
Communicating Process Architectures 2015
K. Chalmers, J.B. Pedersen et al. (Eds.)
Open Channel Publishing Ltd., 2015
© 2015 The authors and Open Channel Publishing Ltd. All rights reserved.

67

Towards Lightweight Formal Development
of MPI Applications

Nelson S. ROSA a,1, Alan WAGNER b and Humaira KAMAL b

a Universidade Federal de Pernambuco
Centro de Informática

Recife, PE, Brazil
b University of British Columbia
Department of Computer Science

Vancouver, BC, Canada

Abstract. A significant number of parallel applications are implemented using MPI
(Message Passing Interface) and several existing approaches focus on their verifica-
tion. However, these approaches typically work with complete applications and fixing
any undesired behaviour at this late stage of application development is difficult and
time consuming. To address this problem, we present a lightweight formal approach
that helps developers build safety into the MPI applications from the early stages of
the program development. Our approach consists of a methodology that includes veri-
fication during the program development process. We provide tools that hide the more
difficult formal aspects from developers making it possible to verify properties such
as freedom from deadlock as well as automatically generating partial skeletons of the
code. We evaluate our approach with respect to its ability and efficiency in detecting
deadlocks.

Keywords. formal methods, parallel applications, MPI

Introduction

A significant number of parallel programs are implemented using MPI (Message Passing In-
terface) [1]. MPI was especially designed to help in the development of efficient and portable
parallel applications and, as mentioned in [2], has been widely adopted in all scientific areas
that rely on parallel computing. Despite its popularity, the development of safe applications
using MPI is a complex task because of the many activities happening in parallel and the
need to coordinate these activities through the passing of messages. Although MPI provides
a standardised higher-level access to the underlying communication hardware, MPI imposes
few restrictions to enforce correct messaging behaviour with regards to the use of the library.
There are potential problems caused by incorrect arguments resulting in unmatched messages
or incorrectly received messages that can lead, and usually not immediately, to incorrect be-
haviour. As a result, the behaviour of even relatively simple parallel MPI applications can be
challenging to understand and fully explore.

1Corresponding Author: Nelson S. Rosa, Av. Jornalista Anibal Fernandes, s/n - Cidade Universitária 50.740-
560 - Recife, PE, Brazil. Tel.: +55 81 2126 8430; Fax: +55 81 2126 8438; E-mail: nsr@cin.ufpe.br.

68 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

Due to these challenges there have been many attempts to verify MPI applications. Previ-
ous approaches can be classified into three main groups: purely formal approaches [3,4,5,6],
runtime based approaches [7,8,9] and hybrid approaches [10,11]. However, all these ap-
proaches typically work when the application is already fully implemented. In these cases,
fixing any undesired behaviour is difficult because of the possibility of many compounding
errors in a large parallel code base.

In this paper, we propose a lightweight formal development methodology that incorpo-
rates verification into the early stages of the MPI code development process. Our approach
consists of (1) a development methodology that guides and helps the development of MPI
applications, and adopts software architecture principles, (2) a formal model used to specify
these applications, and (3) the LFD-MPI tool (Lightweight Formal Development in MPI) that
supports all steps of the proposed process. Fundamental to this solution is the simplification
of the MPI application development by identifying application patterns known to have poten-
tial to deadlock, and shielding the application developer from the formal techniques used to
verify correctness properties.

The unique contributions of this paper are (i) a formal lightweight development process
and tools for rapid prototyping of MPI applications and (ii) the formal models for specifying
MPI applications in CSP (Communicating Sequential Processes)[12] and (iii) the definition
of an architecture description language (ADL) for describing MPI applications’ software ar-
chitectures. The use of software architecture principles through the proposed ADL also cre-
ates a new way of structuring parallel applications by explicitly organising their structure
using well defined and widely adopted concepts of components and connectors [13].

This paper is organised as follows. Section 1 gives a short overview of MPI. Our light-
weight development approach is discussed in Section 2. Section 3 makes an initial evaluation
of our approach by applying it to MPI application patterns. Section 4 presents existing ap-
proaches to verifying parallel applications. Finally, Section 5 presents conclusions and future
work.

1. Message Passing Interface

The Message Passing Interface (MPI) [1] has been highly successful for high performance
computing for over the last two decades. It is considered essential for writing scalable scien-
tific code and libraries that can run on a wide range of platforms [14,15]. There are a number
of factors that have led to its success; these include support for software libraries, portabil-
ity, and dependable performance on a wide range of network fabrics. An ecosystem devel-
oped by the MPI Forum comprising universities, vendors, national laboratories and software
developers ensures active maintenance and support of the MPI standard.

The MPI standard provides a rich set of routines for message passing. It includes routines
for point to point communications, collective operations, creation of communicators (for safe
communication among groups of processes), to name a few. All communication in MPI is
explicitly specified in the application and there must be a corresponding receive operation for
every message sent. The matching criteria, within the MPI middleware, for send and receive
operations is based on the following three parameters:

• The process rank is a unique identifying integer, assigned by MPI in the range 0 to
n-1, where n is the total number of MPI processes launched at the initialisation of the
application. To send a message to another process, the sender process needs to know
its target’s rank.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 69

• The message tag is a user defined integer that is used to identify a message. All mes-
sages sent by one process to another with the same tag must be received in the order
in which they were sent.

• The context identifier is a unique value associated with a communicator. A communi-
cator defines the scope of the communication and is associated with a group of pro-
cesses. Communication within one communicator cannot interfere with communica-
tion inside another communicator. Each of the processes in a communicator is assigned
a rank in the range 0 to size-1, where size is the number of the processes associated
with the communicator1.

The send operation must specify a unique receiver through target’s rank, tag and com-
municator. A receive operation may specify a wildcard MPI ANY SOURCE for sender rank,
and/or a wildcard MPI ANY TAG for message tag indicating any sender and/or tag value are
acceptable. The receiver, however, cannot specify a wildcard value for the communicator.

