

Master of Science Thesis

University of Twente

Formal Methods and Tools

Océ-Technologies

Automatic Verification and Analysis of Test Results

of Océ Printers

Richard Rietema
May 2009

Committee:
Dr. M.I.A. Stoelinga (UT/FMT)

Dr. ir. A. Rensink (UT/FMT)

Ing. J. Reinders (Océ-Technologies)

 Preface
With this thesis three years of Computer Science and a year of final project

end. Both have been periods of hard work, great fun, good talks and learning.

Many people have contributed to these periods and to my thesis in various

ways. I would like to thank all of them.

First of all, I want to thank my main supervisor Mariëlle Stoelinga. She guided

me during the first five months and during the last two months. In between

these periods she took maternity leave. Mariëlle gave lots of interesting

suggestions and provided many useful remarks.

I also want to thank my supervisor Arend Rensink. He provided many practical

ideas and useful remarks on drafts of this thesis. This thesis would not look the

same without his remarks.

Furthermore, I would like to thank my Océ supervisor Jac Reinders. For the

valuable moments of his time, for his remarks, and the technical documents

and logfiles he provided. I would like to thank all colleagues for their questions

and remarks, Lou, Joost, Peter, Ton, Reinier and Sander.

Also thanks to my colleague students at Océ, Alvaro, Esmée, Eugen, Klemens

and Ralph. They made the period of final project pleasant.

I would like to thank all other people who made this period to an enjoyable

time. The people from „De Brug‟: family Veldhuizen, family Stephanus, and

Bea. Thanks for the many meals and the good talks. And the people from

Nieuwegein, for the meals and for encouraging me to write this thesis.

I would like to thank my landlady in Venlo, who used to turn the heat up before

6 am, to warm up my room.

Finally I want to thank my parents, family and friends, for their love and

support, even when I only saw them once a month or less.

Nieuwegein, May 2009

Richard Rietema

 5

 Abstract
This thesis describes the automatic verification and analysis of a printer of Océ

by means of test results in the form of logfiles.

Océ is a company that develops high performance, state-of-the-art printers

that produce up to 250 pages per minute. To test the complex software within

these printers, all printer processes write their actions into a global logfile.

When executing tests, an automatic analysis and verification of logfiles is

useful, especially when these tests are automated and performed on printers

under development. Currently, these logfiles are often inspected manually,

which is a cumbersome and time-consuming task.

For automatic verification and analysis the logfile is transformed to a log

model, which only contains log statements of functionality for tests relevant.

The same (relevant) functionality is modeled in a specification. This

specification consist of a composition of reference, synchronization and test-

specific models representing protocols, relations between protocols, and

behaviour adjusted to tests. It is defined in the formal language LOTOS. The

relation between the log model and the specification is a trace membership

relation, which means that a log model, if it represents correct printer

behaviour, is a member of the traces formed by the specification.

This relation is implemented in a tool chain, consisting of a preprocessor, an

editor, two compilers, and a Testlog verifier. The preprocessor transforms the

logfile into a log model. LOTOS compilers compile the LOTOS specification,

which is made in the LOTOS editor, into C code, and the Testlog verifier checks

whether a relation between the log model and the compiled specification exists.

Depending on the printer behaviour a verdict, true or false, is returned. In the

latter case, a sequence of transitions is given which leads to the first

unexpected transition in the log model.

With this tool chain, three protocols with connecting relations were analyzed

with logfiles from 15.000 to 700.000 lines. All known errors where identified

correctly and in almost all cases the verification times where short (< 16

minutes). In some cases, with many protocol instances in parallel, they

exceeded one hour.

 6

 7

 Contents

ABSTRACT 5

CONTENTS 7

FIGURES 9

TABLES 11

TERMS AND ABBREVIATIONS 13

1 INTRODUCTION 15

1.1 INTRODUCTION TO THE PROBLEM 15
1.1.1 Problem 16
1.1.2 Motivation 16
1.1.3 Solution 16
1.1.4 Results 18

1.2 BACKGROUND 18
1.2.1 Structure 19
1.2.2 Protocols and logging 20
1.2.3 Test 22
1.2.4 Verification 23

1.3 OUTLINE 24

2 FORMAL PRELIMINARIES 25

2.1 LABELED TRANSITION SYSTEMS 25
2.1.1 Composition of LTSs 26
2.1.2 Relation between LTSs 28

2.2 LOTOS 30
2.2.1 Basic LOTOS 30
2.2.2 Full LOTOS 32
2.2.3 LOTOS example 35

 8

3 METHOD 37

3.1 LOG MODEL 37
3.2 SPECIFICATION 38

3.2.1 Reference model 39
3.2.2 Synchronization model 40
3.2.3 Test-specific model 42

3.3 CORRECTNESS RELATION 43
3.4 VERIFICATION 44

3.4.1 On-the-fly composition of specification. 45
3.4.2 Separate verification of specification models 45
3.4.3 Composition of specification with log model 45

4 IMPLEMENTATION 47

4.1 SPECIFICATION LANGUAGE 47
4.2 THE TOOL CHAIN 48

4.2.1 The LOTOS editor 49
4.2.2 The preprocessor 50
4.2.3 The Testlog verifier 51

4.3 ALTERNATIVES 52
4.3.1 Language 52
4.3.2 Tool 52

5 FEASIBILITY STUDY 55

5.1 PROTOCOLS 55
5.1.1 Status protocol 55
5.1.2 Print protocol 56
5.1.3 Data protocol 57

5.2 RELATIONS BETWEEN PROTOCOLS 58
5.2.1 Status Print synchronization model 59

5.3 TEST SPECIFIC SITUATIONS 59
5.3.1 Number of sheets test-specific model 59
5.3.2 Time test-specific model 60

5.4 COMPOSITION 61

6 EVALUATION, CONCLUSIONS AND RECOMMENDATIONS 63

6.1 EVALUATION 63
6.1.1 Formalization of the logfile 63
6.1.2 Creation of the specification 64
6.1.3 Comparison of the formalized logfile with the specification 65

6.2 EXPERIENCE 66
6.2.1 Creation of specification 66
6.2.2 Detection of failures 67
6.2.3 Acceptance in Océ 67

6.3 CONCLUSIONS 67
6.4 RECOMMENDATIONS 68

REFERENCES 69

 9

 Figures
Figure 1: Formal specification of a printer ... 17

Figure 2: Formal log model of a printer .. 17

Figure 3: Printer in environment .. 19

Figure 4: Structure of a printer .. 20

Figure 5: A part of a logfile .. 21

Figure 6: Formal verification; relation between model and specification 23

Figure 7: LTS of Status protocol... 26

Figure 8: LTS of Print protocol ... 27

Figure 9: LTS of parallel composition of LTSs Status and Print 27

Figure 10: Trace through LTS of Figure 9.. 28

Figure 11: Trace inclusion ... 29

Figure 12: LOTOS specification of Status protocol 32

Figure 13: LOTOS specification Print protocol .. 32

Figure 14: Specification with LOTOS data type instances 33

Figure 15: Arbitrary LOTOS process ... 34

Figure 16: Alternative specification with value passing and constraint........... 34

Figure 17: LOTOS specification .. 35

Figure 18: Log model in sequence format ... 38

Figure 19: Reference model of Status protocol .. 39

Figure 20: Reference model of Print protocol .. 40

Figure 21: Synchronization model for Status and Print protocol 41

Figure 22: Specification, containing reference and synchronization models ... 42

Figure 23: Test-specific model test print of one sheet 43

Figure 24: Test-specific model test specific time ... 43

Figure 25: AVATR tool chain .. 49

Figure 26: Preprocessor, Perl script .. 50

 10

 11

 Tables
Table 1: Results verification and analysis of Status model 56

Table 2: Results verification and analysis Print model 57

Table 3: Results verification and analysis Data model 58

Table 4: Results verification and analysis Status Print synchronization model 59

Table 5: Results verification and analysis Number of sheets test model 60

Table 6: Results verification and analysis Time test-specific model 60

Table 7: Results verification and analysis composition specification model 61

 12

 13

 Terms and abbreviations

Logfile Text file in which internal printer actions are written, 20

LOTOS Language Of Temporal Ordering Specification, 30

LTS Labeled Transition System, 25

Message A communication package of a protocol, 20

Model A formal representation of a description of an

implementation, 16

Protocol A method of communicating information between two or

more entities, 20

Requirements A description of what a particular product or service

should be or do, 17

Specifications The formalized requirements, 16

Trace A sequence of transitions in an LTS, 28

Trace inclusion All traces of an LTS are also traces of another LTS, 29

Trace membership A trace is an element of the set of traces of an LTS, 29

Transition A state change in an LTS, 25

Validation The check whether the formalized implementation is

correct with respect to the implementation and the

specification with respect to the requirements, 23

Verification The check whether the formalized implementation is

correct with respect to the formalized requirements, 23

 14

 15

1 Introduction

In the last decades, printers of Océ have become more and more complex [1],

making it more and more important to perform testing. Printer tests also have

become more complex in order to keep up with the complexity of printers.

Printer testing produces log information, originally used by engineers for

debugging. Since these logfiles are becoming larger and larger, analysis of

these files is cumbersome; it is a task for specialists, which is often time

consuming.

At the same time, formal (mathematical) techniques are more and more used

in industry, to evaluate correctness of systems [3, 4].

Due to these trends the question arises to perform logfile verification

automatically and to analyze erroneous logfiles automatically by presenting

failures.

This master thesis is the result of research to formally support automatic

verification and analysis of logfiles produced by a printer of Océ.

Organization of this chapter

First, Section 1.1 introduces the project by giving a description of the problem

and the motivation for the project together with a sketch of the solution and

the results obtained. Subsequently, Section 1.2 describes the background of

the problem, consisting of an overview of the structure of the printer, the

communication mechanism used, the test, and the verification of the printer.

This chapter ends with an outline of this thesis in Section 1.3.

1.1 Introduction to the problem

The project, described in this thesis, is summarized as: the development of a

method and a tool to formally support and simplify, the log verification and

analysis process of a printer of Océ. The project is called: Automatic

Verification and Analysis of Test Results, shortly AVATR.

The difference between theory and practice is a lot

bigger in practice than in theory

(Peter van de Linden)

 16

The printer used in this project contains several processes, which communicate

via different protocols. Each process writes executed protocol actions to a

global logfile. In this logfile, which grows easily to 25 Megabyte, all logged

actions are ordered by the time they are executed and mixed up with actions of

other protocols. A logfile shows in detail what actions are performed in the

printer, and is currently used for:

 verification, which is an automatically performed count of particular log
statements;

 analysis, which is a manual search for a missing log statement, a
wrong order or a wrong timing of log statements.

1.1.1 Problem

In this verification, an obligatory or forbidden order of log statements is not

taken into account, nor can this verification prove the correctness of a logfile,

since it is only a count of log statements. Hence this verification is incomplete.

Furthermore, the analysis in case of incorrect printer behaviour is performed

manually. This can take a while, depending on the experience of the involved

engineer, which makes analysis labor-intensive.

1.1.2 Motivation

The drive behind the formal support and simplification of this verification and

analysis is twofold.

 Maximization of the value of verification verdicts.
 Minimization of labor-intensive analysis.

Since the logfile contains detailed information about certain processes in the

printer, this can be used to maximize the amount of properties in the

verification. This detailed information can also be used to analyze which printer

process or protocol fails, in case of an error.

