
Exploiting Symmetry in Protocol Testing �

Judi Romijn� and Jan Springintveld���

�
CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

fjudi�springg�cwi�nl

�
Computing Science Institute

University of Nijmegen

P�O� Box ����� �	�� GL Nijmegen� The Netherlands

ABSTRACT

Test generation and execution are often hampered by the large state spaces of the systems involved� In

automata �or transition system� based test algorithms� taking advantage of symmetry in the behavior of

speci�cation and implementation may substantially reduce the amount of tests� We present a framework for

describing and exploiting symmetries in black box test derivation methods based on �nite state machines

�FSMs�� An algorithm is presented that� for a given symmetry relation on the traces of an FSM� computes

a subautomaton that characterizes the FSM up to symmetry� This machinery is applied to the classical

W�method ��	�
� for test derivation� Finally� we focus on symmetries de�ned in terms of repeating patterns�

���� Mathematics Subject Classi
cation� 	�M�� 	�Q��� 	�Q	�� ��C�

���� Computing Reviews Classi
cation System� B����� D����� F��

Keywords and Phrases� conformance testing� automated test generation� state space reduction� symmetry

Note� The research of the �rst author was carried out as part of the project �Speci�cation� Testing

and Veri�cation of Software for Technical Applications� at the Stichting Mathematisch Centrum for Philips

Research Laboratories under Contract RWC��	�PS������	�ps� The research of the second author was

partially supported by the Netherlands Organization for Scienti�c Research �NWO� under contract SION

	�������	� His current a�liation is� Philips Research Laboratories Eindhoven� Prof� Holstlaan �� �	�	 AA�

Eindhoven� The Netherlands�

�� Introduction
It has long been recognized that for the proper functioning of components in open and
distributed systems� these components have to be thoroughly tested for interoperability

� A short version of this report appeared in S� Budkowski� A� Cavalli and E� Najm� editors� Formal
Description Techniques and Protocol Speci�cation� Testing and Veri�cation �FORTE XI�PSTV XVIII
����� pages �������� Kluwer Academic Publishers� �		
�

�� Introduction �

and conformance to internationally agreed standards� For thorough and e�cient test�
ing� a high degree of automation of the test process is crucial� Unfortunately� methods
for automated test generation and execution are still seriously hampered by the often
very large state spaces of the implementations under test� One of the ways to deal with
this problem is to exploit structural properties of the implementation under test that
can be safely assumed to hold� In this paper we focus on taking advantage of symmetry
that is present in the structure of systems� The symmetry� as it is de�ned here� may be
found in any type of parameterized system� such parameters may for example range
over IDs of components� ports� or the contents of messages�

We will work in the setting of test theory based on �nite state machines �FSMs��
Thus� we assume that the speci�cation of an implementation under test is given as an
FSM and the implementation itself is given as a black box� From the explicitly given
speci�cation automaton a collection of tests is derived that can be applied to the black
box� Exploiting symmetry will allow us to restrict the test process to subautomata
of speci�cation and implementation that characterize these systems up to symmetry
and will often be much smaller� The symmetry is de�ned in terms of an equivalence
relation over the trace sets of speci�cation and implementation� Some requirements are
imposed to ensure that such a symmetry indeed allows to �nd the desired subautomata�
We instantiate this general framework by focusing on symmetries de�ned in terms of
repeating patterns� Some experiments with pattern�based symmetries� supported by
a prototype tool implemented using the Open�C�sar tool set 	
��� have shown that
substantial savings may be obtained in the number of tests�

Since we assume that the black box system has some symmetrical structure �cf�
the uniformity hypothesis in 	
� ���� it is perhaps more appropriate to speak of gray
box testing� For the speci�cation FSM it will generally be possible to verify that a
particular relation is a symmetry on the system� but for the black box implementation
one has to assume that this is the case� The reliability of this assumption is the tester�s
responsibility� In this respect� one may think of exploiting symmetry as a structured
way of test case selection 	
�� �� for systems too large to be tested exhaustively� where
at least some subautomata are tested thoroughly�

This paper is not the �rst to deal with symmetry in protocol testing� In 	���� similar
techniques have been developed for a test generation methodology based on labeled
transition systems� success trees and canonical testers 	�� ��� Like in our case� sym�
metry is an equivalence relation between traces� and representatives of the equivalence
classes are used for test generation� Since our approach and the approach in 	��� start
from di�erent testing methodologies� it is not easy to compare them� In 	���� the sym�
metry relation is de�ned through bijective renamings of action labels� our pattern�based
de�nition generalizes this approach� On the other hand� since in our case a symmetry
relation has to result in subautomata of speci�cation and implementation that char�
acterize these systems up to the symmetry� we have to impose certain requirements�
which are absent in 	����

In 	
��� symmetrical structures in the product automaton of interoperating systems

�� Finite state machines �

are studied� It is assumed that the systems have already been tested in isolation and
attention is focused on pruning the product automaton by exploiting symmetry arising
from the presence of identical peers� In the present paper� we abstract away from
the internal composition of the system and focus on de�ning a general framework for
describing and using symmetries on FSMs�

This paper is organized as follows� Section � contains some basic de�nitions concerning
FSMs and their behavior� In Section �� we introduce and de�ne a general notion of trace
based symmetry� We show how� given such a symmetry on the behavior of a system�
a subautomaton of the system can be computed� a so�called kernel� that characterizes
the behavior of the system up to symmetry� In Section we apply the machinery to
the classical W�method 	��� �� for test derivation� In Section � we will instantiate the
general framework by focusing on symmetries de�ned in terms of repeating patterns�
Section � contains an extensive example� inspired by 	���� Finally� we discuss future
work in Section ��

�� Finite state machines
In this section� we will brie�y present some terminology concerning �nite state machines
and their behavior� that we will need in the rest of this paper�

We let N denote the set of natural numbers� �Finite� Sequences are denoted by greek
letters� Concatenation of sequences is denoted by juxtaposition� � denotes the empty
sequence and the sequence containing a single element a is simply denoted a� If �
is non�empty then �rst��� returns the �rst element of � and last��� returns the last
element of ��

If V and W are sets of sequences and � is a sequence� then �W � f� � j � � Wg
and V W �

S
��V �W � For X a set of symbols� we de�ne X� � f�g and� for i � ��

X i � X i�� �XX i��� As usual� X� �
S

i�NX
i�

De�nition ���� A �nite state machine �FSM� is a structure A � �S��� E� s�� where

� S is a �nite set of states

� � a �nite set of actions

� E � S � � � S is a �nite set of edges

� s� � S is the initial state

We require that A is deterministic� i�e�� for every pair of edges �s� a� s��� �s� a� s��� in
EA� s� � s���

We write SA� �A� etc�� for the components of an FSM A� but often omit subscripts
when they are clear from the context� We let s� s� range over states� a� a�� b� c� � � �
over actions� and e� e� over edges� If e � �s� a� s�� then act�e� � a� We write s

a
�� s� if

�s� a� s�� � E and with s
a
�� we denote that s

a
�� s� for some state s�� A subautomaton

of an FSM A is an FSM B such that s�B � s�A� SB � SA� �B � �A� and EB � EA�

� Symmetry �

An execution fragment of an FSM A is an alternating sequence � � s� a� s� � � �an sn
of states and actions of A� beginning and ending with a state� such that for all i�

� 	 i � n� we have si
ai��
�� si��� If s� � sn then � is a loop� if n
� � then � is

a non�empty loop� An execution of A is an execution fragment that begins with the
initial state of A�

For � � s� a� s� � � �an sn an execution fragment of A� trace��� is de�ned as the
sequence a� a� � � �an� If � is a sequence of actions� then we write s

