
HAC LUCE

Department of Computer Science

University of A Coruña

PhD Thesis

From software architecture
to formal verification

of a distributed system

Author:

Juan José Sánchez Penas

Supervisors:

Thomas Arts (IT University of Göteborg)

Vı́ctor M. Guĺıas (Universidade da Coruña)

July 2006

To Dores

Abstract

This thesis studies how to go from the software architecture to the formal verifica-
tion of a distributed system.

As the motivation and target of our research, we use the VoDKA system, a
distributed VoD server developed by the LFCIA-MADS research group using the
Erlang/OTP platform. The software architecture of VoDKA is very flexible and
complex, and better tools are needed in order to increase the confidence of the
system architects and improve the overall system quality. We study how to use
formal verification for that purpose.

Therefore, using several tools from the area of formal methods, we propose
an innovative method for automatically extracting performance information about
the system. As input to our method, we receive the system source code and the
system configuration (the description of the components and how they interact).
As output, we provide feedback information about the system performance and
architectural bottlenecks. We extensively applied the method for analyzing the
VoDKA system as a case study and showed how it can be reused with other tools
and for other similar distributed systems.

i

ii Abstract

Resumo (Thesis summary in Galician)

A presente tese propón un método e unhas ferramentas para ir dende a arquitectura
software á verificación formal dun sistema distribúıdo.

O sistema distribúıdo que se estuda é o servidor de video baixo demanda VoD-
KA, desenvolvido no laboratorio LFCIA-MADS da Universidade da Coruña duran-
te os últimos anos. VoDKA é un sistema cunha arquitectura complexa e moi flexible
e escalable, que fai uso extensivo dos patróns de deseño e os componentes reutiliza-
bles. A tecnolox́ıa utilizada para o desenvolvemento é Erlang/OTP , unha linguaxe
functional distribuida orixinalmente creada por Ericsson para a programación de
sistemas de control.

Para a análise deste sistema, a tese desenvolve un método e utiliza unha serie de
ferramentas mediante a aplicación da verificación formal. O obxectivo final deste
método é a extracción de información útil sobre a arquitectura do sistema, de
forma automática, tomando como punto de partida o código fonte e a descripción
da configuración do sistema.

A tese está dividida en tres partes principais. Na primeira, mot́ıvase a inves-
tigación levada a cabo: VoDKA é un sistema innovador, que comparte algunhas
caracteŕısticas con sistemas semellantes distribúıdos, e representa un reto moi in-
teresante para a aplicación de métodos formais. Xusto despois ind́ıcanse os prin-
cipais obxectivos da tese: coñecer máis e mellor o software a estudar, propoñer
ferramentas para a mellora da súa arquitectura e estudar as posibilidades e ĺımites
do uso de métodos formais para a verificación de propiedades non funcionais dun
sistema distribúıdo. Finalmente son introducidos os principais conceptos necesarios
para a comprensión detallada do resto da memoria da tese: expĺıcanse en detalle as
ideas relacionadas co desenvolvemento de sistemas distribúıdos utilizando patróns
de deseño, e introdúcense os conceitos relacionadas co model checking e as álxebras
de procesos.

Na segunda parte da tese, o servidor VoDKA é estudado en detalle co obxec-
tivo de amosar como varias das caracteŕısticas innovadoras do sistema convidan
á utilización de métodos formais para incrementar o coñecemento do mesmo que
teñen os membros do equipo de desenvolvemento. En primeiro lugar, descrébense
os requisitos máis importantes dos servidores de video baixo demanda, e ao mesmo
tempo fálase do estado da arte na área e das alternativas que inspiraran a VoDKA
no momento da súa concepción. VoDKA é unha opción comparable ás alternativas
comerciais e académicas, e especialmente útil en contextos onde a flexibilidade, es-
calabilidade e baixo coste son requisitos prioritarios. Despois disto, a arquitectura
do sistema descrébese en detalle usando a aproximación do 4+1 Model, ofrecen-
do deste xeito distintos puntos de vista complementarios do sistema. Os patróns

iii

iv Resumo

de deseño, os componentes do sistema, e a API homoxenea que todos eles com-
parten son descritas en detalle nestes caṕıtulos. A configuración de VoDKA pode
variar enormemente dependendo das necesidades de cada despregue, co que na tese
descrébense varios exemplos en redes de distinta natureza. O caṕıtulo 6, resume as
conclusións desta parte da tese: VoDKA funciona moi ben e ten unha arquitectura
moi flexible, pero debido a isto e ás limitacións de Erlang (que é unha das chaves
do éxito do sistema pero ten algúnas desvantaxas), maniféstase unha necesidade de
mellores ferramentas que permitan aos deseñadores e arquitectos do sistema tomar
as decisións arquitecturais correctas.

Finalmente, na terceira parte da tese, partindo do coñecemento adquirido sobre
a arquitectura de VoDKA, descrébese como os métodos formais poden ser unha
resposta á devandita carencia de ferramentas para a extracción de información
sobre sistemas distribúıdos. No caṕıtulo 7 expĺıcanse os primeiros resultados: por
que e como se decidiu utilizar métodos formais para o proxecto VoDKA. A principal
razón e a búsqueda dun incremento na calidade do sistema ofrecendo á equipa de
desenvolvemento unha mellora na información sobre o rendemento do sistema que se
pode extraer de xeito automático. De entre as posibles técnicas, óptase por utilizar
model checking, ainda que a simulación, as probas automáticas e mesmo a proba
de teoremas teñen vantaxas e problemas que indican que podeŕıan ser utilizadas
de xeito complementario. A proposta é a verificacion formal áxil realizada en cada
iteración do ciclo de vida do proceso de desenvolvemento de software co obxectivo
de enriquecer as decisións tomadas sobre a evolución da arquitectura do sistema.

A aproximación áxil baseada en model checking que se propón nesta tese é des-
crita en detalle no caṕıtulo 9, e consiste na definición dun método que recibe como
entrada o código fonte do sistema e a descripción da configuración do mesmo, e
é quen de extraer de xeito automático información sobre o rendemento utilizando
fórmulas lóxicas que son verificadas contra o grafo de estados do sistema.

Para a implementación do método, son necesarias ferramentas concretas. No
caṕıtulo 8 descrébense as ferramentas escollidas en detalle. Algunhas delas son
ferramentas avanzadas que xa estaban disponibles, e outras foron adaptadas ou
desenvolvidas ad hoc para as necesidades do método. Na primeira versión do méto-
do proposto, primeiro faise unha transformación do código fonte Erlang a unha
especificación no álxebra de procesos µCRL; para isto, o compilador etomcrl foi
desenvolvido. O compilador utiliza os patróns de implementación de Erlang , cha-
mados behaviours, como base para simplificar a traducción abstraendo os detalles
de baixo nivel. etomcrl é quen de traducir automáticamente gran parte da linguaxe
Erlang . Para a simulación dos usuarios que fan as peticións ao servidor de video,
utiĺızase o non-determinismo do álxebra de procesos. Unha vez temos a especifica-
ción, pódense utilizar as ferramentas do µCRL toolset para a xeración do grafo
de estados do sistema. Para poder manexar grafos grandes, faise unha reducción
antes de realizar a verificación por model checking. Para a reducción e a verificación
utiĺızase CADP.

O método proposto foi aplicado satisfactoriamente para a análise do servidor
VoDKA. Seguindo a aproximación explicada, fomos quen de obter información
como o número de veces que unha peĺıcula pode ser visualizada antes de que o ser-
vidor se sature, ou o número de veces que se pode ver unha peĺıcula A sendo ainda
posible visualizar outra peĺıcula B a posteriori; seguindo o mesmo método, tamén

Resumo v

podemos extraer información sobre a arquitectura do sistema, os bottlenecks, ou
mesmo proporcionar aos deseñadores pistas sobre que decisións arquitecturais to-
mar cando un novo compoñente é introducido no sistema. Os resultados obtidos son
moi interesantes e a maior parte dos obxectivos plantexados ao comezo da inves-
tigación foron alcanzados. Porén, a aproximación ten limitacións que son descritas
en detalle ao longo da tese: algunhas delas inerentes ao uso de técnicas baseadas
en model checking (como é o caso dos grafos de estados infinitos ou moi grandes) e
outras derivadas de que as propiedades sobre o rendemento do sistema non sempre
son fácilmente formualizables como expresións lóxicas sobre o grafo de estados.

Ademáis das limitacións comentadas, as ferramentas escollidas tamén teñen
algunhas limitacións, como o tempo necesario para a xeración do grafo completo,
ou a dificuldade para obter a reducción axeitada. Co obxectivo de superar estas
limitacións, e ao mesmo tempo de amosar que o método proposto non está ligado a
unhas ferramentas concretas, repetiuse outra vez o estudo sobre VoDKA utilizando
agora McErlang, que permite a realización de model checking directamente sobre
o código fonte Erlang . Expĺıcase como McErlang pode ser utilizada tanto para a
xeración do grafo de estados completo, similar ao que se fai coas µCRL toolset,
como para verificar directamente as propiedades tal e como se faćıa con CADP.
McErlang non é tan madura como as ferramentas utilizadas anteriormente, pero o
feito de traballar directamente co código e a máquina virtual Erlang dalle moita
potencia á hora de acceder a calquera tipo de dado que está manexando o sistema en
calquera dos estados intermedios do grafo que se está a construir. Isto proporciona
unha potencia maior que o razoamento sobre accións e estados sen información, que
se realizaba na aproximación anterior. Usando McErlang, fomos quen de mellorar
os resultados obtidos coas ferramentas anteriores e de abrir novas posibilidades
para a investigación futura.

Outro dos obxectivos da tese era a creación dun método que poda ser utilizado
sen necesidade de ser un experto na área dos métodos formais. Para isto, por riba
das ferramentas especializadas utilizadas, construimos o prototipo dunha aplicación
de alto nivel que oculte todos os detalles formais que non sexan necesarios durante
o proceso.

Tamén é interesante resaltar que o método proposto non é só flexible nas fe-
rramentas utilizadas -como xa se amosou- senón que tamén pode ser aplicado a
outros sistemas distribúıdos. Nesta tese o obxectivo central era probalo realizando
a extracción de propiedades do servidor VoDKA, pero como se explica no caṕıtulo
9, pode ser aplicado a outros sistemas similares, que compartan as principais carac-
teŕısticas de VoDKA, principalmente: ter unha arquitectura flexible, ter consciencia
do hardware sobre o que se executa a aplicación, e usar frecuentemente patróns de
deseño como base para a creación de componentes software.

Os resultados da tese son satisfactorios, e numerosos camiños para o traballo
futuro, tanto no ámbito do servidor VoDKA como na mellora das ferramentas de
extracción de información quedan abertos.

vi Resumo

Acknowledgements

I have passed different periods while doing this thesis, and I really need to thank
all the people that helped me to overcome the bad moments and to enjoy and
appreciate the good ones.

First, I would like to thank Thomas Arts. It can sound like a commonplace,
but I truly think that without him, this dissertation would not have been possible.
I still remember the first time I visited him at the Ericsson’s Computer Science
Laboratory, in Stockholm, the summer of 2001, looking forward to starting some
collaboration with him in the fields of distributed programming and software verifi-
cation. Lots of things have happened since then, and I have never stopped learning
from his insights and suggestions. I do not have words to thank his enthusiasm
and support during all these years. Thanks also for the afternoons with Torkel,
Dagmar and Heleen, with the snow outside.

I would like to thank Vı́ctor Guĺıas for supervising the thesis and giving me
support and freedom (two things difficult to combine) during the latest years. I
also remember how excited I was when a lot of years ago, after one of the last exams
of the degree, he suggested me to become part of the LFCIA-MADS research group.
I have learned a lot from the experience and I am very happy to have accepted his
invitation.

I sincerely thank José Luis Freire for his knowledge and humanity, and all the
people I worked with at the LFCIA-MADS group and the VoDKA development
team.

During my several visits to Sweden I had the opportunity to meet very nice
people. In 2001, when I first visited Thomas, he was working with Clara Benac
Earle; since then, I have had the pleasure to collaborate with Clara in several
subjects related to this thesis. It was also a pleasure to meet Lars-Åke Fredlund,
from who I learned a lot, and not only about theorem proving and McErlang. I look
forward to doing more research with them. In general, I feel lucky for being able to
met new people at the Ericsson’s CSLab (thanks to Bjarne Däcker for redefining
the concept of boss), the Swedish Institute of Computer Science (thanks to Mads
Dam for kindly hosting me there), and the IT-University of Göteborg.

Thanks to the Erlang community, and the authors of the µCRL toolset and
CADP, for being so kind answering my doubts and concerns.

Thanks also to my fellows at the Igalia project. Five years ago I started with
them a big adventure, which has been one of the most interesting professional
experiences in my life.

I have to thank my parents for their love and unconditional support, and for
teaching me to fish instead of (only) feeding me fish. Also to my brother Rubén

vii

viii Acknowledgements

(for that e-mail pending to be answered), and to Sonia (and the no-name baby) and
the lovely Ledicia, who still does not have a clue on what a Ph.D. thesis. Also need
to thank Jose, Loli and Xosé, for making so easy to become part of their family, as
if it was the most natural thing in life. I have to mention also my grandparents,
specially Emilio, who passed away one year ago and comes to my mind very often.

Thanks to Alex for being a Friend, always there. I am more than happy for
that decision about moving to the front of the classroom in the second year at the
University.

Thanks to the rest of my friends, Maŕıa and Manolo (and now Mateo, for the
relax-moment in our sofa), Ana (for those hugs), Vanesa and Toni (for the escapes
to Barcelona), Ángel (for the energy in Alfajore pills), and the rest of the people
who share the hibiscus-experience in canceladeafora10.

And finally, very special thanks to Dores, first for her love and patience, because
this thesis is more hers than mine (the cover should truly have her name written),
and second and more important, because (and I am not a friend of saying this
things in public) nothing in life would make sense without her.

Contents

I Context 1

1 Motivation 5

2 Introduction 7
2.1 Main goals of the thesis . 7
2.2 Main contributions of the thesis . 8
2.3 Published articles related to the thesis 9
2.4 Structure of the thesis manuscript 11

3 Thesis preliminaries 13
3.1 Erlang/OTP for distributed systems 13

3.1.1 Short motivation and history of Erlang 14
3.1.2 Erlang main features . 15
3.1.3 Sequential Erlang . 17
3.1.4 Concurrent and distributed Erlang 18
3.1.5 Open Telecom Platform . 20
3.1.6 Erlang success stories . 20

3.2 Design patterns and distribution . 21
3.2.1 Design and implementation patterns 21
3.2.2 Erlang behaviours . 22
3.2.3 An example Erlang behaviour: the generic server 23

3.3 Process algebras . 25
3.3.1 Introduction to process algebras 25
3.3.2 µCRL: a process algebra with data 27

3.4 FM for distributed systems . 32
3.4.1 Specification languages . 33
3.4.2 Model checking . 34
3.4.3 Theorem provers . 35
3.4.4 Formal verification of functional and concurrent systems . . . 36

3.4.4.1 Formal verification of Erlang 37

II VoDKA development 39

4 VoD servers 43
4.1 Video-on-Demand definitions . 43
4.2 VoD server requirements . 45

ix

x CONTENTS

4.3 State of the art in VoD systems . 51
4.3.1 Enterprise Solutions . 52
4.3.2 Academic World Solutions . 53

5 VoDKA architecture 55
5.1 System use-cases . 56
5.2 General design ideas . 59
5.3 Logical View . 59

5.3.1 Distributed design patterns 60
5.3.2 Internal protocol (message API) 66
5.3.3 Description of software components 69

5.4 Process View . 72
5.5 Development View . 74
5.6 Physical View . 75

5.6.1 VoDKA very simple deployment 76
5.6.2 VoDKA on the Borg cluster 76
5.6.3 VoDKA on a faculty network 78
5.6.4 VoDKA on a city cable network 80

5.7 Evolutions of the VoDKA architecture 81

6 Lessons learned from VoDKA 85
6.1 Evaluation against requirements . 85
6.2 Relation with other solutions . 88
6.3 Erlang/OTP and VoDKA . 89
6.4 Conclusions and future research . 90

III Using formal methods for improving VoDKA 93

7 Formal methods for VoDKA 97
7.1 Why : advantages versus disadvantages 98
7.2 What : methods and tools . 99
7.3 When and how in the dev. process 101
7.4 Who: the actors involved . 103
7.5 Our proposed approach . 104
7.6 Limits of the approach . 104
7.7 Other approaches . 105

8 Tools used for the analysis 107
8.1 Introduction . 108
8.2 etomcrl: translating Erlang to µCRL 108

8.2.1 Introduction and motivation of the tool 109
8.2.2 Bridging the gap between Erlang and the µCRL process algebra111

8.2.2.1 Processes and communication 111
8.2.2.2 Design pattern: generic server 115
8.2.2.3 Functions with side-effect 119
8.2.2.4 Pattern matching in the communication part 122
8.2.2.5 Pattern matching a pure function return value . . . 128

CONTENTS xi

8.2.2.6 Design pattern: supervision tree 128
8.2.2.7 Higher-order functions 129
8.2.2.8 Data and pure functions 130
8.2.2.9 Module system . 134

8.2.3 Overview of the etomcrl tool 135
8.2.4 Detecting messages matching a given pattern 137
8.2.5 arch graph: inter-process relations from the state graph . . . 139
8.2.6 Conclusions and limitations 140

8.3 µCRL toolset . 141
8.3.1 Introduction and motivation of the tool 142
8.3.2 Using the µCRL toolset for our purposes 143

8.4 CADP: model checking the state space 144
8.4.1 Introduction and motivation of the tool 144
8.4.2 Parts of the CADP that we are using 145

8.5 McErlang: model checking from Erlang 147
8.5.1 Introduction to the tool . 148
8.5.2 Internal implementation of McErlang 150

8.5.2.1 The internal language 150
8.5.2.2 Monitors . 153
8.5.2.3 Abstractions and hash tables 153

8.5.3 The McErlang approach vs etomcrl +µCRL +CADP 153

9 Performance from code 155
9.1 Introduction . 156
9.2 Method . 158

9.2.1 Step one: Erlang to µCRL . 164
9.2.2 Step two: Generating a State Space from µCRL 166
9.2.3 Step three: Performance analysis with model checking 167

9.2.3.1 Verifying Global Properties 167
9.2.3.2 Architecture from the messages 171
9.2.3.3 Bottleneck information 172
9.2.3.4 Calculating resources for a new component 173

9.3 Results . 174
9.3.1 Intermediate results of the experiment 174

9.3.1.1 µCRL model generation 174
9.3.1.2 State space generation 175

9.3.2 Final results: properties we are able to extract 177
9.3.2.1 Extracting global properties 177
9.3.2.2 Extracting architecture from the messages 180
9.3.2.3 Extracting bottleneck information 182
9.3.2.4 Adding and studying new components 185

9.4 VoDKAV : hiding formal methods . 186
9.5 Testing the method with McErlang 187

9.5.1 Generating the state space from the Erlang model 189
9.5.2 Checking the properties from the Erlang model 192
9.5.3 McErlang vs. etomcrl +µCRL +CADP for VoDKA 193

9.6 Analysis and discussion . 194

xii CONTENTS

9.6.1 Conclusions and future research paths 196

IV Conclusions and open paths for future research 199

10 Thesis conclusions 201

11 Open paths for future research 205

V Appendixes 207

A More about the etomcrl tool 211
A.1 A simple translation example . 211

A.1.1 Original Erlang source code of the example 212
A.1.1.1 The supervision tree: st.erl 212
A.1.1.2 A simple generic server: disk.erl 212
A.1.1.3 A trivial client: users.erl 213

A.1.2 µCRL specification generated automatically from the example 214
A.2 Using the etomcrl tool . 218
A.3 Other case study: ATM switch . 219

A.3.1 An ATM switch Locker . 219
A.3.1.1 Project description 220
A.3.1.2 Results of using the tool within this project 220

B Using etomcrl on VoDKA 223
B.1 Supervision tree: vodka.erl . 223
B.2 Supervision tree: storage.erl . 224
B.3 Generic server: storage sched.erl 224
B.4 Generic server: storage group.erl 225
B.5 Generic server: streaming sched.erl 226
B.6 Generic server: disk storage.erl 227
B.7 µCRL code for the main part of the example 229

C The implementation of VoDKAV 239
C.1 General design of the tool . 239
C.2 The CollectionServer and its interfaces 240
C.3 The ModelServer and its interfaces 241
C.4 The CheckingServer and its interfaces 244

D Thesis metainformation 247

E Licensing of the thesis 249

List of Figures

4.1 Levels of interaction according to Little and Venkatesh 44
4.2 Main components of a generic VoD architecture 45
4.3 Summary of the main VoD server requirements 49

5.1 Main VoDKA use-cases . 56
5.2 Supervisor-worker pattern: example of a supervision tree 61
5.3 The event handler and event manager pattern 62
5.4 Example of the monitor pattern used inside VoDKA 63
5.5 The generic server process pattern used in VoDKA 63
5.6 Example of a scheduler process in VoDKA 65
5.7 Pipe & Transfer patterns used in VoDKA 65
5.8 Example of the resource constraint pattern 66
5.9 Simple configuration of the high-level VoDKA components 72
5.10 Processes in a linear configuration of VoDKA 73
5.11 Example of message exchange in a linear configuration 74
5.12 Simple deployment of VoDKA with only two components 77
5.13 Borg, the LFCIA-MADS ’s Beowulf cluster 78
5.14 The Borg adapted to the hierarchical server architecture 79
5.15 Deployment of VoDKA in a faculty network 80
5.16 Deployment of VoDKA in a regional cable network 81
5.17 Original VoDKA design with a fixed 3-levels architecture 82
5.18 VoDKA components with the resource modelling process 83

7.1 Formal methods placed in the V-model schema 102

8.1 Tools for state space generation and analysis 108
8.2 Communication in Erlang and µCRL for standard processes 114
8.3 Communication in Erlang and µCRL for generic servers 117
8.4 Architecture of the etomcrl tool . 136
8.5 Collaboration of the tools included in the µCRL toolset 143
8.6 The EUCALYPTUS GUI integrates all the CADP tools 146
8.7 CADP includes an interactive state space simulator 147

9.1 Architecture configuration example for the VoD system 159
9.2 Detailed configuration example without cache level 160
9.3 Proposed three steps methodology: from Erlang to global properties 163
9.4 etomcrl: from Erlang to µCRL . 164
9.5 From µCRL to state space of the system 166

xiii

xiv LIST OF FIGURES

9.6 Abstract graph for a simple configuration 168
9.7 From the behavioural graph to the global performance properties . . 172
9.8 Counterexample for the longest success in VoDKA Configuration 2 178
9.9 Counterexample for the longest success in VoDKA Configuration 3 179
9.10 Architecture graph for VoDKA Configuration 1 181
9.11 Architecture graph generated from the AUT file 182
9.12 VoDKAV graphical user interface: designs repository 187
9.13 VoDKAV graphical user interface: model manipulation 188
9.14 VoDKAV graphical user interface: supervision tree 188
9.15 VoDKAV graphical user interface: property checking 189

C.1 Design of the VoDKAV : GUI interface for our method 240

Part I

Context

1

3

The first part of the thesis explains the context needed for understanding the
research that has been carried out. In the three following chapters we first motivate
the work, then we describe the main goals and contributions of the thesis, and
finally we describe all the preliminary knowledge needed in order to understand
the rest of this manuscript.

4

Chapter 1

Motivation

During the last ten years, the LFCIA-MADS (Models and Applications of Dis-
tributed Systems) research group has been working in innovative ways of develop-
ing distributed systems. The VoDKA VoD server1 is an example of such a system,
first developed by the group as an innovative flexible component-based streaming
architecture and since 2003 offered as a commercial product by a spin-off company2

developed from the University of A Coruña.
VoDKA has been developed using Erlang/OTP , a platform first created by

the telecommunications company Ericsson as an internal product and released as
Open Source in 1998. Erlang has increased its popularity during the last decade
and it is used nowadays for developing distributed applications all over the world.
Erlang-like technologies have more and more importance in modern world, since
fault-tolerance, concurrency, maintainability or time-to-market are requirements
for almost all kind of systems.

Despite the innovative aspects of the VoDKA system, it shares some charac-
teristics with a considerable part of the distributed systems that are developed
nowadays, specially, of course, with those that use Erlang/OTP as underlying
platform.

Since the first stages of the VoDKA project, the development team was con-
fronted with several difficulties, raising different kinds of research questions. In
these thesis we focus on one of those difficulties: how to automatically obtain
information about the system performance from its complex software architecture.

If we understand performance in a general way, we can include things like the
system capacity, the possible bottlenecks in the architecture, or inconsistencies
between requirements and software configurations. Doing the study by traditional
ways -mainly by deploying the system and testing it- turned out to be a time-
consuming process, and the challenge of this thesis was to find alternatives to
them.

The alternative we wanted to explore is formal methods, a promising approach
that has been gaining importance dramatically during the last years in parallel with
the development of new and more complex distributed systems. From being mostly
a pure research area, only used successfully in the fields of hardware or protocol
verification, it has grown into a richer field where all kind of new approaches, tools

1VoDKA is a Spanish trademark of LambdaStream Servicios Interactivos, S.L.
2LambdaStream Servicios Interactivos, S.L. (http://www.lambdastream.com)

5

6 CHAPTER 1. MOTIVATION

and methodologies are appearing.
In 1996, in the ACM Computing Surveys [CW96], the situation was described

by Clarke and Wing in the following way: Finally, we believe that current techniques
and tools for specifying and verifying systems have advanced to the point that with
another ”turn of the crank” partial analysis is tractable for real, industrial-sized,
complex computer systems. This last claim suggests that the research community
is potentially on the brink of a major breakthrough. Thus, by forging ahead we
hope that we can provide the next generation of formal methods–their notations,
techniques, and tool support–and that they will be used routinely by the software
and hardware engineers of tomorrow.

Agreeing with that definition, and considering it to be still valid nowadays,
the main motivation of this thesis is to explore how one should go from the soft-
ware architecture of distributed systems like VoDKA, to extract interesting system
properties using formal verification. In other words, the thesis explores the use of
techniques from the area of formal methods in order to increase the quality of a
given kind of distributed systems, exemplified by the case study of VoDKA. The
method we propose allows the engineers to predict the behaviour of the system
and therefore to learn more about the software architecture in order to improve its
performance.

The research carried out in this thesis builds therefore upon the tradition al-
ready present in 1996 and provides new methods and tools for advancing in that
direction.

The work carried out includes studying the state of the art in the field; an-
alyzing the system we are going to use for the case study, its development and
its problems; and proposing a complex set of tools (some of them developed after
finding a concrete need) and a method for analyzing systems like VoDKA and ex-
tracting performance properties. The method and tools are used for the case study
(analyzing a distributed VoD system), but they are explained as generic solutions
that can be reused in other kinds of systems that share with VoDKA the basic
features.

Chapter 2

Introduction

Contents

2.1 Main goals of the thesis 7

2.2 Main contributions of the thesis 8

2.3 Published articles related to the thesis 9

2.4 Structure of the thesis manuscript 11

As already introduced in the previous chapter, the main goal of this thesis is to
carry out research about the use of formal methods in order to extract properties
from the software architecture of distributed systems. In the current chapter, we
first describe with more detail the goals of the thesis; then, we enumerate the main
contributions and cite the main articles that were published with thesis material;
and finally, we describe the structure of the rest of the manuscript.

2.1 Main goals of the thesis

The thesis goals are derived from what we have explained in the motivation, and
most of them have derived in contributions to the current state of the art in the
field. Hereafter we describe some of them:

• Contribute to the VoDKA development creating methods and tools for know-
ing more about the system. The tools should help in the process of extracting
relevant information about the software architecture.

• Analyze in detail the VoDKA project itself and learn more about its archi-
tectural ideas and components, and about how the system evolved through
the years. The proposed solutions should take the characteristics extracted
from the study of VoDKA into account.

• Explore the possibilities of formal methods for improving the design of dis-
tributed systems giving feedback to the developers. This contributes to the
idea of the formal development of a complex distributed system.

• Look into verifying non-functional aspects of distributed systems using auto-
matic model checking techniques. Traditionally, model checking techniques

7

8 CHAPTER 2. INTRODUCTION

have been used for correctness properties, and the goal here is to extend that
usage to other behavioural properties and specially to performance informa-
tion.

• Explore the tools from the area of formal methods and their capacity for
being used with real distributed systems. Test the most interesting ones and
complement them with the required features, new usages, or new components.

• Extract the information automatically, reducing as much as possible the hu-
man interaction. In this sense, using more automatic approaches, like model
checking, will be a priority.

• Extract as many properties as possible from the VoDKA system, always try-
ing to take into account how general they are and how easy could be to apply
them to similar distributed architectures.

2.2 Main contributions of the thesis

• Study of the technologies and the state of the art in the areas related to the
content of the thesis. Developed in Chapter 3.

• Detailed description of the VoD servers and their main requirements, and
study of the state of the art in VoD systems development. Developed in
Chapter 4.

• Detailed description of the VoDKA architecture using the 4+1 Model. De-
veloped in Chapter 5.

• Study of the main problems found during VoDKA development and how they
relate to the need of formal verification techniques. Developed in Chapter 6.

• Motivation and description of an approach for using formal methods in VoDKA,
and answer to the main questions about the context of the approach and how
it relates to software engineering. Developed in Chapter 7.

• Maintenance, improvement and creative usage of the etomcrl tool for trans-
lating Erlang programs to µCRL specifications (shared contribution with Clara
Benac Earle and Thomas Arts). The tool is described in detail in Chapter 8
and the usage in Chapter 9.

• Method for going from software architecture to formal verification of
a distributed system. The method has several detailed phases and uses a
set of well-known tools from the area of formal methods together with ad hoc
tools. Besides, it focuses in the extraction of performance information from
the source code, although it could be used for other kinds of properties. The
method is described in the first part of Chapter 9.

• Detailed example of usage of the proposed method with VoDKA as a case
study. Described in the second part of Chapter 9.

2.3. PUBLISHED ARTICLES RELATED TO THE THESIS 9

• Creative usage of the McErlang tool for offering an alternative to the tools in
the method, extracting performance properties directly model checking the
Erlang source code (shared contribution with Clara Benac Earle and Thomas
Arts). As in the case of etomcrl, the tool is described in detail in Chapter 8
and its usage in Chapter 9.

• Development of a graphical user interface (VoDKAV) as a proof of concept
for hiding all the low level formal details in the method proposed for extract-
ing properties. The goal is to make usable the method for developers and
designers that are not familiar at all with formal methods. The tool is de-
scribed in Appendix C and its usage is shown during the method description
in Chapter 9.

2.3 Published articles related to the thesis

In this section we will show the main publications related to the material presented
in these thesis.

Articles related to the preliminaries and the state of the art:

• State of the Art and Design of VoD Systems (in Spanish). Published in
the International Conference on Information Systems Analysis, SCI 2000
[SGVM00].

• State of the art in formal verification of distributed functional software. Pub-
lished as a report for the Diploma de Estudios Avanzados, 2001 [S0́1].

Articles related to the VoDKA project:

• A Monitoring and Instrumentation Tool developed in erlang. Published in
the International Erlang User Conference, EUC 2000 [BGS00].

• The Tertiary Level in a Functional Cluster-based Hierarchical VoD System.
Published in Eurocast 2001 and later selected for publishing in LNCS [BGSJ01].

• Implementing a monitoring model for a Video-on-demand server in Erlang
(in Spanish). Published in the Conferencia Latinoamericana de Informática,
CLEI 2001 [VGS+01a].

• Using distributed functional programming and Linux clusters for the develop-
ment of Video-on-demand servers (in Spanish). Published in the Simposio
en Informática y Telecomunicación [BGMS01].

• Exploiting Sequential Libraries on a Cluster of Computers. Published in the
Erlang Workshop 2001 [BFGS01].

• An Erlang-based Hierarchical Distributed VoD System. Published in the In-
ternational Erlang User Conference, EUC 2001 [SFB+00].

• Functional Scheduling in a Distributed VoD Server. Published in the Interna-
tional Workshop on the Implementation of Functional Languages, IFL 2003
[SBG+01].

10 CHAPTER 2. INTRODUCTION

• Extending the VoDKA Architecture to Improve Resource Modeling. Published
in the Erlang Workshop 2003 [PR03].

• Lambda goes to Hollywood. Published in Practical Aspects of Declarative
Languages, PADL 2003 [GAS03a].

Articles related to model checking and performance analysis:

• Performance evaluation of a real-time multi-thread system using an asyn-
chronous reactive model. Published in the Simposio Español de Informática
Distribúıda [VGM+00].

• VoDKAV Tool: Model Checking or Extracting Global Scheduler Properties
from Local Restrictions”. Presented at the Third International Conference
on Application of Concurrency to System Design, ACSD 2003 [SPA03].

• Global Scheduler Properties from Local Restrictions. Published in the ACM
Sigplan Erlang Workshop 2003 [AS02].

• Performance analysis using Model Checking. Published in the International
Erlang User Conference, EUC 2003 [PA03].

• From Erlang to µCRL. Making industrial code available for research tools.
Published in proceedings of the Forth International Conference on Applica-
tion of Concurrency to System Design, ACSD 2004 [TA04].

During the development of the thesis, the author also did some collaborations
with other lines of research. Even though they are not directly part of the core
of the thesis, they were interesting as source of inspiration or as a way of learning
more about related topics. Examples of these publications are Fusion and defor-
estation in Coq [FNBFFBS01] or Towards a Certified and Efficient Computing of
Gröbner Bases [SJGFS05], where the reasoning is done step by step using theorem
provers. In other cases the collaborations are useful for getting more insight in one
of the concepts most important in this thesis: the design patterns; in [GTBRS01],
this concept was studied from the object oriented point of view. In order to avoid
having only a very Erlang oriented point of view, it was interesting to explore
ideas related to Persistent Haskell in [QS01]. Finally, other examples of using Er-
lang/OTP as development platform were explored during this years, helping on the
way to make the method presented in this thesis more general. Examples of those
projects are a distributed VLAN software switch [GCSPMR04], or a cluster-based
payment gateway [AGFS02, AGF+03], both developed using the Erlang design and
implementation philosophy.

In parallel with the finalization of the thesis manuscript, some new articles
have been written, most of them heavily based on the contents of this document.
One of the articles is based on the contents written for Chapter 8 and is being
submitted for publication in an international journal in the area of formal methods
and tools; other article is based on the contents of Chapter 9 and is also being
submitted to another journal in the area of applied formal methods. Also, some of
the contributions of this thesis have recently been or are going to be submitted to
international conferences, as it is the case of the experiences on using McErlang in

2.4. STRUCTURE OF THE THESIS MANUSCRIPT 11

the VoDKA system or the contents of Chapter 7 on the motivation and discussion
of the use of formal methods for the VoDKA project.

2.4 Structure of the thesis manuscript

The thesis starts explaining the preliminaries needed in order to understand the
rest of the manuscript. Concepts like Erlang/OTP , design patterns, the process
algebras, or the state of the art in the area of formal methods for distributed
software verification are presented in Chapter 3.

After that, the thesis manuscript is divided into two main parts.
The first one talks about the VoDKA project. In Chapter 4, the main concepts

related to VoD systems, the common requirements, and the state of the art in
their development are presented. After that, in Chapter 5, the VoDKA system is
described in detail. Finally, in Chapter 6, the lessons learnt from the development
of VoDKA are used in order to motivate the second part of the thesis.

The second main part talks about the verification framework that we propose
for extracting properties from distributed systems. In Chapter 7, the approach is
put into the context of the software engineering tradition. Chapter 8 presents all
the tools that are needed in our method, some of them partially developed during
this thesis. Finally, Chapter 9 explains the method proposed and all its stages, and
applies it to VoDKA as a case study.

After the method is described in detail and the case study present, we discuss
the main global conclusions about the thesis in Chapter IV.

