorVisitor interface that contains one 

method signature for each behavior type. Code that needs to handle behaviors is consequently 

forced to implement all methods of this interface. This reduces the risk of forgetting to 

implement the logic for some of the behavior types. 

Behaviors Carriers. To represent an assignment of behavior sequences to models and their 

elements on the language level, we created the class BehaviorsCarrier. Our plugin allows to 

maintain a set of BehaviorCarriers for each language. In instances of this class, we store the 

name of the assignment’s type as a string value, a modification date, and an ordered collection 

that represents the sequence of behaviors. To assign a behavior sequence to the model of the 

respective language, the type name needs to be set to 𝑛𝑢𝑙𝑙. 

Formulaic Expressions. Our behavior objects store formulaic expressions as string properties. 

These formulaic expressions are only parsed into a better processable representation when 

necessary, e.g. when editing them in the user interface and when translating them for the formal 

process specification for the underlying model checker. This design decision allows a user to 

store a syntactically incorrect formulaic expression. The ability of storing an incorrect formulaic 

expression can be convenient for cases where a user must interrupt her work on a complex 

formulaic expression and wants to store the current progress to continue working on it later. 

6.4 Details on Plugin’s Core Components 

In this section, we describe the core components and sub-components of our plugin in detail. 

For the order of introduction, we roughly follow a workflow that a user might perform when 

using our plugin and its components. We use our workflow visualization notation as introduced 

in section 6.2 for visualizing workflows in this section. 

In the first subsection, we introduce the Temporal Property Specification Wizard. In the second 

subsection, we describe how we implemented processing of formulaic expressions in the 

Formulaic Expression Processor. In the third, fourth and fifth subsection, we introduce the 

Process Model Translator, the Evaluation Preparer, and the Evaluation Runner, respectively. 

6.4.1 Temporal Property Specification Wizard 

In (Remenska 2016, chap. 5), a “property assistant tool” called “PASS” was introduced to 

simplify specification of requirements for event-based systems. “PASS guides users through 

the elicitation process by asking questions, and providing a set of alternative answers to choose 
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from, narrowing down the scope of the questions to those relevant in the context of the 

previously provided answers in each subsequent step.” (Remenska 2016, p. 74) 

PASS outputs temporal properties in a property specification language that is very similar to 

MCL. This lead us to the realization that we could easily adapt the concept of PASS to 

implement a Temporal Property Specification Wizard in our plugin, allowing users of our 

plugin to easily specify temporal properties through PASS’ questionnaire and its temporal 

property patterns. 

Daniala Remenska, the creator of PASS, gave us permission to adopt the PASS questionnaire 

with its patterns in our work. While the property specification language used for PASS’ 

temporal property patterns is similar to MCL, not all PASS patterns would yield valid MCL 

properties. As such, we had to adjust some patterns in our implementation so that they yield 

valid MCL properties. To clearly separate her work from ours, we put our final adaptation into 

its own library and only referenced to it from our other libraries. 

 

Figure 12 Screenshot of our plugin’s Temporal Property Specification Wizard  

Our plugin’s Temporal Property Specification Wizard provides a user interface that displays 

the questions in the external library’s questionnaire and guides the user through these questions. 
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A screenshot demonstrating how this user interface is presented to a user is given in Figure 12. 

Once a user answers all questions and completes the questionnaire, the Wizard uses the 

adaptation library to translate the answers into a temporal property that corresponds to the user 

inputs. 

6.4.2 Formulaic Expression Processor 

Our Formulaic Expression Processor processes expressions in our formulaic expression 

Language as introduced in section 4.2. This component takes a formulaic expression in our 

language as its main input. As output, it yields information that further components of our 

plugin require, especially an abstract syntax tree (AST) corresponding to the input expression. 

In this section, we explain why we implemented our lexer/parser on our own instead of 

leveraging existing implementations, e.g. libraries or parser generators, and describe the 

detailed processing workflow of the Formulaic Expression Processor. 

 

Figure 13 Workflow of the Formulaic Expression Processor 

As one of our usability considerations, we wanted our implementation to support the user in 

specifying formulaic expression with an autocompletion (AC) feature. We give more details on 

our usability considerations and on the AC feature in section 6.5. With the intention of avoiding 

implementation work for a lexer/parser combination, we did an online search for solutions that 

would allow easy creation and integration of AC-supporting lexers/parsers. We also posted a 

question on the StackExchange community “Software Recommendations”. (Pribnow 2016b) 
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Neither our online search nor the posted question yielded a suitable solution. We therefore 

implemented a custom lexer/parser combination on our own. 

The resulting lexer/parser combination forms the core of our Formulaic Expression Processor. 

We describe the component’s processing workflow in the following. A visualization of this 

workflow is given in Figure 13.  

Initially, the lexer splits a formulaic expression into a sequence of tokens. A token is either a 

literal (Boolean, double, integer, or string), an opening or closing parenthesis, a full stop, a 

comma, a whitespace, an opening or closing pointy bracket, a vertical line (also referred to as 

“pipe symbol”), an identifier, or an unknown token. We implemented the visitor pattern for 

tokens: In our implementation, each token object can accept a token visitor. When a token is 

requested to accept a token visitor, it calls a method of the token visitor corresponding to the 

token’s type. This design forced us to handle all token types during further processing steps, 

thereby lowering the risk of bugs in our implementation. 

Next in the workflow, the parser takes as input a “parsing environment” and a sequence of 

tokens from the lexer, and optionally an offset of a token within the formulaic expression for 

which an autocomplete suggestion and a type hint should be returned. We explain the parser’s 

outputs and the “parsing environment” concept further below. 

The parser’s state is mainly managed using a stack of parser token visitors. Such a parser token 

visitor is for example “expect a new Base”, “have a valid formulaic expression, so expect a full 

stop for an Accessor”, or “just got a full stop, so expect the Accessor’s identifier”. The parser 

iteratively asks the input tokens from left to right to accept the respective topmost token visitor 

on the stack. When a token visitor visits a token, it modifies the stack so that it reflects a new 

state. 

For example, an “expect a new Base” visitor handles a literal or an identifier to produce a 

corresponding node in the AST and to replace the topmost visitor on the stack with a “have a 

valid formulaic expression, so expect a full stop for an Accessor” visitor. An “expect a new 

Base” visitor would pass handling of any other type of token than a literal and an identifier to 

the next deeper visitor on the stack. Similar, a “have a valid formulaic expression, so expect a 

full stop for an Accessor” visitor only handles a full stop token on its own, replacing the topmost 

visitor again, and falls back to the next deeper visitor on the stack for all other token types. 

A visitor may be requested to handle an unexpected token. For example, an expression requiring 

autocompletion for example might not agree with our language specifications completely and 

would result in an unexpected token sequence. We wanted our parser to allow for AC and for 

meaningful errors for parts of the input expression that come after the first unexpected token. 

We therefore required our parser to be somewhat “forgiving” when encountering unexpected 
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tokens. As such, we designed our parser as follows. If a visitor visits an unexpected token, it 

will produce an error message and will replace the topmost visitor on a stack with a “invalid 

token handling” visitor. Such a visitor silently skips most tokens. When visiting a token that 

indicates syntactic correctness being restored from that token on, the visitor replaces the 

topmost visitor on stack again with a suitable “normal” visitor, allowing for normal continuation 

of parsing. 

The parser generates as output: an AC information record, a list of declaration hints, a list of 

parsing errors, and – if the input formulaic expression is error-free – an AST corresponding to 

the input expression. We explain these results in the following. 

An AC information record consists of AC suggestions, the user inputs that are to be 

autocompleted, and further information required for replacing these user inputs if some 

suggestion is accepted. An AC suggestion contains information with what the respective part 

of the user inputs should be replaced. It also contains additional information that further 

explains the AC suggestion to a user, like usage information for the suggestion and information 

on its result type. These additional pieces of information can be displayed together with the 

suggestion to a user as exemplarily shown in Figure 14 . 

 

Figure 14 Screenshot showing our implementation’s autocomplete suggestion feature 

A declaration hint allows a user to quickly find out how a part of a formulaic expression can 

be used and what type it would result in. When a user hovers with the mouse over an identifier, 

a constant or an accessor, she will be shown a tooltip window displaying the result type or the 

whole declaration of the respective part of the formulaic expression. This feature was inspired 

by code editors of modern integrated development environments like Visual Studio that support 

such a feature for their main supported computer languages. 

 

Figure 15 Screenshot showing how a declaration hint is displayed by our plugin 
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A screenshot demonstrating how a declaration hint is displayed in our implementation is given 

in Figure 15. For function accessors, we display the base type name, accessor identifier, 

function parameter information, and return type information. For lambda accessors, we display 

the base type name, accessor identifier, lambda parameter information, expected lambda sub-

formula result type, and information on the return type of the overall lambda accessor 

application. For property accessors, we display the base type name, the accessor identifier and 

the result type name. For base identifiers, we display the identifier name and their type. 

A parsing error allows to inform the user on errors that occurred during parsing, typically 

indicating a malformed expression. To allow users to quickly find reasons for parsing errors 

and fix them, we wanted to make it possible to automatically select a part of the expression in 

a user interface for editing formulaic expressions that caused some parsing error to occur. In 

our implementation, we therefore also keep track of the offset and length of the respective input 

expression’s part causing the parsing error. 

To provide declaration hints and meaningful AC suggestions, knowledge of a formulaic 

expression’s result type is required. We found it easiest to implement the generation of these 

pieces of information in the parser. However, introducing type information into our parser 

would have violated the separation of concerns design principle. So instead of directly 

integrating them into our parser, we defined the abstract class “parsing environment” whose 

implementation’s instances are used by the parser to retrieve information required for 

generating an AC information record and for declaration hints. We realized that we can save 

further implementation effort by delegating also the generation of AST nodes to the parsing 

environment. This way, we avoided implementing another post-processing step to derive result 

type information from the AST for further processing. In the final implementation, the parser 

itself consequently does not generate any nodes for an output AST. Instead, it delegates this 

task to the parsing environment, thereby yielding an AST with type-rich nodes. 

Like in our implementation of behaviors of tokens, we implemented the visitor pattern for data 

types and for their members that can be referred to using accessors in formulaic expressions. 

We wanted to ensure handling all types and all their members to reduce the risk of bugs in our 

implementation, especially during development of the LNT Generator as described in 

subsection 6.4.3 that implements the process outlined in section 5.2. 

To manage types for formulaic expressions in our language, we defined a multi-level type 

hierarchy that has a set of the primitive types as its root. On higher levels of this hierarchy we 

implemented the [em] types and the runtime-relevant types. The multi-level type hierarchy 

design allows extending the type system without having to modify lower hierarchy levels if a 

newer version of our formulaic expression language requires new types. 
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6.4.3 Process Model Translator 

The Process Model Translator takes as input a set of [em] Projects with their Models and their 

Languages, user-defined custom type specifications, and user-defined behaviors assigned to 

ElementOccurrences and Models on the meta model level. From these inputs, it generates a 

formal process specification in a language that the underlying model checker can work with. 

Our theoretical approach does not limit the number of Projects that could be processed in one 

model checking task. In practice however, working with many Projects with many Models and 

many Languages causes long processing times. Lacking support for cross-project links on the 

level of Elements or Models, the [em] data model suggests that everything in a project is to be 

considered conceptually separate from other projects. In our final implementation we therefore 

allow the Process Model Translator to only process a single Project per model checking task. 

Consequently, it generates one set of formal process specifications per Project as output. 

We describe the detailed translation workflow of the Process Model Translator in the following. 

A visualization of this workflow is given in Figure 16. 

 

Figure 16 The Process Model Translator’s workflow 

As first step of translation, the three inputs get passed to our LNT Generator component. The 
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ASCII character set, our implementation must replace all non-ASCII characters in fields of the 

[em] data model’s classes with a placeholder. We use a question mark as our placeholder. 

As of writing this thesis, a formal process specified in LNT needs to be translated to LOTOS 

before the CADP toolkit can perform model checking on the formal process. In the next step, 

our translator subsequently translates these LNT-specified formal processes into files that 

contain formal processes specified in LOTOS by executing CADP’s lnt.open tool, using its 

pre-processing and translation operations. This tool internally calls CADP’s lpp and lnt2lotos 

tools for the actual pre-processing and translation. The resulting LOTOS files are the main input 

of the Evaluation Preparer’s workflow. 

6.4.4 Evaluation Preparer 

Given an [em] Model that should initially be enabled in a model checking task, the Evaluation 

Preparer takes as input the [em]-internal ID of this Model, and the LOTOS files for the Model’s 

Project as generated by the Process Model Translator. The Evaluation Preparer generates an 

Evaluator Executable file that can be called to perform the actual model checking operations 

for the given Model. We describe the detailed executable generation workflows in the 

following. A visualization of these workflows is given in Figure 17. 

 

Figure 17 The Evaluation Preparer’s workflows 
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The Evaluation Preparer can be run in two different modes: the On-the-Fly mode and the 

Bisimulation Reduction mode.  

In the On-the-Fly mode, the LOTOS files are processed directly, i.e. only so much of the LTS 

of the formal processes is computed during evaluation as required to prove or disprove the 

fulfillment of the property. This can save a significant amount of otherwise required pre-

processing time and should lead to getting results fast, especially when asked to disprove that 

some chain of events is never to occur. On the other hand, the generated counterexample or 

witness information can be hard to read for a user because of its complexity in models with a 

lot of branching. 

In the Bisimulation Reduction mode, the LTS are reduced with respect to CADP’s “safety” 

equivalence as specified in (CADP manual authors 2017d). To perform the reduction, the whole 

LTS of the formal process must be generated. This can increase the pre-processing time 

significantly but might make the generated counterexample or witness information more 

readable in models with a lot of branching. For some combinations of Model and temporal 

property, the evaluation may run faster on a pre-reduced LTS. 

The workflows executed by the Evaluation Preparer depend on the given mode. 

When using the On-the-Fly mode (indicated with a small letter ‘a’ in Figure 17), the Evaluation 

Preparer executes CADP’s caesar.open tool with the input LOTOS files, with an entry point 

specification derived from the given input Model ID, and with a reference to the evaluator4 

OPEN/CAESAR tool (CADP manual authors 2017e) that provides CADP’s model checking 

functionality. caesar.open internally calls CADP’s caesar.adt and caesar tools as well as the 

configured C compiler, thereby generating the Evaluator Executable. 

When using the Bisimulation Reduction mode (indicated with a small letter ‘b’ in Figure 17), 

the Evaluation Preparer executes caesar.open tool mode with the input LOTOS file, with an 

entry point specification derived from the given input Model ID, and with the reference to the 

reductor OPEN/CAESAR tool (CADP manual authors 2017g) that provides CADP’s 

bisimulation reduction functionality. Again, caesar.open internally calls CADP’s caesar.adt 

and caesar tools as well as the configured C compiler, this time generating an executable to 

generate a reduced version of the input process. The Evaluation Preparer calls the generated 

executable with arguments to perform a total safety reduction, yielding a file with a respectively 

reduced LTS in CADP’s Binary Coded Graph (BCG) format (CADP manual authors 2017c). 

