
Generation of Service Wrapper Protocols from Choreography Specifications

Gwen Salaün
Department of Computer Science, University of Málaga, Spain

Email: salaun@lcc.uma.es

Abstract

Choreography description languages specify interac-
tions among a set of services from a global point of view.
From this description, it is possible to generate either an
orchestrator (centralized interactions), or a set of peers
or wrappers (distributed interactions). In this paper, we
present first a model of service protocols with value passing,
and an abstract choreography language to describe their
composition and adaptation. Adaptation is useful while
composing services to correct existing mismatches which
might exist between their interfaces. Given abstract de-
scriptions of services and their choreography, we propose
techniques based on encodings into process algebra to gen-
erate an orchestrator and a set of wrapper protocols. Gen-
eration of wrappers is particularly tackled in this paper be-
cause this enables the system deployment in the context of
distributed systems, and keeps at the same time a full paral-
lelism of the system execution. Our approach is completely
automated by a prototype tool we implemented.

1 Introduction

Service-oriented computing has emerged as a new pro-
gramming paradigm that aims at designing and implement-
ing software applications which interact via the exchange of
messages. The specification of the service composition or
choreography is often given from a global point of view
since it makes easier its writing and validation. From a
choreography, either an orchestrator can be generated and
deployed in a centralized way (on one specific machine), or
various peers or wrappers can be generated and distributed
on the different machines which hold the services involved
in the system, or deployed using middleware technologies.

Services are accessed through their interfaces that dis-
tinguish four interoperability levels: signature, behaviour
or protocol, quality of service and semantics. Here, we con-
sider that services are described using signatures and pro-
tocols. Protocols give the application order of method calls
and exchanged messages. We particularly focus on these

behavioural descriptions because they are crucial to avoid
erroneous executions of the system such as deadlocks.

In this paper, we propose an approach to generate ser-
vice wrapper protocols from an abstract specification of
the choreography. The choreography language we rely on
makes possible to define connectors between services, but
also more complex composition policies by specifying or-
der, choice or iteration of connectors. The set of distributed
peers are implemented as service wrappers. The wrapper
protocols (as well as the central orchestrator protocol) are
obtained in two steps. First, service interfaces, the chore-
ography specification and some constraints indicating how
to distribute it are encoded into the LOTOS process alge-
bra [15]. In a second step, wrapper protocols are computed
from this encoding using state-of-the-art exploration and re-
duction techniques that avoid the generation of the full state
space corresponding to the LOTOS specification. Our ap-
proach is completely automated by a prototype tool we im-
plemented and validated on many examples.

The wrapper generation makes possible their deploy-
ment in the context of distributed systems, and keeps at
the same time a full parallelism of the system’s execu-
tion. It also facilitates its implementation by splitting its
behavioural description into pieces (the behaviour of a cen-
tralized orchestrator can be quite complex when many ser-
vices are involved). Once the wrapper protocols are gen-
erated, they can be implemented using BPEL or Windows
Workflow Foundation [9].

The choreography language and orchestrator generation
techniques we present here go beyond service connectors
specification because they also take adaptation into ac-
count. Software adaptation [3] aims at correcting mis-
matches that appear while reusing existing services, and
have to be solved without modifying the service’s code.
Mismatch situations may be caused when message names
do not correspond, the order of messages is not respected, a
message in one service has no counterpart or matches with
several messages, exchanged parameters arrive in different
order or along different messages, etc.

The remainder of the paper is structured as follows. Sec-
tion 2 presents our model of service interfaces. Section 3

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.42

313

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.42

313

2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SEFM.2008.42

313

describes the choreography specification language. In Sec-
tions 4 and 5, we formalise the LOTOS encoding which
allows the generation of central orchestrator and wrapper
protocols. Section 6 introduces our prototype tool which
completely automates the orchestrator and wrapper gener-
ation. Finally, Section 7 compares our approach to related
work, and Section 8 ends the paper with some conclusions.

2 Model of Services

In this section, we present our model of service inter-
faces. We assume that service interfaces are given using
both a signature and a behavioural interface (or protocol).

Definition 1 (Signature) A signature Σ is a set of provided
and required operation profiles. An operation profile is the
name of an operation, along with its argument types (possi-
bly empty), and its return types (possibly empty):

op : ti1 ∗ . . . ∗ tin → to1 ∗ . . . ∗ tom

Signatures usually correspond in component-based
frameworks (e.g., .NET or J2EE) to operation profiles
described using an Interface Definition Language (IDL).
WSDL is the accepted standard in the Web services area.

Furthermore, we propose that behavioural interfaces
are represented by means of Symbolic Transition Systems
(STSs). In this paper, STSs are Labelled Transition Sys-
tems (LTSs) extended with value passing (data parameters
coming with messages). Communication between services
is represented using events relative to the emission (!) and
reception (?) of messages corresponding to operation calls.
Events may come with a set of data terms whose types re-
spect the operation signatures.

Definition 2 (Label) In our model, a label is either the in-
ternal action τ or a tuple (M,D,PL) where M is the mes-
sage name, D stands for the direction (!,?), and PL is ei-
ther a list of data terms, if the message corresponds to an
emission, or a list of variables, if the message is a reception.

Definition 3 (STS) A Symbolic Transition System (STS) is
a tuple (A,S, I, F, T) where: A is an alphabet which cor-
responds to the set of labels associated to transitions, S is a
set of states, I ∈ S is the initial state, F ∈ S are final states,
and T ∈ S ×A × S is the transition function (see [14] for
semantic aspects).