Appendixes show some complementary information interesting in order to un-
derstand some details of the thesis. Appendix A shows a simple example of the
translation from Erlang to µCRL using the etomcrl tool and some extra details
about the tool itself. Appendix B shows the original source code of the VoDKA
model used as case study and the relevant parts of its translation to µCRL. Fi-
nally, Appendix C shows the implementation details of the graphical user interface
developed on top of the verification method proposed.

12 CHAPTER 2. INTRODUCTION

Chapter 3

Thesis preliminaries

Contents

3.1 Erlang/OTP for distributed systems 13

3.1.1 Short motivation and history of Erlang 14
3.1.2 Erlang main features . 15
3.1.3 Sequential Erlang . 17
3.1.4 Concurrent and distributed Erlang 18
3.1.5 Open Telecom Platform 20
3.1.6 Erlang success stories . 20

3.2 Design patterns and distribution 21

3.2.1 Design and implementation patterns 21
3.2.2 Erlang behaviours . 22
3.2.3 An example Erlang behaviour: the generic server 23

3.3 Process algebras . 25

3.3.1 Introduction to process algebras 25
3.3.2 µCRL: a process algebra with data 27

3.4 FM for distributed systems 32

3.4.1 Specification languages . 33
3.4.2 Model checking . 34
3.4.3 Theorem provers . 35
3.4.4 Formal verification of functional and concurrent systems . 36

3.4.4.1 Formal verification of Erlang 37

This chapter is an introduction to the main concepts the reader needs to un-
derstand in order to understand the rest of the thesis. Apart from explaining some
concepts and technologies, the state of the art in some of the fields is also presented.

3.1 Erlang/OTP and the design of distributed systems

The case studies and even some of the philosophical decisions in the work that is
presented here are heavily influenced by the Erlang/OTP platform, an interesting
example of a high level distributed functional language used for developing real

13

14 CHAPTER 3. THESIS PRELIMINARIES

industrial systems. In this section, the main Erlang concepts, tools and projects
are presented.

3.1.1 Short motivation and history of Erlang

During the eighties, inside the Computer Science Laboratory of Ericsson, a re-
search project was started to select the best available programming language for
telecommunication systems.

Telecom applications share very special requirements. They are normally very
complex software embedded in powerful hardware. Besides, historically the down-
time for classical telecommunication services like phone calls is almost zero, so the
modern control systems for this kind of networks need to work 24x7. Maintain-
ability is another key feature in a telecom-oriented system, because the software
normally lives for a long time and the costs of maintaining it are the bigger ones
at the end of the life cycle, so the ideal language or platform should support the
creation of easy-to-maintain software. Also, concurrency and distribution are in-
herent features in systems that give support to services that a huge amount of users
are accessing at the same time. Finally, fast prototyping and short time-to-market
are also very important in a changing field where the ideas need to be quickly
translated into products.

With all the above features in mind, a group of researchers at the Ericsson
CSLab started to look into the languages and development platforms available at
that time, checking if they satisfied all the needed requirements. The conclusion
was negative: although some of them had interesting features, none gathered all
of them. Therefore, the group decided to create a new language and the first
experiments were carried out. The new language, named Erlang after the Dan-
ish mathematician Agner Krarup Erlang, who developed important studies about
queuing theory at the beginning of the 20th century, that are widely used in the
telecom world1.

The initial versions of Erlang were developed by Joe Armstrong, Robert Virding
and Mike Williams. The first abstract machine and the compiler where developed
in Prolog. After several years improving the language, the first projects where
started inside Ericsson. In 1995, what is still the main Erlang book [AVWW96]
was published and, in the second part of the nineties the first big projects, some of
them important Ericsson products, were developed using Erlang . In 1996, the first
version of the Open Telecom Platform, a set of Erlang libraries, recommendations
and design patterns, was released.

After using the language inside the company for more than one decade, in 1998
Erlang is released with an Open Source license. The important success of other
Open Source projects like GNU/Linux and the need of a wider community in order
to have a faster evolution in the language and better access to trained developers
were possibly the reasons why the decision was taken.

Since then, the Erlang community has been constantly growing. Every year
new projects and companies are started. The language is taught in universities,
and has converted itself into a competitive option for developing not only telecom

1The alternative and possibly true story says that Erlang was just an abbreviation of ERicsson’s
LANGuage

3.1. ERLANG/OTP FOR DISTRIBUTED SYSTEMS 15

systems but any kind of distributed control system.
More detailed information on the Erlang history can be found in [D0̈0].

3.1.2 Erlang main features

Before describing the language features, it is interesting to remark the goals for
which it was designed. Erlang is adapted to soft real-time distributed systems
(there is not support for hard real-time where response times are exactly fixed).
Also, the language is designed to support distributed problems, where the tasks
can naturally be parallelized. In this aspect, it can be similar to other distributed
languages like Occam, CSP or Concurrent Pascal.

The first Erlang syntax was similar to STRAND, but nowadays it looks more
like a dialect of ML without types. The conceptual concurrency model that is
used is very similar to the one in SDL (this is why still today some developers use
diagrams that come from the programming environment of that language). One
of the main goals was to keep the new language small, simple and efficient, and
because of this some advanced functional languages features like lazy evaluation
where not implemented.

The language was developed in parallel with a first product, a telephony system,
which introduced in Erlang some pragmatism, so only the features really needed
in practice where introduced.

The result was a process-based high level language, where the communication
can only be done by asynchronous message passing. Programs written in Erlang
are very easy to distribute, even if they were originally designed and implemented
for running in only one processor. As in other declarative languages, variables
cannot be rewritten, eliminating a big amount of side-effects in the sequential part
of the language.

The language has been designed so that the cost of creating a new process is
minimum. The programmer can create as many processes as needed without facing
efficiency problems. The memory is garbage collected when it is not going to be
used anymore.

Erlang is not as fast as lower level languages like C, but it has a very good
performance in contexts that are adapted to its characteristics. In case some parts
of the final solution need to be implemented using C, Erlang offers good interfaces
for doing this in a natural way. In fact, using Erlang for the control system and
implementing some low level parts in faster languages is a very common design
decision that has been used in several Erlang projects.

Part of Erlang is the OTP (Open Telecom Platform), a set of libraries that
allow the implementation of software without starting from scratch and having to
reinvent the wheel. We will talk about this in the next sections, but the fact of
providing a mature and complete platform and not only the core language is one
of the keys of the Erlang success.

The main Erlang features are the following ones:

• Light-weight concurrency. An Erlang system can have thousands of different
processes running and exchanging messages in the same machine. The lan-
guage is designed for that and creating a process or sending a message are
cheap operations. Therefore, when a new task needs to be carried out, the

16 CHAPTER 3. THESIS PRELIMINARIES

natural solution in Erlang is to create a new process for it and synchronize
it with the original one using message passing.

• Natural distribution. The language fits very well into developments that
model problems where concurrency and distribution are present. Very se-
quential problems that could only be parallelized in a artificial way for per-
formance reasons would not take full advantage of the Erlang capabilities.

• Built-in fault-tolerance. Erlang was constructed assuming that software fails.
Although the language includes solutions for minimizing the possibility of
including failures in the source code, and tools for checking that, the software
written in Erlang , as happens with any language, will eventually fail. Thus,
the true solution for making fault tolerant system is not removing failures
but providing clean and built-in mechanisms for reacting whenever a failure
(software or hardware) occurs. Erlang provides tools like linking processes,
crashing messages and supervision trees that can be used in order to create a
supervision structure on top of any application that will know what to do in
the presence of an error (notify some processes, restart some others, reboot
some components, etc.).

• Declarative functional syntax. Initially inherited from Prolog, and later con-
verted into a key of the language, the syntax of Erlang has the simplicity
and power of the high level functional languages. In the sequential part, side-
effects are minimized and everything is a function. Concepts like higher order
functions or list comprehension are completely supported by the language.

• Hot-code loading. For systems that run during years without stopping, the
capacity of upgrading the software without needing to interrupt the tasks that
are being carrying out is a must. Erlang provides mechanisms for upgrading
the system while working, and even for using different versions of the same
code in different parts of the same running system.

• Portability. Due to its pragmatic and industrially oriented history, every
Erlang version supports different operating systems. As a consequence of this
portability, for example, programs developed using GNU/Linux can easily be
run on other UNIX operating systems. Also, advanced techniques used in the
latest processors are supported, e.g. SMP (Symmetric Multiprocessing).

• Soft real-time. Hard real-time systems are those that can suffer failures if the
very strict time constraints described by the programmer are not satisfied.
This kind of software is not well supported in Erlang . However, the language
behaves perfectly when the response times are of the order of milliseconds,
but there is some flexibility with those numbers (soft real-time). Telecom
systems are normally soft real-time.

• Interfaces with other technologies. Erlang is very good for distributed control
subsystems, but for other kind of tasks, normally it is interesting to interact
with external technologies. The language provides interfaces for communi-
cating with C or Java, and also supports standards like Corba. Normally
the external technologies are seen by the programmer from the Erlang side

3.1. ERLANG/OTP FOR DISTRIBUTED SYSTEMS 17

as special processes, and communication with them is performed also using
message passing.

• Complete development platform and design principles. Years of developing
industrial problems have produced, together with the language, a big num-
ber of mature libraries implementing common problems, and a set of design
principles that a developer should follow when writing Erlang software. De-
sign principles include implementation patterns, that in Erlang are called
behaviours, and offer a very clean way of reusing source code.

Further information on the Erlang philosophy can be found in [Arm03, AVWW96].

3.1.3 Sequential Erlang

The main data types that can be used in Erlang are integers, floats, atoms, tuples,
lists, records and funs. Atoms are special constants that are frequently used in-
side complex data terms and always start with a lower-case letter, as opposed to
variables, that start with upper-case. Examples of tuples are {1,2,3} (tuple with
three integers), {X,Y} (tuple with two variables), or {x,X,12}, the tuple formed
by one atom, one variable and one integer. Examples of lists are [1,2,3], [X,Y]
and also [x,Y,12]; lists can contain heterogeneous data types. A++B can be used
for concatenating two lists A and B. [a|B] is used for creating a new list with the
element A as the head and the list B as the tail. Records are special kinds of tuples
where each of the elements can be accessed using a pre-declared name. A record
can be declared as -record(person,{name, surname, age=20}) (the third field
has a default value), created as Person = #person{name=’’John’’, surname =
’’Locke’’}, and one of the elements is accessed evaluating Person#person.name.
Finally, funs are anonymous functions that can be used temporarily and passed as
parameters to other functions.

The Erlang source code is structured in modules. A very simple example of an
Erlang module implementing the factorial is shown below:

-module(factorial).
-export([fact/1]).

fact(0) ->
1;

fact(N) ->
N * fact(N-1).

The first line declares the name of the module, which should be also the file-
name. The second line is a list of functions that are exported from the module.
Only the functions that are in that list can be called from outside the module.
Finally, the two clauses that implement the factorial are declared. Pattern match-
ing is used in order to select which clause should be evaluated. The way of ac-
cessing the function from outside the factorial module would be, for example,
factorial:fact(10).

Erlang provides also conditional evaluation commands, namely case and if,
and also guards, which are conditions that can be added to any function clause in
order to complement the pattern matching.

18 CHAPTER 3. THESIS PRELIMINARIES

List comprehensions provide syntactic sugar for creating lists by combining
other lists. [X,Y || X <- A, Y <- [1,2,3]] creates the list with all the possible
pairs where the first element is a member of the list A and the second element is 1,
2 or 3 (one element of the second list provided). Besides, pattern matching can be
used in the left side of the list comprehension, and extra conditions can be added
to the right side of the expression, in order to decide which elements are generated.

A sequential Erlang program is a set of modules that call each other (using the
exported functions) in order to resolve a given task.

Standard libraries for manipulating tuples or lists are provided, including the
typical higher order functions like map, fold, foreach, etc.

Detailed extra documentation on the sequential part of the language can be
found in the Erlang book [AVWW96].

3.1.4 Concurrent and distributed Erlang

What makes Erlang quite different from other declarative languages are its con-
current and distributed features.

A special function spawn can be called inside any function in order to create
a new process. The simplest version of that function is spawn(Mod,Fun,Args).
Whenever it is evaluated, a new process is created, which will start evaluating
Mod:Fun with the arguments specified in Args. The function returns the process
identifier and the code of the original process keeps executing in parallel with the
new one.

Using the expression Pid!Msg a message Msg is sent from the current process
to the one with the process identifier Pid. The message can be any Erlang term,
and sending a message is asynchronous and never fails (i.e., if it is sent to a non
existing process it is just silently discarded): the message is always stored in the
mailbox of the receiver.

In order to receive a message, the following command is used:

receive
Pattern1 -> Expr11,..., Expr1N;
...
PatternM -> ExprM1,...
after Timeout -> TExpr1,...

end

When a receive command is reached, the process looks into its mailbox for the
first message matching any of the patterns. If it is the case, the list of expressions
on the right side is evaluated and the execution continues; if no message matches,
the process evaluation is suspended temporarily waiting for another incoming mes-
sage. If no message has been received after Timeout milliseconds, the execution is
continued anyway (the waiting time is infinity by default).

An example of a very simple echo server is shown below:

-module(ping).

-export([start/1, init/2]).

start(Times) ->

3.1. ERLANG/OTP FOR DISTRIBUTED SYSTEMS 19

spawn(?MODULE, init, [Times]).

init(Times) ->
loop(Times).

loop(0) ->
ok;

loop(Times) ->
receive

{Pid, MsgContent} ->
Pid!{MsgContent, Times-1},

loop(Times-1)
end.

The start function is used in order to create a new process that is going to work
as the echo server. The new process starts evaluating the init function, which in
this case does not do anything more than starting the server loop (in other cases the
init function is used and therefore it was left here for didactic purposes) with one
argument. Times represents the number of times that the server returns a message
before it normally stops (when the loop finishes and the process does not have more
code to evaluate, it is stopped and the memory associated is freed by the garbage
collector). Whenever a message containing the process identifier together with the
content is received, it is sent back to that process together with the number of loop
iterations that are left before the echo server finishes.

Erlang provides mechanisms for registering a process giving it a name that can
substitute the process identifier.

Two Erlang processes can be bi-directionally linked. When a process termi-
nates abnormally (due to any kind of error), a signal is sent to all the rest of the
processes that are linked to it. On receiving that signal, the default behaviour
of the receiving process is to crash abnormally also. The crashing-in-chain be-
haviour can be stopped by configuring a process for trapping the exit signals: the
signal would be converted into a crashing notification message that is stored in
the receiver mailbox. The error trapping mechanisms allow the implementation of
complex supervision structures (e.g., supervision trees).

Distribution is added to Erlang almost transparently. Instead of the basic
spawn function, there is another one where the programmer can specify which
node (machine running an Erlang node) should the new process be created in.
Instead of just the process identifier, the Erlang node needs also to be specified for
sending messages. The rest of the code is going to stay exactly the same, which
makes very easy to distribute programs initially designed for just one machine.

Normally some of the constructs and commands we have seen are not directly
used in the industrial Erlang code, because it is not built from scratch but on top
of Erlang behaviours. This components, e.g. the generic server, hide the low level
details for registering, sending and receiving messages. For example, the function
gen server:call(Server, Message) does internally the sending of the message
and also the receiving of the answer, providing that answer as the return value of
the function.

20 CHAPTER 3. THESIS PRELIMINARIES

3.1.5 Open Telecom Platform

The set of libraries, applications, utilities and modules that are released together
with each new Erlang version, are grouped under the name Open Telecom Platform
(OTP). This is why the term Erlang/OTP is sometimes used to refer to the whole
platform.

As it is usually the case in this kind of languages, Erlang is formed by a ker-
nel, on top of which the libraries are run. The kernel is normally called Erlang
Runtime System, and includes the virtual machine, the kernel itself, and the stan-
dard libraries. The standard libraries include modules that allow the manipulation
of the main Erlang data structures. There are modules for handling lists, strings,
files, calendars, input/output, more complex structures like directed graphs, or sets
managed as ordered lists.

Erlang behaviours are also included as part of the standard library. The be-
haviours are implementation patterns that abstract some code functionality fre-
quently used in a Erlang system. An example of this is the code of a server
process: every server is similar, the only differences with other servers are the con-
crete messages it can receive, how it updates its internal state, and which answers
are sent back to the caller. Creating a behaviour for a server is done creating the
code for an Erlang module that implements all the basic functionality of a server
and delegates in a call-back module, provided by the developer, when it needs to
receive a message, to update the state, or to send back and answer. This way, the
behaviours are generic code that can be parameterized by the developer in order
to configure it for the concrete problem that needs to be solved.

Apart from the design principles and the Erlang behaviours, OTP includes
a complete set of general purpose libraries and applications. OTP is very well
documented and it is not the purpose of this section to describe it in detail. In-
teresting applications include Mnesia, a distributed database that allows auto-
matic and transparent replication of data and has a specific query language called
Mnemosyne, that is based on the concept of list comprehension; and Eva, which
uses Mnesia internally and is an application for alarms and events handling which
also offers logging facilities. Examples of interesting libraries included inside OTP
are erl interface, which makes possible for Erlang processes to talk to C pro-
grams seeing them as normal processes which can receive messages; GS, a library
that supports the creation of graphical user interfaces; ASN.1, which supports the
specification of communication protocols and data structures independent from the
language; or SSL, which has the functionality for creating secure communications
using sockets.

For further information, the Erlang OTP documentation [Eri06] can be con-
sulted.

3.1.6 Erlang success stories

Erlang is the distributed functional language more widely used in industry. Eric-
sson has used it for almost two decades now for developing all kind of embedded
control systems. The best example of Erlang use inside Ericsson is the AXD 301
ATM switch, a high speed, modular and scalable switch that is used in some Eu-
ropean countries for controlling the backbone of the national telephony systems.

3.2. DESIGN PATTERNS AND DISTRIBUTION 21

The control system of the switch has about 1.7 million lines of Erlang source code,
which control the hardware and only the low level modules are written in C and
C++ code.

In the last decade, since Erlang went Open Source, new companies have started
to appear. The first ones where spin-offs of Ericsson, devoted to develop fault tol-
erant highly concurrent systems, including massively parallel robust e-mail servers,
web servers or LDA servers. They showed that Erlang was not only a very power-
ful language for telecom applications, but also for any kind of task-oriented, very
parallel problem. In the Internet technology the strengths of the language fit very
well.

New companies are appearing constantly, now outside Sweden and Ericsson,
creating different kinds of products or offering support and consultancy for Erlang .
Also some Open Source projects developed using Erlang have emerged, as it is the
case of ejabberd one of the most know jabber protocol servers; wings3d, a 3D
subdivision modeler; or yaws, a fast web server.

The Erlang community, and therefore the number of success stories, both com-
panies and projects (both Open Source and proprietary ones), keeps growing at
high speed.

3.2 Distributed software development and design pat-
terns

Some concepts related to development methodologies and design patterns for dis-
tributed software development are used during the rest of the thesis. In this sub-
section those concepts are presented and described to the reader.

3.2.1 Design and implementation patterns

A design pattern, in the context of software engineering, is a general solution to a
common design problem. Normally, the design patterns do not say how the actual
code derived from the design is going to look like, they just depict how the different
objects (or processes) interact in order to solve the problem, and this makes the
pattern reusable in different contexts.

Although they are nowadays widely used in software engineering, the origi-
nal idea of the patterns came from a different field: civil engineering. In 1977, the
very influential book A Pattern Language: Towns, Buildings, Construction [AIS77]
was published. The book described several hundreds architectural patterns, and
insisted in the importance of reusable solutions for well known problems in ar-
chitecture. About ten years later, the first experiments [BC87] and discussions
about applying these ideas to software engineering were started. In 1994, the book
Design Patterns: Elements of Reusable Object-Oriented Software [GHJV94] was
published, and the use of design patterns gained a lot of popularity.

Design pattern descriptions have a well-known structure that documents when
they should be used, the actors that participate, and how it solves a recurrent
problem (what is normally called a micro-architecture, including classes, objects
and methods that participate). Aspects like the consequences of using the pattern,
related patterns or even sample source code can also be included.

22 CHAPTER 3. THESIS PRELIMINARIES

Besides helping in finding solutions to problems without needing to reinvent the
wheel each time they appear, patterns are also very useful as a standard language
for making the communication between architects, designers and developers easier.

Nowadays, design patterns are very popular in the object oriented world, and
variations or specializations of the concept have originated related ideas like archi-
tectural patterns or implementation patterns. The difference among them is mainly
the level of abstraction of the proposed reusable solution, and therefore the point
in the development process where they should be used. Architectural patterns are
very general high level architectural solutions about how the components of a sys-
tem interact, and implementation patterns are low level ways of reusing code, or
abstracting some general behaviour in order to structure the program correctly,
making it easier to maintain.

The original concept of design pattern fits very well in the object oriented
programming and most of the related work has been carried out in that field.
However, the idea can be adapted and extended to other philosophies like the
distributed process-based approach of languages like Erlang .

3.2.2 Erlang behaviours

As we have already introduced in the previous section, the Erlang platform includes
a set of behaviours, concepts similar to the algoritmic skeletons [Col89], which can
be seen as a combination of ideas from the original design patterns mixed with the
concept of implementation patterns.

A behaviour implements the generic Erlang source code needed for solving a
recurrent problem into a special parameterizable module. This code is widely used
and therefore very well tested, and it can be trusted by the developers, who only
need to provide what it is called the call-back module: a set of functions that
parameterizes the generic code in order to do exactly what it is needed in each
concrete scenario. Although the behaviours are basically source code, they force
the developers using them to structure the code in a concrete way, and sometimes
even to structure the processes of the system following a fixed pattern. This is why
we said that they provide design and implementation level patterns.

The behaviours included in Erlang/OTP are:

• application: defines a general framework for implementing Erlang applica-
tions as components that can be easily started, stopped and reused. If the
developer wants to use this pattern, an application file describing the modules
that compose the application and the name of the call-back module needs to
be provided. In the call-back module the developer can specify the code that
should be evaluated when the application is started or stopped.

• supervisor: a supervisor is a special process that has the responsibility of
starting, stopping and monitoring a set of processes. The programmers us-
ing this pattern should specify the list of child processes (child specifications),
which are going to be started in the order specified in that list. As part of the
specification for each of the children, the restarting policies are decided by the
developer. This pattern permits the creation of a tree-like structure of super-
vision, one of the techniques used by Erlang in order to create fault tolerant

3.2. DESIGN PATTERNS AND DISTRIBUTION 23

systems. Erlang offers another complementary pattern called sup bridge,
which connects a process to a supervision tree even if it is not designed with
that philosophy in mind.

• gen event: allows the easy programming of event handling and logging mech-
anisms. In the OTP platform, an event manager is a special process to which
the system events are sent. Each event manager has a list of associated event
handlers. When a new event is received in the event manager, it is processed
by each of the event handlers. A trivial example of an event handler is an
event logger that writes to a file all the events received. Each event handler is
implemented as a call-back module for the event manager process. The call-
back is going to be called with its state (kept by the manager) and the new
event that has been received. This is an example of classical design pattern
(observer) implemented using Erlang behaviours.

• gen server: used for easily creating client/server programs, it implements
the generic functionality of a server, and can be parameterized as described
above. The developer using the pattern provides a call-back module includ-
ing: the function for initializing the state of the server and the functions
for receiving messages and sending answers back after updating the internal
state. We will explain this pattern in detail in the next section.

• gen fsm: similar to the generic server, but allows the creation of servers
whose answer and new server state depends on a finite state machine. Two
notions of state coexist in the gen fsm: the server state and the finite state
machine state. Therefore, the developer provides a function for initializing
the state, but instead of providing a unique function for receiving messages
and computing the answer and the new server state, a set of functions are
provided. The function that is going to be called depends on the current
state of the FSM. A generic FSM can be easily implemented using a generic
server pattern, but the resulting code is cleaner if the specialized pattern is
used.

Some extensions of the basic Erlang behaviours have been already proposed.
In [Eks00], a set of design patterns for simulation software are described and im-
plemented as behaviours. In the Chapter 5 of this manuscript, we will describe
how VoDKA also makes advanced use of the patterns provided by Erlang and ex-
tends them adding interesting design and implementation patterns useful for VoD
servers.

3.2.3 An example Erlang behaviour: the generic server

In this section we describe how the call-back modules for an Erlang generic server,
that are going to be seen several times throughout the thesis, are implemented.

The structure of a basic call-back module would be as specified in the following
pseudo-code:

-module(modulename).
-behaviour(gen_server).

24 CHAPTER 3. THESIS PRELIMINARIES

-export([start_link/0]).
-export([init/1, handle_call/3, handle_cast/2]).

start_link() ->
gen_server:start_link(ServerRegName, ?MODULE,

InitArgList, GenServerOptions).

init(InitArgList) ->
...
{ok, InitialState}.

handle_call(MessagePattern1, From, State) ->
...
{reply, ReplyMessage1, NewState1};

...
handle_call(MessagePattern2, From, State) ->

...
{reply, ReplyMessage2, NewState2}.

handle_cast(MessagePattern3, State) ->
...
{noreply, NewState3};

...

handle_info({’EXIT’, Pid, Reason}, State) ->
...
{noreply, State1}.

...

The first two lines declare the name of the call-back module and specify that
it is in fact an implementation of a generic server. This is used by the compiler in
order to check if all the mandatory functions that a call-back module must have
are actually implemented. After that, the list of exported functions is provided:
all of them need to be exported because they will be called from the generic server
and from other modules.

The start link function is used for initializing the generic server. The four
arguments specify the name for registering the server in the node, the name of the
call-back module (specified in this case by an Erlang macro that is converted into
the current module filename), the list of arguments that are going to be used for
evaluating the function init, and a list of generic server options (timeout for the
initialization, debugging options, or spawn options). When the server is initialized,
it registers the process, calls to the init function for computing the initial state,
and then waits for incoming messages.

The functions handle call, handle cast and handle info are going to be
called by the generic server process whenever one message is received. The first
one is used for synchronous messages, those that are going to expect an answer. The
second one is used for asynchronous communication. Finally, the last function is
used when any kind of special information related to the crashing of other processes
is received.

3.3. PROCESS ALGEBRAS 25

External processes can use the following two expressions for sending a message
to a generic server:

gen_server:call(ServerName,Message,Timeout)
gen_server:cast(ServerName,Message)

The first expression makes a synchronous call to the generic server identified
by ServerName. The Message, which can be any Erlang term, is sent to the
process, and Timeout is the maximum number of milliseconds that the answer can
be delayed. The generic server receives the message and passes it as argument to
the function handle call of the call-back module. A new state is then computed
and the answer message is sent back to the caller process. The implementation of
the call function of the generic server receives that message and returns it as a
value.

The second expression makes an asynchronous call to the generic server iden-
tified by ServerName. The Message is again sent to that process, but no answer
is expected; the cast function ends immediately. The generic server receives the
message and forwards it as argument to the handle cast function of the call-back
module, which is only going to update the internal state without sending a message
back.

Besides the functions call, cast and start link, the generic server mod-
ule also implements other functions for performing multicalls, starting the process
without linking, or for explicitly replying a value to a process without using the
handle functions.

Also, the provided call-back module should also have two extra functions:
terminate, which does the clean up that is necessary just before the generic server
is finalized; and code change, which is used for the generic server in order to update
its internal state without stopping while a code upgrade is being done.

3.3 Process algebras

The methods and tools described in this thesis are heavily based on the concept of
process algebra. In this section, we start discussing what process algebras are in
general, and we finish describing in detail µCRL, a process algebra with data that
is going to be used in the second part of this thesis.

3.3.1 Introduction to process algebras

Process algebras are mathematical formalisms for modelling concurrent systems.
The history of process algebras [Bae05] starts in the seventies. At some point,
operational semantics, denotational semantics and axiomatic semantics turned out
not to be easy to adapt to giving semantics to programs using some kind of parallel
operator.

Process algebras allow the description of interaction, communication and syn-
chronization between processes in a formal way. This means that they respect
algebraic laws that allow the descriptions to be analyzed, formally reasoning about
them, e.g. similarity between different processes can be studied using bisimulation
equivalence.

26 CHAPTER 3. THESIS PRELIMINARIES

The features that are normally cited as shared by all the existing process al-
gebras are [Pie97]: they formalize message-passing interactions between processes
without using shared memory; they describe the processes behaviour using a small
set of primitives and operators; and they define algebraic laws for the operators,
making possible the usage of equational reasoning with the process algebra speci-
fications.

The following operators are normally present in every process algebra:

• Parallel composition of two processes: P |Q. It means that the processes P
and Q are executed in parallel. Depending on the concrete process algebra,
an asynchronous or synchronous channel is created in order to permit the
exchange of messages between processes.

• Communication between processes. It is normally based on two primitives,
one representing the sending of a message (x〈y〉, where x is a synchronization
expression and v is the message sent), and the other representing the reception
(x(v), where x is the same synchronization expression and y is potentially a
pattern matching-like expression that can be used in order to bound variables
with the received information).

• Sequential composition of two commands: x · y. It means that the opera-
tor x should be executed before executing y. An example of the sequential
composition would be x(v) · P , meaning that before executing P , a message
matching v should be received over the channel x.

The reduction semantics of synchronous communication between two processes
can be summarized in the following rule:

x〈y〉 · P | x(v) ·Q −→ P | Q[y/v]

The left side of the expression represents the parallel execution of two processes,
one first sending a message and then executing P , and the other first receiving
a message and then executing Q. In that configuration, a synchronization with
message-passing can take place, giving rise to the situation represented by the
right side of the expression: P is now being executed in parallel with Q, where all
the free variables in v are replaced by the values bounded after pattern matching
with y.

Apart from the basic operators, process algebras normally include also hiding
capacities (allowing a possible interaction to be avoided when it is not desired),
implementation of recursive expressions (creating potentially infinite computation),
and other aspects like conditional execution or non-determinism (it can already
be implemented using parallel composition and sequential composition, but some
process algebras implement a specific operator for this in order to simplify the
specifications).

Classical examples of process algebras are CSP (Communicating Sequential
Processes) [Hoa78], CCS (Calculus of Communicating Systems) [Mil82] or ACP
(Algebra of Communicating Processes) [BT85].

More recently, evolutions of the classical process algebras have been created,
e.g. π-calculus [Mil99] is an extension of CCS including more advanced concepts

3.3. PROCESS ALGEBRAS 27

like mobility; extensions for including time notions inside process specifications
have been also proposed.

More information on process algebras can be found in [Mil95, Hoa85, Fok00].

3.3.2 µCRL: a process algebra with data

µCRL [Gro97] (micro Common Representation Language) is a specification language
based on the concepts of the process algebras, developed in the CWI (Centrum voor
Wiskunde en Informatica) of Amsterdam.

µCRL is intended for the description of real processes where data is relevant.
The language was designed with three main objectives in mind: being applicable
to complex distributed systems, being simple enough for allowing complex math-
ematical analysis, and being precise so that a set of tools can be constructed for
automating the usage of the language in real projects. It is defined by its cre-
ators as: a process algebraic language that was especially developed to take account
of data in the study of communicating processes. It is basically intended to study
description and analysis techniques for (large) distributed systems.

As opposed to classical process algebras, where the introduction of complex
data has to be done using infinite sets of equations where variables are used for
including data values, in µCRL data is defined using equational abstract data types
(besides, conditional operations and sum over a data type are included).

A µCRL specification is composed by two main parts: the specification of the
data types managed by the processes, and the specification of the processes inter-
acting in the system.

The data part involves five main keywords:

• sort: sorts representing a non-empty set of data.

• func: functions that act as basic constructors of a given sort.

• map: declaration of the operations on the elements of a sort.

• var: variables needed for the rewriting rules.

• rew: equations that represent the existent properties and relations on the
sort operations.

For example, the first part of the definition of the sort for the natural numbers
can be seen below:

sort
Natural

func
0: -> Natural
s: Natural -> Natural

map
plus,times,minus,rem,div: Natural # Natural -> Natural

eq,leq,less: Natural # Natural -> Bool

if: Bool # Natural # Natural -> Natural

28 CHAPTER 3. THESIS PRELIMINARIES

Two constructors for producing terms of the sort Natural are defined, one for
the zero (without arguments) and other for the successor (receives another natural
number). E.g., s(s(s(0))) is therefore the representation for the number 3.

Three sets of operations are declared: arithmetic operations over naturals; re-
lations between numbers; and conditional evaluation for naturals. The sort Bool
is assumed to be declared in other part of the µCRL specification.

In order to define the rewriting rules for all those operations over the sort, three
Natural variables need to be defined. The code of the rewriting rules would be as
follows:

var
N,N1,N2: Natural

rew
plus(0,N) = N
plus(s(N1),N2) = s(plus(N1,N2))
minus(N1,0) = N1
minus(s(N1),s(N2)) = minus(N1,N2)
times(0,N) = 0
times(s(N1),N2) = plus(N2,times(N1,N2))
rem(N1,N2) = if(less(N1,N2),N1,rem(minus(N1,N2),N2))
div(N1,N2) = if(less(N2,N1),s(div(minus(N1,N2),N2)),0)

eq(0,0) = T
eq(0,s(N2)) = F
eq(s(N1),0) = F
eq(s(N1),s(N2)) = eq(N1,N2)
leq(0,N2) = T
leq(s(N1),0) = F
leq(s(N1),s(N2)) = leq(N1,N2)
less(N1,0) = F
less(0,s(N2)) = T

if(T,N1,N2) = N1
if(F,N1,N2) = N2

Processes are formed by sequences of activities called actions. Each process
is defined by a process term. Data (and the associated rewriting rules) takes
part in the processes as parameter for processes and actions, therefore actions
have associated types, called domains, that represent which data they are going to
handle.

Continuing with our previous example, the declaration of two very simple ac-
tions for sending and receiving one natural numbers and one boolean would be as
follows:

act
snd_update: Natural # Bool
rcv_update: Natural # Bool

comm
snd_update | rcv_update = updatesent

The comm part indicates that the actions snd update and rcv update can syn-
chronize, producing the communication action updatesent.

3.3. PROCESS ALGEBRAS 29

Besides the user defined actions, there are two predefined ones that are already
available in the language: delta, a deadlock action that never synchronizes, and
tau, an internal action, that denotes any activity in the system that cannot be
observed.

Processes are defined using µCRL process terms, where the order in which the
actions can take place is declared. Each process consists of basic process terms
combined using operators. The following specification describes a process that
receives a pair with a number and a boolean, and if the boolean is true, it adds the
number to its internal state, and if not, it subtracts it:

proc UpdateNumber (n: Natural) =
sum(X:Natural,
sum(B:Bool,

rcv_update(X,B).
(UpdateNumber(plus(n,X))
<|equal(B,T)|>
UpdateNumber(minus(n,X)))))

The UpdateNumber process is recursive and has a state (parameter) that is a
natural number. The sum expression means that the variables X, of sort Natural,
and B, of sort Bool, can take any value when used in the rest of the process. This
is needed because the action rcv update is required to be able to synchronize with
any possible number and boolean value that is going to be received. When another
process executes the action snd update, the pattern matching is evaluated and
both variables in the action are bound to the concrete values.

The · sequence operator is used for separating the first action and the second
part of the process. In that second part of this example process, the conditional
evaluation operator of µCRL is used. In case the value of B is T (the true value
in the sort Bool), the sentence above the comparison is executed, adding X to the
process state; in other case, the value of X is subtracted.

A process activating this one could have the following specification:

proc SendNumber =
(rcv_update(s(0),F) + snd_update(s(s(0)),T).
SendNumber

The process is again recursive and has now arguments.
The + operator represents the non-deterministic choice in µCRL. This simple

process will iterate forever, and in each iteration either the number 1 will be sent
for subtracting from the state of the remote process, or the number 2 will be sent
for addition.

