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Abstract. Fault trees (FT) are a popular industrial method for reli-
ability engineering, for which Monte Carlo simulation is an important
technique to estimate common dependability metrics, such as the system
reliability and availability. A severe drawback of Monte Carlo simulation
is that the number of simulations required to obtain accurate estimations
grows extremely large in the presence of rare events, i.e., events whose
probability of occurrence is very low, which typically holds for failures
in highly reliable systems.
This paper presents a novel method for rare event simulation of dynamic
fault trees with complex repairs that requires only a modest number
of simulations, while retaining statistically justified confidence intervals.
Our method exploits the importance sampling technique for rare event
simulation, together with a compositional state space generation method
for dynamic fault trees.
We demonstrate our approach using two parameterized sets of case stud-
ies, showing that our method can handle fault trees that could not be
evaluated with either existing analytical techniques, nor with standard
simulation techniques.

1 Introduction

The rapid emergence of robots, drones, the Internet-of-Things, self-driving cars
and other inventions, increase our already heavy dependence on computer-based
systems even further. Reliability engineering is an important field that provides
methods, tools and techniques to identify, evaluate and mitigate the risks re-
lated to complex systems. Moreover, asset management is currently shifting to-
wards reliability-centered, a.k.a. risk-based, maintenance. This shift also requires
a good understanding of the risk involved in the system, and of the effects of
maintenance on the reliability. Fault tree analysis (FTA) is one of the most im-
portant techniques in that field, and is commonly deployed in industry ranging
from railway and aerospace system engineering to nuclear power plants.

A fault tree (FT) is a graphical model that describes how failures propagate
through the system, and how component failures lead to system failures. An FT
is a tree (or rather, a directed acyclic graph) whose leaves model component
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failures, and whose gates model how failures propagate through the system, and
lead to system failures. Standard (or: static) FTs (SFTs) contain a few basic
gates, like AND and OR, making them easy to use and analyze, but also limited
in expressivity. To cater for more complex dependability patterns, like spare
management and causal dependencies, a number of extensions to FTs have been
proposed.

One of the most common and widely used extensions is the dynamic fault
tree (DFT) [7]. It provides support for common patterns in system design and
analysis, at the cost of requiring more memory- and time-intensive analysis tech-
niques. More recently still, maintenance has been integrated into DFTs support-
ing complex policies of inspections and repairs [9]. This development has again
increased the memory and time needed to analyze, to the point where many
practical system cannot be analyzed on current systems in a reasonable time.

One approach to combat the complexity of analysis is to switch from ana-
lytic techniques to simulation. By not constructing the entire state space of the
system, but only computing states as they are visited, memory requirements are
minimal and computation time can be greatly reduced. This approach can be
successfully applied to industrial systems [19], but presents a challenge when
dealing with highly reliable systems: If failures are very rare, many simulations
are required before observing any at all, let alone observing enough to compute
statistically justified error bounds.

This problem in simulating systems with rare events can be overcome through
rare-event simulation techniques, first developed in the 1950’s [12]. By adjusting
the probabilities to make failures less rare, and subsequently calculating a cor-
rection for this adjustment, statistically justified results can be obtained from
far fewer simulations than would otherwise be needed.

We present a novel approach to analyzing DFTs with maintenance through
importance sampling. We adapt the recently-developed Path-ZVA algorithm [18]
to the settings of DFTs. We retain the existing compositional semantics by
Boudali et al. [4] already used in current tools [1]. Using two case studies, we show
that our approach can simulate DFTs too large for other tools with events too
rare for traditional simulation techniques. Thus, our approach has clear benefits
over existing numerical tools, and tools without rare event simulation: We can
analyze larger DFTs, producing results quicker and obtain narrow confidence
intervals.

Related work. Apart from DFTs and repairs, many more extensions have
been developed. For an overview we refer the reader to [20]. Most current FTA
formalisms support repairs using per-component repair times [22]. More com-
plicated policies can be specified using repair boxes [2] or the Repairable Fault
Tree extension [6], however both of these require exponentially distributed failure
times of components where our approach allows Erlang distributions.