Next, the Evaluation Preparer calls CADP’s bcg_open tool with the path to the BCG file 

containing the reduced LTS and with a reference to the evaluator4 OPEN/CAESAR tool. 

bcg_open then generates the Evaluator Executable. 
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The executable resulting from both workflows becomes the main component that is used by the 

Evaluation Runner. 

6.4.5 Evaluation Runner 

The Evaluation Runner takes as input a property in our MCL extension as described in 

subsection 5.3.1 and an evaluation executable that was generated by the Evaluation Preparer. It 

yields a Boolean result reflecting the fulfillment of the property by the respective Model, and 

counterexample or witness information as provided by CADP’s evaluator4 in a representation 

that can easily be used by our plugin’s Result Visualizer. We describe the detailed evaluation 

and result interpretation workflows in the following. A visualization of these workflows is given 

in Figure 18. 

As a first step of the Evaluator Runner’s workflow, the Macro Expander expands macros as 

described in subsection 5.3.1 to derive a corresponding plain MCL temporal property from the 

input property that is specified in our extended version of MCL. The Macro Expander is an 

implementation of the process described in subsection 5.3.2. Since CADP supports only the 

ASCII character set, all non-ASCII characters of the input property specification will be 

replaced with a question mark as described in subsection 6.4.3. 

After converting the temporal property from our MCL extension into plain MCL, the Evaluation 

Runner calls the Evaluator Executable generated by the Evaluation Preparer and provide the 

plain MCL property as input. The Boolean value that is first result from the call becomes the 

first output of the Evaluation Runner. The Diagnostics BCG file that is the second result from 

the call contains information from which counterexample or witness information can be 

derived. 

The binary BCG file format does not have a public documentation. Also, there are no .NET-

compatible libraries known to us that allow reading BCG files. We could therefore not easily 

implement a mechanism to read the Diagnostics BCG files. Instead, the Evaluation Runner 

converts the Diagnostics BCG file into the AUT format (CADP manual authors 2017a) by 

executing CADP’s bcg_io tool. AUT being a publicly documented text-based format, it was 

much easier for us to implement a reading mechanism for this file format. 

The AUT Reader uses our AUT reading mechanism to read the counterexample or witness 

graph in a representation that can be easily be processed by the Result Visualizer. 
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Figure 18 The Evaluation Runner’s workflow 
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We introduce the considerations in the following, each with a short explanation on how our 

implementation follows the respective consideration. 

UC 1. A user should be supported by the implementation to specify temporal properties easily. 

To simplify temporal property specification, our implementation includes the Temporal 

Property Specification Wizard described in subsection 6.4.1 that guides a user through a 

questionnaire and that finally generates a temporal property based on the user inputs.  

For supporting the user in manual specification of temporal properties, our implementation 

contains an easily accessible “cheat sheet” as shown in Figure 19. This cheat sheet lists 

important constructs of the used temporal property specification language MCL as well as an 

exemplary temporal property that makes usage of several of these constructs. 

 

Figure 19 Screenshot showing our temporal property specification cheat sheet 

UC 2. A user should be able to specify sequences of behaviors using an easily usable and 

supportive user interface. 

In our implementation, we visualize sequences of behaviors as lists of graphical blocks where 

the blocks represent behavior instances. A user can re-order these sequences by dragging the 

blocks with the mouse and dropping them at some different position in the list. Specifying 

sequences of behaviors in our implementation is like working with a graphical programming 

language. It can be compared to development of macros in Microsoft Access Web Apps 

(Microsoft Corporation 2017a), or to building procedures by snapping together graphical blocks 

in the educational programming environment “Scratch” (Resnick et al. 2003). 
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When a user specifies a formulaic expression, our implementation supports her with a cheat 

sheet like the one presented above for temporal properties, and with autocomplete suggestions. 

We present an example for the autocomplete feature in action. Given a formulaic expression 

CurrentObjectOccurrence that evaluates to an ObjectOccurrence, assume that the user wants 

to extend this expression so that it evaluates to the RelationshipOccurrences that have the 

original ObjectOccurrence as source. Then the user would have to append a dot to the end of 

the original expression, followed by RelationshipOccurrencesWithMeAsSource. 

Our implementation allows the user to avoid typing out this whole string. Instead, if a user 

begins typing the first few characters of this long string, a list with suggestions for possible 

completions of the typed characters will appear as shown in Figure 14 (on page 60). We 

implemented a special ordering algorithm for ordering suggestions that was inspired from 

modern integrated development environments. If a user clicks on one of the suggested 

completions, the typed characters will be replaced with the suggestion. We assume that the 

autocomplete suggestion feature increases efficiency in specifying formulaic expressions. 

UC 3. For automatic procedures with long processing times that need to be executed multiple 

times with different inputs, a user should be able to define tasks for the required 

procedures and inputs, and to initiate the collective automatic execution of these tasks. 

Because model checking is a computation-intensive activity, it can take a large amount of time 

to check if a process model fulfills a temporal property. We assume that users often want to 

collectively check the fulfillment of multiple properties in multiple models. To avoid the user 

initiating each check one after another manually, our implementation allows to define “model 

checking tasks” and to initiate the collective execution of these tasks. A model checking task 

describes the process of checking the fulfillment of a defined temporal property in a defined 

model. 

In our implementation, a user can select multiple models and multiple temporal properties at 

once and generate “model checking tasks” for all combinations of selected models and selected 

temporal properties. When initiating the execution of these tasks, the user must not interact with 

her computer anymore to complete the model checking tasks. She can then for example let the 

computer perform the required computations overnight. 
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7 Demonstration 

In this chapter, we demonstrate how our approach can be put into practice using our [em] plugin. 

We present three exemplary artificial case studies by introducing sample languages and models 

in these languages. To make our case studies more tangible, we placed them into the context of 

nuclear reactors as a demonstrative setting. Since we are no experts for nuclear reactors, our 

case studies do not have the intention to represent real-world scenarios. 

In the first case study, we demonstrate how execution semantics for a simple business process 

modeling language can formally be specified with our approach and how our implementation 

makes witness and counterexample information available to a user. In the second case study, 

we develop a setting that might resemble a real-world scenario with a more complex model in 

a more complex modeling language, and use it to demonstrate how our approach and our 

Temporal Property Specification Wizard can help in identifying problems in process models. 

In the third case study, we illustrate the cross-model and cross-language analysis capabilities of 

our language. 

7.1 Case Study 1 

In our first case study, we introduce a simple business process modeling language with simple 

execution semantics. We show how behaviors can be assigned to this language and its element 

with our approach for describing the execution semantics to enable model checking of business 

process models in this language. We show how the instances of the behavior types Report 

Event, If/Then/Else, and Enable Element Occurrence may be used in practice. We demonstrate 

the usage of simple formulas in the behaviors. We finally describe that our approach enables 

model checking and demonstrates how counterexample information are represented by our 

implementation. 

In the first subsection, we introduce the Simple Linear Process Language (SLPL) that forms the 

basis of the remaining case study. In the second subsection, we show how SLPL’s execution 

semantics can be translated into sequences of behaviors assigned to SLPL models and their 

element occurrences on the meta-level. In the third subsection, we describe how model 

checking can be performed with our approach and show how our implementation visualizes 

witness information in an interactive fashion. 

7.1.1 Introduction into Simple Linear Process Language (SLPL) 

We introduce the Simple Linear Process Language (SLPL), a process modeling language 

created for our case study. SLPL has two element types: the object type Node and the 

relationship type Node Connection, allowing to connect one Node to another. We visualize 
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Nodes as cyan boxes and Node Connections as arrows between two Nodes. We give an example 

business process model in SLPL in Figure 20. 

 

Figure 20 An exemplary business process for the build preparation of a nuclear reactor 

If we want to put our approach into practice on SLPL business models, we must specify the 

SLPL semantics first. For brevity, we gave SLPL very simple semantics: A formal process is 

derived from a SLPL model from the events that are reported when enabling the model. If a 

SLPL model is enabled, it must enable the first found Node that does not have any incoming 

Node Connections. If a Node is enabled, it must a) report an event corresponding to its label 

and b) enable the first found outgoing Node Connection. If a Node Connection is enabled, it 

must enable the target Node. 

7.1.2 Specification of Behavior Sequences for SLPL 

We can now use the execution semantics specified in natural language in the last subsection to 

formalize them as sequences of behaviors as described in section 4.4. 

We give the specification of the sequence of behaviors for a SLPL Node in Table 7. This 

sequence consists of three behaviors: a Report Event behavior and an If/Then/Else behavior 

that contains an Enable Element Occurrence behavior. 

Our semantics require that an event should be reported when enabling a Node. This requirement 

is fulfilled through the Report Event behavior. To capture what element the event was reported 

by, we used a formulaic expression yielding the current object occurrence as the behavior’s 

“Element Occurrence” argument. To define the content of the public event, we used formulaic 

expression yielding the label of the Node as the behavior’s “Event Content” argument. 

After reporting the event, our semantics require the first found outgoing Node Connection 

relationship to be enabled. To check if there is any outgoing relationship, we use the 

If/Then/Else behavior with a formulaic expression as its “Condition” that counts the number of 

outgoing relationships and checks if this number is greater than 0. 

If this check results in 𝑓𝑎𝑙𝑠𝑒, nothing will be done. If the check results in 𝑡𝑟𝑢𝑒, the “Enable 

Element Occurrence” behavior will be triggered. We use a formulaic expression yielding the 

head of the collection of outgoing relationships (i.e. the first outgoing relationship) as the 

behavior’s “Element Occurrence” argument. To put the enablement of the ElementOccurrence 
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into the scheduler’s enablement queue, we set its “Perform now instead of scheduling it” to 

𝑓𝑎𝑙𝑠𝑒. This has a computational advantage: If the process model contains a loop and the same 

ElementOccurrence is to be enabled again at a later point, the model checker can use the 

scheduler’s enablement queue to identify that it already encountered the situation of having to 

enable the respective ElementOccurrence. In such a case, the model checker may save 

computational effort because it does not need to re-compute the already computed part of the 

LTS that results from enabling the respective ElementOccurrence. 

Neither does the semantics of our language need to operate with multiple runtime instances nor 

with stored data. We can therefore make all enablements in our semantics use the initial runtime 

instance and the initial enablement data. To accomplish this, we use the formulaic expressions 

as given in Table 7 for all “Runtime Instance” and “Data to pass on” arguments in this example. 

Report Event 

Element 

Occurrence 

CurrentObjectOccurrence 

Event 

Content 

CurrentObjectOccurrence.Object.Caption 

 

If/Else/Then 

Condition CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Count.GreaterThan(0) 

Then 

Behaviors 
Enable Element Occurrence 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource.Head 

Data to 

pass on 

EnablementData 

Perform 

now 

instead of 

scheduling 

it 

𝑓𝑎𝑙𝑠𝑒  

 

 

Else 

Behaviors 

(empty sequence) 

 

Table 7 Behavior sequence for occurrences of SLPL Nodes 

We give the specification of the sequence of behaviors for a SLPL Node in Table 8. This 

sequence consists of only one behavior: an Enable Element Occurrence behavior. When 

enabling a Node Connection, our semantics require the target Node to be enabled. This target 
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element description translates directly into the formulaic expression used as the Element 

Occurrence argument. 

Enable Element Occurrence 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentRelationshipOccurrence.TargetElementOccurrence 

Data to pass on EnablementData 

Perform now 

instead of 

scheduling it 

𝑡𝑟𝑢𝑒  

 

Table 8 Behavior sequence for occurrences of SLPL Node Connections 

To complete the behavior specifications for SLPL, we give the specification of the sequence of 

behaviors for a SLPL model in Table 9. This sequence consists of two behaviors: an 

If/Then/Else behavior that contains an Enable Element Occurrence behavior.  

If/Else/Then 

Condition CurrentModel 
.ElementOccurrences 
.Any<eo | 
 eo.IsObjectOccurrence 
 .And(eo.RelationshipOccurrencesWithMeAsTarget.Count.Equals(0)) 
> 

Then 

Behaviors 
Enable Element Occurrence 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentModel 
.ElementOccurrences 
.Where<eo | 
    eo.IsObjectOccurrence 
    .And(eo.RelationshipOccurrencesWithMeAsTarget.Count.Equals(0)) 
>.Head 

Data to pass 

on 

EnablementData 

Perform now 

instead of 

scheduling it 

𝑓𝑎𝑙𝑠𝑒  

 

 

Else 

Behaviors 

(empty sequence) 

 

Table 9 Behavior sequence for SLPL models 
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When an SLPL model is enabled, our semantics require the first found Node to be enabled that 

does not have any incoming Node Connections. The If/Then/Else behavior checks if such a 

behavior exists in the model, by using a formulaic expression as the “Condition” argument that 

operates on a collection of all element occurrences in the model to determine if it contains at 

least one element occurrence that is a ObjectOccurrence and has no incoming relationships. If 

such an element occurrence does not exist, nothing will be done. If it does, the If/Then/Else’s 

Then Behaviors sequence will be triggered, i.e. the Enable Element Occurrence. 

We use a formulaic expression for the Enable Element Occurrence behavior’s “Element 

Occurrence” argument that operates on the same collection as in the last paragraph. It filters the 

collection, yielding a collection that contains only ObjectOccurrences without incoming 

relationship. It then yields the head (i.e. the first element) of the collection. 

7.1.3 Model Checking with SLPL Models 

With SLPL’s semantics defined, we can now demonstrate that model checking with models in 

SLPL becomes possible. For our demonstration, we use the simple exemplary property “there 

must be a way that the process runs into an infinite loop” and check its fulfillment by the simple 

exemplary models as given in Figure 20 (on page 70) and Figure 21. 

 

Figure 21 Exemplary SLPL model containing a loop 

From looking at the two models, it is obvious that the property is not fulfilled by the first model, 

but by the second one. 

We demonstrate that our approach gives us the correct answers for the two models. We also 

demonstrate our implementation’s visualization of counterexample and witness information. 

For the demonstration, we need our temporal property in MCL. We give the translation of our 

exemplary temporal property from natural language into MCL in Listing 38. 
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< true > @ 

Listing 38 Temporal property in MCL that describes the existence of a cycle in the LTS 

Our implementation gives us the expected result for each model, i.e. “not fulfilled” for the first 

one and “fulfilled” for the second one. Additionally, it gives witness and counterexamples 

information in a stack-like representation. We give our implementation’s representation in 

Figure 22. The box on the left shows counterexample information for the first model. The box 

on the right shows witness information for the second model. 

 

Figure 22 Two exemplary counterexample and witness event chains 

The stacks show the reported public events that prove or disprove the fulfillment of the property. 

If an event transitions to a state that was explored before, its text is written in italics. 

Our implementation’s visualization has an interactive component: Double-clicking on an event 

with italic text changes the selection to the event that led to exploring the known state the first 

time. Double-clicking on any other event that was reported by an element occurrence opens its 

model. It then highlights the reporting element occurrence by surrounding it with a colored 

border. 

The border colors depend on the chain of events that lead to the selected event. The selected 

event’s element occurrence is always highlighted in light green. The chain’s first reported 

event’s element occurrence is highlighted in blue. All events between these two events are 

highlighted in dark green in our example. In section 7.3, we demonstrate that “jumps” between 

models within a chain of events are visualized by using further colors.  