1.1.3 Solution

In order to maximize the value of the verification verdicts and to minimize the

labor intensive analysis, a method has been developed and implemented in a

tool chain. This method requires a notion whether a logfile is correct or not.

This notion is given by a formal specification, which is a formalization of certain

aspects of the requirements of the printer. It is created in the formal

specification language LOTOS, which is described in chapter 2.

Specification

Intuitively, this formal specification is a collection of all correct sequences of

actions of the printer (see figure 1).

 17

The formal specification exists of the composition of:

 one or more small reference models;
 zero or more synchronization models;
 zero or more test-specific models.

A reference model is an unambiguous description of a coherent subset of the

requirements of the printer, typical a protocol. For each verification and

analysis, this reference model can be different or it can be a combination of

more models. Between reference models, synchronization constraints can

exist. For example, an obligatory action order between actions of different

reference models. These constraints are modeled in special synchronization

models and are taken into account with the verification. Test-specific models

contain test-dependent information, e.g., the number of printed sheets. With

this information, the specification is matched to a specific test scenario.

Verification and analysis

The logfile, which is (intuitively) one sequence of actions of the printer, has

been filtered and formalized to keep only actions of protocols which are

modeled in the specification. The resulting (formalized) logfile, a log model

(see Figure 2), is an element of the collection of action sequences of the

specification, if the printer behaves correctly.

Figure 1: Formal specification of a printer

Figure 2: Formal log model of a printer

 18

Formally supported verification is the check whether this is true or not.

Formally supported analysis determines the first action in the logfile that

causes a mismatch with the best fitting element of the collection of

specification sequences.

Implementation

This method, to verify and analyze a printer by means of a logfile and a formal

specification, has been implemented in a tool chain, which consists of five

parts:

 a preprocessor, which filters and formalizes the logfile;
 a LOTOS editor, in which a specification can be created;
 a LOTOS functional compiler, which translates the functional part of the

specification;
 a LOTOS abstract data type compiler, which translates the abstract

data type instances of the specification;
 a Testlog verifier, which verifies and analyzes the formalized logfile

with the created specification.

The preprocessor is implemented in the scripting language Perl [18]. The

LOTOS editor is a text editor called VIM [2]. For the LOTOS compilers and the

Testlog verifier the tools Caesar, Caesar.adt and Exhibitor, from the CADP

(Construction and Analysis of Distributed Processes) toolbox are used [3, 4].

These tools are based on the formal description language LOTOS [5, 6, 7, 8].

1.1.4 Results

The main results of this thesis are summarized as follows.

 A method has been developed to transform a logfile into a log model.

This transformation filters unneeded details out and formalizes used

printer actions;

 A method has been developed to create a specification, consisting of

reference, synchronization, and test-specific models, which describe

(relevant) parts of printer requirements;

 A method has been developed to verify and analyze the log model with

the specification efficiently.

These results have been implemented in the AVATR tool chain, which has lead

to a proof of concept.

1.2 Background

The printer studied in this thesis is an Océ high performance printer, capable of

printing 250 pages per minute. Since this printer is not released yet, no specific

details are given. However, the method developed is applicable to many

printers.

A typical environment of the printer studied, consists of one hundred personal

computers (pc‟s) in an office. When a user gives a print command from a pc,

 19

for example a document from Microsoft Word, this is sent to the printer over

the local area network (LAN). The printer processes this print job, and shows

the printer status on the user interface (e.g., initializing, warming, printing,

standby).

For research and development the printer sends internally performed protocol

actions over the LAN to a log server, which stores this information in a global

logfile, on a network drive (see figure 3).

1.2.1 Structure

The printer consists of a well-defined structure, which globally exists of a

Controller and an Engine (see figure 4). The Controller is, besides image

processing, responsible for the control of the Engine and the information

transfer between the user and the Engine. In more detail, it:

 communicates with a user to provide information about the
configuration (e.g., paper size, print quality, status);

 assigns print jobs from the user to the Engine;
 controls the Engine status to correctly execute send print jobs.

The configuration and error information provided by the Controller to the user

is provided by the Engine to the Controller.

The Engine is responsible for the actual printing, it is the part where the high-

level control messages are translated into low-level system signals. To do so,

the Engine consists of several processes:

Figure 3: Printer in environment

 20

 Managers form an interface from the Engine to the Controller, to which
a Controller can connect. Each Manager represents a functional aspect
of the printer (e.g., error handling, page printing, status control). The
required behaviour of a Manager can be established by the use of
Functions and other Managers.

 Functions are a top-level decomposition to help managers dealing with
dependencies and structures of hardware components. A Function
controls a coherent set of devices, for instance the paper input. It
„converts‟ Engine physical parts to Engine functional parts.

 Devices consist of a software part and a hardware part. The software
part of a Device is called a Device driver. It controls a coherent set of
sensors and actuators, which can be on functional, temporal, or
physical level. The hardware part of a device represents an actual part
of the Engine hardware, and belongs to the hardware of the printer.

1.2.2 Protocols and logging

The processes of the Engine (managers, functions and devices) and the

Controller communicate to each other by means of different protocols, depicted

by black arrows in Figure 4.

A protocol is an agreed-upon method of communicating information between

two or more entities, using an underlying service or medium [9]. There are two

relevant ingredients in the used protocols:

 the messages, and their intended meaning;
 the order in which messages should be exchanged.

Figure 4: Structure of a printer

 21

Messages contain a label and often an identification number, which

distinguishes the protocol message from messages with an equal label.

Identification numbers are also used to match the message with a message

response.

Each protocol has its own distinct set of messages, there are no message sets

that have messages with an equal label and identification number. In each

protocol and between different protocols the combination label and

identification number is always unique. Hence printer protocols form a

deterministic system.

Protocol messages are not only sent from one process to another, but also to a

log server in the Engine (see figure 4). This log server appends the current

time to the message and sends the result represented as text string, via the

Controller, to the log server outside the printer. In the printer a small buffer

stores the latest log messages, which can be used to detect failures by

customers. The level of messaging can be adjusted to relief printer processors.

Log messages which are sent to the log server form a large logfile, in which the

message, the time the message is sent and the involved processes are written

(see figure 5). Because this logfile is a sequential representation of parallel

communications, and because some messages have to travel a longer way to

the Engine log server than others, it can happen that protocol messages are

stored in a different order and that timestamps are assigned different from

their actual time.

When timestamps are not assigned following the actual time (i.e., an action

which is performed earlier than another one, gets a lager timestamp) the

logfile is not a correct representation of the order of actions taken in the

printer. When these incorrect „timed‟ logfile actions do not have a relation to

each other this is not a problem. However, when they do have a relation,

verification of these messages will fail. This case is very rare in practice

because the extra travel time of log messages is small corresponding to the

time between the log messages.

 147079644: a_ESM_Printer-func /Process, newstatus=standby, no EI update needed.
147079724: a_ESM_Printer: cancelling transion timer.

147079760: a_ESM_Printer: send m_Set(PowerOffParam = normal).
147079834: a_ESM_Printer: f_UnitStatusChanged(standby)
147079909: a_ESM_Printer: send m_UnitStatus(standby) to Controller.
147079976: a_ESM_Printer: send m_UnitStatus(standby) to ACM Client.
147080499: a_ESM_Printer: p_EIMCacheControl.m_FlushAll send.
147080601: a_EDRouterCheckerPrinter: received unit status (standby) from statusmanager
147080701: a_PPM: received m_UnitStatus(standby).
147080844: a_EIManagerPrinter: Received m_Set on port s_ModuleInformation[5] with data:

147081175: a_DEV_WprStatus:/deviceWprStatus: Received_DeviceInformation
147081716: a_DEV_WprStatus:/deviceWprStatus: Received SUBTYPE_SETREPLY
147081874: a_EIManagerPrinter: Received m_flushAll. Updating all postponed items with
147082986: a_ESM_Printer: p_EIMCacheControl.m_FlushAllDone received.
147086744: a_RC_ECadapter:printer: RC-command: ei: setparam moduleId /system paramId
147087766: a_EIManagerPrinter: Received m_Set on port p_Information[1] with data:

147087949: a_SpeedController: @SSL @PROMON Update received: D_InfoSpec:

Figure 5: A part of a logfile

 22

Note that the logfile also can contain incorrectly ordered messages as result of

software failures (i.e., incorrect communicating software), hardware bugs or

failures due to incorrect external parameters (e.g., usage of wrong paper or

too high environment temperatures).

1.2.3 Test

To be sure different printer processes interact correctly with each other, a

printer is extensively tested. Tests are performed in three stages, the stages of

the V-model [10] according to which the printer is developed.

 A model of the printer is built, which simulates the required system.
 An embedded prototype is built, with code generated from the model.
 A final product (i.e., a printer) is built by gradually replacing the

experimental hardware of the prototype by real hardware, until the
printer is build in its final form as it will be used and mass produced.

Each of the above printer appearances (model, prototype and final product)

follows a V-development cycle itself, including design, build and test activities.

This implies that the complete functionality can be tested for the models as

well as for the prototype and the final product. However, certain detailed

properties cannot be tested on the model and must be tested on the prototype

or the final product, for instance, the impact of environmental conditions.

The tests performed on the prototype and the final product have to deal with

the whole embedded system, instead of only software in the model. These

tests produce logfiles besides printed paper.

The evaluation of these tests makes use of these produced logfiles. The

evaluation is partly manual and partly automatic. For instance, the check

whether bitmaps are printed correctly or not is manual; the check whether the

right amount of sheets is printed or not is automatic.

Tests can result in a correct or an incorrect verdict. An incorrect verdict

exhibits incorrect printer behavior, which can be divided into:

 test-independent incorrect behaviour;
 test-specific incorrect behaviour.

Test-independent incorrect behavior is in general wrong behavior (e.g., print a

sheet without first warming the Engine). This printer behaviour is for all tests

unacceptable. It can be recognized by an incorrect order of protocol messages

or missing protocol messages, without knowing the performed test.

Test-specific incorrect behavior is wrong depending on a certain test (e.g., five

pages printed instead of three). To recognize an error of this kind, additional

test information is needed, e.g., a logfile which shows one printed sheet can be

correct with respect to the used protocols, but not with respect to the specific

test.

 23

1.2.4 Verification

By performing a test, processes in the printer produce log statements. These

log statements are an unambiguous representation of the protocol messages

send in the printer during the test, and can be used to verify the behaviour of

the printer.

Definition

Verification is the mathematical proof of a formal relation between the formal

representations of the implementation and the requirements [9] (see figure 6).

The requirements of the printer are formalized, which means: translated from a

description in an informal language to a description in a formal language. A

formal language is defined by a formal syntax, and has associated semantics,

which give precise meaning to expressions in the syntax. The printer itself is

also formalized, which means that a formal model is created from the

implementation. This model is derived from the logfiles of the printer.

The formal relation between the (formal) specification and the (formal) model

defines the behaviour that is allowed in the model by the specification. This

relation can be that the model must be included by the specification, or that

the model and the specification are equal.

The specification is created manually from the requirements of the printer. The

validation of this specification, the check whether the formalization is correct, is

a manual task. The model of the printer is automatically created from the

logfile and should correspond to the behaviour of the printer.

formal

informal

requirements printer

implementation

formalization formalization

model specification

verification

physical

Figure 6: Formal verification; relation between model and specification

 24

1.3 Outline

The remaining part of this thesis is divided into four chapters:

 Chapter 2 (Formal preliminaries) describes labeled transition systems,
the composition of these systems and the relation between them.
Furthermore, it describes the formal description language LOTOS. This
language is used to describe printer requirements.

