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Abstract—The Internet of Things (IoT) is a network of physical
devices and software entities that interact together for fulfilling
an overall objective. Such applications are built by selecting and
composing several objects. Recent frameworks promote the use
of ‘if event(s) then action(s)’ rules to make explicit the way these
objects interact together, i.e., if an event is raised, then an action
is triggered. IoT applications are not monolithic applications built
once and for all. In this paper, we focus on the replacement of
an object, operation which is often required for substituting an
out-of-order or obsolete device. When substituting an object by
another one, the user may want the application to provide at
least the same functionalities as before. Therefore, replacement
should be supported by automated techniques and tools in order
to guarantee the preservation of the application behaviour. As
a result, we first define several notions of object substitution.
Then, we show how these notions can be automatically checked or
computed. Finally, we present the tool support and its integration
to the Mozilla WebThings platform for applying our approach
on smart home applications.

Index Terms—Internet of Things, substitution, automated tech-
niques, tools, WebThings platform.

I. INTRODUCTION

The Internet of Things (IoT) describes the network of
physical objects that are embedded with sensors, software,
and other technologies for the purpose of connecting and
exchanging data with other devices and systems over the
internet. The IoT ecosystem is rapidly growing and it is
expected that ∼125 billion connected IoT devices are to be
deployed by 2030 [1]. However, the IoT comes with its
number of challenges involving issues such as heterogeneity,
reliability, security, privacy or maintenance. In this work, we
particularly focus on the design and evolution over time of
IoT applications. Indeed, IoT applications are not monolithic
applications built once and for all. In contrast, they are
constantly modified due to removal, replacement or addition
of new objects during the application lifetime. The evolvability
of the application must be taken into account in the overall
design process. Automation is also required when dynamically
reconfiguring IoT applications to simplify this task for end-
users.

Our goal in this paper is to propose new techniques to
support the possible reconfiguration of a running application.
We focus here on a specific situation in which the user wants to
replace one object present in the current running application
by another object. This can occur for instance to replace a
failed object, to replace an obsolete device by a more recent
one, or to upgrade a software component. In most cases, in
this situation, the user does not want to change the observable

behaviour of the whole application. Instead, (s)he would like
this replacement to be as seamless as possible, preserving
all the existing functionalities of the application. This is not
a simple task because this requires to precisely analyse or
compare both objects (the current and the new one) to be sure
that the replacement will preserve the application consistency.

In this paper, we present some techniques for supporting
the substitution of an object by a new one in a running
IoT application. We will present three possible solutions to
compare both objects and thus say whether the replacement
is possible or not. It is worth noting that our approach makes
sense only if the two objects share some similarity from a
behavioural perspective. If the user tries to replace a motion
sensor by a temperature sensor for instance, this will be
discarded by our approach. However, imagine that a user wants
to replace an old-fashioned motion sensor by a modern one
(with more functionalities), (s)he may want to be sure that the
application will still be functional with that new one and will
behave at least as before replacement.

In this work, we focus on IoT applications in the context of
smart homes and smart buildings. Recent frameworks such
as IFTTT [2], Node-RED [3] and Mozilla WebThings [4]
promote the design of IoT applications by using ‘if event(s)
then action(s)’ rules, i.e., if an event is raised, then an action
is triggered. The composition or orchestration language we
consider in this work relies on such rules, but is more expres-
sive since it allows the writing of composition of rules using
classic constructs such as the sequence of rules, the choice
between several rules, the concurrent execution of several rules
or the repetition of rules. Given an application described using
a set of objects and a composition expression written with
this language, we propose three techniques for supporting the
replacement of an object present in the running application
by a new one. The first one relies on the comparison of both
objects using verification techniques. The second technique
aims at embedding the new object within a virtual object
whose role is to mimic the behaviour of the replaced object.
The third technique relies on rewriting of the composition
expression in order to seamlessly substitute all occurrences
of the former object by the new one. All these solutions are
supported by several tools, some of them already existing and
reused in this work, and other ones we implemented ourselves
for automating specific tasks of our approach. These tools
were integrated to the Mozilla WebThings platform [4], which
allowed us to apply our substitution techniques on real smart
home applications for validation purposes.