A wide range of analysis techniques exist as well, again summarized in [20].
Standard simulation methods date back to 1970 [23], continuing to be developed
until the present day [19]. Rare event simulation has been used to estimate
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system reliability since 1980 [13] and is still applied today [16], although, to
our surprise, we know of not aware of approach applying rare event simulation
specifically to fault trees. An overview of importance sampling techniques in
general can be found in [10].

Organization of the paper. This paper first explains fault trees, DFTs, and
repairable DFTs in Sect. 2. Sect. 3 describes rare event simulation, and the
Path-ZVA algorithm used in our approach. Next, our adaptation of rare event
simulation to DFTs is explained in Sect. 4. Our case studies with their results
are shown in Sect. 5, before concluding in Sect. 6.

2 Fault tree analysis

Fault tree analysis is an industry-standard [11], widely used method for graphi-
cally modeling systems and conducting reliability and safety analysis [22]. Fault
trees (FTs) model how component failures interact to cause system failures.
They assist in the evaluation of a wide number of dependability metrics, includ-
ing the system reliability (i.e., the probability that the system fails within its
given mission time) and the availability (i.e., the average percentage of time that
a system is up).

An FT is a directed acyclic graph where the leaves describe failures modes,
called basic events (BEs), at a component level. Gates specify how the failures
of their children combine to cause failures of (sub)systems. The root of the FT,
called the top level event (TLE), denotes the failure of interest.

2 or more cabinets failing

2 cabinets fail with different causes 2 high voltage cabinets fail

2/n

2 relay cabinets fail

2/n

. . .Relay
cabinet 1

Relay
cabinet n

. . .HV
cabinet 1

HV
cabinet n

Relay cabinet
fails

HV cabinet
fails

. . .Relay
cabinet 1

Relay
cabinet n

. . .HV
cabinet 1

HV
cabinet n

Fig. 1: Example fault tree of the relay cabinet case study. Due to redundancy,
the system can survive the failure of any single cabinet, however two failures
cause system unavailability. The number of cabinets varies, and is indicated by
n.
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Standard, also called static, fault trees have boolean connectors as gates.
These are the AND-, OR-, and VOT(k)-gates, which fail when all, any, or at least
k of their children fail, respectively. The leaves of the tree are typically described
with either simple probabilities describing the probability of failing within a time
window of interest or the probability of being failed at any particular time, or
with exponential failure rates describing the probability of failure before any
given time. If components are repairable, the repair time in a standard fault tree
is typically also given as an exponential rate.

An example of such a tree is shown in Fig. 1. This FT describes a case
study from [9], modeling part of the interlocking system of a railway corridor.
It consists of relay and high voltage cabinets, with redundancy to survive the
failure of any single cabinet of each type. In the figure, the TLE is the OR-gate
at the top. Its children are two VOT(2)-gates and an AND-gate. The leaves of
the tree are the BEs describing the failures of individual relay and high voltage
cabinets.

Classic quantitative analysis techniques for static fault trees include the com-
putation of:

– the probability of the TLE before a given time (called the system reliability),
– the expected percentage of time the system is functioning (the availability),
– the components that make the largest contributions to these metrics,
– and the sensitivity of these metrics to the parameters of the BEs.

For a more complete overview of analysis techniques, we refer the reader to [20].

2.1 Dynamic and repairable fault trees

Over the years, many extensions to FTs have been developed [20]. One of the
most prominent extension is the dynamic fault trees (DFT) model [7]. DFTs in-
troduce several new gates to cater for common patterns in dependability models:
(1) The priority-AND (PAND) models order-dependent effects of failures. It fails
if and only if its left child fails and then its right child. This is used e.g. to model
the difference between a fire detector failing before or after a fire starts. (2) The
SPARE gate, modeling a primary component with one or more spare elements.
The spare elements can have different failure rates when they are in use, and can
be shared between multiple gates. Shared spare elements can only be used by
one gate at any time. (3) The functional dependency (FDEP) gate which causes
all of its children to fail when its trigger fails. It is used e.g. to model common
cause failures, such as a power failure disabling many components.

