
Int J Softw Tools Technol Transfer (2009) 11:393–407
DOI 10.1007/s10009-009-0111-8

REGULAR PAPER

LearnLib: a framework for extrapolating behavioral models

Harald Raffelt · Bernhard Steffen · Therese Berg ·
Tiziana Margaria

Published online: 10 April 2009
© Springer-Verlag 2009

Abstract In this paper, we present the LearnLib, a library of
tools for automata learning, which is explicitly designed for
the systematic experimental analysis of the profile of avail-
able learning algorithms and corresponding optimizations.
Its modular structure allows users to configure their own tai-
lored learning scenarios, which exploit specific properties
of their envisioned applications. As has been shown earlier,
exploiting application-specific structural features enables
optimizations that may lead to performance gains of sev-
eral orders of magnitude, a necessary precondition to make
automata learning applicable to realistic scenarios.

Keywords Automata learning · Domain-specific
optimization · Experimentation · Software library · Grammar
inference

1 Motivation

Most systems in use today lack adequate specifications or
make use of underspecified or even unspecified components.

H. Raffelt · B. Steffen (B)
Chair of Programming Systems, TU Dortmund,
Otto-Hahn-Str. 14, 44227 Dortmund, Germany
e-mail: steffen@cs.uni-dortmund.de

H. Raffelt
e-mail: harald.raffelt@uni-dortmund.de

T. Berg
Department of Information Technology, Uppsala University,
751 05 Uppsala, Sweden
e-mail: therese.berg@it.uu.se

T. Margaria
Chair of Services and Software Engineering, Universität Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany
e-mail: margaria@cs.uni-potsdam.de

In fact, the much propagated component-based software
design style typically leads to under specified systems, as
most libraries only provide very partial specifications of their
components. Moreover, typically, revisions and last minute
changes hardly enter the system specification. We observed
this dilemma in the telecommunication area: specifications
of telecommunication protocols are usually provided as natu-
ral language text documents with no formal link to the actual
implementation. This hampers the application of any kind
of formal validation techniques like model based testing [4]
or model checking [30], and it makes it hard to keep them
up to date. In fact, in practice very often these specifications
are not updated at all, turning the systems all too soon into
legacy systems.

Automata learning techniques have been proposed to
overcome this situation, by allowing to construct and later
update behavioral models automatically [18]. This has been
illustrated in the concrete setting of computer telephony inte-
grated (CTI) systems [25,31]. There we observed the sys-
tem’s behavior in its reaction to test sequences. In this setting
behavior is understood as the sequences comprising the test
stimuli and the corresponding reactions as words of a lan-
guage over an alphabet consisting of symbols denoting the
stimuli and the reactions, respectively. Automata learning
aims at constructing finite automata for describing/approxi-
mating this language. This technique works well for reactive
systems, whenever the chosen interpretation of the stimuli
and reactions leads to a deterministic language. For such sys-
tems, automata learning can be regarded as regular extrap-
olation, i.e., as a technique to construct the best regular model
being consistent with the observations made. This is
similar to the well-known polynomial extrapolation, where
polynomials are used instead of finite automata, and
functions instead of reactive systems. And like there, the
quality not the applicability of extrapolation depends on the

123



394 H. Raffelt et al.

structure of the considered function. However, due to the
enormous degree of freedom inherent in reactive systems,
automata learning is computationally much more expensive
than polynomial extrapolation. Thus the success of automata
learning in practice very much depends on the optimi-
zations employed to exploit the specific profile of the system
to be learned, see [27,39] for a successful application sce-
nario.

In this paper, we present the LearnLib, a framework of
tools for automata learning, which is explicitly designed for
the systematic experimental analysis of the profile of avail-
able learning algorithms and corresponding optimizations.
Its modular structure allows users to configure their own tai-
lored learning scenarios, which exploit specific properties of
their envisioned applications. The ingredients comprise:

• different model structures, e.g., deterministic finite
automata (DFA) or Mealy machines,

• various optimization techniques, in particular a number of
structure-driven filters that reduce the structure-
dependent redundancy in the learning process,

• two modes of use: a pre-configuration mode (PCM),
which allows the user to pre-configure an optimized learn-
ing setting, and a learning process modelling mode
(LPM), which enable the user to control the entire learn-
ing process, comprising the choice of optimizations, strat-
egies of search, as well as the setting of interaction points
for a truly interactive learning process, and

• a simulator which allows random model generation, in
order to support a systematic quantitative analysis of the
various constellations.

In particular, the LearnLib is a means to systematically
explore the power of optimizations that exploit application-
specific structural properties like the prefix closure of lan-
guages or patterns of symmetry. As has been shown earlier
[21], exploiting this optimization potential may well be the
key to make automata learning applicable to realistic scenar-
ios.

Machine learning techniques have been used in several
contexts related to verification and testing [1,7,11,15,16,33]
to solve well defined problems. In contrast to these
approaches, the LearnLib is not intended to solve a spe-
cific problem. It is meant to be an algorithmic core that pro-
vides general automata learning methodologies. In principle,
each of the approaches mentioned above could have used the
LearnLib, and could profit of some of its features. The key
idea is that each improvement of the LearnLib algorithms
such as domain specific filter techniques (cf. Sect. 5) and
strategies (cf. Sect. 5.5) directly leads to improvements of
the LearnLib’s applications.

2 Classical automata learning

Machine learning deals in general with the problem of how
to automatically generate system descriptions. Besides the
synthesis of static soft- and hardware properties, in particu-
lar invariants [5,12,32], the field of automata learning, also
called regular extrapolation [18] or regular inference [10],
is of particular interest for soft- and hardware engineering
[8,9,29,33,42].

We have used automata learning techniques in a number
of contexts, e.g. to automatically construct models of Web
applications as demonstrated in [http://dblp.uni-trier.de/rec/
bibtex/conf/issta/RaffeltMSM08] and to enhance incomplete
specifications of biological systems [28].

Automata learning tries to construct a deterministic finite
automaton that matches the behavior of a given target autom-
aton on the basis of observations of the target automaton and
perhaps some further information on its internal structure.
The interested reader may refer to [18,38,39] for our view
on the use of learning. Here, we only summarize the basic
aspects of our realization, which is based on Angluin’s learn-
ing algorithm L∗ from [2].

Definition 1 A deterministic finite automaton (DFA) is a
tuple M = (S, s0,Σ, δ, F) where

• S is a finite nonempty set of states,
• s0 ∈ S is the initial state,
• Σ is a finite alphabet,
• δ : S × Σ → S is the transition function, and
• F ⊆ S is the set of accepting states.