The rest of this paper is organised as follows. Section II
introduces the model of objects and the rule-based composition
language. Section III presents our new techniques for substi-
tution of objects in IoT applications. Section IV describes the
tool support and particularly the extensions of the WebThings
platform to support substitution. Section V surveys related
work and Section VI concludes the paper.

II. MODELS

An IoT application consists of a set of IoT objects or things
interacting all together to fulfil a certain overall goal. Given
the heterogeneity of devices and platforms existing in the IoT
ecosystem, there is a need for a standard description format for
objects. Although several proposals have recently been made,
e.g., Constrained RESTful Environments [5], OpenWeave [6],
Thing Description in Web of Things (WoT) [7] framework,
etc., there is no widely accepted standard yet. Therefore, in
this work, we prefer to rely on an abstract model for modelling
objects, with a specific focus on the behavioural part of this
model.

More precisely, an object is modeled as a set of events
received by the object and actions emitted by the object. Since
the events/actions involved in an object are executed in a
specific order, we describe them using a behavioural model
(Labelled Transition System or LTS). We use a question mark
(?) and an exclamation mark (!) to indicate that the object is
receiving or emitting from/to its environment, respectively.

Definition 1 (Behavioural Model): An IoT object is
described by its behavioural model, which is a tuple
(S,A, T, s0), where S is a set of states, A is a set of
events/actions associated with transitions, T ⊆ S×A×D×S
is the transition relation where D = {!, ?} and s0 ∈ S is
the initial state. A transition (s1, e, d, s2) ∈ T (also noted
s1

ed−→ s2) indicates that the system can move from state s1
to state s2 by performing an event/action named e in a certain
direction (! for sending, ? for receiving).

An IoT application in this work is described by a set of
objects and a composition expression. This expression acts as
an orchestrator and describes how the involved objects interact
together. We use a simple rule-based composition language to
this purpose. This language assumes ‘if event(s) then action(s)’
rules as basic elements. A rule is triggered when one or several
events are issued by specific objects and, as a reaction, one
or several actions are issued to other objects defined as target.
Each event or action is accompanied with its object identifier.

Definition 2 (Rule): Given a set of objects {O1, . . . , On},
Oi = (Si, Ai, Ti, s

0
i ), a rule R is defined as “IF EVT THEN

ACT” where,
EVT ::= event (Oid) | EVT1 ∧ EVT2 | EVT1 ∨ EVT2,
ACT ::= action (Oid) | ACT1 ∧ ACT2,

where event and action are terminal symbols with
event, action ∈ �n

i=1 Ai, and Oid is an object identifier.
These rules can be composed to build more complex ex-

pressions, using basic operators such as sequence, choice,
concurrent execution or repetition of rules.

Definition 3 (Composition Language): A composition C is
an expression built over a set of rules R using the following
operators:

C ::= R | R ; C | R + C | R || C | Ck

where R ; C represents a rule followed by a composition
expression, R + C represents a choice between a rule and
a composition expression, R || C represents the concurrent
execution of a rule and a composition expression, and Ck

represents the execution k times of a composition expression
(if k = ∗, C executes infinitely).

Let us now explain how the IoT application consisting of
a set of objects and a composition expression executes. Each
object is equipped with an input message buffer (FIFO). The
composition expression and all objects start their execution
from their initial states. An application can evolve in two
cases: execution of a rule or buffer consumption. In the first
case, if all events appearing in the left part of the rule have
been issued, the rule can be triggered and all the actions
appearing in the right part of the rule are pushed to the
corresponding buffers of the objects. The events can occur as a
result of changes in the physical environment (e.g., change in
temperature) or by interacting directly with the objects (e.g.,
a user pressing a switch). In the second case, one object
can individually consume from its input buffer, if there is
something in its buffer and the object can make this move
according to its behavioural model.

Example. We illustrate with an IoT application consisting of
one switch and one light (Fig. 1). We can see that labels
on transitions correspond to actions executed in that case by
the object once they are available in its local buffer. The
composition expression consists of two rules. When the switch
is pressed on, the light is turned on (rule R1). Rule R2 is used
for turning off the light. The composition expression indicates
that both rules apply infinitely (*) in sequence (;).