The last part of any µCRL specification, once all the data types, the actions,
and the processes are declared, is the initialization, where the processes are started
(called the initial behaviour of the system). For our simple example, the following
init part would be needed:

init
SendNumber() || UpdateNumber(s(s(0)))

30 CHAPTER 3. THESIS PRELIMINARIES

The || operator represents the parallel composition of processes in the specifica-
tion language. The first process has no parameters and the second one is initialized
with the value 2.

µCRL process terms are really like functions in a distributed functional language,
and can be called from other process terms. It is the init part of the specification
what creates the real processes (the threads of execution), that are going to be
executed in parallel and can go through different process terms.

The fact that two actions can synchronize does not mean that they need to do
it. Actually, if a communication of the form a|b = c is defined, and the current
execution is a||b, this is exactly equivalent to a.b+ b.a+ c, i.e., only one out of the
three possible cases represents the actual synchronization.

Three extra operators can be used in the init part: encap, hide and rename.
encap is used when we want to force the communication to take place, avoiding

individual actions: encap({a,b},a||b) is equivalent to c (a and b cannot happen
without synchronization anymore).

rename is used when we have several processes with the same structure but
we want to modify the way each of them is going to synchronize with the rest of
the system. rename(a1->a2, b1->b2, P) substitutes the action a1 by a2 and the
action b1 by b2 inside the process P .

Finally, hide is used to reduce the complexity of the externally observed be-
haviour of a system. Sometimes a subset of the system actions are not relevant for
an analysis of the system, and they can be converted to the invisible tau action.
hide({a,b},P) converts the actions a and b into tau inside the process P .

Below, a more complex example is shown. The process implements a message
queue:

act
recv_from_queue, send_from_queue, remove_from_queue: MessageSort
send_to_queue, recv_in_queue, add_to_queue: MessageSort
notify_queuefull

comm
recv_from_queue | send_from_queue = remove_from_queue
send_to_queue | recv_in_queue = add_to_queue

proc
Queue(Messages: QueueContent) =

(notify_queuefull.
send_from_queue(gethead(Messages)).
Queue(rmhead(Messages)))

<| maxqueuesize(Messages) |>
(sum(Msg: MessageSort,

recv_in_queue(Msg).
Queue(add(Msg,Messages)))) +

(send_from_queue(gethead(Messages)).
Queue(rmhead(Message)))

The queue receives messages from other processes that have evaluated the
send to queue action, and it stores them in the internal state until another process
reads from the queue using pattern matching over the action recv from queue.

3.3. PROCESS ALGEBRAS 31

If the maximum size allowed for a queue in the system has been reached
(maxqueuesize returns true), the upper part of the conditional operator is exe-
cuted. That part is formed by a sequence executing: first an action that notifies
the fact of the queue being full, then a communication action that is going to
check if someone wants to remove a message from the queue, and finally -once that
synchronization takes place- the recursive call that starts again the process after
removing the head of the queue from its state.

If the queue is not full, and new messages can still be received, the bottom part
of the conditional operator is executed. That part is a non-deterministic choice
between adding any new received message to the queue or removing the head of
the queue. In this latter case, the head of the queue is compared by using pattern
matching with the parameter of the action recv from queue, used in the external
process that is accessing the queue.

The rewriting rules add, rmhead and gethead operate over the sort named
QueueContent.

An extended version of this queue implementation is used later in the thesis in
order to model in µCRL the buffer of an Erlang generic server process. As we have
seen in the previous sections of this chapter, the generic server can receive three
kinds of messages: call, cast and info. The µCRL specification of the extended
buffer process is shown below:

act
bufferfull: Term
gen_server_call,gscall,buffercall: Term # Term # Term
gen_server_cast,gscast,buffercast: Term # Term
send,gsinfo,bufferinfo: Term # Term
gshcall,handle_call,call: Term # Term # Term
gshcast,handle_cast,cast: Term # Term
gshinfo,handle_info,info: Term # Term

comm
gen_server_call | gscall = buffercall
gen_server_cast | gscast = buffercast
send | gsinfo = bufferinfo
gshcall | handle_call = call
gshcast | handle_cast = cast
gshinfo | handle_info = info

proc
Server_Buffer(MCRLSelf: Term, Messages: GSBuffer) =
(bufferfull(MCRLSelf).
(gshcast(MCRLSelf,cast_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_cast(Messages) |>
(gshinfo(MCRLSelf,info_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_info(Messages) |>
(gshcall(MCRLSelf,call_term(Messages),call_pid(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_call(Messages) |>
delta))))

32 CHAPTER 3. THESIS PRELIMINARIES

<| maxbuffer(Messages) |>
(sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).
Server_Buffer(MCRLSelf, addcall(Msg,From,Messages)))) +

sum(Msg: Term,
gscast(MCRLSelf, Msg).
Server_Buffer(MCRLSelf, addcast(Msg,Messages))) +

sum(Msg: Term,
gsinfo(MCRLSelf, Msg).
Server_Buffer(MCRLSelf, addinfo(Msg,Messages))) +

(gshcast(MCRLSelf,cast_term(Messages)).
Server_Buffer(MCRLSelf,rmhead(Messages))

<| is_cast(Messages) |>
(gshinfo(MCRLSelf,info_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_info(Messages) |>
(gshcall(MCRLSelf,call_term(Messages),call_pid(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_call(Messages) |>
delta))))

The implementation is almost the same than before, but now for each of the
previous actions we have three (one action for each kind of message), and the code
is also triplicated so that all the different kinds of messages are added, removed
and pattern matched correctly from the queue.

3.4 Formal verification of distributed systems: state of
the art

In this section, the state of the art in the formal verification of software is sketched.
The section talks about existing tools and techniques for the verification of con-
current systems, specially for those that are developed using functional languages.
The main content of the section is a summary of [S0́1], which was already an
extension of Formal Methods: State of the Art and Future Directions [CW96], the
very influential paper written by Clarke and Wing in 1996.

The term Formal Methods refers to the application of mathematical methods
to the specification, analysis, design, implementation and maintenance of software
and hardware, i.e. to the application of formal tools and techniques at any point
of the system development process.

In the latest years, the use of formal methods for verification purposes has
been quite popular in hardware verification [Fis96] and also in the verification
of communication protocols [HS96]. Due to the complexity of real software, the
application of the same kind of tools and techniques to software is more challenging
and has followed a different pace.

The more common methods for system verification are model checking (the
exploration of the whole state space diagram to see if a property holds), and the-
orem proving (formally reasoning step by step about system properties). The first
method has some problems related to the state space explosion and the impossi-
bility of working with infinite structures (they would generate infinite paths). The

3.4. FM FOR DISTRIBUTED SYSTEMS 33

second one is, in principle, more powerful and generally applicable, but it is also
more complex and it needs more human interaction during the verification process.

In both cases the final goal of the verification is to check if the system satisfies
a set of properties, that are expressed in some kind of formal logic (e.g. µ-Calculus,
CTL, LTL, XTL).

Despite of being very heterogeneous, formal verification techniques normally
combine three main components [HR00]: (1) a framework for system modelling,
normally a specification language; (2) a property specification language, normally
a temporal logic; and (3) a verification method that supports the checking of the
properties in the model of the system.

Using that common structure, a classification of the different approaches can
be done based on the following five parameters [HR00]:

• Checking procedure used: model checking or theorem proving.

• Automation level: from completely automatic methods to those where each
step requires human interaction.

• Specification level: from a high level simple description of a system to a very
detailed specification where all the low level is included (almost as detailed as
the programming language). The required level of detail normally depends
on the property to be verified.

• Application domain: some techniques are very generic but others are spe-
cialized (hardware or software, concurrent systems and sequential systems,
reactive systems or input/output ones).

• Moment in the development process when it is used: different techniques can
be used in different phases of the development.

For the description of the state of the art, enumerating languages, techniques
and tools, we will use the classification presented in [CW96]: specification lan-
guages (both for systems and properties); model checking techniques and tools;
and theorem proving techniques and tools.

3.4.1 Specification languages

They are mathematical languages with clearly defined syntax and semantics, used
for formally describing a system, or the properties we want to verify about a system.

Two of the classical languages for specifying sequential systems, where states
are rich structures and transitions are normally represented by preconditions and
postconditions, are Z [WD96] and VDM [Jon90], both created in the late 80s.

Also during that decade the most relevant languages for describing concurrent
systems were created. Some of them are process algebras and have been introduced
in Section 3.3, but others are based on different kinds of formalisms, e.g. State-
charts [Har87] and Temporal Logic [MP92]. Normally, in the concurrent specifica-
tion languages, states lose importance and are much simpler, while the modelling
is focused in the structure, order and relations between events during the system
execution.

34 CHAPTER 3. THESIS PRELIMINARIES

There are some mixed specification languages, where richer states can be de-
scribed in combination with the concurrency model, as it is the case of RAISE [Gro93],
LOTOS [BB87] or µCRL, already explained in detail in Section 3.3.

These specification languages are usually closer to the programming languages.
In a level of abstraction closer to analysis and design, UML (Unified Modelling
Language) [RJB04] can be considered an specification language. The same happens
with SDL [EHS97] for the description of process-based concurrent systems.

3.4.2 Model checking

Following the classification we have presented, the verification using model checking
is model based, automatic, can be used for concurrent and reactive systems, and
it can be used in different phases of the software development. This technique is
based on the construction of a formal model of the system for later checking if a set
of properties hold for that system. In order to check that, all the possible execution
paths need to be verified (thus, the model needs to be finite). The problem can
still appear when the model, being finite, has a considerable size; for that reason,
research efforts have been made for reducing the size of the generated state spaces.

The main line of use of this technique is temporal model checking [CE82], where
the systems are modelled with state transition diagrams and properties are specified
by using some kind of temporal logic. The notion of truth in temporal logics is
dynamic: it depends on the state of the system where the formula is checked. In
the other approach to model checking, both the system and the properties are
modelled as state transition diagrams, and the checking of the property is done by
comparing diagrams [FGKM96, CPS93a].

The main advantages of model checking are:

• High degree of automation and relatively fast answer.

• If the property does not hold for a system, a counterexample with one of the
paths not satisfying the property is provided.

• It is easier to use in the first phases of the software development because of
being less time-consuming.

• The learning curve is less steep.

The main disadvantages of the technique are:

• Limited to finite models. This problem can be solved sometimes with an
abstraction: parts of the system details are hidden until the new state space
is not infinite anymore. If the property holds for the reduced graph, we
cannot say for sure what happens with the original one, but if it does not
hold, we have also found a potential problem in the complete state space.

• State explosion. There are techniques for solving this problem, like Binary
Decision Diagrams [Bry92], that represent more efficiently the state diagrams.

• The proof object is not returned, as it is the case with theorem provers, which
return a concrete proof for the verification. In some cases, like automatic code
generation from the proof object [BS95], this can be an important disadvan-
tage.

3.4. FM FOR DISTRIBUTED SYSTEMS 35

The first model checkers based on temporal logic were EMC [CES86] and CAE-
SAR [FGKM96], in the early 80s. The second one evolved until today originating
CADP, which is used in this thesis as explained in Section 8.4.

The first tool incorporating BDDs (binary decision diagrams, efficient rep-
resentation of Boolean functions used for optimizing the model checking) was
SMV [McM92], the first one using partial order reduction was SPIN [GPVW95],
both created in the mid 90s and still very popular nowadays.

Among the initiatives and tools that are based on the comparison of state tran-
sition diagrams, some of the most relevant ones are Cospan/Formalcheck [Kur98],
FDR [Sca98] and Auto [RdS91]. Created also in the mid 90s, Concurrency Work-
bench [CPS93b] combines both kinds of model checking, verifying properties ex-
pressed in µ-calculus against systems modelled using CSS.

3.4.3 Theorem provers

Following the classification we have presented, the verification using theorem provers
is proof based, needs human interaction, and is normally oriented to the verifica-
tion of properties. This technique is usually more adapted to I/O software (where
an input is received and processed for generating a given output) than to reactive
systems (those systems that are constantly reacting to external signals).

In theorem proving techniques, both the system and the properties are described
in some kind of mathematical logic. The logic needs to be defined inside the formal
system, which has a set of axioms and a set of inference rules that allow new
formulas to be derived from the axioms. Thus, the verification process consists on
deriving the properties from the initial axioms using the inference rules.

The main advantages of the approach are:

• It can be applied to systems with infinite state spaces, as the state space is
not explored.

• The proof object is obtained as a result of the verification process.

On the other hand, the main disadvantages are:

• As it is less automatic, the process can be slower.

• Human interaction makes possible the introduction of errors in the process.

• More complexity in the verification process, and therefore steeper learning
curve.

Among the main tools and techniques can be used in the process of verify-
ing using theorem proving, some of the most relevant ones are Nqthm Boyer-
Moore [BM88], that later would evolve into the more industrial version ACL2
(A Computational Logic for Applicative Common Lisp) [KM96], Eves [CKM+91]
and RRL [KZ95], all of them semi-automated initiatives.

In the group of the proof checkers, which help in the process of reasoning by pro-
viding all kind of rules and heuristics, the most popular ones are Isabelle [NPW02]
(an evolved version of HOL [GM93]), Coq [CCF+] and LEGO [Pol94].

36 CHAPTER 3. THESIS PRELIMINARIES

Other tools combine model checking capacities with theorem proving function-
ality. Examples of this kind are HSIS [ABC+94], STeP [MBB+99], VIS [RGA+96],
and PVS [OSR95], most of them including some model checking modules that
are able to verify properties expressed in µ-calculus. Another example of mixed
initiative is Analytica [CZ92], constructed using the popular tool Matematica.

3.4.4 Formal verification of functional and concurrent systems

We have classified and referenced the main tools from the areas of model checking
and theorem provers. Some of them, as we have seen, are specially designed for
being used with concurrent processes. In this section we will talk about some
initiatives addressed specially to either functional or concurrent systems, and we
will finish describing all the existent initiatives for applying formal methods to the
distributed functional language Erlang .

Due to their intrinsically formal nature, based on concepts like function or
referential transparency, functional languages are in principle good candidates for
applying formal methods to them. However, that was not always the case during
the latest years, when frequent examples of usage of model checking techniques,
for example, were applied to Java or C/C++.

As a curiosity, the tool for verifying hardware called Forte [SJO+05] uses a lazy
variation of the language Caml for the description of system properties, that are
verified using model checking.

Sparkle [dMvEP01] is a theorem prover specially designed for verifying pro-
grams written using functional languages. The tool is written in Clean and is
specialized in verifying programs written in that language.

PLogic [Kie02] is a logic for property verification of functional programs written
in Haskell.

In [Yu98], a complete methodology for verifying concurrent systems based on
type theory is presented. As integration platform, LEGO is used, and on top
of it a specific interface and heuristics are provided, helping in the verification
process. The system can be used for verifying either message passing concurrency,
modelled using CSS, or shared memory concurrency, modelled using an ad hoc
imperative concurrent language. Properties are written in µ-calculus, and other
temporal logics like CTL or LTL are accepted. The framework includes also a
model checking subsystem that allows the automatic implementation of the finite
parts of the models.

The use of Coq for verifying properties of concurrent systems using theorem
proving have been described in [AKY05] (the case study is a mail server written
in Java) and [AK04] (a Coq library for helping in the verification of concurrent
systems is proposed).

Other publications present different methodologies and techniques for the verifi-
cation of concurrent systems: in [LGS+95] some conclusions on how to use abstrac-
tions for verifying concurrent systems are presented, and in [LL97] the verification
of concurrent object-oriented systems is explored.

Combining both functional languages and concurrency, in [HS04], model check-
ing techniques are used in order to verify LTL formulas for Concurrent Haskell
properties at runtime.

3.4. FM FOR DISTRIBUTED SYSTEMS 37

3.4.4.1 Formal verification of Erlang

We have seen that Erlang is a distributed functional language with good features
for developing control systems. Different initiatives have been started over the
years for trying to reduce the presence of errors in Erlang programs.

Erlang is a dynamically y typed system. Some projects [SM97, AA98] for
creating an static type system have been started with the goal of detecting more
errors at compilation time, but the very flexible features of the language make it
very difficult to introduce a type system without removing part of that flexibility.

In 1997, as part of an initiative funded by the Swedish government, the Com-
puter Science Laboratory (CSLab) of Ericsson and the SICS (Swedish Institute of
Computer Science) started a project with the goal of studying the use of formal
verification for Erlang . The project had two parts, one for studying model checking
techniques and the other for theorem proving.

The model checking study originated a translation from Erlang to the µCRL
process algebra (taking advantage of the Erlang behaviours), then the generation
of the state space, and the verification of µ-Calculus properties against that state
diagram. All the work carried out in this thesis is very related to those tools and
techniques, and therefore they are described in detail in the following chapters.

A different alternative for doing model checking of Erlang software, based on
abstractions from the point of view of the data and the control, is presented in
[Huc99, Huc01] (in this case Erlang behaviours are not used).

The theorem proving study originated the creation of a new framework for
reasoning about Erlang programs: EVT [DF98]. The first results [DFG98] included
the verification of simple properties for a billing agent written in Erlang . After a
new prototype, in 1999 the first studies [FG99, AD99] over real Erlang systems
are carried out. In 2000, the focus was to increase the automation of the tool and
even develop a graphical user interface for reducing the learning curve [ACD+03].
EVT helps in the verification of properties described in µ-calculus, and supports
parametric, inductive and co-inductive reasoning on the components and properties
defined in a recursive way. The verified language is a subset of Erlang called Core
Erlang, where distribution is not considered (only one node is modelled, in which
many processes can be executed at the same time). ML, the language in which
the tool is written, can also be used for writing high level tactics, that can be
used for the automatic resolution of some parts of the verification process. The
tool has been used also to verify a database lookup manager system [AD99] and a
concurrent task management server [ACD+03].

Other initiatives that have been more recently started for reducing the number
of errors in Erlang programs are Dialyzer [LS04], a tool that does static analysis
of Erlang modules in order to find errors like discrepancies, unreachable code,
basic type errors or unsafe code; and QuickCheck [CH00, AH03], which generates
automatically test cases for Erlang programs from formally described properties.

38 CHAPTER 3. THESIS PRELIMINARIES

Part II

VoDKA development

39

41

VoDKA (VoD Kernel Architecture) is a research and development project that
has been carried out during the past 6 years by a team from LFCIA-MADS (Mod-
els and Applications of Distributed Systems), a research group at the Computer
Science Department of the University of A Coruña. The project started in January
2000, funded during the first two years by the European Union with regional ERDF
funds. Over the next years new funds coming from the Spanish Government , the
Galician Government , and the University of A Coruña were received. During these
six years of research and development, the company Cable y Telecomunicaciones de
Galicia, S.A. acted as industrial partner of LFCIA-MADS . Recently, the company
LambdaStream, a spin-off from the University of A Coruña, was born in order to
evolve and industrialize the original prototype of the server.

The initial goal of the project was to design and develop an innovative server
to provide VoD services to the clients of the regional cable operator, at that time
about forty-thousand subscribers living in several cities of Galicia, a region located
in the north-west of Spain.

Before starting the VoDKA project, the most important available products
were analyzed by the development group, and the conclusion was that most of
them were expensive, closed, non-scalable and non-adaptable solutions. Therefore,
the proposed goal for the project was to build an extremely scalable, fault tolerant,
multi-protocol, adaptable (to the underlying network topology and to the end-user
protocols) streaming server.

This part of the thesis is divided into three chapters. In the first one, the main
concepts related to VoD systems are explained, the most important VoD require-
ments are described, and the state of the art both in academia and industry is
presented. In the second one, the VoDKA architecture is discussed into detail from
different points of view, explaining how the system was designed and implemented
in order to meet the requirements. Finally, in the last chapter, the proposed ar-
chitecture and its implementation are evaluated following different procedures, like
performance analysis, requirements fulfilment, or analysis of the problems found
during the system development.

The goal of this part is to describe the real, complex, industrial case study
that motivated the theories and tools explained in the rest of the thesis. In order
to understand better these theories and tools, the chapter explains some relevant
information related to VoD servers and, in concrete, to the design, the development,
and the deployment of VoDKA.

42

Chapter 4

VoD servers

Contents

4.1 Video-on-Demand definitions 43

4.2 VoD server requirements 45

4.3 State of the art in VoD systems 51

4.3.1 Enterprise Solutions . 52
4.3.2 Academic World Solutions 53

Before explaining the VoDKA development, the learnings of the project and
motivating the use of formal methods in order to improve it, in the present chapter
we introduce the Video-on-Demand (VoD) world.

First, the most relevant concepts are explained, giving definitions that are going
to be useful in the rest of the thesis. Then, the system requirements for a VoD
server are discussed and described. After that, a description of the state of the
art on VoD servers, both in industry and academia, are explained. Once the goals
of the system are clear and some existing products have been presented, in the
next chapter, the software and hardware architectures of VoDKA are described,
explaining their evolution during the different stages of the server development.

4.1 Video-on-Demand definitions

After the massive consolidation during the 1980s of the traditional television as a
basic element in the daily life of millions of people, the media industry has been
continuously looking for more complex, flexible and interactive services. The cable
and satellite technologies, developed in the 1970s, grew a lot during the last two
decades of the 20th century, opening new options in the kind of services that could
be offered to the end-users. Nowadays, most of the digital platforms offer different
kinds of Pay per View services, in which the user can choose among several different
pieces of content at one of the pre-fixed timetables they are shown.

The development is pointing clearly to more interactive services, where the
user would have the opportunity to select any piece of content from a list of media
pieces available in the server. The service could be requested at any moment in
time, without any kind of pre-established scheduling. This is where VoD services
appear into scene.

43

44 CHAPTER 4. VOD SERVERS

Broadcast (no user interaction)

Near Video−on−demand (VCR simulated with several channels)

Quasi Video−on−demand (different groups of interest)

Pay−per−view (several pieces of content, prefixed timetables)

True Video−on−demand (complete control, VCR−like capabilities)

H
ig

h
er

 l
ev

el
 o

f
u

se
r

in
te

ra
ct

io
n

Figure 4.1: Levels of interaction according to Little and Venkatesh

This futuristic VoD concept has been categorized as the fifth level of services by
Little and Venkatesh [LV94]. They propose a division of interactive digital services
into five categories based on the level of user interaction, going from almost no
interaction to the more advanced features: Broadcast and Pay-per-view are the
ones already explained before; Quasi VoD refers to the services in which the
users can perform simple temporal control activities by changing from one group
of interest to the other; Near VoD services are those in which functions like
fast forward or reverse are approximated, with normally several channels that are
providing the same content within a small time difference; and True VoD services,
in which the user has complete control over the session presentation, having VCR-
like capabilities. In this thesis, VoD stands for the latter, most advanced, form of
interaction.

In practice, VCR-like capabilities are very complex to implement, and they are
normally simulated using multiple channels, so pure True VoD services are not
very frequently found.

When we talk about VoD systems, services, applications and servers, we are
using concepts that could be easily confused or interchanged. In Fig. 4.2, the global
idea of a VoD architecture is presented, specifying the concrete names for each of
the components that are going to be used in the rest of this thesis. The whole VoD
system architecture is divided into three big components: the VoD server, which
is in charge of storing the media content and performing the actual streaming;
the VoD applications, that are built on top of the VoD services provided by the
former component; and the management subsystem, in charge of dealing with the
user accounts, authentication mechanisms, and that kind of services. In some VoD
systems, this last component is part of the applications, but it is presented here
for clarity reasons as a separate subsystem which can be accessed by the user
applications.

Thus, on top of a VoD system, different multimedia applications can be im-
plemented, such as Movie-on-Demand , distance learning, interactive shopping, in-
teractive News-on-Demand , etc. It is important to distinguish between the VoD
server technology, that is going to be discussed in this chapter, and the services
offered to the end user, that are built as applications on top of the VoD server.
The pieces of content available for the different applications in the VoD server are
normally called Media Objects.

4.2. VOD SERVER REQUIREMENTS 45

VoD end−user services

VoD Server

VoD Applications

V
id

eo
−o

n−
D

em
an

d
sy

st
em

 a
rc

hi
te

ct
ur

e

VoD services
Management
subsystem

− movie−on−demand
− distance learning
− interactive news
− internet shopping

− media streaming
− media storage

Figure 4.2: Main components of a generic VoD architecture

A (True) VoD system provides video services in which a user can ask for any
Media Object , from the pieces available in the server, at any moment, having ca-
pabilities over the content similar to the ones provided by a normal video recorder.
This means that all the pieces of content in the video server are, at least in theory,
available at any time for being streamed to the end-user (via the selected applica-
tion). Therefore, the request will be satisfied if there are enough internal resources
available, without the need for any kind of temporal constraint and without pre-
established scheduling.

This thesis is only considering the VoD server part of VoDKA, not the appli-
cations providing services to the end-user. Nevertheless, sometimes the analysis of
those services is needed in order to learn more about how the server should behave,
as it is done in the next chapter, when explaining the VoD server requirements.

4.2 VoD server requirements

Even though VoD servers (and the underlying technologies) can have very different
nature and design level requirements, depending on the concrete needs of the appli-
cation that is going to use them, they share a set of commonly agreed requirements
that should be fulfilled in most of the systems of this kind. At least, all of them
are commonly agreed as important features for a VoD server.

In this section, these requirements are listed and explained. In the remaining

46 CHAPTER 4. VOD SERVERS

chapters of this part, we refer to them when clarifying the choices made in the
software architecture.

Before discussing the functional and performance requirements, it is important
to think about the different kind of services the system should implement, which
could be seen as the use-cases for the software we want to build. The simplest
use-case would be a Movie-on-Demand application, in which the user selects a
movie from the list of titles available. The list of movies should be big enough
to compete with traditional video rental stores, and a popular movie could be
requested by a large amount of users in a short period of time, normally with a
very irregular distribution over the different hours of the day and over the days
of the week. It can be acceptable to deny a user request for streaming a movie if
the server remaining capacity is not enough for handling a new stream. On the
other hand, as soon as the service starts, the user should receive all the requested
content without undesired interruptions, which can mean several hours of reliable
continuous streaming.

Other applications can have different usage profiles: in News-on-Demand , for
example, the requested pieces of content are going to be shorter, and the response
time needs also to be reduced compared with what could be acceptable in the case
of Movie-on-Demand applications. For shorter fragments one demands shorter
waiting time. There is a special case of Movie-on-Demand , when multi-camera
movies are offered to the end-user, where each of the users connected are going to
request several pieces of content at the same time.

When designing the architecture of a VoD server, it is important to keep in mind
that, most of the time, improving a given requirement can result in a conflict with
another. For example, an increase in the system storage capacity (needing therefore
more storage resources) could raise too much the cost of the whole system, and at
the same time may increase the average response time for a given user request,
because there would be an increase in the number of Media Objects that would be
stored in slower devices. Of course, as is always the case with software projects, all
the system requirements are closely connected with each other, and a good design
solution would be able to find a balance, giving a good average answer to all of
them.

Normally, not all the Media Objects have the same profile of use, and this
knowledge can be used by the system engineers to design the software and hardware
architecture in a clever way. Also, as already explained, the system is not used
everyday and at every moment with the same profile of use, and this knowledge
can also be taken into account by the engineers to improve system behaviour and
even to stimulate a change in the use (a simple idea would be to make offers in the
times of the day where the system is less used, or to make special offers for those
Media Objects that are easier to stream for the system).

Given the variety of the explained use situations, the main requirements for
VoD servers are the following ones:

1. Huge storage capacity: The server should be able to store thousands of
Media Objects.

In most VoD applications, the server needs to provide the user with access
to a large number of Media Objects, which must be stored in some way inside

4.2. VOD SERVER REQUIREMENTS 47

the server. As an example, the size of a movie encoded with the current
compression technologies, with a reasonable quality, can be easily close to
one gigabyte (more if we want broadcast quality); a common small size movie
rental store can have about a thousand titles available, which means that
about one terabyte would be needed to store a similar amount of media in
the digital server. Taking into account that re-encoding content is too slow
for doing it on-demand, it is not uncommon to store the same content in
different qualities (i.e., in different file sizes), having them available for the
users of the system; this produces an increase in the storage capacity needed.

2. Large amount of concurrent users: The VoD server should be able to at-
tend requests from thousands of users at the same time, each of them possibly
asking for several Media Objects .

Due to the nature of the VoD applications, a lot of users can potentially
request several pieces of media at the same time, and the server should be
able to accept a great amount of them and to provide them the piece of
content they request. This should be done maintaining a reasonable quality
of service for all the users. It is even possible to receive several requests
concurrently from the same user, as it happens with the multi-camera movies,
in a Movie-on-Demand service.

3. High bandwidth: The VoD server should be able to stream thousands of
high bandwidth pieces of content at the same time.

As we have already explained, a VoD server needs to be able to serve a large
amount of concurrent users, and most of the Media Objects are stored in the
server with a quality and format that require high bandwidth for streaming
them. Therefore, it is easy to conclude that the system software and hardware
architecture should be designed in a way that is able to provide a high total
throughput.

4. Low response time: The VoD server should have a low response time,
which should be predictable at the time the user performs a request.

As an example: in Movie-on-Demand , a user requesting a movie could accept
the situation where the system asks for waiting during several minutes before
starting the actual streaming, but would probably not accept a waiting time
exceeding a quarter of an hour. On the other hand, in a distance learning
class, we could imagine that more than half a minute (or even less) of waiting
time would be too much for an average user. For other kind of services,
like interactive News-on-Demand , response time should probably be at most
a few seconds for the Media Objects accessed by the users. The response
time in this kind of VoD servers, therefore, needs to be reduced as much as
possible, this being specially critical for some of the applications and services
provided. At least, the system should be able to create, using different kinds
of statistical estimations and architecture status analysis, a prediction of the
waiting time for each user requesting any Media Object to the system.

5. Availability and reliability: The VoD system should be both highly avail-
able, being able to keep working in the presence of errors, and reliable, mini-

48 CHAPTER 4. VOD SERVERS

mizing the presence of software and hardware errors.

Clements, Kazman and Klein [CKK02], define availability as the proportion
of time the system is up and running. It is measured by the length of time
between failures as well as how quickly the system is able to resume operation
in the event of failure, and reliability as the ability of the system to keep
operating over time. It is usually measured using the time to failure. Both
are key requirements for VoD servers.

The average users of most of the services and applications that run on top of a
VoD server expect 24x7 uptime. This is partly caused by the influence of the
traditional television services, which are normally working also permanently
almost without user detectable failures. Users expect streaming interruptions
due to technical problems to be very uncommon.

The normal service times for this kind of applications vary from minutes to
several hours of continuous streaming, a long time during which the user
should not notice any reduction in the quality of the stream, due to any kind
of hardware or software failure. A degraded mode, even though, could be ac-
ceptable while the system is recovering from a failure, depending on the con-
crete application (quality critical systems, like VoD in a hospital [MGP+01],
could not work with low quality, being a better alternative to stop the service
in that case and notify the responsible).

It is important to distinguish between user service availability and system
availability. The former is related to the resources available at the moment the
user requests the streaming, and can be seen as a different definition for the
combination of the large amount of concurrent users and the high bandwidth
requirements. The latter is the requirement explained here, related to the
ability to keep running and answering user requests (even saying that the
requested Media Object cannot be sent because all the resources are used);
and with the ability to maintain the existent connections with the user, even
after some software or hardware failure.

Therefore, the system should have a small amount of software errors (number
of bugs reduced, reliable system); should be able to recover from them, and
from hardware errors (hard and soft fault tolerance); and should be possible
to add new functionalities or modify the existing ones without stopping the
system (hot code and hardware swap).

6. Upgradability and maintainability: Adding new software or hardware
features, or correcting or changing the already existent ones, should be done
in a simple way, without needing to stop the VoD server.

Multimedia technologies, specially the big amount of protocols and formats
involved, have been constantly evolving during the last years. This means
that frequent upgrades adding support for new features, formats or protocols
to the server are carried out. Therefore, having an upgradable system is a
very important feature nowadays.

Besides, it is well known in software engineering that the biggest part of the
cost of a software product is spent in maintaining the system running. That
means that in a system easy to maintain, the overall cost is reduced. That

4.2. VOD SERVER REQUIREMENTS 49

difference could be just saved, or spent in improving the software quality,
depending on the needs of each company or project.

1. Huge storage capacity

2. Large amount of concurrent users

3. High bandwidth

4. Low response time

5. Availability and reliability

7. Experience−based automatic optimization

6. Upgradability and maintainability 10. Low cost

9. Variability

8. Scalability

Requirements 8−10 are specially important in VoDKA

Video−on−demand server requirements

Figure 4.3: Summary of the main VoD server requirements

7. Experience-based automatic optimization: The VoD server should be
able to collect information from the users behaviour, and take them as an
input for improving the internal scheduling algorithms.

After having a VoD server deployed for a while in a given environment, a lot
of information about the user profiles and behaviour can be collected. Which
Media Objects and with which timetables are more popular, how many users
on average are expected for each day of the week, how long do users watch the
streamed piece of content, etc. Also, knowing what applications the Media
Objects are used by, gives interesting information about concrete requirements
for each of the pieces of content stored in the server.

This information can be used to influence the internal algorithms in charge of
optimizing the server configuration for selecting the position inside the server
in which the Media Objects are placed, the number of copies available, and so
on. This feedback input can be provided by external management software,
or collected by the server itself.

8. Scalability: Adding new resources to the VoD server in order to improve the
performance of the system, and removing resources when not needed, should
be possible.

The software and hardware architecture of the system should be generic
enough for being both downward and upward scalable, adapting it to the
needs of every particular deployment. Scalability means that an increase
in the performance requirements, such as the amount of concurrent users,
the bandwidth, and the storage capacity could still be satisfied by adding
resources to the system.

50 CHAPTER 4. VOD SERVERS

Downward scalability means that the VoD system should be able to work
optimally in simple environments, where only a few users are going to request
a small amount of Media Objects. In this kind of deployments, the storage
capacity does not need to be so large, and the number of concurrent users
is very limited (in fact the first three requirements of the list are not so
important in those examples). The complexity of the server architecture
configuration should be simplified in these cases, providing a system easier
and cheaper to deploy and maintain. The ability to support the production of
a subset of the system, is defined by Clements, Kazman and Klein [CKK02] as
subsetability, and can be considered as a special case of downward scalability.

On the other hand, the same VoD server should be upward scalable for work-
ing in very complex environments, with a growing amount of concurrent users
and storage needs. Adding more instances of the same software and hard-
ware components to the deployed system should be possible at any moment,
improving the overall system performance. This way, if a given company
implements the streaming solution with the VoD server, but the capacity
requirements increase at some point in the future, they do not need to invest
in a new system, because adding more resources (new machines with more
software components running on them) would satisfy those requirements.

9. Variability: The VoD server should be adaptable to the end-user protocols
and to the underlying network topology.

Variability is defined by Clements, Kazman and Klein [CKK02] as how well
the architecture can be expanded or modified to produce new architectures that
differ in specific, re-planned ways, and it is explained that this variations can
refer to run-time modifications, compile-time changes, build-time reconfigu-
rations, or code-time redesigns.

Modern VoD servers should be designed for being deployed in modern net-
works, which are characterized by having different sections in the network
topology, each of them offering vastly different features (bandwidth, response
time, and other features). There is, actually, a strong need to optimize net-
work resource usage, avoiding the bottlenecks in the slowest parts of the
topology.

System designers do not know on beforehand how the underlying topology is
going to look like, and the system can potentially be deployed in completely
different networks. There is also a need of flexibility in the redesign of the
system deployment: the architecture should be generic enough for allowing
this kind of redesign.

Therefore, a VoD system should be variable, in the sense that it should be
possible to adapt it, normally at deployment time, to the underlying network
topology, making an efficient use of the available network resources.

As already explained, the kind of protocols used by the end-user applications
can vary a lot, and the server should be able to adapt its configuration, if
needed, to support the new protocols demanded.