 Chapter 3 (Method) describes the developed method. It describes the
preprocessing of the logfile, the creation of a specification, consisting of
reference, synchronization and test-specific models and the
composition of these models. Furthermore it describes the verification
and analysis of the log model with the specification and several
alternatives for it.

 Chapter 4 (Implementation) describes the developed tool chain, which
consists of a preprocessor, a LOTOS editor, two LOTOS compilers and a
Testlog verifier. Also alternatives for this implementation are described.

 Chapter 5 (Results) shows the practical use of the method and the tool
chain. It describes four cases, which describe a subset of the
functionality of the printer, and gives results obtained.

This thesis ends with an evaluation about the AVATR project, conclusions about

current results and recommendations for improvement of profit of the AVATR

method and tool chain.

 25

2 Formal preliminaries

Formal methods is a term used for mathematically-based techniques, used for

specification, development and verification of software and hardware systems.

They provide formal, unambiguous, models and precisely defined and proved

methods that provide a means to verify, validate and test these models. These

methods are increasingly used in industry to evaluate correctness [11, 12].

This chapter presents the required preliminaries to understand the method this

thesis describes.

Organization of this chapter

Section 2.1 gives information about labeled transition systems, it includes the

definition and the composition of these systems and the relations these

systems have. Section 2.2 describes the specification language LOTOS, the

implementation of the formal definitions in this description language. Each

section in this chapter is illustrated with an example.

2.1 Labeled transition systems

Definition

A labeled transition system (LTS) [13] is a 4-tuple S, L, T, s0 where

 S is a finite, non-empty set of states;

 L is a finite set of labels;

 is the transition relation;

 s0 S is the initial state

A transition labeled from state s to state s , i.e., (s, , s) T is written as:

. This is interpreted as: “when the system is in state s it may perform

action and go to state s ”. The labels in L represent the observable actions of

a system; they model the systems‟ interactions with its environment. Internal

Seek simplicity and distrust it

(Alfred North Whitehead)

 26

actions are denoted by the special label L; is assumed to be unobservable

for the systems environment. A series of transitions in which at least one with

label and zero or more internal actions, from state s to state s’, is written as:

s s‟. This is interpreted as: “when the system is in state s it may perform

zero or more internal actions, one action , zero or more internal actions and

go to state s ”.

An LTS can be represented by a graph, where nodes represent states and

labeled edges represent transitions.

Example

Figure 7 gives an example of an LTS represented by a graph. This figure gives

a simplified representation of the Status protocol of a printer.

Figure 7 represents states by numbers and labels by character strings. The LTS

has a set of states, S: {0, 1, 2, 3, 4, 5, 6}, a set of labels, L: {init,

warmingUp, standBy, start, run, stop}, a set of transitions, T: {(0, init, 1), (1,

warmingUp, 2), (2, standBy, 3), (3, start, 4), (4, run, 5), (5, stop, 6) , (6,

standBy, 3)}, and an initial state, s0: 0.

2.1.1 Composition of LTSs

A composition of different LTSs, LTS1 and LTS2, is written as: LTS1 |[G]| LTS2,

where G is a set of labels (see Section 2.2.1 below). This is interpreted as:

“LTS1 and LTS2 synchronize on all transitions with a label of the set G, all

transitions with other labels are interleaved” (i.e., in the composition each

order of these transitions is possible). It means full interleaving if the label set

G is empty (G =), full synchronization, if the label set G equals the union of

the label sets of the synchronizing LTSs and if this label sets are equal (G =

L(LTS1) L(LTS2) and L(LTS1) = L(LTS2)), and partial interleaving otherwise.

Synchronization can occur if both systems are able to perform a transition with

a similar label. This implies that LTSs can also both block the occurrence of

 1

 7

 6

 5

 4

 3

 2

ini t

warmingUp

standBy

s tart

s tandBy

stop

run

Figure 7: LTS of Status protocol

 27

synchronization. Interleaving occurs when one of the LTSs can perform a

transition that is not a synchronizing transition.

Example

A composition LTS is created from the LTS of Figure 7 with the one in Figure 8.

The latter representing a simplified version of the Print protocol of a printer

(see figure 8). The transitions start and stop in the LTS in this figure are not

part of the protocol, they are appended for this example.

The resulting LTS, created using the composition operator |[G]|: Status |[start,

stop]| Print, contains 11 states and 13 transitions (see figure 9).

In this composition only transitions start and stop are synchronizing, all other

transitions are interleaved. However, the LTS of the print protocol (figure 8)

does not have transitions before start and after stop, so the only actually

 1

 2

 3

 4

 5

s tart

printRequest

printRequestReady

s top

ini t

warmingUp

standBy

s tart

s tandBy

s top

run

printRequest

printRequestReady

run

run

pr
in

tR
eq

pr
in

tR
eq

R

 0

6,4

4,1

 3,0

 2

 1

 5,1

 4,3

 4,2

 5,3

 5,2

Figure 8: LTS of Print protocol

Figure 9: LTS of parallel composition of LTSs Status and Print

 28

interleaving transitions in Figure 9 are run, printRequest and

printRequestReady.

2.1.2 Relation between LTSs

LTSs are used to model the behaviour of systems, such as distributed systems

and protocols. These systems, formalizations of processes, can be compared

using formal relations, which are known from literature [14, 15]. In this thesis

only the trace inclusion relation is important.

The trace inclusion relation compares different LTSs by means of their traces. A

trace is defined as a sequence of actions which exist in a specific LTS.

Definition

A formal notation of a trace is:

 traces (s) = { L* | s }

where s is an arbitrary LTS, L the label set of s and L* the set of sequences in

L.

Example

Figure 9 contains infinitely many traces, one of them is depicted below (see

figure 10).

The trace in Figure 10 starts with the first transition of the LTS of Figure 9, and

forms a trace through. The cycle in the LTS of Figure 9 causes an infinite

number of traces.

A trace inclusion relation is intuitively defined as follows: if LTS P is trace

included in LTS Q, the traces formed by the transitions of P, are also traces in

Q. The other way around is not required, neither forbidden.

run

s tandBy

printRequest

printRequestReady

s top

ini t

warmingUp

s tandBy

s tart

Figure 10: Trace through LTS of Figure 9

 29

Definition

A formal notation of the trace inclusion relation [13] is:

 P tr Q =def traces(P) traces(Q)

where LTS P is trace included by LTS Q.

Example

Figure 11 shows two LTSs, LTS P and LTS Q.

LTS P is trace included in LTS Q since all traces of LTS P are traces of LTS Q.

The traces of LTS P are traces(P): {init; init, printRequest; init, printRequest,

printRequestReady} and the traces of LTS Q are traces(Q): {init; init,

printRequest; init, printRequest, printRequestReady; init, printRequest,

printRequestReady, stop}.

LTS Q is not trace included by LTS P since the trace: init, printRequest,

printRequestReady, stop, is a trace in Q but not in P.

The relation used in this thesis is the trace membership relation. This is a

simplification of the trace inclusion relation, since it describes the „inclusion‟ of

one trace into an LTS. This relation is defined as: the trace is an element of

the set of traces of LTS Q

Definition

The notation for the trace membership relation is:

 traces(Q)

Where is a trace and Q an LTS.

The Trace inclusion relation and the trace membership relation are similar

when LTS P consists of only one trace (like is one trace).

If a composition of two LTSs, made by synchronizing on shared labels, contains

a trace, then each of the individual LTSs contains a trace. The other way

start

printRequest

printRequestReady

 1

 2

 3

 4

 1

 2

 3

 4

 5

start

printRequest

printRequestReady

stop

LTS P LTS Q

Figure 11: LTS P and LTS Q

 30

around also holds: if two LTSs both contain a trace, the composition of these

two LTSs also contains a trace, when it is synchronized on shared labels.

In a formal notation:

Where the label set of the composition is the union of the label sets of both

LTSs:

Where L is the label set of the composition, Lp is the label set of LTS P and Lq is

the label set of LTS Q. The notation means: for which holds , in this

case it means that is a trace only containing labels from the label set .

2.2 LOTOS

The representation of a printer specification in an LTS, like Figure 7 or Figure 8,

is not directly suitable to describe the correct behaviour of the requirements of

a printer. There are two reasons for that:

 a composed model of a printer can easily have billions of states,
drawing them is cumbersome;

 transitions can have corresponding data values, expressions and
constraints, which cannot easily be modeled in an ordinary LTS.

To overcome these issues, another way of representing a transition system is

needed. In this thesis the specification language LOTOS (Language of Temporal

Ordering Specification), a process algebraic language, is used [5].

LOTOS has been developed for the formal description of the Open system

Interconnection (OSI) architecture within the International Organization for

Standardization (ISO), although it is applicable to distributed, concurrent

systems in general.

In LOTOS a system is seen as a set of processes which interact and exchange

data with each other and with their environment. The language consists of

complementary formalisms for data and control. The control part, basic LOTOS,

a CCS/CSP- based language, is a subset of the language where process

synchronization is achieved, but without data exchange [6]. The data

structures of LOTOS are derived from the specification language for abstract

data types ACT ONE [7, 16]. Only data types (called sorts in LOTOS) and value

expressions of ACT ONE are used and described in this thesis.

2.2.1 Basic LOTOS

In basic LOTOS, behavior is described by behaviour expressions [13]. The

syntax for a behavior expression B, is the following:

These constructs have the following meaning:

 31

 The action prefix expression a; B, with a L, the set of labels of the

system, describes the action a (comparable with a transition in an LTS)
and then behaves as B. The semantics for this axiom, usually formally
defined by means of axioms and inference rules, is:

This axiom is to be read as: an expression of the form a ; B can

always make a transition to a state from where it behaves as B.

 The expression i ; B is analogous to a ; B, the difference being that i

denotes an internal action in the transition system:

 The choice expression , where is a countable set of behaviour

expressions, denotes a choice of behaviour. It behaves as any of the

processes in the set . It is formally defined by the inference rule:

This inference rule is to be read as follows: suppose that we know that

B can make a transition to B ; moreover we have that B and is

any observable or internal action, then we can conclude that can

make the same transition to B .

B1 [] B2 is used as an abbreviation of {B1, B2}, i.e., B1 [] B2

behaves as either B1 or B2. The expression stop is an abbreviation for

 , i.e., it is the behaviour which cannot perform any action, so it is

the deadlocked process.

 The parallel expression B1 |[G]| B2, where G L, denotes the parallel

execution of B1 and B2. In this parallel execution all actions in G must
synchronize, while all actions not in G (including) can occur

independently in both processes, i.e., interleaved. || is used as an
abbreviation for |[L]|, i.e., synchronization on all actions except ,

and ||| as an abbreviation for |[]|, i.e., full interleaving and no

synchronization. The interference rules are as follows:

 A process definition, P, links a process name to a behaviour

expression:

 32

The name P can be used in behaviour expressions to stand for the
behaviour expressed by its corresponding behaviour expression.
Formally:

 The expression stop denotes a valid end expression.

As usual parentheses are used to disambiguate expressions. If no parentheses

are used „;‟ binds stronger than „[]‟, which binds stronger than „|[G]|‟. The

parallel operators read from left to right; they are not associative for different

synchronization sets.

Example

To illustrate this syntax, the examples from Figure 7 and Figure 8 are written in

LOTOS (see figure 12 and figure 13).

2.2.2 Full LOTOS

Full LOTOS, or LOTOS, has the advantage over (basic) LOTOS that it has the

ability to model with data types.