Intuitively, a DFA evolves through states s ∈ S, and whenever
one applies an input symbol (or action) a ∈ Σ , the machine
moves to a new state according to δ (s, a). A word q ∈ Σ∗
is accepted by the DFA if and only if the DFA reaches an
accepting state si ∈ F after processing the word starting
from its initial state. We write s

a−→ s′ to denote that on
input symbol a the DFA moves from state s to state s′.
The transition function δ : S × Σ → S can be extended
to δ′ : S × Σ∗ → S such that forall states s, s′ ∈ Σ , letters
a ∈ Σ , and words w ∈ Σ∗ the following holds: δ′(s, ε) = s,
and δ′(s, aw) = δ′(δ(s, a), w)).

L∗, also referred to as an active learning algorithm, learns
DFAs by actively posing membership queries and equiv-
alence queries to the target automaton in order to extract
behavioral information, and by refining successively an own
hypothesis automaton based on the answers. A membership
query tests whether a string (a potential run) is contained
in the target automaton’s language (its set of runs), and an
equivalence query compares the hypothesis automaton with
the target automaton for language equivalence, in order to
determine whether the learning procedure was (already) suc-

123

http://dblp.uni-trier.de/rec/bibtex/conf/issta/RaffeltMSM08
http://dblp.uni-trier.de/rec/bibtex/conf/issta/RaffeltMSM08


LearnLib: a framework for extrapolating behavioral models 395

cessfully completed. In this case, the experimentation can
stop.

In its basic form, L∗ starts with the one state hypothesis
automaton that treats all words over the considered alphabet
(of elementary observations) alike and refines this automa-
ton on the basis of query results iterating two steps. Here, the
dual way of how L∗ characterizes (and distinguishes) states
on its way to construct the minimal deterministic automaton
following the pattern of the well-known Nerode congruence
is central [20]:

• from below, by words reaching them. This characteriza-
tion is too fine, as different words may well be Nerode
congruent, i.e., have the same suffix language. Thus this
characterization leads to a relation between states that
is contained in the relation corresponding to the Nerode
congruence.

• from above, by their future behavior wrt. a dynamically
increasing finite set of words, which the learning algo-
rithm produces as witnesses of difference wrt. the Nerode
congruence: thus future behaviors is essentially charac-
terized by bit vectors, where a ‘1’ means that the cor-
responding word of the set is guaranteed to lead to an
accepting state and a ‘0’ captures the complement. This
characterization is typically too coarse, as the consid-
ered sets of words are typically rather small, and do not
fully capture the Nerode congruence. Thus this
characterization leads to a relation between states that
contains the relation corresponding to the Nerode con-
gruence.

The second characterization directly defines the hypothesis
automata: each occurring bit vector corresponds to one state
in the hypothesis automaton, which is successively refined
during the learning process.

The initial hypothesis automaton is characterized by the
outcome of the membership query for the empty observa-
tion. Thus it accepts any word in case the empty word is in
the language, and no word otherwise. The learning procedure
(1) iteratively establishes local consistency, after which it (2)
checks for global consistency.

2.1 Local consistency

This first step (also referred to as automatic model comple-
tion) again iterates two phases: one for checking whether the
constructed automaton is closed under the one-step transi-
tions, i.e., each transition from each state of the hypothesis
automaton ends in a well defined state of this very automaton.
And one for checking consistency according to the bit vec-
tors characterizing the future behavior as explained above,
i.e., whether all reaching words with an identical character-
ization from above possess the same one-step transitions. If

this is not the case, a distinguishing transition is taken as
an additional distinguishing future in order to resolve the
inconsistency, i.e., the two reaching words with different
transition potential are no longer considered to represent the
same state.

2.2 Global equivalence

After local consistency has been established, an equivalence
query checks whether the language of the hypothesis autom-
aton coincides with the language of the target automaton. If
this is true, the learning procedure successfully terminates.
Otherwise, the equivalence query returns a counterexample,
i.e., a word which distinguishes the hypothesis and the target
automaton. This counterexample gives rise to a new cycle
of modifying the hypothesis automaton and starting the next
iteration.

In any practical attempt of learning legacy systems, the
equivalence tests can only be approximated, but membership
queries can be answered by testing the target systems [18,38].
We investigated several ways for approximating equivalence
queries. One such way was via conformance testing [6,13,
36,41]. In fact, it turned out that learning and conformance
testing have a lot in common [3].

In contrast to DFA’s, reactive systems do not distinguish
between accepting states and non accepting states, but pro-
duce some output in response to the inputs. Mealy machines
are well-known models of “deterministic” reactive systems.
We therefore adapted Angluin’s algorithm to work on Mealy
machines [39] in order to better capture the needs of reactive
systems.

Definition 2 A Mealy machine is defined as a tuple M =
(S, s0,Σ, Γ, δ, γ ) where

• S is a finite nonempty set of states,
• s0 ∈ S is the initial state,
• Σ is a finite input alphabet,
• Γ is a finite output alphabet,
• δ : S × Σ → S is the transition function, and
• γ : S × Σ → Γ is the output function.

A Mealy machine behaves very similarly to a DFA. It
evolves through states s ∈ S, and whenever one applies an
input symbol (or action) a ∈ Σ , the machine moves to a
new state according to δ(s, a). But in contrast to a DFA it
produces an output symbol x ∈ Γ on every move according

to γ (s, a). We write s
a/x−→ s′ to denote that on input symbol

a the machine moves from state s to state s′ producing the
output symbol x . The transition function δ : S × Σ → S
can be extended to δ′ : S × Σ∗ → S in the same way as
in the DFA case. Also the output function γ : S × Σ → Γ

can be extended to operate on strings of input symbols by
inductively defining γ ′ : S × Σ∗ → Γ ∗ for all states s, s′ ∈

123



396 H. Raffelt et al.

Fig. 1 LearnLib: components and applications

S, letters a ∈ Σ and words w ∈ Σ∗ as follows: γ ′(s, ε) = ε,
and γ ′(s, aw) = γ (s, a)γ ′(δ(s, a), w).

3 The LearnLib

LearnLib is a framework of tools for automata learning. It is
implemented in C++ and tested under Linux and Solaris, and
it currently consists of 150 classes and almost 50,000 lines of
code. Originally, LearnLib has been designed to systemati-
cally build finite state machine models of real world systems.
In the meantime, it also became a platform for experimenting

with different learning algorithms and to statistically analyze
their characteristics in terms of learning effort, run time and
memory consumption. As shown in Fig. 1, LearnLib consists
of three libraries:

• The automata learning framework contains the basic
learning algorithms,

• the filter library provides several strategies to reduce the
number of queries, and

• the approximative equivalence queries library is based on
the generation of conformance test suites for the
conjectures of the learning algorithms.

123



LearnLib: a framework for extrapolating behavioral models 397

Applications that use the LearnLib can communicate with
the libraries via a CORBA interface or C++ calls.

In the following, we show how to use the LearnLib to
generate models of various kinds of legacy systems in
Sect. 3.1, and for analysis and profiling in Sect. 3.2.