Figure 1. Example of IoT Application Model

III. SUBSTITUTION

In this section, we first present several definitions of sub-
stitution. These definitions aim at preserving the original
behaviour of the application. In a second step, we show how



we can compute a mapping or correspondence between the
actions of the former and new object, which serves as basis
to two of these substitution definitions.

A. Three Notions of Substitution

In this work, an IoT application consists of a set of objects
(described using their behavioural models) and of a composi-
tion expression. We focus in this paper on the replacement of
one object by another one. We will see that this replacement
may impact the composition expression. Now we present three
definitions of replacement.

Simulation. First of all, we propose to rely on existing
notions available in concurrency theory. Trace equivalence [8]
ensures that an object produces the same traces as another
one, and could be considered as a first solution. This notion
of equivalence is usually too weak and do not prevent for
instance the addition of deadlocks. If we want to reproduce
the same behaviour, a better notion is bisimulation [8], which
is a strong notion ensuring that a behavioural model or
LTS exactly reproduce the same behaviour without generating
additional erroneous behaviours such as deadlocks. In some
cases, bisimulation may appear too strong because a new
object replacing an old one can reproduce the same behaviour
but can also exhibit new functionalities. This is the case in IoT
for instance if one wants to replace a classic light by a colored
one. The former one can be turned on and off successively
whereas the new one in addition can change its color. In such
a case, the new one is fine because it reproduces the original
behaviour but provides new features. Therefore, we think that
a more adequate notion of substitution in this context is the
notion of simulation preorder [8], which checks whether the
new object simulates the original one. Intuitively, the new
object can execute the same behaviour as the former object,
but it can also produce additional behaviour.

Definition 4 (Strong Simulation): A relation R is a strong
simulation between states in S iff for all s1, s2 ∈ S such that
R(s1, s2), (∀l ∈ A, s�1 ∈ S) (s1, l, s

�
1) ∈ T =⇒ (∃s�2 ∈

S) (s2, l, s
�
2) ∈ T∧R(s�1, s

�
2). Two states s1 and s2 are strongly

similar (written s1 ∼s s2) iff there exists a strong simulation
R such that R(s1, s2). Two LTS M1 = (S1, s

0
1, A1, T1) and

M2 = (S2, s
0
2, A2, T2) are strongly similar (written M1 ∼s

M2) iff s01 ∼s s
0
2.

Example. Let us illustrate with a simple example (Fig. 2)
consisting of an IoT application where a light (light1) is
replaced by a new one (light2). The new object respects the
simulation definition and can thus reproduce all the behaviours
possible in the former object. More precisely, state s0 is
simulated by state s�0 and state s1 is simulated by state s�1.
Note that the new light also exhibits additional behaviour,
specifically the possibility to change its color.

Virtual object. The second solution aims at changing an
object without changing the rest of the application (that is,
the other objects or the composition expression). To do so,
we propose to use a piece of software known as virtual
object, which embeds the new object and behaves from an

Figure 2. Example for Simulation based Substitution

external point of view as the replaced object. This means
that there is a mapping between the actions possible in the
replaced object and the new object. More precisely, a mapping
defines a correspondence between a set of actions in one LTS
with another set of actions in another LTS. In its simplest
occurrence, a correspondence consists of one action in the
first LTS and a second one in the second LTS. All actions
of each LTS alphabet must appear in the mapping. We will
explain how this mapping is computed in Section III-B of this
paper.

Definition 5 (Mapping): A mapping between two al-
phabets A1 and A2 is defined as a set of couples
{(set11, set21), . . . , (set1n, set2n)} where for i ∈ 1..n,
set1i ⊆ A1, set2i ⊆ A2, ∪set1i = A1, and ∪set2i = A2.

The virtual object relies on this mapping to mimic the
behaviour of the replaced object from an external point of
view. To do so, when an action is issued for instance by the
embedded object, and there is a match in the mapping for this
action, the virtual object submits the corresponding action to
the environment. If there is no match in the mapping, this
action is stored. When a second action is issued by the object,
there are now two actions, and the virtual object seeks for
a corresponding match with these two actions or just one
of them. All combinations of pending actions are possible
options. Note that, when there are several possible matches,
the virtual object triggers one of them in a non-deterministic
way. This algorithm works similarly if the input actions are
issued by the embedded object or come from the environment,
but both sets of actions are handled separately.