In full LOTOS, the semantics of parallel composition is unchanged with respect

to basic LOTOS. Interprocess communication may still occur when two

processes composed in parallel are offering the same action (a transition in an

LTS). An action in full LOTOS, which can exchange data values, is formed of

three components: a gate, comparable with a label in an LTS; a list of events;

and an optional predicate [8].

 S0 := init;

 warmingUp;

 standby;

 S3

 S3 := start;

 run;

 stopped;

 standby;

 S3

 P0 := start;

 printRequest;

 printRequestReady;

 stopped;

 stop

Figure 12: LOTOS specification of Status protocol

Figure 13: LOTOS specification Print protocol

 33

Processes synchronize their actions, provided that they name the same gate,

that the lists of events are matched, and that the predicates, if present, are

satisfied. An event can either offer (!) or accept (?) a value. The

synchronization rule of basic LOTOS is replaced by synchronization rules in full

LOTOS. In full LOTOS there are three kinds of synchronization:

 Value matching:

E1 and E2 are expressions and must belong to the same data type. It
will succeed if E1 equals E2 from the specification of the common type.

 Value passing:

Expression E must belong to the data type S. It will succeed, replacing
x by E in B2.

 Negotiation:

It will succeed, becoming x = y = v, where v is some value in the
specified data type S

When a predicate is used, e.g., a[E1 = E2], synchronization can only take place

if the result of the predicate evaluates to true, i.e., E1 equals E2.

Example

When data types and data are added to a specification, the actions of the

specification contain besides the action name, the variable name and the

variable type (see figure 14).

Figure 14 specifies the Print protocol of Figure 8, extended with a variable of

the data type Natural. The transition printRequest needs a Natural value before

it can synchronize, another process has to pass this value. When this condition

is met, the transition printRequestReady matches the obtained value with the

 P0 := start;

 printRequest ? id:Nat;

 printRequestReady ! id;

 stopped;

 stop

Figure 14: Specification with LOTOS data type instances

 34

next transition of the synchronizing process. An example of a process that can

synchronize with this process is given in Figure 15.

Figure 15 depicts an arbitrary process (P1) that can synchronize with process

P0 of Figure 13 (P0 || P1). After the transition printRequest the value of id is

23. This value matches in the transition printRequestReady, so synchronization

can be obtained.

An alternative for the construction of value passing and value matching, as

depicted in Figure 14, is a construction with value passing and a constraint

(see figure 16).

The process in this figure also synchronizes with process P1 of Figure 15 (P1 ||

P0). The action printRequest again synchronizes passing the Natural 23 to the

variable id1. The action printRequestReady of P0 tries to synchronize with

printRequestReady of P1, first passing the Natural value 23 to id2. The

synchronization is successful when the value of id1 is equal to that of id2, like

the constraint.

 P0 := start;

 printRequest ? id1:Nat;

 printRequestReady ? id2:Nat [id1 = id2];

 stopped;

 stop

 P1 := start;

 printRequest ! 23;

 printRequestReady ! 23;

 stopped;

 stop

Figure 15: Arbitrary LOTOS process

Figure 16: Alternative specification with value passing and constraint

 35

2.2.3 LOTOS example

Besides the description of the behavior of a LOTOS specification, the total

specification is enclosed in specification keywords following the LOTOS syntax

[5,6,7,8] (see figure 17).

A specification starts with SPECIFICATION and ends with ENDSPEC. In between

these keywords one or more processes, libraries and transitions can be

defined. Each process starts with the keyword PROCESS and ends with

ENDPROC, each library instantiation with LIBRARY and ENDLIB. EXIT or

NOEXIT defines respectively whether the process can terminate successfully or

not. Below the statement WHERE an earlier used process is defined.

Declarations of types have to be placed before the use of a type instance.

Processes and transitions can be placed in parallel or after each other. Libraries

are at compile time pasted in the specification at the place of the library

declaration. Hence a library file contains normal LOTOS code with LOTOS

syntax.

SPECIFICATION Print [start, printRequest, printRequestReady, stopped]

:NOEXIT

LIBRARY

 NATURAL

ENDLIB

BEHAVIOUR

 Protocol [start, printRequest, printRequestReady, stopped]

:NOEXIT

WHERE

PROCESS Protocol [start, printrequest, printrequestready, stopped]

 :NOEXIT

 start;

 printRequest ? id : NAT;

 printRequestReady ! id;

 stopped

 ENDPROC

ENDSPEC

Figure 17: LOTOS specification

 36

 37

3 Method

The verification and analysis of the printer by means of its logfiles requires

three ingredients:

 a logfile, which has to be verified and analyzed;

 a specification, which defines the correct behaviour of the printer;

 a relation between the logfile and the specification.

This chapter describes these three ingredients in the developed method

Organization of this chapter

Section 3.1 describes the log model. Section 3.2 describes the specification, a

formalization of the requirements of the printer, in different models: reference,

synchronization and test-specific models. Section 3.3 describes the verification

and analysis of a logfile. Section 3.4 describes an alternative.

3.1 Log model

A logfile contains all actions and details of actions of logged protocols, for

example: the time on which the action is performed, the name of the sending

or receiving process, the action label and an action identification number. To

deal with this information the logfile is transformed into a log model. This

transformation is done into two parts: filtering and formalization. Filtering

keeps only actions of the protocols to verify and formalization puts these

actions in the correct syntax. The transformation of the logfile has three

reasons:

 not all logged protocols are formalized in the specification, the
formalization of a subset of the requirements only makes sense when
also a subset of the logfile is taken;

 not all details in the logfile are used in the specification. The actions in
the logfile contain a large amount of details, used for debugging, the
actions in the specification do not. These details are not used for the
verification and analysis;

The ability to simplify means to eliminate the

unnecessary so that the necessary may speak

(Hans Hofmann)

 38

 not all statements in the logfile have the same syntax. Since the logfile
is originally used for debugging, the logged actions do not always have
a standardized structure. The formalization covers the inconsistent
formats of the notation of logged actions.

When coding rules are applied strictly and logged actions do have the same

syntax, the transformation can be brought back to filtering.

The resulting formalized logfile is called log model. This model contains only

actions of protocols modeled in the specification and has a well-defined

structure. The structure of the log model satisfies the Sequence format rules

[17]. A log model consists of a sequence of transition labels, each possible

followed by one or more identification numbers or other naturals (e.g., time).

Since the syntax of the logged actions differs per protocol, the transformation

is different for each protocol. If the syntax of a protocol is known, the

transformation is done automatically.

Example

Figure 10 (page 27) depicts a log model in which the printer printed one sheet.

This model can be represented in a sequence (see figure 18).

3.2 Specification

To verify and analyze the logfile of a printer, a notion of a correct logfile is

needed. The logfile can be verified against the requirements of the printer,

which describes the printer behaviour informally, but this description often is

not unambiguous. To overcome this problem the requirements of the printer

are formalized, which gives a formal specification.

A disadvantage of the formalization of the requirements is their large size. A

printer is a complex machine, which has many complex requirements. This

means that a simple verification must be preceded by the huge task of

formalization. To overcome this barrier AVATR is developed to be able to use a

subset of the formalized requirements.

When formalizing the logfile, the actions modeled in the specification must be

known in order to verify and analyze the printer on those actions.

init;

warmingUp;

standBy;

start;

printRequest !3;

run;

printRequestReady !3;

stop;

standBy;

Figure 18: Log model in sequence format

 39

The sections below describe the formal specification, which consist of three

types of models: reference, synchronization and test-specific.

3.2.1 Reference model

A reference model is a formalization of a small subset of the requirements of

the printer. This can be a coherent part, like all the actions of one protocol, but

this can also be an arbitrary part of the actions of a process. However, a small

coherent part is easier to maintain and more generally applicable than a large

model. This is especially true for printers under development, since they might

change.

A typical coherent subset of a printer is a protocol. The requirements of a

particular protocol, given in English text, consist of a description of actions and

responses, illustrated with sequence diagrams.

Protocol actions and responses are modeled in one model without distinction

between them, since they belong to the same protocol. By modeling them in

the same model, the order of action and response is defined.

Example

From the requirements of the Status protocol a reference model is extracted,

which contains all protocol actions and responses in all allowed orders (see

figure 19).

At the same manner a reference model of the print protocol is drawn (see

figure 20, slightly different from the model given in figure 8 on page 27

because the start and stop actions do not belong to this protocol).

 0

6

 5

 4

 3

 2

 1

ini t

warmingUp

s tandBy

s tart

s tandBy

s top

run

Figure 19: Reference model of Status protocol

 40

In this reference model, each transition has an integer variable to store an

identification number. This makes it possible to distinguish transitions within

several protocol instances of this protocol.

3.2.2 Synchronization model

A reference model describes a small subset of the printer functionality. To

verify a larger part of the printer there are two options:

 model a larger part of the functionality in one reference model;

 create a composition of small reference models.

A model of a larger part of the functionality of the printer shatters the

maintainability of the reference models, since there are no restrictions to which

extent a model can be enlarged, the overview is easily lost.

A composition of more small reference models preserves maintainability of the

approach but loses the obligatory order between the transitions of the different

reference models. A full interleaving of small reference models is not by

definition correct: some process actions are not allowed in arbitrary order. To

overcome this problem, another type of models is defined: a synchronization

model.

A synchronization model defines the allowed order of transitions of the different

reference models; it does not define new actions. It contains a subset of

actions of two or more reference models, with the obligatory order between

them. In this model only actions of the related reference models that have

order constraints are modeled, i.e., actions which always happen before or

after another action. Actions without constraints do not need to be modeled,

since they are already full interleaved.

A synchronization model provides flexibility to the specification. Due to this

model small general reference models can be created and combined in every

way. The composition of a synchronization model and a reference model is

given by the parallel LOTOS expression (section 2.2):

 0

 1

 2

printRequest ? id : Nat

printRequestReady ! id

Figure 20: Reference model of Print protocol

 41

reference model1 |[G1]| synchronization model |[G2]| reference model2

or, since ||| and |[]| are associative and G1 G2 = , by:

reference model1 ||| reference model2 |[G1 G2]| synchronization model

Where G1 and G2 are label sets with order constraints, which contain

respectively labels of reference model1 and of reference model2.

When a synchronization model is used, all the transitions in it must be placed

in one of the label sets G1 or G2. When the sets G1 and G2 are empty, full

interleaving is achieved, as if there is no synchronization model. If these sets

are non empty, partial interleaving is achieved between the reference model

and the synchronization model. If two reference models are completely

independent of each other, no synchronization model is needed.

Example

The actions of the Status protocol, Figure 19, and the Print protocol, Figure 20,

have an obligatory order. The actions in the Print protocol are only allowed

after the Status protocol action standby. This obligatory order is drawn in a

synchronization model (see figure 21).

This figure shows a model that defines the order of the actions standBy and

printRequest. printRequest is only possible after a first occurrence of standBy,

after which the action standBy is still allowed.

The models of the Status protocol and the Print protocol and the

synchronization model (Figure 21) are composed together to form a total

specification (see figure 22) with the LOTOS expression:

Status |[standBy]| synchronization |[printRequest]| Print

 0 1

printRequest

s tandBy

s tandBy

Figure 21: Synchronization model for Status and Print protocol

 42

3.2.3 Test-specific model

Reference and synchronization models are sufficient for test-independent

verification and analysis, the verification and analysis of test-specific behaviour

needs more information, e.g., information about the specific test which was

performed while the printer produced the logfile. This extra information is

modeled in a test-specific model.