3.1 Model generation for legacy systems

The LearnLib currently provides interfaces to learn models
of real-life web applications and of telephony systems. These
application domains differ in the art of modeling as well as
the interpretation of models.

3.1.1 Web applications

In this scenario, we use the Mealy version of the learning
algorithms in the following interpretation:

• The input letters (or actions) of the generated Mealy
machine represent HTTP requests (like open a certain
URL, submit a form with some field set to predefined
strings, or follow a specified link).

• The output symbols in the model represent the HTML
pages generated by the web application.

To learn the model of a web application we only need to
know the initial URL and the set of strings which should be
tried out when submitting forms.

This approach traverses the behavioral structure of the web
application by retrieving and analyzing the pages generated
by the application. In contrast to web robots, which recur-
sively retrieve all documents that are referenced following
only the static link structure of a website, in our approach the
discovery process is guided by the learning algorithm, which
also respects the dynamical behavior of the web application.
Since all reachable web pages are discovered by and by, and
since each reference to a web page is represented by an input
letter, we had to extend the learning algorithms to support
dynamically growing alphabets. A comprehensive presenta-
tion of how our approach is applied to web applications can
be found in [35].

In the telephony scenarios [31], which we considered first,
we use the DFA version of the learning algorithms and
assume a fixed input alphabet.

• The letters of the input alphabet represent simple stimuli
like some phone device lifted the hook or dialed a number,
and checks like some phone device shows a predefined
text in its display,

• the output alphabet is the set of reactions to those inputs,
like display a certain message, ring a certain tone,

• the membership queries in this scenario are strings of
actions of this kind.

Here we define a membership query to be accepting whenever
it is possible to stimulate the telephone switch with these
inputs and interactions, and none of the checks fails. As in
the web application scenario, the abstract membership que-
ries are translated into real test cases which are actually exe-
cuted on the telephony switch.

Membership queries for such real (legacy) implementa-
tions are solved by testing. In the presence of nontrivial
abstractions, this is not an easy task. An important ingredient
in solving this problem is a tool called integrated test envi-
ronment (ITE) [17,31] which has been applied to a number
of different tasks in research and in industrial practice. From
a sequence of stimuli, the ITE generates a test program, using
predefined code blocks for stimuli and additional glue code.
Glue code and code blocks solve the problems connected
with generating, checking and identifying non-propositional
protocol elements like tags, time stamps and identifiers. In
essence, the ITE bridges the gap between the abstract model
and the concrete system. The generated test program is then
interfaced to the system to be learned with the help of a test
harness, comprising both software and hardware.

3.2 Analysis and profiling of learning algorithms

Different learning algorithms have different profiles: they
differ in the way they proceed to gain structured knowledge
about an unknown system. Mostly they differ in the number
of membership- and equivalence queries, but also in the size
of their queries. In order to analyze these differences and
to find out more about how learning algorithms perform in
practice we have built a configurator platform and a profiling
tool, which allow us to experiment with several learning algo-
rithms and configurations and to collect statistics about their
performance under controlled and reproducible experimental
conditions. The graphical user interface of the configurator is
shown in Fig. 2 in a configuration similar to the one we used
in [27] to analyze second order effects among optimizations
(described in detail in Sect. 4.1).

A LearnLib configuration is similar to a data flow graph: it
specifies how the membership- and equivalence queries gen-
erated by one of the LearnLib learning algorithms are passed
through other components of the LearnLib, e.g., through
optimization filters. Considering Fig. 2, on top of the graph
the DFA_Angluin node executes Angluin’s algorithm in the
DFA version. All the membership queries (MQ) it gener-
ates are passed to the (here six) filter configurations, whose
(relative) efficiency and performance we want to investigate.

To this aim, the DFA_fork component forwards copies of
the queries to six different filter combinations, which elimi-
nate redundancies according to several criteria, as described
in detail in Sect. 5. Finally, the queries which could not be
filtered away are passed to the system under test for execu-
tion by the DFA_SUT_Simulator. This way we analyze the

123



398 H. Raffelt et al.

Fig. 2 Pre-configured learning: designing a filter evaluation setting

Table 1 Learning CADP-demo protocol specifications

Protocol States Symbols Indep. actions Symmetric perm. Time Memory Total MQ Relevant MQ Factor %

Petterson 56 18 121 2 1.2 s 94 k 43,372 1,259 2.90

Dekker 123 18 115 1 6.8 s 214 k 191,913 3,206 1.67

POTS 664 32 332 2 394.2 s 16,564 k 3,128,115 250,721 8.02

comparative impact of the individual filters while learning a
certain model.

For studying the generic behavior of the filters, automati-
cally generated models are most appropriate as they provide
us with any required number of example systems. Moreover,
the Learnlib allows us to generate models of a particular pro-
file, concerning e.g., the number of accepting or rejecting
states, the branching degree, or language features like prefix
closure.

In addition to the automatically generated models, we
also looked at protocol specifications coming with the CADP
toolbox [14]. CADP is a toolbox for the design of commu-
nication protocols and distributed systems. We investigated
the protocol specification of Dekker’s and Petterson’s algo-

rithms for mutual exclusion as well as the specification of the
Plain Ordinary Telephone System. The results are shown in
Table 1.

The table shows our results on three selected instances,
which are provided as CADP examples. The specification
of Dekker’s and Petterson’s algorithms have been learned
unmodified, and the plain old telephone protocol was adjusted
to support exactly two phone devices being able to call each
other. The columns states and symbols describe the size of
the protocols in the LearnLib’s DFA representation.1 The

1 Note that the DFA representation requires one more state than CADP’s
labeled transition system representation in order to realize a sink for all
rejected sequences.

123



LearnLib: a framework for extrapolating behavioral models 399

inspected models provide a high potential for optimizations,
which are described in detail in Sect. 5: the labeled transition
systems are by construction prefix closed (cf. Sect. 5.2), the
protocols provide a number of independent actions (fourth
column and cf. Sect. 5.3), and there are symmetries (fifth col-
umn and cf. Sect. 5.4). This leads to significant reductions of
the number of membership queries in all three cases.

4 Automata learning with the LearnLib

The main library of the LearnLib contains several variants of
Angluin’s algorithm. Angluin assumes an omniscient oracle
(called teacher), which answers the following two kinds of
questions (as explained in Sect. 2):

• Membership queries: they ask whether a certain word is
accepted by the finite state machine. This kind of query
can be directly answered for real systems via testing.

• Equivalence queries: they ask for checking whether the
current conjecture is (already) equivalent to the finite state
machine. These queries should be answered either with
Yes or a counter example.

Equivalence queries for ‘black box’ finite state machines are
in general undecidable. Thus one has to live with approxima-
tions like e.g., variations of conformance testing, as shown
in Fig. 1(right) which lists the conformance testing routines
currently available in the LearnLib.