10. Low (affordable) cost: The VoD system should have as low as possible
development, deployment and maintenance costs.

4.3. STATE OF THE ART IN VOD SYSTEMS 51

It could be stated that this is a requirement for every system, and that every
system architect should have in mind the low overall cost as a goal, but it
is discussed here as a special requirement because it was defined as a must
during the first stages of the VoDKA development. One of the main goals was
to construct a viable, competitive alternative to the very expensive solutions
already existent at the moment the project was started.

When talking about cost, we are referring to reduce the costs in the differ-
ent fields in which a system can be costly: reduction of the hardware cost;
reduction of software development and maintenance costs; and reduction the
network usage and requirements, being optimal in the use of bandwidth and
connections required both for the internal and external communications of
the server.

All the requirements in the list conditioned the design of the VoDKA server,
but the last three ones (scalability, variability and affordable cost) where consid-
ered specially important and had a lot of influence in the software and hardware
architecture and technologies selected for developing the system. More details on
this topic will be found in Chapt. 5.

4.3 State of the art in VoD systems

In the latest years, the leading companies in the digital media sector have devel-
oped VoD related solutions. At the beginning of the project, the analysis of the
available products gave the conclusion that most of them were expensive, closed,
non-scalable and non-adaptable solutions. On the other hand, they are normally
turnkey solutions, ready to plug and easy to run on a deployment, which can be
seen as an advantage for some environments. Some of the main enterprise solutions
and also the main initiatives in academy are discussed below.

There are several important criteria for analyzing the available solutions in order
to compare them with the one presented in this thesis. Relevant differences can be
found in the kind of operating systems that are supported by each solution, and the
programming language the system is implemented in. Both features can have a big
impact in the upgradability, availability or the scalability of the system. Another
key factor is whether the server supports and uses extensively open protocols,
which make the interoperability much easier and improve in general the quality of
the system; open standards allow the implementation of ad hoc client solutions,
without needing to acquire and use the proprietary ones from the same company
that builds the server. The license of the source code can also have an enormous
influence in the system flexibility and maintainability; Open Source solutions allow
the optimization even changing and profiling the source code when necessary. The
supported hardware is strongly related to the amount of bandwidth, the number
of concurrent users, and other performance requirements. Some of the servers are
designed with scalability and redundancy (for providing fault tolerance) in mind,
but others are more targeted to a concrete deployment, and are therefore less
flexible. The cost can vary a lot in the different options available, thinking in
the TCO, not only in the deployment or acquisition costs. Some of the systems
are targeted to a concrete database, and others are more flexible; the database

52 CHAPTER 4. VOD SERVERS

management system used can have a strong influence also in several important
requirements.

Next, the most important features for the main solutions available at the be-
ginning of the project are discussed. A more detailed description of them can be
found in [SGVM00].

4.3.1 Enterprise Solutions

Some solutions were well suited for low bandwidth networks. The most popular
ones were:

• RealNetworks RealVideo Server: it is based on the open standard
RTP/RTSP and supports several operating systems and hardware platforms,
and its code is not available as Open Source. It is very popular and widely
used through the Internet.

• Microsoft Windows Media Server: mostly uses proprietary protocols,
supports Windows operating systems, and their target hardware platforms.

Other solutions are more focused to LAN or MAN, with high bandwidth avail-
ability. The most representative ones are:

• Apple Darwin Streaming Server [App] It is the Open Source version of
the Quicktime Streaming Server, and is in fact an efficient but not distributed
or clusterable RTP and RTSP streaming server, without including distributed
storage management.

• Oracle Video Server (OVS) [Ora98a, Ora98b], is probably the most
widely used solution, with a client/server architecture, but with scalability
limitations. It is available for Solaris and Windows NT platforms. It can
provide real-time video feed and normal VoD service. It has a modular,
client/server architecture. It supports file striping to improve the response
time and RAID disk configuration to increase the security by using redun-
dancy. It works with several video formats, both standard and proprietary
ones.

• IBM’s DB2 Digital Library Video Charger [WDRW99], enhances IBM
DB2 Digital Library by delivering digital audio and video over the Internet or
intranet. It is a solution very similar to OVS; it offers industry standard-based
features, specially IP multicast standards (it uses RTP and it is protocol-
ready for Real-time Streaming Protocol and Reservation Protocol). It sup-
ports the same open video formats as OVS. It also supports a high-capacity
digital tape archive system for off-line storage.

• Kasenna MediaBase, an evolution of the SGI’s WebForce MediaBase,
which has a modular design, separation of acquisition, distribution and stream-
ing functions, based on UNIX concepts.

• Philips WebCine Server [Phi], an MPEG4 streaming server based on
GNU/Linux .

4.3. STATE OF THE ART IN VOD SYSTEMS 53

• Cisco IP/TV [CS00], closed solution with some high level tools oriented to
e-learning.

• Sun’s system: StorEdge Media Central [Sun].

There were also black box solutions, which consist in a combination of special-
ized hardware with some of the described products.

In the latest 5 years, three companies have being key factors in the market
of the VoD servers: Concurrent (MediaHawk On Demand Platform), SeaChange
(SeaChange On Demand Platform) and nCube (nCube On Demand Platform).
All of them offer commercial products that have been massively deployed all over
the world and offer a flexible platform. However, they still represent closed and
not always affordable solutions that still represent a different approach to the one
selected for the development of VoDKA.

4.3.2 Academic World Solutions

In the academic environment, most of the projects studied at the beginning of the
VoDKA development offered experimental solutions. Some of the most represen-
tative ones, that ware taken into account for the VoDKA design, are:

• The Stony Brook Video Server Project [CVV97a, CVV97b, MV96] is oriented
towards building a distributed and scalable video server application that pro-
vides indexing, searching and video streaming to clients over the network,
it was at Stony Brook, New York, by Andrew V. Shuvalov. Possible video
sources were VCR, Satellite TV and cable TV, and special attention has been
put on data integrity and fault tolerance.

• In [DHLV96] an alternative solution, using a shared memory architecture
and some aspects about VoD server design and a server model based on a
modular software architecture are studied. Different methods for disk striping
are also compared at the storage layer to balance advantages and drawbacks
for each technique. The system is divided into three main modules: storage
subsystem, processing and routing subsystem, and network subsystem. For
instance, the storage subsystem is presented as a hierarchical structure based
on a great number of disk units, CD-ROM jukeboxes, and magnetic or optic
units. The system is based on a VoD server developed at the University of
Minnesota.

• One important inspiration for VoDKA was described in [CT97a], where a hi-
erarchical solution for building multimedia servers is analyzed. The proposed
architecture was based on three fixed levels for streaming, caching content
and storing a big amount of Media Objects.

• Other research initiatives that were studied include: in [BGM95, AO92,
Ber94, CKY94] some research on the disk subsystem at the VoD servers
are carried out. In [AO92, GC92] topics related to real-time video playing,
or multiple audio channels, have been studied. In [RV92, RV93], authors
present methods to store audio and video in these systems and how to intro-
duce storage patterns that can reduce disk usage. In [LS93] a disk-storage

54 CHAPTER 4. VOD SERVERS

based system which can serve multimedia requests is presented. In [Ber94],
a striping method with an efficient mode for sending video and audio objects
with different bandwidth requirements is presented. In [LL96] the scheduling
and file replacement policies of a hierarchical storage system are discussed.
In the paper, the architecture is composed by a tape store, a mechanic arm,
a secondary level of disks, and a primary storage at memory. In [CT97b] an
theoretical study of different concepts related to the creation of a hierarchi-
cal server is presented. The demand, video files, performance requirements
of each application and type of interaction characteristics are considered.
Three main performance objectives are stated: to carry out the performance
requirements, to get effectiveness at minimum cost, and the robustness and
scalability.

More recent research results on the field of the VoD servers, in some sense
related or influential to the contents of this thesis include: in [LC03], an scalable
and efficient VoD platform is presented; GloVE [PAI02] (Global Video Environ-
ment) is a distributed environment for low cost, scalable VoD systems that uses
a cooperative video cache shared by several clients; in [STH06] the design and
implementation of a video broadcasting server based on a technique called Strip-
ing Broadcast are described; P2VoD [DHT04], a proposal for a fault tolerant VoD
streaming in Peer-to-Peer networks; in [HF04], a proposal for using dynamic load
balancing among VoD servers for reducing the average response time of requests is
proposed; in [FBA03] three fault tolerant models for VoD services, trying to guar-
antee continuous streaming even after server failures, are discussed; and in [THS03],
the focus is on using caching for streaming over the Internet using an overlay ar-
chitecture consisting of caching servers.

Chapter 5

VoDKA architecture

Contents

5.1 System use-cases . 56

5.2 General design ideas . 59

5.3 Logical View . 59

5.3.1 Distributed design patterns 60

5.3.2 Internal protocol (message API) 66

5.3.3 Description of software components 69

5.4 Process View . 72

5.5 Development View . 74

5.6 Physical View . 75

5.6.1 VoDKA very simple deployment 76

5.6.2 VoDKA on the Borg cluster 76

5.6.3 VoDKA on a faculty network 78

5.6.4 VoDKA on a city cable network 80

5.7 Evolutions of the VoDKA architecture 81

In order to satisfy the system requirements, an innovative solution, based on a
flexible, distributed and hierarchical storage system [BGF+01, GAS03b, GBF05],
developed in Erlang/OTP , and built on top of GNU/Linux clusters composed by
commodity hardware [BG99], was proposed for the VoDKA server.

In this chapter, the VoDKA architecture is explained following The 4+1 View
Model of Architecture defined by Philippe B. Kruchten in a very influential pa-
per [Kru95] published in 1995. The 4+1 Model explains the system architecture
from five concurrent complementary views, each of them explaining a different set
of issues. The logical view explains how the system is decomposed into a set of
abstractions, concepts and components, and how they relate to each other; the
process view concentrates in which thread of control each of the operations in the
system executes, therefore addressing concurrency and distribution; the develop-
ment view shows the organization of the software source code and documentation,
and focuses in the development process and methodologies; and the physical view
details how the software is deployed in a network of computers, relating therefore
software to the actual hardware where it runs. These four views are derived from

55

56 CHAPTER 5. VODKA ARCHITECTURE

Figure 5.1: Main VoDKA use-cases

a selected group of very representative system use-cases, which conform the +1
view. Although the model was originally designed for systems developed with the
object oriented philosophy, we use it adapting the different views in order to make
them adequate for the process-based distributed functional system we present in
this thesis. Besides, we have added a section, containing the development view, in-
formation about how the system was developed, including tools and details about
the underlying architecture.

5.1 System use-cases

The use-cases of a system describe its main functional requirements, explaining
how it ushould interact with the end-user. In the case of a VoD server, the end-
user is not interacting directly, but through one of the software applications that
are built on top of the server. From a high level perspective, each of the VoD
applications define a set of closely related use-cases.

In most of the applications built on top of a VoD server, the behaviour of the
end-user follows a similar procedure: the user logs into the application and au-
thenticates into the system. The authentication method can vary from simple lo-
gin/password to some more sophisticated technology like the ones using certificates.
Then, the application shows a list of pieces of content available (after querying the
VoD server to check if they are really available). After receiving the list, the user
selects one or more pieces of multimedia content and interacts with the system
during a time that can vary from minutes to several hours. Finally, the session
is closed and all the resources are freed. The authentication, session management
and related parts of this scenario are handled by the application part, without any
kind of interaction from the core VoD server. In real scenarios more complex tech-
nologies like virtual tickets or DRM (Digital Right Management) need to be taken

5.1. SYSTEM USE-CASES 57

into account, but we are not going to go into those details here because they are
not relevant for the rest of the thesis.

From now on, we concentrate in the use-cases for the VoD server itself. The
most important ones are shown as a UML diagram in Fig. 5.1. The first level
of relations associates the two main roles (not played directly by humans but by
two kinds of high level applications) with use-cases. The second level of relations
represents standard uses associations between use-cases.

• Long Media Objects visualization: the user gets into the server and, after
browsing the available contents, chooses one Media Object (a movie, sports
game, documentary, etc.) and visualizes it until its end. The user would
accept a bigger response time (system latency) than in other use-cases, but
the system should be able to at least provide an statistical estimation of the
waiting time; unknown and long waiting time would not be accepted. As the
Media Objects are visualized without interruptions, for up to several hours,
the system needs all its fault tolerance features in order to keep the quality of
service for such a long period. Depending on the case, VCR-like interaction
would be used (e.g., sports game visualization with repetition of the main
parts and fast forward during the boring minutes) or not (e.g., a regular
high-quality movie watched without any kind of interruption).

• Media zapping: the user gets into the server and asks sequentially for
several (possibly long) Media Objects, watching them for a while, trying to
get some basic information about them, and then going to the next piece of
content. Short latency is required, and a lot of fast resource management
is involved inside the server. The users could be interested in finding some
concrete part of the Media Objects: searching facilities would make this much
easier and faster, and even less resource-intensive for the system. The stream-
ing time is not normally very long for each piece of content, but quite a lot
of VCR-like interaction could be needed.

• Several movies at the same time: the user asks at the same time for
several Media Objects, that are going to be streamed in a synchronized way.
Whenever any kind of VCR-like operation is performed, it affects all the
streams. This involves resource booking for all the Media Objects as a unique
stream, because the user would not normally be interested in watching only
some of them. This use-case is specially frequent in multi-camera movies
visualization or multi-camera sports games retransmission (the user selects
which cameras wants to see among a list of available points of view).

• Short content scanning: in this use-case, the server is required to stream
a large amount of very short pieces of content, requested by the user sequen-
tially. Short latency is a very important feature, as it is fast resource booking
and freeing (the length of the Media Objects is known, as opposed to the
reproduction time of the cases where the media is not completely streamed).
Almost no user interaction is expected during the streaming of the Media
Objects. This use-case takes place, for example, when News-on-Demand ap-
plications are using the VoD server.

58 CHAPTER 5. VODKA ARCHITECTURE

• Content management: the administrators of the system need to keep the
content of the VoD server up to date. Old content could be removed, and
new pieces of content are constantly being added to the system. This involves
the update of all the internal metadata used by the scheduling algorithms.
The administrators would access this functionality of the core VoDKA system
through high level management applications.

• Optimization of content location: for several high level reasons (even
sometimes commercial ones), the administrators of the VoD server could be
interested in having very good performance for a concrete Media Object or a
group of (possibly related) Media Objects. In order to do that, they would
connect to the VoD server and describe the kind of content they want to
improve the performance of, allowing the VoD server to change the location
of those Media Objects or booking a special set of resources for them. The
performance of the server for a concrete set of Media Objects could be im-
proved for a week, only during a day, forever, or even depending on the time
of the day (e.g. the Media Objects targeted to children should have a very
good performance in the afternoon, but they are not normally going to be
requested at night).

• Slot booking: it is not always the case that the users want to receive im-
mediately the media stream they are interested in. Sometimes, they prefer
to search the contents, select a given Media Object (or a group of them, as
explained in the previous use-cases), and give to the system an approximate
starting time. The VoD server should ensure that the needed resources are
going to be booked in advance, so that the streaming could start at the time
selected by the user.

The VoD server, therefore, has to be able to perform the following main tasks
(they can be seen as services for the applications), as part of the described use-
cases:

• Calculate the list of the available content matching some conditions, offering
search facilities.

• Calculate the predicted response time for a given piece of content.

• Stream a given piece of content to the end-user after allocating the required
resources.

• Provide search and VCR-like capabilities on the contents that are being
streamed.

• Add, remove and update content.

• Optimize resources for a set of Media Objects.

• Book a concrete time slot (ensuring that resources will be available) for
streaming a given piece of content to the end-user.

5.2. GENERAL DESIGN IDEAS 59

These functional requirements, together with the ten generic non functional
requirements for VoD servers described in Chapter 4, were the goals taken into
account for designing the software and hardware architecture that is going to be
described hereafter.

5.2 General design ideas

Given the requirements, the VoDKA system was conceived from the beginning
as a flexible architecture of specialized components. The existence of specialized
components gives answer to the different kinds of requirements, sometimes even
contradictory ones, we have already explained.

For example, if the system needs to have a huge storage capacity, and at the
same time should be able to reduce the response time and saturate a high band-
width, solving this without specialized layers or components (monolithic or ho-
mogeneous distributed architectures) would mean to use very expensive hardware
(contradicting the cost requirement) and to complicate the software pieces in a way
that they would be very difficult to evolve and maintain (contradicting again the
proposed requirements).

The solution was to create components specialized in satisfying, each of them,
some subset of (non contradicting) requirements. This is the case of components
like a very fast streaming layer capable of offering a very good performance handling
a lot of concurrent connections; and a cheap massive storage component able to
store a lot of Media Objects. The components cooperate in an architecture based
on the concept of delegation, where a flexible cache-based hierarchical configuration
keeps the more popular Media Objects as close as possible to the fastest layers.

The communication inside and among the components is based on a message
API kept as simple and homogeneous as possible. Almost the same messages are
sent through the architecture from the user to the layer where the Media Object is
found. In their way trough the architecture, the messages are filtered depending on
the resource availability and local scheduling decisions, normally based on heuristics
and a concept of cost that keeps the system load as balanced as possible.

The fact of using very flexible components, internally based on design pat-
terns that have a direct relation with Erlang implementation patterns (called be-
haviours), is one of the keys of the architectural flexibility. Some of these design
patterns implement part of the internal scheduling algorithms of the VoDKA server.
As we will explain in Part III of this thesis, the server has a global internal sched-
uler, spread all over the system processes and components. Knowing the design
is necessary in order to understand the approach we have taken to apply formal
methods for improving the quality of the software.

5.3 Logical View

The logical view of our system describes the main components of the VoDKA server
and how they collaborate. First, some implementation patterns that are going to
be used recurrently all over the system architecture are presented. Then, the main
components are explained, defining their API, and how they are implemented.

60 CHAPTER 5. VODKA ARCHITECTURE

The philosophy used is not object oriented but high level, distributed, process
oriented, message passing. This is coherent with the concrete programming plat-
form the system was developed with (Erlang/OTP), but all the explanations in
these sections, being for a concrete philosophy, are independent from the actual
programming language the system is implemented in.

The VoDKA server was designed and implemented following a distributed func-
tional programming philosophy. The server consists of a set of distributed software
components which communicate by message passing using a well defined API. In-
side each of those components, a set of concurrent specialized processes collaborate
also by exchanging synchronous or asynchronous messages in order to perform the
internal tasks. Inside the processes, a functional approach, without any side effects
apart from the inter-process communication, is used. Some of the processes inside
the components are very similar, and carry out the same kind of tasks with some
small differences in their internal behaviour or the process API. In order to abstract
the common behaviour , design patterns are defined and used during the design and
development of the server. Some of them are generic patterns that are sometimes
provided by the development platforms. Some others are more specific behaviours,
only valid for a concrete system or a family of similar systems. We will use the
terms pattern and behaviour as synonyms in this context.

5.3.1 Distributed design patterns

The following design patterns, some of them already available in Erlang and others
developed ad hoc, are widely used all over the VoDKA system:

1. Supervisor-worker: this pattern allows the processes implementing it to super-
vise other processes, receiving any kind of failure information and being able
to react on that, following the provided policy. They allow the creation of
supervision trees, which are a way of structuring the processes of a system
in a tree, based on the relation between workers and supervisors. Workers
perform the actual computation, implementing the actual logic of the system.
Supervisors monitor the workers and implement a set of policies (provided
for each case as a plug-in for the pattern) for deciding what to do when
something unexpected happens to them (e.g. a process crashes because of
a software or hardware failure). As it is possible for a supervisor process to
act as a worker for another supervisor, the final structure is a tree with the
workers on the leaves. This structure allows the creation of supervisors for
subsystems (a process that defines the supervision policy for a set of related
processes which are part of a subsystem). The pattern is, therefore, very
flexible and provides a way of introducing the fault tolerance mechanisms of
a distributed system in a homogeneous manner. A supervisor node has a
list of child processes, and is in charge of starting, stopping and monitoring
them, keeping them alive by performing the actions defined by the policy
chosen for each case. The supervisor pattern and the creation of supervision
trees provide a way of having fault tolerance inside the system processes and
components. This pattern can be seen as an specialization of the master-
slave pattern already defined by Buschmann [BMR+96]. Fig. 5.2 shows an

5.3. LOGICAL VIEW 61

process

worker

subsystem 2

supervisor

subsystem 1

supervisor

supervisor

supervises

supervises

supervises

supervises supervises

supervisessupervises

supervises supervises

supervision tree

top of the

subsystem 2.1

process

worker

process

worker

process

worker

process

worker

process

worker

Figure 5.2: Supervisor-worker pattern: example of a supervision tree

example of a supervision tree. The use of this pattern is directly related to
the fault tolerance requirement explained in the previous chapter.

2. Event handler and event manager: in distributed control systems, it is often
interesting to have an event manager (or a group of them specialized in differ-
ent kind of events) per each group of processes running in the same machine
(a node). Any kind of event (including alarms, error messages, or other in-
formation that should be logged or processed centrally) would be sent to the
event manager, who would resend it to all the event handlers associated with
it, which know what to do depending on the kind and content of the received
event. Event handlers can be attached to several managers, and can be in
different nodes. They can also be subscribed to only a set of message types.
The central event manager can be seen as an abstract pattern, with standard
mechanisms for starting it, sending notifications and attaching concrete event
handlers, which would have a state and a set of algorithms for evaluating each
of the messages received. The configuration of the pattern is shown in Fig. 5.3.
This pattern is related to the idea of making the system easier to maintain,
introduced as part of the requirements for VoDKA. However, the solution
used inside VoDKA is similar but not exactly that one. The Monitor pattern
uses the observer design pattern to allow the creation of a process similar to
the one described as event manager. The messages received are classified in
groups, and sent to all the processes that had been previously subscribed to
any message of that class, using the observer pattern interface for that. In
Fig. 5.4, we an see an scenario where an observer subscribes to a monitor in

62 CHAPTER 5. VODKA ARCHITECTURE

process 2

process 1

event manager

of node 1

event manager
of node 2

process 3

process 5

process 4

node 2

node 1 node 3

event handler 1

event handler 3

event handler 4

event handler 5

event handler 2

Figure 5.3: The event handler and event manager pattern

order to receive notifications from a given process type. More information on
the use of this pattern inside VoDKA can be found in [VGS+01b].

3. Generic server: in most message passing based distributed systems, some vari-
ation of the client/server model is used. All over the concurrent process based
architecture, several processes act as clients of another one. They send mes-
sages, using the server predefined API, and wait for the answer (synchronous
operation) or continue their normal behaviour (asynchronous operation). On
the other hand, the server process, after receiving the message with the re-
quest, performs some internal computations (functional evaluations), changes
its local state, and sends the answer message back to the client, if required.
The generic framework is always the same, and the differences from one server
implementation to the others is the way the new process state and the answer
message are computed. Most of the server behaviour can be then abstracted
and defined as a generic pattern, to be reused all over the system architec-
ture in a easier and homogeneous way. The schema is shown in Fig. 5.5.
This behaviour provides a way to store state information in each of the pro-
cesses of a system without global memory, and is heavily used in distributed
programming. A developer using this pattern only needs to describe what
happens when a message of each of the possible kinds is received, i.e., what
is answered back to the client and how the internal state is updated. Using
generic servers some code is reused, and the new code is simpler. Reusing
code that has been working already in previous projects and checked by dif-
ferent developers increases the quality of the system and therefore reduces

5.3. LOGICAL VIEW 63

notify_task

notify_task

notify
register(PID,task)

notify_task

register(PID,task,creator)

MonitorProcess (PID)

Observer

Figure 5.4: Example of the monitor pattern used inside VoDKA

implementation

generic server

calls to call−back modulemessages

implementation
of the concrete

server

client

processes

Figure 5.5: The generic server process pattern used in VoDKA

the number of errors.

4. Generic FSM: sometimes, the behaviour of a given process is very similar to the
generic server described above, but the actions performed (both the new state
computation and the answer message) depend on the concrete state of the
server process. Therefore, for each state of the process, a potentially different
message can be sent as answer and a different new state is computed, even
for the same input. This can be seen as a special case for the generic server
where even more behaviour can be abstracted and generalized. The user of
the generic finite state machine has to parameterize the abstraction with the
concrete states and the functions for calculating the answer message and the
new state, in a similar way as it is implemented for the previous example
pattern. The described pattern provides a clean way to describe finite state
machines avoiding ugly and complex source code, making cheaper and easier
the later maintenance and the addition of new features to the system.

5. Reflective Generic Server (RGS): is an extension of the generic server pattern
with metainformation and a standard API that lets any other process ask to
a RGS about its capabilities and its internal state. One interesting use of this
pattern is the creation of components that can be asked for information about
the services they offer. In VoDKA, for example, a service invocation interface
has been developed using these introspection capabilities. This is also very

64 CHAPTER 5. VODKA ARCHITECTURE

useful for system monitoring. The process metainformation is introduced by
the developers (both in the design and source code), and can then be explored
by other processes in the system. A process can at any moment ask a reflective
server for the list of messages it understands, the parameters they carry, and
other related metainformation. The same idea could be used for other kinds
of patterns, creating that way Reflective Generic FSMs, or Reflective Event
Managers, for example. The RGS is inspired in the idea of introspection,
present nowadays in most of the object-oriented languages, which refers to
the capacity of the language or platform for offering information about the
public methods of an object and their parameters.

6. Trader: The Product Trader is a well known design pattern [BR98a]. In the
VoDKA server, the internal architecture of the system, as it is going to be
explained later, consists of very flexible components which can be plugged in
different ways (software configurations). Therefore, the internal protocol mes-
sages need to be understood by all the components (which means it should
be understood by the processes implementing the API for the component,
described in Sect. 5.3.2). Instead of repeating all the structure, the protocol
implementation is abstracted in a design and implementation pattern that
trades in order to obtain the source and destination for each of the transmis-
sions inside the system. The pattern also abstracts the idea of the chain of
responsibility pattern that connects the components of the system together,
and also the processes inside a component. This chain of responsibility es-
tablishes that for any request, the process or component is going to try to
handle and answer it locally, and in case this is not possible, the pattern
knows how to forward the request and wait until it has been solved by the
following levels of the chain. This pattern is used in VoDKA as a particular
extension of the RGS. Summarizing, a Trader allows the easy implementation
of processes that receive requests specified by a standard message API, and
try to satisfy the request or, if that is not possible, know how to delegate it
to a different process.

7. Scheduler: when a Media Object needs to be streamed, it is often the case
than several processes can be used as the source node for the streaming.In
order to decide which of them is going to be chosen, the cost of each of
them is calculated when the messages are sent through the system. The cost
gives information about how good or bad for the global load of the server
is to select each of the possible candidates. For calculating the cost, the
intermediate processes need to be aware of how it is propagated and updated.
In the scheduling processes of the system, two functions are evaluated each
time one of that messages are handled, one for updating the cost, depending
on the available resources of the component, and the other one for selecting
which possible are going to be filtered out. Thus, in all these processes,
abstracted to the scheduler behaviour , the functions filter and update cost
are implemented. A new design pattern, called scheduler, an extension of the
previously mentioned trader, is used in VoDKA for this purpose. Fig. 5.6
shows an example of a trader process that filters and updates the cost of the
answers received from other two processes it is connected to.

5.3. LOGICAL VIEW 65

lookup

lookup

options

options lookup

localSched(options)

update_cost()

filter()
localSched

Trader process
with local
scheduling

Figure 5.6: Example of a scheduler process in VoDKA

Video Stream

HTTP PIPE TCP

DD1 DS1

TCP PIPE FILE

DD2 DS2

Figure 5.7: Pipe & Transfer patterns used in VoDKA

8. Pipe & Transfer: they are a data movement abstraction for the internal data
communication [GAS03b]. A pipe is a process that has as its creation parame-
ters the source and destination protocols (implemented as call-back modules),
and some general options about the transmission. The source and destina-
tion modules need to implement three mandatory functions: init (protocol
initialization), proc (read and write) and done (destructor). A transfer is the
connection of two pipes, where the destination of the first pipe is connected
using some transmission protocol to the source of the second pipe. By using
the transfer abstraction, any two components of the server can be easily in-
terconnected in order to stream Media Objects. Indeed, using these patterns,
a whole VoDKA server can easily be configured in order to play the role of
a source for the storage layer of other instance of VoDKA (providing a very
flexible way of connecting several servers for collaboration). Fig. 5.7 shows
a transfer composed by two pipes; each pipe has a source and a destination
call-back modules.

9. Resource constraint: as it is going to be explained in the physical view, the
VoDKA hardware architecture configurations can be quite heterogeneous.
One can, for example, run each of the components in a different set of ma-
chines; in this kind of systems, a lot of access and communication constraints

66 CHAPTER 5. VODKA ARCHITECTURE

process 1

process 2

process 3

process 1

process 2

process 3

restriction

network bw

computer 2

computer 1

computer 3

With restriction pattern

Without restriction pattern

restriction

restriction

card bandwidth

card bandwidth

restriction

card bandwidth

Figure 5.8: Example of the resource constraint pattern

need to be defined to avoid system overload. In order to plug a constraint
at any point of the system, both in the inter-component communication and
inside each of the components, a special simple component with only one pro-
cess is defined. The constraint process implements the same API as the rest
of the components of the system. A restriction about the bandwidth of the
network that connects two components can be placed between them putting
a transparent proxy process (decorator [GHJV94] design pattern) that imple-
ments this restriction and reduces the options answered from a component to
the higher level, depending on the available resources at each moment. The
resource constraint pattern, therefore, emulates resource limitations at the
software level. As it needs to be able to understand the message API of the
system, it can be seen as an extension of the trader design pattern, where
the streaming options received from the connected subsystems are filtered
depending on the maximum resources available and their current usage. In
Fig. 5.8, an scenario where this pattern could be used is shown: specialized
processes implementing network and card bandwidth constraints are used for
limiting the amount of bandwidth available for the communication among
three processes.

5.3.2 Internal protocol (message API)

As the system is based on components that can be plugged in very different ways,
it is interesting to keep the internal protocol as simple as possible. For the basic
functionality, four main messages are defined. All of them assume that the system
architecture is a tree-like hierarchical structure, as will be explained later on in this
chapter:

• Lookup message. A component (or an external application) sends this kind of

5.3. LOGICAL VIEW 67

message to another component whenever it wants to check if streaming a con-
crete Media Object from that component (or another component depending
on this one) is possible. In Erlang , the simplest version of this message would
be composed by a tuple with three elements: {lookup, MO, Profiles}. The
first element is an Erlang atom which indicates the message type. The sec-
ond one is the Media Object identifier, unique inside the system. And the
last element is the description of the non-empty list of qualities of the Media
Object that are accepted. Converting the quality of the Media Objects on
demand is too expensive both time and resources-wise, so they are stored in
different sizes and qualities. It can be the case that only some of the qualities
are available in the component, or that the resources available are not enough
for streaming some of the qualities, so the sender component needs to specify
all the qualities that it accepts.

• Lookup answer message. It is the normal answer sent back to the caller by
a component when a lookup message is processed. In Erlang , the simplest
version of this message is again a tuple, but now with only two elements:
{lookupAns, Options}. The first element identifies again the message type
and the second is a list of alternatives for streaming the Media Object that
was referenced in the corresponding lookup message. If the list is empty,
the component is notifying the caller that either the system is too loaded or
the Media Object is not present. Each element in the list is another tuple,
now with three elements: {Profile, Cost, ProcId}. Profile is one of
the profiles contained in the lookup message. ProcId is the identifier of
the concrete process (part of the component or the components that are
behind the called component) that has the Media Object and enough resources
for streaming it with the quality specified in Profile. Finally, Cost gives
information about how costly is for the server to stream from a given process
compared to streaming from the rest of them. For example, if the Media
Object requested is available both in a tape component and a disk component,
the cost is going to be higher if the Media Object is streamed from the tape.
Also, if it is available in two disks with the same features, but one of them
is already streaming other Media Objects (and therefore has more resources
being used), the cost is going to be smaller for the disk that has less load.
Cost values are used by the caller components later on in order to select from
which of the processes to request the streaming. Depending on the concrete
scheduling policies, cost values vary from simple numbers to more complex
structures with information about the consequences of choosing each of the
Options.

• Play request message. Once the lookup message is sent all the way through
the architecture of the system, and the streaming options are collected back
from the lookup answer messages, the caller components need to send a Play
request if they want to start the actual streaming. In Erlang , a simple ver-
sion of this request is another tuple of four elements: {play, MO, Profile,
SrcProcId, DstProcId}. Apart from the message type, the MO indicates
which Media Object should be streamed, the Profile specifies the desired
quality, and the SrcProcId and DstProcId are the identifiers of the process

68 CHAPTER 5. VODKA ARCHITECTURE

that should carry out the streaming and the process that is going to receive
it, respectively. From the instant when the lookup message is answered to the
moment when the play request is received, the available resources, or even
the available Media Objects can vary; therefore, on the receiving of the play
message, resources need to be checked again.

• Play notification message. It is the normal answer sent back to the caller by
a component when a play request message is received. As we have explained,
the resources need to be checked again, and it could even be the case that
the Media Object have disappeared from the device controlled by the source
process. Therefore, due to this and other technical reasons, the play request
cannot always be satisfied. The play notification message has two possible
forms, one produced when the streaming is set up, and the other when it is not
possible. In the first case, a transfer can be created with two pipes connecting
the source and the destination processes. The protocols used inside each of
the pipes can be negotiated by the processes themselves or imposed by other
components, depending on the concrete configuration of VoDKA. An special
relation is created between the processes in the transfer and those handling
information about resource usage, and when the streaming is finished, they
are notified so that the resources can be actually freed.

Most of the processes involved in the scheduling subsystem communicate mainly
using the four messages just described. This message API is, therefore, the one
implemented by the processes that follow the trader design pattern inside VoDKA.
The way these messages are forwarded and answered back through the system
architecture defines the concrete configuration of VoDKA and how the components
are connected.

Apart from the messages described, there are other ones related to the error
messages, the process supervision, the negotiation and creation of the pipes and
transfers, etc. As they are not really needed in order to understand the part of
VoDKA that is relevant for this thesis, we will not go into detail with that messages.

But we still have not talked about advanced features present already in the use-
cases we have seen: slot booking, VCR-facilities, and Media Object management,
optimize resources for some Media Objects and response time estimations. Slot
booking messages can be seen as extensions to play messages. The behaviour of
the components is very similar and the resources are set to being in use, but the
streaming is delayed. VCR-facilities are special messages that interact directly
with the transfer process, and do not need to go through the scheduler subsystem.
Media Object management is done using simple messages sent from some kind of
high level software to the components taking care of the storage devices. Resource
optimization can be seen as a special case of Media Object management where a
set of selected Media Objects are moved up in the system hierarchy (we will see
more on this in the next sections). Response time estimations can be added as part
of the lookup answer message if that feature is offered by the concrete version of
VoDKA that is in use.

5.3. LOGICAL VIEW 69

5.3.3 Description of software components

In this section, we describe the main software components without mapping them
to concrete nodes or hardware configurations.

A multi level architecture, based on the chain of responsibility [GHJV94] pat-
tern and the common internal communication protocol described in the previous
section for all the components of the system was chosen for the software archi-
tecture of the server. Each of the components acts as a black box with a clear
functionality for the rest of the system, and with a well defined communication
API. The components can be plugged together following different configurations,
that will be discussed in the next sections.

The proposed architecture satisfies the needs imposed by all the system require-
ments explained in the previous chapter. Apparently incompatible requirements
such as low response time and cheap storage capacity, are conciliated by specializ-
ing components. Each component gives answer to the demands of a given subset of
the in theory contradictory requirements. Of course, the rest of the requirements
we have described, those that are not conflictive in this sense, need also to be taken
into account: this is the case of features like availability and reliability, or upgrad-
ability and maintainability. All of them have been also taken into account in the
design, and the best features of the development platform that have been used to
provide support for those complementary requirements, as we will explain later in
this chapter.