In Figure 23 we exemplarily show how our implementation highlights element occurrences 

when double-clicking on the event “Check container safety” (on the left) and on the event 

“Monitor health of personnel” (on the right). 

We can infer from the witness information for the second model: The second time the event 

“Check radiation levels” is reported, the LTS transitions via the event “Check container safety” 

to a previously explored state. This proves the existence of a loop. Using the interactive 

visualization, we can follow the chain of element occurrences reporting the events that make 

up the loop. We found double-clicking on events in counterexample and witness event chains 
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to be helpful for determining how the events and their reporting element occurrences go 

together. 

 

Figure 23 Exemplary highlighting of element occurrences in a witness event chain 

7.2 Case Study 2 

In our second case study, we introduce a more complex, EPC-inspired exemplary business 

process modeling language. We show how execution semantics may be specified that reports 

events corresponding to more than one Element. We demonstrate the usage of more complex 

formulaic expressions, for example to check the type of an Element. We demonstrate how data 

storing and loading can be used to implement a merging join of two process branches that run 

parallel to each other. Our presented execution semantics demonstrates how the behaviors “For 

one item in collection”, “Load data”, and “Store data” may be used. We further demonstrate 

how our Temporal Property Specification Wizard can be used to easily generate complex 

temporal property specifications. Finally, we demonstrate how our visualization of 

counterexample information may help in better understanding a model checking result. 

In the first subsection, we introduce our more complex exemplary business process modeling 

language and describe how its semantics can be formally specified with our ESDL. In the 

second subsection, we show how our Temporal Property Specification Wizard helps in 

specifying a temporal property, and demonstrate how results from our approach may help in 

finding the sources or reasons for a violation of a property. 

7.2.1 Basic Highly Simplified EPC without Interfaces (HSPEC) 

We introduce the process modelling language Highly Simplified EPC without Interfaces 

(HSEPC). HSEPC is inspired by EPC (Keller et al. 1992) and uses some of its elements. 
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HSEPC has nine element types. Its six object types are Event (visualized as a hexagon), 

Function (visualized as a box with rounded corners), Business Object (visualized as a cut piece 

of paper), Competent Body (visualized as a box with a double left border), AND (visualized as 

a circle containing the symbol ∧), and XOR (visualized as a circle containing the symbol ×). Its 

three relationship types are Flow (visualized as an arrow), Business Object to Function, and 

Competent Body to Function (both visualized as a line). We give an exemplary HSEPC model 

with these elements in Figure 24. 

The semantics of HSEPC correspond to the informal semantics in (Keller et al. 1992). To allow 

for model checking, we want occurrences of Functions and Events on a process flow to report 

corresponding events like in SLPL. As an extension, we want to include the name of the 

element’s type in our events. For Functions, we additionally want to include an associated 

Business Object and an associated Competent Body in our events if such objects exist. 

For brevity, we do not give the detailed behavior sequences but only explain the most important 

aspects to them. 

The behavior sequence for a Flow is the same as for a Node Connection in SLPL. 

The behavior sequence for an Event is very similar to the one for a Node in SLPL with one 

difference: Instead of reporting only the caption of the element, the caption is prepended with 

the string Event:  to indicate the reporting element occurrences’ type. 

CurrentObjectOccurrence 
 .RelationshipOccurrencesWithMeAsTarget.Any<ro | 
  ro.Relationship.Type.Equals 
   (CurrentLanguageElementTypes.RelationshipTypes.Competent_Body_to_Function) 
 > 

Listing 39 Formula to check for an incoming relationship of a specific type 

The behavior sequence for a Function is similar to the one for an Event. To include a potentially 

associated Business Object or Competent Body in the reported event, the behavior sequence 

needs If/Then/Else behavior that checks if such associated objects exist. A condition to check 

for the existence of an associated Business Object is given in Listing 39. 
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Figure 24 An exemplary HSEPC model 
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If an associated Competent Body exists, the Event Content reported by the Function needs to 

consist of 1) a constant string corresponding to the type name, 2) the caption of the Function, 

3) the caption of the associated Competent Body. We can use string concatenation to combine 

these pieces of information. In Listing 40, we give a possible Event Content argument for 

Functions that have an associated Competent Body but no associated Business Object. If a 

Function has both an associated Business Object and a Competent Body, the formulaic 

expression must be extended with additional concatenation accessors, respectively. 

"Function: " 
.ConcatedWith(CurrentObjectOccurrence.Object.Caption) 
.ConcatedWith(" performed by ") 
.ConcatedWith(CurrentObjectOccurrence 
 .RelationshipOccurrencesWithMeAsTarget 
 .Where<ro |  
  ro.Relationship.Type.Equals 
   (CurrentLanguageElementTypes.RelationshipTypes.Competent_Body_to_Function) 
  > 
 .Head 
 .SourceElementOccurrence 
 .AsObjectOccurrence 
 .Object 
 .Caption) 

Listing 40 Event content formula for HSEPC Functions with associated Competent Body 

The behavior sequence for an XOR is given in Table 10. 

For one item in collection 

Item Variable Name follower 

Collection CurrentObjectOccurrence.RelationshipOccurrencesWithMeAsSource 

Child Behaviors 
Enable Element Occurrence 

Runtime Instance CurrentRuntimeInstance 

Element Occurrence follower 

Data to pass on EnablementData 

Perform now instead of scheduling it 𝑓𝑎𝑙𝑠𝑒  
 

 

 

Table 10 Behavior sequence for occurrences of HSEPC XOR 

In HSEPC, an AND keeps track of the number of times it was enabled. If the number of its 

enablements equals the number of incoming relationships, it will reset the enablement counter 

and will enable the outgoing relationships in parallel. To implement this concept, our 

CustomStorageData is defined to contain an integer field NumberOfRegisteredTriggerings. The 

loading and storing part of the behavior sequence for an AND is given in Table 11. 



79 

 

Load data 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentObjectOccurrence 

Variable 

Name 
data 

Child 

Behaviors 
If/Then/Else 

Condition data.NumberOfRegisteredTriggerings 
.Plus(1) 
.LessThan( 
   CurrentObjectOccurrence 
   .RelationshipOccurrencesWithMeAsTarget 
   .Count 
) 

Then 

Behaviors 
Store data 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentObjectOccurrence 

Data to be 

stored 

Data 
.WithChanged_NumberOfRegisteredTriggerings( 
    Data 
    .NumberOfRegisteredTriggerings 
    .Plus(1) 
) 

 

 

Else 

Behaviors 
Store data 

Runtime 

Instance 

CurrentRuntimeInstance 

Element 

Occurrence 

CurrentObjectOccurrence 

Data to be 

stored 

Data 
.WithChanged_NumberOfRegisteredTriggerings(0) 

 

[Behaviors to enable outgoing relationships in parallel] 
 

 

 

 

Table 11 Partial behavior sequence for occurrences of HSEPC AND 

The element types Business Object, Competent Body, Business Object to Function, and 

Competent Body to Function themselves do not have behavior sequences assigned to them; the 

behavior sequences of the other element types take them into account. 
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The behavior sequence for enabling a HSPEC model must enable all Event occurrences without 

incoming relationships in parallel. 

7.2.2 Model Checking with HSEPC 

The exemplary process model in Figure 24 has a complexity that a real-life process model might 

also have. We use it to demonstrate our approach working with models that are close to practice. 

Assume we want to make sure in our process design that the emergency team does not enter the 

reactor while it is running. We use the property wizard to define a property capturing this 

requirement. 

In the first step, the property wizard asks questions to determine the property’s scope. The 

questions and answers are shown in Figure 25. 

 

Figure 25 Property Scope page of our Temporal Property Specification Wizard 
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In the second step, the property wizard asks questions to determine the property behaviour. 

The questions and answers are shown in Figure 26. 

 

Figure 26 Property Behavior page of our Temporal Property Specification Wizard 

In the third and last step, the property wizard asks for the events in the property pattern that 

results from the previous answers. The questions and answers are shown in Figure 27. 

 

Figure 27 Event Specification page of our Temporal Property Specification Wizard 

The Temporal Property Specification Wizard generates the property given in Listing 41. While 

the property can easily be expressed in natural language, the resulting formalization is shown 

to be complex and hard to read and understand.  

[true*. ( {{{Event: Reactor is started}}} ) . (not ( {{{Event: Reactor is shut 
down}}} ) )*. ( {{{Function: Enter reactor interior performed by Emergency team}}} 
) ] false 

Listing 41 Exemplary property generated by the Temporal Property Specification Wizard 

Checking if the generated property is fulfilled by our exemplary model yields the result that the 

property is not fulfilled, i.e. the model entails a situation in which the emergency team enters 



82 

 

the reactor while it is running. Inspecting the counterexample information allows us to find the 

elements involved in this situation. The counterexample stack is given in Figure 28. 

 

Figure 28 Counterexample stack for the second case study 

The counterexample stack implies that a situation can happen in which the reactor is shut 

down, then directly started again, and then entered by the emergency team. Double-clicking 

on the last two events allows finding the element occurrences that reported the events. In 

Figure 29, we give sections of the process model with the highlighted elements that the 

second to last event (a), and the last event (b) was reported for. 

 

Figure 29 Highlighted elements relevant for the counterexample of the second case study 

From this information we can deduce: If a weekly inspection happens to occur when reactor is 

in emergency mode, the emergency team might enter a started reactor. Careful inspection of the 

process model would have yielded the same result. We nevertheless hope that our case study 

shows that a situation like this can easily be overlooked already in a comparatively small model.  

(a) 

(b) 
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7.3 Case Study 3 

In practice, models may be interlinked and not all models may use the same modeling 

languages. Using our third case study, we illustrate that our implementation supports cross-

model and cross-language analysis. We further show that it supports events reported for 

Relationships, not just for Objects. Finally, we show how our implementation visualizes 

counterexample information that contain “jumps” from one model to another.  

We introduce HSEPCwI, an extension of HSEPC with the additional object type Interface that 

allows to be refined by a Model. In Figure 30 we show a section of the model of the previous 

case study where the “Check reactor interior” Function is replaced with a corresponding 

Interface. The highlighting can be ignored for now; we cover it further below.  

 

Figure 30 Section of an exemplary HSEPCwI model with highlighted elements 

When enabling an Interface without refinements, its outgoing relationships will be enabled. 

When enabling an Interface with refinements, it will enable the refinement Model in such a 

way that the refinement Model can “jump back” to the refined Interface and pass data to it. The 

Interface then passes this data on to its outgoing relationships. In HSEPCwI, the semantic of 

XOR is slightly different than in HSEPC: If an XOR is enabled with passed data, it will only 

enable outgoing relationships that lead to objects whose captions match this passed data. It does 

not pass on the data any further. 
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Figure 31 An exemplary SDTL model with highlighted elements 

We introduce our Simple Decision Tree Language (SDTL). It has three element types: the 

object types State (represented as a box) and Decision (represented as a rhombus), and a generic 

relationship type (represented as an arrow) that connects any object with another one. In Figure 

31, we give an exemplary SDTL model that refines the Interface object in the HSEPCwI model 

of this case study. Again, the highlighting in the Figure can be ignored for now. 

 

Figure 32 Fragment of the witness information of case study 3 

The decision tree language starts with the first found state without incoming relationships, goes 

through decision tree, interpreting each Decision as an exclusive choice. Once reaching a final 
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state, i.e. a state without outgoing relationships, it enables the object the SDTL model was 

enabled from, passing the caption of the final state.  

For our case study, we want to check if finding green glowing substance in reactor always leads 

to informing the authorities. Using our approach, we find out that this property is fulfilled, i.e. 

whenever green glowing substance is found, the authorities will be informed. We give a 

fragment of the resulting witness information in Figure 32. 

The highlighting in the SDTL model given in Figure 31 reflects the result of double-clicking 

on a “Reactor broken” entry in the witness event stack of Figure 32. The highlighting in the 

HSEPCwI model given in Figure 30 reflects the result of double-clicking on the “Event: 

Authorities are informed” entry. By clicking on events in the event stacks that were reported 

for elements in different models, our implementation allows a user to quickly jump between 

multiple models containing relevant elements. 

As also shown in Figure 30, the color of highlighting changes between the HSEPCwI elements 

that reported events before and after the switch to the refinement model. This demonstrates that 

our implementation allows a user to easily pinpoint where a “jump” to another model took place 

when analyzing the counterexample or witness information for some model. 
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8 Discussion, Outlook and Summary 

In this chapter, we discuss our work’s results by comparing our approach with other process 

model analysis approaches and by identifying obstacles for the practical applicability of our 

approach. We further outline concepts how our approach could be extended and enhanced and 

finally give a summary of our work. 

In the first section, we compare our model checking-based process model analysis approach 

with a class of other model analysis approaches that are not restricted to a specific modeling 

language. In the second section, we discuss the applicability of our approach in practice and 

identify potentials for follow-up work. In the third section, we summarize our work. 

8.1 Comparison with Model Structure-Based Process Model Analysis Approaches 

Besides our approach as presented in this thesis, there is only one class of process model 

analysis approaches known to us that is not restricted to a specific modeling language. 

Approaches in this class allow formulating and checking for properties formulated over the 

structure of a model. We therefore call these approaches “structure-based”. In this section, we 

compare our model checking-based process model analysis approach with structure-based 

approaches.  

One structure-based model analysis approach is based on formulating a property as pattern as a 

tree of operations over sets of model elements. The model’s fulfilment of the property is 

determined by evaluating the operations of the tree and checking if a pattern match was found 

this way. (Delfmann et al. 2010; Delfmann, Steinhorst, et al. 2015) Another such structure-

based approach is based on the subgraph isomorphism problem: A “haystack” graph is derived 

from a business process model’s structure. A property is formulated as a “needle” graph pattern. 

The model’s fulfilment of the property is determined by determining whether the haystack 

graph contains a subgraph that is isomorphic to the needle graph pattern. (Delfmann, Breuker, 

et al. 2015) 

The core difference between model structure-based analysis approaches and our model 

checking-based analysis approach lies in the aspects that input properties can describe: In 

structure-based approaches, properties describe aspects of the structure of process models. In 

our model checking-based approaches, properties describe aspects of the meaning of process 

models, i.e. the events entailed by the models’ execution semantics. 

Most process modeling languages have their own symbols and their own syntax. Therefore, the 

structure of a model for the same set of business processes generally differs between languages. 

When formulating properties for structure-based approaches, a property must be specified for 

a set of anticipated process modeling languages with their respective symbols and syntaxes. If 
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properties should be used to reason about the business processes entailed by some model, the 

execution semantics of the anticipated process modeling languages must be implicitly captured 

in each property. In contrast, our model checking-based approach requires the execution 

semantics to be explicitly specified only once upfront for the required languages; properties can 

then directly describe aspects about the events entailed by process models in languages that 

semantics were specified for. 

We give some user advantages and disadvantages of our model checking-based approach 

compared to the model structure-based approaches. 

Property Specification Effort – Directness of Property Specification Workflow: Specifying 

properties using our approach is arguably more direct, requiring less property specification 

effort: A user can directly specify sequences of forbidden or required events using our approach. 