Many practical systems are not just built and then left on their own, in-
stead repairs and maintenance are often performed to keep a system functioning
correctly and correct failures when they occur. This maintenance is crucial to
the dependability of the system, as it can prevent or delay failures. It is there-
fore important to consider the maintenance policy when performing reliability
analysis.

Standard fault trees support only simple policies of independent repairs with
exponentially distributed repair times starting immediately upon component
failure [22]. Various extensions provide more complex policies, describing that
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Fig. 2: Basic event with multiple degradation
phases.

some repairs occur in sequen-
tial order rather than in par-
allel [2], or complex mainte-
nance policies with preventive
inspections and repairs [19].

Dynamic fault trees sup-
port both the simple model
with independent, exponentially distributed repair times, and more complex
policies with periodic inspections and/or repairs [9]. In the more complex poli-
cies, BEs can progress through multiple phases of degradation, as depicted in
Fig. 2. An inspection periodically checks whether its BEs have degraded be-
yond some threshold phase, and returns them to their undegraded phase if they
have. A periodic replacement simply returns its BEs to their undegraded phase
periodically.

2.2 Compositional semantics

The analysis used in this paper follows the compositional semantics in terms
of input/output interactive Markov chains given in [4]. This compositional ap-
proach converts each element of the DFT (i.e., gate and basic event) to an
I/O-IMC, and composes these models to obtain one large I/O-IMC for the en-
tire DFT. Intermediate minimization helps keep the size of the state-space to a
minimum allowing the analysis of larger models.

Input/Output Interactive Markov Chains
I/O-IMCs are a modeling formalism combining continuous-time Markov chains
with discrete actions (also called signals). They have the useful property of being
composable, as the signals allow several I/O-IMCs to communicate [4].

An I/O-IMC consists of states and transitions between states. The transitions
are divided into four categories:

– Markovian transitions occur independently of other models. The time at
which the transition is taken is governed by an exponential distribution with
a given rate. Markovian transitions are denoted by their transition rate,
usually denoted by a Greek letter.

– Internal actions occur independently of other models, and are taken imme-
diately when their origin state becomes active. They are denoted by a name
followed by a semicolon, e.g., ‘a;’.

– Input actions occur when a parallel model takes the corresponding output
action. They are denoted by a name followed by a question mark, e.g., ‘b?’.

– Output actions can occur immediately when their origin state becomes ac-
tive. An output transition causes all parallel models to take the correspond-
ing input transition. Output transitions are denoted by a name followed by
an exclamation mark, e.g., ‘b!’.

If multiple internal or output transitions can be taken from a state, which
transition is taken is nondeterministic.
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Fig. 3: Example of the partial parallel composition of two I/O-IMCs.

Figure 3 shows a part of the parallel composition of two I/O-IMCs. In the
composed model, the component models all begin in their initial states. From t0
the transition ‘b?’ cannot be taken unless the output transition ‘b!’ is also taken,
so both initial states can only perform their Markovian transitions. Assuming
the leftmost model takes its transition with rate λ first, the composition enters
state s1, t0. From here, two options are possible: (1) the internal action ‘a;’ from
s1 to s2 can be taken, leaving the rightmost model in state t0, or (2) the output
transition ‘b!’ from s1 to s3 can be taken together with the input transition
‘b?’ from t0 to t1. In the latter case, the composed model takes a transition
‘b!’ allowing it to be composed with yet more models, and enters state s3, t1,
from which neither component model can take further transitions. If the internal
action was taken, the transition from t0 to t2 with rate µ remains possible, leading
to the terminal state s2, t2.

3 Rare event simulation

Performance measures in practical problems often depend on events which occur
only rarely. Estimating probabilities of such rare events using standard stochas-
tic simulation is not efficient: with a limited amount of available simulation runs,
the event of interest will either not be observed at all, or not sufficiently often
to draw statistically sound conclusions. To deal with this, rare-event simulation
techniques have been developed, which modify the model or the simulation pro-
cedure in such a way that the event of interest occurs more frequently, and then
compensate mathematically for this modification.