Definition 6 (Virtual Object): A virtual object V O is a
software that takes an object O and a mapping M as input,
and behaves as follows:

• for each action (or set of actions) issued by O, V O sub-
mits the corresponding action(s) in M to the environment;

• for each action (or set of actions) coming from the envi-
ronment, V O transmits to O the correponding action(s)
in M .

Example. The example in Figure 3 shows several versions of
a switch. Suppose we want to replace a classic rocker switch
(switch1) by one with a single button (switch2) where it
alternates on and off by simply tapping the button. To embed
the second switch, still preserving from a functional point of
view the behaviour of the first switch, we need the following
mapping: {(on, tap), (off, tap)}. We remove the set notation



within each couple because in this case we have a one-to-one
action correspondence. The virtual object keeps receiving on
and off actions from the environment, and transforms them
internally to tap actions. As a result, the behaviour of this
object and of the whole application is exactly the same as
before.

Suppose now that we want to replace the first switch
(switch1) with the third one (switch3), which works like
the second one by tapping a single button. However, the
behaviour differs in the sense that one tap is enough for
switching on, but two taps are necessary for switching off.
To embed the third switch while preserving the functional
behaviour of the first switch, we need the following mapping:
{(on, on), (off, {tap1, tap2})}. In that case, once an off
action comes from the environment, two actions are executed
on the new device, namely tap1 and tap2.

Figure 3. Example for Virtual Object based Substitution

Composition expression rewriting. When changing one ob-
ject, the composition expression needs to be updated because
it cannot interact anymore with object O but it must now
interact with object O�. The solution proposed here aims at
automatically updating the composition expression to take this
change into account. This solution, as it was the case for the
virtual object option, relies on a mapping between actions of
the former and new device. Once we have this mapping we
can replace actions in the rules of the composition expression.
When there are several actions in a couple for a given object,
we use the conjunction operator in the corresponding rule,
because in that case, all actions need to be received or issued
by the corresponding device.

Definition 7 (Composition Rewriting): Given an application
defined by a set of objects Oi and a composition expression
C, and given a new object O� replacing O (O ∈ Oi), C is
rewritten based on the mapping M by substituting in C all
occurrences of action in A by the corresponding actions in A�

as defined in M .
Example. For illustration purposes, we take one IoT applica-
tion consisting of one switch and one light (Fig. 4). According
to R1, when the switch is pressed on, the light is turned on. R2
is used for turning off the light. The composition expression
indicates that R1 and R2 apply infinitely in sequence. In the
new application, we replace the switch by a more modern one
where tapping is enough for alternatively switching on and off.
The mapping is as follows (we will see how it is computed in
the next section): {(on, tap), (off, tap)}. Therefore, by using

this mapping, we can replace on and off by tap in rules
R1 and R2, respectively, as shown on the right hand side of
Figure 4.

Figure 4. Example for Composition Rewriting based Substitution

Methodology. To conclude this (sub)section, let us introduce
the simple methodology we suggest for the user who wants
to use these substitution techniques. First, (s)he should try
the simulation check. If the relation is verified, this is fine,
and the deployment can be initiated (see Section IV). If
simulation returns false, there are two options: or the user
can choose another object or (s)he can try the other solutions
(virtual object or composition rewriting). Note that these other
solutions may not work either because the mapping step
may fail (more details in the next subsection). However, if
the mapping computation succeeds, these two solutions are
equivalent in terms of results, that is, the application with the
new object will exhibit at least the same functional behaviour
as the application before substitution. Last but not least, if the
user wants to change not one object but several ones, (s)he
can apply our method several times in sequence.

B. Mapping Computation

The mapping computation works in several steps. Given the
behavioural models (LTSs) of two objects (former and new
object), we first compute the similarity matrix between the
two LTSs (using the DLTS tool [9]). Then, we use this matrix
to build couples of states with the highest similarity value
in the matrix. Finally, for each couple, we look at outgoing
transitions and actions hold on those transitions, and we use
this information to build the mapping of actions. In the rest
of this section, we will explain these three steps with more
details, and we will illustrate them with an example.