The main high level components that cooperate inside VoDKA are:

• Streaming component: Its functionality is related to the protocol adaptation
with the end user. It needs to be very fast (software is defined to be so and
special hardware would normally be used for the deployment), but it does not
need to be able to store a high amount of Media Objects. The communication
between the components inside the server is done by using internal, ad hoc,
communication protocols. These high level protocols are more adapted to the
needs of the internal intercomponent communication than the general purpose
TCP/IP protocol (which can still be optionally used in a lower level). The end
user requests a given Media Object with a concrete quality (bandwidth use
profile) and one of the typical streaming protocols (RTP, H.263, HTTP, etc.).
Internally, the streaming component consists of three types of processes: the
streaming scheduler ; the streaming group; and protocol frontends/streamers.
The different frontends for each of the protocols receive the Media Object
requests from the user; for each request, they build a lookup message and
send it to the streaming group, which follows-up the request to the streaming
scheduler. The streaming scheduler defines the logic for the whole component:
it knows how to contact the next level (another high level component normally
acting as an intermediate cache) and sends the request, waiting for a lookup
answer message. On the way back, the streaming scheduler could decide to
choose among some of the obtained options or forward all of them to the user.
Once the source is chosen, the play request message is sent following the same
way through the system, as it was already explained in the previous section.
Internally, all the process cooperating in the component are implemented
using the design patterns explained: they are traders based on reflective

70 CHAPTER 5. VODKA ARCHITECTURE

generic servers, and the internal structure of the component is a supervision
tree. Monitors are used in order to extract information from the system, and
resource constraint behaviours are introduced when the software needs to be
aware of the underlying hardware limits. The scheduler process implements
the design pattern with the same name.

• Cache component: The reason for configuring the server deployment using
this component between two other components is to reduce the overall system
requirements, by placing closer to the user the Media Objects used more often.
The cache layer in the hierarchical architecture needs to have a reasonable
speed, although the needs are relaxed by the streaming component, and it
needs to have a larger capacity, for example, but still not as large as the
next levels of the hierarchy. Internally, the cache component contains three
main types of processes: the cache scheduler, the cache group, and the cache
drivers. The cache scheduler receives the lookup and play messages from
another component and implements the following protocol: it asks to the
cache group about the availability of the Media Object inside the local cache
of the component; if the Media Object is there, answers with a lookup answer
message to the requesting component; and second in case the Media Object
cannot be found locally, the request is forwarded to the next component.
The cache group acts as a common facade for all the drivers. The cache
drivers have all the implementation of the typical cache algorithms, and all
the information about how (quality), where and which Media Objects are
available. Again, all the process cooperating in the cache component follow
the described design patterns: they are also traders based on reflective generic
servers, and the internal structure of the component is a supervision tree
which provides fault tolerance. Monitors and resource constraints are also
used when needed inside the component. The scheduler process implements
again the design pattern of the same name, being in charge of filtering the
options if needed, taking into account the cost information as it was already
explained in the message API section.

• Storage component: It is quite similar to the cache component in its internal
structure, but its main goal is to be able to store a huge amount of informa-
tion. As it is very difficult to conciliate the low cost requirement with the
performance and high storage capacity, for this component the performance
requirements are relaxed. Normally, this component is used in combination
with the cache component, giving to specialized levels in the architecture:
the cache component needs to have a smaller latency time, reducing that
kind of requirements for the components connected to it (which is normally
the case of the storage component). Therefore, the server global performance
does not depend directly on this level in terms of load time, latency, through-
put, etc. Internally, the component consists also of the same three types of
processes: storage scheduler, storage group, and the storage drivers. As an
example about how flexible the system configurations can be: one storage
driver could be, in a complex scenario, a connection to another VoD server
running in a different location, i.e. one server can act transparently as stor-
age device for the other (another advantage of having a uniform message

5.3. LOGICAL VIEW 71

API). Again, design patterns like traders, schedulers, monitors or resource
constraints are used inside the component in order to reuse source code and
simplify the internal architecture.

• Monitoring: apart from the internal monitoring that can be done inside each
of the previously explained components, an specialized one in charge of re-
ceiving information from all the processes in the system is available in the
VoDKA component library. The fact of having reflectiveness inside most of
the low level processes, together with the frequent usage of the monitor and
the event handler patterns, makes the information that can be extracted from
the system very rich. On top of that facilities, high level interfaces, allow-
ing the user to learn more about the system internals and giving real-time
feedback, can be developed. This component is created using the monitoring
pattern that has been already explained before.

Although we have included the resource constraint pattern as part of the high
level components, used internally for modelling the underlying hardware limits, it
could hypothetically be used between two of them. For example, if the cache and
the storage are in different LANs and they are separated by a network link with a
maximum bandwidth, the standard configuration design choice would be to place
a process in the middle following the constraint pattern. However, an interesting
idea is to standardize where those restrictions are placed, and a good option is to
situate them always in the caller component, as the last process before the message
is forwarded through the network. That way the architecture is homogenized and
the message latency is reduced because the messages are only cross the network
when needed.

Transfers are also a special kind of low level component (processes implementing
patterns) that is not always inside the high level ones. Sometimes they can be
created in order to transmit information inside one of the components (for example
in a cache level for moving a Media Object between two devices), but in general they
are used for data transmission between components all over the system. The usage
of the transfer and their internal pair of pipes is, therefore, something transversal
to the division of the software architecture in specialized components.

Sometimes a group of components work together implementing a concrete func-
tionality. When deploying them, they are frequently started, stopped and config-
ured as a whole subsystem, using some set of predefined interfaces. The generic
behaviour can be abstracted, creating a design pattern for this kind of systems of
subsystems, which would be parameterized by the concrete set of functions pro-
vided each time the pattern is used. The component would be called Application.
In the case of VoDKA, depending on the concrete deployment, the whole system
can be composed by one or several applications.

The components we have described and the different ways they can be com-
bined, together with the selection of the right hardware, show already the solution
the VoDKA development team came up with. In the next sections, more detailed
information on how the components were actually implemented and how they are
deployed will be shown.

72 CHAPTER 5. VODKA ARCHITECTURE

Component

Storage

Component

Streaming

Component

Cache

Transfers for sending media Transfers for sending media

message APImessage API

VoDKA application

Users

Figure 5.9: Simple configuration of the high-level VoDKA components

5.4 Process View

Everything in the message passing, process oriented, distributed philosophy fol-
lowed in the VoDKA design is closely related to what in the object oriented world
is called the Process view. Thus, it was not straightforward to determine what
should be specified in this section. In the classical interpretation of the 4+1 Model,
the logical view includes the information about the classes participating in the sys-
tem, and how they logically react with each other, while the process view talks
about how concurrency, if existent, is included into the system, how many threads
are executed at the same time, and which parts of the logical view participate
in each of the threads. That distinction fits very well in data oriented software,
where the logical view is conceptually very far away from the concrete number of
threads that are used. On the other hand, in our case, the logical view already
talked about process-oriented design patterns, low-level process components, and
processes collaborating inside high level components. We have even described the
message API as part of the main entities involved in VoDKA, therefore also part
of the logical view.

Due to all this, we kept the process view simple and we concentrated in giving
here some extra examples about how the system components cooperate.

The different components can be combined in several ways depending on the
needs for each of the deployments. Each of these combinations are called software
architecture configurations (or simply configurations) of the system. This feature
of VoDKA closely relates to the adaptability requirement explained in the previous
chapter.

A frequently used and quite simple configuration would be the one composed
by one storage component, one or more cache components, and one streaming level,
internally using different resource constraint subcomponents that would model the
underlying hardware limitations. This basic software configuration can be seen in
Fig. 5.9.

Depending on the concrete requirements (for example, the performance that
is demanded for a giving configuration), one cache level could not be enough. In
that case, an alternative solution is, instead of increasing the size or resources
of the existent cache, or putting a new cache besides the other one, to create a
hierarchy of cache components, that would also follow the delegation model. In
that configuration, the first cache component would need to have more speed but
less capacity and the last one would have requirements more closer to the ones in

5.4. PROCESS VIEW 73

Media Stream

DD1

TCP

DS1

PIPERTP TCP

DD2

PIPE

DS2

FILE

levels

n cache

creates

creates

Storage

(TAPE)

Driver

Storage

Driver

(File)

Storage

Group

(HTTP)

Driver

Storage
Driver

(File)

Cache Cache

Driver

(File)

Frontend

HTTP

Frontend

HTTP
Streamer

HTTP

H.263

RTP

Group

Stream Streaming

Sched

Storage

Group

Storage

SchedSched

Cache

Group

Cache

Monitor Monitor

Monitor

VODKA_slave VODKA_slaveVODKA_slave

VODKA

Figure 5.10: Processes in a linear configuration of VoDKA

the storage component.
This figure with the linear configuration can be extended so that these multi-

level caches are introduced and, what is more interesting, the internal processes of
each of the high-level components are detailed. The result can be seen in Fig. 5.10.

The upper part of the figure represents the supervision tree of the processes
in charge of starting the system and providing fault tolerance. They start all the
components and supervise them so that if any of the subsystems crashes, they
can be restarted. Also, some monitors have been added, each of them receiving
notifications with all the interesting information produced in each of the system
components; monitors are also connected to the supervision tree so that fault tol-
erance is provided for the monitoring subsystem.

In the middle part of the figure, the internal processes of each of the three
main kinds of components are shown. The streaming component offers to the user
applications different kinds of front-ends (depending on the complexity, some of
them can be composed by several processes). The cache component is in charge of
several devices where the Media Objects are stored temporarily in order to increase
the system performance. The storage component takes care of several devices where
all the Media Objects present in the VoD server are stored permanently. One of this
storage devices is, in fact, a wrapper for another VoDKA system which is accessed
using the HTTP protocol.

Finally, in the bottom part of the figure, an example transfer composed by
two pipes, where different protocols are used for reading, sending and receiving
the media stream, is shown. In this case the pipes of the transfer are created by a
process in the streaming component (the RTP protocol front-end), and a process in
the cache component (the process controlling one of the file devices). In a running
system, a lot of transfers will be transferring information through the server at the
same time. All the processes involved in the transfers are eliminated once they
finish their streaming tasks.

74 CHAPTER 5. VODKA ARCHITECTURE

User

{lookup,MO,Profile}

stream_sched
(Trader)

cache_sched
(Trader)

storage_sched
(Trader)

{lookup,MO,Profile}
{lookup, MO, Profile}

storage_driver storage_driver

{lookupAns, Options}

{lookupAns,Options}

{lookupAns, filter(update_cost(combine(Options1,Options2)))}
{lookupAns,filter(update_cost(CombinedOptions))}

{lookupAns, filter(update_cost(CombinedOptions))}

Figure 5.11: Example of message exchange in a linear configuration

Fig. 5.11 shows a sequence diagram where the messages described in the previ-
ous sections are sent through the VoDKA architecture configuration when the user
requests information about the alternatives for visualizing a given Media Object .

As we will see in the following sections when looking into the different deploy-
ment scenarios, in most of the cases having only one storage component is not
enough. The same happens with the streaming component: normally the system
configuration has several of them connected to one or more high level cache com-
ponents. The scalability of the system, one of the relevant requirements described
in the previous chapter, can be satisfied adding new components to the system,
together with the corresponding underlying hardware resources. But according to
the description we did, the system needs to be also downward scalable, so that for
very simple scenarios the number and complexity of the components can be re-
duced; this is satisfied because VoDKA can even work with a simpler configuration
than the three standard levels: only a streaming component sending directly the
media from the storage component.

5.5 Development View

In this section we explain more about the actual system implementation using
Erlang/OTP , and the development process followed in the project. The goal is to
complement the 4+1 Model with some extra ideas that were not easy to include in
the classical views.

All the system components and processes discussed in this chapter have been
implemented in the VoDKA project using the Erlang/OTP platform, already de-
scribed in Section 3.1.

Obviously, the approach selected for the analysis and design of VoDKA-being
still quite general- fits very well with the philosophy behind a message passing
distributed language like Erlang and its platform. The development team had
Erlang/OTP always in mind as the target platform and therefore all the steps
taken where addressed to that kind of development.

5.6. PHYSICAL VIEW 75

Although the design patterns presented in the previous sections are generic,
they are easily implemented in a language like Erlang . In fact, some of them are
offered by the OTP libraries as basic components that should be used in most of the
systems developed with Erlang (e.g. the FSM pattern or the generic server), but
others have been developed by the VoDKA team as extensions to those patterns,
some of them being applicable outside the VoDKA system (i.e., reflective generic
servers or transfers with pipes).

When the system development started, the idea was to use Erlang for the con-
trol subsystem, that is where the concurrency is handled and where the distributed
high-level technology seems to fit better. A lower level language like C would be
used for the critical parts, where performance is relevant. After the development
of the first prototypes, Erlang resulted to be fast enough for satisfying the perfor-
mance needs, avoiding the bottlenecks of the system to be in the software, without
the need to do any special parts in lower level languages (still, some specialized
modules, for example those related to embedded systems, are developed using low
level languages, but they are not relevant for the overall reasoning about Erlang
and its performance).

The system was developed as a group of Erlang components, each of them
defined as a set of Erlang modules that implement different behaviours (predefined
or VoDKA specific). In the code, the developers tried to take advantage of all the
high level features of the declarative languages. The resulting software is quite
easier to maintain compared to a similar application written in any lower level
language.

Another interesting aspect is the use of GNU/Linux as the operating system
for giving support to all the complex software architecture that we explain in this
chapter. The fact of using free software allows the development team to fine tune
the system up to the point of modifying or adapting the kernel to the performance
needs of VoDKA, when needed.

VoDKA has been developed by a reduced team of developers following a eX-
treme Programming approach, doing rapid prototyping and adding progressive new
features doing fast development against a unique repository. One of the main fea-
tures of Erlang is in fact the very fast prototyping, which is very adequate for this
kind of projects where the system design is not completely clear from the begin-
ning. In the case of VoDKA, all kind of redesigns were carried out in successive
versions of the system.

5.6 Physical View

The VoDKA deployments -also called system configurations- map the software ar-
chitecture configurations into different hardware architectures.

In the following chapters of the thesis, when using formal methods for extracting
information about the system, we will take as input the software architecture. This
can seem to be contradictory with what we explain here about the importance of the
underlying hardware, but it is not. The VoDKA software is aware of the hardware
limitations, that are included in the control system as internal constraints, as we
have explained, so we will be able to extract interesting information only looking
into the software side.

76 CHAPTER 5. VODKA ARCHITECTURE

But we leave the system analysis for later. VoDKA has been deployed in dif-
ferent scenarios with heterogeneous networks and requirements, and here we just
to give some representative examples.

5.6.1 VoDKA very simple deployment

This first deployment example is a direct mapping of a very simple software archi-
tecture with a streaming component, a storage component and without cache, into
only one machine that acts as a server. Therefore in this example VoDKA is not
distributed, although of course the software architecture is still very concurrent.

Fig. 5.12 shows an example about how the information transference from stor-
age levels works until the actual streaming of the object in a simplified system
configuration where the cache has been removed. In this case, the client request
is received by an HTTP front-end, which defines the adaptation protocol required
for a distribution of type progressive download over HTTP of a Media Object .
The front-end interacts with its scheduler (Streaming Sched) through the group
in which is integrated (Sched Group), and decides the way in which the video
stream is actually going to be distributed (DD1, in this example, instantiated to
an HTTP adaptation in a port negotiated with the client). The streaming level
scheduler propagates the Media Object request to its successor in the responsibility
chain [GHJV94], incorporating the protocol that the storage should use for the
transference (DD2, in this example a TCP/IP communication). The successor, the
storage level scheduler (Storage Sched), propagates the request towards an storage
multiplexor (Storage Group), connected to different storage systems: a mounted
file system (File Storage Driver), a tape robot (Tape Storage Driver). The sched-
uler mission is to decide which source is going to be used for obtaining the Media
Object (in the example the File Storage Driver), building a pipe that connects that
data source with the transference protocol suggested by the streaming scheduler,
that creates a new pipe for taking the storage transference and sending it using the
destination suggested by the HTTP adapter.

This very simple deployment shows that VoDKA can also be used in contexts
where the system requirements are not very high, being therefore downward scal-
able. It is not difficult to see that if the requirements grow, a trivial solution would
be to divide the deployment into two different machines placed in the same local
network, one doing the streaming, with a faster CPU for the protocol adaptation
and less storage capacity, and the other with less performance requirements and a
higher number of disks and external storage devices attached.

5.6.2 VoDKA on the Borg cluster

In parallel to the development of the VoDKA system, the LFCIA-MADS group
built a cluster called Borg. Borg is an approximation to the concept of a Beowulf
cluster, a GNU/Linux -based, low cost, distributed system. The usage of Borg as
one of the natural hardware architectures to deploy VoDKA, conditioned positively
the software architecture features of VoDKA, offering advantages when comparing
to the existent VoD commercial solutions. The distributed memory architecture
complements itself perfectly with the message passing philosophy of Erlang . Al-
though the VoD system runs on other architectures as well, a GNU/Linux cluster

5.6. PHYSICAL VIEW 77

f(State,MO)={DS1,DD2}

MO

DD1

MO

DD2

MO

DD2

f(State,MO)=DS2

STORAGE I/OSTREAM I/O

Video Stream
HTTP PIPE TCP

DD1 DS1

TCP PIPE FILE

DD2 DS2

transfer

lookupAns(A)

lookupAns(A) lookupAns(A) lookupAns(A,B,C)

lookupAns(B)

lookupAns(C)

lookupAns(A)

lookup

lookuplookup

lookuplookuplookup

lookup

MO

Storage

(TAPE)

Driver

Storage

Driver

(File)

Storage

Group

(HTTP)

Driver

Storage

Frontend

HTTP

Frontend

HTTP
Streamer

HTTP

H.263

RTP

Group

Stream Streaming Storage Storage

GroupSched Sched

Monitor MonitorVODKA_slaveVODKA_slave

VODKA

Figure 5.12: Simple deployment of VoDKA with only two components

provides an ideal environment.
There are several advantages derived from the utilization of this technology: the

group had previous experience with distributed systems and clustering, that can be
added to the wide experience existent in the Open Source community; the fact of the
source code being available allows the modification of any part of the software for
locating and correcting performance issues; the Open Source homogeneous license
makes easier the legal treatment of the code; code developed for GNU/Linux is
compatible, as it can easily be ported to other UNIX systems due to the respect
of different standards; the performance is good; there are all kind of development
tools available; and several hardware platforms are supported.

The Borg cluster (Fig. 5.13), used for the system deployment, was composed
by 23 nodes plus a special front-end. Each of the nodes was a regular PC with
two network cards (Fast Ethernet). The front-end was a dual Pentium with more
memory and three Fast Ethernet cards, and acted as a gateway with the stations
external to the cluster. Additionally, the front-end also worked as NFS server for
the nodes.

The communication between the processors in the Beowulf cluster is carried
by using standard UNIX network protocols. The Beowulf system was able to im-
prove the communication bandwidth by routing packets through different Ethernet
networks (using a well-known technique called channel bonding).

The cluster nodes are interconnected with 4 100Base-T switches, each of them
with 24 ports, joined in groups of two by a 1 Gbit/s, defining in this way two dif-
ferent networks. This way, channel bonding can be used for increasing the network
bandwidth, or one of the networks can be dedicated for administrative purposes,
like NFS, using TCP/IP, meanwhile in the other network a lighter protocol is used
for processes intercommunication.

The Borg generic architecture must be reconfigured in order to adapt it to
the hierarchical three level structure (Fig. 5.14). As the massive storage level, a

78 CHAPTER 5. VODKA ARCHITECTURE

6 7

CPUCPU CPU ...CPUCPUCPU
4

5

...

3

frontend
1

2

1

2

3

4

5

6

7

6

5

4

1 Gb link (2 independent networks)

FORERUNNER 3810 (External world)

Dual Pentium II 350Mhz 384MB RAM 8GB HD SCSI
10 Mb Ethernet link

3COM SuperStack II Switch 3300 (4, 24 ports per switch)
100 Mb Fast Ethernet link (2 per node)
AMD K6 300Mhz 96MB RAM 4GB HD IDE (23, up to 47)

Figure 5.13: Borg, the LFCIA-MADS ’s Beowulf cluster

specialized node with access to a tape robot can be used; the robot has access
to potentially thousands of Media Objects but the latency of course is too big and
needs to be reduced by an intermediate cache component. In this node, the storage
software component controlling the tape device is deployed.

Working as a distributed Media Object cache, 23 nodes of the cluster are used;
the Media Object is loaded into the cache from the tape robot on demand, and is
resent to the streaming level from there; according to the cache policy algorithms,
the Media Objects need to be replaced when there is no room for new ones. In
each of the nodes, a cache software component taking care of the disk devices is
deployed.

Finally, as streaming level, another specialized node is used, with higher mem-
ory requirements and gigabit Ethernet connection to the external world (the link
of the VoDKA server with the users), as can be seen at the figure. The connections
between the levels are done through the switches, and the front-end acts as the
administration node. In this node, a streaming software component offering RTP
protocol adaptation to the users of the server is deployed.

With this deployment, interesting results can be obtained when the network
topology is not very complex and the goal is to be able to serve a big amount of
concurrent users that are close to the whole VoD server configuration. In other
cases, where the network topology is more complex, the deployment needs to be
varied to fit into that topology; we will see an example of this in the next sections.

5.6.3 VoDKA on a faculty network

As an example of the VoDKA server configuration flexibility, Fig. 5.15 shows how
responsibilities are distributed among the different nodes of the Borg cluster to
give media services to the LFCIA-MADS laboratory.

• The massive storage is deployed in the node borg25, that also has an asso-
ciated scheduler with two storage controllers (CD unit and tape robot with
huge storage capacity).

5.6. PHYSICAL VIEW 79

Borg0

borg1−1 ... borg23−1 (192.168.155.1...23)

borg1−0 ... borg23−0 (192.168.154.1...23)

borg24 (192.168.155.24)

borg0−1 (192.168.155.254)

borg0−0 (192.168.154.254)

Figure 5.14: The Borg adapted to the hierarchical server architecture

• The storage scheduler is the successor of the cache scheduler, that is running
in the node borg24 in the responsibility chain. The cache scheduler uses as
cache the aggregated bandwidth of the local cache controllers of the nodes
borg1...borg23.

• The node borg24 itself hosts an streaming scheduler whose successor is the
cache scheduler, supporting a progressive download HTTP adapter, that
gives video service to the LFCIA-MADS lab using the department switched
10Mbps network.

• The server, called covas, hosts a cache scheduler, whose successor is the
borg24 cache scheduler (two levels of cache), and a local cache controller.
Besides, the server contains an streaming scheduler fed by the cache sched-
uler, and supporting an progressive download HTTP adapter, using the ATM
adapter that is directly connected to the university backbone.

• borg0, the Borg cluster front-end, is used for the system monitorization.

• One of the nodes is a SPARCstation, while the rest of the nodes are x86
machines all of them running GNU/Linux . covas is a Sun UltraEnterprise

80 CHAPTER 5. VODKA ARCHITECTURE

3000 running Solaris, an example of the portability of the server.

covas

borg24 borg25

borg1 borg22 borg23

100Mb/s

100Mb/s

100Mb/s

10Mb/s

100Mb/s

10Mb/s

ATM

Driver

(File)

Cache

Driver

(File)

Cache

Driver

(File)

Cache

Storage

Driver

(File)

Storage

(TAPE)

Driver

Frontend

HTTP

Streamer

HTTP

Streamer

HTTP

Frontend

HTTP

Streaming

Sched

Cache

Cache

Sched

Group

Streaming

Sched

Cache

Sched

Cache

Driver

Storage

Group

Storage

Sched

VODKA_slave

VODKA_slave

VODKA_slave VODKA_slave VODKA_slave

VODKA_slave

Figure 5.15: Deployment of VoDKA in a faculty network

This example shows already the flexibility of VoDKA and how it can be adapted
to a faculty network with different subnetworks. Two streaming schedulers are used
in order to improve the overall system performance and reduce the latency when
the users request Media Objects.

5.6.4 VoDKA on a city cable network

The forth example shows a deployment in a typical cable network. The cable
operator has a fiber optic network deployed over the main cities of the region. Each
of the city networks has the following internal architecture: in order to reduce the
cost and optimize the installation, a hierarchical network topology is used, where
the bandwidth is smaller in the part of the network that is closer to the end user,
and bigger closer to the central servers. The network is formed by three levels
of rings: the primary network ring, connecting the primary network nodes in the
topology, that are only a few, spread over the city network; the secondary rings,
connecting each of the primary network nodes with their corresponding secondary
network nodes, that are installed in each of the neighborhoods of the city; and the
ring that connects those nodes with the tertiary level nodes, which are already in
each of the buildings or small group of buildings.

The VoDKA software architecture can be adapted to obtain the maximum
from that topology, as it is shown in Fig. 5.16. A massive storage component is
placed in the central servers of the network, and it is replicated for fault tolerance
reasons. In the primary nodes that connect with the next levels, a first level of

5.7. EVOLUTIONS OF THE VODKA ARCHITECTURE 81

cache components is deployed. Each of those cache levels is a cluster of computers
running distributed Erlang nodes controlling the different storage devices. In the
tertiary level nodes, a second cache level is placed. Again, clusters of computers
running the VoDKA cache component, dimensioned according to the number of
users that are going to request Media Objects through that part of the network,
are used. Finally, very close to the users, streaming components deployed in those
nodes are in charge of doing the protocol adaptation for sending the actual stream
to the end user applications.

Streamer at

final node

Streamer at

final node

Streamer at

final node

Cache cluster at

secondary

network node

Cache cluster at

secondary

network node

Cache cluster at

primary

network node

Cache cluster at

primary

network node End users

L2 Cache subsystem

Storage
End users

Storage subsystem L1 Cache sub. Streaming sub.

Storage

SECONDARY RING

PRIMARY RING

SECONDARY RING

Figure 5.16: Deployment of VoDKA in a regional cable network

These configuration is a very good example of the flexibility of VoDKA, and
how it can be adapted to a complex architecture where several storage, streaming
and cache components are used.

5.7 Evolutions of the VoDKA architecture

We have shown the 4+1 views of the VoDKA system. In this section, we discuss
how these views have been evolved through the time, trying to show that the
VoDKA architecture is constantly evolving, something that will influence the rest
of this thesis.

The use of an architecture based on specialized levels was an initial design deci-
sion. After analyzing the requirements and reading the relevant research material,
the only possibility to fulfill the goals of the system was to have three levels, one
very fast for the protocol adaptation, one intermediate cache level, and the massive
storage. In the first publications talking about the design of VoDKA, the architec-
ture proposed in Fig. 5.17 was described. The configuration was fixed to this three
software levels and to a given hardware deployment, and we were not talking still
about specialized components, standard message API, or any kind of adaptability.

Soon it was clear that the flexibility was not enough. The solution was accept-
able for simple deployments, where the network topology and the requirements
where not complex. But, as we have shown when talking about the deployment
of VoDKA in the metropolitan cable network, the number of software levels and

82 CHAPTER 5. VODKA ARCHITECTURE

Tertiary level
(massive storage)

Secondary level
(large scale cache)

Primary level
(buffering and
protocol adaptation)

Output streams

Tape loaders, jukeboxes...

Cluster nodes with
local storage

Cluster heads

Figure 5.17: Original VoDKA design with a fixed 3-levels architecture

how they are mapped to a concrete hardware need to be adapted to the concrete
needs of each scenario. As a consequence of this, the flexible component-based
architecture was designed.

But the architecture flexibility is not the only thing evolving, there were also
changes inside each of the components. The decorator based approach for modelling
the underlying hardware resources has also been revised, and alternatives have been
proposed in [PR03].

Given that restrictions in the proposal we have presented are simply decorators
included in the responsibility chain, a problem can appear when a resource needs
to be shared between two different chains of processes that are disjunct. There
can also be problems when one resource needs to be used in two different points
of a chain. Some workarounds can be used to try to solve this, but not for all the
possible system configurations.

The alternative intra-component architecture, shown in Fig. 5.18 is based on a
component oriented constraint management. Each of the system components (nor-
mally associated with a physical computer in the deployment) is going to have a
constraint manager process that handles all the restrictions for that component.
The constraint manager stores a resource table with the following information:
{resourceId, ResourceState, cost function, check avail, free resources,
alloc resources}. The tuple includes functions for updating the cost, for check-
ing if a resource is free, allocating resources to a process and freeing, and a complex
structure with the state of the resource usage in that node. This information (data
and functions) can be stored in a distributed database, helping this way to obtain
the fault tolerance for the server.

Each of the processes inside the component (storage scheduler and device drivers)

5.7. EVOLUTIONS OF THE VODKA ARCHITECTURE 83

Cache Component Storage Component

lookup message

list of options

{resourceId, cost, check_avail, free_resources, alloc_resources}

Resources table Resources table

resource_manager

cache_driver cache_driver

cache_driver

uses uses

uses

cache_group storage_group

file_driver

file_driver

uses

uses

resource_manager

Figure 5.18: VoDKA components with the resource modelling process

is associated with a list of resources that are used by that process. For any check-
ing or resource booking, the devices or intermediate traders/schedulers have to
communicate with the constraint manager of their component. As the data is
centralized, the restriction composition is easy to implement, and more complex
restriction configurations are possible.

In order to implement this new architecture, a modification of the trader was
proposed, where the state is extended to handle the resource manager and the list
of used resources. A new message needs to be managed by the handle call in
order to be able to free the resources used when a transmission actually ends.

Summarizing, as shown by these examples, the architecture of the VoDKA
project is very dynamic and evolves constantly at different levels.

84 CHAPTER 5. VODKA ARCHITECTURE

Chapter 6

Lessons learned from VoDKA

Contents

6.1 Evaluation against requirements 85
6.2 Relation with other solutions 88
6.3 Erlang/OTP and VoDKA 89
6.4 Conclusions and future research 90

In this chapter, we talk about the lessons learned during the development of the
project. We will see how the proposed architecture meets the system requirements,
how the VoDKA system compares with other solutions both in the academic and
industrial world, the advantages of using Erlang technologies, and other ideas re-
lated to the future work. The goal is to explain which aspects of the system are
more difficult to analyze, understand and improve.

6.1 VoDKA architecture evaluation against requirements

In this section, we discuss how the proposed system addresses the requirements
described in Section 4.2. Most of these ideas have already been mentioned through
the previous sections of this chapter, but we include them here organized per re-
quirement:

• Huge storage capacity. The fact of using a hierarchical component-based ar-
chitecture where the components are specialized introduced the possibility of
using massive storage components without penalizing too much the overall
system performance. In the previous chapter we have seen deployment exam-
ples where even a tape robot, with a very big latency, was used. Therefore,
using several distributed storage components that are normally connected to
the user using at least an intermediate cache level, the total storage of the
system can satisfy the needs of, for example, a metropolitan cable network
with several thousands of users.

• Large amount of concurrent users. The solution proposed is able to handle a
big amount of users because of the specialization and the concurrency. Again,
the use of cache levels increases the system performance, and the streaming
levels, in charge of the protocol adaptation, are deployed using very fast

85

86 CHAPTER 6. LESSONS LEARNED FROM VODKA

machines that are able to handle several streams at the same time. The
architecture can be scaled up so that the number of streaming components
is adapted to the requirements of each deployment.

• High bandwidth. This requirement is very related to the previous one and
it is satisfied in the same way. Initially, the VoDKA development team ex-
pected the software to be the bottleneck, at least in some of the levels. Some
of the low level parts were planned to be rewritten after implementing the
first prototypes, using languages like C, but the conclusions of the first tests
answered the opposite. Erlang was fast enough for this system and the lim-
its of the architecture where more in the hardware side. Anyway, as for the
previous requirement, scaling up the system, VoDKA is able to handle the
required high bandwidth.

• Low response time. The main feature of VoDKA introduced for reducing
the response time is the use of hierarchical cache levels, when needed. The
fact of having the Media Object closer to the user makes possible to start
the streaming earlier. Also, techniques for starting the streaming to the
user before the whole Media Object has been received from other levels of the
system architecture are used, in order to reduce more the time passed from the
user request to the moment where the first part of the Media Object is received
from the server. Optimization techniques for having better performance for
the most popular content or even management decisions for increasing the
popularity of the content with better performance are very useful when trying
to reduce the average response time.

• Availability and reliability. We have explained that the supervision tree pat-
tern is used in order to provide fault tolerance to the system architecture.
If one of the processes inside one of the components crashes, its supervisor
tries to restart it; if it is too critical, it could be that a big part or even
the whole component needs to be restarted, but, in any case, after doing
that, the system can continue working. The feature of continuing working
when a hardware or software failure happens is deeply supported by using
Erlang/OTP . The language and the platform are oriented to the development
of distributed fault-tolerant systems, and VoDKA takes advantage the useful
constructs, design patterns and libraries that are part of Erlang .

• Upgradability and maintainability. Erlang has built-in mechanisms for up-
dating the system without needing to stop it; therefore, the VoDKA system
is very easy to upgrade, just putting the right versions of the call-back mod-
ules in the right places modifies the system behaviour immediately. Several
versions of the same code can be used at the same time, distinguishing which
one is used by the way it is invoked. Maintainability is increased by the fact
of using a high level declarative language, where the number of lines of code
is reduced considerably compared to languages like C. The proposed archi-
tecture, where design patterns are used constantly, code is reused whenever
it is possible, the message API is simple and homogeneous, and each compo-
nent kind encapsulates its internal implementation, was designed to be easy
to maintain.

6.1. EVALUATION AGAINST REQUIREMENTS 87

• Experience-based automatic optimization. The capacity to learn from the
past activity in order to improve the performance of the system is a quite
general goal that can be partially satisfied with just small optimizations, but
potentially is itself a whole research problem. Inside VoDKA, the system
statistics, together with the values of the internal costs, and the different
schedule processes, can be combined to do simple optimizations, like moving
the recently most popular content to the upper levels of the caches, or pre-
loading content that is known for being popular at given timetables. In any
case, this concrete requirement can be still described as being work in progress
and future work in the context of the VoDKA project.

• Scalability. The VoDKA system is very scalable. Erlang itself is a technology
where distributing a system that is designed for one machine is almost a
trivial task. With VoDKA, we take advantage of this, both at the process
and at the component level. Inside a given component, more hardware and
software resources can easily be added in order to improve the component
performance. At component level, we have seen in the previous chapter, with
the example deployments, that extra requirements can be satisfied adding
to the architecture new components, running on top of GNU/Linux clusters.
Besides, as seen in the simplest configuration we have shown, running just the
two basic components in only one machine, the architecture is also downward
scalable.

• Variability. Is the VoDKA system adaptable to the underlying network topol-
ogy? Again, some of the deployments we have described show that the answer
is positive. In the case of a metropolitan network with heterogeneous parts
where bandwidth and maximum number of connections are different, the
components can be dimensioned and spread all over the network topology
so that the maximum performance is obtained. Streaming components can
be moved to positions that are very close to the end-user, different levels of
cache components can be used in the intermediate nodes, and massive stor-
ages can be placed in the central services of the network. Besides, the system
can serve contents to applications demanding all kind of end-user protocols
(some front-ends are implemented already, and more could be added easily
due to the clean architecture), being also variable in that sense.

• Low (affordable) cost. Due to the use of Open Source technologies in all
the levels of the software architecture, the cost of the system is reduced (no
expensive licenses needed to be acquired for the development). The fact
of using commodity computers for running the components, as seen in the
Beowulf GNU/Linux cluster we presented in the previous chapter, and some
variations of it that were used for different system configurations, is also
an advantage when comparing the cost with those of the video servers that
utilize specialized very powerful hardware to satisfy the rest of the VoD server
requirements. Other features like maintainability or variability also reduce
the overall cost of the system.

As seen above, most of the initial requirements were addressed by the VoDKA
analysis, design and implementation.