There are two main approaches to rare event simulation, namely splitting and
importance sampling, both of which go back to the early days of computing [12].
In this paper, we use importance sampling; see [10] for a survey. In importance
sampling, the probability distributions of the random variables in the model
are modified to make the target event occur more frequently. Every time the
simulator draws a sample from a random variable, a so-called likelihood ratio
is updated, to keep track of the error being made. In standard simulation, the
estimator for the target probability would be γ̂ =

∑N
i=1 Ii, where the sum is

over all N samples or sample paths drawn, and Ii is the indicator of the target
event having occurred on the ith sample(path). In importance sampling, the

estimator is changed to γ̂ =
∑N

i=1 IiLi. Here Li is the likelihood ratio of the ith
sample(path), defined as its probability under the original probability measure
divided by its probability under the modified measure.
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Change of measure. The challenge in importance sampling is to find a good way
to change the probability distribution, also called a change of measure (CoM).
Generally, transitions (e.g., component failures) that bring the system closer to
the target state (e.g., system failure), should be made more likely and vice versa.
However, a bad choice can lead to an estimator which is worse than the standard
simulation, e.g., by putting too much emphasis on parts of the state space that
are not relevant; this can even lead to estimators that are biased or have infinite
variance. On the other hand, the theoretically optimal choice leads to an estima-
tor with zero variance. Calculating a zero variance estimator, however, requires
that we already know the probability of interest, and is therefore unfeasible.

The Path-ZVA algorithm. Many different methods have been proposed to find
a good change of measure; in this paper, we exploit the Path-ZVA algorithm
[18,17]. This algorithm is well suited for DFT simulation since it works fully
automated for a large class of Markov chain models with provably good perfor-
mance, and it does not require the entire state space to be constructed. Rather,
the only input needed is a function which, given a state, returns to the outgoing
transitions, together with the associated rates. The simulator can then estimate
probabilities of events of the form “reaching state (or set of states) A, starting
from state B, and before returning to state C”, where C must be a state that
is reached frequently. Also (but related) it can estimate the fraction of time the
system spends in states (or set of states) A. In either case, an estimate and a con-
fidence interval are returned. As such, these capabilities of Path-ZVA fit very well
to estimating the unavailability of a system composed of several components, as
typically described using dynamic fault trees, under the restrictions that there
are repairs (so state C in the above can be the state where all components are
up), and that all failure and repair processes are Markovian.

Like many other recent algorithms, the Path-ZVA algorithm starts with a
numerical approximation of the probability of interest, and then computes a CoM
from that approximation, using the formula that could be used for computing
the zero-variance CoM if the true probability of interest were known. Some other
examples of this approach in the context of modeling highly reliable Markovian
systems include [3] and [15]. All of this builds on parameterizing the model’s
rates in terms of powers of some rarity parameter ε, an idea that goes back to
[21] where a heuristic CoM was proposed.

In the case of Path-ZVA, the approximation of the probability of interest
consists of summing the contribution of only the most important paths to the
event of interest; hence the name Path-ZVA: zero-variance approximation based
on exploring these dominant paths. Each possible path to the event of interest
consists of a number of transitions of the Markov chain, each of which has a
rate parameterized by ε. The dominant paths are those whose transitions have
the lowest total power of ε and are thus dominant in the limit of small ε. These
are found by running a graph analysis algorithm, which needs to explore only
a small subset of the state space (typically several orders of magnitude smaller
than the full state space). For more details see [18]. Under mild conditions, it
can be proven that the method leads to estimators having the nice property of
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Bounded Relative Error. This means that as the event of interest gets rarer due
to rates in the model being chosen smaller, the estimator’s confidence interval
width shrinks proportionally with the probability of interest, making its relative
error bounded (cf. [14]).