In addition to the above three parameters for matching, which are related to message
progression inside the MPI middleware, there are conditions for message data type and size
that must be met as well. The message data type in the send operation has to match the type
specified by the receive operation. For example, if the send operation uses MPI INT, then the
receive operation must specify that as well, otherwise the program would be erroneous2. The
message size (number of elements of the specified type) in the receive operation must be at
least as large as that in the corresponding send operation3.

At program initialisation, a pre-defined communicator called MPI COMM WORLD is created
which contains all the n processes. MPI applications typically start with MPI Init that ini-
tialises the MPI execution environment and end with a call to MPI Finalize, which termi-
nates it.

2. Lightweight Formal Development

Our approach consists of (i) an MPI application development process, (ii) formal models used
in the development process to specify MPI applications, and (iii) tools to support all phases
of the proposed process. Using the tools, developers first provide an initial description of the
application structure and then enrich it with behavioural annotations. Next, this description is
used both to generate a formal specification and produce a semi-implementation. The formal
specification is used to verify properties like deadlock freedom.

The basic principles of our development process are as follows.

• Focus on development time: MPI applications should be verified at development time
as it can minimise the impact of fixing possible undesired behaviours, like deadlock,
before the application is tested;

• Adoption of Software Architecture principles: MPI applications are described using
software architecture abstractions [13] such that the parallel application is structured

1We are limiting the discussion in this paper to MPI intra-communicators.
2There are exceptions related to this rule for MPI PACKED. The data type mismatch error depends on individual

cases. For example, MPI INT in the send operation and MPI CHAR in the corresponding receive operation may
result in a MPI ERR TRUNCATE (message truncated on receive) error.

3If the message size in the receive operation is smaller than the message size in the corresponding send
operation then it will report MPI ERR TRUNCATE error. It is not considered erroneous if the receive operation
specifies a message size that is larger than the send message size.

70 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

as a set of components (computation elements) wired through connectors (communi-
cation elements);

• Focus on communication primitives: We consider a subset of MPI communication
primitives in our approach that can potentially lead to a deadlock. As mentioned
in [16], mismatches between senders and receivers rank high among the most common
MPI errors. We focus on blocking and non-blocking MPI send and receive operations
to demonstrate our approach.

• Lightweight: While the formalisation plays a key role in the process, application de-
velopers should be shielded from the complexity of directly manipulating formal spec-
ifications.

By adopting these principles, the next sub-sections present details of our development
process, the formalisation strategy and the tools.

2.1. Development Process

The process for building MPI applications has five key activities, shown in Figure 1: Struc-
tural Design, Behavioural Design, Formal Modelling, Verification and Code Generation.

Figure 1. LFD-MPI development process.

The process starts with the activity Structural Design in which application developers
define the components that make up the parallel application and how they are connected.

Next, in Behavioural Design, developers enrich the structural specification with commu-
nication primitives used by the components to interact with each other, including specifying
patterns of communication such as Request-Reply, Send-Receive or publish/subscribe.

In the third activity, Formal Modelling, a formal model of the application is generated and
then verified (Verification) against desired properties, e.g., deadlock freedom. If properties
are not satisfied, it is necessary to promote changes in the behavioural design. Finally, the
activity Code Generation generates an artifact that serves as a partial implementation.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 71

As usual, each activity of the development process has input and output artifacts gen-
erated manually or automatically. The first artifact, namely Abstract Specification, describes
the structure of the MPI application and is described by using the proposed ADL (Architec-
ture Description Language) by the application developer. This initial specification includes
the set of components that compose the application and serves as the basis for the Concrete
Specification.

The Concrete Specification is obtained by enriching the Abstract Specification with in-
teraction patterns responsible for expressing the communication between the application’s
components. Still informal, this specification defines the temporal ordering of actions exe-
cuted by the components and the interaction patterns associated to the connectors, which are
passive elements.

At this point, it is important to observe that the actions carried out by the components
are specific to each application (usually not reusable), whilst the actions associated with the
connectors are usually selected from a library of Interaction Templates. In practice, connec-
tors are more than simple channels, in that they will enforce pre-defined patterns of commu-
nication across them. Finally, we also defined a catalogue of Formal Properties used in the
verification.

From the Concrete Specification, two additional artifacts are generated: the Formal Spec-
ification and the Implementation Skeleton. The specification is checked against desired be-
havioural properties (Formal Properties), whilst the skeleton is a partial implementation of
the MPI application.

2.2. Structural Design

As mentioned earlier, this activity consists of describing the components that make up the
application and how they are wired through connectors. In practice, application developers
must explicitly decompose the application into a set of elements that perform the computation
(components) and elements that define how the interactions between the components are
carried out (connectors). Finally, these elements are composed together into a configuration
that specifies the complete structure of the application.

The output of this activity is an Abstract Specification expressed in ArcMPI, our architec-
ture description language. The key characteristics of ArcMPIare as follows: (a) components
(computation elements), connectors (communication elements) and configuration (composi-
tion of components and connectors) are first-class elements of the language, (b) components
can be composed to make up new components (composite components), (c) there is always
a connector between any two components, i.e., interacting components are never connected
directly, (d) components and connectors have interaction points (ports) through which they
communicate with the external world, and (e) the description of components and connectors
includes their behaviour in addition to their structure.

The role of the connectors is to decouple the communication from the business logic
by encapsulating the communication protocol between the components. Connectors do not
initiate actions by themselves but carry out actions in response to external invocations. In the
current version, the connectors act as simple channels to enable components to communicate
without sight of each other’s ports.

Ports in ArcMPI are currently untyped and bi-directional since most communication is 2-
way. Typed ports are a desirable addition for the future. An initial set of basic connectors are
provided together with the language, while software architects have the flexibility to define
new ones according to their needs.

72 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

Figure 2. Abstract specification.

Figure 2 illustrates a simple Abstract Specification written in ArcMPI. This specification
consists of three components (M0, M1 and M2) and a connector (T1). M2 is a composite
component made up by the composition of M0 and M1 and whose interaction is realised
through T1. As a component, M2 can also be composed with other components. It is worth
observing that M2 externalises port p2 of M1 in such way that components that interact with
M2 actually communicate with M1.