In structure-based approaches on the other handy, an intermediate step is usually required. In 

this step, a suitable specification must be found for the sequence of forbidden of required events 

that corresponds to a searchable part of the model’s structure. We show with an example that 

finding such a specification can be difficult. 

Take a property that requires an event B to occur at most once in business processes. Using a 

structure-based approach, a naïve specification for such a property could for example be to 

search for an object corresponding to event B and to search for a directed outgoing path from 

this object to another object that also corresponds to event B. The property is fulfilled if no such 

path is found. 

A B

B

 

Figure 33 BPMN model with compensations 

Such a specification is however incomplete as it would not generally report the correct result. 

For example, it the specified structure could not be found in the BPMN model in Figure 33, 

assuming each activity corresponds to an event as specified by the respective activity’s label. 

The model does however entail a process containing two B events: The intermediate throwing 

compensation event (the circle with the two black left-pointing arrows) enables the activity with 

label B that is attached to the compensation boundary event (the circle with the two white left-



88 

 

pointing arrows), followed by enabling the second activity with label B in the normal process 

flow. 

BPMN has several further constructs where the execution semantics does not correspond 

closely to a path through the model structure. Therefore, finding suitable property specifications 

that correspond to parts of the model structure is arguably difficult, and may even be impossible 

for some properties. 

Property Specification Effort – Reusability of Property Specifications: If execution 

semantics for different process modeling languages are appropriately specified for our 

approach, then properties can be specified independently from the process modeling language 

that the models to analyze are created in. A user can re-use such a language-independent 

property for analysis of models in different languages. In structure-based approaches the same 

property might have to be specified differently for different modeling languages, causing more 

property specification effort for the user. 

Property Specification Effort – Reusability of Execution Semantics Specifications: As 

established further above, execution semantics must be captured by every property in structure-

based approaches. In our approach, the execution semantics needs to be explicitly specified 

only once. Depending on the complexity of the process modeling language’s semantic and on 

the analysis goals, the effort to specify execution semantics and temporal properties can 

however still be higher than defining a set of structural patterns. With our approach, economics 

of scale may be realized if many different properties are to be analyzed for models of the same 

languages. In a setting where the number of modeling languages involved in process model 

analysis is mostly constant and low, and the number of involved properties is higher, we expect 

the initial effort to specify execution semantics to pay off, compared to finding suitable model 

structure specifications for each property. 

Understandability of Property Specifications: Property specifications for our approach may 

be less understandable for a user, compared to properties for subgraph isomorphism-based 

approaches that use visual representations for structural patterns. Understanding such a visual 

pattern may arguably be easier than understanding a temporal formula in a complex formulaic 

language like in our approach or in an approach based on set operations. 

Applicability for Different Analysis Goals: Our approach has the goal to enable a user to 

formulate a temporal property and to check if this property is fulfilled by business processes 

entailed through execution semantics by a process model. As such, its application area is 

restricted to fulfilling this goal. Approaches allowing to formulate properties about the structure 

of models may have additional application areas. On this basis, structure-based approaches can 

be considered as arguably being more versatile. 
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Theoretical Computational Complexity: Advantages of the different approaches w.r.t. 

computational complexity depend on the given input model, its underlying execution semantics, 

and the given property. The model checking algorithm employed in our work has a space and 

time complexity linear in the number of operators in the formula and the size of the LTS. 

(CADP manual authors 2017f, sec. Model Checking Complexity) Subgraph isomorphism was 

shown to be NP-complete. (Delfmann, Breuker, et al. 2015, p. 477) From a theoretical point of 

view we expect our approach to work more efficient than subgraph isomorphism-based 

approaches, reducing the user’s waiting times for results. We were not able to find information 

on the space and time complexity of the set operation-based approach and can therefore not 

compare it with our approach w.r.t. algorithmic efficiency. Apart from the theoretical 

computational complexity, it may be interesting to compare how fast and with how much 

memory usage the different approaches perform in practice. 

8.2 Discussion and Outlook on Our Process Model Analysis Approach 

In this section, we derive and identify potentials for future research and for improving and 

enhancing our work by discussing the applicability of our approach and of our implementation.  

In the first subsection, we present potentials that can make implementations of our approach 

more robust or faster. In the second subsection, we present potentials to extend the functionality 

of an implementation of our approach. In the third subsection, we discuss our approach 

conceptually and present ideas to improve and test its applicability. 

Within each subsection, we give the potentials for future work ordered by our expected 

realization effort, starting with the potential that we expect to cause the lowest effort if realized. 

8.2.1 Non-Functional Improvement Potentials 

Making Diagnostics Information Available to Plugin Differently. We rely on parsing of 

AUT files and of their labels to make CADP’s model checking diagnostics information 

available to our plugin. Hubert Garavel, one of CADP’s core maintainers, signalized in 

unpublished communication that the format of labels generated by CADP in AUT files may be 

modified for future version of CADP. Such a modification may require adjusting our parsing 

implementation. 

To avoid such adjustments in the long term, it may be interesting to implement a format-

independent approach of making diagnostics information available to our plugin. As such an 

alternative approach, a new stable file format could be defined for transferring relevant aspects 

of the diagnostics information from the CADP tools to our plugin. A small C-based or C++-

based program could be written to create files in this format. This program could make use of 
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CADP’s C API to read a diagnostics BCG file and would write the information in the newly 

defined format.  

Increasing CADP Performance. The CADP software tools being Unix-targeted and [em] 

being Windows-targeted, the integration of the two toolsets requires difficult solutions that have 

their downsides. In our implementation we run the CADP tools on Cygwin (Cygwin project 

home page authors 2017), a Unix-like environment for Windows. Running the CADP tools this 

way comes with a heavy performance penalty: Processing takes much more time than on a 

“true” Unix system. 

Even with the small models presented in our work, each property validation took several 

minutes on Cygwin. From the long processing times on Cygwin, we assume that our 

implementation operates too slowly for real-world scenarios. An implementation that should be 

applicable to real-world scenarios would need to find a way to reduce processing times 

dramatically. For some examples, we used a Linux system to test running the same CADP 

commands as our plugin does. Model checking completed within only a few seconds on Linux 

for the tested examples. 

This indicates that different way of implementing our approach could increase performance. 

For example, a network-based communication protocol could be designed that allows 

exchanging relevant data between an [em] plugin (running on Windows) and a server 

application (running on a Unix-based system). The server application could perform model 

checking operations using CADP, and send back the results to the [em] plugin. If there was a 

requirement to still run both applications on the same physical computer, a virtual Unix machine 

for the server application could be set up on a Windows system for [em] – or the other way 

around. 

Another alternative may be to make the CADP software tools available for the Windows 

Subsystem for Linux (WSL) (Windows Subsystem for Linux Documentation contributors 

2016). According to unpublished communication from Hubert Garavel, one of the core CADP 

maintainers, the CADP team initially found WSL a promising way to allow for fast model 

checking with CADP on Windows, but finally found the effort to get it running on WSL to be 

too high. 

Generalizing Approach to Use Different Model Checkers. Our implementation is based on 

the CADP tools and tightly coupled with them. It may be interesting to realize our approach 

with different model checkers or to develop a generalized implementation that could easily be 

extended with different model checkers. The different implementations and model checkers 

could then be compared w.r.t. performance and versatility. 
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One especially interesting model checker for such an implementation is mCRL2. As of writing 

this thesis, mCRL2’s witness or counterexample information do not allow to draw conclusions 

about the model elements that are “responsible” for a temporal property to be fulfilled or not 

fulfilled. 

An approach based on mCRL2’s event reachability analysis capability can however generate 

counterexample or witness information that could be used for our approach. In this approach 

temporal properties are translated into “observer” or “monitor” processes. Such a monitor 

process is integrated to a formal process specification and monitors all the reported events. It 

will report a special event if it detects a sequence of events that allows determining the 

fulfillment of the property. Using mCRL2’s event reachability analysis allows finding a 

sequence of events that lead to the special monitor process event being reported. This approach 

does however only work for a limited subset of temporal properties. (Remenska 2016, chap. 

5.4.4; Remenska et al. 2014) 

8.2.2 Functionality-Extending Improvement Potentials 

Introducing Value Object Support. As established in section 4.1, we did not implement 

support for the full [em] data model to keep the demonstration of our approach simple: Values 

carried by Objects are not available in our implementation. If model checking with value-

carrying Objects turns out to be required in practice, support for such values can easily be added 

to our implementation. 

Introducing Reusable Formulaic Expressions and Behaviors. Typical programming 

languages offer the concepts of “functions” and “procedures”, allowing to abstract code that is 

used more than once. Our implementation does not support such concepts to abstract repetitions 

in formulaic expressions or behavior sequences. Extending our approach with such concepts 

may improve the practical usability of our approach and the conciseness of behavior sequences 

as well as formulaic expressions. 

Introducing Syntax Highlighting in Formulaic Expressions. Modern integrated 

development environments support reviewing code through coloring different syntactic 

constructs in different colors. Extending our approach with such syntax highlighting may 

improve the practical usability of an implementation of our approach. 

Extending Event Data Types. Our current implementation only allows to use strings as public 

events. It may be useful to allow further data types in public events. For example, a “Invoice 

paid” event could additionally carry the amount that was paid in a structured way. Our 

implementation requires to encode such information in the event string, e.g. as “Invoice paid 

(Amount: 100 Euro)”. While the data type string is versatile in this regard, temporal property 

specifications can arguably become inconvenient. A property requiring the occurrence of an 
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invoice payment event for any amount would require a suitable event string pattern 

specification that does not take the amount into consideration. A property requiring the 

occurrence of an invoice payment event for an amount larger than some value would even 

require a string parsing mechanism that could interpret the string-encoded amount value in the 

event string. 

The CADP and mCRL2 tools allow events to carry values of different data types. To different 

extends, both solutions also allow specifying data-rich temporal properties, i.e. properties that 

take the values carried by the events into consideration. Extending our approach with the ability 

to report events carrying additional data in different types may make the specification of 

properties easier in settings with data. Extending our approach further to allow a user to specify 

more than the two pre-defined custom data types may further increase the applicability of our 

approach. 

Enabling Analysis with Infinite Data Types. The CADP tools work under the assumption of 

finite data types. For example, integer values in our implementation are 16-bit values, i.e. only 

integers in the range −32,768 through 32,767 can be used in formal processes defined with our 

implementation. While this range may arguably be sufficient for many practical problems, there 

may be formal processes requiring larger and possibly infinite data type ranges. Such processes 

cannot meaningfully be checked with CADP. 

Model checking such a process requires different approaches. Translating a formal process 

specification not into a LTS but into a Symbolic Transition System was proposed as such an 

approach. (Calder et al. 2001; Calder and Shankland 2001) Using a first-order extension of µ-

calculus was proposed as another one. (Groote and Mateescu 1999) We assume that such 

approaches need to be adopted for our approach to handle process model analysis problems 

requiring more complex data types. 

Making Counterexample Information More Tangible. In subsections 7.1.3 and 7.2.2, we 

demonstrated that counterexample or witness information can be helpful for understanding why 

a property is fulfilled or not fulfilled. We assume however that counterexample or witness 

information may be more complex and hard to understand when applying our approach on real-

world business process models that especially handle much variable data. In the context of 

model checking for computer program code, tools were developed to make understanding 

counterexample and witness information easier and more tangible. 

For example, one such tool can produce a variation of counterexample information that is close 

to the original counterexample but does not violate the fulfilment of a property. (Groce et al. 

2004) Another tool allows to find test vectors for a target predicate, i.e. tuples of input values 

for a program that lead to a predicate to be satisfied. Using these input values, the dynamic 

behavior of the program can be studied to gain further insight into reasons for the predicate to 



93 

 

be satisfied. (Beyer et al. 2004) It may be interesting to adopt such approaches for the context 

of model checking for business process models. 

8.2.3 Conceptual Future Work 

Improving Assistance in and Accessibility of Temporal Property Specification. In section 

7.2.2, we demonstrated how a temporal property can be generated with the Temporal Property 

Specification Wizard. Despite being a property with a simple natural language specification, its 

formal specification is complex and difficult to understand. 

We expect the complexity of temporal property specifications to be barely manageable in more 

complex scenarios that might be required in practice, and we assume that most process model 

analysis practitioners do not have deep knowledge around temporal property specification. We 

argue that it is a difficult task to convey knowledge required to understand complex temporal 

properties in languages inspired by or based on the µ-calculus. We assume that most 

practitioners would not accept an analysis approach that requires such deep formal knowledge 

to produce results that are of practical use. 

On this basis, we assume that strong assistance in specifying temporal properties is a necessity 

to ensure acceptance for a model checking-based business process analysis approach. While the 

Temporal Property Specification Wizard in our implementation is providing helpful assistance 

already, we assume that further assistance is required for more complex property requirements. 

Another way to make temporal properties more accessible may be the introduction of a visual 

notation for them. An example for such a visual notation is an BPMN-inspired one that was 

proposed for LTL. (Brambilla 2005) In the context of model checking for computer programs, 

another visual notation was proposed that was inspired by UML sequence diagrams. (Remenska 

2016, chap. 5.4.3) It may be interesting to design a visual notation for MCL or similar temporal 

specification languages based on the µ-calculus and to implement a functionality that allows a 

user to specify or analyze properties in such a visual notation. 

Testing Applicability of Approach. In section 2.1, we defined a “business process” using a 

simplification that stripped away any relevance towards a business need. For the perspective of 

our work, we could use this simplification. However, with process models typically being 

defined with a business need in mind, we assume that business process analysis should usually 

help to fulfill a business need. On this basis we assume that process model analysis is only 

helpful if conclusions drawn from an analysis can be translated back into the reality that the 

models and their execution semantics should describe. 

From this argument, another aspect of our approach can be derived that may be an obstacle for 

practical application of our approach: the mutual dependency between models with their 
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content, specifications of formal execution semantics, and specifications of properties. We 

explain this triangular dependency in pairs: 

a) Execution semantics specifications and property specifications may not fit together, for 

example because the events entailed through execution semantics have a different 

representation than expected in temporal properties. For illustration, take a temporal property 

that requires an event “Activity ‘Pay Invoice’ performed” to occur, and assume that the 

execution semantics entails only the congruent but differently represented event “Pay Invoice 

function executed”, i.e. an event with a different string representation than used in the property. 

b) Execution semantics specifications and models with their content may not fit together, for 

example because execution semantics were specified under specific expectations about models 

and their content, but models do not meet these expectations. For illustration, assume that 

execution semantics is specified under the assumption that each activity has an assigned 

responsible person, but some models have activities without such a person.  

c) Property specifications and models with their content may not fit together, for example 

because properties refer to events that do not have corresponding elements in models. This may 

be a result of models’ low granularity. For illustration, take a temporal property that requires 

an event “Activity ‘Login to Online Banking System’ performed” to occur, and a model with 

an event “Activity ‘Pay Invoice’ performed”. Assume that paying the invoice implicitly 

requires logging in to the Online Banking system without the model explicitly capturing this 

implicit relationship.  