Other approaches. Compared to other importance sampling based approaches,
(e.g. [21], [15], [5]) the Path-ZVA has the advantage of dealing well with models
having so-called high-probability cycles and having provable efficiency properties
in the limit of very small ε, thus avoiding the issues of bias and large or infinite
variance mentioned above. Splitting-based approaches have not been considered
in this paper because they tend to be less suitable for models where the rare
target event is reached via only a few transitions each having a low rate, since
such models provide fewer points where sample paths can be split.

4 Rare event simulation for fault trees

To develop a rare event simulation technique for repairable FTs and DFTs, we
need to convert the FT into a Markov chain. For this purpose, we follow the
semantics of [4], describing the behavior of a DFT as an I/O-IMC. A major
benefit of this approach is that the I/O-IMC is not constructed as one large
model, but as a parallel composition of many smaller I/O-IMCs, each modeling
one element (i.e., gate, basic event, or maintenance module) of the DFT.

Overall, given a DFT, our analysis technique consists of the following steps:

1. Use DFTCalc to compute I/O-IMCs for all elements of the DFT.
2. Perform a breadth-first search of the Markovianized composition (explained

in Sections 2.2 and 4.1) of these elements to identify the smallest number of
rare transitions needed to reach a failed state, called d.

3. Continue the breadth-first search to find all paths that reach a failed state
within d rare transitions.

4. Apply the Path-ZVA algorithm (explained in Section 3) to adjust the tran-
sition probabilities and compute the corresponding likelihood ratios. Since
only the above-mentioned paths receive altered probabilities, the rest of the
model can be computed on-the-fly.

5. Sample traces of the adjusted model, ending each trace when it returns to
the initial state, storing the likelihood ratio, total time, and time spent in
unavailable (i.e., failed) states.

6. Average the total time D and unavailable time Z of the traces, multiplied
by the likelihood ratios. Now Z/D is the output estimated unavailability.

4.1 Reducing I/O-IMCs to Markov Chains

In most settings, I/O-IMCs are analyzed by computing the parallel composition
of the full system, and analyzing this model using a standard model checker
[1]. Our setting often produces models too large to compute the full parallel
composition, so we use Monte Carlo simulation in which we can compute visited
states on-the-fly.
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Our technique requires that the (composed) I/O-IMC be reduced to a Markov
Chain. We do so by performing the following steps for each visited state:

1. Collect the outgoing transitions from all component models from their cur-
rent states.

2. Merge input and output transitions that synchronize, leaving the resulting
transitions an output transition.

3. Remove any remaining input transitions, as they cannot be taken without
the corresponding output transition.

4. Remove any non-Markovian transitions that produce a cycle.
5. If any non-Markovian transitions remain, take this transition and return to

step 1 from the new state.

On the conclusion of this procedure, we have reached a state with only Markovian
transitions, which can be used as an input for the Monte Carlo simulation.

This process also resolves any nondeterminism in the model, although it is
undefined which transition is taken in nondeterministic states. In most reason-
able DFT models, the only source of nondeterminism is the order in which gates
fail when an element has multiple parents. Such nondeterminism is spurious, in
that it has no effect on the outcome of the analysis. It is therefore acceptable to
leave the exact resolution undefined.

In models where nondeterminism can actually affect the results of the analy-
sis, our determinisation is clearly not desirable. We therefore apply our analysis
only on DFTs in which a syntactic check rules out the possibility of non-spurious
nondeterminism.

4.2 Tooling

For our analysis, we use the models of the DFT elements produced by DFTCalc,
as well as its description of how to compose them. This way, we ensure that our
semantics are identical to those used in the existing analysis. Fig. 4 shows the
operation of DFTCalc and our FTRES tool. Before DFTCalc calls the CADP [8]
tool to compute the composition, we use CADP to translate each element into
a parsable model file. We then combine these models and apply the importance
sampling algorithm to compute the unavailability of the model.