2.3. Behavioural Design

In this activity, components and connectors introduced during the Structural Design are en-
riched with behavioural descriptions that define how they interact. A key part of this interac-
tion is the pattern of message-flows between them.

Due to their impact on the way the components themselves are built [17], the behaviour
of the connectors is specified first.

The behaviour of connectors in ArcMPI is defined through patterns that explicitly con-
strain the way components interact, e.g., pipe-filter, send-receive (MPI), request-reply, mul-
ticast, publish/subscribe, and so on. For example, in the request-reply pattern a component
(e.g., a client) invokes an operation (request) to a remote component (e.g., a server), which
processes the request and responds (reply) to the client with the result of the operation. In
the send-receive interaction, a send operation must have a matching receive operation and
the send blocks until the message is stored on the receiver side. ArcMPI provides a set of
pre-defined interaction patterns based on MPI primitives, whilst it also allows application
developers to define their own interaction patterns.

Figure 3. Connector specification.

In order to illustrate the behavioural specification of a connector in ArcMPI, the descrip-
tion of the connector T1 (see Figure 2) is shown in Figure 3. As mentioned before, the in-
teraction patterns used by the connector must be defined prior to the component behaviour.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 73

In this case, connector T1 is specified according to the MPI template (line 1) and reuses an
existing interaction pattern named SendRecvSync (line 2). In lines 5 and 6, ports t1 and t2 of
connector T1 are associated with ports t1 and t2 of pattern SendRecvSync (see Figure 6 and
Appendix A1).

The message flow through T1 is defined by SendRecvSync in terms of MPI primitives
(for example, an instance of message flow can be described by MPI Send through port t1 and
MPI Recv through port t2 – see Figure 6). The pattern SendRecvSync uses MPI Send and
MPI Recv calls in the standard blocking communication mode, i.e., the MPI Send call does
not return until the message has been safely stored at the receiver.4

It is worth observing that a different behaviour (e.g., request-reply) could be specified
instead by T1. In this case, however, the behaviour of components M0 and M1 must be modi-
fied to conform with the new interaction pattern. After the specification of the connector, the
components’ behaviour is described by the user. A library pattern template is not used for
these specifications. As shown in Figure 4, the user defines the component behaviour directly
in terms of MPI primitives (line 5).

Figure 4. Components’ behaviour in ArcMPI.

A simple action infix operator (“;”) is used to define the temporal ordering of actions
executed by the component. In practice, this operator defines that “a1;a2” means that a2 only
starts when a1 finishes. The pattern in lines 5-6 repeats indefinitely as the ArcMPI does not
at present have a stop/exit operator to indicate the termination of the components.

It is worth noting that from the point of view of the application developer, the interaction
between the components is anonymous in the sense that M0 does not know (and does not
need to know) who is the recipient of the message (msg), whilst M1 similarly has no idea
about the sender.

2.4. Formal Modelling

While the Abstract, Concrete and Implementation Skeletons are informal descriptions of the
parallel application, the Formal Specification artifact, as the name suggests, is described in
a formal description language. Hence, a mapping is necessary to generate a formal speci-
fication from the Concrete Specification described in ArcMPI . This mapping is performed
automatically without the programmer’s intervention.

CSP [12] and LOTOS [18] have been adopted as target formalism in the modelling
of MPI applications written in ArcMPI. Both formalisms have good tool support, namely
FDR3 [19] and CADP Toolbox [20], that enable us to integrate the formal verification into the

4According to the MPI Standard, correct MPI applications do not rely on system buffering in the standard
communication mode. For pattern SendRecvSync, such buffering has not been assumed.

74 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

development process in a satisfactory. As CSP is a formalism more widely adopted nowadays,
only CSP specifications will be shown next. The LOTOS mapping can be found in [21].

The modelling consists of representing ArcMPI elements into CSP constructs and can be
divided into structural and behavioural modelling. The structural modelling defines that com-
ponents and connectors are modelled as CSP processes, ports are defined as CSP channels
and the configuration is a parallel composition of components and connectors.

Considering the example introduced in Section 2.2, the component M2 (see Figure 2) is
modelled into CSP as follows:

T1 = SendRecvSync({0,1})

M2 = (M0(0)[[p1← t1]] |||M1(1)[[p1← t2]]) [|{|t1,t2|}|] T1

In this model, T1 is defined by instantiating the interaction pattern SendRecvSync that
connects components M0 and M1, whose ids are 0 and 1, respectively. M0 and M1 are
composed in parallel without synchronisation (|||). The resulting composition is placed in
parallel with the connector T1 and synchronises on events in {t1,t2}.

After modelling the structure, it is time to model the behaviour. The behaviour modelling
defines how the clause implementation of the concrete specification of components and con-
nectors is modelled into CSP. As mentioned before, this clause in ArcMPI consists basically
of a temporal ordering of actions executed by the component in its ports. CSP for generic
behaviour is shown in Figure 5.

Figure 5. Generic behaviour model of ArcMPI components.

Connectors are highly reusable and common behaviours (e.g., request-reply and pub-
lish/subscribe) are already specified in the interaction templates (one of the Artifacts shown
in Figure 1). For T1, the behaviour of the connector is simply instantiated from one of these
existing templates: SendRecvSync.

Figure 6 shows part of the definition of SendRecvSync, where s is the set of components
(ids) connected by this connector. SendRecvSync is initially ready to interact with one of two
components through ports t1 and t2, and each component can initially invoke one of two MPI
primitives MPI Send or MPI Recv (lines 2-9).