A test-specific model contains actions of protocols on which the test-specific

constraints apply. These test-specific constraints are a specific situation in the

reference models that describe its specification more closely, e.g., a reference

model specifies which actions are needed to print a page, a test-specific model

specifies the number of pages in the specification.

The composition of a test-specific model with the reference and

synchronization models is similar to that of a synchronization model with a

reference model (section 3.2.2).

Example

The specification of Figure 22, describes a printer which prints one page: there

is only one action printRequest in one trace possible. To verify a print job of

more pages, more Print models have to be composed. This is for sake of a

clear overview not drawn in an LTS. Test specific situations could be the

number of printed pages before the second visit of the state standby, or the

total amount of printed pages.

 0

 3

 2

 1

ini t

warmingUp

standBy

s tandBy

 6

 9

 8

run

run

s top

 6

 5

 4

 7

s tart

run

s top

 3

s tandBy

 5

printRequest

printRequestReady

 6

 5

s top

s tart

s tart

printRequestReady

printRequestReady

printRequestReady

printRequest

printRequest

printRequest

s tandBy

Figure 22: Specification, containing reference and synchronization models

 43

To verify that the printer prints only one page, and to exclude the printing of

no pages or a second page, a test-specific model is created (see figure 23).

This model is synchronized with the LOTOS expression:

 specification |[printRequest, stop]| test-specific model

Every time an action printRequest is done, the counter n increments by one,

every time the action stop is done, the counter n is checked to be one. When

the counter exceeds 1, the stop action can not be performed since n is not

equal to one and the verification fails. The number of pages can easily be

adjusted.

Another example of a test-specific model deals with time. If a printRequest is

done, it can be interesting to verify that the corresponding printRequestReady

is performed within a given amount of time, for example 100 micro seconds.

This can also be specified in a test-specific model (see figure 24).

3.3 Correctness relation

The log model represents in one sequence the behaviour of the printer. The

specification, consisting of reference, synchronization and test-specific models,

shows all possible correct sequences of the printer. The relation between this

log model and specification determines whether the log model is correct or not

 n

printRequest

n = n + 1

s top [n = 1]

n = 0

 0 1

printRequest ?time1:NAT

printRequestReady ?time2:NAT

[time1 + 100 > time2]

Figure 23: Test-specific model test print of one sheet

Figure 24: Test-specific model test specific time

 44

(section 1.1.3). This relation is a trace membership relation; a log model is a

member of the traces formed by the specification, if the printer behaves

correctly (section 2.1.2). The verification of the printer, by means of a logfile,

is the check for existence of this relation. The analysis of the printer, when this

relation does not exists, determines the first failure.

The specification of the printer is deterministic (i.e., it does not contain states

with outgoing transitions with an equal pair: action name, identification

number, Section 1.2.2). Hence, the search of the trace inclusion relation

between the log model and the specification is a deterministic process, which

does not require any search algorithms; there is only one way to match every

transition given the previous transitions.

The simplest algorithm to verify the log model with the specification starts with

the first log model transition, if this transition matches one of the outgoing

transitions from the initial state of the specification; this transition is correct

and the new state of the specification is remembered. Subsequently, the next

log transition is matched to an outgoing transition of the new specification

state. This is repeated until the last log model transition has been reached or

until a log model transition does not match with a specification transition. In

the latter case, the part of the log model checked so far is printed, which leads

to the unexpected transition.

To verify whether the last log model transition corresponds with a correct end

transition of the specification, a final transition is appended at the end of the

log model and after each correct end transition in the specification. This final

transition must have a label different from all other used transition labels in the

specification or log model, to distinguish between them. In a model more final

transitions can be defined, which are treated the same as other transitions in

the model. If more protocol instances are used, more final transitions can be

appended. However, for every logfile only one final transition is needed in the

specification, since a log model is a sequence of transitions which has only one

last transition.

3.4 Verification

Specification models are composed together to form a larger specification

(section 3.2.2). Since independent sub-models of the specification are

composed in parallel, the composition can describe a very large transition

system.

To handle large specifications efficiently, two verification methods are applied:

 the generation of the composition of the specification models on-the-fly

with the verification;

 the verification of each specification sub-model separately.

An alternative to these verification options is the composition of the

specification models with the log model, resulting in one model which includes

the log model.

 45

The sections below describe the on-the-fly composition, the separate

verification of sub-models, and the composition of the specification models with

the log model.

3.4.1 On-the-fly composition of specification.

The log model consists of one sequence of actions of the printer and the

specification consists of all correct sequences (Section 1.1.3). Each log model

transition can be matched on one specification transition, starting with the first.

Since the specification is deterministic, only one specification transition can

match with a log model transition. For each log model transition only one

specification transition is relevant and other transitions do not match. These

other transitions do not have to be created in the transition system. Hence the

on-the-fly created specification transition system is smaller than the original

composition of the specification models.

3.4.2 Separate verification of specification models

Besides the on-the-fly verification, the printer functionality can be verified and

analyzed separately, by means of separate models. This holds for each model,

whether it is a reference, synchronization or test-specific model.

A reference model can be verified stand alone, since it describes only one

(stand alone) protocol. For this verification only the transitions used in the

specification are formalized in the log model.

The verification of synchronization and test-specific models is done the same

way. Only the transitions used in the particular specification models are

formalized in a log model, and only the functionality described in the particular

specification model is verified.

When a log model is trace included in a composed specification, the individual

parts of this specification include traces of „sub-log‟ models. These sub-log

models contain only the functionality (actions) of the particular model to verify

(see section 2.1.2). This is the same as the verification of only the Print

protocol or only the Data protocol.

3.4.3 Composition of specification with log model

An alternative for the previous described methods is the creation of a

composition of the log model with the specification models and check whether

the last transition of this composition is reached.

This method creates a composition of the specification models together with

the log model. Since the log model is included in the specification, if the printer

behaviour is correct, the synchronization of the log model with the specification

is similar to the log model itself. Hence, if the final log transition is reached in

this composition, the log model describes a correct path through the printer

specification.

 46

The verification consists, besides the synchronization of the log model with the

specification, of a check whether the last log model transition can be reached in

the composition or not. To be sure the resulting system is in a correct end

state, final transitions are added to the logfile and the specification.

 47

4 Implementation

The AVATR method, described in Chapter 3, is implemented. The described

models are implemented in the formal specification language LOTOS and the

trace inclusion relation is implemented in the AVATR tool chain.

Organization of this chapter

Section 4.1 describes the motivation for the specification language LOTOS.

Section 4.2 describes the individual parts of the tool chain, a LOTOS editor,

LOTOS compilers, a preprocessor and a Testlog verifier. Section 4.3 describes

two alternative specification languages: CRL and a general programming

language, and five alternative Testlog verifier implementations: TETRA,

UPPAAL, TorX, CADP Bisismulator and the CRL toolset.

4.1 Specification language

AVATR models are described in the formal description language LOTOS [5, 6,

7, 8], which has been introduced in Chapter 2.

Requirements for a language are:

 the language has to be well-documented;

 the language must be able to implement transitions;

 the language must be able to use instances of the data type Natural to

express identification numbers and time.

Tool support is an advantage.

The language LOTOS satisfies these requirements. It is a well-documented

language, since it is a standard of the International Standard Organization.

Furthermore it is possible to describe transitions and data types, since the

language is designed to specify interaction of processes [5].

If I had eight hours to chop down a tree, I’d spend six

hours sharpening my axe

(Abraham Lincoln)

 48

Besides these requirements, LOTOS has the following advantages:

 LOTOS supports enforced synchronization, which means that

synchronizing transitions can not be taken without synchronizing

partner.

 there are tools available which provide the needed trace inclusion

functionality.

However, LOTOS has some disadvantages:

 there are no global variables, data type instances have to be passed

forward with the call of a process;

 there are no defined data types, only abstract data types can be used.

When a data type is needed it has to be defined, which means that

each data type instance and each operator have to be defined. This is

called an abstract data type. The needed natural numbers range from

zero to some billions (timestamps are 32 bits).

4.2 The tool chain

The developed AVATR tool chain, which implements the AVATR method, exists

of five tools (see figure 25):

 a LOTOS editor;
 a LOTOS functional compiler;
 a LOTOS abstract data type compiler;
 a preprocessor;
 a Testlog verifier.

This tool chain is built as follows: the output of the LOTOS editor is compiled in

the two compilers which are standing parallel to each other. The output of

these compilers, together with the files produced by the preprocessor and a

configuration file are used in the Testlog verifier. The Testlog verifier generates

output that is presented to the user of the tool chain.

 49

The implementation in a tool chain provides flexibility since individual tools can

be changed without changing other parts of the tool chain, provided that the

specified interfaces are implemented. Some of these interfaces are specific for

the used tools (e.g., preprocessor/ Testlog verifier interface), which makes it

hard to replace only one specific tool; instead two tools have to be replaced.

The next sections describe the particular tools in the AVATR chain.

4.2.1 The LOTOS editor

The LOTOS editor can be any text editor, preferably with LOTOS syntax

highlighting. In this project the editor VIM (Vi IMproved) [2] is used. VIM is a

highly configurable text editor built to enable efficient text editing. It gives the

user the possibility to create and edit LOTOS specifications (section 3.2).

Text editors do not give the overview given by graphical editors. However,

LOTOS specifications can be converted to LTSs [3]. Since this is not the main

issue of this thesis, this is not further described here.

Figure 25: AVATR tool chain

 50

4.2.2 The preprocessor

The preprocessor transforms a logfile into a log model (Section 3.1), and

generates files needed by the TestLog verifier:

 a header file; this file is used by CADP Exhibitor, it contains an array
with data type instances used.

 a function file; this file is used by the CADP LOTOS compilers, it
contains a definition of all used data instances.

 a library file; this file defines the used data type instances in the
created specification.

These files are used to specify the abstract data type instances that are used in

the verification, which range from 1 to 1024, representing identification

numbers (Section 3.2.1), and from 0 to 232, representing time (Section 3.2.3).

The function and library file are mandatory for every verification with the CADP

Exhibitor tool since they define the abstract data type instances. The header

file and the type file are used to verify and analyze more efficiently when large

amounts of data type instances are used. Without these files the verification

and analysis will take more time.

The log model, the library file and the function file are respectively created in

the sequence format (Section 3.1), the LOTOS format (Chapter 2) and the C

format (see Appendix III).

The preprocessor is implemented in the scripting language Perl [18] since this

is fast and flexible. It reads the logfile line by line and copies selected printer

actions and naturals. Printer actions and naturals are selected by regular

expressions, given by an engineer (see Appendix II).

When logfiles are created conform the requirements, the preprocessor can be

generated automatically. This is possible since for each protocol the actions are

known and the syntax of the actions is uniform. However, in the existing

logfiles this syntax is not always the same (Section 3.1), hence it is more

flexible to use a scripting language.

Example

An example of a regular expression that transforms the actions of the Status

protocol into transitions of the Status model is given in Figure 26.

foreach $line (<LOGFILE>) {

$_ = $line;

if (/(\d+):.*(status_(\w*)\)/)

{

 printLogModel("\"$2 !$1\"\n");

}

Figure 26: Preprocessor, Perl script

 51

This expression selects all lines which correspond to a pattern that starts with

one or more digits, followed by „:‟, followed by zero or more characters or

digits, followed by the string status_, followed by zero or more characters.