This formal model has been chosen because it is simple,
graphical, and can be easily derived from existing imple-
mentation platforms’ languages, see for instance [11, 23,
10, 9] where such abstractions for Web services were used
for verification, composition or adaptation purposes. In
some cases, for conciseness reasons for example, a textual

notation is better than a graphical one. Thus, a process al-
gebra with value passing could be used as a higher level
language to specify behavioural interfaces. STSs can be au-
tomatically obtained from these processes using the opera-
tional rules of the process algebra semantics.

Example. Throughout the paper, we will use as running
example a multi-function device service to illustrate the dif-
ferent steps of our approach. In Figure 1, we give the sig-
natures and behavioural interfaces of the different services
used in our example. Let us present first the device that may
perform several functions (print, scan, copy). This service
can receive a file (file?id,f with a person identifier and the
file as parameters) and an action (action?a) as many times
as required, and use them as input to the multi-function
device. At some point, the device can receive a termina-
tion message (halt?), send an invoice (invoice!id,inv with
the person identifier and the corresponding invoice as pa-
rameters), and the amount to pay (price!am). The bank
service can receive an invoice (invoice?y) and a payment
(payment?id coming with the person identifier) in any or-
der. Last, we introduce a client to give a full description
of one transaction for the different involved services. In
this specific case, our client can connect (connect!id), and
submit file (file!f) and action (action!x) several times until
(s)he decides to stop (halt!). Then, (s)he receives the price
(price?p) and pays for it (pay!id,p with its identifier and
the price to pay) in sequence. In the client protocol, tau
transitions stand for an internal choice made by the user.

file?id,f

file?id,faction?a

halt?
invoice!id, inv

pr ice!am
invoice?y payment?id

act ion!x

price?p

hal t !

connect! id

f i le!f

pay! id,p

payment?id invoice?y

fi le: t id * tf i le
action: tact
invoice: -> t id * t inv
price: -> real

invoice: t inv
payment: t id

connect: -> t id
f i le: -> t f i le
act ion: -> tact
price: real
pay: -> t id * real

Signature

Protocol

S ignature

Protocol

S ignature Protocol

tau
tau

Figure 1. Service interfaces: (left) multi-
function device, (right) bank, (bottom) client

314314314

3 Choreography Specification Language

In this section, we present our abstract choreography lan-
guage that allows to specify interactions (composition) and
how to work out mismatch situations (adaptation). We rely
on synchronization vectors [1] (or vector for short). They
express correspondences between messages, like bindings
between ports or connectors in architectural descriptions.
Each event appearing in a vector is executed by one service
and the overall result corresponds to an interaction between
all the involved services. A vector may involve any num-
ber of services and does not require interactions occurring
on the same names of events. Furthermore, variables are
used in events as placeholders for message parameters. The
same variable name appearing in different events (possibly
in different vectors) enables one to relate sent and received
message parameters. Vectors can be either written by hand
or obtained from a graphical description of the architecture
built by the designer.

Definition 4 (Vector) A vector for a set of service inter-
faces (Σi, (Ai, SI , Ii, Fi, Ti)), i ∈ {1, .., n}, is a tuple
〈e1; . . . ; en〉 where ei is a label term for Ai or {ε}, ε mean-
ing that the service does not participate in this synchroniza-
tion. A label term t contains the name of the operation, a
direction, and as many untyped fresh names as parameters
in the argument type list. The prefixing of messages by ser-
vice identifiers can be used in vectors in complement to ε
omission in order to yield a digest notation.

In this work, we assume a synchronous communication
model: two (or more in case of broadcast) entities synchro-
nize on one event (rendez-vous) and continue their own evo-
lution. Asynchronous communication could be modelled
describing message queues using additional services which
interact synchronously with the services they represent.

Vectors are not sufficient to describe more advanced
composition scenarios such as contextual rules, choice be-
tween vectors or ordering between them. The order in
which vectors have to be applied can be specified using dif-
ferent notations such as regular expressions, Labeled Tran-
sition Systems (LTSs), or (Hierarchical) Message Sequence
Charts. Due to their readability and user-friendliness, we
chose to specify these additional constraints using vector
LTSs, that is, LTSs whose labels are vectors (Fig. 2).

Definition 5 (Choreography specification) A chore-
ography specification for a set of service interfaces
(Σi, (Ai, Si, Ii, Fi, Ti)), i ∈ {1, .., n}, is a couple (V, L)
where V is a set of vectors, and L is a vector LTS for V .

If only message name correspondences are necessary to
solve service mismatch, the vector LTS may leave the vector
application order unconstrained using a single state and all

vector transitions looping on it. In particular, this pattern
can be used on specific parts of the vector LTS for which
the designer does not want to impose any ordering.

Example. Let us go back to our multi-function device
example. First, we specify the architecture of our system by
defining the following vectors which connect messages and
parameters included in the different service signatures:

vconn = 〈c :connect!ID〉
vfile = 〈md :file?ID,F; c :file!F〉
vact = 〈md :action?A; c :action!A〉
vhalt = 〈md :halt?; c :halt!〉
vinv = 〈md : invoice!ID, INV; b : invoice?INV〉
vprice = 〈md :price!P; c :price?P〉
vpay = 〈b :payment?ID; c :pay!ID,P〉

where for instance vector vfile means that message file?
that appears in the multi-function device interface will
match with the file! message in the client interface. In addi-
tion, placeholders relate parameters in both interfaces using
new variables; in this vector, the client identifier and the file
parameter are respectively denoted using ID and F. In some
cases, data connections are transversal to vector definitions
(ID as an example is used in various vectors).