If the component connected to port t1 invokes MPI primitive MPI Send (line 2),
SendRecvSync behaves like SendRecvSyncT1' (line 3). At this point, the connector waits
for the other component (connected to port t2) to invoke the MPI primitive MPI Recv
(line 12). When this event occurs, SendRecvSyncT1' runs SendRecvSync'''' (line 15). Fi-
nally, the SendRecvSync'''' returns to the interacting components that both invocations
(MPI Send and MPI Receive) were successfully terminated (lines 16-17) and recurses back
to SendRecvSync(s). [Code for the other three possible interactions is in Appendix A1.]

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 75

Figure 6. Specification of SendRecvSync in CSP.

2.5. Code Generation

In this section we present a small application to demonstrate the code generation process. The
application is a sieve of Eratosthenes implemented by composing MPI processes to form a
pipeline. A pipeline is a commonly used pattern in process-oriented environments for creating
process networks within programs and is also used in dataflow applications [22].

Figure 7. Structural Elements of the Module.

Figure 7 depicts the structural elements that comprise the pipeline application. As shown
in Figure 7, there are three types of user defined processes whose intended behaviour is as
follows:

• The generator process generates odd numbers that are passed down the pipeline. The
generator keeps the prime number 2 for itself.

• The prime process keeps the first prime number it sees and filters the remaining num-
bers by either discarding them or passing them to the next process in the chain.

• The last process terminates the prime number generation at the end of the sieve.

76 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

#include “firstP.h”

PROCESS generator(MPI_Comm comm, PROCESSVARS *pargs, PROCESSPORTS *ports)

{

int n=0, ack=1;

MPI_Send(&n,1,MPI_INT,ports->right.dst,0,ports->right.out);

MPI_Recv(&ack,1,MPI_INT,ports->right.src,0,ports->right.in,&status);

return 0;

}

#include “middleP.h”

PROCESS prime(MPI_Comm comm, PROCESSVARS *pargs, PROCESSPORTS *ports)

{

int n=0, ack=1;

 MPI_Recv(&n,1,MPI_INT,ports->left.src,0,ports->left.in,&status);

 MPI_Send(&ack,1,MPI_INT,ports->left.dst,0,ports->left.out);

MPI_Send(&n,1,MPI_INT,ports->right.dst,0,ports->right.out);

MPI_Recv(&ack,1,MPI_INT,ports->right.src,0,ports->right.in,&status);

return 0;

}

PROCESS last(MPI_Comm comm, PROCESSVARS *pargs, PROCESSPORTS *ports)

{

int n=0, ack=1;

 MPI_Recv(&n,1,MPI_INT,ports->left.src,0,ports->left.in,&status);

MPI_Send(&ack,1,MPI_INT,ports->left.dst,0,ports->left.out);

}

Figure 8. Partial implementation of the prime number sieve processes.

The number of prime numbers generated is equal to the length of the pipeline (i.e., the
total number of MPI processes in this application). For illustration here, we have four MPI
processes in this example: one generator process, just two prime processes and one last

process.
Figure 7 specifies the structure of the application and information about the communi-

cation protocol between the modules in the pipeline. The T1 connectors are as described in
Sections 2.2 and 2.3. An output port was added to each of the processes inside the module.
The “out” ports in Figure 7 are connected to a single shared port on the prime sieve module.
Each of the processes write their prime number to the out port before sending anything to
the next process in the chain. This “many-to-one” sharing of a port is implementable within
our system but we have not formally verified its behaviour. The code generation tool uses the
structure information to create the following program artifacts:

• stub processes (.c files) in the target directory that can be compiled into an application
corresponding to the modules in the structure diagram;

• part of the structure (not shown) is the process type which specifies the main program
template to be used with the associated processes;

• Makefile entries that take extracted information from the structure diagram to fill in
the main program template and then compile and link this with its associated process
code;

• an MPI configuration file is also generated from information from the structure dia-
gram;

• finally, the protocol types between modules are used to generate prototypical code
that follows the specified communication protocol. Figure 8 shows some of the code
generated.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 77

At this point we have a working partial implementation of the application (Figure 8) that
executes and exercises each of the connections. The correctness of the partial implementation
was verified in the verification step of the methodology in Figure 1. Achieving a working
implementation for a given communication pattern is always a time-consuming step in the
development of MPI applications and, with these tools, we can continue to refine the structure
or begin to add the application logic to the processes. The important point is that we are
starting from a working framework that avoids the costly MPI semantic errors that often
arise to get to this point in the development. For the completed processes in the resulting
application, an explanation of the termination logic and the output port, see the text and code
outlined in Appendix A2.

2.6. Tool Support

As mentioned previously, the development process presented in Section 2.1 is supported by
a tool named LFD-MPI (Lightweight Formal Development in MPI). As shown in Figure 9,
LFD-MPI is composed by a Graphical Editor, the A2F (Architecture to Formal) and A2C
(Architecture to Code) mappers, Formal Adapters, and a repository of Interaction Templates.
The graphical editor helps application developers in activities Structural Design and Be-
havioural Design, whilst the mappers generates the Formal Specification and Implementation
Skeleton.

Figure 9. Architecture of LFD-MPI.

The Formal Adapters interact with existing tools to verify the formal specification (activ-
ity Verification). In the current implementation, two formal adapters (FDR3Adapt and CAD-
PAdapt) interact with FDR3 [19] and CADP Toolbox [20], respectively. The interaction with
the CADP Toolbox is carried out by executing some of its components (e.g., compiler CAE-
SAR or on-the-fly model-checker EVALUATOR) and processing the generated files yielded
by them. In the case of FDR3Adapt, the interaction occurs by directly invoking the FDR API
that exposes part of FDRs internals to external tools.

The Abstract Specification and Concrete Specification are modelled in ArcMPI and
stored as XML-based files; the Formal Specification is a CSP or LOTOS file, and the Im-
plementation Skeleton is a semi-implementation of the MPI application written in language
C. It is worth observing that our support is decoupled from a particular formal description
technique, which means that implementation of adapters and mappers is needed for each
supported formalism.

78 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

3. Evaluation

To evaluate our approach, we initially developed four MPI application patterns where
existence of deadlock is known a priori: Recv-Recv, Send-Send, Sched-Dependent, and
AnySource.