Parts of this expression are printed in the log model.

4.2.3 The Testlog verifier

The Testlog verifier performs the actual verification and analysis of the log

model in relation to the specification (Section 3.3). It is realized with tools of

the CADP (Construction and Analysis of Distributed Processes) toolset [3, 15].

CADP is a software engineering toolbox for the design of communication

protocols and distributed systems; based on the formal description language

LOTOS. It offers a wide range of functionalities, including compilation,

simulation, formal verification, and testing. The toolbox is designed in a

modular way and puts the emphasis on intermediate formats and programming

interfaces (such as the BCG and OPEN/CAESAR software environments), which

allow the CADP tools to be combined with other tools and adapted to various

specification languages (e.g., EXP, SVL, CRL).

The CADP tools used in this thesis are:

 Casesar, a compiler that translates LOTOS functional behaviour into C
code;

 Caesar.adt, a compiler that translates LOTOS abstract data types into C
code;

 Exhibitor, a verification and analysis tool that checks if a sequence file
is contained in a specification. In case the sequence file does not
correspond to the specification an analysis trace is produced, which
leads to the first incorrect action in the sequence file. Otherwise a
verdict true is given.

Exhibitor creates a composition of the specification files on-the-fly, which

means that during the verification the composition is made when transitions

are needed in the verification. This prevents the creation of large composition

files, which are partly unused because the log model only needs one trace in

the specification model.

Besides the log model and the specification, the CADP Exhibitor tool uses

(figure 25):

 a library file (.lib);
 a header file (.h);
 a function file (.f);
 a type file (.t).

The library, header and function file are generated by the preprocessor, since

they are dependent of the logfile, see appendix III for an example of these

files. The type file is part of the Exhibitor tool; it defines the specified naturals

to use. This file is once created and does not have to be modified (see

appendix II B).

The verification of a specification, which uses abstract data type instances in

combination with value acceptance (e.g., value passing or negotiation, section

2.3.2), enlarges the state space exponentially. Exhibitor performs every

outgoing specification transition for every data type instance, defined in the

 52

type file. When a matching data type instance is offered (e.g., value matching

or value passing, Section 2.3.2) in the sequence file, one of the created

outgoing transitions is chosen.

4.3 Alternatives

Alternatives for the formal description language LOTOS are: CRL or more

general languages. Section 4.3.1 describes and evaluates these alternatives.

Alternatives for the CADP Exhibitor tool are: TETRA, TorX, UPPAAL, CADP

Bisimulator, and the CRL toolset. These tools are able to formally support

verification and analysis by means of formal descriptions. Section 4.3.2

describes and evaluates these alternatives.

4.3.1 Language

Formal specifications can be given in several languages, even in informal

languages. However, formal languages support often formal techniques for

verification or simulation and informal languages do not. Below, CRL is

described as alternative for LOTOS, and a general overview of the advantages

and disadvantages of general languages are given.

CRL

CRL is, like LOTOS, a well-documented language, used to model protocols. It

provides possibilities to define abstract data types. CRL has been extended

with features to express time, which is, however, not supported by tools [29].

CRL does not seem to be significantly different or better than LOTOS; it

provides the same functions and uses the CADP trace inclusion tool.

General language

A second alternative is the creation of a new language or the use of a more

general language (e.g., XML, Java). These languages can implement transitions

and data types but implement a lot more functionality, for example: other data

types and conditional expressions. This functionality is not needed and could

easily be an obstacle.

Another disadvantage is that there is no tool support for specific functionality

(e.g., the trace inclusion relation).

4.3.2 Tool

The verification of the trace inclusion relation can be implemented in several

tools, described below.

TETRA

TETRA [19, 20] is a tool which compares observed test results with a reference

specification. [19] presents TETRA as an operational test trace analysis system

which provides diagnostics in case of non-conformance with the specification.

This tool requires the specification and the observed execution trace written in

the specification language LOTOS. [20] describes some experiments, obtained

on a Sun 4/330 with 32Mb of RAM. The conclusion of this paper is, that it is

 53

possible to handle real-life protocol specifications which cover several thousand

lines of LOTOS code.

TETRA could be useful in this project, as it contains the needed functionality to

validate test results with a specification. However, since the tool is created in

1989, it is designed for different computers than used at the present time (at

Océ-Technologies). Furthermore, it was not possible to obtain a copy of the

tool.

TorX

TorX [21, 22, 23] is a tool for specification-based black-box conformance

testing. [23] describes the flexible and open architecture. Flexibility is obtained

by requiring a modular architecture with well-defined interfaces between the

components, this allows easy replacement of components. Openness is

acquired by choosing existing interfaces to link the components, this enables

integration of „third party‟ components. TorX provides automatic test

generation, test implementation, test execution and test analysis. It does the

testing in an on-the-fly manner; each test step is derived on demand when the

test execution needs it. [21] and [23] describe the architecture of TorX; it

explores given LOTOS specifications with the CADP tool: Caesar. [22] shows

tool dependencies which have to be installed to use TorX: Perl, TCL and Expect

5.27.

TORX is an option due to its flexibility and openness. The defined interfaces

allow other components to interface with the tool. However, the tool has

program dependencies; it uses among others CADP for its trace inclusion

functionality. Less tools mean less possible failures and hence this option is

abandoned.

UPPAAL

UPPAAL [24, 25, 26] is an integrated tool environment for modeling, simulation

and verification of real-time systems. It is appropriate for systems that can be

modeled as a collection of non-deterministic processes with finite control

structure and real-valued clocks, which communicate through channels or

shared variables.

[25] shows the three main parts of UPPAAL:

 a graphical interface that supports graphical and textual
representations of networks of timed automata, and automatic
transformation from graphical representations to textual format;

 a compiler that transforms a certain class of linear hybrid systems to
networks of timed automata;

 a model checker that checks invariant and reachability properties by
exploring the state-space of a system, i.e. reachability analysis in
terms of symbolic states represented by constraints.

[26] shows the support of diagnostic model checking providing diagnostic

information in case verification of a particular real time system fails. [25]

shows that, besides the graphical user interface, a subset of XML can be used.

An advantage of UPPAAL is that it is a tool with a graphical interface. It has

also the possibility to use a textual representation, using XML. The AVATR

method is not possible in this tool, since no inclusion functionality is present;

 54

hence this tool is not used. However, an alternative method, the parallel

compositions of the specification with the log model (section 3.4.3), can be

applied in this tool.

CADP Bisimulator

The CADP Bisimulator [3, 27] is a tool which performs an on-the-fly

comparison of two LTSs modulo a given equivalence/preorder relation. The

result of this verification (TRUE or FALSE) is displayed on the standard output,

possibly accompanied by a diagnostic. [27] describes the verification method of

Bisimulator, which is based upon a translation of the equivalence/preorder

checking problem into the resolution of a Boolean Equation System, which is

performed on-the-fly.

Bisimulator is less efficient than Exhibitor, since it uses a more general

verification algorithm. Implementations in Bisimulator showed that this option

is twice as slow as the Exhibitor.

CRL toolset

The CRL toolset [28, 29] is constructed around a restricted form of the CRL

language [30], namely the linear process operator format (lpo). The tool CRL

checks whether a certain specifcation is well formed CRL and attempts to

transform it into a linearised form, which can be used by other tools. [29] tells

that a major idea of the CRL toolset is that the toolset must only provide

functionality that cannot be easily obtained via the use of other tools. The trace

inclusion relation, implemented in the CADP toolset, is one of the not

implemented functionalities, since the CADP toolset can be used.

The CRL toolset does not implement the used trace inclusion relation, hence

this option is abandoned.

 55

5 Feasibility study

The developed AVATR method, implemented in the AVATR tool chain is used to

verify and analyze the behaviour of a printer by means of a logfile, which is

obtained by the test of the printer.

This chapter describes four cases that represent all functionality to describe

printer protocols, relations between printer protocols, and test specific

situations. With the techniques used in these cases other printer functionality

can be modeled, verified and analyzed. This chapter gives a proof-of-concept of

the developed method and tool chain.

Organization of this chapter

Section 5.1 describes the verification and analysis of three protocols: the

Status protocol, the Print protocol and the Data protocol. Section 5.2 describes

relations between protocols; between the Status protocol and the Print

protocol. Subsequently, Section 5.3 describes test-specific situations: the

number of printed pages and the time needed to print a page. Section 5.4

describes the verification of a compositions of reference and synchronization

models, in order to create a larger specification.

5.1 Protocols

This section describes the verification and analysis of separate printer

protocols, the Status, Print and Data protocol.

These protocols represent all protocols in the printer. When an arbitrary printer

protocol can be verified and analyzed, the main functionality of the printer can

be verified and analyzed, since the protocols determine a major part of the

printer functionality.

5.1.1 Status protocol

The Status protocol exists between the Controller and the Engine (Section

1.2.1). It is one of the most general protocols that is used in various printer

types. It provides separation of concerns, i.e., behavior for a specific state or

An undetected error […] is like a sunken rock at sea

yet undiscovered, upon which it is impossible to say

what wrecks may have taken place

(Sir John Herschel)

 56

transition of the Engine can be dealt with separately. The Engine can stay in a

defined number of states, between which switching is controlled and observed.

The role of the Status protocol is to facilitate changing and observing these

states.

The Status protocol is the most basic protocol of the printer. It consists of

simple actions without identification numbers. Furthermore, there is only one

instance of this protocol in the entire printer.

The aim of the verification and analysis of this protocol is to prove the method

and tool chain to work in the most basic form; verification and analysis of

logfiles with a small simple reference model.

Input

The tool chain input exists of three parts: a logfile, the Status reference model

(see appendix I a) and a Perl regular expression (see appendix II a).

Results

Results of the verification and analysis of the functionality of the Status

protocol are given in table 1.

Table 1: Results verification and analysis of Status model

 logfile

lines

log model

transitions

Protocol Time verification (s)

Instances States/

Inst

Correct Incorrect**

Log1* 14.942 11 1 12 8 8

Log2* 191.532 35 1 12 9 9

Log3* 706.667 37 1 12 9 9

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the last transitions, which are changed

into incorrect transitions

Evaluation

The table gives the results of the transformation of the logfile into the log

model for only actions of the Status protocol. The table shows that this

transformation yields a large reduction in amount of actions/ transitions.

Furthermore, the verification times are given, below ten seconds for a correct

verification (this includes formalization time for log model) and to find an

incorrect transition at the end of the log model also below 10 seconds. The

verification of the incorrect log model resulted in an error trace leading to the

erroneous transition (section 1.1.3 and appendix III).

5.1.2 Print protocol

The Print protocol is another protocol between the Controller and the Engine. It

is responsible for the transfer of print jobs from the Controller to the Engine.

To do so, it deals with requests for print jobs from the Controller to the Engine

and responses from the Engine to the Controller.

The requests for one print job are:

 57

 one prepare request, to prepare the printer for a new job;

 zero or more print requests, each to request the print of one new page;

 one deliver request, to deliver the set of printed sheets of the last job.

These requests always happen in the above mentioned order; the Controller is

not allowed to send requests for two jobs mixed up. Each request from the

Controller has a corresponding response from the Engine. Responses do not

have a specific order and can happen mixed up, even from several print jobs.

The Print protocol is more complex than the Status protocol, since it contains

actions with identification numbers to distinguish different instances of the

protocol from each other. In the model of this protocol, identification numbers

are modeled as abstract data type instances.

Input

The tool chain input exists of three parts: a logfile, the Print reference model

(see appendix I b) and Perl regular expressions (see appendix II a).