Vectors are not enough to describe advanced composi-
tion constraints. Imagine for instance that during busy hours
the device restricts its access and limits the number of re-
quests sent by clients to two. Figure 2 gives the vector LTS
defining these constraints. The limit in the number of files
sent by the client is specified by a sequence of two applica-
tions of vector vfile. There are two final states which mean
that the client can submit files once or twice. All the other
vectors appear as looping transitions on states because they
can be applied at any moment without restriction.

vfile vfile

vs vs vs

vs = {v , v , v , v , v , v }
conn act halt inv price pay

Figure 2. Choreography specif.: vector LTS

Our choreography language is also able to solve mis-
match situations that occur between interfaces. This is the
case for instance with vector vconn where connect! in the
client does not have any correspondence in the other ser-
vices, or with vector vpay where a signature mismatch (dif-
ferent message names) has to be worked out. Vectors also
solve the various mismatches at the parameter level.

315315315

4 Orchestrator Generation

An orchestrator for a set of services is an STS running
in parallel with the service STSs and guiding their execu-
tion (all exchanged messages pass through the orchestra-
tor). In this way, if adaptations are needed, mismatches are
compensated by the orchestrator and the ordering of mes-
sages imposed by the choreography specification is guar-
anteed. Generating orchestrator protocols is a complicated
task since the orchestrator has to respect the choreogra-
phy specification taking into consideration behavioural con-
straints of services formalised into their interfaces (STSs).
In addition, protocols may generate many interleaved in-
teractions that we want to preserve so as to accept all the
possible execution orders of messages.

In this work, we chose the LOTOS process algebra [15]
to encode the systems’ composition constraints (interfaces
and choreography). Indeed, LOTOS is expressive enough
wrt. the problem at hand, and is equipped with CADP [13]
a toolbox which implements optimised state space explo-
ration techniques as well as numerous verification tools.
The LOTOS encoding enables the automatic generation of
orchestrator protocols whose traces represent all possible
(correct) interactions between services. To do so, our ap-
proach employs on-the-fly algorithms to increase, w.r.t. ex-
isting approaches, the efficiency of the orchestrator genera-
tion and reduction process by avoiding the generation of the
full state space. The LOTOS encoding also enables the ver-
ification of the orchestrator protocol by using model check-
ing tools available in CADP.

In this section, we rely on the approach presented in [17]
to encode LTSs into LOTOS, and extend it to take value
passing (in STSs and vectors) into account.

Service STS encoding. Each state s ∈ S of a service STS
sv = (A,S, I, F, T) is encoded as a process sv s with as
many branches as there are transitions outgoing from s. An
additional branch, using a specific FINAL action, models
termination when s is final (s ∈ F). As far as the encoding
of STS labels into LOTOS is concerned, we want to distin-
guish sent and received messages with a “ EM” and “ REC”
suffix. In addition, LOTOS symbols ! and ? are used to sup-
port data transfer (resp. emission and reception). In our
context, the correct distribution will be ensured by the en-
coding of the choreography constraints (see the next step
in this section), therefore all service STS labels that in-
volve value passing (emission or reception of parameters)
are translated into LOTOS with a question mark followed
by as many fresh variables as there are parameters coming
with the message. Since these variables are placeholders,
their LOTOS type can simply be an arbitrary one that we
call PH. This type is defined beforehand using the LOTOS
abstract datatype facilities with all the placeholder names
appearing in vectors defined as type constructors. Every la-

bel encoding is followed by a call to the LOTOS process
encoding the target state of the transition being translated.

process sv s [gates(sv,A), FINAL] : func(sv, s) :=

enc(sv, l1); sv s1[gates(sv,A), FINAL]

[] . . .[]

enc(sv, lm); sv sm[gates(sv,A), FINAL]

[[] FINAL; exit]

endproc

where A = {l1, . . . , lm, . . . , ln}, and
{(s, l1, s1),. . .,(s,lm,sm)} = {t ∈ T | source(t) = s},
source returns the source state of a transition, and
enc(sv,m!) = sv m EM, enc(sv,m?) = sv m REC,
enc(sv,m!e1, . . . , en) = sv m EM?x1 : PH, . . . , ?xn : PH,
and enc(sv,m?y1, . . . , yn) = sv m REC?y1 :
PH, . . . , ?yn : PH. Function gates returns the alpha-
bet for the LOTOS process by extracting gates as
follows: gates(sv,A) = {gatesl(sv, l) | l ∈ A},
gatesl(sv,m!) = gatesl(sv,m!e1, . . . , en) = sv m EM,
and gatesl(sv,m?) = gatesl(sv,m?y1, . . . , yn) =
sv m REC. Function func states whether the process
terminates or not (see [17] for its computation).

Choreography specification encoding. A choreography
specification (V, L), with L = (AC , SC , IC , FC , TC), is
encoded by generating (i) a process for each state in the vec-
tor LTS L, (ii) a process for each vector in V , and (iii) the
interleaving of all these vector processes. The correct order-
ing of vectors is ensured by the vector LTS thanks to two ac-
tions for each vector v. A first one (run v) activates the cor-
responding vector process. A second one (rel v) releases
the vector LTS and enables it to apply several vectors at the
same time. The vector LTS (i) is encoded using the same
pattern as service STSs, that is every state is encoded as a
LOTOS process. For each transition in the vector LTS, the
new “run ” and “rel ” actions are generated in sequence.

process vLTS s [AL] : func(L, s) :=

run v1; rel v1;vLTS s1[AL]

[] . . .[]

run vm; rel vm;vLTS sm[AL]

[[] FINAL; exit]

endproc

where AC = {v1, . . . , vn}, AL =
(
⋃

v∈AC
{run v, rel v}) ∪ {FINAL}, and {(s, v1, s1),

. . .,(s, vm, sm)} = {t ∈ TC | source(t) = s}.
Vector processes (ii) are first launched through a “run ”

interaction with the vector LTS. Next, they communicate
with services on all actions appearing in their vector defini-
tion. They have to receive the sent messages before begin-
ning to emit some. There is no specific ordering between
emissions in a vector process. When a vector process exe-
cutes a vector, it must be ready to interact with the service
STSs on their emissions. Then, several strategies are pos-
sible to release the vector (rel v), and therefore to execute
the services’ receptions. A first option is to wait for the

316316316

complete processing of a vector before firing a new one.
Another strategy is to execute the release action once all the
emissions executed: the receptions are run after this release,
and meanwhile the vector LTS can launch another vector.
This behavior makes the reordering of messages possible, a
typical case of mismatch between services.

As regards value passing, an auxiliary LOTOS process
Store is generated to store information about the availabil-
ity of received values. Every time some values are sent by a
service, they are received by one of the vector processes and
stored by using the (global) process Store, which makes
them available at the level of the orchestrator. This avail-
ability is essential, because when service receptions in a
vector are being run (emissions at the level of the orches-
trator), this firing is conditioned by the availability of the
values to be emitted. Thus, every service emission in a vec-
tor is followed by an interaction with the process Store to
set to true the availability of the received values, and every
service reception in a vector is preceded by some interac-
tions with the Store process to check that the required val-
ues have been received. In the latter case, the vector process
may have to wait the availability of the needed resources.
Such an active waiting is encoded using a looping process
(v wait) that terminates once the data are available. If they
are never available, this will generate a deadlock in the un-
derlying state space that will be cut away in a second step
by our reduction techniques (see further in this section).

process Store [ASt](vs : VarStore) : exit :=

store v1?x : VarStore; Store[ASt](append(x, vs))

[]

read v1?x : VarStore; reply v1!allin(x, vs);

Store[AL](vs)

[] . . . []

store vn?x : VarStore; Store[ASt](append(x, vs))

[]

read vn?x : VarStore; reply vn!allin(x, vs);

Store[AL](vs)

[] FINAL; exit

endproc

where ASt = {store v1, read v1, reply v1, . . . ,
store vn, read vn, reply vn}, VarStore is a datatype
defined using abstract datatype LOTOS facilities, operation
append adds a set of variables as available in the store, and
operation allin tests availability of a set of variables.

Each vector v is encoded as follows:
process vector v[Av] : exit:=

run v; ((e1!x1!..!xi; store v!cs(x1, .., xi); exit) |||

..||| (ek!xj !..!xp; store v!cs(xj , .., xp); exit)) >>

rel v; ((read v!cs(y1, .., yi); reply v?b : Bool;

v wait[Av](b, cs(y1, .., yi)) >> r1!y1!..!yi; exit)|||

..||| (read v!cs(yj , .., yq) .. >> rm!yj !..!yq; exit))

>> vector v [Av]

[] FINAL; exit

endproc

where Av = {run v, rel v, FINAL} ∪
{e1, . . . , ek, r1, . . . , rm}, em(v) = {e1, . . . , ek},
rec(v) = {r1, . . . , rm}, functions em and rec are
defined as em(〈l1, . . . , ln〉) = {enc(m!) | li =
m!v1, . . . , vk ∨ li = m!} and rec(〈l1, . . . , ln〉) =
{enc(m?) | li = m?x1, . . . , xk ∨ li = m?}. Ex-
pression cs(x1, . . . , xp) is a simplified notation for
cons(x1, cons(x2, . . . , cons(xp, nil) . . .).

Process v wait tests if variables are available, and if not,
it starts an active waiting (successive “read ” and “reply ”
interactions) with the store until variables are available.

process v wait[Av](b : Bool, x : VarStore) : exit:=

[b] -> exit

[]

[not(b)] ->

read v!x; reply v?b : Bool; v wait[Av](b, x)

endproc

Finally, vector processes (iii) are interleaved since they
do not communicate together. All the vector processes may
synchronize with the Store process to store new available
variables, or check the availability of some variables to be
sent. The store process starts without any variable (nil).

process vectors [AV , ASt] : exit :=

(vector v1 [Av1] ||| . . . ||| vector vn [Avn])

|[ASt]|

Store[ASt](nil)

endproc

where AC = {v1, . . . , vn}, AV =
⋃

v∈AC
Av , and ASt =

{store v1, read v1, reply v1, . . . , reply vn}.

System encoding. In this step, we generate a LOTOS pro-
cess corresponding to the whole system’s constraints (LO-
TOS processes encoding the service STSs and the choreog-
raphy specification), and respecting the desired system ar-
chitecture (orchestrator in-the-middle, intercepting all mes-
sages). This means that the service STSs only interact to-
gether on FINAL (correct termination is when all services
terminate) while they interact with vectors on actions used
in their alphabets. The synchronization between vector pro-
cesses and vector LTS has been described earlier on (us-
ing “run ” and “rel ” actions). In addition, all actions
that are not messages appearing in the involved services
(e.g., “run ” and “rel ” actions, or all interactions with the
Store process) are hidden as they represent internal actions
of the orchestrator. They will be removed by reduction steps
when generating the orchestrator from the LOTOS code.

process central orchestrator [ACX , AL] : exit :=

hide A∗
L in

((sv1 Isv1[gates(sv1, Asv1), FINAL]

|[FINAL]| . . .|[FINAL]|

svn Isvn[gates(svn, Asvn), FINAL])

|[ACX , FINAL]|

(vLTS IC[AL] |[AL]| vectors[AV]))

317317317

endproc

where A∗
L = AL\{FINAL} and ACX =⋃

i∈{1,...,n} enc(Asvi).

The LOTOS encoding is automated by Compositor, a
tool we implemented originally for LTS interfaces [17] and
extended (wrt. the encoding presented above) to take value
passing into account. From this encoding, the orchestrator
STS is generated using Scrutator [17], a tool that removes
remaining erroneous paths, τ transitions and path similar-
ities by applying state-of-the-art exploration and reduction
techniques while avoiding the complete state space gener-
ation. Finally, we generate an SVL [12] script to reverse
message directions and obtain the resulting orchestrator.

Example. We present in Figure 3 the beginning of the
centralized orchestrator protocol in which only vectors are
considered as connectors between services (no vector LTS).
Its full description was generated using Compositor and
Scrutator, and contains 27 states and 34 transitions. All
the messages involved in its description are reversed to
make synchronizations with the services possible. In this
piece of orchestrator, reordering of messages is required.
Thus, the orchestrator starts by receiving a sequence of
messages from the client (c:connect?ID, c:action?A, and
c:file?F). Next, several evolutions are possible. Let us fo-
cus on the scenario in which the orchestrator delivers the
file (md:file!ID,F), as specified in vector vfile, and the ac-
tion (md:action!A) to the multi-function device. Then, the
orchestrator may receive a termination message (c:halt?) or
another action (c:action?A) from the client. If the client de-
cides to stop (c:halt?), the orchestrator forwards this mes-
sage to the multi-function device (md:halt!), and so on. The

c:halt?

c:connect?ID c:action?A c:file?F

...

md:fi le!ID,F c:halt?
...

md:act ion!A

c:action?A
...

c:halt?md:hal t !md:invoice?ID,INV

b:invoice!INV...

...
md:price?P

Figure 3. Orchestrator protocol (piece of) for
the multi-function device example (vectors)

orchestrator protocol built with respect to the vector LTS in-
troduced in Figure 2 contains 46 states and 57 transitions.

5 Wrapper Generation

In the context of distributed systems, the generation of
wrappers can be necessary in order to implement the inter-
action constraints described in the choreography specifica-
tion. Moreover, it allows to preserve a full parallelism of the

system’s execution. In the following, we distinguish two
kinds of entities: services and wrappers. Services imple-
ment the system’s functionality, and are the primary com-
putational constituents of a system. Wrappers are local or-
chestrators, and there is one for each service involved in the
system. They receive all messages emitted by their service,
and route them with respect to constraints specified in the
choreography. Then, a system is defined as a set of services
each of them directly connected to its local wrapper. Each
wrapper is connected to its service and to the services in-
volved in the system and with which it will interact (Fig. 4).

output port

input port

connector
W1

W2

W3

server A

server B

server C

SV1

SV2

SV3

Figure 4. Simple choreography architecture

In addition, in case of complex composition constraints
(for instance if some interactions must be applied in a pre-
cise order), wrappers have to synchronize on specific points.
More precisely, each wrapper is enhanced with additional
synchronizations involving all the wrappers that make them
respect the overall choreography specification (Fig. 5).

output port

input port

connector

add. comm.

W1

W2

W3

server A

server B

server C

SV1

SV2

SV3
synchro. point

Figure 5. Complex choreography architecture

In order to automatically generate wrapper protocols
we extend the LOTOS encoding presented in Section 2.
There are two cases. First, if the choreography specifica-
tion only involves correspondences between messages (vec-
tors), wrappers are obtained by focusing on one service after
the other, and by restricting the wrapper behaviour to mes-

318318318

sages going out of its services and messages matching to
these emissions in the corresponding vectors. For example,
in vector vinv = 〈md : invoice!ID, INV; b : invoice?INV〉, the
emission is issued by the multi-function device service, thus
its wrapper will contain all messages appearing in vinv

(with reversed directions). Our approach assumes that all
vectors contain one emission.

Second, in case the choreography specification involves
ordering (not only vectors but also a vector LTS), wrapper
protocols must also take into account additional messages,
those that are used to run and release vectors (i.e., run v
and rel v). However, we do not keep all these messages,
but only those that impose an order in the vector applica-
tion. Hence, these additional communications correspond
to transitions of the vector LTS that connect two different
states, all the transitions looping on a same state are dis-
carded. For these remaining vectors, wrappers synchronize
on both “run ” and “rel ” messages so as to preserve the
application order of vectors as specified in the vector LTS.

Last but not least, some variable scope issues may
occur when a service receives a specific data value
directly from another wrapper and further sends it to
another service. In this situation, the wrapper is asked
to emit a value that it has never received. To detect that
each variable is received before being sent, we auto-
matically generate mu-calculus temporal formulas for
each variable V involved in a wrapper (using the pattern
[(not ′. ∗ EM.∗!V.∗′) ∗ . (′. ∗ REC.∗!V.∗′)] false) and
check them using the Evaluator [18] model checker. If
such an issue is detected, we launch again the wrapper
generation by imposing that every message received by a
service is also received by the wrapper (see emission from
W1 to both W2 and SV2 in Fig. 6). This solution induces
more communications, therefore it is adopted only when
scope problems are detected.

output port

input port

connector

W1

W2

server A

server B

SV1 SV2

Figure 6. Architecture: variable scope issues

In the following of this section, we formalise the genera-
tion of wrapper protocols, and we illustrate it on our running
example. However, for space reasons, we will not introduce
our solutions to variable scope issues, although they are im-
plemented in the prototype tool we present in Section 6.

5.1 Generation of Service Wrappers

This section deals with the case in which wrappers
evolve independently of each other (only vectors in the
choreography specification) without adding synchroniza-
tion points. For each service STS sv = (A,S, I, F, T), a
wrapper is generated from the description of the LOTOS
central orchestrator by hiding all messages which should
not be handled by the wrapper. Accordingly, the wrapper
only preserves messages appearing in vectors in which the
emission belongs to the service at hand.

process wrapper sv [ACX , AL] : func(sv, I) :=

hide Aw in central orchestrator [ACX , AL]

endproc

where Aw = (ACX\Aobs), ACX =⋃
i∈{1,...,n} gates(svi, Asvi), Aobs =

{gatesl(sv, li,i∈{1,...,n}) | 〈l1, . . . , ln〉 ∈
V, ∃i ∈ {1, . . . , n}, li ∈ A, em(li)}, AL =
(
⋃

v∈AC
{run v, rel v}) ∪ {FINAL}, AC = {v1, . . . , vn}.

Beyond this LOTOS code, we also generate an SVL
script which calls Scrutator to generate each wrapper pro-
tocol from its LOTOS process, and reverses message direc-
tions in these protocols.

Example. We show in Figure 7 the wrapper generated
using our approach (generated files contain 493 lines of
LOTOS and 114 lines of SVL respectively) for the multi-
function device service of our running example with only
vectors used as choreography specification. The wrapper
is able to catch all emissions coming from its service (in-
voice!id,inv and price!am), and routes these messages with
respect to their matching as specified in vectors vinv and
vprice. Therefore, the invoice message is forwarded to
the bank, and the price to the client to inform him of the
amount to pay. As far as the receptions in the device inter-
face are concerned, they match with emissions coming from
bank and client wrappers. For instance, the client wrapper
catches file and action coming from its service, and sends
these information to the multi-function device service.

file?id,f

file?id,f
action?a

halt?

invoice!id, inv

pr ice!am

md:invoice?ID,INV

b:invoice!INV

md:price?P

md:price?P c:price!P

b:invoice!INV

c:price!P

c:price!P

b:invoice!INV

Figure 7. Multi-function device service: inter-
face (left) and wrapper (right) protocols

319319319

5.2 Wrapper Synchronization

This section deals with the case in which wrappers must
interact together in order to ensure the choreography spec-
ification. To do so, wrapper generation is extended to take
into account additional communications. We use the “run ”
and “rel ” messages introduced in Section 2 to control the
firing of vectors with respect to their order in the vector
LTS. All these messages are not preserved, only those for
vectors involved in a sequence in the vector LTS are kept.

process wrapper sv [ACX , AL] : func(sv, I) :=

hide A′
w in central orchestrator [ACX , AL]

endproc

where A′
w = (ACX\Aobs) ∪ Aloop, ACX , Aobs and AL

are computed as presented in Section 5.1, and Aloop =
{{run v, rel v} | v ∈ Vloop\Vtrans} with Vloop = {v |
(s, v, s) ∈ TC} and Vtrans = {v | (s, v, s′) ∈ TC , s
= s′}.

Similarly to Section 5.1, an SVL script allows to auto-
mate the generation of protocol wrappers corresponding to
the LOTOS encoding.

Example. Figure 8 presents a piece of the client wrapper
and the bank wrapper (both obtained from generated files
containing 552 lines of LOTOS, and 121 lines of SVL). The
full description of the client wrapper contains 32 states and
35 transitions. Compared to the former section in which
no additional synchronizations were used, here the wrap-
per does more than just taking care of its service since it
may also synchronize on run v and rel v messages with
the other wrappers. In our example, these additional com-
munications only happen for vector vfile, which expresses
the exchange of files between the client and device services.
This can be visualized in the vector LTS (Fig. 2) in which
only two transitions with label vfile appear in sequence
whereas all the other ones loop on a same state meaning
that their application order does not matter.

c:connect?ID

c:action?A

run_vfile

c:file?F

rel_vfile

c:halt?

md:fi le!ID,F

...

...

run_vfile

rel_vfile

run_vfile

rel_vfile

Figure 8. Client wrapper protocol (piece of,
left), and bank wrapper protocol (right)

6 Prototype Tool

The different steps of our approach have been imple-
mented in a prototype tool called DCompositor which gen-

erates LOTOS code for service STSs, the choreography
specification, and wrappers. SVL scripts are also gener-
ated to automate the computation of wrappers from the LO-
TOS code by calling Scrutator. We present in Figure 9 an
overview of the tools, and of their input and output formats
(aut and bcg respectively stand for a textual and a computer
representation for state/transition models).

Service interfaces

(.aut / .xml)

Choreography

(.xml)

D C o m p o s i t o r
LOTOS spec.

SVL scripts
+ S c r u t a t o r

Service wrappers

(.bcg / .aut)

specif ication
Orchestrator

(.bcg / .aut)

Figure 9. Tool support overview

We applied and validated our proposal on about 200 ex-
amples, some of which were reused from previous works
on adaptor generation [7, 17]. Table 1 shows experimental
results on some of the examples belonging to our database.
For each experiment, the table gives the size of the service
STSs, the use (

√
) or not (×) of a vector LTS in the choreog-

raphy specification, the size of the centralized orchestrator
protocol and of the wrapper protocols. As far as services
and wrappers are concerned, we use in the table “/” to sepa-
rate the state and transition numbers, for instance broadcast-
007 involves 5 services, and 5 wrappers are generated.

First of all, in the case where only vectors are given
as choreography specification, the distribution does not
generate an overhead in the number of states and transi-
tions compared to the centralized orchestrator (see for in-
stance emuseum-007 or mf-device-006). Furthermore, with
vectors only, this distribution sometimes diminishes dras-
tically the size of the wrappers (see broadcast-007 and
mail-system-002); indeed, wrappers may avoid message in-
terleavings made explicit in centralized orchestrators. If
more advanced composition constraints are required (vec-
tor LTS), we may observe a slight increase in the number of
states and transitions in the distributed approach compared
to the centralized one (see for example mf-device-007 or
rate-service-001). This increase is reasonable since we have
only kept in the design the additional communications that
impose an order between messages in the vector LTS.

As far as correctness is concerned, we take advantage of
the equivalence checking techniques available into CADP
to check the correctness of our proposal. SVL code is au-
tomatically generated to verify that the centralized system
(centralized orchestrator protocol + service interfaces) is

320320320

Case study Services vLTS Orchestrator Wrappers
states trans. states trans. states trans.

broadcast-007 5/5/5/5/5 4/4/4/4/4 × 91 201 4/4/3/4/6 3/3/2/3/6
emuseum-004 10/10/7 12/13/9

√
121 202 24/76/15 29/111/14

emuseum-007 10/10/7 12/13/8 × 56 82 4/47/4 4/69/4
flight-booking-001 9/5/5 10/7/6 × 33 34 20/8/8 21/7/7
mail-system-002 7/9 9/16 × 150 381 78/8 192/21
mf-device-006 6/8/4 6/8/4 × 27 34 9/18/2 10/21/1
mf-device-007 6/8/4 6/8/4

√
46 57 21/32/7 24/35/6

pc-store-002 9/10 10/11 × 16 16 11/8 11/8
rate-service-001 13/11/6 16/12/7

√
28 32 31/28/18 37/37/18

sql-server-005 6/3 8/6
√

38 51 34/16 45/19
vod-006 3/5 6/10

√
17 22 7/11 12/18

Table 1. Case studies: orchestration versus wrapper generation

equivalent to the distributed one (wrapper protocols + ser-
vice interfaces). To do so, the SVL script first generates the
centralized system using the following expression:

("sv1.bcg" |[FINAL]| ... |[FINAL]| "svn.bcg")

|[ACX]|

"central coordinator.bcg"

where ACX is computed as presented in Section 5.1. Next,
the distributed system is generated as follows:

("sv1.bcg" |[FINAL]| ... |[FINAL]| "svn.bcg")

|[ACX]|
("wrapper sv1.bcg"

|[As]| ... |[As]| "wrapper svn.bcg")

where As = {FINAL} ∪ {{run v, rel v} | v ∈ Vtrans}
with Vtrans = {v | (s, v, s′) ∈ TC , s
= s′} if a vector LTS
is used, otherwise As = {FINAL}.

In a last step, the Bisimulator tool [4] of the CADP tool-
box is called, and it enabled us to check that strong equiva-
lence [21] is preserved between centralized and distributed
systems for all the examples of our database.

7 Related Work

The contribution we have presented in this paper is a so-
lution to the realizability challenge that the authors state
in [24], namely how to turn a choreography into service
implementations automatically. In [6], the authors define
models for choreography and orchestration, and formalise a
conformance relation to connect both models. These mod-
els are assumed given as input whereas we focus on the gen-
eration of both (orchestrator and implementations) from a
global specification while ensuring conformance. In [20],
the authors show through a simple example how BPEL
stubs can be derived from WS-CDL choreographies. How-
ever, due to the lack of semantics of both languages, correct-
ness of the generation cannot be ensured. In some recent pa-
pers [22, 16], formal languages to describe choreographies

have been proposed. Conformance with respect to an or-
chestration specification and implementability issues have
been studied from a formal point of view. In [8], the authors
propose a language based on π-calculus and session types to
formally describe choreographies. Then, they identify three
principles for global description under which they define a
sound and complete end-point projection, that is the genera-
tion of end-point processes from the choreography descrip-
tion. Compared to these approaches, we have presented a
tool-supported approach (lack of all the papers mentioned
above) to automatically generate wrappers that ensure con-
formance with respect to their global description. The main
difference with these works is that they focus on the peer
generation assuming no services exist whereas we suppose
some service implementations are reused, and wrappers aim
at constraining the functionality of these existing services to
make them respect the choreography.

In the area of Software Adaptation, [2, 19] aim at dis-
tributing behavioural adaptors (orchestrators able to correct
incompatibilities between components). In [2], the authors
start with a central description of an adaptor, and split this
protocol into pieces to distribute it on the involved com-
ponents. This approach mainly suffers an overhead in the
number of messages. Indeed, many additional communica-
tions are added to keep components aware of the evolution
of the others, and to fire their own evolution. Moreover, re-
maining erroneous paths are kept in the description of adap-
tors, and they are avoided dynamically by using controllers
which introduce other additional messages. In comparison,
our approach minimises the number of additional messages
which remains reasonable as we have showed by experi-
mental results in Section 6. In [19], the authors propose an
approach to generate automatically the composition of se-
mantic services, therefore they do not only focus on signa-
ture and behavioural descriptions of entities, but also take
semantic information into account. This work addresses

321321321

fully-automatic adaptation as no mapping is required since
it uses semantic annotations. Nevertheless, a central pro-
tocol is fully computed before distributing it. The specifi-
cation of system properties such as what we do using our
vector LTS is presented as an extension of their algorithm.