The following two sections describe the two modes offered
by the LearnLib to flexibly deal with the wealth of avail-
able options: a pre-configuration mode (PC-Mode), which
allows the user to pre-configure an optimized learning setting
(see Sect. 4.1), and a learning process modeling mode (LPM-
Mode), which enables the user to control the entire learning
process, comprising the context-specific choice of optimiza-
tions, strategies of search, as well as the setting of interaction
points for a truly interactive learning process (see Sect. 4.2).

4.1 Pre-configuration mode

In the PC-mode the user graphically specifies a configuration
that defines a number of LearnLib experiments carried out in
parallel in terms of the chosen learning algorithm, its global
selection strategy for membership queries, and the experi-
ment-specific choices of filter chains.

Figure 2 shows the use of the LearnLib as integrated tool
to the jABC environment [22]. As we see, a configuration is a
data flow graph-like structure which describes how member-
ship- and equivalence queries are passed through components
of the LearnLib. This is done by combining the functional-
ities of the library of components, shown in the upper left
frame, to configurations in the canvas on the right. The user
of the LearnLib can combine

• a learning algorithm,
• a directed acyclic graph of query filters, to take advantage

of structural knowledge about the system,
• a general strategy how to select membership queries, and
• an interface to a system under test.

Configuration design is done, in the usual jABC style, by
dragging library components to the canvas, and then con-
necting them by edges that specify how queries are passed
and how the library components should interact. Addition-
ally, each component may have parameters, which are set via
the inspector in the lower left panel. In Fig. 2 the parameters
of the framed upper left independence filter are shown in
the lower left panel, which currently indicates that action 2
is independent of actions 4, 5, and 6. The independence filter,
described in detail in Sect. 5, is applicable when the system
contains pairs of independent actions.

Currently the user can choose between Angluin’s method
for learning DFAs [2] and our version for learning Mealy
machines [39]. To take advantage of knowledge about the
analyzed system’s structure, the user can specify a chain of
filters, discussed in detail in Sect. 5, which are used to reduce
the number of membership- and equivalence queries to the
oracle (resp. the system under test). The chain of filters must
terminate with an oracle or a system under test interface,
which answers all unfiltered queries.

Additionally, the user can choose a general strategy of
how membership queries are selected, which steers the algo-
rithm either in a more depth or more breadth oriented way.
This is particularly interesting in the context of enforcing
consistency and closure, where one typically has a variety of
options (see also Sect. 5.5). The available strategies so far are

• random: choose randomly,
• fast: take the first possible alternative,
• long: prefer alternatives leading to long membership

queries,
• short: prefer alternatives leading to short membership

queries,
• cheap: prefer alternatives producing membership queries

that can be answered by the chain of filters, and
• expensive: prefer alternatives which produce membership

queries that require the membership oracle.

In general the pre-configuration mode of the learn
algorithms work as depicted in Fig. 3. An inner loop contin-
ues to generate and ask membership queries until the algo-
rithm is able to build a valid hypothesis model. All these
membership queries are sent through the chain of filters in
order to suppress redundant queries. Queries that remain
unfiltered are passed to the membership oracle. This either
leads to a direct check (in case of the simulation mode, where
the target model is known), or to a test run of the target sys-

123



400 H. Raffelt et al.

Fig. 3 Pre-configuration mode

tem (this is the way membership queries are answered in our
real life scenarios).

Whenever the learning algorithm has collected enough
information to build a valid hypothesis model, this model is
subject to an equivalence query, the bottleneck of the learn-
ing procedure. Except for the case of simulation, where the
target model is known, we have to approximate equivalence
queries by means of membership queries of a different kind,
that result from a search process for discrepancies. Particu-
larly suitable are here methods adopted from conformance
testing (see Sect. 4.3). They help to systematically search for
distinguishing execution traces by means of testing, i.e., by
posing appropriate membership queries. Thus our filters can
also be applied here.

As soon as one of the membership queries detects a
discrepancy, the corresponding trace is given to the learn-
ing algorithm as a counterexample to improve the hypothe-
sis model, and the next iteration of the learning algorithms
begins. This continues until the (approximate) equivalence
oracle returns TRUE, signaling that we successfully learned
the target system (wrt. this oracle).

4.2 Learning process modeling-mode

In the LPM-Mode, graphs which are constructed just as in
the PC-Mode, are used to model the entire learning process,
which comprises the modeling of conditional or interactive

behavior. The nodes may now represent arbitrary statements,
in particular including all atomic functionalities of the Learn-
Lib, and the edges specify in which order and under which
condition they are processed.

Figure 4 depicts the control flow graph of a simple
variation of Angluin’s algorithm: here, the execution starts
with connecting the graphical user interface to the LearnLib
ConnectToLearnLib, before an interface to a system under
test is created CreatreSUInterface. The SUT interface can
be linked to a real system, but it can also represent a SUT
simulator, which uses known models stored in a database.
This means that a SUT interface can represent a number of
systems of very different kind. Therefore in the next step it is
checked whether there is a next SUT that should be analyzed
(HasNextSubject).

After this first initialization steps the learning process is
started by initializing Angluin’s algorithm L∗ [2]. The learn-
ing algorithm now generates a test suite, which must be
executed by the SUT interface in the next step. The Query-
TestCase component executes the traces contained in the test
suite and records the response of the SUT. At this point the
SUT interface may discover that the implementation offers
more possibilities to be stimulated than currently specified.
For example, a new input action may have arisen. This hap-
pens for example when learning web applications, since every
new discovered web page leads to a new action for directly
requesting that page. This special feature is handled by the
two components connected to the sizeChanged branch. First,
the results of querying the SUT are stored in the learning
algorithm and then the alphabet is updated. Afterwards the
results of querying the SUT are returned as a basis for a user
decision UserInteraction about the order of the two well-
formedness checks CheckClosure and CheckConsistency. If
the observations are both closed and consistent, L∗ constructs
a conjecture model, which is done in GetConjecture, other-
wise the learning algorithm provides a new test suite and the
main loop continues.

After the main loop, the conjecture can be visualised
(DrawMealyModelGraph) and stored to a file (SaveGraph),
before one enters the check for global equivalence. In this
example, this is done by generating and then executing a test
suite (CheckTestcases) according to the Wp-Method [13].
If the conjecture does not conform to the SUT, a counter
example is returned, and the learning algorithm continues.
Otherwise L∗ successfully terminates this learning task and
continues with the next SUT (HasNextSubject).

The execution of this control flow graph can be interac-
tively steered using the Tracer, which is able to execute these
control flow graphs. In addition it provides useful debug-
ging functionalities, which allow users to investigate the data
exchanged between the nodes resp. atomic functionalities.
This way the user can visualize at any time the sets of
membership queries and intermediate finite state models gen-

123



LearnLib: a framework for extrapolating behavioral models 401

Fig. 4 LPM Mode: design of an adhoc learning algorithm

erated by the learning process. It is also possible to automati-
cally generate a stand-alone Java program which realizes the
specified learning process.