Results

Results of the verification and analysis of the functionality of the Print protocol

are given in table 2.

Table 2: Results verification and analysis Print model

 Logfile

lines

log model

transitions

Protocol Time verification (s)

Instances States/

inst

Correct Incorrect**

Log1* 14.942 78 12 6 72 75

Log2* 191.532 663 90 6 188 240

Log3* 706.667 107 13 6 71 74

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the last transitions, which are changed

into incorrect transitions

Evaluation

The Print model, consisting of transition containing labels and identification

numbers, can be verified in a reasonable time. The largest verification time of a

correct logfile is below 4 minutes for 90 protocol instances, and for incorrect

logfiles as well.

5.1.3 Data protocol

A third protocol between the Controller and the Engine is the Data protocol.

Since the Print protocol does not download the actual bitmap to print, this is

the responsibility of the Data protocol.

In the Data protocol, the Controller sends a download request, which is

followed by a request for the bitmap data from the Engine, after which the

actual download is performed. The Engine finally sends a download request

ready.

 58

The download request has a request id and a bitmap id. The bitmap has an id

corresponding with the bitmap id and the request ready has an id

corresponding to the request id. Hence several data protocols can be mixed up.

When a sheet is printed on two sides (duplex) two instances of the Data

protocol are used.

The existence of two id‟s in Data protocol actions makes this protocol more

complex than the Print protocol.

Input

The tool chain input exists of three parts: a logfile, the Data reference model

(see appendix I c) and Perl regular expressions (see appendix II a).

Results

Results of the verification and analysis of the functionality of the Data protocol

are given in Table 3.

Table 3: Results verification and analysis Data model

 logfile

lines

log model

transitions

Protocol Time verification (s)

Instances States/

inst

Correct Incorrect**

Log1* 14.942 60 20 20 31 35

Log2* 191.532 738 246 246 > 10,000 > 10,000

Log3* 706.667 240 80 80 960 960

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the last transitions, which are changed

into incorrect transitions

Evaluation

The Data model consists of transition containing labels with two identification

numbers. Hence when the log model needs a lot of protocol instances to be

verified, the time to do this increases. The largest verification time of a verified

logfile is below 16 minutes for 80 protocol instances, more than 3 hours for

246 protocol instances. This is due to the way CADP works with data types

(Section 4.2.3).

5.2 Relations between protocols

Besides verification and analysis of standalone protocols, the constraints

between different protocols have to be verified in order to verify the whole

functionality of the printer.

Constraints between protocols consist of obligatory orders of specific transitions

of two protocols (e.g., a specific protocol action always precedes an action of

another protocol). These constraints are modeled in synchronization models

(Section 3.2.2).

Each synchronization model gives the relation between two reference models.

Two reference models and a corresponding synchronization model can be

composed together to form a larger specification of the printer.

 59

In this section one synchronization model is described; the Status Print

synchronization model.

5.2.1 Status Print synchronization model

An example of a synchronization model is that between the Status model and

the Print model (see appendix I d). Print protocol requests are not allowed

before the action standby of the Status protocol.

Input

The tool chain input exists of three parts: a logfile, the Status Print

synchronization model (see appendix I d) and Perl regular expressions (see

appendix II a).

Results

Results of the verification and analysis of the functionality the Status Print

synchronization model are given in Table 4.

Table 4: Results verification and analysis Status Print synchronization model

 logfile

lines

log model

transitions

Model Time verification (s)

Instances States/

inst

Correct Incorrect**

Log1* 14.942 15 1 2 13 13

Log2* 191.532 60 1 2 15 15

Log3* 706.667 24 1 2 13 13

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the last transitions, which are changed

into incorrect transitions

Evaluation

Since the Status Print synchronization model is a very simple model, the

verification and analysis time is short. The table shows an equal time for the

verification of a correct and incorrect log model.

5.3 Test specific situations

Test-specific situations are not modeled in reference models or synchronization

models, since they can change per test output (Section 3.2.3). For test-specific

models the synchronization rules apply.

5.3.1 Number of sheets test-specific model

One test-specific model is the model to test the number of printed sheets. This

model contains the transition which is given after the print of a sheet,

printRequestReady, and a counter which is incremented for every time this

transition happens

Input

The input of this verification is the number of sheets test-specific model (see

Appendix I F), the logfile and the Perl regular expressions (see appendix II a).

 60

Results

Results of the verification and analysis of the functionality of this test-specific

model are given in Table 5.

Table 5: Results verification and analysis Number of sheets test-specific model

 Logfile

lines

log model

transitions

Model Time verification

Instances States/

inst

Correct Incorrect**

Log1* 14.942 12 1 1 11 s 11 s

Log2* 191.532 242 1 1 16 s 16 s

Log3* 706.667 40 1 1 13 s 13 s

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the number of prints, this numbers are

changed into incorrect numbers

Evaluation

This model does not count with identification numbers or other data type

instances. Hence the verification time is approximately 15 seconds. The

difference in time is small, since the used specification is in each case the same

and only one instance if this model is used. The incorrect verification takes the

same amount of time, since the same transitions in the model are taken.

5.3.2 Time test-specific model

Another test-specific model is the model that verifies and analyzes the time

between two actions. This test-specific model consists of two transitions

between which the time is verified (see appendix I g).

Input

The input of this verification is the number of sheets test-specific model (see

Appendix I F), the logfile and the Perl regular expressions (see appendix II a).

Results

Results of the verification and analysis of the functionality this test-specific

model are given in Table 6.

Table 6: Results verification and analysis Time test-specific model

 Logfile

lines

log model

transitions

Model Time verification (s)

Instances States/

inst

Correct Incorrect**

Log1* 14.942 22 12 2 15 16

Log2* 191.532 483 90 2 323 344

Log3* 706.667 78 13 2 82 94

*the conditions of these verification runs and of these logfiles are found in appendix III

**in these verifications the same logfiles are used except for the times of the last transition, these

times are changed into incorrect ones.

 61

Evaluation

The Time test-specific model only checks whether the time of the requestReady

is larger than the time of the request. This is not a very valuable verification

since this is always the case. However, the model can be made more precise.

Table 6 shows that the verification time needed for this model has a relation

with the number of log model transitions.

5.4 Composition

Besides the standalone verification and analysis, reference, synchronization

and test-specific models can be composed together, forming one specification.

The composition of the specification can be verified at once, but because of the

larger state space (Section 3.3) and more abstract data type instances (Section

4.2.3) this verification is not faster.

Input

The tool chain input exists of three parts: a logfile, the composed specification,

consisting of the models: Status, Print, Data and StatusPrint (see Appendix I)

and Perl regular expressions (see Appendix II a).

Results

Results of the verification and analysis of the functionality of this composition

specification are given in Table 7.

Table 7: Results verification and analysis composition specification model

 Logfile lines log model transitions Time verification (s)

Log1* 14.942 704 10,800

Log2* 191.532 890 > 14,400

Log3* 706.667 2010 > 14,400

*the conditions of these verification runs and of these logfiles are found in appendix III

Evaluation

The table shows that it is possible to verify a large composition of the

specification. However, the second and third logfile emphasize that this

verification is not as efficient as the verification of the specification models

independently. The reason for this is the abstract data type verification method

of the CADP tool chain (Section 4.2.3).

 62

 63

6 Evaluation, conclusions and
recommendations

This chapter evaluates the AVATR method and tool chain, it discusses

alternatives and gives a conclusion and recommendations.

Overview of this chapter

Section 6.1 discusses the chosen method and tool. Section 6.2 gives the

conclusions of the AVATR method and tool and section 6.3 gives

recommendations.

6.1 Evaluation

The evaluation of the AVATR method and tool chain is done in three parts:

 transformation of the logfile;
 creation of the specification;
 comparison of the formalized logfile with the specification.

6.1.1 Formalization of the logfile

The formalization of the logfile is done by examining each line of it with a Perl

script, which contains regular expressions (see appendix II a). The script

creates a log model and corresponding library, header and definition files (see

appendix III).

The use of Perl scripting language has the following advantages:

 it is fast; a logfile of 25 megabyte is formalized in half a second with
actions of different protocols;

 it is flexible; a Perl script can easily be adjusted;

 the Perl interpreter is free and a standard part of several engineering
toolboxes;

Since this is fast and efficient, no alternatives are examined.

The purpose of analysis is not to compel belief but

rather to suggest doubt.

(Imre Lakatos)

 64

6.1.2 Creation of the specification

Specification files are created in the formal specification language LOTOS.

Method

Printer requirements are formalized in reference, synchronization and test-

specific models, together forming a specification of the printer. These models

provide:

 maintainability; changes in one of the protocols, can be made to one of
the reference models and possibly to one of the synchronization models
or test-specific models, without changing the rest of the specification;

 flexibility; when only a specific part of the requirements has to be
verified, only this part of the requirements can be used in the
verification and analysis.

Furthermore, the meaning of the specification models is intuitive and easy to

grasp: reference models describe a coherent set of printer actions (typical a

protocol), synchronization models describe actions needed for synchronization

of reference models and test-specific models describe test-specific part of the

printer functionality.

However, the analysis whether the last transitions of a protocol has been

taken, is performed with the help of a final transition (section 3.3), this is less

intuitive. For a precise analysis more final transitions have to be added. The

alternative method (creation of composition with log model, section 3.4.3) has

the same issue here.

Language

The creation of these specification models is done in the formal specification

language LOTOS.

The use of LOTOS has the following advantages:

 it is a well-documented language;

 it is a language dedicated to model protocols;

 it is a language that only supports enforced synchronization; each
process on a gate, must participate in any communication occurring on
that gate (Section 2.2.1). This is used for the composition of reference,
synchronization and test-specific models;

 it is a language for which tools are available.

However, it is not always easy to express desired behaviour in LOTOS since:

 there are no global variables, this could be useful to verify global
properties, (e.g., timing since the start of the verification);

 data types are rather restricted, all instances of a specific data type
must be defined individually.

An alternative for the specification language LOTOS is the formal language

CRL. This language, like LOTOS, is well-documented, used to model protocols

and provides possibilities to define abstract data types. CRL has been

extended with features to express time, which is, however, not supported by

tools [29]. This language has, however, the disadvantage that it not

implements enforced synchronization (Section 4.3.1).

 65

A second alternative is the creation of a new language, or the use of a more

general language (e.g., a modeling language or a programming language). This

has the disadvantage that there is no tool support for the trace inclusion

relation.

Tool

The LOTOS models are created in the textual LOTOS editor, VIM.

Since the individual specification files are small, an overview of the

specification files is easy preserved. Due to syntax highlighting, LOTOS files are

easily read.

A nice option would be a graphical editor, which is not available for LOTOS.

LOTOS files, created in a text editor, can be transformed to a graphical

representation, which however cannot be graphically edited.

6.1.3 Comparison of the formalized logfile with the specification

The relation between the specification and the log model is a trace inclusion

relation, verified with the CADP Exhibitor tool. This section discusses the

method which determines this relation and the tool that implements it.

Method

The trace inclusion relation (section 2.1.2) between log model and specification

is verified with an on-the-fly composition of the specification (section 3.3.1).

This has the advantage that it is:

 fast, no composition of specification models has to be created before

the verification;

 small, large parts of the specification are not used, since only one

sequence is visited.