DFT dft2lntc .exp

.lnt

.svl

.exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ctmdpi

.lab

.ma

MRMC

IMCA

DFTCalc

dft2lntc .exp

.lnt

.svl

.exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ctmdpi

.lab

.ma

MRMC

IMCA

Reliability

CADP
.exp

.aut

.exp

.aut
Importance sampling Availability

FTRES

CADP
.exp

.aut

.exp

.aut
Importance sampling Availability

Fig. 4: The DFTCalc and FTRES tool-chains.
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5 Case studies

To investigate the effectiveness our method, we compare FTRES to both a
standard Monte Carlo simulator (MC) without importance sampling built into
FTRES, and to the DFTCalc tool, which evaluates DFTs numerically via stochas-
tic model checking. We analyze two case studies, for a number of different pa-
rameters. The first case is an industrial case study from railway signaling [9].
The second case models a fault-tolerant parallel processor (FTPP) and is a well-
known benchmark from the literature [7].

Experimental setup. For each of the cases, we compute the unavailability (ex-
act for DFTCalc, 95% confidence interval for FTRES and MC). We measure the
time taken with a time-out of 48 hours, and the memory consumption in number
of states (which is negligible for MC). For DFTCalc we measure both peak and
final memory consumption. Simulations by FTRES and MC were performed for
10 minutes.

For both cases, we model the the failure times of the basic events via an
Erlang distribution where the number of phases P is a parameter ranging from
1 to 3 phases; obviously, P = 1 corresponds to the exponential distribution.

All experiments were conducted on a dual 2.26 GHz Intel R© Xeon R© E5520
processor and 24 GB of RAM.

5.1 Railway cabinets

This case models a redundant system of relays and high-voltage cabinets used in
railway signaling and provided by the railroad consultancy company Movares.

The FT, shown in Fig. 1, describes the relays and high voltage systems
controlling a railway section. The relays are used to interface the electrically-
powered systems such as switch motors with remote operating stations. They
are also crucial for the safety of the trains, as they prevent multiple signals
allowing trains onto already-occupied tracks, switches moving while trains are
passing, and other safety violations. The high voltage cabinets provide power for
local systems such as switches and signals.

We consider several variants of the FT for given parameter values. We aug-
ment the FT with a periodic inspection restoring any degraded basic events to
perfect conditions. The time between executions of this action is governed by an
Erlang distribution with two phases, and a mean time of half a year. We vary
the number of cabinets in the system from 2 to 4.

Table 1 shows the results of the FTRES and DFTCalc and the MC tool.
We note that, whenever DFTCalc is able to compute an analytic result, this
result lies within the confidence interval computed by FTRES. We further see
that the 2-phase models with 4 cabinets, and the 3-phase models with 3 or 4
cabinets could not be computed by DFTCalc within the time-out (times shown
in Fig. 5), while FTRES still produces usable results. Finally, while the standard
Monte Carlo simulation produces reasonable results for the smaller models, on
the larger models it computes much larger confidence intervals. For the largest
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Table 1: Comparison of the unavailabilities computed by DFTCalc, FTRES,
and MC simulation for the case studies with N cabinets/processor groups.

Unavailability
N P DFTCalc FTRES MC

R
a
il
w
a
y

c
a
b
in
e
ts

2 1 4.25685 · 10−4 [4.256; 4.258] · 10−4 [4.239; 4.280] · 10−4

3 1 7.71576 · 10−4 [7.713; 7.716] · 10−4 [7.694; 7.751] · 10−4

4 1 1.99929 · 10−3 [1.998; 2.000] · 10−3 [1.999; 2.004] · 10−4

2 2 4.55131 · 10−8 [4.548; 4.555] · 10−8 [1.632; 4.387] · 10−8

3 2 6.86125 · 10−8 [6.846; 6.873] · 10−8 [0.673; 1.304] · 10−7

4 2 — [2.358; 2.394] · 10−7 [2.282; 3.484] · 10−7

2 3 5.97575 · 10−12 [5.714; 6.252] · 10−12 —
3 3 — [5.724; 7.914] · 10−12 —
4 3 — [0.337; 1.871] · 10−11 —