Compared with the PC-mode, the interactive version pro-
vides more control on how the learning algorithm proceeds.
Like in the PC-mode, learning happens in two alternating
phases: constructing hypothesis automata and checking their
equivalence with the target automaton. These phases alter-
nate until the equivalence check, which is typically done via
some version of conformance testing, is passed. The user
however remains in control: at any time he may change the
kind of filters used or decide which one of the proposed mem-
bership queries should be executed next.

During the first phase this typically happens in five suc-
cessive steps:

1. Ask the learning algorithm to build a set of member-
ship queries which are required for the learning process.
For Angluin’s algorithms there are two constraints which
must hold before a hypothesis model is built: closedness
and consistency (details can be found [2]). Closedness

and consistency are also established via membership
queries. In the LPM-Mode, the user may influence the
order in which membership queries are posed in order to
accelerate the convergence.

2. Decide which filters should be used to filter out irrelevant
queries. Chaining of filters is also supported.

3. Send the remaining membership queries to the oracle,
which gives the missing answers.

4. Update the filters according to the gained information.
5. Analyze the result of the membership queries given to

the learning algorithm, and decide where to continue the
iteration.

This loop continues until the learn algorithm is able to con-
struct a hypothesis model for the real system. Now the Learn-
Lib user can use this conjecture for an equivalence query.
This is only directly possible in the simulation case, where
the target model is known. Otherwise, one typically approxi-
mates the equivalence queries by membership queries. Thus
we may also profit from the filters here. The LPM-Mode
supports this by (Fig. 5)

123



402 H. Raffelt et al.

Fig. 5 Learning process modeling execution model

• allowing to choose specific sets of filters, which may be
able to directly produce a counterexample on the basis of
the structural assumptions, or

• to translate the conjecture into a (contex-specific)
approximating conformance test.

In addition, at any time the user might present the Learn-
Lib with particular execution traces, which he assumes to
differentiate the current hypothesis model from the target
system. This may drastically reduce the required number of
equivalence queries, the true bottleneck of automata learning.

4.3 Equivalence queries in the LearnLib

As mentioned before, it is impossible to decide equivalence
queries if one is restricted to observe the input/output behav-
ior of an unknown system. Therefore one has to resort to
approximations of equivalence queries. As we showed in
[28], additional knowledge and counterexamples are neces-
sary here, and it is important to have systematic methods at
hand to approximate equivalence queries. It turns out that

methods from the field of conformance testing are particu-
larly adequate [3].

The problem of conformance testing can be briefly
described as follows [24]. Given

• a finite state machine MS , which acts as known specifi-
cation, and

• a black-box implementation MI (typically representing
just another finite state machine), providing testing capa-
bilities only,

one wants to determine by testing whether MI correctly
implements or, as we say, conforms to MS .

Of course also this problem is in general undecidable, but
there are a number of practically relevant approaches, some
of which, under certain circumstances, like e.g., restriction
of the number of states of the black box implementation, are
even complete.

Due to the restricted setting, the proposed alternatives only
differ in the set of tests they produce. Thus conformance test-
ing is closely related to test generation. Besides basic test
suite generation algorithms like state cover set and transition
cover set, the current version of the LearnLib supports also
the W-Method [6], the Wp-Method [13], the UIO-method
[37], and the UIOv-method [41].

5 Optimizations of the LearnLib

Our initial experiments on real systems have shown that
test-based learning of systems is impractical: the classical
automata learning method automatically generates enormous
numbers of MQs which must then be resolved via the exe-
cution of test cases. Thus it is important to find ways to
drastically reduce the number of these queries. Therefore
the LearnLib contains a number of filter techniques which
exploit domain and expert knowledge for this purpose. This
has led to reductions of several orders of magnitude in real-
istic scenarios. The interested reader my refer to [27,39] for
a detailed exposition.

Figure 6 shows an example of a Mealy machine which will
be used as a kind of minimal example to explain the charac-
teristics of the filters. It is not a typical application example
for our method, which aims at real life systems like the ones
presented in [35,39], but it illustrates in a condensed setting
all the essential phenomena that appear there. The machine
represents a kind of Turing machine as depicted in Fig. 7,
which consists of a write/read head which can move left and
right, and a tape of cells. Each cell can hold one value of
{empty, 0, 1}. In contrast to a Turing machine, the tape has
a limited length and its ends are connected like a ring. Ini-
tially all cells of the tape are empty. The head can write “0”
and “1” but it is impossible to reset a cell to empty.

123



LearnLib: a framework for extrapolating behavioral models 403

Fig. 6 Prefix closed Mealy machine with independent actions and symmetry. The input alphabet is {write(0), write(1), read(), left(), right()} and
the output alphabet is {0, 1, ok, E R R}

Fig. 7 A simple Turing-like tape machine

The read operation returns the content of the current cell
if it is not empty. Otherwise it fails and the machine breaks
down, answering any further input with a special error sym-
bol ERR. Figure 6 shows the model of an instance of this
machine with tape length 2, which, according to its construc-
tion, is prefix closed.

The following sections discuss the main filters. They are
ordered according to their degree of specialization.

5.1 Redundancy

Angluin’s learning algorithm generates redundant
membership queries: its central data structure, the observa-
tion table [2], which organizes the systematic exploration of
the target system by means of membership queries, typically
contains numerous equivalent entries, i.e., entries that result
from asking the same membership query.

In order to prevent the automated test equipment from exe-
cuting those test cases repeatedly, a cache is used to detect
doubles and filter them out: the cache filter stores every test

result in a hash table T : Σ∗ → {unknown, true, false},
where three values express the current knowledge about q:
(1) it has not yet been considered, (2) it is member of the
considered language or (3) it is not. Given a specific mem-
bership query MQ(q), the corresponding formal filter rules
are straightforward:

• T (q) = true ⇒ MQ(q) = true
• T (q) = false ⇒ MQ(q) = false

Only if T (q) = unknown, a test case is required to answer
the membership query.

5.2 Prefix closure

If the language we want to learn consists of observations of
runs of a real system it is obvious that this language is prefix
closed, i.e., that given a run, every prefix of this run is also
in the language (thus it is itself also a run of the system).
This observation leads to a very powerful optimization, as
the learning algorithm needs not consider continuations of
possible runs that have already been excluded from the target
language by means of a previous membership query. Also,
whenever a long string is known to be a run of the system (this
is typically the case when the equivalence query presents a
positive counter example, i.e. a run of the system not yet con-
tained in the constructed model), we can add all the prefixes
of this string to the model without further testing effort.

123



404 H. Raffelt et al.

Formally, we define:

Definition 3 A DFA is prefix closed if the set of non
accepting states S\F is closed under transition.

∀a ∈ Σ. ∀s ∈ (S\F) . δ (s, a) ∈ (S\F)

In the Mealy case, one can introduce prefix closure using
a special failure output, which signals that the machine is
stuck in a dedicated error state (sink) which cannot be left.