�
�� s� if A has an

execution fragment � with �rst��� � s� last��� � s�� and trace��� � �� If � is a loop�
then � is a looping trace� We write s

�
�� if there exists an s� such that s

�
�� s�� and

write traces�s� for the set f� � ��A�� j s
�
��g� We write traces�A� for traces�s�A�� �

�� Symmetry
In this section we introduce the notion of symmetry employed in this paper�

We want to be able to restrict the test process to subautomata of speci�cation and
implementation that characterize these systems up to symmetry� In papers on exploit�
ing symmetry in model checking 	�� ��
��

�
��
��� such subautomata are constructed
for explicitly given FSMs by identifying and collapsing symmetrical states� We are con�
cerned with black box testing� and� by de�nition� it is impossible to refer directly to
the states of a black box� In traditional FSM based test theory� FSMs are assumed to
be deterministic and hence a state of a black box is identi�ed as the unique state of
the black box that is reached after a certain trace of the system� Thus it seems natural
to de�ne symmetry as a relation over traces�

Our basic notion of symmetry on an FSMA� then� is an equivalence relation on ��A���
such that A is closed under the symmetry� i�e�� if a sequence of actions is symmetrical
to a trace of A then the sequence is a trace of A too�

The idea is to construct from the speci�cation automaton an automaton such that
its trace set is included in the trace set of the speci�cation and contains a represen�
tative trace for each equivalence class of the symmetry relation on the traces of the
speci�cation� In order to be able to do this� we need to impose some requirements on
the symmetry� For the speci�cation we demand �
� that each equivalence class of the
symmetry is represented by a unique trace� ��� that pre�xes of a trace are represented
by pre�xes of the representing trace� and ��� that representative traces respect loops�
The third requirement means that if a representative trace is a looping trace� then the
trace with the looping part removed is also a representative trace� This requirement
introduces some state�based information in the de�nition of symmetry�

These requirements enable us to construct a subautomaton of the speci�cation� a so�
called kernel� such that every trace of the speci�cation is represented by a trace from
the kernel� Of course� it will often be the case that the symmetry itself is preserved
under pre�xes and respects loops� so the requirements will come almost for free�

For the black box implementation� we will� w�r�t� symmetry� only demand that it is
closed under symmetry� So if tests have established that the implementation displays
certain behavior� then by assumption it will also display the symmetrical behavior� In

�� Construction of a kernel �

Section � where the theory is applied to Mealy machines� we will in addition need a
way to identify a subautomaton of the implementation that is being covered by the
tests derived from the kernel of the speci�cation�

De�nition ���� A symmetry S on an FSM A is pair h�� ��ri where � is a binary
equivalence relation on ��A��� and ��r � ��A�� � ��A�� is a representative function for
� such that�

� A is closed under �� If � � traces�A� and � � � � then � � traces�A��

�� Only traces of the same length are related� If � � � � then j�j � j� j�

�� ��r satis�es�

�a� �r � �

�b� � � � � � r � �r

�c� ��r is pre�x closed on A� If � a � traces�A� and �� a�r � � b� then �r � �

�d� ��r is loop respecting on representative traces� If ��� �� ���
r � �� �� �� �

traces�A� and �� is a looping trace� then ��� ���
r � �� ���

The class of traces � such that � � � is denoted with 	��S� or� if S is clear from the
context� 	��� �

As mentioned above� we will demand that there exists a symmetry on the speci�cation�
while the implementation under test is required only to be closed under the symmetry�

Lemma ���� ��r�r � �r

De�nition ���� Let S � h�� ��ri be a symmetry on FSM A� A kernel of A w�r�t� S
is a subautomaton K of A� such that for every � � traces�A�� �r � traces�K�� �

�� Construction of a kernel
In this section� we �x an FSM A and a symmetry S � h�� ��ri on A� Figure
 presents
an algorithm that constructs a kernel of A w�r�t� S� It basically explores the state
space of A� while keeping in mind the trace that leads to the currently visited state�
As soon as such a trace contains a loop� the algorithm will not explore it any further�

In Figure
� enabled�s�A� denotes the set of actions a such that EA contains an edge
�s� a� s��� and for such an a� e� �s� a�A� denotes s�� Furthermore� repr��� E� denotes the
set F of actions such that a � F i� there exists an action b � E such that �r a � �� b�r�
We will only call this function for � such that �r � ��see Lemma ����� By de�nition
of ��r� for some action c� �� b�r � �r c � � c� So� since A is deterministic and closed

�� Construction of a kernel �

function Kernel�A� S�� FSM�
var K�

procedure Build It�s� �� Seen��
var a� b� s� s�� E� F �
begin

if s
� Seen
then E �� enabled�s�A��

F �� �
while E
�
do a �� choose�repr��� E���

s� �� e� �s� a�A��
SK �� SK � fs�g�
�K �� �K � fag�
EK �� EK � f�s� a� s��g�
Build It�s�� � a� Seen � fsg��
F �� F � fag�
E �� E n fag�
for each b � E � � a � � b
do E �� E n fbg�
od�

od�

��

end�

begin

s�K �� s�A�
SK �� fs�Ag�
�K �� �
EK �� �
Build It�s�A� �� ��
return K�

end�

Figure
� The algorithm Kernel

�� Construction of a kernel �

under �� F � E and if E is non�empty� F is non�empty� This justi�es the function
choose�F � which nondeterministically chooses an element from F �

The remainder of this section is devoted to the correctness of algorithm Kernel� In
order to prove that the algorithm works properly� we �rst prove that it terminates�
that it creates a subautomaton of A and that build it uses its parameters properly�

Lemma ���� The execution of the algorithm Kernel�A� S� terminates�

Proof� The number of states in A is �nite� and for each nested call of build it�s�� ���
Seen �� within build it�s� �� Seen�� Seen � � Seen � fs�g with s�
� Seen� So there can be
�nitely many levels of such nested calls� Furthermore� the number of enabled transitions
in s is �nite� so the while loop that empties E �E decreases strictly monotonically during
this loop until it�s empty� can make �nitely many nested calls to build it� �

Lemma ���� During execution of build it�s�A����� automaton K is a subautomaton of
A� and K grows monotonically�

Lemma ���� If Kernel�A�S� calls build it�s���Seen� then s�K
�
��K s and �r � ��

Proof� By induction on the length n of ��

� n � �� Then � � �� From observing the algorithm Kerneland procedure build it�
it is clear that the only call of build it�s���Seen� is with s � s�A and Seen � �
At this point in Kernel�A�S�� s�A has just been added to K as s�K� So s�K

�
��K s�

Certainly� ���r � ��

� n � m �
�

Suppose � � �� a is a trace of length m �
 and Kernel�A�S� calls build it�s���
Seen�� Since �
� �� the call build it�s���Seen� must occur within the execution of

a call build it�s�����Seen ��� By the induction hypothesis� we know that s�K
��

��K s��
When build it�s�����Seen �� calls build it�s��� a�Seen� then �s�� a� s� has just been
added to EK� with a from enabled�s�A� and s � e� �s�� a�A�� So s�

a
��K s when

the call build it�s���Seen� is made� and it follows that � � traces�K��

As to �r � �� When build it�s�����Seen �� calls build it�s��� a�Seen� then by def�
inition of choose�repr���� E��� ����r a � ��� a�r� Since� by induction hypothesis�
����r � ��� ��� a�r � �� a� which completes the proof�

�

Lemma ���� If Kernel�A�S� calls build it�s���Seen�� then � � traces�Kernel�A� S���

�� Construction of a kernel �

Proof� Follows immediately from Lemmas ��� and ���� �

Lemma ���� If Kernel�A�S� calls build it�s���Seen�� then during the execution of
build it the following holds�

�� during and after the while loop� the following property holds�

a � F � Kernel�A� S� calls build it�e� �s� a�K�� � a� Seen � fsg�

�� during and after the while loop� the following property holds�

s
a
��A� a � E � �b � F� � b � �� a�r

�� after the while loop� E is empty�

Proof�

� When the while loop is started� F is empty� The only statement that adds b to
F follows right after the statements that �rst add the edge �s� a� s�� to EK and
then call build it�s�� �a� Seen � fsg��

�� Suppose a
� E� At the start of the while loop� E contains each enabled action in
s� including a� So a has been removed from E by one of the last two statements
of the while loop� In case a was removed from E by the �rst of these two
statements� then it was added to F one statement earlier� and� by de�nition of
choose�repr��� E�� and Lemma ���� � a � �� a�r� In case a was removed from
E by the last of the two statements� then� for a� � repr��� E� and Lemma ����
�� a�r � � a��

�� Trivial� since it is the stop condition for the while loop� and the while loop is the
last statement in the procedure�

�

Lemma ��	� Suppose Kernel�A�S� calls build it�s���Seen� with � � a�a� � � � an�
s�

a���A s�
a���A s� � � �

an��A sn� and s� � s�A� Then

�� Kernel�A�S� calls build it�s�����

�� for � 	 i � n� build it�si��i�Seeni� calls build it�si����i���Seeni��� with �i �
a�a� � � � ai and for � 	 i 	 n� Seeni �

S
j�f������� �i��gfsjg

�� s � sn and Seen � Seenn

Proof� By induction on the length n of ��

�� Construction of a kernel �

� n � �� Then � � �� and the result follows immediately�

� n � m �
�

Suppose � � a�a� � � � am�� and Kernel�A�S� calls build it�s���Seen� with s�
a���A

s�
a���A s� � � �

am��

��A sm�� and s� � s�A� Let �� � a�a� � � � am� Since �
� �� the call
build it�s���Seen� must occur within the execution of a call build it�s�����Seen ��
and Seen � Seen � � fs�g� By the induction hypothesis� we know that Seen � �
Seenm� that s� � sm� that Kernel�A�S� calls build it�s������ that for � 	 i � m�
build it�si��i�Seeni� calls build it�si����i���Seeni��� with �i � a�a� � � � ai and that
for � 	 i 	 m� Seeni �

S
j�f������� �i��gfsjg�

So build it�sm��m�Seenm� calls build it�sm����m���Seen�� and we need to prove
that s � sm�� and Seenm�� � Seen �

S
j�f������� �mgfsjg� Looking at the state�

ments in build it�sm��m�Seenm� that call build it�sm����m���Seen�� we see that
s � sm�� and Seen � Seenm � fsmg� So Seen � �

S
j�f������� �m��gfsjg� � fsmg �

S
j�f������� �mgfsjg and the result follows�

�

Lemma ��
� If Kernel�A�S� calls build it�s���Seen�� then

s � Seen � ���� ��� � � �� �� � ��
� � � s�A
����A s

����A s

Proof� Follows immediately from Lemma ��� and Lemma ���� �

The next theorem completes the proof of the fact that the algorithm Kernel�A�S�
returns a kernel for A w�r�t� S�

Theorem ���� Let K 	 Kernel�A�S�� If � � traces�A�� then �r � traces�K��

Proof� Let � � �r� Since A is closed under S� � � traces�A�� say that s�A
�
��A t�

We prove a stronger property Inv��� by induction on the length n of � �� the length
of ���

Inv��� � � � � traces�K�
� � Seen�

� Kernel�A� S� calls build it�t� �� Seen�
� � � � �� �� a ��

� s�A
����A t�

��a��A t�
����A t

� �� �� contains no non�empty looping trace in A
� Kernel�A� S� calls build it�t�� �� �� a� Seen�

� n � ��

Then � � �� and also � � �� So t � s�A� Since s�A � SK� � � traces�K�� It su�ces
to observe that Kernel�A�S� calls build it�s�A�����

	� Test derivation from symmetric Mealy machines 	

� n � m �
�

Induction Hypothesis �IH�� � 	 j	j 	 m� Inv�	r�

Suppose � � �� b� � � � � c� and j�j � j� j � m �
� Since ��r is pre�xed closed�
����r � � �� Since � � traces�A�� � � � traces�A�� We distinguish two cases�

� � � does not contain a non�empty looping trace�

We show that� for some set Seen� Kernel�A� S� calls build it�t� � � c� Seen��
By Lemma ��� we then know that � � c � traces�K�� which proves Inv����

Assume s�A
� �

��A t�� Since ����r � � �� Inv�� �� holds by IH� There is no looping
trace in � �� so � � � traces�K� and� for some set Seen �� Kernel�A� S� calls
build it�t�� � �� Seen ��� We now inspect the execution of procedure build it
for this call� By Lemma ���� we know that t�
� Seen �� By Lemma ��
we know that after the while loop build it�t���� � c��Seen � � ft�g� is called� for

some state t�� and action c� such that t�
c�

��K t�� and �� �c�r � � �c�� By
Lemma ���� we know that �� �c�r � � �c� so c� � c and hence t�� � t� Thus�
build it�t�� � c�Seen � � ft�g� is called�

� � � contains a non�empty looping trace�

Then there exist ��� ��� ��� ��� ��� ��� a� and t� such that

� � � �� �� a �� c � � � �� �� ��
� j��j � j��j � j�� aj � j��j � j�� cj � j��j

� s�
����A t�

��a��A t�
��c��A t

� ���� contains no non�empty looping trace in A

We show that� for some set Seen� Kernel�A� S� calls build it�t�� �� �� a� Seen��
and that � � traces�K�� Trivially� j�� �� aj � j�� �� a �� cj� and j�� �� cj �
j�� �� a �� cj� Since ��r is pre�x closed and � r � � � �� �� a � ��� �� a�r� Since
��r is loop respecting� �� �� c � ��� �� c�

r� So we may apply IH and obtain
that Inv��� �� a� and Inv��� �� c� hold� This means that �� �� a � traces�K��
�� �� c � traces�K�� and since there is no looping trace in �� ��� that� for
some set Seen� Kernel�A� S� calls build it�t�� �� �� a� Seen�� Since K is a
subautomaton of A �Lemma ����� we know that s�K

����K t�
��a��K t�

��c��K t�
and hence �� �� a�� c � traces�K��

�

�� Test derivation from symmetric Mealy machines
In this section we will apply the machinery developed in the previous sections to Mealy
machines� There exists a wealth of test generation algorithms based on the Mealy
machine model 	��� �� �
�� We will show how the classical W�method 	��� �� can be
adapted to a setting with symmetry� The main idea is that test derivation is not based

	� Test derivation from symmetric Mealy machines 		

on the entire speci�cation automaton� but only on a kernel of it� A technical detail
here is that we do not require Mealy machines to be minimal �as already observed by
	��� for the setting without symmetry�� We will use the notation from Chow�s paper�

De�nition ���� A Mealy machine is a �deterministic� FSM A such that

�A � f�i
o� j i � IA � o � OAg

where IA and OA are two �nite and disjoint sets of inputs and outputs� respectively�
We require that A is input enabled and input deterministic� i�e�� for every state s � SA

and input i � IA� there exists precisely one output o � OA such that s
�i�o�
���

Input sequences of A are elements of �IA��� For � an input sequence of A and s� s� � SA�

we write s
�

��A s� if there exists a trace � such that s
�
��A s� and � is the result of

projecting � onto IA� In this case we write outcomeA��� s� � �� the execution fragment
� with �rst��� � s and trace��� � � is denoted by execA�s� ��� A distinguishing
sequence for two states s� s� of A is an input sequence � such that outcomeA��� s�
�
outcomeA��� s��� We say that � distinguishes s from s�� �

In Chow�s paper� conformance is de�ned as the existence of an isomorphism between
speci�cation and implementation� Since we do not assume automata to be minimal�
we will show the existence of a bisimulation between speci�cation and implementation�
Bisimilarity is a well�known process equivalence from concurrency theory 	�
�� For
minimal automata� bisimilarity is equivalent to isomorphism� while for deterministic
automata� bisimilarity is equivalent to equality of trace sets�

De�nition ���� Let A and B be FSMs� A relation R � SA�SB is a bisimulation on
A and B i�

� R�s�� s�� and s�
a
��A s�� implies that there is a s�� � SA such that s�

a
��B s

�
� and

R�s��� s
�
���

� R�s�� s�� and s�
a
��B s

�
� implies that there is a s�� � SA such that s�

a
��A s�� and

R�s��� s
�
���

A and B are bisimilar� notation A � B� if there exists a bisimulation R on A and B
such that R�s�A� s

�
B�� We call two states s�� s� � SA bisimilar� notation s� �

A s�� if
there exists a bisimulation R on A �and A� such that R�s�� s��� The relation �

A is
an equivalence relation on SA� a bisimulation class of A is an equivalence class of SA
under �

A� �

The main ingredient of Chow�s test suite is a characterizing set for the speci�cation�
i�e�� a set of input sequences that distinguish inequivalent states by inducing di�erent
output behavior from them� In our case� two states are inequivalent if they are non�
bisimilar� i�e� have di�erent trace sets� In the presence of symmetry we will need a

	� Test derivation from symmetric Mealy machines 	�

characterizing set not for the entire speci�cation automaton but only for a kernel of
it� However� a kernel need not be input enabled� so two inequivalent states need not
have a common input sequence that distinguishes between them� Instead we will use a
characterizing set that contains for every two states of the kernel that are inequivalent
in the original speci�cation automaton� an input sequence that these states have in
common in the speci�cation and distinguishes between them�

Constructing distinguishing sequences in the speci�cation automaton rather than
in the smaller kernel is of course potentially as expensive as in the setting without
symmetry� and may lead to large sequences� However� if the number of states of the
kernel is small we will not need many of them� so test execution itself may still bene�t
considerably from the restriction to the kernel� Moreover� we expect that in most
cases distinguishing sequences can be found in a well marked out subautomaton of the
speci�cation that envelopes the kernel�

De�nition ���� A test pair for a Mealy machine A is a pair hK�W i where K is a
kernel of A and W is a set of input sequences of A such that the following holds� For
every pair of states s� s� � SK such that s
�A s�� W contains an input sequence � such
that outcomeA��� s�
� outcomeA��� s��� �

The proof that Chow�s test suite has complete fault coverage crucially relies on the
assumption that �an upper bound to� the number of states of the black box implemen�
tation is correctly estimated� Since speci�cation and implementation are also assumed
to have the same input sets and to be input enabled� this is equivalent to a correct
estimate of the number of states of the implementation that can be reached from the
start state by an input sequence from the speci�cation� Similarly� we will assume that
we can give an upper bound to the number of states of the black box that are reachable
from the start state by an input sequence from the kernel of the speci�cation� We call
the subautomaton of the implementation generated by these states the image of the
kernel�

Technically� the assumption on the state space of the black box is used in 	�� to
bound the maximum length of distinguishing sequences needed for a characterizing set
for the implementation� Since� like the kernel� the image of the kernel need not be
input enabled� it may be that distinguishing sequences for states of the image cannot
be constructed in the image itself� Thus� it is not su�cient to estimate the number of
states of the image� but we must in addition estimate the number of steps distinguishing
sequences may have to take outside the image of the kernel�

De�nition ���� Let A and B be Mealy machines with the same input set and let K

be a kernel of A� A K�sequence is an input sequence � such that s�K
�

��K� A state s of

B is called K�related if there exists a K�sequence � such that s�B
�

��B s�

We de�ne imK�B� as the subautomaton �S��� E� s�� of B de�ned by�

� S � fs � SB j s is K�relatedg

	� Test derivation from symmetric Mealy machines 	�

� E � f�s� a� s�� � EB j s� s� � Sg

� � � fa � �B j � s� s�� �s� a� s�� � Eg

� s� � s�B

�

De�nition ���� A subautomaton B of a Mealy machine A is �m�� m���self�contained
in A when the number of bisimulation classes Q of A such that Q � SB
� is m��
and for every pair of states s� s� of B such that s
�A s�� there exist input sequences

��� �� of A of length at most m�� m�� respectively� such that s
��

��B� s�
��

��B� and
outcomeA������ s�
� outcomeA������ s

��� �

The next lemma is a generalization of 	���s Lemma ��

Lemma ��	� Let A and B be Mealy machines with the same input set I and let
hK�W i be a test pair for A� Let C � imK�B�� Suppose that�

�� C is �m�� m��
self
contained in B�

�� W distinguishes between n bisimulation classes Q of B such that Q � SC
� �

Then for every two states s and s� of C such that s
�B s
�� Im��n Im� W distinguishes s

from s��

Proof� By induction on j � f�� � � � � m� � ng we prove that there exist j � n
bisimulation classes Q of B with Q � SC
� such that Ij Im� W distinguishes between
them� This proves the result� since� by assumption
� the number of bisimulation
classes Q of B such that Q � SC
� is m��

� j � �� By assumption �� W already distinguishes between n bisimulation classes
of B with Q � SC
� � so surely Im� W distinguishes at least these n classes�

� j � k �
� If Ik Im� W already distinguishes between k �
 bisimulation classes
Q of B such that Q � SC
� � we are done� So suppose not� Then there exist
two distinct bisimulation classes Q� and Q� of B whose intersection with SC is
non�empty� such that Ik Im� W does not distinguish Q� from Q�� So there exist
states s� � Q� � SC and s� � Q� � SC of C such that s�
�B s� but Ik Im� W
does not distinguish s� from s�� Since C is �m�� m���self�contained in B� we can
de�ne the smallest number l 	 m� such that I l Im� W contains an input sequence
� such that outcomeB��� s��
� outcomeB��� s��� So there exist states t� and t�
of C �among the �l � �k �
��th successors of s� and s�� respectively� such that
Ik Im� W does not distinguish t� from t� whereas Ik�� Im� W does distinguish t�
from t�� Hence Ik�� Im� W distinguishes the bisimulation classes of B to which
t� and t� belong�

	� Test derivation from symmetric Mealy machines 	�

�

This result allows us to construct a characterizing set Z � Im��n Im� W for the image of
the kernel in the implementation� The test suite resulting from the W�method consists
of all concatenations of sequences from a transition cover P for the speci�cation with
sequences from Z�

De�nition ��
� A transition cover for the kernel of a Mealy machine A is a �nite

collection P of input sequences of A� such that � � P and� for all transitions s
�i�o�
�� s�

of K� P contains input sequences � and � i such that s�K
�

��K s� �

Now follows the main theorem�

Theorem ���� Let Spec and Impl be Mealy machines with the same input set I� and
assume h�� ��ri is a symmetry on Spec such that Impl is closed under �� Let hK�W i
be a test pair for Spec� Write C � imK�Impl�� Suppose