F
T
P
P

1 1 2.18303 · 10−10 [2.182; 2.184] · 10−10 —
2 1 2.19861 · 10−10 [2.198; 2.199] · 10−10 —
3 1 2.21420 · 10−10 [2.213; 2.215] · 10−10 —
4 1 2.22979 · 10−10 [2.229; 2.230] · 10−10 [0; 2.140] · 10−8

1 2 1.76174 · 10−20 [1.761; 1.763] · 10−20 —
2 2 1.76178 · 10−20 [1.756; 1.770] · 10−20 —
3 2 — [1.673; 1.856] · 10−20 —
4 2 — [1.257; 2.553] · 10−20 —

models, the MC simulator observed no failures at all, and thus computed an
unavailability of 0.

Figure 6 shows the generated state spaces for both tools. Since FTRES only
needs an explicit representation of the shortest paths to failure, it can operate in
substantially less memory than DFTCalc. Although the final model computed
by DFTCalc is smaller due to its bisimulation minimization, the intermediate
models are often much larger. An interesting observation is that minimized state
spaces for the P = 1 models are identical except for the transition rates. This is
due to an implicit counting abstraction where the model only needs to track the
number of failed cabinets of each type before a system failure, while all states
after failure can be collapsed into one ‘wait until repair’ state.
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Fig. 5: Processing times for the different tools: Times for model generation
and model checking for DFTCalc, and for the graph search and simulation for
FTRES. Bars reaching the top of the graph reached the time-out.
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5.2 Fault-tolerant parallel processor

Computer system failure

Workstation 1 failure Workstation n failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

Fig. 7: DFT of the fault-tolerant parallel
processor. Connections between the FDEP
for B omitted for clarity, as well as the
FDEPs for groups C and S.

The second case study is taken
from the DFT literature [7], and
concerns a fault-tolerant paral-
lel computer system. This system
consists of four groups of proces-
sors, labeled A, B, C, and S. The
processors within a group are
connected by a network element,
independent for each group. A
failure of this network element
disables all connected processors.

The system also has sev-
eral workstations, each of which
contains one processor of each
group. A workstation normally
uses processors A, B, and C.
Processor S is used as a spare
when one of the others fails. If
more than one processor fails, the
workstation is down.

Repairs are conducted by a periodic replacement which restores any degraded
components to perfect condition. This replacement occurs at times following an
Erlang distribution of four phases, with a mean time of 0.5 for each phase.

The numerical results and computation times for this case study can be found
in Table 1 and Fig. 5 respectively. We note that the unavailability varies little
when increasing the number of computer groups, as the dominant sources of
failures are the network elements which do not increase with N . We again see
that FTRES continues to perform well after DFTCalc runs out of time. We do
see wider confidence intervals for the larger models, however the results remain
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usable for practical purposes. The standard MC simulation observed no failures
for most of the models.

Figure 6 lists the generated state spaces for both tools. Again, FTRES re-
quires less peak memory than DFTCalc.

5.3 Conclusions on case studies

As the sections above show, FTRES outperforms DFTCalc for larger models, and
traditional MC simulation for models with rare failures. In particular, FTRES:

– requires less memory than DFTCalc in every case, and requires less time for
large models, while still achieving high accuracy.

– can analyze models larger than DFTCalc can handle.
– gives substantially more accurate results than MC in similar processing time.

6 Conclusion

We have presented FTRES, an efficient and novel approach for rare-event simu-
lation of dynamic fault trees through importance sampling. We follow the com-
positional semantics of Boudali et al. [4] providing flexibility and extensibility.
Our use of the Path-ZVA [18] algorithm allows us to store only a small fraction
of the state space, ameliorating the problem of the state space explosion.

We have demonstrated through two case studies that our approach has clear
benefits over existing numerical tools, and tools without rare event simulation:
We can analyze larger DFTs, produce results quicker and obtain narrow confi-
dence intervals.

As future work, we intend to extend the tool to support non-spurious non-
determinism, allowing the analysis of the full space of DFTs.
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