Figure 10. Evaluated Application Patterns.

Figure 10 shows these patterns using a simple notation: “Send(to:x)” and “Recv(from:x)”
mean MPI Send and MPI Recv respectively. “x” specifies the destination rank in case of the
send operation and the source rank in the receive operation while the remaining arguments
are omitted. MPI Recv performs a blocking MPI receive call for a message. This call does
not return until a matching message has been stored into the receive buffer.

“Irecv(from:x)” represents MPI Irecv. This call begins a non-blocking MPI receive op-
eration. A request handle is associated with a non-blocking receive call which can later be
used to query the status of the communication or wait for its completion. One such routine
is MPI Wait, which uses the request handle returned by MPI Irecv to wait for its comple-
tion. It is unsafe to access any part of the receive buffer in the program after a non-blocking
receive operation has started and before the receive has completed. “Recv(from:ANY)” or
“Irecv(from:ANY)” specifies that a message from any sender can potentially match this re-
ceive operation provided the rest of the message matching criteria is met (see Section 1).

Deadlock is immediate (and obvious) from the Send-Send and Recv-Recv patterns. For
Schedule-Dependent, if the Send from Process 0 is the first message received by Process 1,
there will be no deadlock. However, if Process 2 gets its message to Process 1 first, Process
1 will be left waiting for another from Process 2 in its second receive and will never reach
its barrier, leaving the three processes deadlocked. For the AnySource pattern, the request
handle associated with Irecv(from:ANY) in Process 0 may be matched by the first Send from
Process 2.5 The subsequent Recv(from:2) in Process 0 will then be blocked forever resulting
in all three processes unable to proceed further.

These patterns, originally introduced in [23], were developed using our process and then
checked for deadlock in the Formal Specification generated by LFD-MPI.

5In the AnySource pattern, Process 0 can post two outstanding receive requests to the middleware: one
through Irecv(from:ANY) and the other through Recv(from:2). This introduces an extra reliance on the imple-
mentation of the matching engine in the middleware.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 79

Table 1 shows results considering whether various toolsets (see Section 4) are able to
detect deadlock. “Run” means it can be detected, but only at run-time. This is an extension
of the comparison originally presented in [23] that includes the AnySource application and
LFD-MPI. As AnySource was not present in the original table, its evaluation by some tools is
set to “-” (no evaluation performed). Similarly to ISP, LFD-MPI can generate the sequence
of MPI invocations that leads to a deadlock when the CADP adapter (for LOTOS) is used6,
e.g., “first one”, “shortest one” or “all”.

Table 1. Deadlock detection by existing tools (original table shown in [23])

Approach Recv-Recv Send-Send Sched-Dep AnySource
Marmot and MPI-Check Yes No Run -
ISP Yes Yes Yes Yes
DAMPI Yes No Yes -
MUST Yes Yes Run -
LFD-MPI Yes Yes Yes Yes

We also measured the response time to detect deadlock in the patterns in Figure 10. The
test setup comprised a single Mac OS machine (Version 10.9.5), with 2.9 GHz Intel Core i7
processor and 8 GB of memory. Figure 11 shows the deadlock detection time for each of the
patterns using LFD-MPI and the external (LOTOS) tools. The response time is the time from
the invocation of the external tool till the receipt of the response from it. In particular, in the
case of CADP Toolbox, it was configured to stop and respond to the invocation as soon as the
first deadlock is found. For each application, the external tool was invoked 100 times and the
results shown in Figure 11 are the mean response time when the CADP is used.

Figure 11. Evaluation results (LFD-MPI and LOTOS).

These preliminary results show that the deadlock detection time has low variation (stan-
dard deviation equal to just under 15 ms for a mean of approximately 165 ms). Furthermore,

6The current implementation of LFD-MPI still under development and its integration with FDR3 is not com-
plete.

80 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

considering that our solution is used at development time, these results make viable the exe-
cution of deadlock checks several times while the application is being developed, e.g., to each
change in the application code, the deadlock can be verified with a low time cost. Moreover,
the MPI developer does not require knowledge of the formalism (CSP or LOTOS) used.

4. Related Work

There are a number of approaches for verification of MPI applications. These approaches can
be organised into three main groups: purely formal approaches, runtime based approaches
and hybrid approaches.

In the formal group, formalisms such as CSP [3], Session types [4] and Abstract State
Machines [5] are used to create formal models of MPI applications. These models serve as
basis for the verification of properties like deadlock freedom, type safety and communication
safety. Another well-known approach for verifying MPI applications is MPI-SPIN [6,24].
MPI-SPIN uses model checking techniques to verify nonblocking MPI applications. An MPI
application is modelled as a set of guarded transition systems (one for each process that com-
poses the application) and a global array of communication records that models buffered mes-
sages and outstanding requests. The semantics of the execution are defined in such way that
given a global state, either a process’s enabled transition or an action of the infrastructure can
be executed. This solution was implemented as an extension to SPIN [25] and incorporated
into the SPIN specification language Promela.

The runtime group essentially works by intercepting MPI calls at runtime and detecting
several kinds of errors of MPI applications. MUST (Marmot Umpire Scalable Tool) [23,7]
intercepts MPI calls of all processes that make up the application and then runs a graph-
based deadlock detector. The detector determines if the MPI call can complete or must wait
for another communication call. Essentially, MUST represents the wait-for condition as a
graph and uses graph analysis to decide whether a deadlock exists at a particular step of the
application execution. This detection strategy follows that used by the earlier Marmot [8] and
Umpire [9] toolsets.

The hybrid group uses combinations of the previous strategies. ISP (In-situ Partial Or-
der) [11,15] is an tool that uses runtime model checking methods to verify MPI applica-
tions. By using ISP, application developers directly check the existence of deadlocks with-
out any contact with the formalisms behind it. In practice, ISP provides a replacement func-
tion for every MPI primitive supported by the solution. When a replacement function (e.g.,
MPI Send) is invoked, a scheduler is consulted and it decides whether the function can be
actually executed or not. Another tool developed in the context of ISP efforts is DAMPI (Dy-
namic Analyzer MPI) [26]. Similarly to ISP, DAMPI also intercepts MPI calls, but it executes
a distributed scheduling algorithm.