88 CHAPTER 6. LESSONS LEARNED FROM VODKA

6.2 Relation with other solutions

Although VoDKA architecture is quite innovative, it combines several ideas taken
from previous research articles and from some industrial products. It is interesting
to know how the server compares to those available products. In this section, a
comparison with other options is discussed, pointing out both the ideas in common
with VoDKA and the main differences.

If we look into the classification we did in Sect. 4.3, VoDKA should be included
nowadays together with the enterprise solutions that are focused in LAN or WAN.
Although it started as a research project, the implementation of the system has
matured through the years and it is currently offered as a professional solution.
The design of the architecture is focused in fast networks with each of the pieces of
content have high quality, so its goals and therefor its architecture is very different
to those.

On the other hand, there are some solutions that have inspired VoDKA.
The Apple Darwin Straming Server is also an efficient RTP streaming server,

however, it does not include distribution facilities and it is not clusterable. There-
fore, distributed massive storages, for example, are not supported.

Kasenna MediaBase, an evolution of the SGI’s WebForce MediaBase, shares
common features with the presented VoDKA design (it is modular, separates ac-
quisition, distribution and streaming functions, and it is based on UNIX concepts),
but has a lesser flexibility and adaptation capacity than VoDKA: its architecture
is more fixed.

Probably the bigger inspiration of VoDKA is described in [CT97a], where a
hierarchical solution for building multimedia servers is analyzed. This solution
was based on specialized levels for streaming, caching content, and storing a big
amount of Media Objects. However, although the ideas of the architecture where
very interesting, and were adopted by VoDKA, the solution was less flexible and
component based, and therefore less variable and adaptable to the needs of each
concrete deployments. The VoDKA architecture can be seen as an evolution of
what was presented in that article.

In general, there are some features of VoDKA that make it very different from
the rest of the solutions. One of them is the use of Erlang and its related philos-
ophy for creating fault-tolerant massive concurrent systems. Another important
one is that instead of proposing a fixed optimal architecture, VoDKA provides
components and leaves for each of the deployments the decision of which concrete
architecture to use. The use of Open Source technologies and commodity hardware
is also a very innovative feature.

Comparing performances is very hard to do. The access to results about the rest
of the existent proprietary solutions is very difficult, and obtaining them by carrying
out experiments requires a huge investment. Also, as VoDKA has very different
possible configurations, and it is a very scalable system, the comparisons should be
done between each of the systems and one of the possible VoDKA configurations.
Selecting the right configuration to compare with is not trivial, and could have a lot
of influence in the results obtained. Some performance results of selected VoDKA
configurations are shown in [GBF05]. Also, a performance evaluation of VoDKA
using queue theory for simulation is described in [VGM+00].

6.3. ERLANG/OTP AND VODKA 89

6.3 Erlang/OTP and VoDKA

In this section, we will try to analyze the advantages and disadvantages of using
Open Source Erlang/OTP as the technology selected for developing VoDKA.

The used language, Erlang , has been designed and used in Ericsson for pro-
gramming distributed control systems. The combination of the functional paradigm
and parallel computing gives a declarative language, without side effects (excluding
those that are needed for interacting with the low-level modules and the hardware),
and with a high level of expressiveness, abstraction and ease of prototyping.

Erlang is specially suitable for distributed, fault tolerant, soft real-time systems
like VoDKA. It is a language based on asynchronous message passing, transparent
transference of values, and higher order communications, that has the capacity of
supporting a high number of concurrent processes.

The language is suited for the development of distributed systems, permits the
transparent location of processes in different nodes. It also includes primitives for
the support of fault tolerance and provides facilities for the replacement of code
without having to stop the system. All these features have been used in all the
Erlang modules included in the VoDKA implementation.

The VoDKA implementation also uses extensively the libraries and distributed
design patterns of the Open Telecom Platform (OTP), including generic servers,
supervision mechanisms. This is probably one of the key features in the success of
the project, and it will be shown as one of the more helpful ones in the next part
of the thesis when trying to analyze or transform Erlang source code with different
kinds of tools.

VoDKA uses also the Erlang/OTP distributed database (Mnesia) with location
transparency, fragmentation, replication, and integration with the language, and a
lot of useful integration libraries. SNMP, the Inets HTTP server, the SASL support
libraries, the EVA and MESH alarm and measurement handling applications, and
Mnesia are used by the monitoring subsystem. The C interface, the TCP and UDP
libraries and others are extensively used in the I/O and streaming layer.

There are also additional modules in development (LDAP administrative inter-
face, user application gateway) that make extensive use of ASN.1, and the Java
interface, among others.

Erlang/OTP not only provides many useful libraries and applications; there is
also a rather homogeneous philosophy underlying the platform,. A high degree of
reusability and high programmer efficiency are also encouraged and made possible.

The fast prototyping that Erlang provided was also very useful and allowed
to combine the research in the first stages with the implementation of the first
prototypes, learning from them and doing changes in the system architecture.

Summarizing, all the features of the selected language fitted perfectly well with
the system requirements and the designed architecture, and played a major role in
the process of creating a successful VoD server fulfilling the expectations existent
at the beginning of the project.

Of course, the project team found also some disadvantages in the language; the
most important ones are:

• Lack of type system: a big set of the errors found during the system de-
velopment could be avoid (or its solution could be simplified) with the help

90 CHAPTER 6. LESSONS LEARNED FROM VODKA

of a type system for the language. This has a bigger influence in massively
concurrent systems, where debugging is always by definition very complex.

Trying to give solutions, in the latest years some tools for helping in the
debugging of Erlang systems have appeared. Some of them are based in
code analysis, others more oriented to tracing the execution, and finally more
ambitious ones that make use of formal methods tools and techniques. We will
see much more on this in the second part of this thesis, when talking about
how to analyze the VoDKA system for automatically extracting interesting
performance information.

• Lack of module system: in a real system, with a quite big set of modules, a
good module system makes easier the maintenance of the project evolution.
Some proposals have been made in order to solve this problem in the lan-
guage, and we found that they would be a really good contribution to the
improvement of the Erlang/OTP platform.

• Small coverage: despite of the exponential grow of the Erlang user and devel-
oper community, it seems clear that the language is still not one of the best
known ones, and this makes the task of finding good programmers harder.

• OO-world adaptation to Erlang nature: there is a quite broad work in the
definition of design patterns in the object oriented programming. When
designing the system, several tools (e.g.: UML) and concepts (e.g.: design
patterns, composition, inheritance) from the object oriented world were used.
Although most of the times translating these concepts into a process oriented
approach is possible, this task is not always trivial. An example of a object
oriented concept that is not easy to translate to Erlang is object inheritance.

6.4 Conclusions and future research

We have shown the design and implementation details of VoDKA. VoDKA uses
innovative concepts in several parts of its architecture, and has shown itself to be
a very good solution that beats some of the alternatives in several ways. The sever
mets all the basic VoD requirements and adds three more that are key features of
VoDKA and are not present in most of the alternative solutions: the adaptability to
different protocols and underlying topologies; the downward and upward scalability;
and the affordable cost both from the software and the hardware point of view.

The solution proposed uses Erlang not only as the development platform but
as a technology that supports the philosophical approach, based o concepts like
fast prototyping, massive concurrency and the fault tolerance.

Future implementation work is mainly focused in two aspects:

• Adding supporting for all the recent streaming protocols and media formats.
It is important in order to maintain the system as a competitive alternative
in the industrial world to support all the formats that keep appearing.

• Creating management and user-oriented applications for taking advantage
of the server. In this thesis we focus in the study of the server part, but

6.4. CONCLUSIONS AND FUTURE RESEARCH 91

on top of it, several vertical applications need to be constructed. Manage-
ment applications are used by the companies running the VoDKA server in
order to manage, for example, the financial information. The user-oriented
applications are very heterogeneous and would be adapted to the needs of
each scenario, like hotel VoD applications, museums VoD applications, or
the video services that are starting to be used in the faculties for announcing
news.

On the other hand, future research work is oriented to increase the intelligence
of the system:

• More automatic auto-design. We have already said that among the re-
quirements specified for the server, the one that is still less fulfilled is the
experience-based optimization. Sophisticated algorithms could increase the
performance of the server by doing the right Media Object movements before
the majority of the user requests are received. More research would need to
be done in order to take real advantage of this potential feature.

• Better architecture and new components. As we have seen, the architecture
of the server is constantly adapted in order to satisfy the needs of new de-
ployments being always backwards compatible and keeping all the previous
components. Research should be done in order to learn more about the ar-
chitecture and improve it even more. The next part of the thesis is an effort
in that line of research.

• More code reusability and more sophisticated design patterns. Even thought
the number of design patterns contributed by the VoDKA development team
to the Erlang community is already considerable, in some cases there is still
room for generalizing some other parts of the server and creating new pieces
of generic code that can be used everywhere without the need of duplicating
them. Also, studying how generally applicable are some patterns, like the
trader, the scheduler or the resource restriction, is still subject of further
research.

In this part of the thesis, we have learned the following key things about the
VoDKA system:

• The initial requirements where complex and therefore the solution had to
be very ambitious and flexible in order to fulfill them all. Better tools for
checking how well the requirements are satisfied are required.

• VoDKA is a solution comparable with those found both in the academic
world and the industrial world, which has some key features that make it a
more suitable alternative for some scenarios. Better performance comparisons
would enrich the knowledge about the system.

• Erlang/OTP and the distributed message passing approach where key fea-
tures in making VoDKA a successful project. However, some of the disadvan-
tages of using Erlang have been also described. Those disadvantages suggest
the usage of advanced tools for reducing the amount of errors introduced by
the developers in the programs.

92 CHAPTER 6. LESSONS LEARNED FROM VODKA

• The architecture of the system evolves constantly and is under a continuous
process of adaptation and enrichment. Tools for learning more about the
architecture and for improving it are interesting for the development team.

• VoDKA is a successful project but still needs a lot to be done, especially in
the process of learning about the architecture.

We have seen that debugging is difficult. The architecture is complex and it
constantly evolves. Alternatives like simulation or testing have some problems.
Erlang is a high level declarative language and using formal methods for analyzing
it is a pretty reasonable way of advancing.

Using formal methods for enriching the engineering process in order to increase
the system quality was a very welcome initiative inside the VoDKA project.

We will motivate the usage of formal methods for the VoDKA project and
explain the tools, method and results obtained in the next part of the thesis.

Part III

Using formal methods for
improving VoDKA

93

95

Based on the experience of developing VoDKA, and in parallel with the evolu-
tion of the system, a study has been carried out in order to find out how formal
methods could help in the goal of improving distributed systems design and imple-
mentation. In this part of the thesis, composed by three chapters, we present the
proposals, tools, methods and results of that study.

In the first chapter, the use of formal methods in the context of the VoDKA
project is motivated. The existent alternatives are considered and discussed from
different points of view, and the approach that has been selected is introduced.
Questions that we try to answer here include why, when and how can formal meth-
ods be used for VoDKA, being always clear with the disadvantages and limitations
of the approach.

In the second chapter, the tools that have been selected or developed for apply-
ing formal methods to VoDKA are described. For the tools developed the internal
details are given; for the external ones that have been used, a short description
with references is given, together with an explanation on which parts of this tools
have been useful for the purposes of our research.

Finally, the third chapter shows the details of the method we have followed
in order to analyze VoDKA using tools and techniques from the area of formal
methods. The method is illustrated with several experiments that have been car-
ried out for different configurations of the system. The results are provided and
discussed, and then we conclude and point out the main research paths that have
been opened.

96

Chapter 7

Formal methods for the
VoDKA project

Contents

7.1 Why : advantages versus disadvantages 98
7.2 What : methods and tools 99
7.3 When and how in the dev. process 101
7.4 Who: the actors involved 103
7.5 Our proposed approach 104
7.6 Limits of the approach 104
7.7 Other approaches . 105

The purpose of this chapter is to put our research in context. There are a lot of
different approaches for using formal methods in complex systems. During the last
decades, different tools, technologies and methodologies have been proposed. Some
of them are more theoretical, others have a more practical approach; some of them
are isolated tools and others have been described as part of a complete software
development methodology. In some cases the users of the tool are supposed to be
developers, in other cases they are the designers or system architects. Where in
this complex picture is our proposed approach located?

In the following sections we try to give an answer to that question. We talk
about the advantages and disadvantages of using formal methods; we discuss the
existent alternatives explaining the main differences among them; we describe the
different possibilities in the software development where this kind of tools and
methods can be used; we then elaborate on the skills needed for using the different
formal tools, languages and technologies; and finally we discuss limitations and
things that cannot be done following this path.

In all the cases, inside each of the sections, we go from a more general discussion
on the existent alternatives to present and justify the approach we have selected
for the VoDKA project.

The content of each of the sections refers to the chapter title, trying to give
answer to one question that relates to that title: why do we use formal methods
for VoDKA?, what methods and tools do we propose to use in the context of the
VoDKA project?, and so on.

97

98 CHAPTER 7. FORMAL METHODS FOR VODKA

7.1 Why : advantages versus disadvantages

Although there are a lot of different approaches, tools, methods and goals, the
most common answer to why to use them is that they claim to provide quality. We
needed high quality for the VoDKA project, therefore, it is interesting to see what
formal methods can offer us.

VoDKA is an example of software getting more and more sophisticated as the
project evolves. The development of this kind of sophisticated systems that run on
top of hardware that is each time more complex, requires at the same time more
advanced tools. New languages are developed, new software development processes
and new analysis and design methodologies are proposed, but this has shown not to
be enough: software errors are still present and maintenance costs are claimed to be
the biggest part of the software life cycle costs [Erl00]. In a society where software
is present everywhere, a lot of the cases being responsible for critical services, we
consider that the quality of the systems should be a big issue.

The approaches based on formal methods, that make use of a deep mathemati-
cal background, have been present since the first steps of the computer technology.
However, although for the case of the hardware or the communication protocols
they have been widely used in industry, their use for complex software has al-
ways been considered too costly. Therefore, it has traditionally been relegated to
academia, where all kind of proposals have appeared, most of them without great
practical success.

However, the more complex the systems are, the more difficult it is to obtain the
desired quality level: errors are more easily introduced in complex developments.
In these cases, the relative cost of formal methods can be acceptable in the context
of the project development. This means that we should be able to use formal
methods cost effectively to achieve a certain quality level, when systems get more
complex and this level can no longer be achieved by more traditional methods.

Also, there is always another way of reducing the cost, lowering the level of
use of formal methods, as it was described by Rushby [Rus93] using the concept
levels of rigor, that go from not using formal methods to fully formal specification
languages with comprehensive support environments, including mechanized theorem
proving or proof checking.

But what do we mean by increasing the quality? ISO 8402 (1986) defined qual-
ity as “the totality of features and characteristics of a product or service that bear
on its ability to satisfy stated or implied needs”. Later, in 1994 it was redefined
as “the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs”. Pressman [Pre97] defines quality as the conformance
to explicitly stated functional and performance requirements; the explicitly docu-
mented development standards; and the implicit characteristics that are expected
of all professionally developed software.

Quality can be seen as a complex concept including things like increasing the
confidence on the correctness of the system, revealing ambiguities, detecting design
flaws, finding some kind of incompleteness or inconsistencies, making the system
easier to maintain, reducing the number of errors at different levels, increasing the
knowledge about the system and its performance, and so on. Depending on each
project, one or several of these quality aspects are going to have higher priority.

7.2. WHAT: METHODS AND TOOLS 99

Selecting an approach adapted to the concrete goals is one of the key decisions for
getting something useful from formal methods.

In the case of VoDKA, we are studying a system with a complex and flexible ar-
chitecture. Analyzing the requirements described in Chapter 4, we were interested
in building a system and using formal methods in parallel for increasing its quality.
The architecture of that system was shown in Chapter 5, and the conclusions after
several years of development pointed out in Chapter 6, support that our approach
of using formal methods was indeed interesting. Following Pressman’s definition,
we concentrate specially in the first aspect: the conformance to explicitly stated
functional and performance requirements. As VoDKA is going to be used for offer-
ing services that are similar to TV, users expect the same quality of service which
has traditionally being very high. Examples of information we want to look into
are system capacity, system bottlenecks, more knowledge on the architecture, or
feedback on possible design or configuration changes.

VoDKA is constructed as a set of flexible components that can be plugged to
each other in many different ways, giving place to what we call VoDKA configu-
rations. In the development team, there was a strong focus since the beginning of
the project in increasing the knowledge on the performance of the configurations
of different versions of the VoDKA components. This includes detecting design
problems, and finding errors, but is more focused on the automatic extraction of
software architecture information from each version of the implementation.

Besides, due to the changing nature of VoDKA, there was low priority on up-
dating the documentation of the system. The development team followed always
an agile methodology, with rapid prototyping and adding new features to the sys-
tem in a progressive way. All these circumstances conditioned the kind of approach
selected for using formal methods, that needed be based on the direct analysis of
the source code (the most updated system specification available).

VoDKA is an example of resources-aware software: the components are aware
of the limits the hardware impose to them, in order to work properly. If a Media
Object needs to be streamed, the components check first if the available resources
(disk capacity, network bandwidth, disk to memory bandwidth or whatever other
resource is involved) are enough, and only then an answer is returned. This is not
an exclusive feature of VoDKA: it is present in a family of systems where capacity
is normally an issue and load balancing algorithms are spread all over the system.

For these kind of distributed systems, formal methods was a promising way of
increasing the quality, and they have been using with success in industry [CGR95,
HLS+02, BH06, CGR93]. As we will explain, we detected that it was possible to
come up with a method which cost was acceptable compared to the overall project
effort. It could be applied in the context of the VoDKA project, and the results
of that method would fit perfectly in the need of knowledge about the system
performance and that would pay the effort.

7.2 What : methods and tools

Once we decided that we wanted to use formal methods for extracting information
from resources-aware distributed systems, the next thing was to select the methods
and tools we were going to use.

100 CHAPTER 7. FORMAL METHODS FOR VODKA

The alternative we have selected inside formal methods is model checking: gen-
erating the state space directly from the Erlang source code, and then verifying
interesting properties in order to obtain relevant system information. The goal of
starting directly from the source code is to avoid having to write models by hand.
The approach has some natural limitations because the state space can be infinite,
but we will explain how we take advantage of the VoDKA design patterns in order
make the model smaller. We cannot verify everything using model checking, but
we have come up with a method for doing a kind of stress testing of an abstraction
of the Erlang source code that can obtain interesting and useful results.

Hereafter, we will discuss the differences between model checking and the rest
of the alternatives.

The first alternative to take into account, probably because it has traditionally
been seen as less complex and therefore less costly, is testing. Testing consists
in the definition of a set of test cases that can be used for finding problems in a
running system or in any of its components. Testing itself is not a formal method,
but research is being carried out in combining it with formal approaches for gen-
erating automatically the test cases from logical properties. An example of this
kind of initiatives is QuickCheck [CH00, AH03]. Testing can be used for units and
components. This is basically testing for functionality. However, on the system
level, it gets a bit tricky when it comes to testing. There are many possible config-
urations and when we are interested in functional, but in particular non-functional
requirements of these configurations, we have to actually build them in order to
test properties. In order to get the results one needs to have a system running,
and in the case of VoDKA that means configuring a network, placing the movies,
and simulating the behaviour of many concurrent real users that would request
different Media Objects. In a very changing project, the effort of performing the
testing steps each time a new release is produced, can be too time-consuming.
Testing, however, has other advantages, like working on the real system and not
on an abstraction, which can potentially give more real results.

Another approach for analyzing distributed systems is the use of simulation
tools, frequently based on queue theory and statistic modelling, and normally used
for non-functional requirements. This approach usually consists in creating a model
from scratch during the design of the system, in order to be able to understand
better the architecture and tune the configuration. Once the model is considered
to be correct, some of these tools have facilities for directly generating part of the
source code for a set of target languages. The simulation approach looks into the
performance when the system has average load. However, creating the model is
normally time-consuming and it does not adapt very well to very changing systems
like VoDKA. During the development of VoDKA, some research [VGM+00] using
Esterel/QNAP was carried out as a proof of concept, with the limitations and
advantages commented above.

Theorem proving would be another alternative. It consists on reasoning about
the system step by step in a mathematical way, trying to verify functional properties
or find possible errors. The approach is very powerful, and in theory any kind of
property can be verified for all kind of complex systems. There is even a tool,
EVT [Fre01], developed for doing this kind of reasoning about Erlang systems. In
practice, the effort required is very big, and the process is not automatic, requiring

7.3. WHEN AND HOW IN THE DEV. PROCESS 101

human collaboration. In the context of VoDKA, where we wanted to help the
development team with a very changing project, it seemed not to be the best
option to use theorem proving from the very beginning. It could, however, be
something to consider once the system is stable and mature, in order to certify
some critical part of the components.

Although we have selected model checking, we think that all the alternatives
in fact complement each other, and we could use them in different stages of the
software development process. Some authors, for example, point out that formal
methods like model checking and theorem proving can help in the process of learn-
ing about a system in order to make better test cases for testing.

With the model checking approach we will extract information about the system
performance, which is very related to the quality of service offered by VoDKA.
Therefore, this supports the goal explained in the previous section of why using
formal methods.

7.3 When and how in the software development pro-
cess

We now have decided to use model checking for increasing the knowledge of the sys-
tem extracting performance information. Next question is related to when should
this model checking be carried out inside the development process.

In general, some of the tools and methods from the area of formal methods
are presented as isolated tools, not closely related to the more common software
development processes and their different stages. In other cases it is implicit that
they are used first, in order to learn more about how to solve the problem, before
the development process is actually started.

In some cases, like the Formal Engineering Methods [DSB04], the solution is
the other way around: instead of using the existing ones a new methodology is
proposed for supporting things like model checking in the entire software develop-
ment process. An example of this is SOFL [LAKN98] (Structured Object-oriented
Formal Language), which includes a specification language, Petri Nets, and data
flow diagrams; a complex method combining concepts from formal methods and
object oriented development; and proposes a new software process. Another ex-
ample is MetaFrame [SMC+95], an environment supporting model checking in the
entire software development process.

It is not the goal of this thesis to propose a complete solution to the very com-
plex problem of when in the software development process to use formal methods.
However, for the proposal we have selected, some recommendations about when it
can be used are given below.

VoDKA is developed using an agile software development process. The iterative
process has short design cycles and a small set of new features are added to the
system in each iteration. After each iteration, a new prototype is produced.

As our proposed approach is almost completely automatic, and provides fast
feedback to the users without requiring a lot of effort from them, it can be used
in parallel to the different iterations of the development. Once the development
team has the very first prototype ready, the tools can start being used. This
can continue all the way until the last working version of the system is in place.

102 CHAPTER 7. FORMAL METHODS FOR VODKA

Module test

specification

formal

Unit/func test

System test

Validation

traditional
model checking

Architecture

Design

abstractions

find inconsistencies

design

find design errors
model checking

abstraction

abstraction

the design

abstraction

specification

formal

configuration

abstraction

model checking

capacity

extract info

specification

formal

architecture
formal model of the

formal model of

Requirements

Code

Figure 7.1: Formal methods placed in the V-model schema

For each version, model checking for extracting information of the system can be
carried out following our method. The main effort will be to decide how to abstract
from the real and detailed version of the code to the Erlang model from which we
are going to generate the state space. Another continuous effort is to enrich the
properties we are going to analyze in the system, in order to extract each time
more and better information. It is a natural process to progressively improve the
abstraction and the properties in parallel to the development, because each stage
the development team is going to know more about the system architecture and
what they want to extract from it. It can be seen as an agile formal verification of
the system, whose complexity increases at the same time that the architecture gets
more complex. The results of each application of the model checking do not need
to be ready before the next iteration is started; depending on the tame it takes to
obtain those results, and how easy is to extract conclusions from them, they will be
used in order to improve the design of closer or further away future iterations. The
verification process just gives extra information to the development team helping
them to improve their decisions.

Another point of view is related to which level of the system we are analyz-
ing. Formal methods can be applied to check if system requirements are correct
(sound, coherent, consistent, and so on); they can also be applied to the design
of the system, looking into the components in order to check if they have errors
(liveness properties, bugs in the code, etc.). In our case, we look into something
that is between the design of the components and the requirements: the system
architecture, which describes how the components interact with each other and
how they are configured for each of the deployments.

In Fig. 7.1 we show the different possibilities in the context of the classic V-
model. We have extended the figure in order to introduce also the concept of
software architecture. The equivalent in the testing side would be testing the
software and hardware architecture of the system in different configurations and

7.4. WHO: THE ACTORS INVOLVED 103

deployments.
For using formal methods in different levels of a system, we use several kinds

of abstractions (both for the specification of the properties and for the model).
Normally, abstractions used for checking the requirements are very high level, while
the ones used for finding errors in the components of the system, are more detailed
ones, therefore more closed to the real source code.

In the case of VoDKA, we look into the software architecture. The formal
specifications are logical properties that express something related to the capacity
of that architecture. At the same time, we go from the real source code of the system
to a formal model of the design, and then to the formal model of the architecture.
The formal model for the design is the abstracted Erlang code, hiding the details
that are not relevant for the properties we want to extract. The formal model of the
architecture is a combination of the designs of the components with the concrete
configuration parameters. We work with a formal model of the architecture still
described in Erlang , although, as it will be explained in our method in Chapter
9, we sometimes need to translate it into more formal languages in order to take
some advantages from them an generate better state spaces.

An example of using similar tools than the ones presented in this thesis, but in
a design level and with different goals, is mentioned in Section A.3.

7.4 Who: the actors involved

Another question related to formal methods is who should use them. From the
different roles that take part in the software development, which of them should be
in charge of analyzing the system with model checking? The tester? The designer?
The developer? A new specialized role only in charge of formal methods? In some
teams strict role descriptions are defined, and in other cases roles are more open.
Depending on the size of the team, the same person could also play different roles.

An any case, different formal methods techniques and approaches have different
answers to this questions. In some cases regular developers are not familiar with the
mathematical background needed in order to apply simulation or theorem proving
techniques. In those cases, a more automatic approach, as it is our case with the
model checking approach for VoDKA, makes easier to introduce the tool inside the
development team.

Therefore, if we want to make our method not only valid for VoDKA but for
any similar Erlang system, it seems a good idea to try to hide as much as possible
the underlying formal background. Making easy to learn tools, that are effective
in finding errors quickly, would help the approach to be adopted.

With model checking, the knowledge needed in order to perform the steps is
normally related to the tools used for generating and manipulating the state space,
together with the ability for translating requirements into properties in a given
logic. In our proposed approach, we have tried to select always the most automatic
alternative, and we have developed a GUI for hiding as much as possible from the
users.

The goal of this is to get the system architects and the software architects to
work with the tool, obtaining feedback that can help them to understand better
the performance of their system.

104 CHAPTER 7. FORMAL METHODS FOR VODKA

7.5 Our proposed approach

We have tried to propose an approach for using formal methods in an automatic
way, applied to an industrial system, integrated as a parallel tool all over the agile
development method followed by the design team, and we have tried to extract
performance properties.

Our proposal, that will be detailed in the next two chapters, can be summarized
as follows:

• Why? : we use formal methods because they are a promising way of learning
more about the quality of service in a system like VoDKA. We want to analyze
with formal methods the architecture of the system. The goal is to extract
performance information for helping to increase the quality through a better
understanding. We try to follow a pragmatic approach with a reasonable
time-consumption in the context of the development of the VoDKA project.

• What? : inside formal methods, we have selected model checking. Simulation,
testing and theorem proving could be used as complements to our approach.

• When? and how? : we propose to use the method following an agile formal
verification approach in each iteration in order to enrich the design decisions
for the future features that are going to be added to the system. Inside the
V-model figure, we work at the architecture level.We use the source code
and system configuration as inputs for our approach. The model for the
architecture is an abstraction of code and configuration, still done in Erlang
and then possibly translated. We developed some tools and combined them
with others that were already available in order to generate the state space
for a given software architecture. We express information we want to extract
as logical properties to the model of the system and we model check them
against it.

• Who? : we propose a method that hides the low level details and automates
as much as possible, that could be used by system and software architects
without having a very steep learning curve.

In Chapter 8 we describe the tools used and in Chapter 9 we present the method,
the experiments and the concrete results we have obtained with this approach.

7.6 Limits of the approach

Obviously, apart from the limits of the work carried out in the current and future
research, that will be explained in the next part of the thesis, our approach has
some intrinsic limitations.

Due to the fact of using model checking, we cannot look into potentially infinite
models. We need to abstract from details in order to handle them, what works quite
well for the systems we are looking into, because Erlang itself hides very well with
its behaviours. Another limitation of model checking is the size of the state space
graph and the time it takes to generate it. We will talk in detail about this in the

7.7. OTHER APPROACHES 105

next chapters, but for very complex systems, reducing the size of the graph is one
of the challenges.

Also, we cannot look into all kind of systems. The method we have developed
has as natural target a resources-aware system. If the system is not aware of the
underlying hardware limits, we would need to model the hardware and add it as a
context to the real software model.

Another limitation could be that we cannot hide everything related to formal
methods with a GUI. However, this should not be a problem, because simple things
can be quite automatically done, and for the more advanced use of the approach
the users are going to have some knowledge on writing logical formulas and dealing
with model checking.

And finally, the kind of properties we can extract are those for which the infor-
mation is present in the state space graph. This has some limitations, but as we
will see in the next chapters, we have managed to express relevant properties only
using the data present in the graphs generated from the model.

7.7 Other approaches for performance evaluation of
software architectures

Our approach is very innovative in the tools used and the way of using formal
methods for capacity analysis.

In the survey [BMIS04] published by Balsamo et al in 2004, the main ap-
proaches for the model-based performance prediction in software development are
compared. By model based they mean that the approaches based on analyzing
performance by running the system are excluded. The survey is focused in early
software performance predictive analysis and discuss how they all integrate in the
ordinary software development. They define software performance analysis as the
process of first predicting and later evaluating if a system meets its performance
requirements.

In the study, the methods for software performance engineering are divided into
the ones based on queuing networks (QN), the ones based on extensions of process
algebras and Petri-Net-based approaches, the ones oriented more to simulation
techniques, and those based on stochastic processes.

The most common ones are those based on QN. Inside them, the ones based on
SPE [WS98] (Performance Software Engineering) are quite popular. They use two
different models, one for the software execution where the execution behaviour is
modelled (an execution graph), and the other for the system execution (a queuing
model).

A second kind of approaches inside QN make use of Architectural Patterns.
These patterns identify frequently used architectural solutions, and given a way
of analyzing performance for those patterns and a way of composing performance
analysis, they allow the approaches to extract information from the complete sys-
tems. This approach of using components could be seen as similar to our idea
of constructing the behavioural state space from the implementation patterns in
the Erlang source code. But our patterns are directly specified by the developers,
while the architectural ones need to be detected at a different phase of the software
development.

106 CHAPTER 7. FORMAL METHODS FOR VODKA

A third kind of QN-based approaches are based on creating the model from the
information present in traces extracted from the dynamic description of the software
components. Some of them use labelled transition systems as the way of describing
dynamically the system. This could again be seen as similar to the approach we
propose for systems like VoDKA. However, in our case, LTSs are extracted directly
from an abstraction of the source code and are subject of analysis, while in this
approach they are created by the designer and used as a way of generating the QN
model.

Finally, the forth set of QN approaches includes those that take as input the
extensions that had been developed on top of UML for including performance
information. From those UML descriptions and diagrams, the model is generated.

In the survey they also claim that with the increase of software complexity,
it was recognized that software performance could not be faced locally at the code
level by using optimization techniques, since performance problems often result from
early design choices. It is important to state that although we use the code as input,
we do not really evaluate performance at a code level. Instead, we extract the
software architecture from the code and then we analyze performance at a higher
level. Therefore, we confirm their observation and align with their affirmation.

In the final conclusion, the survey claims that the future of the model-based
methodologies for performance analysis and prediction seems to be encompassing
the whole software life cycle starting from the very first artifacts, at the software
architecture level, and that the automation of that kind of approaches is going to be
a key factor. Our approach fits perfectly in this description, and offers a different
way of analyzing distributed systems, still aligned with the main messages they
propose.

The kind of information that all the described models study is similar to the
one used in our approach: platform data, system configuration, capacity of the
underlying resources, and what they call the operational profile which characterizes
the users of the system and therefore the workload information. However, they are
normally designed for helping in the first stages of a cascade-like development, and
are less adapted to an agile method focused in working with directly with the source
code.

Chapter 8

Tools for state space generation
and analysis

Contents

8.1 Introduction . 108
8.2 etomcrl: translating Erlang to µCRL 108

8.2.1 Introduction and motivation of the tool 109
8.2.2 Bridging the gap between Erlang and the µCRL process

algebra . 111
8.2.2.1 Processes and communication 111
8.2.2.2 Design pattern: generic server 115
8.2.2.3 Functions with side-effect 119
8.2.2.4 Pattern matching in the communication part . . 122
8.2.2.5 Pattern matching a pure function return value . 128
8.2.2.6 Design pattern: supervision tree 128
8.2.2.7 Higher-order functions 129
8.2.2.8 Data and pure functions 130
8.2.2.9 Module system 134

8.2.3 Overview of the etomcrl tool 135
8.2.4 Detecting messages matching a given pattern 137
8.2.5 arch graph: inter-process relations from the state graph . 139
8.2.6 Conclusions and limitations 140

8.3 µCRL toolset . 141
8.3.1 Introduction and motivation of the tool 142
8.3.2 Using the µCRL toolset for our purposes 143

8.4 CADP: model checking the state space 144
8.4.1 Introduction and motivation of the tool 144
8.4.2 Parts of the CADP that we are using 145

8.5 McErlang: model checking from Erlang 147
8.5.1 Introduction to the tool 148
8.5.2 Internal implementation of McErlang 150

8.5.2.1 The internal language 150

107

108 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

8.5.2.2 Monitors . 153

8.5.2.3 Abstractions and hash tables 153

8.5.3 The McErlang approach vs etomcrl +µCRL +CADP 153

8.1 Introduction

In the previous chapter, the context in which we propose the use of formal verifica-
tion tools and techniques in order to analyze software architectures, was discussed.
In the next chapter, we will introduce a concrete method we propose for extracting
system information using formal methods, but before that we describe here the
tools are going to use. Some of them have been developed by us in order to solve
a need in our method and others are just external tools introduced as part of the
steps we propose. In each section, we motivate the development or selection of the
tool, and we explain its fundamentals and which parts we are mainly using and
how.

Information

about

the system

etomcrl mcrltools

VoDKAV

Tools from the area of formal verification

C
A

D
P

architecture

Software

McErlang

Figure 8.1: Tools for state space generation and analysis

In Fig. 8.1, the context where the tools are used, which will be detailed in
Chapter 9, is shown. Basically, the tools, from the area of formal methods, help
us in order to go from the software architecture of the system to the automatic
extraction of information.

This chapter is structured as follows: in Sect. 8.2 we introduce the tool that
has been developed in order to translate Erlang source code to µCRL specifica-
tion. In Sect. 8.3, the µCRL toolset, used for manipulating µCRL specifications
and generating their state graph, are described. After that, the CADP tool, utilized
to manipulate the state space, mainly performing some reductions by hiding the
information not needed and later doing model checking of the properties, is mo-
tivated and described. Finally, in Sect. 8.5, we explain an alternative to the use
of etomcrl and µCRL toolset: directly generate the state space from the Erlang
source code using McErlang (Model checking in/for Erlang); as McErlang is really
a model checker, it can also substitute CADP and directly extract the information
about the system.

8.2 etomcrl: translating Erlang to µCRL

As explained in Parts I and II of this thesis, the distributed functional language
Erlang has been originally developed by Ericsson to implement large switching

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 109

systems. The VoDKA server is just an example, and Erlang is nowadays used
by several companies mainly for the development of complex distributed control
systems. Therefore, in order to be able to apply formal methods to industrial
systems, it was interesting to take Erlang as the target of our tool.