Definition 4 A Mealy machine is prefix closed if there is an
output symbol f ∈ Γ such that once the machine produced
the failure output f , each further response of the machine is
f as well.

∀a ∈ Σ. ∀s, s′ ∈ S. s
a/ f−→ s′ �⇒ ∀b ∈ Σ. γ (s′, b) = f

Figure 6 shows the prefix closed Mealy machine to our exam-
ple system: the failure output symbol is ERR, and once ERR
occurred the machine moves to the failure state which is a
sink. Note that any minimized prefix closed Mealy machine
(resp. DFA) has at most one failure state.

The prefix closure filter is also implemented by means of
an optimized cache. The corresponding formal filter rules are
straightforward:

• ∃q ′ ∈ Σ∗. T (q · q ′) = true ⇒ MQ(q) = true
• ∃q ′ ∈ prefix(q). T (q ′) = false ⇒ MQ(q) = false

5.3 Independence of actions

Observable events may be independent in the sense that they
can be executed in any order leading to the same system state.
Thus if we have observed (or queried) one execution order,
we can deduce that each reordering of independent events
results in the same system state. In particular, if one of these
execution orders is a run of the system, then so are all the
(equivalent) re-orderings. In the Mealy case it is additionally
required that the output sequence of an execution is permuted
according to the reordering of the input sequence. The inde-
pendence filter exploits this observation by only querying the
system for one member of each such equivalence class.

In contrast to the prefix closure filter, the independence
filter requires the input of an application domain expert in
form of an independence relation that specifies which events
can be shuffled in any order.

As an example, the Mealy machine in Fig. 6 contains one
pair of independent actions: (left(), right()). Note that this
is the only pair of independent actions, which means that the
machine only reaches the same system state, producing an
equivalent output sequence, when the left() action is directly
followed by the right() action. A write action and even a read
action in between may result in a different system state or an
inequivalent output sequence.

Formally, independence is an irreflexive and symmetric
relation on pairs of actions.

Definition 5 Two actions a, b ∈ Σ of a minimal DFA are
independent, if and only if in every state of the system the
input sequences a; b and b; a lead to the same successor state.

∀a, b ∈ Σ. ∀s ∈ S.

δ(δ(s, a), b) = δ(δ(s, b), a)

Definition 6 Two actions a, b ∈ Σ of a minimal Mealy
machine are independent, if and only if they are indepen-
dent in the sense of Definition 5 and the output is permuted
accordingly.

∀a, b ∈ Σ. ∀s ∈ S.

δ(δ(s, a), b) = δ(δ(s, b), a) ∧
γ (s, a) = γ (δ(s, b), a) ∧ γ (s, b) = γ (δ(s, a), b)

The independence relation induces an equivalence relation
≡I ⊆ Σ∗ ×Σ∗ on the queries, whereby two queries q and q ′
are equivalent if and only if there exists a reordering of the
events conform to the independence relation that transforms
the query q into q ′.

Our independence filter normalizes queries according to
the independence relation: it calculates the lexicographical
smallest equivalent query based an a given ordering on the
actions.

5.4 Symmetry

Hardware and also telecommunication systems often contain
large numbers of components which are instances of a same
kind. They cannot be distinguished from each other without
explicitly looking at their identification number.

From an observational point of view, it often does not
matter which device of a certain kind is performing a cer-
tain action (e.g., which memory bank is addressed, or which
phone calls a certain number), and also the precise identi-
fication of the counterpart (the requesting processor or the
receiver of the call) is in principle unimportant, as long as
we assume a unique and consistent identification, e.g., that
the called number and the number of the receiver match.

This observation provides an enormous optimization
potential which drastically grows with the number of identi-
cal components in a system. We implemented a correspond-
ing filter, which in its essence leads to a symbolic treatment
of the devices: we number the actors (processors, memories,
phones) according to their appearance in a particular run, and
we match runs according to this numbering. Moreover, the
symbolic numbers are ‘freed’ whenever the corresponding
actor reaches its initial state again. The resulting model is
essentially as complicated as the real world scenario with n
actors (of a kind), where n is the maximal number of actors

123



LearnLib: a framework for extrapolating behavioral models 405

Table 2 Valid permutations of the Mealy machine in Fig. 6

Input permutation Output
permutation

id id

(write(0), write(1)) (0, 1)

(left(), right()) id

(write(0), write(1)) (left(), right()) (0, 1)

being active (not idle) in the model at the same time. Like
for independence of actions, it is the expert who determines
which devices are considered equivalent in the sense above.

Formally this characteristic can be described as a permu-
tation group over the alphabet. Each permutation describes a
valid interchange of actions under which the system behaves
symmetrically. In the DFA case it is sufficient to describe
how the (input) actions can be permuted. In the Mealy case
a permutation of input actions usually requires the output
actions to be permuted as well. For example, when exchang-
ing the action write(0) by write(1) (and vice versa) in the
Mealy machine of Fig. 6, one also has to exchange the output
0 by 1 (and vice versa) to gain an equivalent model. Table 2
contains the list of valid permutations for this example.

Definition 7 A permutation π over the alphabet Σ is valid
for a deterministic finite state machine M = (S, s0,Σ, δ, F),
if it maps the alphabet so that each word of mapped symbols
is accepted by the DFA if and only if the original word is also
accepted.

∀w ∈ Σ∗. δ(s0, w) ∈ F ⇔ δ(s0, π(w)) ∈ F

Definition 8 A pair of permutations (πΣ, πΓ ) over the
alphabets Σ and Γ is admissible for a Mealy machine M =
(S, s0,Σ, Γ, δ, γ ), if the following holds.

∀w ∈ Σ∗. γ (s0, w) == πΓ (γ (s0, πΣ(w)))

In other words, the input permutation πΣ , the output per-
mutation πΓ , and the output function γ have to commute
according to the diagram depicted in Fig. 8.

The implementation of the symmetry filter normalizes the
queries as well. This is done by choosing a permutation which

Fig. 8 Commutative diagram of Mealy symmetry

maps a given query to the lexicographically smallest equiv-
alent query. In contrast to the independence filter, which is
local in the sense that it shuffles single actions on a query, the
scope of the symmetry filter is global: it acts on the whole
context of a query.

5.5 Choice of strategies

Typically there are numerous ways of enforcing consistency
and closure. We therefore investigated the impact of various
strategies for choosing appropriate membership queries to
this aim. The diagram in Fig. 9 shows the influence of this
choice upon learning randomly generated DFAs. Each bar
in the figure represents the average number of membership
queries resulting from 1,000 experiments.