8 Conclusion

In this paper, we have presented an approach to generate
wrapper protocols from behavioural descriptions of services
and an abstract specification of the choreography. To do so,
we have encoded into LOTOS the different inputs of our
system. In a second step, exploration and reduction tech-
niques have been used to generate wrapper protocols from
the LOTOS code. Our proposal is completely automated by
tools we implemented and applied to many examples.

As regards future works, we would like to consider other
choreography languages (e.g., collaboration diagrams [5] or
the chor calculus [22]), and study how our wrapper genera-
tion approach can be extended to deal with them. Similarly
to [20] and as sketched in [9], we also plan to generate from
wrapper protocols some BPEL wrappers that would be in
charge of the involved services and make services interact
as specified in the choreography.

Acknowledgements. The author thanks Javier Cámara,
José Martin, and Pascal Poizat for interesting discussions
and comments on a former version of this paper. This work
has been supported by project TIN2007-67134 funded by
the Spanish Ministry of Innovation and Science, and project
P06-TIC2250 funded by the Andalusian local Government.

References

[1] A. Arnold. Finite Transition Systems. International Series in
Computer Science. 1994.

[2] M. Autili, M. Flammini, P. Inverardi, A. Navarra, and
M. Tivoli. Synthesis of Concurrent and Distributed Adap-
tors for Component-based Systems. In Proc. of EWSA’06,
volume 4344 of LNCS, pages 17–32. Springer-Verlag, 2006.

[3] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Ro-
manovsky, and M. Tivoli. Architecting Systems with Trust-
worthy Components, volume 3938 of LNCS, chapter To-
wards an Engineering Approach to Component Adaptation.
Springer-Verlag, 2006.

[4] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu.
BISIMULATOR: A Modular Tool for On-the-Fly Equiva-
lence Checking. In Proc. of TACAS’05, volume 3440 of
LNCS, pages 581–585. Springer-Verlag, 2005.

[5] T. Bultan and X. Fu. Specification of Realizable Service
Conversations Using Collaboration Diagrams. Service Ori-
ented Computing and Applications, 2(1):27–39, 2008.

[6] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro.
Choreography and Orchestration Conformance for System
Design. In Proc. of Coordination’06, volume 4038 of LNCS,
pages 63–81. Springer-Verlag, 2006.

[7] C. Canal, P. Poizat, and G. Salaün. Synchronizing Be-
havioural Mismatch in Software Composition. In Proc.
of FMOODS’06, volume 4037 of LNCS, pages 63–77.
Springer-Verlag, 2006.

[8] M. Carbone, K. Honda, and N. Yoshida. Structured
Communication-Centred Programming for Web Services.
In Proc. of ESOP’07, volume 4421 of LNCS, pages 2–17.
Springer-Verlag, 2007.

[9] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. A
Model-Based Approach to the Verification and Adaptation
of WF/.NET Components. In Proc. of FACS’07, volume 215
of ENTCS, pages 39–55. Elsevier, 2007.

[10] H. Foster, S. Uchitel, and J. Kramer. LTSA-WS: A Tool for
Model-based Verification of Web Service Compositions and
Choreography. In Proc. of ICSE’06, pages 771–774. ACM
Press, 2006.

[11] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL
Web Services. In Proc. of WWW’04, pages 621–630. ACM
Press, 2004.

[12] H. Garavel and F. Lang. SVL: A Scripting Language for
Compositional Verification. In Proc. FORTE’01, pages
377–392. IFIP, Kluwer Academic Publishers, 2001.

[13] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP
2006: A Toolbox for the Construction and Analysis of Dis-
tributed Processes. In Proc. of CAV’07, volume 4590 of
LNCS, pages 158–163. Springer-Verlag, 2007.

[14] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-
passing Processes, pages 427–478. Handbook of Process
Algebra. Elsevier, 2001.

[15] ISO/IEC. LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour. International Standard 8807, ISO, 1989.

[16] J. Li, H. Zhu, and G. Pu. Conformance Validation between
Choreography and Orchestration. In Proc. of TASE’07,
pages 473–482. IEEE Computer Society, 2007.

[17] R. Mateescu, P. Poizat, and G. Salaün. Behavioral Adapta-
tion of Component Compositions based on Process Algebra
Encodings. In Proc. of ASE’07, pages 385–388. IEEE Com-
puter Society, 2007.

[18] R. Mateescu and M. Sighireanu. Efficient On-the-
Fly Model-Checking for Regular Alternation-Free Mu-
Calculus. Sci. Comput. Programming, 46(3):255–281, 2003.

[19] T. Melliti, P. Poizat, and S. B. Mokhtar. Distributed Be-
havioural Adaptation for the Automatic Composition of Se-
mantic Services. In Proc. of FASE’08, volume 4961 of
LNCS, pages 146–162. Springer-Verlag, 2008.

[20] J. Mendling and M. Hafner. From Inter-organizational
Workflows to Process Execution: Generating BPEL from
WS-CDL. In Proc. of OTM’05 Workshops, volume 3762
of LNCS, pages 506–515. Springer-Verlag, 2005.

[21] R. Milner. Communication and Concurrency. PH, 1989.
[22] Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the Theo-

retical Foundation of Choreography. In Proc. of WWW’07,
pages 973–982. ACM Press, 2007.

[23] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and
Reasoning on Web Services using Process Algebra. IJBPIM,
1(2):116–128, 2006.

[24] J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a Theory of
Web Service Choreographies. In Proc. of WS-FM’07, vol-
ume 4937 of LNCS, pages 1–16. Springer-Verlag.

322322322