While the temporal property in the illustration for a) and c) is fulfilled on a conceptual level, 

the misalignment between execution semantics, the property specifications, and models with 

their content would make model checking yield a result that indicates non-fulfillment. In the 

illustration for b), model checking may even yield an undefined result or an error. These 

illustrations demonstrate that one of the three elements not being aligned with the other two 

causes the model checking result to not be helpful for a business process model analyst. For our 

approach to be applicable to real-world business process model analysis problems, we expect 

aligning these three elements to be a challenge. 

In this mutual dependency, we expect real-world models to be particularly challenging for our 

approach’s practical applicability: While in much literature the elicitation and representation of 

reality in the course of modeling is regarded as largely unproblematic, it was argued that 

representations of the reality like business process models are generally perspectival 

simplifications with inherent limits. (Riemer et al. 2013) A possible implication of this 

argument is: Business process models may not generally capture all pieces of information that 

are required for meaningful analysis. 
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It may therefore be interesting to test the applicability of our approach in real-world scenarios. 

It may also be interesting to compare the real-world applicability of different analysis 

approaches. 

8.3 Summary 

We presented a business process model analysis approach based on model checking. We 

introduced languages for describing a process model’s execution semantics at the level of its 

modeling language by formulating behavior sequences and assigning them to models and their 

elements on the meta-level. 

Given a model, its meta model, given execution semantics described on the model’s meta-level, 

and given some temporal property, our approach uses model checking algorithms to determine 

if the model fulfills the temporal property and to get a hint why the property is fulfilled or why 

it is not, respectively. 

We surveyed model checkers that an implementation of our approach could be based on and 

selected the Construction and Analysis of Distributed Processes (CADP) model checker as the 

base of our implementation. We developed an approach to translate [em] data and assigned 

behavior sequences into process specifications that can be processed by the CADP model 

checker. We developed a macro extension for the CADP-supported temporal property 

specification language MCL that allows a user to formulate properties easily while keeping the 

possibility of mapping events from counterexample or witness information back to model 

elements that they were reported for. 

We collected requirements that an implementation of our approach must fulfill to be usable for 

a user. We developed a plugin for [em] that implements our approach. Finally, using our [em] 

plugin, we demonstrated in three case studies how our implementation can be used in practice. 

We discussed the applicability of our approach and our implementation and named various 

ways how they can be extended and enhanced. While our approach proved to work in our 

exemplary artificial case studies, we also identified obstacles for the practical applicability of 

our approach. It would therefore be interesting to test in future work if our approach is 

applicable to real-world business process model analysis problems. 

 



96 

 

References 

The URLs in this bibliography were all valid when last accessed on 2017-12-10. 

.NET Docs contributors 2017. “.NET Regular Expressions Reference,” in .NET Docs. 

Available at: https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-

expressions. 

van der Aalst, W. M. P., Desel, J., and Kindler, E. 2002. “On the semantics of EPCs: A 

vicious circle,” in Proceedings of the EPK 2002: Geschäftsprozessmanagement mit 

Ereignisgesteuerten Prozessketten, M. Rump and F.J. Nuttgens (eds.), Trier, Germany: 

Gesellschaft für Informatik, pp. 71–80. 

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P. 2003. 

“Workflow Patterns,” Distributed and Parallel Databases (14:1), pp. 5–51. 

van der Aalst, W. M. P., and ter Hofstede, A. 2017. “Workflow Patterns Home Page.” 

Available at: http://www.workflowpatterns.com/. 

American National Standard for Information Standards 1986. Coded Character Sets — 7-Bit 

American Standard Code for Information Interchange (7-Bit ASCII) ANSI X3.4-1986. 

Arsac, W., Compagna, L., Pellegrino, G., and Ponta, S. E. 2011. “Security Validation of 

Business Processes via Model Checking,” Lecture Notes in Computer Science (6542), 

pp. 29–42. 

Becker, J., Breuker, D., Weiß, B., and Winkelmann, A. 2010. “Exploring the Status Quo of 

Business Process Modelling Languages in the Banking Sector – An Empirical Insight 

into The Usage of Methods in Banks,” ACIS 2010 Proceedings, p. Paper 8. 

Becker, J., Delfmann, P., Dietrich, H.-A., Steinhorst, M., and Eggert, M. 2014. “Business 

process compliance checking - applying and evaluating a generic pattern matching 

approach for conceptual models in the financial sector,” Information Systems Frontiers 

(17), pp. 1–47. 

Becker, J., Delfmann, P., and Knackstedt, R. 2004. “Konstruktion von 

Referenzmodellierungssprachen - Ein Ordnungsrahmen zur Spezifikation von 

Adaptionsmechanismen für Informationsmodelle,” Wirtschaftsinformatik (46:4), pp. 

251–264. 

Becker, J., and Schütte, R. 2004. Handelsinformationssysteme, MI Wirtschaftsbuch. 

Bergstra, J. A., and Klop, J. W. 1984. “Process Algebra for Synchronous Communication,” 

Information and Control (60:1–3), pp. 109–137. 

Beyer, D., Chlipala, A. J., Henzinger, T. A., Jhala, R., and Majumdar, R. 2004. “Generating 

Tests from Counterexamples,” in Proceedings of the 26th International Conference on 

Software Engineering, Edinburgh, United Kingdom: ACM, pp. 326–335. 

Bolognesi, T., and Brinksma, E. 1987. “Introduction to the ISO Specification Language 

LOTOS,” Computer Networks and ISDN Systems (14:1), pp. 25–59. 



97 

 

Brambilla, M. 2005. LTL Formalization of BPML Semantics and Visual Notation for Linear 

Temporal Logic. 

CADP manual authors 2017a. “AUT manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/aut.html. 

CADP manual authors 2017b. “BCG_WRITE manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/bcg_write.html. 

CADP manual authors 2017c. “BCG manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/bcg.html. 

CADP manual authors 2017d. “BISIMULATOR manual page,” in CADP website. Available 

at: http://cadp.inria.fr/man/bisimulator.html. 

CADP manual authors 2017e. “EVALUATOR4 manual page,” in CADP website. Available 

at: http://cadp.inria.fr/man/evaluator4.html. 

CADP manual authors 2017f. “MCL manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/mcl.html. 

CADP manual authors 2017g. “REDUCTOR manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/reductor.html. 

CADP manual authors 2017h. “regexp manual page,” in CADP website. Available at: 

http://cadp.inria.fr/man/regexp.html. 

Calder, M., Maharaj, S., and Shankland, C. 2001. “An Adequate Logic for Full LOTOS,” in 

Proceedings of the 10th International Symposium of Formal Methods Europe, Berlin, 

Germany: Springer, pp. 384–394. 

Calder, M., and Shankland, C. 2001. “A Symbolic Semantics and Bisimulation for Full 

LOTOS,” in Proceedings of the 21st International Conference on Formal Techniques for 

Networked and Distributed Systems (FORTE 2001), pp. 184–200. 

Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McKinty, C., et al. 2017. 

Reference manual of the LNT to LOTOS translator (version 6.7), INRIA. 

Clarke, E. M., and Emerson, E. A. 1981. “Design and Synthesis of Synchronization Skeletons 

Using Branching Time Temporal Logic,” Lecture Notes in Computer Science (131). 

Clarke, E. M. 2008. “The Birth of Model Checking,” Lecture Notes in Computer Science 

(5000), pp. 1–8. 

Cygwin project home page authors 2017. “Cygwin project home page.” Available at: 

https://cygwin.com/. 

Davenport, T. H. 1993. Process Innovation: Reengineering Work Through Information 

Technology, Harvard Business School Press. 

  



98 

 

Delfmann, P., Breuker, D., Matzner, M., and Becker, J. 2015. “Supporting Information 

Systems Analysis Through Conceptual Model Query - The Diagramed Model Query 

Language (DMQL),” Communications of the Association for Information Systems (37), 

pp. 473–509. 

Delfmann, P., Herwig, S., Karow, M., and Lis, Ł. 2008. “Ein konfiguratives 

Metamodellierungswerkzeug,” Proceedings of the Workshops Colocated with the 

MobIS2008 Conference: Including EPK2008, KobAS2008 and ModKollGP2008, pp. 

109–127. 

Delfmann, P., and Hübers, M. 2015. “Towards Supporting Business Process Compliance 

Checking with Compliance Pattern Catalogues,” Enterprise Modelling and Information 

Systems Architectures (10:1), pp. 67–88. 

Delfmann, P., Sebastian, H., Lis, Ł., Stein, A., Tent, K., and Becker, J. 2010. “Pattern 

Specification and Matching in Conceptual Models,” Enterprise Modelling and 

Information Systems Architectures (5:3), pp. 24–43. 

Delfmann, P., Steinhorst, M., Dietrich, H. A., and Becker, J. 2015. “The generic model query 

language GMQL - Conceptual specification, implementation, and runtime evaluation,” 

Information Systems (47), pp. 129–177. 

van Dongen, B. F., Jansen-Vullers, M. H., Verbeek, H. M. W., and van der Aalst, W. M. P. 

2007. “Verification of the SAP reference models using EPC reduction, state-space 

analysis, and invariants,” Computers in Industry (58:6), pp. 578–601. 

Emerson, E. A., and Lei, C.-L. 1986. “Efficient Model Checking in Fragements of the 

Propositional Mu-Calculus (Extended Abstract),” in Proceedings of the First Annual 

IEEE Symposium on Logic in Computer Science (LICS 1986), Cambridge, MA, USA: 

IEEE Computer Society Press, pp. 267–278. 

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994. Design Patterns: Elements of 

Reusable Object-Oriented Software, Addison-Wesley. 

Groce, A., Kroening, D., and Lerda, F. 2004. “Understanding Counterexamples with explain,” 

Computer Aided Verification (3114), pp. 318–321. 

Groote, J. F., and Mateescu, R. 1999. “Verification of Temporal Properties of Processes in a 

Setting with Data,” Lecture Notes in Computer Science (1548), pp. 74–90. 

Hammer, M., and Champy, J. 1993. Reengineering the Corporation: A Manifesto for Business 

Revolution, Harper Business. 

Hoare, C. A. R. 1978. “Communicating Sequential Processes,” Communications of the ACM 

(21:8), pp. 666–677. 

Hoare, C. A. R. 1980. “A Model for Communicating Sequential Processes,” in On the 

Construction of Programs, R.M. McKeag and A.M. McNaghton (eds.), London, United 

Kingdom; New York, United States of America: Cambridge University Press, pp. 229–

243. 

International Organization for Standardization 1989. Binary floating-point arithmetic for 

microprocessor systems (ISO/IEC 559:1989). 



99 

 

International Organization for Standardization 2011. Information technology – Programming 

languages – C (ISO/IEC 9899:2011). 

International Organization for Standardization 1996. Information technology – Syntactic 

metalanguage – Extended BNF (ISO 14977:1996). 

International Union of Railways (UIC), Railsafe Consulting Ltd., University of York, 

University of Southampton, and Laboratory for Quality Software (LaQuSo) 2009. 

INESS_WS D_Deliverable D.4.1_Documented strategy for Verification and 

Validation_Report. 

Keller, G., Nüttgens, M., and Scheer, A.-W. 1992. “Semantische Prozeßmodellierung auf der 

Grundlage ‘Ereignisgesteuerter Prozeßketten (EPK),’” Veröffentlichungen des Instituts 

für Wirtschaftsinformatik (IWi), Universität des Saarlandes (89). 

Kozen, D. 1982. “Results on the Propositional µ-Calculus,” in Proceedings of the Special 

Issue 9th International Colloquium on Automata, Languages and Programming, Aarhus, 

Denmark: Elsevier, pp. 333–354. 

Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., and Heljanko, K. 2012. “Model 

checking of safety-critical software in the nuclear engineering domain,” Reliability 

Engineering and System Safety (105), pp. 104–113. 

Lamport, L. 1977. “Proving the Correctness of Multiprocess Programs,” IEEE Transactions 

on Software Engineering (SE-3:2), pp. 125–143. 

Mateescu, R., and Thivolle, D. 2008. “A Model Checking Language for Concurrent Value-

Passing Systems,” in Proceedings of the 15th International Symposium on Formal 

Methods, Turku, Finland: Springer, pp. 148–164. 

Mendling, J. 2007. “Detection and Prediction of Errors in EPC Business Process Models.” 

Microsoft Corporation 2017a. “How to: Create and customize a web app in Access,” in 

MSDN Library. Available at: https://msdn.microsoft.com/en-us/library/jj249372.aspx. 

Microsoft Corporation 2017b. “System.Double.Parse Method,” in .NET Framework 

documentation. Available at: https://msdn.microsoft.com/en-

us/library/fd84bdyt(v=vs.110).aspx. 

Microsoft Corporation 2017c. “System.Int32.Parse Method,” in .NET Framework 

documentation. Available at: https://msdn.microsoft.com/en-

us/library/b3h1hf19(v=vs.110).aspx. 

Milner, R. 1980. A Calculus of Communicating Systems, University of Edinburgh. 

Department of Computer Science. Laboratory for Foundations of Computer Science. 

Object Management Group 2011. Business Process Model and Notation (BPMN) Version 2.0. 

Object Management Group 2015. OMG Unified Modeling Language (OMG UML) Version 

2.5. 

  



100 

 

Pnueli, A. 1977. “The Temporal Logic of Programs,” in Proceedings of the 18th Annual 

Symposium on Foundations of Computer Science, Providence, Rhode Island, United 

States of America: IEEE, pp. 46–57. 

Pribnow, H. 2016a. “How to pick any element of a list (and optionally delete it),” in CADP 

forums. Available at: http://cadp.forumotion.com/t443-how-to-pick-any-element-of-a-

list-and-optionally-delete-it (Free Registration Required). 

Pribnow, H. 2016b. “Parser generator for C# target that enables IntelliSense-like code auto-

completion?,” in StackEchange Community “Software Recommendations.” Available at: 

https://softwarerecs.stackexchange.com/questions/30229/parser-generator-for-c-target-

that-enables-intellisense-like-code-auto-completi. 

Raedts, I., Petkovic, M., Usenko, Y. Y. S., van der Werf, J. M. E. M., Groote, J. F., and 

Somers, L. J. 2007. “Transformation of BPMN Models for Behaviour Analysis.,” in 

Proceedings of the 5th International Workshop on Modelling, Simulation, Verification 

and Validation of Enterprise Information Systems (MSVVEIS-2007), pp. 126–137. 

Remenska, D., Willemse, T. A. C., Templon, J., Verstoep, K., and Bal, H. 2014. “Property 

Specification Made Easy: Harnessing the Power of Model Checking in UML Designs,” 

in Lecture Notes in Computer Science, Berlin, Germany: Springer, pp. 17–32. 

Remenska, D. 2016. “Bringing Model Checking Closer To Practical Software Engineering.” 

Resnick, M., Kafai, Y., and Maeda, J. 2003. “A Networked, Media-Rich Programming 

Environment to Enhance Technological Fluency at After-School Centers in 

Economically-Disadvantaged Communities.” 

Riemer, K., Hovorka, D., Johnston, R. B., and Indulska, M. 2013. “Challenging the 

Philosophical Foundations of Modeling Organizational Reality: The Case of Process 

Modeling,” in Thirty Fourth International Conference on Information Systems (ICIS 

2013). 