The language µCRL is a process algebra with data. Several verification tools are
available for µCRL and other process algebras, including a tool to create labelled
transition systems from specifications. The language and the tool are described
with more detail in Sect. 8.3. By having a translation from Erlang to µCRL we
can apply the verification tools for process algebras and labelled transition systems
to industrial code. The translation we carry out is aware of the major design
component in the switching software. This knowledge about the software internal
implementation patterns is used inside the tool to ensure that the size of the labelled
transition system, generated later from the µCRL specification, will be smaller than
with a naive translation.

The etomcrl tool has been successfully used to transform Erlang to µCRL in
two industrial case studies, as part of the framework for applying formal methods
tools in order to improve the studied software. One of the case studies, the VoDKA
project, is part of this thesis, and the concrete usage of the etomcrl tool is explained
in detail in Chapt. 9. The other case study is the control subsystem of the AXD
301 high capacity ATM switch, developed by Ericsson and used to implement, for
example, the backbone network in the UK. This study is briefly explained and
compared to VoDKA in the Appendix A.3.1.2.

8.2.1 Introduction and motivation of the tool

The etomcrl tool was originally motivated [ABD04] by the need of verifying a
small, but critical, part of Ericsson’s AXD 301 [BR98b]. Similar needs were de-
tected while developing this thesis, in order to use verification techniques for ana-
lyzing the VoDKA project from its source code. Both projects were therefore the
case studies that led first the development and later the improvements of the tool.

The industrial case-studies we considered had no up-to-date detailed specifica-
tion, and could be abstracted to only a few hundred lines of code as a starting
point. The real code itself was much bigger but, as we will explain for the case
of VoDKA in Chapt. 9, we can hide some parts of the system and take only the
critical core we want to analyze. The part of the code we are looking into is in
both cases written in Erlang .

The fact that we are confronted with source code and an out-of-date spec-
ification is a rather general phenomena: in some cases verification of software is
performed at a rather late stage, when engineers feel that what they have produced
is more complex than they understand; in other cases the verification effort starts
earlier (we talk about the different approaches in Chapter 7), but the systems are
developed by rapid prototyping, and without very complete specifications being
available at any time. This is specially frequent when the software developed is
innovative and there is not a clear idea of how it is going to be until some ex-
periments are carried out. In both cases the members of the development team
want backup by some sophisticated tools that go beyond testing. Tools like model
checkers exist, but are not directly applicable to the software they write. Our goal
has been to bridge the gap and translate the source code to an input language

110 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

for verification, so that a lot of tools are usable for the software. The translation
should be effective and rather general, so that the back-end technology can easily
be changed for solving different kinds of problems or generating specifications in
different languages.

The code of our typical examples is written in Erlang , otherwise we could
probably have considered using of the comparable initiatives to translate real code
into a specification framework, e.g. [CDH00, HP00]. However, the available tools to
translate imperative and object-oriented code are too specific to be able to re-write
for a functional language, like Erlang . Moreover, due to the functional nature of
Erlang with light-weight concurrency, the target specification language typically
differs from a target language for imperative or object oriented languages. Also,
in the process algebra attempt one is free to use unbounded data structures, like
lists and natural numbers, in the specification. If the actual use of these data
structures in the program turns out to have a bounded size, then one is able to
generate a finite state space. However, one need not decide on beforehand what
the maximal size of these data structures is. For Erlang programs it is quite often
the case that lists have a fixed maximum length during all possible executions of
the program, but that this length differs for different configurations in which the
program is used. This fits seamlessly in the process algebra framework. Besides,
there is even a stronger extra reason why we developed a new tool, apart from the
ones commented above: we are embedding in the translation the knowledge about
the implementation patterns used in most of the Erlang programs, and we use it
in order to generate a simpler specification and, at the end, a smaller state space.
That semantics are not embedded in the alternatives for other languages, and this
makes our approach different from a theoretical point of view, not only because of
using a different programing language.

Erlang is sufficiently different from a process algebra to make it a challenge
to come up with an automatic translation. However, the fact of having similar
semantics both message-passing distributed functional languages and process alge-
bras makes the selected formalism fit quite well. We choose to pick one specific
process algebra with data, viz. µCRL [GR01], since data is crucial in our case. Be-
sides, we had good experiences with the Open Source tools [Wou01] that support
this language. Another alternative target specification language would have been
LOTOS [ISO88]; as we have explained, the tool architecture is general enough to
make it possible to develop a new back-end.

By our focus from the beginning on two case-studies we ensured that the trans-
lation is useful for a rather general class of verification problems. We are able
to translate Erlang programs that respect the supervision tree and generic server
design patterns; hence covering synchronous and asynchronous communication as
well as most of the computational aspects of the language.

Process creation is also supported in the translation, if performed by the su-
pervisor design pattern. However, in Erlang , a new process can be spawned at any
time just evaluating a special function. This dynamic process creation at any time
is not supported by the µCRL process algebra, which needs all the processes that
are going to participate in the model to be defined and started from the beginning
in the specification. However, this limitation is not big, because in order to model
processes that are spawned in the real program, we can always simulate this by

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 111

introducing relatively small changes in the Erlang source code. Processes would
be started from the beginning: they would be included as part of the structure
initiated by the supervision tree, and then their behaviour would be synchronized
so that they are not active until they receive a special spawn-like message.

The verification approach is normally focussed on finding errors in the Erlang
software and not on proving full correctness of it. That was the case in the AXD
case study. With the VoDKA server, we use the same kind of tools, but we extended
the approach in order to extract information from the state space that sometimes
is not a failure but relevant data about the system performance. In both cases, the
approach is pragmatic. The traces to failure or counterexamples to properties that
we, in the end, obtain by model-checking tools should correspond to traces in the
real software. The translation ensures this criteria by its construction.

The description of etomcrl is organized as follows: In Sect. 8.2.2, we describe
how the difference between Erlang and process algebra is bridged. By means of code
examples from Erlang we show the difficulties we encountered in the translation.
The examples presented here are reduced to the most basic concepts. We have
included as appendixes some more complete examples with both Erlang source
code and its translation to µCRL. In Sect. 8.2.3, we discuss the software architecture
of the actual implementation of the tool. In Sect. 8.2.4 and Sect. 8.2.5, we present
two extensions that we have developed in order to illustrate the flexibility of the
tool. Finally, in Chapt. 8.2.6, we talk about some results of using the tool and
discuss its potential and limitations in practice.

8.2.2 Bridging the gap between Erlang and the µCRL process al-
gebra

8.2.2.1 Processes and communication

Erlang is a language with light-weight processes and asynchronous message pass-
ing. The language supports both concurrency and distribution. The concurrent
processes run in the same virtual machine (a node in Erlang terminology) and
several virtual machines can be connected to obtain a distributed system. Syntac-
tically there is no difference in communication between processes on the same node
and on different nodes; from the programmer point of view, thus, the process dis-
tribution is transparent. Of course, distribution gives rise to true non-determinism
and a slightly different fault behaviour. An extension to the Erlang semantics was
proposed recently in order to be able to model that differences [CS05]. For our pur-
pose, it suffices to model both distributed and concurrent Erlang processes as truly
concurrent processes, like one has in a process algebra. The full non-determinism
is covered that way.

Erlang processes communicate asynchronously with each other. Every process
has a unique identifier that is used to address in the messages. Every process
also has a message queue in which the incoming messages are stored. The virtual
machines guarantee that every message is delivered to the queue of the process
that the message is sent to. If the receiving process does not (longer) exist, then
the message is simply lost without warning. The receiving process actively reads
the message buffer by a receive statement. This receive statement is blocking as
long as the expected message has not arrived.

112 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

A straightforward attempt to map Erlang processes and communication to a
process algebra is to create two process algebra processes: one buffer process and
one process to implement the actual logic of the original Erlang process. The
asynchronous communication is modelled by the synchronizing actions of process
algebra. One action pair to synchronize the sender with the buffer of the receiver
and one action pair to synchronize the active receive in the process implementing
the logic with its buffer.

We have chosen to represent the unique process identifier as data to a general
communicating action instead of having unique communicating actions per pair
of communicating Erlang processes. This way we reduce the amount of actions
needed for the translation and make easier later the verification of the state space
generated from the specification (where the actions are going to be visible as transi-
tions between states). Having a different action for each couple of processes would
complicate the properties to be expressed, removing the possibility of generalizing
the formulas.

In Erlang programs it is good practice to add your own process identifier
to the messages that are sent. In that way, the receiving process is able to re-
spond. The Erlang primitive self() returns the process identifier and by writing
Pid!{Msg,self()} one sends a message containing both the term Msg and the pro-
cess identifier of the sending process to the process with identifier Pid. With the
receive statement one reads a message from the queue. Pattern matching is used
to selectively read a certain message from the queue.

For the moment assume that we have embedded Erlang communication prim-
itives in the functions call and reply1. The call is used to send a message,
attached with the process identifier of the sender, and to wait for an answer. The
function reply is used to return an answer to the caller. This way of embedding
low level communication primitives in functions is common practise for industrial
Erlang code and in the next section we will describe this in more detail.

The following snapshot running in an Erlang process describes a simple server
that waits in an infinite loop for a client request and replies with an acknowl-
edgement. Variables start with an uppercase character in Erlang , constants and
functions start with lowercase.

loop() ->
receive
{request,Client} ->

reply(Client,acknowledge)
end, loop().

The client to this server evaluates the function call(Server,request), where
Server is the process identifier of the server and request is the message: in this
case a constant (called an atom in Erlang).

We translate the Erlang server process in a µCRL specification with two pro-
cesses (the buffer and the process implementing the logic), and actions to synchro-
nize the client with this buffer, and to synchronize the process implementing the
logic with the buffer.

1In Erlang , the function embedding is part of the design patterns

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 113

The µCRL statement sum(X :T , p) is shorthand for a non-deterministic choice
of all possible values of X of type T in P .

proc server(Self: Pid) =
sum(Client: Pid,

receive(Self,request,Client).
reply(Client,acknowledge,Self).
server(Self))

proc buffer(Self: Pid, Messages: TermList) =
b_receive(Self,data(Messages),pid(Messages)).

buffer(Self,rmhead(Messages)) +
sum(Msg: Term,
sum(From: Pid,

b_call(Self,Msg,From).
buffer(Self,add(Msg,From,Messages))))

The code of the server, for any client Pid, receives a request from the buffer
and then sends the reply back to the client. The code of the buffer either sends the
head of the queue to the server process and removes it from the state (kept as an
argument to the process loop) or receives a new message from the client and adds
it to the queue.

The process identifier is automatically added by the translation tool as a pa-
rameter to processes and communicating actions. The buffer and the process im-
plementing the logic have the same process identifier. This makes easier the trans-
lation, because the introduction of the buffers is done in a more transparent way,
just by using the right actions in the client, buffer and server processes, and without
needing to rewrite the identifiers.

Communication is untyped in Erlang and we have to be ready to accept any
term in a message queue. Communication in µCRL is specified by pairs of commu-
nicating actions; three pairs in our case:

receive | b_receive = ex_buffer
call | b_call = in_buffer
reply | replied = sync_reply

Therefore, if the action b receive in the buffer synchronizes with the action
receive in the server process, the message is extracted from the buffer and received
by the server. If the action b call in the buffer synchronizes with the action call
that would be part of the client µCRL specification, the message is stored in the
buffer. Finally, if the reply action in the server synchronizes with the replied
action in the client, the answer, that is not modelled through the buffer for reasons
we explain later, is sent back.

To simplify reading, we assumed a type Pid in the above example, but, in
untyped Erlang , process identifiers are just terms. In the real translation we follow
that concept and use type Term instead of Pid.

The reader familiar with Erlang will have noticed that the FIFO buffer above
differs a lot from the semantics of an Erlang message queue. In an Erlang receive
statement one can pattern match on the format of a message. In that way, one
can leave certain messages in the queue and selectively take another messages from

114 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

it. This is rather difficult to model in µCRL, and one easily ends up in creating a
model that causes an infinite state space to be created.

A FIFO queue is insufficient for the client process that communicates with
the server above, since processes can freely send a message to the buffer of this
client. If another message than the server reply arrives earlier in the message
queue of the client, then the client will be blocked forever (actions would never
synchronize). The solution to overcome the problem of selective reading of the
queue lays in carefully studying what happens in the real Erlang code. To our
advantage, selectively reading a message from the message queue is only done in
very restricted circumstances. Basically the mechanism to read a message other
than the first message in the queue is only used for exactly this synchronization.
The client adds a special (unique) tag to the message and the server replies with
the same tag added. The client is just waiting for any message with the right tag.
All other messages that arrive to the queue in-between, are left untouched.

We can model this by having the reply action communicate directly to the
replied action in the client, therewith circumventing the message queue of the
client. The differences between the interprocess communication in the Erlang
source code and the µCRL specification is described in Fig. 8.2.

b_receive | receive=
ex_buffer

process

client

buffer

process

server

process

client

reply

call

mCRL implementation (reply message directly sent)

Erlang implementation (both messages go through the buffer)

call | b_call = in_buffer

buffer

no−internal

replied | reply = sync_reply

client

external

FIFO buffer

server

external

FIFO buffer
process

process

internal

buffer

internal

buffer

no−internal

process

server

Figure 8.2: Communication in Erlang and µCRL for standard processes

This solution only makes sense in a situation where we know which messages
are of this special kind and if we know that other messages are dealt with in a FIFO
manner. But, that is exactly what we recognized when looking at real industrial
projects like VoDKA or the AXD 301 switching software. The code is written
according to certain design patterns. About eighty percent of the communicating
processes implements a server that uses the generic server pattern. This server
restricts communication in a way that eases the transformation for us2. Every
generic server has an explicit state defined: the state is passed as a parameter

2The restriction in the communication imposed by the design pattern allows a better under-

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 115

in the call-back functions. Process state information, like the actual memory on
the heap, the content of the message buffer and such is hidden for free. The
generic server is an abstraction for debug features that production code typically is
attached with. It is an abstraction for the handling of shutdown, code replacement
and such. By concentrating on the call-back functions for handling messages, one
concentrates on the basic functionality of the server and abstracts from a lot of
standard features. In the next section the server pattern and its translation to
µCRL are explained in more detail. The supervision tree is another frequently used
pattern and is described in Sect. 8.2.2.6.

8.2.2.2 Design pattern: generic server

The generic server pattern is used to implement servers in Erlang . An abstract
version of a server is that of a process which keeps an internal state, waits for an
incoming message, computes a response message depending on the incoming mes-
sage and state, and replies to the message and updates the state. The gen server
module implements the generic parts of the server while the call-back module im-
plements the specific functionality (the logic) of a particular instance of the server,
i.e. the computation of the response message and the new state.

The above description is, on purpose, an oversimplification of the generic server
behaviour. The behaviour also takes care of a uniform way of error handling, of a
uniform debugging facility, of monitoring nodes and observing whether clients are
still alive, etc. In that way, the programmer really only needs to concentrate on
the logic of the server. That, on its turn, allows us to easily abstract from a lot
of details that the code would have if not implemented in the generic way. Our
translation tool can, by means of this generic behaviour, concentrate on the logic
and abstract from the implementation details of error handling, debugging, etc.

The simplified version of the generic server is just a small extension of the server
given in Sect. 8.2.2.1. We add state as a parameter of the loop and whenever a
messages arrives, we need to call a function to evaluate a reply and to update
the state. The generic server distinguishes three kinds of messages: call, cast and
info. A call is a synchronize event (built on top of the asynchronous interprocess
communication we have explained), where the client waits for a reply. The cast
is the asynchronous version of the call, and the info messages serve the special
purpose to deal with error events and such. In this description we only consider
the call messages, but the actual translation handles the full generic server with all
three kinds of messages.

loop(M,State) ->
receive

{call,Msg,Client} ->
{reply,Reply,NewState} =
M:handle_call(Msg,Client,State),

reply(Client,Reply),
end, loop(M,NewState).

standing of complex systems. The same restriction that makes the system easier to understand for
the engineers is making it easier for us to translate the system to the clean framework of process
algebra.

116 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

The variable M contains the name of the module in which the function handle call
is implemented. This is the so called call-back module. The server loops continu-
ously keeping the state of the process as an argument. Whenever a call message
is received, the function handle call in the call-back module is evaluated in order
to compute the reply and the new state. Then the reply is sent back to the client
and the computed state passed recursively to the loop.

Remark that the programmer uses the standard generic server component and
only provides the call-back module when implementing a server. The generic part
is static and stable over the years. Therefore, we can take the semantics of the
generic part for granted and use it in our translation.

A typical example of a call-back module is given below. It implements a very
simple server process part of a VoD system that may receive either a lookup message
or a play message. The state of the server is a record which includes the list of
available Media Objects, the current connections (movies that are already being
streamed), the bandwidth currently used by the connections, and the maximum
number of connections and maximum bandwidth that are allowed.

handle_call({lookup, MO, Profile}, From, State) ->
case (check(MO, Profile, State)) of

true ->
{reply, {lookupAns, ok, MO, Profile}, State};

false ->
{reply, {lookupAns, fail, MO, Profile}, State}

end;

handle_call({play, MO, Profile, Dest}, From, State) ->
{reply, ok, update_state(MO, Profile, State)}.

Whenever a client sends a lookup message, it includes the identifier of the
Media Object and a profile with the bandwidth required. With that information, a
function check can determine if there are enough resources for sending the media to
the client, and answer according to this. Whenever a play message is received, the
state is updated and an acknowledge message is sent back to the client. Internally,
the actual stream of the movie to the process Dest would be created but that low
level part is not needed for this explanation.

The Erlang functions check and update state should also be implemented
in this call-back module, but its actual implementation is not relevant here. The
behaviour also provides functional embeddings of the communication primitives,
similar to what was used in Sect. 8.2.2.1. A client would evaluate the call function.
The implementation takes care of adding a unique tag and the process identifier
of the client to the message. It also takes care of waiting for the arrival of a reply
from the server with exactly the same unique tag in order to proceed.

Thus, a typical client that would do a lookup and a play is implemented in
Erlang by:

client(Server, MO, Profile, Dest) ->
Nr = gen_server:call(Server,{lookup, MO, Profile}),
gen_server:call(Server,{play, MO, Profile, Dest}).

The translation of both server and client is similar to the translation given in
Sect. 8.2.2.1. Fig. 8.3 updates Fig. 8.2 with the synchronization actions used for

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 117

process

client

buffer

process

process

client

reply

call

mCRL implementation (reply message directly sent)

Erlang implementation (both messages go through the buffer)

buffer

no−internal

client

external

FIFO buffer

external

FIFO buffer
process

process

internal

buffer

internal

buffer

no−internal

process

gen_server

gen_server_replied | gen_server_reply = reply

buffercall
gen_server_call | gscall

gshcall | handle_call =
call

gen_server

gen_server

Figure 8.3: Communication in Erlang and µCRL for generic servers

generic servers (the main changes are the names of the actions that are used; the
essence of the translation remains the same). For example, now instead of the
receive action, we use a handle call action and a non-deterministic choice is used
to be able to either receive the lookup or the play message. The buffer is basically
the same, apart from the changed names of the actions. The three pairs of actions
we use for the generic server are:

gen_server_call | gscall = buffercall
handle_call | gshcall = call
gen_server_reply | gen_server_replied = reply

One option for translating the generic server and the call-back module would
be to perform the complete translation of both modules. But as we have already
explained, the goal of the etomcrl tool was to embed the semantics of the generic
server behaviour in order to simplify the translation steps, the generated specifica-
tion and therefore the state graph. Thus, in order to carry out the translation we
have to take into account the knowledge we have about the generic server imple-
mentation: the handle call function is translated in a non-deterministic choice
between the alternatives and embedded in a server loop. The last argument of the
handle call needs to be converted in the last argument of that loop, and the rest
of the arguments are left in order to pattern match with the action on the other
side of the inter process communication. We leave the explanation of how this is
handled in detail when complex pattern matches are involved for the next sections.

We provide the translated specification of the server process in µCRL:

proc server(Self:Term,State:Term) =
sum(From:Term,
sum(MO:Term,
sum(Profile: Term,

118 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

handle_call(Self, tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

(gen_server_reply(From,
tuple(lookupAns,

tuple(ok,tuple(MO,tuplenil(Profile)))),
Self).

server(Self,State)
<| eq(equal(check(MO,Profile,State),true),true) |>
(gen_server_reply(From,

tuple(lookupAns,tuple(fail,tuple(MO,
tuplenil(Profile)))),Self).

server(Self,State)))))) +
sum(From: Term,
sum(MO: Term,
sum(Profile:Term,
sum(Dest:Term,
handle_call(Self,
tuple(play,tuple(MO,

tuple(Profile,tuplenil(Dest)))),From).
gen_server_reply(From,ok,Self).
server(Self,update_state(MO,Profile,State)))))).

The somewhat obscure notation for the if-then-else statement in µCRL is then/
if.else. Tuples are inductively defined using the constructors tuple and tuplenil.

The µCRL functions for check and update state would be almost equal to the
Erlang counterparts. In Sect. 8.2.2.8 the translation of such purely computational
functions is explained in more detail.

The specification for the client in µCRL would be as follows:

proc client(Self:Term,MO:Term,Profile:Term,Dest:Term,Server:Term) =
gen_server_call(Server,tuple(lookup,

tuple(MO,tuplenil(Profile))),Self).
sum(Nr:Term,

gen_server_replied(Self,Nr,Server)).
gen_server_call(Server,tuple(play,tuple(MO,

tuple(Profile, tuplenil(Dest)))),Self).
sum(Free:Term,

gen_server_replied(Self,Free,Server)).

The last sum in the client is generated automatically, because the call function
is always returning a result. In Erlang one may choose to ignore the result, but in
µCRL we have to explicitly bind it to a variable (Free in this case). This already
indicates a subtle difference between a return value of a function in Erlang and a
communication action in µCRL. This issue is explained in more detail in the next
section as it is not specific for the generic server, but a more general phenomena.

Translating the different handle call clauses into non-deterministic choices is
not the only alternative and, in fact, it has some limitations. In Erlang , if the
first clause of a function pattern matches with the arguments, the rest of the
clauses are not going to be taken into account (they are ignored). However, in the
µCRL translation we have just proposed, all the possible matching clauses would
be selected and therefore would potentially synchronize. This introduces different

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 119

semantics in the translation, originating non-desired paths in the resulting state
space. Due to the clean way of programming used in the industrial code we have
translated, and also to the kind of properties we were looking to, the difference in
the semantics has not been a real problem neither a limitation for our experiments.

Nevertheless, an alternative would be a translation using an if-then-else ap-
proach similar to the one that is introduced in the first part of Sect. 8.2.2.4 for the
pattern matching in function clauses. Still there would be some differences in the
way some of the arguments are translated. In this approach, the conditions of the
’if’ are extracted from the pattern matching, and destructors are used if needed
inside the translation of the clauses. This alternative is illustrated with an example
in the second part of Sect. 8.2.2.4.

Currently the etomcrl tool uses the non-deterministic approach, and a new
version with the if-then-else alternative is left for future work.

In this section we have shown the basic principle of translating generic servers
into µCRL. We left out the buffer, since that was presented in the previous section.
Our tool handles real servers, which are more complicated than the example shown
here, but the basic ideas are captured in this section. Our example call-back module
is rather simplistic and in reality there are some issues that complicate matters. In
the next few sections we focus on those complications.

8.2.2.3 Functions with side-effect

As we have explained in Sect. 3.3, significant difference between Erlang and a pro-
cess algebra is that the latter forces to separate computation from communication.
Computation is only accepted in the data part of the process algebra with data,
and can therefore only take place in the arguments of the actions, and never at
the same level as the actions themselves. In Erlang , in contrast, a function that
performs some calculations can also communicate. Thus, such a function has com-
munication as side-effect of the computation. Of course, the function can call other
functions that have side-effects and as such we can get deeply nested integration of
computation and communication. Here, our first task is to identify Erlang func-
tions with side-effect from the pure computations. These two classes of functions
are translated differently.

Supported by industrial experience, we only consider Erlang programs that re-
spect the behaviours like the generic server; that is the case of VoDKA, were the
control subsystem is heavily based on that kind of implementation patterns. Func-
tions are classified as functions with side-effect when they make use of a commu-
nication function (like call or reply). By analyzing the call graph of all involved
modules, we can syntactically split the Erlang functions in the two demanded cat-
egories.

As seen in the previous examples, the generic server primitives for communi-
cation in Erlang are translated to actions in µCRL. In addition, etomcrl supports
user defined actions which are also considered as side effects and translated to µCRL
actions. User defined actions can be used for verification purposes: they can be uti-
lized in order to reduce the complexity of the logical properties expressed over the
state space generated from the specification. One example of user defined actions
usage would be to give visibility to a critical section in a concurrent/distributed al-
gorithm, including two extra actions, one taking place when the evaluation thread

120 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

enters the critical section and one when it goes out of it. Other function with side
effects in Erlang are the functions for using the standard output, but calls to those
functions can be ignored in the translation.

In the remainder of this section we focus on the part with side-effects, and
how the computation and communication are separated in these functions. Issues
related to the purely computational part are discussed in Sect. 8.2.2.8.

The problem with nested side-effects is best illustrated by an example. Assume
an Erlang process that calls a function p in order to communicate its result. The
function p itself contains a side-effect:

loop(X) -> s(p(X)),
loop(X).

p(X) -> Y = f(X),
s(g(Y)),
h(Y).

where f, g and h are pure computations and s is one of the side-effects, e.g.,
the reply function.

s needs to be translated into an action in µCRL, but what should be done with
p? It cannot be an action because it involves computation and even because nested
actions are not allowed in µCRL, but it can neither be just computation because it
has side-effects inside. We therefore need to translate it to:

proc loop(X:Term) =
s(g(f(X))). s(h(f(X))). loop(X)

We obtain this translation by a recursive source code transformation of the
Erlang functions. In this transformation we lift all side-effect functions to the
highest level and push pure computations down by duplicating them. Thus, we
translate on the source code level all functions with side-effect to functions that
look like:

p(X) -> s1(---),...,sN(---),---.

where --- stands for pure computations and si are functions with side-effects.
We use standard techniques of inlining computations and the less standard

technique of composing the destructor functions that enable a pattern match.
The variables can be used separately for further computation. In µCRL these

variables have to be replaced by destructors of the data structure (we will see this
with more detail when analyzing the pattern matching, in the current example the
destructor is not needed). Whenever we encounter a statement Y=p(X) in the code,
we could bind the variable Y to the last pure computation of the function p and
substitute this in the µCRL code. Thus, we could inline the side-effect functions
as actions in place of the call to p. However, the attentive reader has probably
already noticed that this cannot work for recursive functions with side-effects (in
our example, if p had been recursive); without knowing the number of recursive
iterations, one is unable to unfold the definition and hence unable to inline the
exact number of side-effects. Neither does this work for functions that perform a
side-effect and cannot be de-composed. As an example, consider the simple Erlang
program that performs a side-effect on every element of a list and returns ack as

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 121

a result. All results are stored as a parameter of the function, i.e., the list of ack
returned values is increasing.

loop(Xs,Rs) -> R = p(Xs), loop(Xs,[R|Rs]).

p(Xs) ->
if

(Xs==[]) ->
ack;

true ->
s(head(Xs)), p(tail(Xs))
end.

The standard solution to deal with recursive functions when writing a compiler
is to implement a stack data structure to store the return values of the recursive
calls. We adopt this idea, where the stack is implemented as a µCRL process
(already explained as example in Section 3.3) and push and pop operations are
communicating actions. With a source-to-source transformation we make sure that
all functions with side-effects are in the previously mentioned format with either a
pure computation as last expression or a call to another function with side-effect.
We replace all pure computations by a push on a stack and pop this value in the
code where we call the function.

The above Erlang example is translated to the µCRL code below (where the
stack itself is omitted):

proc loop(X:Term, Rs:Term) =
p(X).
sum(R:Term,

pop(R).loop(X,cons(R,Rs)))

p(X: Term) =
push(ack)
<| eq(X,nil) |>
(s(head(X)).p(tail(X)))

By using the stack and pushing pure computation inside side-effect functions,
we can deal with nested side-effects. The stack alternative also provides a solution
for the case where in the above match Y=p(X) the variable Y is replaced by a
complicated pattern with several variables. Erlang supports a kind of pattern
matching in which one can match the result of a function to a pattern of a data
structure. Variables are bound to parts of the data structure. The only thing we
have to add to our translation is a sum construct for every occurring variable in
the pattern.

An example of this more complex pattern would be the next handle call clause
inside the call-back module of a generic server. send all is a function with side-
effects that sends a message to a group of processes and gathers the answers in
a list. The list is pattern matched in order to take only the first option (trivial
algorithm just useful for the example) and then a message with the cost of that
option is sent as answer.

122 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

...
handle_call({lookup,MO,Profile}, From, State) ->

[Head|Tail] = send_all({lookup,MO,Profile},get_storages(State)),
{reply, {lookupAns,cost([Head],State)}, State};

...

The translation to µCRL follows all the rules we have explained, and introduces
the sum construct for Head and Tail in the pattern matching, calling after that to
the action pop, that will synchronize with the complementary push function inside
the translation of send all.

serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,
sum(MO: Term,

sum(Profile: Term,
handle_call(MCRLSelf,tuple(lookup,

tuple(MO, tuplenil(Profile))),From).
send_all(MCRLSelf,tuple(lookup,

tuple(MO, tuplenil(Profile))),
get_storages(State)).

sum(Head: Term,
sum(Tail: Term,

pop(cons(Head,Tail)).
gen_server_reply(From,

tuple(lookupAns,
tuplenil(cost(cons(Head,nil),State))),

MCRLSelf).
serverloop(MCRLSelf,State)))))) +

...

In the communicating action we can simply repeat the pattern, since µCRL
supports that kind of pattern matching as well. Note that the introduction of the
sum construct is only used for the matches of patterns with functions that contain
side-effects. A match with a pure function is translated differently, as explained in
the next section.

Although the stack process solves our problem of translating nested side-effects,
we also have to pay the price of more communication in the model and therefore an
increased state space of the system. Moreover, the duplication of the pure functions
gives rise to longer computation times in the model than in the real implementation.
Therefore, whenever it is possible, the first solution of inlining the side-effects is
used.

8.2.2.4 Pattern matching in the communication part

As we have explained, the problems and solutions related to the translation are
different if the pattern matching appears in the part of the Erlang program with
side-effects or in the side-effect-free part. In the first case, the code is going to be
translated to processes that communicate using actions that synchronize. In the
second case, the source code is going to be translated into µCRL rewriting rules.
Here we only consider the first case, the second case is described in Sect. 8.2.2.8.

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 123

In the previous section we have shown how one particular kind of pattern match-
ing, when the result value of a function with side effects is pattern matched, is
elegantly translated by using communication via a stack process. In this section
we focus on two pattern matching possibilities that differ enough in both languages
to make the translation non trivial: pattern matching in function clauses and in
communication primitives.

• Pattern matching in function clauses:

Process definitions in µCRL can only have variables as parameters, c.f. the
definition of client and server in Sect. 8.2.2.2; and there is only one clause
per process. Erlang functions that are translated to µCRL processes may have
several clauses in which pattern matching decides which clause is evaluated.
As an extra complication, the Erlang function might be defined in such a way
that for a certain input there is no matching clause, which makes the process
evaluating the function crash. This crash should show in the translated µCRL
model as well, since it is valuable information in the verification process.

Several Erlang function clauses can easily be combined in only one case-
statement, but that does not solve the problem. The pattern matching in
the case is equivalent to pattern matching on function clause level. We treat
those therefore similarly.

First, we compute the discriminating pattern to select a certain clause (c.f.
[Wad87]) and we use a nested if-then-else structure to determine which part
of the function to evaluate. This if-then-else can later be directly mapped to
µCRL.

In that translation to µCRL we add a last clause in which the process deadlocks
if none of the alternatives matches.

Second, we replace the patterns in the arguments of the function to variables
and replace bindings caused by these patterns to destructor functions. As an
example, consider the following Erlang function, where s is again an Erlang
communication primitive:

loop(X,[]) -> s(done), loop(X,X);
loop(X,[Head|Tail]) -> s(Head),loop(X,Tail).

The elimination of the pattern matching in this code requires two destructors,
viz. hd and tl to extract the head and tail of a list. With those two destructors
the code is transformed to the following Erlang code:

loop(X,Arg1) ->
if
nil == Arg1 ->
s(done), loop(X,X);

is_list(Arg1) ->
s(hd(Arg1)), loop(X,tl(Arg1))

end.

124 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

The fact that Erlang is a dynamically typed language enables the code to
fail for calls where Arg1 is not a list, therefore the last condition in the if-
statement above is not just true. In the translation to µCRL a third alternative
is added, reflecting this possible type error in Erlang .

proc loop(X:Term, Arg1: Term) =
s(done).loop(X,X)
<| equal(nil,Arg1) |>
(s(hd(Arg1)).loop(X,tl(Arg1))
<| is_list(Arg1) |>
delta)

In general the conditions to check are more complicated than only checking
whether an argument is a list or the empty list. We need to bind variables
to terms in order to use them in the expressions and sometimes we even
need destructor functions in the conditions, for example if we want to check
whether the head of a list is equal to the integer one3. However, there are
only finitely many possible patterns in Erlang . The simplified version of the
computation of the conditions for given pattern P and expression E, where
only lists, integers, and variables are considered is given below. The function
returns a condition and a set of variable bindings4.

cond(P,E) =
〈true, {P 7→ E}〉 var(P)
〈is list(E) ∧ φ ∧ ψ, σ ∪ τ〉 P = [H|T]

〈φ, σ〉 = cond(H,hd(E))
〈ψ, τ〉 = cond(T, tl(E))

〈equal(P,E), ∅〉 otherwise

A more complicated version of the above function is successfully used in our
source-to-source transformation to map different patterns in function clauses
to variables in the arguments of the clauses and nested conditions in the body
of the clause.

• Communication primitives:

The above described function clauses are translated into µCRL process def-
initions. For function clauses that are communication primitives and that
are translated to µCRL communicating actions, a similar pattern matching
transformation is necessary. In this case, however, one cannot introduce the
if-then-else construct in the same way.

As an example, consider an extremely simple handle call inside a VoD sys-
tem generic server process. The client can play the movie, stop it or ask for
the status (internal streaming is hidden in this pseudo-code). T

3The if-statements in Erlang do not allow destructors in the conditions, therefore, we use
nested case-statements instead of the if-statement, but explaining it by means of an if-statement
is clearer.

4The set of variable bindings is a list in the real implementation, where variables that have
been bound before need to be matched against a value if they occur more than once in the pattern.

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 125

handle_call({play,mo},Client,{mo,Status}) ->
{reply,ok,{mo,play}};

handle_call({stop,mo},Client,{mo,Status}) ->
{reply,ok,{mo,stop}};

handle_call({status,MO},Client,{MO,Status}) ->
{reply,Status,{MO,Status}};

The handle call function is translated in a non-deterministic choice between
the alternatives and embedded in a server loop, as explained in Sect. 8.2.2.2.
Here we have two matches that need to be translated differently. The generic
server loop has State as a parameter and the tuple {MO,Status} should be
decomposed as described in the previous section. The message (and similarly
the client identifier) should be treated differently. For those parameters, the
variables are isolated and put in a sum construct. The matching is done by
the pattern matching mechanism of µCRL.

server(Self:Term,State:Term) =
sum(Client: Term,
handle_call(Self,tuple(play,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,play)))

+
sum(Client: Term,
handle_call(Self,tuple(stop,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,stop)))

+
sum(MO: Term,
sum(Client: Term,
handle_call(Self,tuple(status,MO),Client).
reply(Client,element(2,State),Self).
server(Self,tuple(mo,element(2,State)))))

Of course, we use the knowledge we have on our communication primitives to
decide which parameters need to be transformed to match on the process level
and which are to be transformed in a sum construct. Typically the matching
on the process level is translated source-to-source, whereas the introduction
of non-determinism and sum construct is left to a later stage.