TASS (Tookit for Accurate Scientific Software) [27] also belongs to the hybrid group. It
takes a MPI program as input and generates an abstract model through symbolic execution
and state space enumeration. By exploring the state space, TASS is able to check properties
such as absence of deadlock, buffer overflow and memory leaks.

The key difference between these approaches and LFD-MPI is that LFD-MPI serves
mainly as a tool that helps the development of the applications instead of testing complete ap-
plications. This significantly reduces the code analysed by the verification tool. Additionally,
LFD-MPI also generates MPI code. The similarity with purely formal and hybrid approaches
is the use of formal methods to help the verification process. However, application developers
do not have to work directly with the formalisms, thanks to the adapters.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 81

A recent work [28] presents a framework for generation of type-safe and deadlock-free
MPI applications. Their solution is able to verify correctness properties of MPI applications
and automatically generates MPI code. Their process is centered around the use of Pab-
ble [29], a language based on the theory of multiparty session types (MPST) [30]. The MPI
application is generated from Pabble specification in such way that guarantees, by construc-
tion, type-safety, communication-safety and deadlock-freedom.

Similar to our work, the Pabble-based approach also focuses on reducing the develop-
ment time of MPI applications. The most important differences are the adopted formalisms
(session types vs. process algebra), the way of dealing with deadlock (correct by construction
vs. verification) and the final product of both approaches (skeletons vs. final code).

5. Conclusion and Future Work

In this paper we presented a lightweight formal approach to build safety into the MPI appli-
cations during the application development process. The development is supported by a mod-
elling tool that shields the application developer from the formal techniques used to verify
correctness properties. LFD-MPI is designed to serve as a tool that helps the development of
the applications instead of testing complete applications.

Our solution is not complete, as only a subset of MPI point-to-point communication
primitives have been considered. However, it is a novel combination of three key aspects: the
adoption of a formal lightweight approach for rapid prototyping of MPI applications, the use
of a formal model (in CSP and LOTOS) to specify MPI applications and the identification
of a strategy for verifying MPI applications that works with partial implementation codes.
Other contributions include the automatic generation of skeletons of MPI applications and
the presentation of deadlock sequences if deadlock is detected.

A key next step in this research is to extend ArcMPI to allow the definition of alter-
native event sequences, to explicitly indicate the termination of a component, and to allow
the definition of uni-directional and typed ports. These extensions will be useful for un-
derstanding and eliminating some connection errors (e.g., input port to input port). Alter-
natively, we are also planning to integrate the current solution with other verification en-
gines like MPI-Spin [31]. Future extensions include additional interaction patterns such as
request-reply, publish/subscribe, and MPI collective communication operations. The moti-
vation of this work came from experience in programming in MPI using FG-MPI [32,33]
and the design of exascale-like applications with thousands and potentially millions of pro-
cesses [34,35]. This work is an important step in externalising the communication inside MPI
programs to allow for both verification and performance portability through mapping the
application processes onto large compute clusters. There remains challenges in addressing
scalability in both verification, representation and mapping.

Acknowledgements

We gratefully acknowledge the contribution of the anonymous reviewers whose invaluable
comments significantly improved the paper.

82 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

References

[1] MPI Forum. Message-passing interface standard. http://www.mpi-forum.org/.
[2] Sarvani Vakkalanka. Efficient Dynamic Verification Algorithms for MPI Applications. PhD thesis, Salt

Lake City, UT, USA, 2010.
[3] Umberto Souza da Costa, Ivan Soares de Medeiros Junior, and Marcel Vinicius Medeiros Oliveira. Speci-

fication and Verification of a MPI Implementation for a MP-SoC, volume 6255 of Lecture Notes in Com-
puter Science, pages 168–183. 2010.

[4] Kohei Honda, Eduardo Marques, Francisco Martins, Nicholas Ng, Vasco Vasconcelos, and Nobuko
Yoshida. Verification of MPI Programs Using Session Types. In JesperLarsson Traff, Siegfried Benkner,
and Jack Dongarra, editors, Recent Advances in the Message Passing Interface, volume 7490 of Lecture
Notes in Computer Science, pages 291–293. Springer Berlin Heidelberg, 2012.

[5] Igor Grudenic and Nikola Bogunovic. Modeling and Verification of MPI Based Distributed Software.
In Bernd Mohr, JesperLarsson Traff, Joachim Worringen, and Jack Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, volume 4192 of Lecture Notes in Computer
Science, pages 123–132. Springer Berlin Heidelberg, 2006.

[6] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke. Combining Symbolic Ex-
ecution with Model Checking to Verify Parallel Numerical Programs. ACM Trans. Softw. Eng. Methodol.,
17(2):10:1–10:34, May 2008.

[7] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Muller. MPI Run-
time Error Detection with MUST: Advances in Deadlock Detection. Scientific Programming, 21(3):109–
121, 2013.

[8] Bettina Krammer, Tobias Hilbrich, Valentin Himmler, Blasius Czink, Kiril Dichev, and MatthiasS. Mller.
MPI Correctness Checking with Marmot. In Michael Resch, Rainer Keller, Valentin Himmler, Bettina
Krammer, and Alexander Schulz, editors, Tools for High Performance Computing, pages 61–78. Springer
Berlin Heidelberg, 2008.

[9] J.S. Vetter and B.R. de Supinski. Dynamic Software Testing of MPI Applications with Umpire. In Super-
computing, ACM/IEEE 2000 Conference, pages 51–51, Nov 2000.

[10] Sarvani S. Vakkalanka, Subodh Sharma, Ganesh Gopalakrishnan, and Robert M. Kirby. ISP: A Tool for
Model Checking MPI Programs. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’08, pages 285–286, New York, NY, USA, 2008. ACM.