Smith, J. 2009. “Patterns - WPF Apps With The Model-View-ViewModel Design Pattern,” in 

MSDN Magazine Blog. Available at: https://msdn.microsoft.com/en-

us/magazine/dd419663.aspx. 

Stirling, C. 1996. “Modal and Temporal Logics for Processes,” Lecture Notes in Computer 

Science (1043), pp. 149–237. 

Technische Universiteit Eindhoven 2017. “Introduction to mCRL2,” in mCRL2 Language 

Reference. Available at: http://www.mcrl2.org/web/user_manual/introduction.html. 

Wikipedia contributors 2017a. “List of model checking tools,” in Wikipedia, The Free 

Encyclopedia. Available at: 

https://en.wikipedia.org/w/index.php?title=List_of_model_checking_tools&oldid=79563

7856. 

Wikipedia contributors 2017b. “Nullable type,” in Wikipedia, The Free Encyclopedia. 

Available at: 

https://en.wikipedia.org/w/index.php?title=Nullable_type&oldid=798046589. 

  



101 

 

Wikipedia contributors 2017c. “Process modeling,” in Wikipedia, The Free Encyclopedia. 

Available at: 

https://en.wikipedia.org/w/index.php?title=Process_modeling&oldid=792507909. 

Windows Subsystem for Linux Documentation contributors 2016. “Windows Subsystem for 

Linux Documentation,” in Microsoft Developer Network. Available at: 

https://msdn.microsoft.com/commandline/wsl/about. 

 



102 

 

Appendix A Semantics of Formulaic Expression Language 

In this appendix, we define semantics of our formulaic expression language. 

We formally define a set of environments as 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = {(𝑝, 𝑚) | 𝑝 ∈

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑚 ∈ 𝑀} where 𝑝 is the “parent” environment, and 𝑚 is a map from identifiers 

to values. 𝑀 is the set of all possible functions that map an identifier to a value, formally 𝑀 =

{𝐼𝑝 → 𝑉 | 𝐼𝑝 ∈ 𝑃(𝐼), 𝑉 ∈ ⋃ 𝑇𝑇∈𝑇𝑦𝑝𝑒𝑠 } where 𝑃 is the function to derive a set’s power set, 𝐼 is 

the set of all possible identifiers, and 𝑇𝑦𝑝𝑒𝑠 = {𝐵𝑜𝑜𝑙, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝑆𝑡𝑟𝑖𝑛𝑔, … } is the set of all data 

types supported by the formulaic expression language. 

On this basis, we give a recursive definition of a function 𝑒𝑣𝑎𝑙 that takes a formulaic expression 

𝑒𝑥𝑝 in our language and an environment 𝑒𝑛𝑣, and returns the value that 𝑒𝑥𝑝 evaluates to. 

We start with introducing Base token semantics. We denote a Base by its type name followed 

by its bracket-enclosed string value or a bracket-enclosed identifier that plays the role of a 

placeholder for its string value. The first part of the 𝑒𝑣𝑎𝑙 function is defined as follows: 

 𝑒𝑥𝑝 = 𝐵𝑜𝑜𝑙𝑒𝑎𝑛("true") → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑡𝑟𝑢𝑒 

 𝑒𝑥𝑝 = 𝐵𝑜𝑜𝑙𝑒𝑎𝑛("false") → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑓𝑎𝑙𝑠𝑒 

 𝑒𝑥𝑝 = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐼𝑛𝑡32. 𝑃𝑎𝑟𝑠𝑒(𝑟) where 

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐼𝑛𝑡32. 𝑃𝑎𝑟𝑠𝑒 is as defined in 

(Microsoft Corporation 2017c). 

 𝑒𝑥𝑝 = 𝑆𝑡𝑟𝑖𝑛𝑔(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑟𝑝 where 𝑟𝑝 is 𝑟 

without the first and the last character 

and where all occurrences of \" are 

replaced with " and then all occurrences 

of \\ are replaced with \. 

 𝑒𝑥𝑝 = 𝐷𝑜𝑢𝑏𝑙𝑒(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑆𝑦𝑠𝑡𝑒𝑚. 𝐷𝑜𝑢𝑏𝑙𝑒. 𝑃𝑎𝑟𝑠𝑒(𝑟𝑠) where 𝑟𝑠 is 

𝑟 without the first and the last character, 

and 𝑆𝑦𝑠𝑡𝑒𝑚. 𝐷𝑜𝑢𝑏𝑙𝑒. 𝑃𝑎𝑟𝑠𝑒 is as 

defined in (Microsoft Corporation 

2017b). 

To formally specify the evaluation of identifiers, we a helper function called 𝑙𝑜𝑜𝑘𝑢𝑝. Given an 

environment and an identifier, this function tries to find and return a mapped value for the 
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identifier from a search in the given environment and a recursive iteration through the chain of 

its parent environments. If it does not find the identifier, it returns 𝑛𝑢𝑙𝑙. We formally define 

𝑙𝑜𝑜𝑘𝑢𝑝 as follows: 

 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣, 𝑖𝑑) = {
𝑒𝑛𝑣1(𝑖𝑑) where 𝑖𝑑 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑒𝑛𝑣1)

𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣0, 𝑖𝑑) where 𝑖𝑑 ∉ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑒𝑛𝑣1) ∧ 𝑒𝑛𝑣0 ≠ ∅
𝑛𝑢𝑙𝑙 else

. 

We formally specify how to evaluate an Identifier. The 𝑒𝑣𝑎𝑙 function is defined for 

Identifier as follows: 

 𝑒𝑥𝑝 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟(𝑟) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) = 𝑙𝑜𝑜𝑘𝑢𝑝(𝑒𝑛𝑣, 𝑟). 

We introduce accessor semantics. To formally specify the evaluation of accessors, we make use 

of a helper function called 𝑎𝑝𝑝𝑙𝑦. We give an intuition and then explain parts of its definition. 

The 𝑎𝑝𝑝𝑙𝑦 function is a ternary function taking a value of any data type in our language as its 

first argument, a PropertyAccessor, FunctionAccessor, or LambdaAccessor as its second 

argument, and an environment as its third argument. It yields a value of some data type in our 

language. Informally, 𝑎𝑝𝑝𝑙𝑦 yields the result of applying an accessor to a value. For example, 

when provided with a Boolean value 𝑏, a PropertyAccessor with the string value Inverse and 

some environment, it yields the inverse (i.e. the negation) of 𝑏. 

We extend the definition of the 𝑒𝑣𝑎𝑙 function with 𝑎𝑝𝑝𝑙𝑦 to define evaluations of Formulas 

with Accessors: 

 𝑒𝑥𝑝 = 𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝑓) “. ” 𝐴𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑎) → 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, 𝑒𝑛𝑣) =

𝑎𝑝𝑝𝑙𝑦(𝑒𝑣𝑎𝑙(𝑓, 𝑒𝑛𝑣), 𝑎, 𝑒𝑛𝑣) 

We exemplarily show partial definitions for 𝑎𝑝𝑝𝑙𝑦 for each of the three Accessor types. 

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for PropertyAccessors on Boolean values. Let 𝑏 be a Boolean 

value different from 𝑛𝑢𝑙𝑙. Let 𝑝𝑎(𝑖𝑑) a PropertyAccessor with identifier 𝑖𝑑. Then: 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑝𝑎(“𝐼𝑛𝑣𝑒𝑟𝑠𝑒”), 𝑒𝑛𝑣) = {
¬𝑏 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨  𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙
 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑝𝑎(“𝐴𝑠𝑆𝑡𝑟𝑖𝑛𝑔”), 𝑒𝑛𝑣) = {

”true” 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒
”false” 𝑖𝑓 𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙
 

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for FunctionAccessors, also on Boolean values. Let 

𝑓𝑎(𝑖𝑑, 𝑎𝑟𝑔𝑠) be a FunctionAccessor with some identifier 𝑖𝑑 and a sequence of Formulas 𝑎𝑟𝑔𝑠 

that is derived from recursive iteration of its ArgumentList. Then: 
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 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐴𝑛𝑑”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

 {
 𝑏 ∧  𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨  𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙
 

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean. 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝑂𝑟”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{
 𝑏 ∨ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨  𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙
  

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean. 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝑋𝑜𝑟”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

 {
 𝑏 ⊕  𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) 𝑖𝑓 𝑏 = 𝑡𝑟𝑢𝑒 ∨  𝑏 = 𝑓𝑎𝑙𝑠𝑒

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑏 = 𝑛𝑢𝑙𝑙
 

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean. 

⊕ symbolizes the logical operation “exclusive or”. 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐸𝑞𝑢𝑎𝑙𝑠”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑛𝑢𝑙𝑙

𝑡𝑟𝑢𝑒 𝑖𝑓 𝑏 =  𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣)

𝑓𝑎𝑙𝑠𝑒 𝑖𝑓 𝑏 ≠ 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣)
                     

where |𝑎𝑟𝑔𝑠| = 1 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean. 

 𝑎𝑝𝑝𝑙𝑦(𝑏, 𝑓𝑎(“𝐼𝑓𝐸𝑙𝑠𝑒”, 𝑎𝑟𝑔𝑠), 𝑒𝑛𝑣) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) = 𝑛𝑢𝑙𝑙

𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠1, 𝑒𝑛𝑣) 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) =  𝑡𝑟𝑢𝑒

𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠2, 𝑒𝑛𝑣) 𝑖𝑓 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) =  𝑓𝑎𝑙𝑠𝑒

 

where |𝑎𝑟𝑔𝑠| = 2 and 𝑒𝑣𝑎𝑙(𝑎𝑟𝑔𝑠0, 𝑒𝑛𝑣) is Boolean. 

We give a partial 𝑎𝑝𝑝𝑙𝑦 definition for LambdaAccessors on Collection values. Let 

𝑙𝑎(𝑖𝑑, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑒𝑥𝑝) a LambdaAccessor with identifier 𝑖𝑑, formula 𝑒𝑥𝑝, and a sequence of 

identifiers 𝑝𝑎𝑟𝑎𝑚𝑠 that is derived from recursive iteration of its LambdaParameterList. Let 𝑐 

be a Collection (for any type) that is different from 𝑛𝑢𝑙𝑙. Let 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) be 𝑐’s members. 

Then: 

 𝑎𝑝𝑝𝑙𝑦(𝑐, 𝑙𝑎(“𝐴𝑙𝑙”, 𝑝𝑎𝑟𝑎𝑚𝑠, 𝑒𝑥𝑝)) =

{

𝑛𝑢𝑙𝑙 𝑖𝑓 ∃𝑚 ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) ∶ 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, (𝑒𝑛𝑣, {(𝑝𝑎𝑟𝑎𝑚𝑠0, 𝑚)})) = 𝑛𝑢𝑙𝑙 

𝑡𝑟𝑢𝑒 𝑖𝑓 ∀𝑚 ∈ 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑐) ∶ 𝑒𝑣𝑎𝑙(𝑒𝑥𝑝, (𝑒𝑛𝑣, {(𝑝𝑎𝑟𝑎𝑚𝑠0, 𝑚)})) =  𝑡𝑟𝑢𝑒
𝑓𝑎𝑙𝑠𝑒 𝑒𝑙𝑠𝑒

 

where |𝑝𝑎𝑟𝑎𝑚𝑠| = 2. 

The remaining definition of 𝑎𝑝𝑝𝑙𝑦 corresponds to the informal descriptions given in Appendix 

C. For all combinations of arguments where there is not definition given, 𝑎𝑝𝑝𝑙𝑦 yields 𝑛𝑢𝑙𝑙. 
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Appendix B ESDL Formal Specification 

In this appendix, we give a formal specification of our ESDL. To do so, we introduce a 

formalization to describe assignments of behavior sequences to ElementOccurrences and 

Models on the ElementType and Language level, respectively. On this basis, we describe an 

abstract machine and its state space, and we formally define behaviors and their effects on the 

state. Finally, we show how an LTS could be derived with our abstract machine. 

B.a Assignment of Behavior Sequences to Element Occurrences and Models 

We introduce our formalization of assigning behaviors to Element Occurrences and to Models 

on the Element Type and Language level, respectively. As a foundation, we introduce the 

concept “scope”. Let 𝑆𝑐𝑜𝑝𝑒 be a set of [em] Projects. 

Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 the set of all possible instances of all Behavior types with all possible arguments. 

Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 the set of all sequences of 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 elements. Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟 

be the union of the set of Languages used in Models in 𝑆𝑐𝑜𝑝𝑒’s Projects, and of the set of the 

ElementTypes in these Languages. Let 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔 be the set of all possible mappings 

from 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐶𝑎𝑟𝑟𝑖𝑒𝑟 to sequences of 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟. 

In the following we assume that a user has defined a behavior mapping as some 𝑏𝑚 ∈

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑀𝑎𝑝𝑝𝑖𝑛𝑔. 

B.b Introduction into Our Abstract Machine 

We introduce some basic definitions required to formally describe the abstract machine’s state 

and its execution semantics. 

Let 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 be the union of the set of all Models in the Projects in 𝑆𝑐𝑜𝑝𝑒, and of the set of the 

ElementOccurrences in these Models. 

Let 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘 = 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 × 𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎 where 

CustomEnablementData is as defined by the user. Let 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 be the set of 

multisets consisting of elements in 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘. 

Let 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 = {𝑒𝑜 → 𝑑 | 𝑒𝑜 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒, 𝑑 ∈ 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎}, i.e. 

the set of all possible mappings from ElementOccurrence elements to a CustomStorageData 

value. Let 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 = {𝑟𝑖 → 𝑑𝑚 | 𝑟𝑖 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑑𝑚 ∈ 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝}, 

i.e. the set of all possible mappings from RuntimeInstance elements to an 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 

element. 
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Let 𝐸𝑣𝑒𝑛𝑡 = 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝑆𝑡𝑟𝑖𝑛𝑔. Let 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 be a sequence of 𝐸𝑣𝑒𝑛𝑡 

elements. 

Having the pre-requisites defined, we describe our abstract machine. 

Let 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒 = 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒. Then we 

can define our abstract machine’s 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 as the powerset of 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒. Given some 

𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒, the transition of our abstract machine to 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖+1 ∈ 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 

can be defined using a function 𝑡𝑟𝑎𝑛𝑠: 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒. We establish further 

concepts to define this function concisely. 

We introduce a family of functions 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣: 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟 × 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 ×

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. Given a 

behavior, an initial enablement task list, an initial data repository, and a sequence of previously 

reported events, each 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 yields a new set of single states. As an intuition, 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 

describes the possible effects of executing a single behavior. We define 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 in the 

following subsections. For brevity, we write 𝑒(𝑏) for 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣(𝑏, 𝑡𝑙, 𝑑𝑟). 

We further define a family of functions 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣: 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ×

𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐸𝑣𝑒𝑛𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡. Given a sequence of behaviors, an initial enablement task list, an initial data 

repository, and a sequence of previously reported events, each 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 yields a new set of 

single states. As an intuition, 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣 describes the effects of executing a sequence of 

behaviors. 

We use a recursive definition for 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣. For an empty behavior sequence, we define 

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣  as: 

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣(( ), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) = {(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)}. 