Similarity measure. The first step relies on a comparison of
both LTSs using a similarity measure [9] relying on bisimu-
lation. This check first identifies bisimilar and non-bisimilar
states. As for bisimilar states, since they are identical from
a behavioural point of view, the mapping can be obtained
in a straighforward way. Regarding non-bisimilar states, we
need to go deeper in the comparison. For each couple of
non-bisimular states (one non-bisimilar state from each LTS),
we compute a degree of similarity which belongs to [0..1].
This value is computed using several local (e.g., comparison
of actions on incoming and outgoing transitions) and global



criteria (position of similar states in their respective LTSs). All
these results are stored in a matrix where non-bisimilar states
of one LTS appear in row and non-bisimilar states of the other
LTS appear in column.
Example. Figure 5 shows two versions of a motion sensor.
The first one plays a sound when it detects a motion. The new
one switches on a light for a few seconds instead. It is worth
noting that there are exclamation marks at the end of labels in
that case, because these events are raised by the device itself.
The similarity measure computation returns the matrix given
in Table I where we can see that all states are non-bisimilar
because they all appear in the resulting matrix. For each state,
there is a value indicating how similar this state is compared
to any other state in the second LTS. As an example, states
(s0, s

�
0) exhibit a similarity value of 0.71.

Figure 5. Example of Motion Sensors

s�0 s�1 s�2
s0 0.71 0.04 0.07
s1 0.02 0.68 0.38

Table I
EXAMPLE FOR THE LTS SIMILARITY MATRIX

State matching. The second step of the mapping construction
aims at computing matches between the states of both LTSs.
Note that, at this step, we do not have to match all states, but
only those with clear matching. More formally, for each state
in the first LTS, we look for the state in the second LTS with
the highest similarity value. In case of bisimilar states, this
is straightforward and a couple with the two states is added
to the matching. In case of non-bisimilar states, we need to
look at the similarity matrix. If the value computed for these
two states is greater than a threshold (0.5 in our experiments),
we add a couple of states to the matching. If there is no value
greater than the threshold in the matrix for a given state, we do
not match it with any other state. We will see in the final step
that we do not require a match for all states. It is important
to emphasize that, by relying on quantitative measures, this
step does not systematically provide accurate results. Imagine
for instance that the best score for a given state is 0.49. In
such a case, we do not build any match for that state whereas
there was perhaps one. Note that we consider that the resulting
mapping is too imprecise if more than half of all states do not
have any match. In this case, the mapping computation fails.
Example. If we go back to the example presented beforehand
in this section, the state matching step provides the following

result for the matrix given in Table I: {(s0, s�0), (s1, s�1)}. State
s�2 has no match since its highest value (0.38) is below the
threshold.

Mapping computation. This final step takes as input the state
matching obtained previously as well as the two input LTSs,
and returns the mapping. There are several cases that we detail
in Table II. In this table, the state matching step returns (s0, s�0)
as one possible match and we show how we compute the
mapping for that specific match. We can see in the first colum
that we go through three possible cases, namely a single action,
a choice between two actions and a sequence of two actions for
which the intermediate state (s1) has no match in the second
LTS. In the second column, we see that we can have these
three possible patterns as well. The whole table goes through
all possible combinations.

Let us now comment on the three first cases, that will
help the reader to understand the whole table. When there is
one action on each side, we generate one couple with single
actions, (a, b) in the table. If there is one action in the first
LTS and a choice in the second LTS, we generate two couples
with single actions (a, b) and (a, c), keeping in the mapping
the non-determinism existing in the second LTS for that state.
If there is a single action in the first LTS and a sequence of
actions from s�0 in the second LTS (with no state matching for
s�1), we generate an entry (a, {b, c}) in the mapping.

Note that Table II is not exhaustive. We may have other
cases, such as one state with more than two outgoing tran-
sitions or one state with one outgoing transition and then
a choice (with an intermediate state with no match). The
mapping can be deduced for all these cases from the basic
cases given in Table II.

Example. We go back one more time to the motion sensor
example (Fig. 5). There are two matches in the state matching
obtained during the second step. The first one (s0, s

�
0) exhibits

a situation where each state has a single outgoing transition
with a same label, so the first part of the mapping is straighfor-
ward, namely (move,move). As for the second match (s1, s

�
1)

(we recall there was no match for s�2), we map one action with
two actions, that is, (sound, {lighton, lightoff}).

IV. SUBSTITUTION IN ACTION

In this section, we present the substitution of IoT object in
practice. This section consists of several parts. In a first part,
we present how substitution is computed from a tool support
perspective. In a second part, we show how IoT applications
are executed with the Mozilla WebThings (WT) platform and
how our substitution techniques and tools were integrated to
that platform. Finally, we comment on some experiments we
have carried out for validating the approach.

A. Tool Support for Substitution Computation

Figure 6 overviews the tools supporting the computation of
our solutions for object substitution. Note that some steps rely
on existing tools (CADP [10], DLTS [9]) and other steps are
automated by tools we implemented for this work in Python.



LTS1 LTS2 Mapping
(a,b)

(a,b), (a,c)

(a,{b,c})

(a1,b), (a2,b)

(a1,b), (a1,c), (a2,b), (a2,c)

(a1,{b,c}), (a2,{b,c})

({a1,a2},b)

({a1,a2},b), ({a1,a2},c)

({a1,a2},{b,c})
Table II

MAPPING GENERATION FOR STATE MATCH (s0, s�0)

Let us now comment on this picture to explain all the
steps of our tool support. First of all, the tool support takes
as input an IoT application composed of a set of objects
Oi and a composition expression C. We also need the new
object O� and the object O to be replaced in the current
application. Simulation is computed using the CADP toolbox,
which is a rich verification toolbox implementing several
analysis techniques for automata-based models. One of these
techniques is equivalence checking, and can be used to check
several notions of (bi)simulations and equivalences. In this
work, we compare the two LTSs O and O� with respect to
strong simulation (∼s) and we get a boolean as result. If
the answer is true, it means that the new object simulates
the former object and replacement is possible. If the answer
is false, the simulation relation is not satisfied, and the user
should go for another solution, by either choosing another new
object or trying another option (virtual object or composition
rewriting).

As for mapping generation, we recall that there are three
steps as shown in Figure 6. The first step takes both objects
O and O� as input and calls DLTS for computing the similarity
matrix. The second step takes the matrix as input and computes
a set of state matches. The third and final step takes the
state matching as input and computes the mapping. Once the
mapping is computed, we can use it (as well as the new
object) for generating a virtual object in Thing Description
(TD). As for composition rewriting, we start from the existing
composition expression and we rewrite it using the mapping.

All these steps (state matching, TD generation, composition
expression rewriting) are automated by several Python scripts
we implemented for this work.

B. Deployment and Substitution with WT

The IoT ecosystem is a diverse field consisting of vari-
ous manufacturers with different underlying technologies and
standards. Web of Things (WoT) is one of the standardiza-
tion efforts to simplify building of IoT applications. It is
based on the architectural styles and principles of the web,
which is prevalent and thereby eliminates the need to learn
various disparate technologies to build the applications. In
WoT, objects are identified via a URI and each object has
an associated Thing Description (TD), described in machine-
readable JSON-TD. A TD of an object describes its behaviour,
the operations it supports, i.e., the interfaces to monitor or
alter its state, security configuration, and protocol bindings.
The WoT standardization is led by W3C and at the time of
writing is in Recommendation phase.

Mozilla WebThings [4] is a platform for monitoring and
controlling devices over the web. It is based on Mozilla TD,
a specification complementary to the W3C’s work on abstract
data model. In our work, we use the Mozilla specification as it
provides a concrete implementation in the form of WebThings
which can be extended quickly and efficiently. The Things UI
component in WebThings allows users to build IoT automation
in the form of “If event(s) then action(s)” Event-Condition-
Action (ECA) rules. It also provides web APIs for monitoring



Figure 6. Substitution Tool Support Overview

and controlling IoT objects. Many of the popular objects are
already supported by the platform and more objects are being
constantly added.

