
Middleware Adaptation through Process Mining

Nelson Rosa

Centro de Informática

Universidade Federal de Pernambuco

Recife, Pernambuco, Brazil

Email: nsr@cin.ufpe.br

Abstract—The development of adaptive middleware systems
is a complex task due to the difficulty of dealing with adaptation
issues, such as how to implement the adaptation mechanism,
where to insert the adaptive code into the middleware, and
when the adaptive code is composed with the middleware
logic. Existing solutions to build adaptive middleware usually
concentrate on the use of software technologies like aspect
oriented programming and computational reflection to face
with the how issue. In this paper, we propose a solution to build
middleware that is adapted at runtime (when), whose adapta-
tion decisions and actions are moved from the middleware to an
external component (where) and whose adaptation makes use
of process mining techniques and software architecture (how).
The adaptation process is triggered based on the verification
of the middleware event log. In order to evaluate the proposed
approach, we carried an experimental evaluation to check the
quality of the mined middleware model and the verification
overhead.

Keywords-adaptive middleware; process mining; software
architecture.

The development of an adaptive middleware still being a

challenge due to the complexity of dealing with three key

aspects already known to build adaptive software [1]: how

to implement the adaptive code while guarantee middleware

safety after successive adaptations; when the adaptation must

occur, e.g., at development, compile, deployment or runtime;

and where the adaptive code is inserted, e.g., application,

middleware, or external element.

The development of adaptive middleware systems still

being a challenge due to the complexity of deal with the

aforementioned reconfiguration issues. Meanwhile, this is

not a recent topic in the middleware community [2][3][4].

More recently, adaptive middleware systems have been de-

veloped in several different application domains, such as

Internet of Things [5] and cloud computing [6]. However,

whatever the approach or application domain, they mainly

focus on adopting or extending existing enabling technolo-

gies to solve the adaptation issues.

In this context, we adopt emerging process mining tech-

niques as an enabling technology for middleware adaptation

(how). Process mining is a powerful way to analyse soft-

ware’s operational aspects based on event logs generated at

runtime [7]. It enable us to verify behavioural and perfor-

mance properties of the software while it is in execution,

and correlate distribute events.

In this paper, we present an extension of MIstRAL [8],

namely µ-MIstRAL (mining-based extension of MIddleware

Reconfiguration Aid by formaLism), that works as an end-

to-end solution to build adaptive middleware systems based

on the use of process mining and software architecture

principles, i.e., it helps in developing, executing and adapting

middleware systems. The novelties in µ-MIstRAL include

the use of process mining for middleware process discovery

(development) and triggering the middleware adaptation

(runtime), and the adoption of software architecture princi-

ples for describing the middleware behaviour and structure.

More specifically, we use process mining techniques to

check middleware’s behavioural properties and then trigger

the adaptation if the property does not hold. In practice,

given a middleware execution log, check if this log has

some deviation from the middleware expected behaviour. If

a deviation exists, then the middleware is reconfigurated to

fix it.

Benefits of adopting processing mining include: mid-

dleware mining allows the application mining, middleware

mining leads to application insights, mining gathers infor-

mation about what is actually happening (log) and not what

developers think that is defined as a model, and possibility of

checking performance properties and generating the middle-

ware models. Further minor advances of µ-MIstRAL include

the automatic code instrumentation of the middleware to

generate event traces, and the generation of XES (eXtreme

Event Stream)-based event logs [9].

This paper is organized as follows. Section I introduces

basic concepts of process mining and MIstRAL. Next,

Section II presents an approach to put together adaptive

middleware and process mining. Section III makes an evalu-

ation of the proposed approach. Section IV presents existing

researches on adaptive middleware and runtime verification.

Finally, Section V presents conclusions and some future

work.

I. BASIC CONCEPTS

This section presents basic concepts of process mining

and the existing version of MIstRAL, which is extended in

this paper.

1



A. Process Mining

Process mining uses event logs to gain insights into the

process being executed. In practice, the key idea of process

mining is to diagnose business processes by mining event

logs for knowledge. In turn, an event log consists of a set of

traces where each trace corresponds to an execution of the

process. A trace contains a sequence of activities executed

by the process [10].

Process mining techniques have been widely used with

three main purposes: process discovery, conformance check-

ing and performance analysis [7]. Process discovery means

to generate a formal software model, e.g., Petri net or

process tree specification, under real-life conditions from the

event log. The software model describes dynamic, opera-

tional, interactive aspects and real-life performance of the

software. Meanwhile, the conformance checking searches

for detecting deviations between the behaviour recorded in

the log and one expressed by a software model. The software

model generated from the event log can also be replayed in

such way that it is possible to identify bottlenecks, delays

and inefficiencies of the software. Finally, the log can also

be verified to check desired properties as proposed in [11].

In this case, given an event log and some property, it is

possible to verify whether the property holds or not.

Three key activities must be performed for process min-

ing: Instrumentation addresses how to obtain information

from the system being executed, which involves the in-

strumentation strategy; Data Collection needs to define a

data collecting infrastructure able to merge information from

different sources; and Process Discovery, which is the set of

steps necessary to find a model that help us to gain insights

into the software.

B. MIstRAL

MIstRAL (MIddleware Reconfiguration Aid by formaL-

ism) [8] is the implementation of an adaptation module that

uses formal elements, in a lightweight way, to guide the mid-

dleware adaptation process. The use of MIstRAL assumes

that the middleware’s adaptable components are described

in a chain of interceptors that defines the middleware’s in-

terceptors and the sequence they are executed. MIstRAL re-

quires that the middleware must be able to generate a simple

event log, e.g., an ordered sequence of actions performed by

the middleware.

Figure 1 shows a general overview on how MIs-

tRAL works in practice. At runtime, the middleware gen-

erates an event log of all activities performed by it. The

log is read by MIstRAL (1) that forwards it to the CADP

Toolbox1 along with some properties it must satisfy (2).

CADP uses a model checker to verify if the properties are

actually being satisfied (3). For example, a typical property

states that ”action ’a’ always occurs after action ’b’” when

1http://cadp.inria.fr

Figure 1. General overview of MIstRAL

the middleware is running properly. If the property is not

satisfied, MIstRAL applies an adaptation plan that changes

the chain of interceptors and consequently the middleware

behaviour (4).

II. MIDDLEWARE PROCESS MINING

As mentioned before, the proposed extension of MIs-

tRAL , namely µ-MIstRAL, advances in two main aspects:

the use of process mining techniques [7], and adoption of

software architecture principles to design the midleware.

In this way, µ-MIstRAL is an initial end-to-end solution

to design adaptive middleware whose design and runtime

adaptation is driven by process mining. Figure 2 shows the

main elements of µ-MIstRAL.

Figure 2. General overview of µ-MIstRAL

This figure shows that developers use the middleware

framework to build the adaptive middleware instead of

developing it from scratch (1-2). As a consequence, the

artifact that is actually adapted in this case is the software

architecture instead of a chain of interceptors. Steps 3 and

4 are similar in both versions. However, in µ-MIstRAL,

the event log is used to verify the log (online) and mine

the middleware model (offline), e.g., a process tree or Petri

model that describes the middleware behaviour (6). When

used to verify the log at runtime, it triggers the adaptation

process if a property does not hold. On the other hand,

2



the mined model can help the middleware developer at

development time to conformance checking. Table I shows

a summary of differences between MIstRAL (see Section

I-B) and µ-MIstRAL.

Table I
MISTRAL VERUS µ-MISTRAL

Aspect Mistral µ-MIstRAL

Code instrumentation Manual Automatic

Process discovery None Mining algorithms

Event log Simple log XES-based log

Verification tool CADP ProM [12]

Verifiable properties Behavioural Behavioural and per-
formance

Adaptation artifact Chain of interceptors Software architecture

Adaptation trigger LTL formula not satis-
fied

LTL formula not satis-
fied

The adoption of processing mining techniques in the

middleware domain has also some challenges:

• Distributed sources: Being a distributed software, mid-

dleware’s log is generated from distributed sources that

demand an strategy to collect, store and order the events

of interest;

• Application triggered: Most middleware internal ser-

vices, mechanisms and processes are triggered by dis-

tributed applications built atop it. Hence, while in the

traditional use of process mining techniques an user

triggers activities of the system, an application has a

similar role in the case of middleware;

• Performance impact: Being an infrastructure software

used to help distributed applications at runtime, the

middleware mining can affect both application and

middleware performance;

• Reusable software: As a highly reusable software, the

mining of a middleware process can demand a lot

of effort, but it produces a process model that works

whatever the application built atop it;

• Complexity: Middleware systems are inherently com-

plex as they usually provide a large number of trans-

parencies and services to application developers. As a

consequence, the mining process strategy must adopt

the principle of divide and conquer to deal with this

multitude of aspects to be mined. For example, it

should be interesting to break up the middleware log

considering which middleware service, component or

transparency is being exercised.

Meanwhile, the use of software architecture principles

has a great impact on the middleware development and

adaptation. The development of the middleware is performed

by using a provided framework containing components and

connectors specially designed to build adaptive middleware.

These elements are composed into a configuration that is the

artifact to be reconfigured at runtime.

Next sections presents the proposed software architecture

framework and all steps of the adoption of process mining.

A. Software architecture framework

As mentioned before, the middleware software architec-

ture is the artifact that is reconfigured at runtime when

a desired property is not satisfied. By reconfiguring the

software architecture, the middleware behaviour is altered

in such way that the property still hold.

The software architecture framework consists of a set of

software architecture elements, namely Port, Interface, Com-

ponent, Connector and Configuration implemented in Java.

This structural set of elements is enriched with the inclusion

of behavioural descriptions (Behaviour) of components and

connectors as formally proposed by Wright [13].

Figure 3. Configuration overview (Development time)

Figure 3 shows a simple configuration having two com-

ponents (ComponentA and ComponentB) and one connector

(ConnectorT). Each element has one or more interfaces and

its description also includes the set of actions it can engage

(Behaviour). The behaviour of a component is described

by defining the temporal ordering of internal and external

actions performed by the component. Similarly to process

algebras [14], internal actions are ones not visible by the

external environment and related to the functionality of the

component, whilst external actions models the interactions

with other elements. For example, ComponentA performs

internal action i preOutR followed by an external action

outR to interact with ConnectorT. External actions are

carried out through ports.

Ports are used to communicate component/connectors

with their external environment and serve as synchronisa-

tion points. For example, ComponentA synchronises with

ConnectorT in ports outR and inR. Hence, ComponentA

only executes action outR if ConnectorT is ready to execute

action inP. Two kinds of ports have been considered, namely

output and input ports. Output ports are used to send

messages to external elements, while input ports are used

to receive messages from the external environment. For

example, ComponentB has one input port (inP) and one

output port (outP). Every port belongs to an interface.

Interface is a set of ports grouped logically. Two kinds

of interfaces are being considered: provided and required.

Provided interfaces are used by external elements to request

operations to a component/connector, whilst a required inter-

face includes ports used by a component/connector to make

request and receive response from an external element. In

3



Figure 3, ComponentA has a required interface and Compo-

nentB has a provided interface. Meanwhile, ConnectorT has

provided and required interfaces.

A Component is a loci of computation or data storage.

Two types of components are considered: simple and com-

posite. A composite component include two or more simple

components connected through connectors. A component

has one or more provided and required interfaces.

In addition to the definition of component itself, the

framework also includes a set of commonly used compo-

nents, such as Client, Server, ClientServer, ClientRemote and

ServerRemote. Two particular components are also defined,

OutputWrapper and InputWrapper, used to allow the interac-

tion of architectural elements and objects of object oriented

(OO) applications. In this way, application developers are

free to not use software architecture concepts to build their

applications, i.e., the application can be OO.

A Connector is responsible to communicate components.

As a basic rule in software architecture, a connector must

exist between any two components. One type of connector is

provided, namely RequestReply, which allows synchronous

communication between client and server components. As

shown in Figure 3, ConnectorT explicitly defines how Com-

ponentA and ComponentB interact, i.e., the only possible in-

teractions are: ComponentA sends a message to ComponenB

followed by ComponentB sends a message to ComponenA.

By using the proposed software architecture framework,

we provide a set of built-in middleware components and

connectors specially designed for implementing middleware.

These built-in components and connectors have been in-

spired on the Remoting Patterns [15] that includes thirty

one architectural patterns for implementing RPC-based mid-

dlweare systems. Each middleware component was imple-

mented by reusing a component of the software architecture

framework and then defining the internal actions that imple-

ment the component’s functionality.

The middleware framework includes the following com-

ponents with their respective basic software architecture

components: Requestor (extends Component), ClientProxy

(extends InputWrapper), Invoker (extends Component),

Client Request Handler (extends ClientRemote), Server Re-

quest Handler (extends ServerRemote), Marhsaller (extends

Server), Lookup (extends Server), Invocation Interceptor

(extends Server), Lifecycle Manager (extends ClientServer),

QoS Observer (extends Server), and Location Forwarder

(extends ClientServer). An unique connector has been de-

fined, namely Sync (extends RequestReply). This connector

allows synchronous communication between components

based on a request-reply interaction, i.e., a component makes

a request to another component and waits for a reply.

B. Code instrumentation

As needed for the middleware process mining, the code

instrumentation consists of injecting into the source or

binary code the needed code to produce the middleware

event log. This process can be manual or automatic. It is

worth observing that any injection like this is dependent

of the implementation language, needs to have a minimum

impact on system’s performance, (ideally) does not impose

any additional effort to application developers, and need to

generate enough information to the conformance checking

and verification. Meanwhile, the instrumentation obviously

should not change the functionality of the code being

instrumented.

Some techniques can be used in the instrumentation phase,

such as binary weaving and code transformation. In partic-

ular, we adopted the code transformation that automatically

executes this task in the middleware source code. As we

adopted software architecture principles, the instrumentation

is performed on the code of components and connectors that

make up the middleware.

The instrumentation consists of injecting code into the

operations provided by all middleware components and

connectors. The injected code generates start and complete

events when the operation is invoked and completed, respec-

tively.

C. Data collection

After instrumenting the middleware code, it generates

traces which are grouped into the middleware event log.

This task consists of collecting data from distributed sources

(middleware components) and then send it to a central point

responsible for consolidating all events in a single log.

As expected, a single middleware trace has events gener-

ated by middleware components running on different com-

putation nodes. This fact has an impact on the time of occur-

rence of middleware events. For example, a remote request

from application’s component a1 to a2 generates traces with

events from hosts host1 and host2 whose clock time should

be synchronised. Collected data should be asynchronously

sent to the middleware event log for performance reasons.

D. Process Discovery

Process discovery consists of mining the middleware event

log and then produces a model that can be used to express

the actual behaviour of the middleware, i.e., the model

of what is actually executing. Currently, ProM generates

models expressed in Petri net, process tree, and BPMN.

As we have adopted ProM for the processing mining,

it already provides a set of mining algorithms, such as

inductive miner, fuzzy miner, Petri net miner, multiper-

spective miner, heuristics miner and BPMN miner. These

algorithms can be used to mine the whole middleware or

a particular middleware service, mechanism or protocol. In

the case the interest is on these specific elements, filters can

be used to remove events strange to the component being

mined, e.g., only consider client-side middleware events,

naming service interactions, or event with highest frequency

4



in the middleware. A large number of ProM filters are made

available and can be combined in several different ways to

help in yielding very confident software models.

At this point, there are some basic facts about this process

discovery that must be clarified: the process discovery should

be (preferably) performed offline, filters and miner algo-

rithms can be used repeatedly several times before a good

process model can be found, the obtained process model can

be or not used in the conformance checking.

Finally, a good process model allows for most of the

behavior seen in the event log. A model has a perfect fitness

if all traces in the log can be replayed by the model from

beginning to end [16].

E. Conformance Checking

As mentioned in Section I-A, the conformance checking

looks for deviations between the middleware’s behaviour

recorded in the event log and one expressed by the mid-

dleware model. It is worth observing that the middleware

model can be created by hand or automatically generated as

described in the previous section. In particular, we are only

considering those models automatically generated by ProM.

In practice, the conformance checking needs for an align-

ment of event log and process model, i.e., events in the event

log need to be related to model elements and vice versa.

Such alignment shows how the event log can be replayed

on the process model [16].

Figure 4 depicts the process model of a middleware’s

naming service along with its path deviations generated from

an event log. This model gives insights on the activities (blue

ellipses) performed by the naming service along with the

frequency they happen (numbers inside the ellipse), e.g.,

lookup and bind activities were executed just one time.

Deviations show precisely what parts of the model deviate

with respect to the log.

Figure 4. Paths and deviations of a process model

The edge circumventing event

NamingInvoker invoke+complete (dashed edge) indicates

the existence of an event in the log that is not in the model.

As mentioned before, a model with good fitness allows for

most of the behavior seen in the event log, whilst a model

having a perfect fitness allows all traces be replayed by the

model from beginning to end.

F. Verification

The verification consists of checking a temporal logic

property on the middleware event log. The result of this

verification defines whether the property is satisfied or not.

In particular, the verification is performed using the LTL

checker and the properties are specified in a Linear Temporal

Logic-based language [11].

The properties adopted in this paper follows the set of

property patterns defined in [17] and supported by ProM:

a given event does not occur within a scope (absence); a

given event must occur within a scope (existence); a given

event must occur k times within a scope (bounded existence);

a given event occurs throughout a scope (universality); an

event a must always be preceded by an event b (precedence);

an event a must always be preceded by an event b (response);

event sequence e1, ..., en must always be preceded by event

sequence f1, ..., fm (chain precedence); and sequence of

events e1, ..., en must always be followed by a sequence

of actions f1, ..., fm (chain of response).

G. Adaptation

The adaptation consists of changing the middleware be-

haviour as the verification identified that something is not

working as planned in the middleware. Hence, an inter-

vention is necessary to be performed automatically. The

intervention is triggered when the verification of a temporal

property on the middleware event log produces a false

result. As a consequence, a reconfiguration operation must

be executed to change the way the the dynamic components

are connected in the software architecture.

In particular, four operations can be performed: add a

new component, remove an existing component, replace an

existing component or reconnect existing components.

H. Implementation

µ-MIstRAL was implemented in Java and currently uses

the ProM to check the middleware event log and mine

the middleware formal model. Figure 5 presents a general

overview of the proposed implementation. The adaptive mid-

dleware is implemented in Java, according to the remoting

patterns [15] and whose implementation is a collection of

components, connectors and a configuration. For example,

the architecture includes components such as ClientProxy,

Invokers, Marshaller, and connectors like RequestReply.

Middleware Event Log is obtained by instrumenting the

middleware with a logger that takes responsibility of logging

actions executed by the middleware and sends them to

LogServer. From time to time, Monitor invokes Checker

and uses formal adapters (CADP Adapter or ProM Adapter)

5



Figure 5. µ-MIstRAL Architecture

to both formatting the log and invoking the model checker

according to Evaluation Tool being used. Evaluation Tool is

responsible for the Conformance Checking.

The response from Evaluation Tool is analysed by the

Checker. If a reconfiguration is necessary, Checker asks for

the Configurator to perform the reconfiguration plan accord-

ing to the property that was not satisfied. The reconfiguration

plans change the middleware’s software architecture, e.g., by

replacing a component.

CADP and ProM were adopted as evaluation tools, but

other tools like FDR32 should also be used. By using ProM,

it is possible to check the properties aforementioned, whilst

the use of CADP allows to check properties as shown in [8].

III. EXPERIMENTAL EVALUATION

The objectives of this evaluation are (i) to assess the

quality of the mined middleware model and (2) to evaluate

the time spent to perform the verification that triggers the

adaptation. The first evaluation is important because it helps

us to assess how good is the quality of the middleware event

log, whilst the second one gives an idea on the needed time

to runtime checking using process mining tools.

A. Process Discovery

An important criterion for the quality of a mined model is

the consistency between the mined model and the traces in

the event log. Therefore, a standard check for a mined model

is to try an execute all traces of the log in the discovered

model. If the trace of a case cannot be executed in mined

model, there is a discrepancy between the log and the model.

In order to check the quality of the middleware mined

model, we generated a middleware log by running a dis-

tributed ”Echo” application made up of a client and a remote

object developed atop the adaptive middleware shown in

Figure 5. The client makes 1000 invocations to the remote

object, which generate an event log having 18060 events

distributed into 01 trace to register the ”Echo” service

implemented by the remote object into the middleware’s

2https://www.cs.ox.ac.uk/projects/fdr/

naming service; 01 trace to lookup the middleware’s naming

service for the ”Echo” service; and 921 traces corresponding

to the invocations to the remote echo. Next, the middleware

log was filtered to remove low frequency traces related to

the interaction with the naming service, i.e., two traces were

removed from the log. Finally, the filtered log was mined

using the Inductive Visual Miner [18] and generated the

model process shown in Figure 6.

Figure 6. Mined middleware process model

As show in this figure, the mined model has not dashed

edges (see Figure 4), which means that it has a perfect fitness

and all 921 traces in the log can be replayed by the model

from beginning to end. It is also possible to generate the

corresponding Petri net middeware model as depicted in

Figure 7.

B. Verification

The second evaluation consisted of measuring the time

to verify a property on the middleware event log. Figure 8

shows the time spent to check property ’<>(activity==α1)

∧ <>(activity==α2)’. The number of events refer to ones

generated when the client invokes the remote object 1, 10,

100, 500, 1000, 2500, 5000 and 10000 times. For example,

10000 invocations to the remote object produces 178685

events in the event log. The business time of the echo remote

object was set to 100ms.

As expected, larger event logs demand more time to be

checked. However, even for large number of events, the ver-

ification time is short when compared to the total execution

time. For example, as the business time was 100ms, 10000

invocations to the remote object lasts about 100 seconds,

whilst the verification takes only 6,593 seconds.

6



Figure 7. Petri net mined middleware model

Figure 8. Time to verify the middleware event log

IV. RELATED WORK

Related works about what is being proposed in this

paper may be organized into two main categories: enabling

techniques of adaptive middleware and runtime analysis of

distributed systems.

A. Adaptive Middleware

The design and implementation of adaptive middleware

is not a recent topic in the middleware community. Several

adaptive middleware systems have been proposed and im-

plemented since a long time ago. Pioneer examples include

the reflective middleware DynamicTAO [2], OpenORB [3]

and OpenCom [4]. More recently, adaptive middleware have

been built in several different application domains, such

as wireless sensor networks, cyber-physical systems, multi-

tenant applications, large-scale power systems, onboard sat-

tellite systems and public transit system. However, whatever

the approach or application domain, most approaches focus

on adopting (or even extend) an existing enabling technology

(e.g., computational reflection) as the key element to solve

the reconfiguration issues. Formal methods are not used in

any stage of the aforementioned middleware development

and execution.

Attempts to put together FDTs and non-adaptive middle-

ware are also not recent. Formal techniques have been used

in different phases of the development of middleware-based

applications and middleware development itself. It possible

to observe the use of formal description techniques in two

different ways: in all phases of middleware development

(minority) or in just one phase (majority). The use of formal

description techniques in all phases of the middleware de-

velopment is rare, but it has been already done using SDL

(Specification and Description Language). Meanwhile, the

use of formalisms in individual phases is widely found and

it starts at the elicitation requirements phase. Most common,

however, is the adoption of FDTs associated to architectural

aspects of the middleware and at design phase. Finally, there

are some works on formalising the implementation phase.

However, despite the large number of works on middleware

formalisation, none of the aforementioned approaches treat

with practical (lightweight) aspects of the use of formal

methods at runtime.

B. Dynamic Analysis

Dynamic system analysis are used to understand the

behaviour of systems at runtime. Dynamic analysis of dis-

tributed systems are usually adopted for debugging, main-

tenance, detect anomalies, identify performance bugs, mine

temporal properties, and runtime verification [19][7].

Beschastnikh [19] developed a tool, namely CSight, to

infer a model of concurrent system’s behaviour by mining

event log execution. By using the model, software engineers

can understand complex behaviour, detect anomalies, debug,

and increase confidence in the implementation correctness.

Kumar [20] presents a class level specification mining

framework for distributed systems. This approach infer the

system specification by running the program and finding

patterns in its execution traces that can be interpreted as its

specification. Leemans [7] uses process mining techniques

to produce formal models of distributed systems. To do

that, he defines a methodology composed of three key

steps, namely instrumentation, gathering data and discovery

business transactions.

A pioneer work on understanding the dynamic behaviour

of distributed systems is [21]. Moe defines a set of steps

for this purpose: tracing, analysis, presentation and manual

adaptation. The tracing is performed by instrumenting the

middleware, while the analysis consists of sequence recogni-

tion, trace visualisation and statistics calculation. Finally, the

trace analysis allows developers and testers to discover some

facts about the system and carry out needed improvements.

Finally, it is worth observing that none of these works

on dynamic analysis focus on the use of processing mining

techniques in the middleware domain.

7



V. CONCLUSION AND FUTURE WORK

This paper presented µ-MIstRAL, an end-to-end approach

for building adaptive middleware systems based on the use

of process mining techniques and software architecture. µ-

MIstRAL uses process mining as the enabling software

mechanism to decide when the middleware adaptation must

occurs, and adopts software architecture to design the

adaptive middleware. Meanwhile, µ-MIstRAL does not

insert the adaptation mechanism into the middleware as the

mechanism is moved to an external component that decides

and takes needed actions to reconfigure the middleware’s

software architecture.

Our unique contributions in this paper are the use of

process mining to trigger the middleware adaptation and

the proposition of a middleware software architecture frame-

work for building adaptive middleware. Further minor con-

tributions are related to the actual implementation of an

adaptive middleware in Java that uses the proposed approach

and the automatic instrumentation of the middleware source

code to generate the event log.

We are now using the same approach to implement

an adaptive publish/subscribe middleware, by adding new

middleware components and connectors, and by extending

the set of properties and configuration plans needed to reflect

the particularities of this middleware model, such as delivery

guarantee and extensive use of queues.

REFERENCES

[1] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “Compos-
ing adaptive software,” Computer, vol. 37, no. 7, pp. 56–64,
2004.

[2] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. Magal-
haes, and R. Campbell, “Monitoring, Security, and Dynamic
Configuration with the dynamicTAO Reflective ORB,” in
Middleware 2000. Springer Berlin / Heidelberg, 2000, vol.
1795, pp. 121–143.

[3] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke,
F. Costa, H. Duran-Limon, T. Fitzpatrick, L. Johnston,
R. Moreira, N. Parlavantzas, and K. Saikoski, “The Design
and Implementation of Open ORB 2,” IEEE Distributed
Systems Online, vol. 2, pp. –, Jun. 2001.

[4] M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas, “An
Efficient Component Model for the Construction of Adap-
tive Middleware,” in Middleware 2001. Springer Berlin /
Heidelberg, 2001, vol. 2218, pp. 160–178.

[5] S. Park and J. Song, “Self-adaptive middleware framework
for internet of things,” in 2015 IEEE 4th Global Conference
on Consumer Electronics (GCCE), Oct 2015, pp. 81–82.

[6] D. Van Landuyt, S. Walraven, and W. Joosen, “Variability
Middleware for Multi-tenant SaaS Applications: A Research
Roadmap for Service Lines,” in SPLC’15, ser. SPLC ’15.
New York, NY, USA: ACM, 2015, pp. 211–215.

[7] M. Leemans and W. van der Aalst, “Process mining in soft-
ware systems: Discovering real-life business transactions and
process models from distributed systems,” in MODELS’15,
Sept 2015, pp. 44–53.

[8] N. Rosa, “Middleware Reconfiguration Relying on Formal
Methods,” in 2015 IEEE International Conference on Com-
puter and Information Technology, Oct 2015, pp. 648–655.

[9] IEEE, Draft Standard for XES - eXtensible Event Stream,
IEEE Computational Intelligence Society Std., June 2016.

[10] W. van der Aalst, Process Mining - Discovery, Conformance
and Enhancement of Business Processes. Springer-Verlag,
2011.

[11] W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen,
Process Mining and Verification of Properties: An Approach
Based on Temporal Logic. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 130–147.

[12] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and
W. M. P. van der Aalst, XES, XESame, and ProM 6. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 60–75.

[13] R. Allen and D. Garlan, “A formal basis for architectural
connection,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 3,
pp. 213–249, Jul. 1997.

[14] W. Fokkink, Introduction to Process Algebra, G. R. W. Brauer
and A. Salomaa, Eds. Springer, 2000.

[15] M. Volter, M. Kircher, and U. Zdun, Remoting Patterns:
Foundations of Enterprise, Internet and Real Time Distributed
Object Middleware. John Wiley & Sons Ltd, 2005.

[16] W. van der Aalst, A. Adriansyah, and B. van Dongen, “Re-
playing history on process models for conformance checking
and performance analysis,” Wiley Int. Rev. Data Min. and
Knowl. Disc., vol. 2, no. 2, pp. 182–192, Mar. 2012.

[17] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns
in property specifications for finite-state verification,” in Pro-
ceedings of the 21st International Conference on Software
Engineering, 1999, pp. 411–420.

[18] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst,
“Process and Deviation Exploration with Inductive Visual
Miner,” in Proceedings of the BPM Demo Sessions 2014 Co-
located with the 12th International Conference on Business
Process Management (BPM 2014), Eindhoven, The Nether-
lands, September 10, 2014., 2014, p. 46.

[19] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
“Inferring Models of Concurrent Systems from Logs of Their
Behavior with CSight,” in ICSE’14, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 468–479.

[20] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo, “In-
ferring Class Level Specifications for Distributed Systems,”
in ICSE’12. Piscataway, NJ, USA: IEEE Press, 2012, pp.
914–924.

[21] J. Moe and K. Sandahl, “Using Execution Trace Data to Im-
prove Distributed Systems,” in Software Maintenance, 2002.
Proceedings. International Conference on, 2002, pp. 640–
648.

8