For a non-empty behavior sequence, i.e. for |𝑏𝑠| > 0, we define 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣  as: 

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣((𝑏𝑠0, … , 𝑏𝑠𝑛), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

= ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣((𝑏𝑠1, … , 𝑏𝑠𝑛), 𝑡𝑙∗, 𝑑𝑟∗, 𝑒𝑠∗)
(𝑡𝑙∗,𝑑𝑟∗,𝑒𝑠∗)∈

𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣(𝑏𝑠0,𝑡𝑙,𝑑𝑟,𝑒𝑠)

. 

Let 𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠, 𝑖, 𝑑) be the environment with the mappings 

 CurrentRuntimeInstance → 𝑖, 

 EnablementData → 𝑑, 

 CurrentModel → 𝑠 if 𝑠 ∈ 𝑀𝑜𝑑𝑒𝑙, 
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 CurrentObjectOccurrence → 𝑠 if 𝑠 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒, 

 CurrentRelationshipOccurrence → 𝑠 if 𝑠 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒. 

Let 𝑡: 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 → 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒 ∪ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 the function where 𝑡(𝑠) yields the Language of 

𝑠 if 𝑠 ∈ 𝑀𝑜𝑑𝑒𝑙, or the ElementType of 𝑠 if 𝑠 ∈ 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒. Let 𝑏𝑠(𝑠) =

(𝑏𝑠0, 𝑏𝑠1, … , 𝑏𝑠𝑛) = 𝑏𝑚(𝑡(𝑠)), describing the sequence of behaviors assigned to the respective 

𝑠 on the ElementType or Language level. 

We define the function 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠: 𝑆𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 as: 

𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

= ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠,𝑖,𝑑)(𝑏𝑠(𝑠), 𝑡𝑙 ∖ 𝑡, 𝑑𝑟, 𝑒𝑠).

𝑡=(𝑠,𝑖,𝑑)∈𝑡𝑙

 

As an intuition, 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠 yields for all task in the task list the set of possible states 

after executing the behavior sequence that is assigned to the respective task’s subject on the 

ElementType or Language level. 

Using these building blocks, we can define our abstract machine’s transition function now: 

𝑡𝑟𝑎𝑛𝑠(𝑠𝑡𝑎𝑡𝑒𝑠𝑖) = ⋃ 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

(𝑡𝑙,𝑑𝑟,𝑒𝑠)∈𝑠𝑡𝑎𝑡𝑒𝑠𝑖

. 

As an intuition, 𝑡𝑟𝑎𝑛𝑠 yields the result of applying 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠 on all states. 

B.c Behavior Types 

We formally give the semantics of the behaviors by partially defining 𝑒𝑥𝑒𝑐𝐵𝑒𝑛𝑣 for each 

behavior type. 

Behavior Type “Enable Element Occurrence”. Let 𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑛𝑜𝑤) be a behavior of type 

“Enable Element Occurrence”. Let 𝑟𝑖 be its “Runtime Instance” argument, 𝑒𝑜 its “Element 

Occurrence” argument, 𝑑 its “Data to pass on” argument, 𝑛𝑜𝑤 its “Perform now instead of 

scheduling it” argument. Then: 

 𝑒(𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑡𝑟𝑢𝑒)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠∗,𝑖∗,𝑑∗)(𝑏𝑠(𝑠∗), 𝑡𝑙, 𝑑𝑟, 𝑒𝑠), 

 𝑒(𝑒𝑒𝑜(𝑟𝑖, 𝑒𝑜, 𝑑, 𝑓𝑎𝑙𝑠𝑒)) = {(𝑡𝑙 ∪ {(𝑠∗, 𝑖∗, 𝑑∗)}, 𝑑𝑟, 𝑒𝑠)} 

with 𝑠∗ = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), 𝑖∗ = 𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣), and 𝑑∗ = 𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣). 

Behavior Type “Enable Model”. Let 𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑛𝑜𝑤) be a behavior of type “Enable 

Model”. Let 𝑛𝑒𝑤 be its “Create new runtime instance” argument, 𝑟𝑖 be its “Runtime Instance” 
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argument, 𝑚 its “Model” argument, 𝑑 its “Data to pass on” argument, 𝑛𝑜𝑤 its “Perform now 

instead of scheduling it” argument. Further let 

 𝑖∗ = {
𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣) if 𝑛𝑒𝑤 = 𝑓𝑎𝑙𝑠𝑒

𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑟) else
, 

 𝑑𝑟∗ = {
𝑑𝑟 if 𝑛𝑒𝑤 = 𝑓𝑎𝑙𝑠𝑒

𝑑𝑟 ∪ {𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑑𝑟) → { }} else
 

where 𝑓𝑖𝑟𝑠𝑡𝐹𝑟𝑒𝑒𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒: 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 → 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the function 

that yields 𝑟𝑖𝑖 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 with 𝑖 being the number of RuntimeInstances used in the 

given DataRepository. 

Then: 

𝑒(𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑡𝑟𝑢𝑒)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑏𝑎𝑠𝑒𝐸𝑛𝑣(𝑠∗,𝑖∗,𝑑∗)(𝑏𝑠(𝑠∗), 𝑡𝑙, 𝑑𝑟∗, 𝑒𝑠), 

𝑒(𝑒𝑚(𝑛𝑒𝑤, 𝑟𝑖, 𝑚, 𝑑, 𝑓𝑎𝑙𝑠𝑒)) = {(𝑡𝑙 ∪ {(𝑠∗, 𝑖∗, 𝑑∗)}, 𝑑𝑟∗, 𝑒𝑠)} 

with 𝑠∗ = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), and 𝑑∗ = 𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣). 

Behavior Type “For one item in a collection”. Let 𝑓𝑜(𝑣𝑛, 𝑐, 𝑐𝑏) be a behavior of type “For 

one item in a collection”. Let 𝑣𝑛 be its “Item Variable Name” argument, 𝑐 be its “Collection” 

argument, 𝑐𝑏 its “Child Behaviors” argument. Then: 

𝑒(𝑓𝑜(𝑣𝑛, 𝑐, 𝑐𝑏)) = ⋃ 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)

𝑐𝑚∈𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑂𝑓(𝑒𝑣𝑎𝑙(𝑐,𝑒𝑛𝑣))

 

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑐𝑚}). 

Behavior Type “For each item in a collection”. Let 𝑓𝑒(𝑣𝑛, 𝑐, 𝑐𝑏) be a behavior of type “For 

each item in a collection”. Let 𝑣𝑛 be its “Item Variable Name” argument, 𝑐 be its “Collection” 

argument, 𝑐𝑏 its “Child Behaviors” argument. To concisely describe the “looping” through the 

collection, we introduce a family of non-deterministic helper functions 

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇: 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡 × 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 × 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛〈𝑇〉 × 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ×

𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒 with 𝑒𝑛𝑣 ∈ 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 and 𝑇 being some type.  

We use a recursive definition for 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇. For an empty collection value, we define 

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇  as: 

𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, ( ), 𝑣𝑛, 𝑐𝑏) = {(𝑡𝑙, 𝑑𝑟, 𝑒𝑠)}. 

For a non-empty behavior sequence, i.e. for |𝑐𝑣| > 0, we define 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣  as: 
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𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, 𝑐𝑣, 𝑣𝑛, 𝑐𝑏)

= ⋃ 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙∗, 𝑑𝑟∗, 𝑒𝑠∗, (𝑐𝑣1, … , 𝑐𝑣𝑛), 𝑣𝑛, 𝑐𝑏)

(𝑡𝑙∗,𝑑𝑟∗,𝑒𝑠∗)∈

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏,𝑡𝑙,𝑑𝑟)

  

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑐𝑚}). Then we can provide the partial definition for 𝑒𝑥𝑒𝑐𝐵 that is 

relevant for behaviors of type “For each item in a collection” as: 

 𝑒(𝑓𝑒(𝑣𝑛, 𝑐, 𝑐𝑏)) = 𝑓𝑒𝐻𝑒𝑙𝑝𝑒𝑟𝑒𝑛𝑣,𝑇(𝑡𝑙, 𝑑𝑟, 𝑒𝑠, 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣), 𝑣𝑛, 𝑐𝑏) 

where 𝑇 is the type of members of the collection as given by 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣). 

Behavior Type “If/Then/Else”. Let 𝑖𝑓(𝑐, 𝑡𝑏, 𝑒𝑏) be a behavior of type “If/Then/Else”. Let 𝑐 

be its “Condition” argument, 𝑡𝑏 be its “Then Behaviors” argument, 𝑒𝑏 its “Else Behaviors” 

argument. Then: 

 𝑒(𝑖𝑓(𝑐, 𝑡𝑏, 𝑒𝑏)) = {
𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣(𝑡𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) if 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣) = 𝑡𝑟𝑢𝑒

𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣(𝑒𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠) if 𝑒𝑣𝑎𝑙(𝑐, 𝑒𝑛𝑣) = 𝑓𝑎𝑙𝑠𝑒
 

Behavior Type “Load Data”. Let 𝑙𝑑(𝑟𝑖, 𝑒𝑜, 𝑣𝑛, 𝑐𝑏) be a behavior of type “Load Data”. Let 𝑟𝑖 

be its “Runtime Instance” argument, 𝑒𝑜 its “Element Occurrence” argument, 𝑣𝑛 its “Variable 

Name” argument, 𝑐𝑏 its “Child Behaviors” argument. 

To concisely describe the approach of looking up data stored for a RuntimeInstance and an 

ElementOccurrence, and of alternatively creating a new CustomDataInstance if no data was 

previously stored, we introduce some helper definitions. 

We define the helper function 𝑙𝑜𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 that maps a RuntimeInstance and a 

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 element to a 𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝 element: 

 𝑙𝑜𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝(𝑟𝑖, 𝑑𝑟) = {
𝑑𝑟(𝑟𝑖) if ∃𝑥: (𝑟𝑖 → 𝑥) ∈ 𝑑𝑟

{ } else
 

We define the helper function 𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤: 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ×

𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦 → 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎 as: 

𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤(𝑒𝑜, 𝑟𝑖, 𝑑𝑟)

= {
𝑑𝑚(𝑒𝑜) if ∃𝑥: (𝑒𝑜 → 𝑥) ∈ 𝑑𝑚

𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎) else
 

with 𝑑𝑚 = 𝑙𝑜𝑘𝑢𝑝𝐸𝑂𝐷𝑎𝑡𝑎𝑀𝑎𝑝(𝑟𝑖, 𝑑𝑟). Now we can provide the partial definition for 𝑒𝑥𝑒𝑐𝐵 

that is relevant for behaviors of type “Load Data” as: 

 𝑒(𝑙𝑑(𝑟𝑖, 𝑒𝑜, 𝑣𝑛, 𝑐𝑏)) = 𝑒𝑥𝑒𝑐𝐵𝑆𝑒𝑛𝑣∗(𝑐𝑏, 𝑡𝑙, 𝑑𝑟, 𝑒𝑠)  

with 𝑒𝑛𝑣∗ = (𝑒𝑛𝑣, {𝑣𝑛 → 𝑙𝑜𝑎𝑑𝑂𝑟𝑁𝑒𝑤(𝑒𝑜, 𝑟𝑖, 𝑑𝑟)}). 
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Behavior Type “Release Runtime Instance”. Let 𝑟𝑟𝑖(𝑟𝑖) be a behavior of type “Release 

Runtime Instance”. Let 𝑟𝑖 be its “Runtime Instance” argument. 

Let 𝑟𝑖𝑠 = {𝑒𝑣𝑎𝑙(𝑟𝑖, 𝑒𝑛𝑣) → 𝑥 | 𝑥 ∈ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑎𝑡𝑎𝐸𝑛𝑡𝑟𝑦}, i.e. the set of all possible 

mappings from the RuntimeInstance as specified by the formula in the argument to some 

RuntimeInstanceDataEntry. Then: 

 𝑒(𝑟𝑟𝑖(𝑟𝑖)) = {(𝑡𝑙, 𝑑𝑟 ∖ 𝑟𝑖𝑠, 𝑒𝑠)}. 

Behavior Type “Report Event”. Let 𝑟𝑒(𝑒𝑜, 𝑒𝑐) be a behavior of type “Report Event”. Let 𝑒𝑜 

be its “Element Occurrence” argument, 𝑒𝑐 its “Event Content” argument. Then: 

 𝑒(𝑟𝑒(𝑒𝑜, 𝑒𝑐)) = {(𝑡𝑙, 𝑑𝑟, (𝑒𝑠0, … , 𝑒𝑠|𝑒𝑠|−1, 𝑒∗))} 

with 𝑒∗ = (𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), 𝑒𝑣𝑎𝑙(𝑒𝑐, 𝑒𝑛𝑣)). 

Behavior Type “Store Data”. Let 𝑠𝑑(𝑟𝑖, 𝑒𝑜, 𝑑) be a behavior of type “Store Data”. Let 𝑟𝑖 be 

its “Runtime Instance” argument, 𝑒𝑜 its “Element Occurrence” argument, 𝑑 its “Data to be 

stored” argument. 

To concisely describe the formalism of storing data for a RuntimeInstance and an 

ElementOccurrence, we introduce some helper definitions. 

Let 𝑒𝑜𝑣 = 𝑒𝑣𝑎𝑙(𝑒𝑜, 𝑒𝑛𝑣), i.e. the ElementOccurrence value as specified by the formula in the 

respective argument. Let 𝑒𝑜𝑚 = {𝑒𝑜𝑣 → 𝑥 | 𝑥 ∈ 𝐶𝑢𝑠𝑡𝑜𝑚𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐷𝑎𝑡𝑎} i.e. the set of all 

possible mappings from 𝑒𝑜𝑣 to a CustomStorageData value. Let 𝑒𝑜𝑚∗ = {𝑒𝑜𝑣 →

𝑒𝑣𝑎𝑙(𝑑, 𝑒𝑛𝑣)}, i.e. the set containing a mapping from 𝑒𝑜𝑣 to the new data as specified by the 

formula 𝑑. 

Let 𝑟𝑖𝑠 be defined as for the behavior type “Release Runtime Instance”. Let 𝑟𝑖𝑠∗ =

(𝑟𝑖𝑠 ∖ 𝑒𝑜𝑚) ∪ 𝑒𝑜𝑚∗, i.e. a set of ElementOccurrence to CustomStorageData mappings where 

the mapping from 𝑒𝑜𝑣 is replaced with the evaluation of the formula in the “Data to be stored” 

argument. Then: 

𝑒(𝑠𝑑(𝑟𝑖, 𝑒𝑜, 𝑑)) = {(𝑡𝑙, (𝑑𝑟 ∖ 𝑟𝑖𝑠) ∪ 𝑟𝑖𝑠∗, 𝑒𝑠)}. 

B.d Deriving an LTS using Our Abstract Machine  

Given some initial Model 𝑀 in a 𝑆𝑐𝑜𝑝𝑒’s Project, let 𝑡𝑙0 =

{(𝑀, 𝑟𝑖0, 𝐷𝑒𝑓𝑎𝑢𝑙𝑡(𝐶𝑢𝑠𝑡𝑜𝑚𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝐷𝑎𝑡𝑎))} be an initial 𝐸𝑛𝑎𝑏𝑙𝑒𝑚𝑒𝑛𝑡𝑇𝑎𝑠𝑘𝐿𝑖𝑠𝑡. Let 

𝑑𝑟0 = {𝑟𝑖0 → { }} be an initial 𝐷𝑎𝑡𝑎𝑅𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑦. Let 𝑒𝑠0 = ( ) be an initial empty 

EventSequence. Then let 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡0 = {(𝑡𝑙0, 𝑑𝑟0, 𝑒𝑠0)} be the initial 𝑆𝑡𝑎𝑡𝑒𝑆𝑝𝑎𝑐𝑒. 
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The LTS could be specified based on the sequences of reported events 𝑒𝑠 of (𝑡𝑙, 𝑑𝑟, 𝑒𝑠) ∈

𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡𝑖 derived from transitioning the abstract machine starting with 𝑠𝑡𝑎𝑡𝑒𝑆𝑒𝑡0. This 

however is just a theoretical way of specifying the LTS that cannot directly be implemented in 

software. For example, if the given behaviors entail a loop, the resulting sequences of events 

will become infinite. Because this will result in the LTS becoming infinite as well, a computer 

could not store a direct representation of the LTS. An actual model checker must therefore 

derive a finite LTS from the given behaviors to allow solving typical model checking problems. 

For performance reasons, an actual model checker should also detect if branches in the tree 

merge again at some point to reduce the number of states that need to be processed. The CADP 

model checker used by our implementation takes care of these aspects. 

Also, in our definitions for the abstract machine, there are some gaps that were deliberately left 

undefined for conciseness. If an implementation of our abstract machine runs into such a gap, 

it must stop its operation and should issue a message giving information about the situation 

which led to running into the respective gap. 

For example, if an implementation of our abstract machine is requested to enable a wrongly 

specified ElementOccurrence, then it is unclear what it should do. In such a case, stopping its 

operation makes sense. This example can be formally described with an “Element Occurrence” 

argument of an “Enable Element Occurrence” behavior evaluating to 𝑛𝑢𝑙𝑙. In this case, 𝑠∗ 

would be 𝑛𝑢𝑙𝑙. Because 𝑏𝑠(𝑠∗) with 𝑠∗ = 𝑛𝑢𝑙𝑙 is not defined, the abstract machine 

implementation would run into a definition gap and would have to stop its operation as per our 

specification. In our implementation, we handle such gaps accordingly. 
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Appendix C Reference on Data Types in Our Languages 

In this appendix, we provide tabular references for properties, functions and lambdas supported 

by the data types of our languages. 

Let a “predecessor expression” be an expression that evaluates to an instance of some specific 

data type. We call this data type’s “properties” all the supported property accessors that can be 

appended to the type’s predecessor expressions. Similarly, we call this data type’s “functions” 

and “lambdas” all the supported function and lambda accessors that can be appended to the 

type’s predecessor expressions, respectively. We denote with “predecessor value” the value that 

a predecessor expression evaluates to. 

C.a Boolean 

C.a.a Properties 

Name Return Type Description 

Inverse Boolean Returns the inverse of the predecessor value. 

AsString String Returns the String representation of the predecessor value, i.e. either true or 

false. 

C.a.b Functions 

Name Parameters 

with Types 

Return 

Type 

Description 

And other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of logical 

conjunction of the predecessor value and 𝑜𝑡ℎ𝑒𝑟. 

Or other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of the logical 

disjunction of the predecessor value and 𝑜𝑡ℎ𝑒𝑟. 

Xor other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the result of applying 

exclusive or to the predecessor value and 𝑜𝑡ℎ𝑒𝑟. 

Equals other: Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if the predecessor 

value and 𝑜𝑡ℎ𝑒𝑟 are equal. Else, returns 𝑓𝑎𝑙𝑠𝑒. 

IfElse ifTerm: <T>, 

elseTerm: <T> 

<T> Returns 𝑖𝑓𝑇𝑒𝑟𝑚 if the predecessor value is 𝑡𝑟𝑢𝑒. 

Returns 𝑒𝑙𝑠𝑒𝑇𝑒𝑟𝑚 if the predecessor value is 𝑓𝑎𝑙𝑠𝑒. 

<T> is a placeholder for a single arbitrary type. 

C.b Integer 

C.b.a Properties 

Name Return Type Description 

Negation Integer Returns the negation of the predecessor value. 

AsString String Returns a String representation of the predecessor value as provided by the 

LNT-internal transformation according to (Champelovier et al. 2017). 
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C.b.b Functions 

Name Parameters 

with Types 

Return Type Description 

Equals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑓𝑎𝑙𝑠𝑒. 

Unequals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑡𝑟𝑢𝑒. 

GreaterThan other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being 

greater than 𝑜𝑡ℎ𝑒𝑟. 

LessThan other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being less 

than 𝑜𝑡ℎ𝑒𝑟. 

GreaterThanOrEquals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being 

greater than or equals 𝑜𝑡ℎ𝑒𝑟. 

LessThanOrEquals other: Integer Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being less 

than or equals 𝑜𝑡ℎ𝑒𝑟. 

Plus other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of adding 𝑜𝑡ℎ𝑒𝑟 to the predecessor 

value. 

Minus other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of subtracting 𝑜𝑡ℎ𝑒𝑟 from the 

predecessor value. 

Times other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of multiplying the predecessor value 

with 𝑜𝑡ℎ𝑒𝑟. 

DividedBy other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of dividing the predecessor value by 

𝑜𝑡ℎ𝑒𝑟. 

Modulo other: Integer Integer Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of applying the modulo operator to the 

predecessor value and 𝑜𝑡ℎ𝑒𝑟. 

C.c Double 

C.c.a Properties 

Name Return Type Description 

Negation Double Returns the negation of the predecessor value. 

AsString String Returns a String representation of the predecessor 

value as provided by the LNT-internal 

transformation according to (Champelovier et al. 

2017). 
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C.c.b Functions 

Name Parameters 

with Types 

Return Type Description 

Equals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑓𝑎𝑙𝑠𝑒. 

Unequals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑡𝑟𝑢𝑒. 

GreaterThan other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being 

greater than 𝑜𝑡ℎ𝑒𝑟. 

LessThan other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being less 

than 𝑜𝑡ℎ𝑒𝑟. 

GreaterThanOrEquals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being 

greater than or equals 𝑜𝑡ℎ𝑒𝑟. 

LessThanOrEquals other: Double Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

truth value of the predecessor value being less 

than or equals 𝑜𝑡ℎ𝑒𝑟. 

Plus other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of adding 𝑜𝑡ℎ𝑒𝑟 to the predecessor 

value. 

Minus other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of subtracting 𝑜𝑡ℎ𝑒𝑟 from the 

predecessor value. 

Times other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of multiplying the predecessor value 

with 𝑜𝑡ℎ𝑒𝑟. 

DividedBy other: Double Double Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

result of dividing the predecessor value by 

𝑜𝑡ℎ𝑒𝑟. 

C.d String 

C.d.a Properties 

Name Return Type Description 

Length Integer Returns the length of the String as determined with 

the LNT-internal length function according to 

(Champelovier et al. 2017). 

C.d.b Functions 

Name Parameters 

with Types 

Return Type Description 

Equals other: String Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑓𝑎𝑙𝑠𝑒. 

Unequals other: String Boolean Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑓𝑎𝑙𝑠𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑡𝑟𝑢𝑒. 
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Name Parameters 

with Types 

Return Type Description 

ConcatenatedWith  other: String String Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns the 

concatenation of the predecessor value and 

𝑜𝑡ℎ𝑒𝑟. 

Substring startIndex: 

Index 

String Returns 𝑛𝑢𝑙𝑙 if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 is 𝑛𝑢𝑙𝑙 or if 

𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 < 0 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 > length of 

the predecessor value. Else, returns the 

substring of the predecessor value that starts at 

index 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥. 

Substring startIndex: 

Integer, length: 

Integer 

String Returns 𝑛𝑢𝑙𝑙 if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 is 𝑛𝑢𝑙𝑙 or if 

𝑙𝑒𝑛𝑔𝑡ℎ is 𝑛𝑢𝑙𝑙 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 < 0 or if 

𝑙𝑒𝑛𝑔𝑡ℎ < 0 or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 > length of the 

predecessor value or if 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 + 

𝑙𝑒𝑛𝑔𝑡ℎ > length of the predecessor value. 

Else, returns the substring of the predecessor 

value that starts at index 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 and has 

the length 𝑙𝑒𝑛𝑔𝑡ℎ. 

C.e Collection<T> 

T is a placeholder for a single arbitrary type. 

C.e.a Properties 

Name Return Type Description 

Count Integer Returns the number of members in the predecessor 

value. 

Head T Returns 𝑛𝑢𝑙𝑙 if the predecessor value is empty. 

Else, returns the first member of the predecessor 

value. 

Tail Collection<T> Returns 𝑛𝑢𝑙𝑙 if the predecessor value is empty. 

Else, returns the predecessor value without its first 

member. 

C.e.b Functions 

Name Parameters 

with Types 

Return Type Description 

AppendedWith other: 

Collection<T> 

Collection<T> Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Else, returns 

predecessor value appended with 𝑜𝑡ℎ𝑒𝑟 using 

the LNT union function according to 

(Champelovier et al. 2017). 

C.e.c Lambdas 

Each of the lambdas iterate through the predecessor value’s members and evaluates the inner 

formula in such a way that the given parameter maps to the respective member. 
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Name Parameters 

with Types 

Expected 

Lambda 

Body Type 

Return Type Description 

All item: T Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to 

𝑛𝑢𝑙𝑙 during iteration. Returns 𝑓𝑎𝑙𝑠𝑒 if the 

inner formula evaluates to 𝑓𝑎𝑙𝑠𝑒 during 

iteration. Else, returns 𝑡𝑟𝑢𝑒. 

Any item: T Boolean Boolean Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to 

𝑛𝑢𝑙𝑙 during iteration. Returns 𝑡𝑟𝑢𝑒 if the inner 

formula evaluates to 𝑡𝑟𝑢𝑒 during iteration. 

Else, returns 𝑓𝑎𝑙𝑠𝑒. 

Single item: T Boolean T Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to 

𝑛𝑢𝑙𝑙 during iteration. Returns the first 

iteration’s member that the inner formula 

evaluates to 𝑡𝑟𝑢𝑒 for. Else, returns 𝑛𝑢𝑙𝑙. 

Where item: T Boolean Collection<T> Returns 𝑛𝑢𝑙𝑙 if the inner formula evaluates to 

𝑛𝑢𝑙𝑙 during iteration. Else, returns the 

predecessor value that is filtered so that only 

those members remain that the inner formula 

evaluates to 𝑡𝑟𝑢𝑒 for. 

Select item: T U Collection<U> Returns 𝑛𝑢𝑙𝑙 if U is a Collection type. 

Else, returns a collection where each member 

of the predecessor value is mapped to the 

evaluation result of the inner formula. 

 

U is a placeholder for a single arbitrary type. 

In the current implementation, specifying a 

collection type for U is not supported, i.e. you 

cannot describe collections of collections with 

Select. 

C.f [em] Data Types 

The [em] Data Types in our languages closely reflect the data model of [em] as introduced in 

section 4.1. Most of its aspects can be described in a templatic fashion. 

We give templates that describe the main properties of each type in the first sub-subsection. We 

describe additional properties and functions in the remaining sub-subsections. We use bracket-

enclosed text for placeholders. 

C.f.a Templates for Main Properties 

Name Existence Criteria Return Type Description 

[Association Name] For each association 

with max. target 

multiplicity of one 

[Association’s target 

class] 

Returns the association’s 

target instance, or 𝑛𝑢𝑙𝑙 if the 

association does not have a 

target instance. 

[Association Name] For each association 

with max. target 

multiplicity greater 

than one 

Collection<[Association’s 

target class]> 

Returns a collection of the 

association’s target instances. 

[Field Name] For each field (also of 

some parent class) 

String Returns the field’s value. 
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C.f.b Additional Element Properties 

Name Return Type Description 

IsRelationship Bool Returns 𝑡𝑟𝑢𝑒 if the Element is a Relationship; 𝑓𝑎𝑙𝑠𝑒 otherwise. 

IsObject Bool Returns 𝑡𝑟𝑢𝑒 if the Element is an Object; 𝑓𝑎𝑙𝑠𝑒 otherwise. 

AsRelationship Relationship Returns a Relationship corresponding to this Element if it is a 

Relationship; 𝑛𝑢𝑙𝑙 otherwise. 

AsObject Relationship Returns an Object corresponding to this Element if it is an 

Object; 𝑛𝑢𝑙𝑙 otherwise. 

C.f.c Additional ElementOccurrence Properties 

Name Return Type Description 

IsRelationshipOccurrence Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is a 

RelationshipOccurrence; 𝑓𝑎𝑙𝑠𝑒 otherwise. 

IsObjectOccurrence Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is an 

ObjectOccurrence; 𝑓𝑎𝑙𝑠𝑒 otherwise. 

AsRelationshipOccurrence Relationship Returns a RelationshipOccurrence corresponding to 

the predecessor value if it is a 

RelationshipOccurrence; 𝑛𝑢𝑙𝑙 otherwise. 

AsObjectOccurrence Relationship Returns an ObjectOccurrence corresponding to the 

predecessor value if it is a ObjectOccurrence; 𝑛𝑢𝑙𝑙 
otherwise. 

C.f.d Additional ElementType Properties 

Name Return Type Description 

IsRelationshipType Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is a 

RelationshipType; 𝑓𝑎𝑙𝑠𝑒 otherwise. 

IsObjectType Bool Returns 𝑡𝑟𝑢𝑒 if the predecessor value is an 

ObjectType; false otherwise. 

AsRelationshipType Relationship Returns a RelationshipType corresponding to the 

predecessor value if it is a RelationshipType; 𝑛𝑢𝑙𝑙 
otherwise. 

AsObjectType Relationship Returns an ObjectType corresponding to the 

predecessor value if it is a ObjectType; 𝑛𝑢𝑙𝑙 
otherwise. 

C.f.e Additional ElementType, ObjectType and RelationshipType Functions 

Name Parameters 

with Types 

Return Type Description 

Equals other: [Type  of 

predecessor 

value] 

Bool Returns 𝑛𝑢𝑙𝑙 if 𝑜𝑡ℎ𝑒𝑟 is 𝑛𝑢𝑙𝑙. Returns 𝑡𝑟𝑢𝑒 if 

the predecessor value and 𝑜𝑡ℎ𝑒𝑟 are equal. 

Else, returns 𝑓𝑎𝑙𝑠𝑒. 

C.g Runtime-relevant Types  

RuntimeInstances do not have any properties, functions, or lambdas. Custom types have for 

each of their field a property and a function. We introduce them in the following two sub-

subsections. 
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C.g.a Custom Type Properties 

Name Existence Criteria Return Type Description 

[Field Name] For each field [Field type] Returns the value of the respective field. 

C.g.b Custom Type Functions 

Name Existence 

Criteria 

Parameters 

with Types 

Return Type Description 

WithChanged_[Field Name] For each 

field 

value: [Field 

type] 

[Type of predecessor 

value, i.e. either 

CustomEnablementData, 

or CustomStorageData]  

Returns a copy of 

the custom type 

instance where the 

respective field 

value is replaced 

with the argument 

𝑣𝑎𝑙𝑢𝑒. 
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Appendix D Source Code of Plugin 

 

 

 

 

 

The source code of the plugin should come with this document in digital form. 

If it is missing, please contact Hauke Pribnow. 
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