�� The number of bisimulation classes Q of Spec such that Q � SK
� is n�

�� C is �m��m��
self
contained in Impl �

�� For all � � P and � � Im��n Im� W

outcomeSpec�� �� s
�
Spec� � outcomeImpl �� �� s

�
Impl � ���

Then Spec � Impl �

Proof� Spec and Impl are deterministic� so it su�ces to prove traces�Spec� �
traces�Impl�� Since Spec is input enabled and Impl is input deterministic� it then
su�ces to prove that traces�Spec� � traces�Impl�� Using that Impl is closed under S�
this follows immediately from the �rst item of the following claim�

Claim� For every � � traces�Spec�� with �r � � and s�K
�
��K r we have�

�� � � traces�Impl�

�� For every � � P such that s�K
�
��K r� if s�Impl

�
��Impl u and s�Impl

�
��Impl u

� then
u �

I u
��

where I abbreviates Impl �

Proof of claim� Write Z � Im��n Im� W � Note that� by construction of W � W
distinguishes between n bisimulation classes of Spec whose intersection with SK is non�
empty� So� since ��� holds� W distinguishes between at least n bisimulation classes of
Impl whose intersection with SC is non�empty� Thus we can use Lemma ���

The proof of the claim proceeds by induction on the length n of ��

�� Patterns 	�

� n � �� So � � � � � � Then certainly � � traces�Impl�� As to item ��� Consider

an input sequence � � P such that s�K
�

��K s�K and assume s�Impl

�
��Impl u

�� We
have to show that s�Impl

�
I u

��

Since � and � are elements of P and lead in Spec to the same state� it follows
from ��� that for all 	 � Z� outcomeImpl �	� s

�
Impl� � outcomeImpl �	� u

��� Hence� by
Lemma ��� s�Impl

�
I u

��

� n � �� Write � � �� �i
o�� By induction hypothesis ����r � � � � traces�K� �

traces�Impl�� Say that s�K
� �

��K r�� Since K is a kernel of Spec� there exists an

action �i�
o�� such that ��� �i
o��r � � � �i�
o�� and� for some state r� r�
i��o�

��K r�

Since r� � SK� there exist input sequences ��� �� i� � P such that s�K
��

��K r��

Let s�Impl

� �

��Impl u and s�Impl

��

��Impl u�� By induction hypothesis� item ���
u �

I u�� Since outcomeSpec��
� i�� s�Spec� � outcomeImpl ��

� i�� s�Impl�� there exists a

�unique� state v� such that u�
i��o�

��I v�� Since u �
I u�� there exists a �unique�

state v such that u
i��o�

��I v� So � � �i�
o�� � traces�Impl�� Because Impl is input
deterministic� v �

I v
��

Finally� we have to prove� for all � � P such that s�K
�

��K r� for the unique

state w such that s�Impl

�
��Impl w� we have w �

I v� Consider such a �� Since
v� �

I v it su�ces to prove that w �
I v�� Since �� i� and � are elements of P

and lead to the same state in Spec� it follows from ��� that� for all 	 � Z�
outcomeImpl �	� v� � outcomeImpl �	� w�� Hence� by Lemma ��� v� �I w�

�

�

	� Patterns
In this section we describe symmetries based on patterns� A pattern is an FSM� together
with a set of permutations of its set of actions� so�called transformations� The FSM is
a template for the behavior of a system� while the transformations indicate how this
template may be �lled out to obtain symmetric variants that cover the full behavior of
the system�

In 	
�� an interesting example automaton is given for a symmetric protocol� represent�
ing the behavior of two peer hosts that may engage in the ATM call setup procedure�
This behavior is completely symmetric in the identity of the peers� An FSM represen�
tation is given in Figure �� Here� ��action��i� means output of the ATM service to
caller i� and ��action��i� means input from caller i to the ATM service� So� action
�set up�
� denotes the request from caller
 to the ATM service� to set up a call to
caller �� A set up request is followed by an acknowledgement in the form of call proc if
the service can be performed� Then� action conn indicates that the called side is ready

�� Patterns 	�

00000000000000000

11111111111111111

22222222222222222

33333333333333333

55555555555555555

44444444444444444

66666666666666666

77777777777777777

1111111111111111111111111111111111

88888888888888888

99999999999999999

1010101010101010101010101010101010

1212121212121212121212121212121212

1313131313131313131313131313131313

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)

!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)

?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)
?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)

!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1) !conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)!conn(2)

!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)!conn-ack(1)

?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)

?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)?call-proc(1)

?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)?conn(1)

!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)!set-up(1)

!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)!call-proc(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

Figure �� The ATM call setup protocol

00000000000000000

11111111111111111

22222222222222222

33333333333333333

55555555555555555

44444444444444444

66666666666666666

77777777777777777

?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)?set-up(1)

!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)!call-proc(1)

!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)!set-up(2)

?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)?call-proc(2)
?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)?conn(2)

!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)!conn-ack(2)

!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)!conn(1)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)?set-up(2)

Figure �� A template

for the connection� which is acknowledged by conn ack� A caller may skip sending
call proc� if it can already send conn instead �transition from state � to and from
�
to
� in Figure ���

Here� a typical template is the subautomaton representing the call set up as initiated
by a single initiator �e�g� caller
�� and the transformation will be the permutation of
actions generated by swapping the roles of initiator and responder� Such a template is
displayed in Figure ��

In the example of Section �� featuring a chatbox that supports multiple conversa�
tions between callers� the template will be the chatting between two callers� while the
transformations will shu�e the identity of the callers�

The template FSM may be arbitrarily complex� intuitively� increasing complexity
indicates a stronger symmetry assumption on the black box implementation�

To de�ne pattern based symmetries� we need some terminology for partial functions
and multisets� If f � A � B is a partial function and a � A� then f�a� � means that
f�a� is de�ned� while f�a� � means that f�a� is not de�ned� A multiset over A is a
set of the form f�a�� n��� � � � � �ak� nk�g where� for
 	 i 	 k� ai is an element of A and
ni � N denotes its multiplicity� We use 	f�x�j cond�x�� as a shorthand for the multiset
over A that is created by adding� for every single x � A� a copy of f�x� if the condition
cond�x� holds�

De�nition 	�� �Patterns�� A pattern P is a pair hT ��i where T is an FSM� called the
template of P� and � is a �nite set of permutations of �T � which we call transformations�

�� Patterns 	�

Given a sequence hf�� � � � � fni of �partial� functions f�� � � � � fn � � � ET � we denote
with exec�hf�� � � � � fni� � the sequence of edges obtained by taking for each function
fi� � 	 i 	 n� the edge e �if any� such that fi�� � e�

In the remainder of this section� we �x an FSM A and a pattern P � hT ��i�

Below we will de�ne how P de�nes a symmetry of the behavior of an FSM A� Each
transformation � � gives rise to a copy �T � of T obtained by renaming the actions
according to � Each such copy is a particular instantiation of the template� Intuitively�
the trace set of A is included in the trace set of the parallel composition of the copies
�T �� indexed by elements of �� with enforced synchronization over all actions of
A� Using that traces of A are traces of the parallel composition� we will de�ne the
symmetry relation on traces in terms of the behavior of the copies and permutations
of the index set ��

The following de�nition rephrases the inclusion requirement above in such a way
that the relation � and a representative function for it can be formulated succinctly�
In particular� if A is the parallel composition of the copies of T � the requirement in
this de�nition apply�

De�nition 	��� Let � � a� � � �an be an element of ��A��� A covering of � by P is
a sequence hf�� � � � � fni of partial functions fi � � � ET with non�empty domain such
that for every � � and
 	 i 	 n�

� If fi�� � e then ai � �act�e���

�� The sequence exec�hf�� � � � � fii� � induces an execution �i of T �

�� If the sequence trace��i��� ai is a trace of �T � then fi�� ��

We say that P covers � if there exists a covering of � by P�

We call P loop preserving when the following holds� Suppose �� �� � traces�A� is
covered by hf�� � � � � fn� g�� � � � � gmi and �� is a looping trace� Then for all � ��

last�exec�hf�� � � � � fni� �� � last�exec�hf�� � � � � fn� g�� � � � � gmi� ��

�

Intuitively� these requirements mean the following� The non�empty domain� require�
ment for the partial functions fi ensures the inclusion of the trace set of A in the
trace set of the parallel composition of copies of T � Requirements
 and � express
that a covering should not contain junk�� Requirement � corresponds to the enforced
synchronization of actions of the parallel composition�

Lemma 	��� For every trace �� there exists at most one covering of � by P�

�� Patterns 	�

Proof� Since T is deterministic� coverings of � are uniquely determined by T � �

Two traces � and � of the same length n that are covered by P� are variants of each
other if at each position i�
 	 i 	 n� of � and � the following holds� The listings for �
and � � respectively� of the copies �T � that participate in the action at position i� the
states these copies are in before participating� and the edge they follow by participating�
are equal up to a permutation of �� Then� two traces of the same length are symmetric
i� they are either both not covered by P or are covered by coverings that are variants
of each other�

De�nition 	��� Let � and � be elements of ��A�n� which P covers by cov� �
hf�� � � � � fni and cov� � hg�� � � � � gni� respectively� Then cov� and cov� are said to
be variants of each other if for every
 	 i 	 n� 	fi�� j � �� � 	gi�� j � ���
We de�ne the binary relation �P on ��A�� by�

� �P � � � j�j � j� j
� � both � and � are not covered by P

� P covers � and � by variant coverings

It is easy to check that �P is an equivalence relation� As in Section �� we will write
	�� for the equivalence class of � and � instead of �P � �

An important special case is the following� Suppose A consists of the parallel compo�
sition of components Ci� indexed by elements of a set I� that are identical up to their
ID �which occur as parameters in the actions�� Let � and � be traces of A� If there
exists a permutation 	 of the index set I such that for all indices i � I� � induces �up
to renaming of IDs in actions� the same execution of Ci as � induces in C��i�� then �
and � are symmetric�

Lemma 	��� If P covers �a by hf�� � � � � fni� then P covers � by hf�� � � � � fn��i�

Lemma 	�	� If P covers � a and � b and � a � � b� then � � � �

Proof� Let � a and � b be covered by hf�� � � � � fni and hg�� � � � � gni� respectively� By
Lemma ��� these coverings induce the coverings hf�� � � � � fn��i and hg�� � � � � gn��i of �
and � � respectively� which are clearly variants of each other� �

The previous two lemmas together imply the following result�

Corollary 	�
� The relation � is pre�x closed on A� i�e�� for every two traces � a� � b �
traces�A�� if � a � � b then � � � �

�� Patterns 	�

Given the de�nition of �� it is reasonable to demand that every trace of A is covered
by P� We will also need the following closure property� We call a binary relation R on
��A�� persistent on A when R��� �� and � a � traces�A� implies that there exists an
action b such that R�� a� � b��

Now we de�ne a representative function for �� We assume given a total� irre�exive
ordering � on �A� Such an ordering of course always exists� but the choice for � may
greatly in�uence the size of the kernel constructed for a symmetry based on P�

De�nition 	��� Let � be a total� irre�exive ordering on �A� This ordering induces
a re�exive� transitive ordering 	 on traces of the same length in the following way�

a � 	 b � � a � b � �a � b � � 	 ��

We de�ne �r as the least element of 	�� under 	� �

We will show that ��r is a representative function for �� First we prove that ��r is
pre�x closed�

Lemma 	�� Suppose � is persistent on A and A is closed under �� If �	� b��r �
� a � traces�A�� then �	� ��r � ��

Proof� By contradiction� Suppose that there exists a trace 	 such that 	 � �	� ��r

and 	
� �� Note that� since A is closed under �� � b � traces�A�� By persistence of
�� 	 � 	� � implies that there exists an action c such that 	 c � 	� b�� Since � is pre�x
closed on A �Corollary ���� and � a � 	� b�� � � 	� �� By de�nition of ��r� 	 	 �� But
also� �a 	 	c� and� by de�nition of 	� � 	 	� So 	 � � and we have a contradiction�
�

To show that ��r is loop respecting� we �rst prove two auxiliary results�

Lemma 	���� If P covers � and � by hf�� � � � � fni and hg�� � � � � gni� respectively� and
� � � � then for every
 	 i 	 n�

	last�exec�hf�� � � � � fii� �� j � � � fi�� ��

� 	last�exec�hg�� � � � � gii� �� j � � � gi�� ��

Proof� Since � � � we know that for every
 	 i 	 n� 	fi�� j � �� � 	gi�� j �
��� From this the result follows immediately� �

Lemma 	���� Suppose P is a loop preserving pattern on A and let � be a total�
irre�exive ordering on �A� Let ��r be as in De�nition ��� Suppose every trace of A is
covered by P� A is closed under �� and � is persistent on A� If �� �� �� � traces�A�
and �� is a looping trace� then

�� �� � �� � i� �� �� �� � �� �� ��

�� Patterns �

Proof� Write j��j � n� j��j � m� and j��j � j� j � k�
Let hf�� � � � � fn� g�� � � � � gm� h�� � � � � hki cover �� �� ���
By Lemma ��� hf�� � � � � fn� g�� � � � � gmi covers �� �� and hf�� � � � � fni covers ��� Since
� is loop preserving on A� we know that for every � �

last�exec�hf�� � � � � fni� �� � last�exec�hf�� � � � � fn� g�� � � � � gmi� �� ���
�

So hf�� � � � � fn� h�� � � � � hki covers �� ���

!�" Since �� �� � �� � and �� �� � traces�A�� �� � � traces�A��
Let hf�� � � � � fn� h��� � � � � h

�
ki cover �� � �

From Equation ��
 and the fact that hf�� � � � � fn� g�� � � � � gmi covers �� ��� it fol�
lows that hf�� � � � � fn� g�� � � � � gm� h��� � � � � h

�
ki covers �� �� � � Since �� �� � �� � �

we obtain� for every � 	 i 	 k�

	hi�� j � �� � 	h�i�� j � �� �����

From this fact� it follows that �� �� �� � �� �� � �

!�" Since �� �� �� � �� �� � and �� �� �� � traces�A�� �� �� � � traces�A��
Let hf�� � � � � fn� g�� � � � � gm� h

�
�� � � � � h

�
ki cover �� �� � � From Equation ��
� it fol�

lows that hf�� � � � � fn� h
�
�� � � � � h

�
ki covers �� � � Since �� �� �� � �� �� � � we obtain�

for every � 	 i 	 k�

	hi�� j � �� � 	h�i�� j � �� �����

From this� it follows that �� �� � �� � �

�

Finally� we prove that ��r is loop respecting�

Lemma 	���� Suppose P is a loop preserving pattern on A and let � be a total�
irre�exive ordering on �A� Let ��r be as in De�nition ��� Suppose every trace of A
is covered by P� A is closed under �� and � is persistent on A� If �	�� �� ����

r �
�� �� �� � traces�A� and �� is a looping trace� then �	�� ����

r � �� ���

Proof� By contradiction� Suppose that �	�� ����
r � �� �� and �� ��
� �� ��� By

Lemma ���� �	����
r � ��� and �� � �	����

r� so �� � ��� By de�nition of ��r� �� �� 	 �� ��
and �� �� � �� ��� By Lemma ��

� �� �� �� � �� �� ��� Since �� �� �� � �	�� �� ����

r�
�� �� �� 	 �� �� ��� and by de�nition of 	� �� �� 	 �� ��� Since also �� �� 	 �� ���
���� � ����� and we have a contradiction� So �� �� � �	�� ����

r� �

The next result allows us to use the pattern�approach for computing a kernel� In our
example of the ATM switch� we have computed the kernel from the FSM in Figure ��
using the symmetry induced by the template in Figure � and an ordering � that obeys
the relation �set up�
� � �set up���� Not surprisingly� the resulting kernel is identical
to the template�

�� Patterns �	

Theorem 	���� Suppose P is a loop preserving pattern on A and let � be a total�
irre�exive ordering on �A� Let ��r be as in De�nition ��� Suppose every trace of A
is covered by P� A is closed under �� and � is persistent on A� Then h�� ��ri is a
symmetry on A�

Proof� We have to show that ��r is a representative function for �� It is immediate
that �r � � and for all � such that � � � � � r � �r� The requirement that ��r is pre�x
closed follows from Lemma ���� That ��r is loop respecting follows from Lemma ��
��
�

The following lemma is an extra ingredient for making the implementation of the
algorithm Kernel from Section � more e�cient� The implementation itself is described
in Section ��

Lemma 	���� Suppose P � hT ��i is a pattern on A� that covers � and � by
hf�� � � � � fni and hg�� � � � � gmi� respectively�
If s�A

�
��A s� s�A

�
��A s and for each in �� last�exec�hf�� � � � � fni� �� � last�exec�hg��

� � � � gmi� ��� then for each 	 such that s
�
��A�

hf�� � � � � fn� h�� � � � � hki covers �	 � hg�� � � � � gm� h�� � � � � hki covers �	

Lemma 	���� Suppose hP� ��ri is a symmetry on A� ��r is as in De�nition ��� and
P � hT ��i covers � and � by hf�� � � � � fni and hg�� � � � � gmi� respectively�
If s�A

�
��A s� s�A

�
��A s� for each in �� last�exec�hf�� � � � � fni� �� � last�exec�hg��

� � � � gmi� ��� and � � �r and � � � r� then for each 	 such that s
�
��A�

�	 � ��	�r � �	 � ��	�r

Proof� We only prove !�"� the other direction then follows immediately�
By contradiction� Suppose s

�
��A� �	 � ��	�r and ��	�r � �	� with 	
� 	�� By

de�nition of ��r� we know that �	 � �	�� By Lemma ��
�� we know that the covering
of the 	�part in �	 must be equal to the covering of the 	�part in �	� and likewise
for the 	��part in �	� and �	�� Then certainly �	 � �	� must hold� By unicity of
representatives� �	 � ��	��r� From De�nition ��� we then obtain that �	 	 �	� and
�	� 	 �	� so 	 	 	� and 	� 	 	� This yields a contradiction with the assumption that
	
� 	�� �

�� Example� Testing a chatbox ��

userCuserBuserA

Join

userCuserBuserA

Leave

userA userB userC

DIndDReq

Figure �� The chatbox protocol service

� Example� Testing a chatbox
In this section we report on some initial experiments in the application of symmetry
to the testing of a chatbox� Part of the test generation trajectory was implemented�
we used the tool environment Open�C�sar	
�� for prototyping the algorithm Kernel
from Section �� We work with a pattern based symmetry �Section �� and apply the
test derivation method from Section �

A chatbox o�ers the possibility to talk with users connected to the chatbox� After one
joins �connects to� the chatbox� one can talk with all other connected users� until one
leaves �disconnects�� One can only join if not already present� and one can leave at
any time� For simplicity� we assume that every user can at each instance talk with
at most one user� Moreover� we demand that a user waits for a reply before talking
again �unless one of the partners leaves�� Finally� we abstract from the contents of
the messages� and consider only one message� The service primitives provided by the
chatbox are thus the following� Join� Leave� DReq� and DInd� with the obvious meaning
�see Figure ��� For lack of space� we do not give the full formal speci�cation of the
chatbox or its template�

What we test for is the service of the chatbox as a whole� such as it may be o�ered by
a vendor� rather than components of its implementation� which we �the !customers"�
are not allowed to� or have no desire to� inspect�

This example was inspired by the conference protocol presented in 	���� Some changes
were made� all stemming from the need to keep the protocol manageable for experi�
ments without losing the symmetry pursued� We mention the absence of queues and
multicasts and the restriction to the number of outstanding messages� Also� we ignore
the issues of test contexts� test architectures� and points of control and observation�

The symmetry inherent in the protocol is immediate� pairs of talking users can be
replaced by other pairs of talking users� as long as this is done systematically according
to De�nitions ��� and ���� As an example� the trace in which user
 joins� leaves and
joins again� is symmetric to the trace in which user
 joins and leaves� after which user
� joins� The essence is that after user
 has joined and left� this user is at the same
point as all the other users not present� so all new join actions are symmetric� Note

�� Example� Testing a chatbox ��

that this symmetry is more general than a symmetry induced solely by a permutation
of actions or IDs of users� Thus the template T used for the symmetry basically
consists of the conversation between two users� including joining and leaving� while
the transformations in the set � shu�e the identity of users� We feel that it is
a reasonable assumption that the black implementation o�ering the service indeed is
symmetric in this sense�

We have applied the machinery to chatboxes with up to � users� We also considered
a �much simpler� version of the protocol without joining and leaving� Still� a chatbox
with only � users and no joining or leaving already has ���� reachable states�

We start the test generation by computing a kernel for these speci�cations� Our
prototype is able to �nd a signi�cantly smaller Mealy machine as a kernel for each
of the models� provided that it is given a suitable ordering � �see De�nition ���� on
the actions symbols for its representative function� The kernels constructed consist of
interleavings of transformations of the pattern� constrained by the symmetry and the
ordering ��

For instance� in a chatbox with � users and no joining and leaving� we take the
ordering � de�ned as follows� !Sending a message from i� to j�" � !sending a message
from i� to j�" if �i� � i�� or if �i� � i� and j� � j��� and !sending a reply from i� to
j�" � !sending a reply from i� to j�" if �i� � i�� or if �i� � i� and j� � j���

Using this ordering� the kernel only contains those traces in which �rst messages from
user
 are sent� then messages from user � and �nally messages from user �� while the
sending of replies is handled in the reverse order� Each trace with di�erent order of
sending messages can then be computed from a trace of this kernel� which is exactly
what Theorem ��� states� This technique of dealing with traces is reminiscent of partial
order techniques 	
���

Our experiments so far have revealed that for chatboxes with joining and leaving�
the kernel is approximately half the size� When considering chatboxes without joining
and leaving� the size of the kernel is reduced much more� This di�erence is due to the
fact that� since one cannot send a message to a user that has left� joining and leaving
obstructs the symmetry in messages being sent� Of course� the algorithm should be
run on more and larger examples to get de�nite answers about possible size reduction�

Given the computed kernels� we can construct test pairs by determining for each
kernel a set of input sequences W that constitutes a characterizing set for the kernel
�as de�ned in De�nition ���� Although this part has not yet been automated� it is
easily seen by a generic argument that for every pair of inequivalent �non�bisimilar�
states very short distinguishing sequences exist� It is easy to devise a transition cover
for a kernel� the size of which is proportional to the size of the kernel�

As shown in Theorem ��� the size of the test suite to be generated will depend on the
magnitude of two numbers m� and m�� indicating the search space for distinguishing
sequences for the image of the kernel in the implementation� This boils down to the
following questions� �
� What is the size of the image part of the implementation for
this kernel� ��� What is the size of a minimal distinguishing experience for each two

�� Future work ��

inequivalent �non�bisimilar� states in the image part of the implementation� ��� How
many steps does a distinguishing sequence perform outside the image of the kernel�
These questions are variations of the classical state space questions for black box test�
ing� For practical reasons� these numbers are usually taken to be not much larger than
the corresponding numbers for the speci�cation�

The algorithm Kernel �see Figure
� was implemented using the Open�C�sar 	
��
tool set� An interesting detail here is that the algorithm uses two �nite state machines�
one for the speci�cation that is reduced to a kernel� and one for the template of the
symmetry� which is used to determine �as an oracle� whether two traces are symmetric�
To enable this� Open�C�sar interface had to be generalized somewhat so that it is
now able to explore several labeled transition systems at the same time� We have the
experience that Open�C�sar is suitable for prototyping exploration algorithms such
as Kernel�

�� Future work
We have introduced a general� FSM based� framework for exploiting symmetry in speci�
�cations and implementations in order to reduce the amount of tests needed to establish
correctness� The feasibility of this approach has been shown in a few experiments�

However� a number of open issues remain� We see the following steps as possible�
necessary and feasible� On the theoretical side we would like to �
� construct algorithms
for computing and checking symmetries� and ��� determine conditions that are on the
one hand su�cient to guarantee symmetry� and on the other hand enable signi�cant
optimizations of the algorithms� On the practical side we would like to �
� generate
and execute tests for real�life implementations� and ��� continue prototyping for the
whole test generation trajectory�

Acknowledgments
We thank Frits Vaandrager for suggesting the transfer of model checking techniques
to test theory� and Radu Mateescu and Hubert Garavel for their invaluable assistance
�including adding functionality�� with the Open�C�sar tool set� We also thank Jan
Tretmans and the anonymous referees for their comments on this paper�

References

� A�V� Aho� A�T� Dahbura� D� Lee� and M�#U� Uyar� An optimization technique for

protocol conformance test generation based on UIO sequences and Rural Chinese
Postman Tours� IEEE Transactions on Communications� ���

��
���$
�
�
��
�

�� K� Ajami� S� Haddad and J�M� Ili%e� Exploiting symmetry in linear time temporal
logic model checking� One step beyond� In Ste�en 	���� pages �$���

�� E� Brinksma� A theory for the derivation of tests� In S� Aggrawal and K� Sabani�
editors� Protocol Speci�cation Testing and Veri�cation� Volume VIII� pages ��$���
North�Holland�
����

References ��

�� E� Brinksma� J� Tretmans and L� Verhaard� A framework for test selection� In
B� Jonsson� J� Parrow and B� Pehrson� editors� Protocol Speci�cation Testing and
Veri�cation� Volume XI� pages �������� North�Holland�
��
�

� W�Y�L� Chan� S�T� Vuong� and M�R� Ito� An improved protocol test generation
procedure based on UIOs� In Proceedings of the ACM Symposium on Communi�
cation Architectures and Protocols� pages ���$����
����

�� O� Charles� and R� Groz� Basing test coverage on a formalization of test hypotheses�
In M� Kim� S� Kang� and K� Hong� editors� Testing of Communicating Systems�
Volume
�� pages
��$
��� Chapman & Hall�
����

�� T�S� Chow� Testing software design modeled by �nite�state machines� IEEE Trans�
actions on Software Engineering� �����
��$
���
����

�� E�M� Clarke� T� Filkorn� and S� Jha� Exploiting symmetry in temporal logic model
checking� In Courcoubetis 	��� pages ��$����

�� C� Courcoubetis� editor� Proceedings th International Conference on Computer
Aided Veri�cation �CAV ����� Lecture Notes in Computer Science ���� Springer�
Verlag�
����

�� E�A� Emerson� S� Jha and D� Peled� Combining partial order and symmetry re�
ductions� In E� Brinksma� editor� Tools and Algorithms for the Construction and
Analysis of Systems �TACAS ��	�� pages
�$��� Lecture Notes in Computer Sci�
ence
�
�� Springer�Verlag�
����

� E�A� Emerson and A�P� Sistla� Symmetry and model checking� In Courcoubetis
	��� pages ���$����

�� E�A� Emerson and A�P� Sistla� Utilizing symmetry when model�checking under
fairness assumptions� an automata�theoretic approach� ACM Transactions on Pro�
gramming Languages and Systems�
������
�$����
����

�� S� Fujiwara� G� v� Bochmann� F� Khendek� M� Amalou and A� Ghedamsi� Test
selection based on �nite state models� IEEE Transactions on Software Engineering�

������
$����
��
�

�� H� Garavel� Open�C�sar� An open software architecture for veri�cation� simu�
lation� and testing� In Ste�en 	���� pages ��$��� For more information on the tool
set� see http���www�inrialpes�fr�vasy�pub�cadp�html�

� M��C� Gaudel� Testing can be formal� too� In P�D� Mosses� M� Nielsen� and
M�I� Schwartzbach� editors� TAPSOFT��
� Theory and Practice of Software De�
velopment� pages ��$��� Lecture Notes in Computer Science �
� Springer�Verlag�

���

�� P� Godefroid� Partial�order methods for the veri�cation of concurrent systems �
An approach to the state�explosion problem� Lecture Notes in Computer Science

���� Springer�Verlag�
����

References ��

�� O� Grumberg� editor� Proceedings �th International Conference on Computer Aided
Veri�cation �CAV ��	�� Lecture Notes in Computer Science
��� Springer�Verlag�

����

�� V� Gyuris and A�P� Sistla� On�the��y model checking under fairness that exploits
symmetry� In Grumberg 	
��� pages ���$����

�� S� Kang and M� Kim� Interoperability test suite derivation for symmetric communi�
cation protocols� In T� Mizuno� N� Shiratori� T� Higashino� and A� Togashi� editors�
Formal Description Techniques and Protocol Speci�cation Testing and Veri�cation
�FORTE X� PSTV XVII ��	�� pages �$��� Chapman & Hall�
����

��� F� Michel� P� Azema� and K� Drira� Selective generation of symmetrical test cases�
In B� Baumgarten� H��J� Burkhardt and A� Giessler� editors� Testing of Commu�
nicating Systems� Volume �� pages
�
$���� Chapman & Hall�
����

�
� R� Milner� Communication and Concurrency� Prentice�Hall International� Engle�
wood Cli�s�
����

��� A� Petrenko� T� Higashino� and T� Kaji� Handling redundant and additional states
in protocol testing� In A� Cavalli and S� Budkowski� editors� Protocol Test Systems�
Volume VIII� pages ���$���� Chapman & Hall�
���

��� B� Ste�en� editor� Tools and Algorithms for the Construction and Analysis of
Systems �TACAS ����� Lecture Notes in Computer Science
���� Springer�Verlag�

����

��� R� Terpstra� L� Fereira Pires� L� Heerink� and J� Tretmans� Testing theory in
practice� A simple experiment� In Proceedings of the COST ��	 International
Workshop on Applied Formal Methods in System Design�
���� Also published as
Technical Report CTIT ����
� University of Twente� The Netherlands�
����

�� J� Tretmans� A theory for the derivation of tests� In Formal Description Techniques
�FORTE II ����� North�Holland�
����

��� M�P� Vasilevskii� Failure diagnosis of automata� Cybernetics� �������$���
����

