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Abstract 
The number of open specifications of middleware systems and 
middleware services is increasing. Despite their complexity, they 
are traditionally described through APIs (the operation signatures) 
and informal prose (the behaviour). This fact often leads to ambi-
guities, whilst making difficult a better understanding of what is 
actually described. This paper presents a formal framework, speci-
fied in LOTOS (Language Of Temporal Ordering Specification), 
for the specification of middleware systems. The framework con-
sists of a set of basic/common middleware components and some 
guidelines on how to compose them. The components of the 
framework facilitate the formal specification of different middle-
ware systems. In order to illustrate how the framework may be 
used, it is adopted to specify procedural (synchronous) and mes-
sage-oriented (asynchronous) middleware systems. 

Keywords: Middleware, Formal Specification, LOTOS, Frame-
work 

1 Introduction 
Middleware specifications are not trivial to be understood, as the 
middleware itself is usually very complex [7]. Firstly, middleware 
systems have to hide the complexity of underlying network 
mechanisms from the application. Secondly, the number of ser-
vices provided by the middleware is increasing, e.g., the CORBA 
specification contains nineteen services [15][14]. Finally, in addi-
tion to hide communication mechanisms, the middleware also 
have to hide fails, mobility, changes in the network traffic condi-
tions and so on. On the point of view of application developers, 
they very often do not know how the middleware actually works. 
On the point of view of middleware developers, the complexity 
places many challenges that include: how to integrate services in a 
single product [21], how to satisfy new requirements of emerging 
applications [5], how to understand the middleware behaviour 
prior to implementing it.  

The main objective of this paper is to propose a framework that 
helps to formally describe middleware behaviour by providing a 
set of basic abstractions. These abstractions are specified in 
LOTOS and basic/common in the sense that may be combined in 
different ways in order to specify diverse middleware systems. 
Main in our approach is the fact that the abstractions are defined 
and organised according to their role in relation to the message 
request. Hence, instead of adopting the traditional approach of 
organising middleware systems in layers [17], the proposed ab-
stractions are defined considering their role in the message re-
quest. Hence, the abstractions are grouped into categories related 
to storage, communication, dispatching, and mapping of message 
requests. A message request is any message that an application 
(e.g., client, server, sender, transmitter) sends to another applica-

tion.  

This paper is organised as follows: Section 2 introduces basic con-
cepts of LOTOS and properties that may be checked using this 
process algebra. Next, Section 3 presents the proposed framework. 
Section 4 presents how the proposed framework may be used to 
specify client-server and message-oriented middleware systems. 
Section 5 present some related work. Finally, last section presents 
an evaluation of the research until now and some future work. 

2 Background 
Prior to present the proposed framework, next section introduces 
some basic concepts of LOTOS. Additionally, we present the tem-
poral logic used to express the temporal properties of LOTOS 
specifications. 

2.1 LOTOS 
A LOTOS [11][6] specification describes a system through a hier-
archy of active components, or processes. A process is an entity 
able to realize non-observable internal actions, and also interact 
with other processes through externally observable actions. The 
unit of atomic interaction among processes is called an event. 
Events correspond to a synchronous communication that may oc-
cur among processes able to interact with one another. Events are 
atomic, in the sense that they happen instantaneously and are not 
time consuming. The point where an event interaction occurs is 
known as a port. Such event may or may not actually involve the 
exchange of values. A non-observable action is referred to as an 
internal action or internal event. A process has a finite set of ports 
that can be shared. 

An essential component of a specification or process definition is 
its behaviour expression. A behaviour expression is built by apply-
ing an operator (e.g., parallel operator “||”) to other behaviour 
expressions. A behaviour expression may also include instantia-
tions of other processes, whose definitions are provided in the 
“where” clause following the expression [7]. The complete list of 
basic-LOTOS behaviour expressions is given in Table 1, which 
includes all basic-LOTOS operators. Symbols 'B', 'B1', 'B2' in the 
table stand for any behaviour expression, and “i” is an internal 
action.   



Next, we present the LOTOS specification of a simple client-
server system: 

(1) specification Client_Server [request, reply] 
                                  : noexit 

Name Syntax Semantics 
inaction Stop It cannot offer any-

thing to the environ-
ment, nor it can 
perform internal ac-
tions. 

action prefix 
- unobserv-
able 
- observable 

 
 
i ; B  
g; B 

 It is capable of per-
forming action i (g) 
and transform into 
process B. 

 
choice 

 
B

(2) behaviour 
(3)  Client [request, reply] 
     || Server [request, reply] 
(4) where 
(5)   process Client [request, reply] : noexit := 
(6)     request; reply; Client [request, reply] 
(7)   endproc 
(8)  process Server [request, reply] : noexit := 
(9)    hide processRequest in 
(10)      request;  
(11)      processRequest;  
(12)      reply;  
(13)      Server [request, reply] 

B1[]B2B
 It denotes a process 
that behaves either 
like B1 or like B2. 

parallel com-
position 
  - general 
case  
  - pure inter-
leaving  
  - full syn-
chronization 
  
 

 
 
 
B1|[g1,..,gn]|
B2
 
 
B

(14)   endproc 
(15)endspec 
 
The top-level specification (3) is a parallel composition (operator 
‘||’) of the processes Client and Server, i.e., every action ex-
ternally observable executed by the process Client must be syn-
chronised to the process Server. The process Client (5) performs 
two actions, namely request and reply (6), and then re-
instantiate. The action-prefix operator (‘;’) defines the temporal 
ordering of the actions request and reply (the action request occurs 
before the action reply) in the Client. Informally, the Server (8) 
receives a request (10), processes it (11) and then sends a reply 
(12) to the process Client. 

B1 ||| B2
 
 
BB1 || B2

A parallel composition 
expression is able to 
perform any action 
that either component 
expression is ready to 
perform at a gate (not 
in g1,…,gn) or any 
action that both com-
ponents are ready to 
perform at a gate in 
[g1,…,gn]. 

hiding hide 
g1,...,gn in 
B 

Hiding allows one to 
transform some ob-
servable actions of a 
process into unobserv-
able ones. 

process in-
stantiation 

P[g1,...,gn] It is used to express 
infinite behaviours. 

successful 
termination 

Exit exit is a process whose 
purpose is solely that 
of performing the suc-
cessful termination 

sequential 
composition 
(enabling) 

B

It is worth pointing out that LOTOS specifications may be com-
pared in order to check their behavioural equivalences such as 
strong, observational and safety equivalences. All of them are 
checked through the CADP Toolbox1.  

3 LOTOS Specifications of Middleware 
Components 

As mentioned before, the proposed framework consists of a set of 
abstractions that addresses a number of common functionalities of 
middleware systems. The framework also defines how these ab-
stractions work together to formalise different middleware models. 
For example, the abstractions may be combined to produce the 
specification of a message-oriented middleware, whilst they also 
may be combined to define a procedural middleware (client-server 
applications) or a tuple space-based middleware.  

B1 >> B2 BB2 is enabled only if 
and when B1 termi-
nates successfully. 

disabling B1 [> B2  BB1 may or may not be 
interrupted by the first 
action of process B2. 

Table 1 - Syntax of behaviour expressions in LOTOS [6] The whole framework is “message-centric” in the sense that basic 
elements of the framework are grouped according to how they act 
on the message. Figure 1 shows a general overview of the pro-
posed approach in which the message is intercepted by both mid-
dleware elements on the transmitter and receiver sides. It is worth 
observing that the message may be either a request in which the 
transmitter ask for the execution of a task on the receiver side or a 
simple information between loosely-coupled applications. 

                                                           
1 http://www.inrialpes.fr/vasy/cadp/ 
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Figure 1 – Message-centric approach 
The abstractions of the framework are categorised into four 
classes: mappers (e.g., stub and skeletons), multiplexers (e.g., dis-
patcher), communication (e.g., communication channel), and stor-
age (e.g., queue and topic). Whatever the class of abstraction, it 
intercepts the message, processes it and forwards the message to 
the next element. The next element may be a local or remote one. 
However, only communication elements may forward the message 
to a remote element, i.e., an element only accessible through the 
network. A non-communication element may need to communi-
cate with a remote element to carry out its task, but it does not 
send the message directly to a remote element. For example, a 
transaction service may need to obtain a remote lock before pass 
the request to the next element of the middleware. In this case, the 
transaction service uses a communication element to send the mes-
sage and obtains the lock.  

3.1 Basic Abstractions 
Mapper Elements Mapper elements typically represent remote 
objects, serve as input points of the middleware, their basic 
function is to (un)marshal  application data (arguments and 
results) into a common packet-level (e.g., GIIOP request), and are 
usually found in middleware systems that support request/reply 
applications in heterogeneous environments. Additionally, non-
conventional mappers may also compress data. The specification 
of a typical mapper, namely Stub, is defined as shown bellow: 
 
(1) process Stub [iStub, oStub] : noexit := 
(2)  iStub ?m : Message; 
(3)   oStub !marshalling (m); 
(4)    iStub ?m : Message; 
(5)     oStub !unmarshalling (m); 
(6)      Stub [iStub, oStub] 
(7) endproc 
 
In this specification, the input (iStub) and output (oStub) ports 
serves as interception points of the stub. Information sent to the 
Stub from another abstraction is intercepted in the port iStub, 
whilst information the Stub sends to another abstraction is passed 
through the oStub. Hence, Stub receives a message sent by the 
transmitter and intercepted by the middleware (2), marshals it (3), 
passes it to the next element (4), and then waits for the reply from 
the receiver. The reply is also intercepted by the middleware and 
passed to the Stub (4) that takes responsibility of unmarshalling 
the reply (5).  

StubAbstraction1 Abstraction2

(2)

(3)

(4)

(5)

 

Figure 2 – Stub 

Figure 2 depicts an intuitive view on how the stub actually works. 
The numbering refers to the lines of the Stub specification. Unlike 
other abstractions, the Stub both sends and receives information. 
Additionally, Abstraction1 and Abstraction2 are local abstractions 
in the sense that both are placed in the same local as the transmit-
ter. 

Communication Elements Communication elements get a mes-
sage and communicate it to a remote element. They act as an inter-
face between the middleware and the operating system. The 
structure of a communication element, named Channel, as fol-
lows. 
(1) process Channel [iCh, oCh, comm] : noexit := 
(2)   Send[iCh,oCh,comm]|||Receive[iCh,oCh,comm] 
(3)   where 
(4)     process Send [iCh, oCh, comm] : noexit := 
(5)       iCh ?m : Message; 
(6)        comm !m; 
(7)         oCh; 
(8)          Send [iCh, oCh, comm] 
(9)     endproc 
(10)    process Receive[iCh, oCh, comm]:noexit := 
(11)      iCh; 
(12)       comm ?m : Message; 
(13)        oCh !m; 
(14)         Receive [iCh, oCh, comm] 
(15)    endproc 
(16) endproc 
 

Similarly to the Stub, the input (iCh) and output (oCh) ports 
serves as interception points of the element. However, communi-
cation elements have an additional port, named comm, used to 
communicate the message to a remote element. Additionally, the 
Channel is composed by the processes Send and Receive that 
are responsible to send and receive messages, respectively. In this 
case, the Channel receives a message sent by the local element 
(5) and then communicates it to a remote element (6). Next, the 
reply message is received by the Channel (12) from a remote 
element and then it passes the message to the local element (13). 
Figure 3 illustrates how the Channel works.  

  

ChannelLocalAbstraction1 RemoteAbstraction1

(5)

(12)

(6)

(13)

 
Figure 3 – Channel 

Dispatchers Dispatchers get the request and forward it to the right 
object (service). The destination object is defined by inspecting 
the message, in which the destination has been set during the bind-
ing. In practical terms, the dispatcher acts as a multiplexer inside 
the middleware. The general structure of a dispatcher is depicted 
bellow.  
(1) process Dispatcher [iDis, oDis] : noexit := 
(2)   iDis ?m : Message; 
(3)    oDis !m ! multiplexer(m); 
(4)     Dispatcher [iDis, oDis] 
(5) endproc 
 
The dispatcher receives a message (2) and inspects it, through the 



function multiplexer, to define the destination object (3). Figure 4 
illustrates how the multiplex work considering two different desti-
nation objects. 

DispatcherAbstraction1

Abstraction2

(2)

Abstraction3

(3)

(3)

 
Figure 4 – Dispatcher 

Storage Elements Storage elements express the need of some 
middleware systems of store the message prior to send it, e.g., for 
asynchronous communication or to keep a copy of the message for 
recovery reasons. The general structure of a Storage element is 
shown bellow.  
(1) process Storage[iSto, oSto](q: Queue):  
                               noexit := 
(2)  hide enq, fst, empt, deq in 
(3)    Manager [iSto, oSto, enq, fst, empt, deq] 
(4)         |[enq, fst, empt, deq]| 
(5)    Queue [enq, fst, empt, deq] (q) 
(6)    where 
(7)      process Manager [iSto, oSto] : noexit := 
(8)        iSto ?m : Message; 
(9)        enq !m; 
(10)       oSto; 
(11)       Manager [iSto, oSto] 
(12)     endproc 
(13)     process Queue [enq, fst, empt, deq]  
                       (q : Queue) : noexit := 
(14)        enq ?n : Nat; 
(15)        Queue[enq,fst,empt, deq]enqueue(q,n)) 
(16)        [] 
(17)        fst !first (q); 
(18)        Queue [enq, fst, empt, deq] (q) 
(19)        [] 
(20)        deq; 
(21)        Queue[enq,fst,empt,deq](dequeue (q)) 
(22)       endproc 
(23) endproc  
 
The storage element is modelled as a Queue that is administered 
by the Manager. In this particular case, the Manager receives a 
message (8) and then puts it in the Queue (9) which is inside the 
Storage. In particular, the queue has a traditional structure as 
shown in the specification that includes traditional queue opera-
tions such as: enqueue (14), to push the first element of the queue 
(17) and dequeue (20). Figure 5 shows the basic functioning of the 
Storage. 

StorageAbstraction1

(8)

 
Figure 5 – Storage 

It is worth observing that with minor changes to the storage ele-
ment, it may be defined as a buffer or a file.  

3.2 Putting the Basic Abstractions Together  
By using the basic abstractions defined in the previous section, 
middleware systems may be specified by composing them accord-
ing to the desired distribution model. The general structure of any 

specification  according to the framework is defined as follows: 
specification CompleteSystem [invC, terC, 
                   invS, terS, comm] : noexit 
 
   (* abstract data type definitions *) 
 
  behaviour 
    (Transmitter[invC,terC] 
        |[invC,terC]| 
     LocalMiddleware[invC,terC, comm]) 
       |[comm]| 
     RemoteMiddleware [invS,terS,comm] 
       |[invS,terS]|  
     Receiver[invS,terS]) 
     where 
       (* behavioural specification *) 
Endspec 
 
where a Transmitter sends a message to the Receiver  through 
the middleware, which is made up of a local (LocalMidleware) 
and remote middleware (RemoteMidleware) that communicates 
through the port comm (e.g., it abstracts the whole network). What-
ever the middleware model, its internal structure is defined as fol-
lows (except for the number of components): 
process LocalMiddleware[invC,terC,comm]:noexit:= 
   hide iA1, oA1, iA2, oA2 in 
    (A1 [iA1,oA1] ||| A2 [iA2,oA2,comm]) 
          |[iA1, oA1, iA2, oA2]| 
     Interceptor [invC, terC, iA1, oA1, iA2, oA2] 
   where  
       (* behavioural specification *)  
endproc   
 
The middleware is composed of a set of abstractions (e.g., A1 and 
A2), depending on its complexity. The composition is expressed in 
the process Interceptor. As mentioned before, our approach is 
message-centric. Hence, each abstraction initially “intercepts” the 
request, processes it and then passes to the next one according to 
the constraints imposed by the process Interceptor.  The Inter-
ceptor plays a key role of defining the order the request is inter-
cepted by the abstractions. For example, the interceptor of a 
LocalMiddleware in a client-server communication may be de-
fined as follows: 
(1) process Interceptor [invC, terC, iStub,   
                         oStub, iCha, oCha] :  
                         noexit := 
(2)   invC ?m : Message; 
(3)   iStub !m; 
(4)   oStub  ?m1 : Message; 
(5)   iCha !m1; 
(6)   oCha; 
(7)   iCha; 
(8)   oCha ?m : Message; 
(9)   iStub !m; 
(10)  oStub ?m3 : Message; 
(11)  terC !m3; 
(12)  Interceptor [invC, terC, iStub,  
                   oStub, iCha, oCha] 
(13)      endproc 
(14)   endproc 
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Figure 6 – Interceptor 

Figure 6 shows the interaction among the elements that composes 
a particular LocalMiddleware. In this case, according to the 
interactions, the order imposed by the Interceptor defines that 
after the LocalMiddleware receives the request from a Trans-
mitter, it is passed initially to the Stub and then to the Channel. 
When the reply message arrives in the Channel from the Re-
moteMiddleware, it is passed back to the Stub and then to the 
Transmitter.  

4 Adopting the Framework Elements 
In order to illustrate how the elements introduced in the previous 
session may be used to facilitate the middleware specification, we 
present the specification of a simple middleware (Figure 7) that 
has a structure similar to CORBA and a message-oriented mid-
dleware (Figure 8). 
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Figure 7 – Client-server middleware 

According to Figure 7, the specification presents a client-server 
middleware where the local middleware is a composition of a stub 
and channels elements. On the server side (remote), the middle-
ware is more complex, as it is composed by a communication ele-
ment (Channel), a dispatcher (Dispatcher) that forwards the 
request to the proper skeleton, and some skeletons (Skeleton). It 
is worth observing that additional middleware elements are easily 
added to the middleware just including them in the parallel com-
position (|||) and changing the Interceptor element.  

 
process RemoteMiddleware[invS,terS,comm]:noexit 
:= 
 hide iSkeleton,oSkeleton,iTcp,oTcp,iDis,oDis in 
    ((Skeleton [iSkeleton, oSkeleton] (1) 
  ||| Skeleton [iSkeleton, oSkeleton] (2) 
  ||| Channel [iTcp, oTcp, comm] 
  ||| Dispatcher [iDis, oDis]) 
    
     |[iSkeleton,oSkeleton,iTcp,oTcp,iDis,oDis]| 
    
  Interceptor [invS, terS, iSkeleton, oSkeleton, 
               iTcp, oTcp, iDis, oDis] ) 
  where  
      (* behavioural specification *) 
endproc 
The adoption of LOTOS enables us to use tools to check proper-
ties of middleware specifications defined using the framework. In 
this particular case, the searching of deadlock has been carried out 
in the CADP Toolbox (Cesar) . The trace resulting from this 
evaluation is shown bellow 
*** searching for sequence of the form: 
<any>* . <deadlock> 
*** using breadth-first search algorithm 
*** no sequence found 
*** no prefix of the sequence has been recognized 
 

As mentioned before, the second middleware specification is a 
message-oriented middleware (MOM). A MOM is characterised 
by the use of a buffer to the asynchronous communication and it is 
widely adopted to communicate loosely coupled applications.  
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Figure 8 – Message-Oriented Middleware 

This MOM (Figure 8) has two elements, namely Channel and 
Storage. The abstraction Channel is similar to Figure 7, whilst 
Storage is defined as presented in Section 3.1. MOMs that exe-
cute on the transmitter side are usually similar to one on the re-
ceiver (remote) side. The general structure of the MOM 
specification is shown bellow 
Process LocalMiddleware[send,receive,comm]:            
noexit := 
hide iSto, oSto, iCh, oCh in 
 ((Storage[iSto,oSto] ||| Channel[iCh,oCh,comm]) 

     |[iSto, oSto, iCh, oCh]| 
 Interceptor[send,receive,iSto,oSto,iCh,oCh]) 

where  
        (* behavioural specification *) 
endproc 

5 Related Work 
The basic idea of the formalisation of middleware systems is to 
use a formal description technique for specifying several aspects 
of middleware. In particular, formal description techniques such as 
E-LOTOS [11], Z notation [7], and Petri Nets [3] [4] have been 



used to specify functional aspects, whilst Petri nets have also been 
adopted to model middleware performance aspects [23][10]. 

In the RM-ODP [11], the trader service is formally specified 
through an extension of basic LOTOS named E-LOTOS [12]. By 
comparing with our approach, the main and significant difference 
is the absence of software architecture principles and abstraction 
levels of specification in order to structure the trader specification. 
This fact makes very difficult to understand the whole specifica-
tion. E-LOTOS may effectively be adopted in the future due to its 
improvements to LOTOS, but there still having a lack of tools to 
support the automatic verification of properties and refinement. 

Bastide [3][4] adopts the Cooperative Objects (CO) formalism to 
specify middle-ware behaviour. CO is a dialect of object-
structured, high-level Petri nets used to generate tests and verify 
inconsistencies of the OMG specification of CORBA Event ser-
vice. In a similar way to E-LOTOS, the basic difference of our 
approach refers to the use of software architecture principles and 
abstraction levels to threat with the complexity of middleware 
system specifications. Another point that may be mentioned is the 
better readability of LOTOS specification compared to Petri nets. 

Basin [2] focuses on the uses the Z notation to analyse the 
CORBA Security Ser-vice. Having the main objective of taking 
advantage of formalisation to make proofs of properties, this ap-
proach concentrates on defining a formal-data model to the 
CORBA Security Service. There is a significant difference to our 
approach that refers to the fact we addresses behaviour aspects 
instead data. Hence, despite being formal, the objects being for-
malised are completely different. 

Fernandes [10] and Souza [23] also adopt Petri nets for describing 
middleware aspects. However, their focus are on the generation of 
formal models  that include performance elements. The proposed 
models do not serve to check properties such as deadlock freedom 
or safety, but only quantitative and qualitative properties. Hence, 
in a similar way to the use of Z notation, this approach has not the 
focus on the behaviour itself. 

Finally, our previous work [17] presented an approach for struc-
turing the middleware architecture using software architecture 
principles. The middleware software architecture is defined at 
three different levels of abstractions, which are usually adopted by 
application developers, standard bodies and middleware develop-
ers. At the same time, we propose the adoption of the LOTOS 
language [7] for describing the behaviour of these software archi-
tectures. In fact, LOTOS is used as an ADL (Architecture Descrip-
tion Language)  that allows to formally specify the behaviour of 
middleware software architectures.   

6 Conclusion and Future Work 
This paper has presented a framework useful to formalise middle-
ware behaviour based on LOTOS. The framework consists of a set 
of common elements usually found in the development of mid-
dleware systems. The framework is now being defined, but it is 
possible to observe that a formalisation approach centred on the 
message request instead of middleware layer facilitates the treat-
ment of middleware complexity: simple abstractions are highly 
reusable (see abstraction Channel in Section 3) and easier to find 

specification errors and verify desired behaviour properties; and 
the way of composing middleware abstractions considering the 
order they intercept the message request enormously facilitate the 
composition of  middleware abstractions. 

We are now extending the proposed set of abstractions including 
more sophisticated communication and concurrent elements. 
Meanwhile, it is also planned to include the specification of mid-
dleware services in such way that composition constraints may 
also consider middleware service composition.  
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