[11] Anh Vo, Sarvani Vakkalanka, and Ganesh Gopalakrishnan. ISP Tool Update: Scalable MPI Verification. In
Matthias S. Mller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel, editors, Tools for High
Performance Computing 2009, pages 175–184. Springer Berlin Heidelberg, 2010.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1985.

[13] David Garlan and Mary Shaw. An Introduction to Software Architecture. Technical Report CMU-CS-94-
166, Carnegie Mellon University, January 1994.

[14] Victor R. Basili, Jeffrey C. Carver, Daniela Cruzes, Lorin M. Hochstein, Jeffrey K. Hollingsworth, For-
rest Shull, and Marvin V. Zelkowitz. Understanding the High-Performance-Computing Community: A
Software Engineer’s Perspective. IEEE Software, 25(4):29–36, 2008.

[15] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen Siegel, Rajeev Thakur, William Gropp, Ewing Lusk,
Bronis R. De Supinski, Martin Schulz, and Greg Bronevetsky. Formal Analysis of MPI-based Parallel
Programs. Communications of the ACM, 54(12):82–91, 2011.

[16] Jayant DeSouza, Bob Kuhn, Bronis R. de Supinski, Victor Samofalov, Sergey Zheltov, and Stanislav
Bratanov. Automated, Scalable Debugging of MPI Programs with Intel Message Checker. In Proceedings
of the Second International Workshop on Software Engineering for High Performance Computing System
Applications, SE-HPCS ’05, pages 78–82, New York, NY, USA, 2005. ACM.

[17] Valerie Issarny, Mauro Caporuscio, and Nikolaos Georgantas. A Perspective on the Future of Middleware-
based Software Engineering. In Proc. Future of Software Engineering FOSE ’07, pages 244–258, 23–25
May 2007.

[18] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS. Computer Net-
works and ISDN Systems, 14:25–59, 1987.

[19] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe. FDR3: a Parallel
Refinement Checker for CSP. International Journal on Software Tools for Technology Transfer, pages
1–19, 2015.

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 83

[20] Hubert Garavel, Frdric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: a Toolbox for the Con-
struction and Analysis of Distributed Processes. International Journal on Software Tools for Technology
Transfer, 15(2):89–107, 2013.

[21] Nelson Rosa, Humaira Kamal, and Alan Wagner. A LOTOS-based Lightweight Approach to Formally
Verify MPI Applications. Technical report, Universidade Federal de Pernambuco, Centro de Informática,
2015. http://gfads.cin.ufpe.br/bib/Rosa2015.pdf.

[22] Adam Sampson. Process-Oriented Patterns for Concurrent Software Engineering. PhD thesis, Computing,
University of Kent, CT2 7NF, September 2008.

[23] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R. de Supinski, and Matthias S. Muller. MPI
Runtime Error Detection with MUST: Advances in Deadlock Detection. In Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages
30:1–30:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[24] Stephen F. Siegel and Ganesh Gopalakrishnan. Formal Analysis of Message Passing, volume 6538 of
Lecture Notes in Computer Science, pages 2–18. 2011.

[25] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2004.
[26] A Vo, S. Aananthakrishnan, G. Gopalakrishnan, B.R. de Supinski, M. Schulz, and G. Bronevetsky. A

Scalable and Distributed Dynamic Formal Verifier for MPI Programs. In High Performance Computing,
Networking, Storage and Analysis (SC), 2010 International Conference for, pages 1–10, Nov 2010.

[27] Stephen F. Siegel and Timothy K. Zirkel. Automatic Formal Verification of MPI-Based Parallel Programs.
ACM Sigplan Notices, 46(8):309–310, 2011.

[28] Nicholas Ng, Jose G.F. Coutinho, and Nobuko Yoshida. Protocols by Default: Safe MPI Code Generation
based on Session Types. In CC 2015, volume 9031 of LNCS, pages 212–232. Springer, 2015.

[29] N. Ng and N. Yoshida. Pabble: Parameterised Scribble for Parallel Programming. In Parallel, Distributed
and Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on, pages 707–
714, Feb 2014.

[30] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types. SIGPLAN
Not., 43(1):273–284, January 2008.

[31] Stephen F. Siegel and George S. Avrunin. Verification of Halting Properties for MPI Programs Using Non-
blocking Operations. In Franck Cappello, Thomas Herault, and Jack Dongarra, editors, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, volume 4757 of Lecture Notes in Computer
Science, pages 326–334. Springer Berlin Heidelberg, 2007.

[32] Humaira Kamal and Alan Wagner. An Integrated Fine-Grain Runtime System for MPI. Computing,
96(4):293–309, 2014.

[33] Humaira Kamal and Alan Wagner. Added Concurrency to Improve MPI Performance on Multicore. In
Parallel Processing (ICPP), 2012 41st International Conference on, pages 229 –238, Sept. 2012.

[34] Sarwar Alam, Humaira Kamal, and Alan Wagner. Service Oriented Programming in MPI. In Communi-
cating Process Architectures 2013, pages 93–112. Open Channel Publishing Ltd., England, August 2013.

[35] Sarwar Alam, Humaira Kamal, and Alan Wagner. A Service-oriented Scalable Dictionary in MPI. In
Communicating Process Architectures 2014. Open Channel Publishing Ltd., England, August 2014.

84 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

Appendices

Appendix A1: Modelling of SendRecvSync in CSP

Here is the complete specification of SendRecvSync (outlined in Figure 6, Section 2.4).