The alternative for this method is the parallel composition of the specification

with the log model (section 3.4.S). This composition results in a system similar

to the log model, if the behaviour of the printer is correct. This alternative

consists, besides the composition, of a check whether a final transition is

reached or not. This transition has to be added in the log model and in the

specification, even when it is not important to know whether last protocol

transitions are used or not, which is a disadvantage.

Tool

The verification and analysis is done with the CADP tool set. The use of CADP

has the following advantages (section 4.2.3):

 the tool has good tool support;
 the tool has an user-friendly interface;
 the possibility to use LOTOS specifications;
 the possibility to define and use abstract data types.

However, CADP has some disadvantages:

 it does not implement all functionality of the specification language
LOTOS, e.g., it is not possible to create a parallel composition in
combination with a recursive process;

 the use of abstract data types slows down the verification and analysis;

 66

 is has yearly license costs.

Section 4.3 gives five alternatives for CADP Exhibitor:

 TETRA, this tool was not available;

 TorX, this tool uses CADP for LOTOS parsing

 CADP Bisimulator, this tool is slower than Exhibitor

 CRL toolset, uses CADP for trace inclusion functionality.

The remaining alternative is the tool UPPAAL. This tool does not implement

functionality to compare LTSs with each other. However, it is possible to use

this tool in combination with the composition alternative of the chosen method

(Section 3.4.3).

6.2 Experience

In the feasibility study (Chapter 5) three protocols, one synchronization model

and two test specific models are created by which printer logfiles are verified

and analyzed.

This section describes experiences about the creation of models and the

acceptance in Océ.

6.2.1 Creation of specification

The protocols in a printer differ in complexity. Besides that, creation of models

from protocols is dependent of the knowledge of the protocols and of the

interaction of protocols.

The Status model is described in an LTS representation in the Status

requirement document. Furthermore, the Status protocol does not use

identification numbers and only one protocol instance exists in the printer. The

creation of the Status model could be copied from the Status requirement

document, which can be done within an hour.

The Print and Data protocol are more complex. They consists of identification

numbers and more instances of the protocol can be used simultaneously. The

requirement documents of these protocols are more concise than that of the

Status protocol. Some exceptional cases are illustrated with a sequence

diagram but no LTSs are given. Hence, the creation of an LTS from these

protocols is more time consuming. The time needed for the creation of a model

for these protocols is, depending of the knowledge of the protocols, between

one and five hours.

Synchronization and test-specific models are typical small and less complex.

For these models also holds that more knowledge of protocols and relations

between them decreases the time needed for creation the models.

The models created do not take into account exceptional behavior and error

handling. These aspects can be modeled the same way, since it is part of

printer protocols.

 67

6.2.2 Detection of failures

The AVATR method and tool chain are developed to detect incorrect printer

behavior by means of logfiles. The feasibility study shows verification times

with incorrect verification results. These incorrect results are caused by

injected incorrect log transitions, which where all detected correctly.

Besides logfiles with injected failures, logfiles with existing incorrect actions are

verified. In these logfiles the place of the failure already was known. With the

AVATR method these failures are detected when they were in one of the

protocols modeled (incorrect status transitions). Not modeled protocols are not

verified and hence no failures are found in these protocols.

New failures are not found. Every time a new failure appeared the specification

model had to be adapted.

6.2.3 Acceptance in Océ

Feedback from Océ engineers on the developed method and tool chain comes

down to a calculation of the required effort and gained profit.

For Océ engineers a new method is useful when it proves its value. However

the developed method and tool chain only discovered known (mostly injected)

failures so far. Furthermore, the verification needs a description of

requirements in a formal specification language, which takes effort and time. It

is sometimes a cumbersome task since requirement documents can be concise.

A third aspect is that the generation of a LOTOS specification (textual) is

different of the drawing of a LTS. Hence it takes even more time and effort to

learn the LOTOS and the AVATR tool chain.

On the other hand, automatic verification and analysis is seen as valuable,

since it is possible to verify and analyze printers automatic and more thorough.

Failures can be automatic found and protection mechanisms in the printer can

be decreased.

6.3 Conclusions

This thesis describes the AVATR method and tool chain as developed at Océ-

Technologies. The AVATR tool chain is capable of automatic verification and

analysis of test results of a printer of Océ. The feasibility study, carried out as

part of this project shows acceptable running times, even for many protocol

instances. Using AVATR, logfiles can be verified and analyzed more thoroughly

than with existing methods.

Results obtained in the AVATR project are the following:

 A method has been developed to transform a logfile into a log model.

This transformation filters unneeded details out and formalizes used

printer actions.

 A method has been developed to create a specification, consisting of

reference, synchronization, and test-specific models, which describes

(relevant) parts of printer requirements on a maintainable and flexible

way.

 68

 A method has been developed to verify and analyze the log model with

the specification.

A proof of concept has been given for which the developed method has been

implemented in a tool chain. Results of the implementation show that it is

possible to verify and analyze printers of Océ by means of logfiles.

The running times for these verification and analyses are acceptable, even for

many protocol instances. The use of large amounts of data type instances,

however, slows down the verification.

6.4 Recommendations

The developed AVATR method and tool chain are able to verify and analyze

printer logfiles. However to fully profit from AVATR some improvements can be

made.

Small models without many instances in the printer (e.g., Status model, Print

model) can be verified in acceptable running times, mostly below 15 minutes.

The verification of larger models or compositions with many instances in the

printer (Data model, composition of specification) exceed three hours, which is

unacceptable. Hence it is recommended to search another tool for verification

of these specification models.

The second recommendation is about the documentation. It should contain a

clear unambiguous description of the protocols described, preferably in LTS

notation. This can be helpful for engineering and debugging but is also helpful

for easily adaptation of the AVATR method.

The third recommendation is that naming conventions are adapted to the

requirements as well as to the logfile. Currently there are differences between

descriptions in requirement documents and the logfile (e.g., in the Print

protocol requirements the action downloadrequestReady is the same as the log

action downloadready), and between different log statements in one logfile

(e.g., notations for „identifier‟ are: id, Id, requestId, id:, id=).

Furthermore, an interface should be made between a graphical tool and the

AVATR tool chain, to create specifications more intuitive in transition systems.

For this graphical tool RoseRT can be used, which is part of the existing

development environment.

Finally, it is recommended to create a coupling between the AVATR tool chain

output and the original logfile. The AVATR tool chain directs to transitions in

the transformed logfile, the log model. A statement in a log model is less

insightful than a statement in the original logfile since in the logfile information

is present from other protocols.

 69

 References
[1] J. Van der Velden, Van nature innovatief, Almedia, 2007.

[4] H. Gravel, M. Jorgensen, R. Mateescu, C. Pecheur, M. Sighireanu, B.

Vivien, CADP’79 – status, Applications and Perspectives, I. Lovrek

(Ed.), Proceedings of the 2nd COST 247 international workshop on

applied formal methods in system design, 1997.

[5] T. Bolognesi, E. Brinksma, Introduction to the ISO specification

language LOTOS, computer networks and ISDN systems, 14(1): 25-59,

1978.

[6] L. Logrippo, M. Faci, M. Haj-Hussein, An introduction to LOTOS:

Learning by examples. Computer networks and ISDN systems 23: 325-

342, 1992.

[7] J. de Meer, R. Roth, S. Vuong, Introduction to Algebraic specifications

based on the language ACT ONE, Computer networks and ISDN

systems 23: 363-392, 1992.

[8] J. A. Manas, A Tutorial on ADT semantics for LOTOS users Part I:

Fundamental Concepts, Dept. Ingenieria Telematica Ciudad Universiaria

E-28040 Madrid, 1988.

[9] J. M. T. Romijn, Analysing Industrial Protocols with Formal Methods,

PhD thesis, University of Twente, 1999.

[10] B. Broekman, E. Notenboom. Testing embedded software, Addison-

 Wesley, 2005.

[11] J. P. Bowen, M. G. Hinchey, The use of industrial-strength formal

methods, Proceedings of 21st International Cumputer Software and

Application Conference, 1997.

[12] E.Ciapessoni, A.Coen-Porsini, E.Crivelli, D.Mandrioli, P.Mirandrola,

A.Morzenti, From formal models to formally-based methods: an

industrial experience, ACM Transactions on Software Engineering and

Methodology, Volume 8, Issue 1, pages 79-113, 1999.

[13] M. Stoelinga, Testing rechniques, Universiteit Twente, Enschede, 2007.

Knowledge of what is does not open the door directly

to what should be.

(Albert Einstein)

 70

[14] R. J. van Glabbeek, The linear time – branching time spectrum. In

J.C.M. Baeten and J.W. Klop, editors, CONCUR‟90, Lecture Notes in

Computer Science 458, pages 278-297, Springer-Verlag, 1990.

[15] R.J. van Glabbeek, The linear time – branching time spectrum II (the

semantics of sequential systems with silent moves). In E. Best, editor,

CONCUR‟93, Lecture notes in Computer Science 715, pages 66-81,

Springer-Verlag, 1993.

[16] H. Ehrig, B. Mahr. Fundamentals of algebraic specification -1, Springer-

Verlag, Berlin, 1985.

[19] G. V. Bochmann, O. Bellal. Test result analysis with respect to formal

specifications, Proc. 2nd Int. Workshop on Protocol Test Systems, pages

272-294, Berlin, 1989.

[20] G. V. Bochmann, D. Desbiens, M. Dubuc, D. Ouimet, F. Saba, Test

result analysis and validation of test verdicts, The proceedings of the

Workshop on Protocol Test Systems, McLean, Virginia, Oct. 1990.

[21] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs,

S. Mauw, and L. Heerink, Formal Test Automation: A Simple

Experiment. In G. Csopaki, S. Dibuz, and K. Tarnay, editors, Int.

Workshop on Testing of Communicating Systems 12, pages 179-196,

Kluwer Academic Publishers, 1999.

[23] J. Tretmans, E. Brinksma. TorX: Automated Model Based Testing, First

European Conference on Model-Driven Software Engineering, pages 31-

43, Nuremberg, Germany, December 2003.

[24] G. Behrmann, A. David, and K. G. Larsen, A Tutorial on UPPAAL,

Proceedings Formal Methods for the Desings of Real-time Systems,

Lecture notes in Computer Science, volume 3185, November 2004.

[26] K. G. Larsen, P. Pettersson and W. Yi, Uppaal in a Nutshell, Springer

International Journal of Software Tools for Technology Transfer 1(1+2),

1997.

[27] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu,

BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking,

Lecture notes in Computer Science, volume3440, April 2005.

[28] A.G. Wouters, Manual for the muCRL tool set, version 2.8.2, Technical

Report SEN-R0130, CWI, Amsterdam, 2001.

[30] I.A. van Langevelde, A compact file format for labeled transition

systems, Technical Report SEN-R0102, CWI, Amsterdam, 2001.

http://www.inrialpes.fr/vasy/Publications/Bergamini-Descoubes-Joubert-Mateescu-05.html
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R0130.pdf
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R0102.pdf
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R0102.pdf
ftp://ftp.cwi.nl/pub/CWIreports/SEN/SEN-R0102.pdf

 71

Internet

[2] VIM – http://www.vim.org/

[3] CADP – http://www.inrialpes.fr/vasy/cadp

[18] Perl – http://www.perl.org/

[17] Exhibitor – http://www.inrialpes.fr/vasy/cadp/man/exhibitor.html

[22] TorX – http://fmt.cs.utwente.nl/tools/torx

[25] UPPAAL – http://www.uppaal.org/

[29] mCRL toolset – http://homepages.cwi.nl/~mcrl/mutool.html