Mozart [11] is a tool built on top of Mozilla WebThings to
support the design and deployment of complex applications.
In addition to individual ECA rules, it allows users to compose
these rules using the composition language described in Sec-
tion II. The tool supports the deployment of these applications.
In the rest of this section, we explain how we have integrated
the substitution techniques presented in this paper to Mozilla
WebThings and Mozart in order to validate our approach in
practice on smart home applications.

Given a running application and a new object replacing
another one in the application, the substitution process applies
successively the following tasks: (i) check for consistent
substitutions using the tool support presented in Section IV-A,
(ii) if step (i) is satisfactory, pause the application, make
necessary updates, and restart the application.

Regarding step (i), the tool support was presented previously
in this section. The additional need here is at the model
transformation level. We have developed a converter trans-
forming the IoT application described in the JSON format of
the WebThings/Mozart platform to the input formats of the
analysis tools (CADP, DLTS, our Python implementation).

As for step (ii), once the user decides to effectively replace
the object by the new one, there are several steps that have
to be carried out by a substitution manager we implemented.
These steps depend on the technique used for substitution. If
simulation is used for substitution, in that case, the manager
pauses the application, that is, stops executing rules and
stores all incoming events. Then, the manager replaces in the
composition expression all references to the former object by
references to the new object. It is worth noting that we do not
have to add or remove objects since all objects are available

in the physical environment. Once this is done, the manager
restarts the application.

When using a virtual object, the manager first pauses
the application. The virtual object is generated using the
mapping, and then has to be deployed properly to appear
in the WebThings list of available objects. The composition
expression is updated as before by now referring to the virtual
object instead of referring to the former object. Finally, the
manager restarts the application.

As for the composition rewriting technique for substitution,
beyond stopping/starting again the application as in the two
other cases, the manager uses the mapping for rewriting the
composition expression (as presented in section III). More
precisely, rewriting replaces in the rules all events/actions of
the former object by their counterparts in the mapping (new
object), and therefore connects these updated rules to the new
object.

As far as the user is concerned, here is what (s)he is
supposed to do during the substitution process. First, (s)he has
to choose an object to be replaced in the running application
and a new object. Then (s)he can choose one substitution
technique. If the substitution applies without any problem
(e.g., simulation returns true), (s)he is asked to initiate the
replacement and the substitution manager executes all the steps
automatically for updating the application to integrate the new
object. If there is a problem (e.g., failure of the state matching
phase during the mapping generation or simulation returns
false), the user receives a warning. In that case, (s)he should
choose another new object. This situation happens when the
new object is too different with respect to the former object,
and the substitution does not make any sense.

C. Experiments
We have carried out a series of experiments on our own

testbed simulating simple smart home applications in order to



validate our approach. This testbed consists of several objects
including lights, motion sensors, screens and speakers. We
used a control access system as scenario, which counts the
number of people in a room (could be a shop for instance)
and allows another person to access this room only if the max
number of people has not been reached yet. Then, we made
several versions of that application, by updating it step by
step. At each step, we replace one object by another one (e.g.,
new motion sensor, colored light instead of basic light, speaker
with voice messages replacing a speaker with only predefined
sounds, etc.). For any replacement, we made use of our tool
support for verifying whether the replacement preserved the
application behaviour. We systematically tried the different
options presented in Section III and finally deployed the
new object using the substitution manager. These experiments
allowed us to show that the two main steps of our approach
(substitution verification and deployment) worked smoothly as
expected.

As far as performance is concerned, all computations (sim-
ulation check, mapping computation, virtual object generation
or composition rewriting) are very efficient (<1ms) because
input models are usually small (less than 10 objects). There-
fore, the substitution process as a whole only takes a few
seconds corresponding to the time taken by the user for making
his/her decisions (choice of objects and effective replacement
decision).

V. RELATED WORK

In [12], the author addresses the substitutability of compo-
nent protocols described with Petri nets. The substitutability
notion used in this paper is based on strong bisimulation. Re-
placing components using this relation enables to preserve sys-
tem compatibility. In [13], the authors check component sub-
stitutability using weak bisimulation. They show that whenever
there is a system in which a component is replaced with an
observationally equivalent one, the system remains equivalent
to the former one. This relation is less restrictive than strong
bisimulation used in [12]. In [14], the authors use a Finite State
Machine (FSM) model to formalise a substitutability notion
for Web services which preserves compatibility. The authors
consider a symmetric approach which requires that services
must have the same traces. Pre/post-conditions are used and
compared using a subtyping relation: the pre-conditions of an
old service must be simulated by those of the new service
and the post-conditions of the new service must be simulated
by those of the old service. In [15], [16], service models are
described using Labelled Transition Systems with a specific
interest on internal behaviours. This work presents several
notions of compatibility and replacement. Compared to these
works, we go beyond strong notions of replacement such as
bisimulation still preserving the functional behaviour of the
whole application.

Substitution was also tackled in the context of software
reconfiguration. Several formal models such as Darwin [17] or
Wright [18] were proposed in order to specify dynamic recon-
figuration of component-based systems whose architectures

can evolve (addition, removal or replacement of components
and connections) at runtime. These techniques aim at helping
users to formally design dynamic applications. In [19], [20],
the authors show how to formally describe behavioural models
of components using the FSP specification language and
analyse these models using the Labelled Transition System
Analyser (LTSA), which allows the verification of temporal
properties on the component architecture. [21] presents a flex-
ible approach to seamless reconfiguration of EJB-based En-
treprise Applications. This work provides generic and reusable
procedures for automatically supporting reconfiguration tasks.
The role of the administrator is reduced to selecting an
appropriate strategy and creating a reconfiguration plan that
configures a generic procedure for a concrete reconfiguration.
In this work, our goal was to maintain the global behaviour
when substituting one object in an IoT application.

We are not aware of many works on substitution of device in
the IoT area. [22] introduces the OpenPnP reference architec-
ture, which allows a significant reduction of configuration and
integration effort during industrial plant commissioning. The
OpenPnP architecture reduces configuration and installation
time by up to 90 percent, while scaling to Industrial IoT
systems with many nodes. OpenPnP also provides concepts for
replacing malfunctioning devices. This work does not attempt
to preserve any guarantee regarding the behaviour of the appli-
cation before and after substitution. In [23], [24], the authors
propose new techniques for supporting the reconfiguration
of running IoT applications. These techniques compare two
versions of the application (before and after reconfiguration)
to check if several properties of interest from a reconfiguration
perspective are preserved. The analysis techniques have been
implemented using the Maude framework and integrated into
the WebThings platform. In this work, we focus on the
replacement of a single object and we aim at providing formal
guarantees in this specific context.

VI. CONCLUDING REMARKS

We have presented in this paper a set of techniques for
supporting the substitution of one object in a running IoT
application. In this work, we assumed that substitution should
not change the whole behaviour of the application from an
observational point of view. This is particularly useful when
one needs to replace one object due to a failure, maintenance,
software update, new device, etc., but does not want to change
the overall behaviour of the application. We proposed three
different techniques for ensuring that substitution is consistent
in that way. The first one relies on simulation checking,
which compares the behavioural models of both objects.
The second and third techniques first compute a mapping
between the actions of both objects. Then, they exploit this
mapping for either generating a virtual object simulating the
behaviour of the former object on top of the new object,
or for automatically rewriting the composition expression to
use the new object instead of the old one. Our solutions
are supported and automated by several tools we reused or
have implemented ourselves. In particular, our contributions



on substitution analysis and computation were integrated to
the Mozilla WebThings platform. This allowed us to make
experiments on smart home applications, showing that our
approach works correctly on real IoT applications.

As far as future work is concerned, we would like to make
our approach fully automated. In its current form, human
intervention is required for choosing an object to be replaced
and a new object. At some point, in the substitution process,
the user is also asked to initiate the effective replacement. A
fully automated approach would be very useful, particularly
in case of failure, in order to trigger the substitution process
without expecting any manual intervention. Another perspec-
tive aims at providing additional notions of replacement such
as deadlock-freeness like suggested in [25]. This would allow
users to have other possible options. However, in that case, it
may not be possible to preserve the very same behaviour of
the application (a.k.a. application consistency).
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