The DFAs used in this simulation have 100 states and
64 actions each, but the number of accepting states var-
ies between 1 and 50. The entries in the legend represent
which combination of strategies are used to enforce consis-
tencies and closedness. The considered strategies analyze
the required membership queries for each alternative and
choose one accordingly. For example, the strategies with
predicate short take inconsistency first, which requires a short
membership query, while other prefer longer membership
queries (long), membership queries that can be answered
without additional test (fast), or they just choose randomly
(random). A more detailed description of this particular
experiment goes beyond the scope of this paper, which only
intends to provide an impression of the features the LearnLib
provides to its users.

Note that it is not necessary to experiment with 50,…,99
accepting states when using completely random generated
models, since accepting and rejecting states are handled sym-
metrically. The results show that at least the strategies for
choosing inconsistencies have a large impact on the num-
ber of necessary membership queries. But they also show
that there is no optimal strategy covering all situations: the
choice depends on the structure of the model. For example,
preferring short membership queries on DFAs with a bal-
anced number of accepting and rejecting states leads to quite
good results, but in the unbalanced case one should prioritize
longer membership queries.

6 Conclusion

In this paper, we have presented the LearnLib, a modular
framework for automata learning, which is explicitly
designed for experimentation with a variety of learning tech-
nologies and tools, in the context of different application
scenarios. Its modular structure allows users to systemati-
cally analyze and then construct learning algorithms tailored
for their specific application scenario. The power of such a

123



406 H. Raffelt et al.

1 5 10 25 50
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000
fast-fast
fast-random

fast-long

fast-short

random-fast
random-random

random-long

random-short
long-fast

long-random

long-long

long-short
short-fast

short-random

short-long

short-short

number of accepting states

nu
m

be
r 

of
 m

em
be

rs
hi

p 
qu

er
ie

s

Fig. 9 Influence of strategy on random generated DFAs (100 states and 64 actions)

tailoring has been illustrated earlier in the concrete setting of
computer telephony integrated (CTI) systems, with a perfor-
mance gain of several orders of magnitude.

It turned out that the variety of options for optimizing and
steering learning algorithms and their impact is vast, and that
each new experimental analysis revealed new and unforseen
insights. We therefore envisage the extension of our frame-
work by an increasing number of functionalities, exploiting
other specific structural properties, like e.g., system architec-
ture, other phenomena, like real time, and increasingly com-
plex application scenarios. The extension of the LearnLib
as well as the experimental work are very labour intensive.
Meanwhile we have made it available over the Internet by
means of the jETI technology [New1] [26,40], and it has
been already used by other groups in order to create their
own learning scenario settings [New2].

As the extension of the LearnLib as well as the experimen-
tal work are very labor intensive, we are planning to make
the LearnLib available over the Internet by means of the jETI
technology [26,40].

References

1. Alur, R., Cerny, P., Madhusudan, P., Nam, W.: Synthesis of interface
specifications for java classes. In: POPL ’05: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 98–109. ACM Press, New York, NY,
USA (2005)

2. Angluin, D.: Learning regular sets from queries and counterexam-
ples. Inf. Comput. 2(75), 87–106 (1987)

3. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H.,
Steffen, B.: On the correspondence between conformance test-
ing and regular inference. In: Cerioli, M. (ed.) Proceedings of 8th
International Conference on Fundamental Approaches to Software
Engineering (FASE’05), LNCS, vol. 3442, pp. 175–189. Springer,
New York (2005)

4. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.:
Model-based Testing of Reactive Systems, LNCS, vol. 3472.
Springer, New York (2005)

5. Brun, Y., Ernst, M.D.: Finding latent code errors via machine
learning over program executions. In: Proceedings of the 26th Inter-
national Conference on Software Engineering (ICSE’04), pp. 480–
490. Edinburgh, Scotland (2004)

6. Chow, T.S.: Testing software design modeled by finite-state
machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978)

7. Cobleigh, J.M., Giannakopoulou, D., Pasareanu, C.S.: Learning
assumptions for compositional verification. In: Proceedings of the
9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003), LNCS, vol.
2619, pp. 331–346. Springer, Berlin/Heidelberg (2003)

8. Cook, J.E., Wolf, A.L.: Discovering models of software processes
from event-based data. (TOSEM) ACM Trans. Softw. Eng. Meth-
odol. 7(3), 215–249 (1998)

9. Cook, J.E., Du, Z., Liu, C., Wolf, A.L.: Discovering models of
behavior for concurrent systems. Technical Report, New Mexico
State University, Deppartment of Computer Science. NMSU-CS-
2002-010 (2002)

10. de la Higuera, C.: A bibliographical study of grammatical infer-
ence. Pattern Recognit. 38, 1332–1348 (2005)

11. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynam-
ically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering 27(2),
1–25 (2001). A previous version appeared in ICSE ’99, Proceed-
ings of the 21st International Conference on Software Engineering,
pp. 213–224. Los Angeles, CA, USA, May 19–21 (1999)

12. Ernst, M.D., Czeisler, A., Griswold, W.G., Notkin, D.: Quickly
detecting relevant program invariants. In: Proceedings of 22nd
International Conference on Software Engineering (ICSE’00),
pp. 449–458 (2000)

13. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M.,
Ghedamsi, A.: Test selection based on finite state models. IEEE
Trans. Softw. Eng. 17(6), 591–603 (1991)

14. Garavel, H.: Open/caesar: an open software architecture for verifi-
cation, simulation, and testing. In: Steffen, B. (ed.) Proceedings of
the 1st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98), LNCS, vol.
1384, pp. 68–84. Springer, New York (1998)

15. Groce, A., Peled, D., Yannakakis, M.: Adaptive model checking.
In: Katoen, J.P., Stevens, P. (eds.) Proceedings of the 8th Inter-
nation Conference on Tools and Algorithms for the Construction
and Analysis of Systems, LNCS, vol. 2280, pp. 357–370. Springer,
New York (2002)

16. Habermehl, P., Vojnar, T.: Regular model checking using infer-
ence of regular languages. In: Proceedings of 6th International

123



LearnLib: a framework for extrapolating behavioral models 407

Workshop on Verification of Infinite State Systems (INFINITY
2004), Electronic Notes in Theoretical Computer Science, vol.
138, pp. 21–36. Elsevier Science (2005)

17. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G.,
Ide, H.D.: Efficient regression testing of cti-systems: Testing a com-
plex call-center solution. Annu. Rev. Commun. Int. Eng. Consort.
(IEC), Chicago (USA) 55, 1033–1040 (2001)

18. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model genera-
tion by moderated regular extrapolation. In: Kutsche, H.W.R. (ed.)
Proceedings of the 5th International Conference on Fundamental
Approaches to Software Engineering (FASE’02), LNCS, vol. 2306,
pp. 80–95. Springer, Heidelberg, Germany (2002)

19. http://dblp.uni-trier.de/rec/bibtex/conf/iceccs/MargariaRSL07
20. Hungar, H., Steffen, B.: Behavior-based model construction. Int.