SendRecvSync(s) =

 t1.MPI_Send?msg?ct?dt?src:s?dst:s?tag?comm

 -> SendRecvSyncT1'(s,msg,ct,dt,dst,src,tag,comm)

 []

 t1.MPI_Recv?msg?ct?dt?src:s?dst?tag?comm?sta

 -> SendRecvSyncT1''(s,msg,ct,dt,dst,src,tag,comm,sta)

 []

 t2.MPI_Send?msg?ct?dt?src:s?dst?tag?comm

 -> SendRecvSyncT2'(s,msg,ct,dt,dst,src,tag,comm)

 []

 t2.MPI_Recv?msg?ct?dt?src:s?dst?tag?comm?sta

 -> SendRecvSyncT2''(s,msg,ct,dt,dst,src,tag,comm,sta)

SendRecvSyncT1'(s,msg,ct,dt,src,dst,tag,comm) =

 t2.MPI_Recv?msg?ct?dt!src?ip2:diff(s,{src})!tag!comm!0

 -> SendRecvSync''''(s)

SendRecvSyncT2'(s,msg,ct,dt,src,dst,tag,comm) =

 t1.MPI_Recv?msg?ct?dt!src?ip2:diff(s,{src})!tag!comm!0

 -> SendRecvSync''''(s)

SendRecvSyncT1''(s,msg,ct,dt,src,dst,tag,comm,sta) =

 t2.MPI_Send!msg!ct!dt!src?ip2:diff(s,{src})!tag!comm

 -> SendRecvSync''''(s)

SendRecvSyncT2''(s,msg,ct,dt,src,dst,tag,comm,sta) =

 t1.MPI_Send!msg!ct!dt!src?ip2:diff(s,{src})!tag!comm

 -> SendRecvSync''''(s)

SendRecvSync''''(s) =

 (t1!MPI_SUCCESS -> SKIP) ||| (t2!MPI_SUCCESS -> SKIP);

 SendRecvSync(s)

N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications 85

Appendix A2: Completed Prime Sieve Application

Figure 12 repeats the prime sieve module (Figure 7) together with a print module, Out, where
the many-to-one port of the prime sieve module connects to the print module by a T2 connec-
tor. The T2 connector as implemented provides a many-to-one unordered connection.

Generator Prime Prime Last

Out

right left rightleftright left

Prime Number Sieve

T1t1 t2T1t1 t2 T1t1 t2

in

outoutout out

T2t1 t2

Figure 12. Prime sieve module, as in Figure 7, connected to a print module.

Every number sent on a right port in Figure 7 is acknowledged by a Boolean signal sent
by the process on its right: this conforms to the SendRecvSync pattern. The first number re-
ceived by a Prime process is prime: it acknowledges this with FALSE, remembers the prime
and outputs the value to its out port. Subsequent numbers received are also acknowledged
with FALSE unless, having forwarded that number (because it was not divisible by its prime),
it receives a TRUE acknowledgement. The TRUE acknowledgement signals termination: it
passes this signal to the process on its left, as acknowledgement of the number received, and
then terminates. The Last process simply acknowledges the first number (a prime) it receives
with TRUE, sends the number to its out port and terminates. Using FDR, this termination can
be verified not to result in deadlock.

The out port is a many-to-one port that uses MPI ANY SOURCE to receive a prime number
from any of the sieve processes. Because of the process codings (Figure 13), one prime only
will arrive from each process in strict left-to-right order of the processes as drawn in Figure 12
(and they will be in ascending order with no primes missed).

86 N.S. Rosa et al. / Towards Lightweight Formal Development of MPI Applications

#include "outP.h"

/* output process to receive and print all of the primes */

PROCESS out(MPI_Comm groupcomm, PROCESSVARS *pargs, PROCESSPORTS *ports) {

 int size, myprime=0;

 MPI_Status status;

 MPI_Comm_size(ports->in.out,&size); // ANY-PORT

 while (--size) {

 MPI_Recv(&myprime,1,MPI_INT,MPI_ANY_SOURCE,0,ports->in.out,&status);

 printf("%d\n",myprime);

 }

 pargs->shutdown = TRUE;

 return 0;

}

#include "firstP.h"

/* generates a sequence of odd numbers */

PROCESS generator(MPI_Comm groupcomm, PROCESSVARS *pargs, PROCESSPORTS *ports) {

 MPI_Status status;

 int myprime = 2, number = 3, stop = FALSE;

 MPI_Send(&myprime,1,MPI_INT,ports->out.src,0,ports->out.in);

 while (!stop) {

 MPI_Send(&number,1,MPI_INT,ports->right.dst,0,ports->right.out);

 MPI_Recv(&stop,1,MPI_INT,ports->right.src,0,ports->right.in,&status);

 number = number+2;

 }

 pargs->shutdown = TRUE;

 return 0;

}

#include "middleP.h"

PROCESS prime(MPI_Comm groupcomm, PROCESSVARS *pargs, PROCESSPORTS *ports) {

 MPI_Status status;

 int number, myprime, stop = FALSE;

 MPI_Recv(&myprime,1,MPI_INT,ports->left.src,0,ports->left.in,&status);

 MPI_Send(&stop,1,MPI_INT,ports->left.dst,0,ports->left.out);

 MPI_Send(&myprime,1,MPI_INT,ports->out.src,0,ports->out.in);

 while (!stop) {

 MPI_Recv(&number,1,MPI_INT,ports->left.src,0,ports->left.in,&status);

 if (number % myprime != 0) {

 MPI_Send(&number,1,MPI_INT,ports->right.dst,0,ports->right.out);

 MPI_Recv(&stop,1,MPI_INT,ports->right.src,0,ports->right.in,&status);

 }

 MPI_Send(&stop,1,MPI_INT,ports->left.dst,0,ports->left.out);

 }

 pargs->shutdown = TRUE;

 return 0;

}

#include "lastP.h"

PROCESS last(MPI_Comm groupcomm, PROCESSVARS *pargs, PROCESSPORTS *ports) {

 MPI_Status status;

 int myprime, stop = TRUE;

 MPI_Recv(&myprime,1,MPI_INT,ports->left.src,0,ports->left.in,&status);

 MPI_Send(&stop,1,MPI_INT,ports->left.dst,0,ports->left.out);

 MPI_Send(&myprime,1,MPI_INT,ports->out.src,0,ports->out.in);

 pargs->shutdown = TRUE;

 return 0;

}

Figure 13. C code of processes implementing the prime number sieve.