J. Softw. Tools Technol. Transf. (STTT) 6(1), 4–14 (2004)
21. Hungar, H., Margaria, T., Steffen, B.: Test-based model genera-

tion for legacy systems. In: Proceedings of 2003 International Test
Conference (ITC 2003), pp. 971–980. IEEE Computer Society,
Charlotte, NC (2003)

22. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.:
Model-driven development with the jabc. In: Proceedings of Haifa
verification conference 2006 (HVC 2006), LNCS, vol. 4383,
pp. 92–108. Springer, Berlin/Heidelberg (2007)

23. Kubczak, C., Margaria, T., Nagel, R., Steffen, B.: Plug and play
with FMICS-jETI: beyond scripting and coding. ERCIM News
N. 73, April 2008, pp. 41–42. http://ercim-news.ercim.org/content/
view/346/539/

24. Lee, D., Yannakakis, M.: Principles and methods of testing finite
state machines—a survey. Proc. IEEE 84(8), 1090–1126 (1996)

25. Margaria, T., Niese, O., Steffen, B., Erochok, A.: System level test-
ing of virtual switch (re-)configuration over ip. In: Proceedings of
the IEEE European Test Workshop (ETW’02), pp. 67–74. IEEE
Computer Society Press (2002). ETW2002

26. Margaria, T., Nagel, R., Steffen, B.: Remote integration and
coordination of verification tools in JETI. In: Proceedings of the
12th IEEE International Conference on the Engineering of Com-
puter-Based Systems (ECBS 2005), pp. 431–436. IEEE Computer
Society (2005)

27. Margaria, T., Raffelt, H., Steffen, B.: Analyzing second-order
effects between optimizations for system-level test-based model
generation. In: Proceedings of IEEE International Test Conference
(ITC’05), pp. 7, 467. IEEE Computer Society (2005)

28. Margaria, T., Hinchey, M.G., Raffelt, H., Rash, J., Rouff, C.A.,
Steffen, B.: Completing and adapting models of biological pro-
cesses. In: Proceedings of IFIP Conference on Biologically
Inspired Cooperative Computing (BiCC 2006), Santiago (Chile),
pp. 43–54. Springer (2006)

29. Mariani, L., Pezzè, M.: A technique for verifying component-based
software. In: Proceedings of Interantional Workshop on Test and
Analysis of Component Based Systems (TACoS’04), pp. 17–30
(2004)

30. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-checking: a tuto-
rial introduction. In: Cortesi, G.F.A. (ed.) Proceedings of Static
Analysis Symposium (SAS’99), Venice, Italy, LNCS, vol. 1694,
pp. 330–354. Springer, Heidelberg, Germany (1999)

31. Niese, O., Steffen, B., Margaria, T., Hagerer, A., Brune, G.,
Ide, H.D.: Library-based design and consistency checking of
system-level industrial test cases. In: Proceedings of the
4th International Conference on Fundamental Approaches
to Software Engineering (FASE ’01), LNCS, vol. 2029,
pp. 233–248. Springer, London, UK (2001)

32. Nimmer, J.W., Ernst, M.D.: Automatic generation of program spec-
ifications. In: Proceedings of the 2002 International Symposium on
Software Testing and Analysis (ISSTA’02), pp. 229–239. Rome,
Italy (2002)

33. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In:
Wu, J., Chanson, S.T., Gao, Q. (eds.) Proceedings of the Joint
International Conference on Formal Description Techniques for
Distributed System and Communication/Protocols and Protocol
Specification, Testing and Verification FORTE/PSTV ’99: pp. 225–
240. Kluwer Academic Publishers (1999)

34. Raffelt, H., Steffen, B.: Learnlib: A library for automata learning
and experimentation. In: Baresi, L., Heckel, R. (eds.) Proceedings
of 9th International Conference on Fundamental Approaches to
Software Engineering (FASE 2006), LNCS, vol. 3922, pp. 377–
380. Springer (2006)

35. Raffelt, H., Steffen, B., Margaria, T.: Dynamic testing via automata
learning. In: Proceedings of the Haifa Verification Conference
2007 (HVC ’07), LNCS, vol. 4899, pp. 136–152. Springer, Berlin,
Heidelberg (2008)

36. Sabnani, K., Dahbura, A.: A protocol test generation procedure.
Comput. Netw. ISDN Syst. 15(4), 285–297 (1988)

37. Shen, Y.N., Lombardi, F., Dahbura, A.T.: Protocol conformance
testing using multiple uio sequences. In: Proceedings of the 9th
International Symposium on Protocol Specification, Testing and
Verification, pp. 131–143. North-Holland (1990)

38. Steffen, B., Hungar, H.: Behavior-based model construction. In:
Mukhopadhyay, S., Zuck, L. (eds.) Proceedings of the 4th Interna-
tional Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’03), LNCS, vol. 2575, pp. 5–19. Springer
(2003)

39. Steffen, B., Margaria, T., Raffelt, H., Niese, O.: Efficient test-based
model generation of legacy systems. In: Proceedings of the 9th
IEEE International Workshop on High Level Design Validation
and Test (HLDVT’04), pp. 95–100. IEEE Computer Society Press,
Sonoma, CA, USA (2004)

40. Steffen, B., Margaria, T., Nagel, R.: jETI: A tool for remote tool
integration. In: Halbwachs, N., Zuck, L.D. (eds.) Proceedings of
11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05):, LNCS, vol.
3440. Springer, Edinburgh, UK (2005)

41. Vuong, S., Chan, W., Ito, M.: The UIOv-method for protocol test
sequence generation. In: de Meer, J., Machert, L., Effelsberg, W.
(eds.) Proceedings of 2nd International Workshop on Protocol Test-
ing Systems (IWPTS’89), pp. 161–175. North-Holland (1990)

42. Xie, T., Notkin, D.: Mutually enhancing test generation and spec-
ification inference. In: Petrenko, A., Ulrich, A. (eds.) Proceedings
of 3rd International Workshop on Formal Approaches to Testing
of Software (FATES’03), LNCS, vol. 2931, pp. 60–69. Springer
(2004)

123

http://dblp.uni-trier.de/rec/bibtex/conf/iceccs/MargariaRSL07
http://ercim-news.ercim.org/content/view/346/539/
http://ercim-news.ercim.org/content/view/346/539/

	LearnLib: a framework for extrapolating behavioral models
	Abstract
	1 Motivation
	2 Classical automata learning
	2.1 Local consistency
	2.2 Global equivalence

	3 The LearnLib
	3.1 Model generation for legacy systems
	3.2 Analysis and profiling of learning algorithms

	4 Automata learning with the LearnLib
	4.1 Pre-configuration mode
	4.2 Learning process modeling-mode
	4.3 Equivalence queries in the LearnLib

	5 Optimizations of the LearnLib
	5.1 Redundancy
	5.2 Prefix closure
	5.3 Independence of actions
	5.4 Symmetry
	5.5 Choice of strategies

	6 Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