Lacking in the above translation is the introduction of the conditions that we
compute for the pattern match. A programmer could easily handle the same
message in two different clauses of the handle call function by differentiating
the state in which the message arrives. This way of programming is de-
recommended in the style guides, but occurs now and then in code fragments.
The solution that is currently implemented in the etomcrl tool is to introduce
assertions that are only going to be true when the arguments match. This
can be better illustrated with a modification of the previous example:

handle_call({play,mo},Client,{mo,play}) ->
{reply,error,{mo,play}};

126 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

handle_call({play,mo},Client,{mo,Status}) ->
{reply,ok,{mo,play}};

handle_call({stop,mo},Client,{mo,Status}) ->
{reply,ok,{mo,stop}};

handle_call({status,MO},Client,{MO,Status}) ->
{reply,Status,{MO,Status}};

In this case, the translation would be the following one:

server(Self:Term,State:Term) =
sum(Client: Term,
handle_call(Self,tuple(play,mo),Client).
assertion(equal(element(int(s(s(0))),State),play)).
reply(Client,error,Self).
server(Self,tuple(mo,play)))

+
sum(Client: Term,
handle_call(Self,tuple(play,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,play)))

+
sum(Client: Term,
handle_call(Self,tuple(stop,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,stop)))

+
sum(MO: Term,
sum(Client: Term,
handle_call(Self,tuple(status,MO),Client).
reply(Client,element(2,State),Self).
server(Self,tuple(mo,element(2,State)))))

Where an assertion is introduced after the first handle call in order to ensure
that it is only true if the second element of the State is the atom play.

This solution works for most of the properties and examples we have studied,
but introduces semantical differences with the original Erlang implementa-
tion. If the properties are not written carefully, taking into account the
assertions that are false, we could extract at some point wrong information
from the state space.

An alternative that would improve the translation would be to put conditions
in the loop that correspond with the possible patterns of the state and only
then non-deterministically match the possible messages. With this alternative
solution, that is left for future work in the etomcrl tool implementation, the
generated µCRL specification would be:

server(Self:Term,State:Term) =
sum(Client: Term,
(handle_call(Self,tuple(play,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,play)))

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 127

<|equal(element(int(s(s(0))),State),play)|>
handle_call(Self,tuple(play,mo),Client).
reply(Client,error,Self).
server(Self,tuple(mo,play))))

+
sum(Client: Term,
handle_call(Self,tuple(stop,mo),Client).
reply(Client,ok,Self).
server(Self,tuple(mo,stop)))
+
sum(MO: Term,
sum(Client: Term,
handle_call(Self,tuple(status,MO),Client).
reply(Client,element(2,State),Self).
server(Self,tuple(mo,element(2,State)))))

The code above is less readable this way but the semantics are much closer
to the original Erlang program.

In all the previous examples we have used the non-deterministic approach for
translating the handle call clauses. For the original example, the translation
with an if-then-else approach would be a bit different:

server(Self:Term,State:Term) =
sum(Client: Term,
sum(Message: Term,
handle_call(Self,Message,Client).

(reply(Client,ok,Self).
server(Self,tuple(mo,play))
<|and(
equal(element(s(0),Message),play),
equal(element(s(s(0)),Message),mo))|>

(reply(Client,ok,Self).
server(Self,tuple(mo,stop))
<|and(
equal(element(s(0),Message),stop),
equal(element(s(s(0)),Message),mo))|>

(reply(Client,element(2,State),Self).
server(Self,tuple(mo,element(2,State)))

<|and(
equal(element(s(0),Message),status),
equal(size(Message),s(s(0))))|>

delta)))

The code is now less readable for a programmer adapted to Erlang , but the
semantics are conserved after the translation. In this case the issue is that the
first handle call is going to synchronize always, and that has to be taken
into account when writing the properties about the generated state space.
But the advantage is that no new paths are generated in the state space

128 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

created from the specification (in the non-deterministic approach this could
be the case).

8.2.2.5 Pattern matching a pure function return value

In Erlang , functions return a value that can be pattern matched. We have seen this
already in Sect. 8.2.2.3, where the pattern was a simple variable. If we match such a
pattern with an expression that contains a side-effect, we have shown a translation
using a stack implementation. However, if the expression is a pure function, we
use the pattern matching function described in this section. We substitute all
occurrences of the variables in the match by their corresponding value.

If the expression evaluates to a value that does not match the pattern, the
Erlang process evaluating the pattern matching will crash. Thus, if the result of
the evaluation is an empty list, whereas it is matched with a non-empty list, then
the process in which this match is evaluated will crash. We want to be able to
observe those crashes, but need not necessarily translate the crash to a deadlock
of the process, like we do in case of the function arguments that do not match.
Instead we introduce a new action assertion, which is false if the conditions are
not fulfilled, i.e. when the Erlang process would have crashed. This assertion is
easily merged in the sequentialized form in which all functions with side-effect are
written.

As an example of this, we can consider the following Erlang code inside a side-
effect function (for example inside a handle call):

[{Bandwidth, Cost, ProcId}] =
scheduling(MO, Profile, Movies,

UsedBandwidth, Connections,
MaxConnections, MaxBandwidth,
Cost, self())

Its translation would introduce an assertion saying that the returned value
should be a list, and that the head of that list should be a tuple of size three.

8.2.2.6 Design pattern: supervision tree

As we have explained in Sect. 8.2.2.2, Erlang behaviours are reusable software
components that implement the generic part of different kinds of processes. The
programmer using them, only needs to provide the call-back module specifying the
desired behaviour for the generic implementation. The supervision tree is one of
the main generic servers provided with the Erlang development platform.

One of the key features of most distributed systems, in particular those for which
Erlang is used, is fault tolerance. Erlang supports fault-tolerance by means of the
supervision tree, a structure where the processes in the internal nodes (supervisors)
monitor the processes in the external nodes (workers).

Systems should be able to continue working even when some of the modules of
the software crash. In order to provide this feature, the programmer would have to
implement a lot of extra code to take care of all the possible failure situations and
provide some kind of recovering mechanisms. A big part of this code and mecha-
nisms would be repeated in every distributed system; in Erlang , all this common

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 129

infrastructure has been extracted to a generic supervision tree design pattern that
can be parameterized by the user in order to obtain the desired behaviour.

In order to provide fault tolerance features, a supervision tree is build on top of
every Erlang process. The processes in the internal nodes of the tree are called su-
pervisors, and they are in charge of monitoring any possible crash of their children;
and the processes in the leaves are called workers, and have the actual implemen-
tation of the application logic. A system is started by creating the top node of
a supervision tree (instantiated with a call-back module). Every supervisor node
creates all its children and monitors them.

The creation of the processes architecture of the system is encoded inside the
supervision tree initialization. This fact can be used in order to extract the pro-
cesses of the system from the source code and the input (configuration) provided
by the user. Process algebras allow the creation of new processes, but the set of
tools developed for µCRL does not support this feature. We partially evaluate the
supervision tree, using the fact that we know the semantics of that design pattern,
in order to obtain its structure and a list of all created worker processes.

The use of the supervision design pattern is so common that using it to find the
created processes is no severe limitation. We cannot handle Erlang applications in
which processes are spawned outside the scope of the supervision tree, but these
are not commonly encountered in production code.

In this thesis we do not look into the fault tolerance of the system. In that sense,
it is enough if in the etomcrl tool we only use the supervision structure in order to
know the processes that are going to be started and generate the specification for
them. Thus, in the model we do not need to restart a crashed process. However,
we use the translation for verification and system analysis purposes and we are
often content with finding a place where a process can crash. In the cases in
which we are interested in errors that occur after recovery, we will have to use an
special approach where some of the fault-tolerance related information is kept in
the model [BFD05].

8.2.2.7 Higher-order functions

Erlang is a functional language that supports higher-order functions, something
which most specification languages avoid for the inherent complexity of the analysis.
The expressiveness of a higher-order function is as useful for a good program as
design patterns. Therefore, it is a pity that µCRL is a first order language.

Since higher-order functions are a real extension to a language, there is no
simple way of translating these functions to first-order variants. Luckily, most
of the Erlang code on our case-studies only uses a few predefined higher-order
functions, like map. We therefore designed the translation to handle only those
special cases that we encountered, like we only handle a few design patterns. We
defined a source-to-source transformation on the selected functions to flatten them
to first-order alternatives. Any occurrence of the function map

map(fun(P) -> f(P,E1,...,En) end, Xs)

where P is a pattern, Xs an expression returning a list and E1,. . .,En arbitrary
expressions, is replaced by a call to a unique function
map f(Xs,E1,...,En). The unique function is added to the code and defined as:

130 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

map_f([],Y1,...,Yn) -> [];
map_f([X|Xs],Y1,...,Yn) ->
[f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)].

Y i are the variables of the expressions Ei. For the following simple Erlang
example that uses the function map of the lists module:

...
lists:map(fun(P) ->

update_option(P, {1,State}, true) end, Options)
...

update_option(Option, Info, Flag) ->
do_some_update(Option, Info, Flag).

The translation would look like the following one, where the first line is the new
way of calling to the generated function. State is the variable extracted from the
expressions in this case.

...
map_update_option(Options, State)
...

map_update_option(nil,State) = nil
map_update_option(cons(P,Ps),State) =

cons(update_option(P,
tuple(int(s(0)),tuplenil(State)),
true),

map_update_option(Ps,State))

Although for many functions a similar transformation pattern can be used,
there is no general way of translating higher-order concepts into µCRL.

8.2.2.8 Data and pure functions

To translate Erlang to µCRL, the data representation in Erlang needs to be trans-
formed to the data representation in µCRL. Although Erlang has a fixed and small
set of constructors, the translation of the data part is more complicated than one
would wish. Basically it is a syntactic conversion of constructors, destructors and
selectors. The latter two implemented as µCRL functions that directly correspond
to the Erlang functions. However, an obstacle in this is that not all Erlang data
structures are inductively defined. The integers, which most programming lan-
guages support, are probably the best example of that. In µCRL all data structures
need to be defined inductively and the advised way of defining integers is by means
of naturals, which are represented as zero and its successors. This might be a the-
oretically rather clean approach, but in practise it means unreadable specification
for larger numbers, slow computations and tools that complain about a too deep
term depth when numbers get large.

Another obstacle is that syntactic equality is not a predefined relation, but that
this relation has to be specified. In particular for rich sets of data structures (which
we use), this results in a large amount of defining rules.

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 131

In µCRL the data part and communication part are strictly separated. Data
is given in sorts, which describe the data type and the operations on it. These
operations are strongly typed, using the names of the defined sorts. For example,
a sort Natural is defined by a constructor 0 and a successor function s to build
numbers of arbitrary size.

Typical for process algebras is that such primitive types are not built-in, but
are constructed in this rather involved notation. Abbreviations for a finite subset
of the natural numbers can easily be specified as well.

The Erlang notion of a function is called a map in µCRL, and is specified by the
type and a set of rewrite rules (as in a term rewriting system [BN98, Ter03]).

• Typing and sorts:

Erlang is dynamically typed and has very flexible typing rules; µCRL is
strongly typed with a simple and restricted type system. Since we try to
keep the specification in µCRL as close to the Erlang code as possible we con-
struct in µCRL a data type Term in which all Erlang data types are embedded.
The tool supports most Erlang data types: lists, integers, atoms, tuples, and
records. However, the recently added Erlang bit-syntax implementing the
data structure of bit sequences, is not considered by our tool.

A consequence of creating the Term type is that T and F cannot be used as
variables in Erlang , since they are used to define the µCRL type for booleans
(they are reserved for that). Besides, integers in Erlang are based on the
Natural type in µCRL, therefore, we are effectively restricting the integers to
naturals.

We base the sort Term on the sort Boolean and Natural, with their rather
standard implementations. The following µCRL fragment shows the definition
of some constructors and destructors:

sort
Term

func
int: Natural -> Term
nil: -> Term
cons: Term # Term -> Term

map
hd: Term -> Term
tl: Term -> Term

The Erlang tuple {reply,ok,[Client]} is, for example, translated to the
µCRL term

tuple(reply,tuple(ok,
tuplenil(cons(Client,nil))))

• Pattern matching in the data part:

In Sect. 8.2.2.4, we have discussed the matching of function clauses and ex-
pressions for the functions that have side-effects. For the pure functions, the
translation is much simpler. The header of function clauses can directly be

132 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

copied, since for the term matching on that level, matching in Erlang and
µCRL are the same. We have to rewrite the body of the function clauses, where
all statements have a fixed translation to µCRL rewrite rules. For example,
an Erlang function with case statement

functionName (P1,P2,...,Pn) ->
case E of

Q1 -> E1;
...
Qm -> Em

end.

where P1, . . ., Pn, Q1, . . ., Qm are patterns and E, E1, . . ., Em are expressions,
is translated in several rewrite rules (where recursively the expressions are
translated). The notation var(P1,...,Pn) stands for all variables in the
patterns P1, . . ., Pn.

functionName(P1,P2,...,Pn) ->
case1(var(P1,...,Pn), E).

case1(var(P1,...,Pn), Q1) -> E1;
...
case1(var(P1,...,Pn), Qm) -> Em.

In this translation, case1 stands for a function symbol uniquely chosen for
the translation of every case statement. We can perform this transformation
source-to-source and only in the last phase translate the Erlang code to µCRL.

An example of a real function could be the following one, which receives a
concrete Media Object and a profile and checks if it is present in the list of
pairs {MO,Profile} received as the third argument.

check_available_bw (MO, Profile, []) ->
[];

check_available_bw (MO1, Profile,
[{MO2,AvailableProfile}|OtherMOs]) ->

case (MO1 == MO2) of
true ->

list_intersection (Profile, AvailableProfile);
false ->

check_available_bw (MO1, Profile, OtherMOs)
end.

The translation to µCRL would be the following one:

check_available_bw(MO,Profile,nil) = nil

check_available_bw(MO1,Profile,
cons(tuple(MO2,tuplenil(AvailableProfile)),OtherMOs)) =

case2(OtherMOs,AvailableProfile,MO2,Profile,

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 133

MO1,equal(MO1,MO2))

case2(OtherMOs,AvailableProfile,MO2,Profile,MO1,true) =
list_intersection(Profile,AvailableProfile)

case2(OtherMOs,AvailableProfile,MO2,Profile,MO1,false) =
check_available_bw(MO1,Profile,OtherMOs)

Another statement with a similar translation is the Erlang match P = E. The
way to deal with this statement is again to call a function and lift the match
to the rewrite level. Functions with a match

functionName(P1,...,Pn) -> P = E, Expr.

are source-to-source translated to

functionName(P1,...,Pn) ->
match1(var(P1,...,Pn), E).

match1(var(P1,...,Pn), P) -> Expr.

Note that, although the translation of these statements looks rather straight-
forward and easy, we slightly change the semantics in the translation. As
long as we stay on the source-to-source level there is no danger, but a direct
translation to µCRL would affect the behaviour of the program.

For example, Erlang uses priority rewriting, i.e. patterns are tried from top
to bottom and if an expression matches a pattern, the other alternatives are
not visited. In µCRL any matching rule could be taken. At the moment we
therefore check that there are no overlapping patterns in the definition, but
in fact, one should rewrite the patterns to a non-overlapping set.

Second, the Erlang process that evaluates a match crashes if none of the
patterns matches the given expression. In µCRL the rewriting of a term stops
when no matching rewrite rule is found. The term is considered to be in
normal form, even if it is not a closed term with only constructors in it.
Normally, such terms cause problems later in the generation of the state
space, where the state space generator crashes, but that is not a nice way of
finding bugs in Erlang code. Moreover, a crash in an Erlang process might
be the intention of the programmer and need not necessarily be a bug.

In our translation tool we have not solved those two incompatibilities in se-
mantics. Instead, we concentrated on Erlang programs where these problems
would not occur.

An example of the match for a real function would be a slightly modified
version of the previous example, introducing a match sentence:

check_available_bw (MO, Profile, []) ->
[];

check_available_bw (MO1, Profile,

134 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

[{MO2,AvailableProfile}|OtherMOs]) ->
ListIntersection =

list_intersection (Profile, AvailableProfile),
case (MO1 == MO2) of

true ->
ListIntersection;

false ->
check_available_bw (MO1, Profile, OtherMOs)

end.

And the translation to µCRL:

check_available_bw(MO,Profile,nil) = nil
check_available_bw(MO1,Profile,

cons(tuple(MO2,tuplenil(AvailableProfile)),OtherMOs)) =
match2(OtherMOs,AvailableProfile,MO2,Profile,MO1,

list_intersection(Profile,AvailableProfile))

match2(OtherMOs,AvailableProfile,MO2,
Profile,MO1,ListIntersection) =

case3(ListIntersection,MO1,Profile,MO2,
AvailableProfile,OtherMOs,equal(MO1,MO2))

case3(ListIntersection,MO1,Profile,MO2,
AvailableProfile,OtherMOs,true) =

ListIntersection
case3(ListIntersection,MO1,Profile,MO2,

AvailableProfile,OtherMOs,false) =
check_available_bw(MO1,Profile,OtherMOs)

8.2.2.9 Module system

Erlang code is divided into modules, each module consisting of a sequence of
attributes and function declarations. Process algebras on the contrary, do not
have module systems, although some tools (e.g., the CADP tool set [GLM02]
for LOTOS [ISO88]) support a module system.

To prepare the conversion of the given collection of Erlang modules into one
µCRL specification, we perform a source-to-source transformation. Every call
to a function f is replaced by the Erlang qualified call modulename:f, where
modulename is the name of the module where the function f is implemented.

Some modules in the standard library are translated once and for all to µCRL
and the code of those functions is simply linked in at translation time. For
the other functions, we assume all necessary modules given and change the
name of the function definition and function call to the same name, viz.
modulename f, in the µCRL translation.

Somehow it is strange that a relative modern specification language has so
poor features for specifying large software systems on a high level. The
language LOTOS is better in this respect, but also in that language support
for higher-order functions, for example, is lacking.

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 135

8.2.3 Overview of the etomcrl tool

In Sect. 8.2.2.1 – 8.2.2.9, we have described the main issues of the translation
from Erlang to µCRL. Now, in this section, we describe the architecture of
the translation tool, called etomcrl, in which we clarify the order in which
the steps described before are taken.

The tool is completely implemented in Erlang , and takes as input the source
code of the supervision tree and generic server based application and gener-
ates a file with the correspondent µCRL specification.

The module called etomcrl is the main module of the tool implementation.
The supervisor function inside that module starts the compilation process,
that takes as input arguments: the module, function and arguments of the
supervision tree behaviour in charge of starting the application we want to
translate. Therefore, in order to start the translation, the way of invoking
the tool is exactly the same as for starting the supervision tree, but obviously
calling to a different module.

Fig. 8.4 shows the three main phases in the etomcrl tool. First, a source-to-
source transformation is performed on the level of Erlang , resulting in Erlang
code that exhibits the same behaviour to an observer as the original code, but
is optimized for the translation. Second, the side-effect-free part of the code
is separated from the part with side-effects, since the translation is different
for each of the two parts. Third, the translated files are combined into a
single µCRL specification.

– etoe: the first phase of the transformation can be seen as a preprocessor,
that performs some Erlang to Erlang source code transformations. The
main changes are: the supervision tree is partially evaluated in order to
extract the processes of the system, as introduced in Sect. 8.2.2.6. The
lower module is used to remove higher order functions as explained in
Sect. 8.2.2.7. The noio module removes the calls to the input/output
module; for the purposes of verifying embedded systems the messages to
the standard output are not relevant, and can be discarded. Finally, the
code is analyzed and split in two different parts: the side-effect-free part,
with only pure computations, and the side-effect part. These parts are
going to be processed in different ways in the next stage, as explained
in Sect. 8.2.2.3. Candidates to µCRL actions are already detected and
provided as output of this phase.

– etopa: the second phase of the translation is from Erlang source code
to an internal representation very close to the process algebra syntax
and semantics. The main transformations carried out are: gs replace
changes Erlang gen server related code as it is explained in Sect. 8.2.2.2
in all the call-back modules implementing the generic server behaviour.
Some of the built-in-functions are also redefined in order to use the
predefined ones already included as part of the etomcrl tool instead of
translating them from those included in the application to be translated.
The locals module takes care of encoding the modules into the function
names, as explained in Sect. 8.2.2.9. After these changes, the code is

136 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

etoe

lower module

code split: sef, proc, actions

noio module

State variable in every handle call

Evaluation of the supervision tree

erlang to erlang
transformation

with partial evaluation
of the source code
and code split

include bifs

norecords module

sefmodify

nofreevar module

addself module

gs_addself module

nofreevars module

varargs module

callreturn module

sumvars module

conftau module

norecords module

matches module

side effect free
actions

side effect part / proc

etopa

bifredefine

locals module

patomcrl

Include ’termstack’

Write the actions

Include ’gsbuffer’Include ’nobuffer’

Incl. ’bools’, ’naturals’ and nat constants

gs_replace in the gen_server modules

remove some actions

mcrlterms module incl. side effect free

proc_erl_pp module incl. side effect part

Figure 8.4: Architecture of the etomcrl tool

split into the three parts already identified in the etoe phase of the
translation.

∗ For the side-effect-free part of the code, the following translations
are performed: some Erlang library functions are included for trans-
lation; records are translated to a data structure that can be defined
inductively. The module sefmodify changes the function clauses re-
lated to the matching problem explained in Sect. 8.2.2.8. The mod-
ule nofreevar replaces the underscores (which are used for meaning
’anything’ in a pattern matching and are not supported in µCRL) in
the Erlang source code to uniquely chosen free variables.

∗ For the side-effect part of the code, the following translations are
performed: the addself and gs addself modules change the code
such that the process identifiers can be used as arguments, as ex-
plained in Sect. 8.2.2.1. The nofreevars module is also applied to
this part of the code for the same reason as above. The modules

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 137

varargs and matches are performing the transformations explained
in Sect. 8.2.2.4. The callreturn module introduces the stack ex-
plained in Sect. 8.2.2.3. The module sumvars is introducing the
sum construct, as explained in Sect. 8.2.2.3. Finally, conftau in-
troduces some extra steps needed by the µCRL toolset (adds extra
tau step to recursive calls of function without progress), and the
records are also removed from this part of the code.

∗ For the actions part of the code, only some of then, related to the
introduction of bifs and the user defined actions, are changed or
removed.

– patomcrl: the third phase is a back-end for translating the internal,
process algebra, representation to µCRL. The main steps in this phase
are: the code for the standard inductive definitions for the µCRL sorts
bools and naturals are introduced. The module mcrlterms translates
the side-effect-free part to µCRL syntax. The buffer (if present, because
the tool also allows the user to select a translation without buffer where
all the communication is synchronous) and stack have standard µCRL
implementations that are inserted. The user can decide to create a
special translation without the buffer where all the communication is
synchronous between any pair of processes; this can be useful in the ver-
ification process for experimenting with the generation of smaller state
spaces, where some properties should still hold, and therefore some er-
rors can already be detected in the software. Actions are inserted as com-
munication actions in the µCRL specification, and finally, proc erl pp
translates the side-effect part from the internal notation to µCRL syntax.

The tool could be reused for other kind of transformation, e.g. if we want
to extract a LOTOS [ISO88] specification, we only need to write a new back-
end for translating from the internal representation to the LOTOS syntax.
Therefore, even though the tool has been built for a quite concrete purpose,
its main ideas can be reused for similar approaches.

8.2.4 Detecting messages matching a given pattern

In the translation process, sometimes it is interesting to be able to introduce a
semantic modification in the specification so that some of the paths are removed in
the state space that is going to be later generated from µCRL. In some situations,
we are only interested in generating the state space until a given event takes place,
and then stop the graph generation from that state, creating some kind of deadlock.
Any property that can be verified against this simplified graph could also be model
checked against the complete one, but this way we can simplify the properties to
be defined. Also, the generation of a smaller state space is faster, which can be a
key advantage if we are dealing with quite complex software.

In Erlang source code, it would be very useful to be able to specify somewhere
in each generic server module which messages we want to observe in the generated
graph. We would change therefore the translation mechanism for the introduction
of extra µCRL code according to that messages that need to be observed. A powerful

138 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

way of doing this is using Erlang pattern matching, allowing the user of the etomcrl
tool to provide a list of patterns to messages. Moreover, sometimes several groups
of messages want to be observed, each group having a different meaning and being
used in a different way later for verification purposes.

The solution we propose is letting the user of our tool to specify observe mes-
sages as lists of patterns associated to a message type. They can be declared using
a special Erlang header (the compiler ignores those kind of user defined headers)
as follows:

-observe_messages({message_type1,["{_,_,tag1}"]}).
-observe_messages({message_type2,["{_,tag2,_}","{tag3,_,_,_}"]}).

Any message matching { , ,tag1} will be tagged in the state graph as a mes-
sage of type message type1 and will originate a deadlock state. Now the question
is, how do we include a modification in the specification so that the graph we want
is generated.

A new module for the etomcrl compiler was developed in order to perform
a source to source transformation. The transformation adds a message checking
in those generic server modules that have the above explained observe message
headers. It is called in the etoe part of the compiler described in Fig. 8.4, before
any other source to source transformation is carried out.

The module receives the implementation of a generic server and, after removing
the headers where the message patterns to be observed are specified, a new func-
tion observe messages check/1 is added to the new source code. This function
receives a message and returns true if it matches any of the patterns specified in
the observe messages attribute.

All the reply messages (the tuples {reply,Message,NewState}) that appear in
the handle call functions are then substituted by:

case observe_messages_check(Message) of
{true,OM_MessageType} ->

observe_messages_show(OM_MessageType,Message),
{reply,Message,NewState};

{false,_} ->
{reply,Message,NewState}

end;

Where observe messages show is a function that will be translated as a built
in µCRL function. And the implementation of observe messages check would be
automatically generated from the observe messages header as follows:

observe_messages_check(OM_Message) ->
case OM_Message of

{_,_,tag1} ->
{true,message_type1};

{_,tag2,_} ->
{true,message_type2};

{tag3,_,_,_} ->
{true,message_type2};

_ ->
{false,notype}

end.

8.2. ETOMCRL: TRANSLATING ERLANG TO µCRL 139

After this changes, all the code is translated to µCRL as explained in the previous
sections, and with the only exception of observe messages show, that produces
the following µCRL built in code:

act
omshow: Term # Term

proc

observe_messages_show(Arg1:Term, Arg2:Term) =
omshow(Arg1, Arg2). delta

The action omshow will allow us to visualize in the graph the message type and
the actual message, and the delta is creating the deadlock node and stopping the
graph generation

If no observe messages patterns are specified, no changes are made to the
original module.

During the creation of the state space, the generation is automatically stopped,
due to the delta action, as soon as one of these special messages are reached. This
is an easy way of seen when is the first time that those messages happen, and
can be very useful when, for example, looking for system bottlenecks. In Sect.
9.2.3.3, the use of this technique in order to find bottlenecks in the VoDKA system
is illustrated.

8.2.5 arch graph: inter-process relations from the state graph

Apart from the core compiler from Erlang to µCRL, etomcrl also includes some
complementary tools, like one for visualizing the supervision tree of the code to
be translated. This tools help in order to use etomcrl in a real environment and
understand easier what is going on and why the code is translated in a given way.

While using etomcrl in the context of the VoDKA server, the need for an
extra tool of this kind was detected. The state graphs generated from the µCRL
specification are formed by nodes representing global states and arrows represent-
ing messages. The information about all the messages sent between any pair of
processes is, therefore, inside the state graph.

A module for the etomcrl tool was developed in order to be able to extract
software architecture information from the state graph of the system.

It takes a state graph file as input and generates a new graph where the nodes
are the processes in the system architecture and the messages, the same ones as in
the original graph. The labels in the input graph are assumed to contain the process
source and destination for every message. Identity transitions and assertions are
removed. The tool returns a new AUT file with numbered states that represent the
processes and transitions that represent the messages. It also returns a dictionary
associating the process identifier or process name in the Erlang source code with the
number in the AUT file, in order to increase the possibilities of tracing information
back to the original model. Repeated messages between processes are removed, so
that only one unique transition is created for each message expression exchanged
between two processes. If the users of the tool are interested, they can define an

140 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

abstraction function (similar to a hash function) for grouping messages according
the results of that function.

Examples showing how this module is used in the context of the VoDKA project
are given in Sect. 9.2.3.2.

8.2.6 Conclusions and limitations

In this section, we described how a functional language with support for concur-
rency and distribution can be translated to a process algebra. The ingenuity of the
translation shows in the choices we made for mapping concepts of one language to
concepts of the other. For example, we make strong use of the design patterns in
Erlang to enable a smooth translation. By translating Erlang to µCRL we can use
formal verification tools developed for µCRL and labelled transition systems.

Other approaches to the formal verification of software that share some ideas
with the one we have presented include the specification language Promela and
model checker SPIN [Hol91], PathFinder [HP00], and Bandera [HD01]. In the first
case Promela is very close to C while the targeted language for the latter two is
Java. Relevant tools developed for Erlang include a theorem prover with the Erlang
semantics built into it [FGN+03, Fre01] and the model-checker of Huch [Huc99],
which works on code directly.

The theorem prover can in an inefficient way be used to symbolically explore
part of the state space. Its power is though in interactive proofs of a different
nature, whereas the model checking approach is efficient and automatic. Huch’s
approach differs from ours in the way he abstracts data aspects which we consider
crucial. In particular, he abstracts case statements by non-deterministic choices,
losing all reference to the data.

The tool that we constructed to perform the transformation has been evaluated
by two major case-studies of which the results are reported elsewhere [ABD04,
AS02]. The tool allows us and others to apply formal verification tools on real
industrial code. It has been written in such a way that it is not µCRL specific, but
can easily be ported to other process algebras or similar approaches.

Before and during the development of the tool, we have repeatedly asked our-
selves whether it would be better to build a verification tool directly on the level of
Erlang instead of translating Erlang to a process algebra. At that point we decided
to build a translation tool and use all the research done over the years by other
groups, instead of concentrate on doing the research ourselves and get only part
of all theory implemented. In this way we benefit from years of experience with
building verification tools and optimizing those tools and pay the minimal price of
having to write a kind of compiler ourselves. However, since any formalism that
we want to map our language to has restrictions, the question re-appeared several
times. This alternative approach of generating the state space directly from Erlang
is studied in Sect. 8.5.

We identified three main restrictions in verification formalisms that we con-
sidered. First, specification languages lack the support in the development tools
that modern programming languages have. A simple thing like a debugger or a
way to write code in modules instead of one big specification are often missing.
Second, programming languages have powerful constructs both in statements and
in data structures, e.g. higher-order functions, list comprehensions, records, inher-

8.3. µCRL TOOLSET 141

itance. These constructs are seldomly supported by specification languages, which
most of the time remind of languages from the early eighties. Third, specification
languages have poor and inefficient support for arithmetics. They are designed
for specifying problems. Rather soon people realized that for a lot of interesting
properties, one has to take data into account in the specification. Therefore, spec-
ification languages also need to be able to perform some computations. However,
the implementation of the computations plays a minor role. Hence, a tool to cre-
ate a rather small state space can still spend an amazing amount of time in just
performing simple arithmetic.

The etomcrl tool assumes the Erlang code received as input is correct both from
a syntactic and semantic point of view. This means that for code with syntactic or
semantic errors the correctness of the µCRL output is not guaranteed. By assuming
some kind of semantic correctness we mean here that if the code includes things
like a call to a function whose value is not used, an incorrect translation can be
generated. We took this design decision because there are other tools available
for checking the correctness of the Erlang code, and we wanted to concentrate in
creating a simpler and faster compiler.

As a small comment, we can underwrite the conclusion of Lamport and Paul-
son [LP99]: specification languages should not be typed. At least, if one translates
a programming language to a specification language, a type system is often in the
way. The programming language has certainly a type system and hence the types
need not be checked on a specification language level. Moreover, the type system of
a modern language is easily incompatible with the type system of the specification
languages around. Hence, the types get in the way when translating.

Despite some limitations in the process algebra languages, the tools developed
for them (e.g. [Wou01, GLM02]) make a translation very rewarding. The time
it takes to create a state space of a reasonably complicated system or the time
necessary for model checking some properties has never been a restriction in our
case-studies. We have been able to verify several properties of real code with a rea-
sonable complexity. Without counting the about 2000 lines of code that are given
as design patterns and library code, our case studies consisted of a few hundred
lines of code. From the experiment we can conclude that this verification approach
scales to larger size examples. We hope to be able to improve the integration of
several tools in order to make source code verification even simpler in the future.

We explore more in detail the possibilities of etomcrl in the next chapter, when
describing in detail the experiment carried out for this thesis.

8.3 µCRL toolset: generating the state space from the
process algebra

In Sect. 3.3 we introduced the main concepts related to process algebras. We also
explained that µCRL [Gro97] is a process algebra where the specifications have two
parts, one representing the data part, including type constructors and rewriting
rules, and the other representing the processes, communication with synchroniza-
tion actions. With the etomcrl tool, we are able to generate automatically µCRL
specifications from Erlang source code. One of the reasons why we selected µCRL
as the target specification language, apart from the features of the language itself,

142 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

was the availability of the µCRL toolset [SEN99, Wou01].

8.3.1 Introduction and motivation of the tool

The µCRL toolset is a set of tools developed in the Center for Mathematics and
Computer Science (CWI) of Amsterdam, for analyzing specifications of concurrent
systems, described using the µCRL language. The tools support a restricted part of
the µCRL language, the linear process operator format (LPO).

The main motivation for selecting the tool is obviously very associated to the
fact of selecting the µCRL specification language. In concrete, the µCRL toolset is
the result of the research carried out by a team at the CWI during about a decade,
and we had the intention of being able to reuse that potential in our approach,
taking advantage of the different tools provided.

The main components included in the toolset are:

• mcrl: performs two steps, first checking if a given µCRL specification is well-
formed, and then trying to linearize it. In order to check if the specification
is well-formed, the tool checks things like the syntax, the typing of the terms,
conditions and equations, the existence of only one initial process, or checking
that communication actions behave in associative and commutative way. The
output can be either binary or in a text-based readable format.

• msim: interactive simulation of a µCRL specification. Allows the user to exe-
cute step by step a given simulation.

• instantiator: generates a state space from a linearized µCRL specification.
Takes as input the output of mcrl in binary format and can generate different
output formats for the state space, like SVC or AUT.

• pp: pretty printer of a linearized µCRL specification.

• Specification optimization tools:

– rewr: normalizes a linearized µCRL specification.

– constelm: removes from a linearized µCRL specification the data param-
eters that are constant throughout any run of the process.

– parelm: removes froma linearized µCRL specification the data parame-
ters and sum operators that do not influence the system behaviour.

– structelm: expands the composite data types of a linearized specifica-
tion.

– sumelm: substitutes sum expressions by a concrete term when it is pos-
sible.

Fig. 8.5, from the µCRL toolset documentation, describes in a very illustrative
way the collaboration between the different pieces included in the µCRL toolset.

8.3. µCRL TOOLSET 143

mCRL specification

finite transition system (.aut)

Linearized spec (.tbf)

Readable linearized spec

mcrl −linear

instantiator

mcrl −tbfile

pp

Simulation

rewr, constelm, parelm

structelm, sumelm

Model checking tools (CADP in our case)

Figure 8.5: Collaboration of the tools included in the µCRL toolset

8.3.2 Using the µCRL toolset for our purposes

In the next chapter we will explain the experiments in which we have used the µCRL
toolset. We have made extensive use of mcrl and instantiator for generating
all kind of state spaces from different Erlang programs. We have carried out some
experiments with the optimization tools in order to simplify the specification for
generating a smaller state space, obtaining good results.

We generated AUT files in order to provide them to CADP. The AUT files are
very simple. They are text files where the first line describes the state space
(including the initial state, number of states and number of transitions) and the
rest of the lines are just triples representing transitions (source state, name of
the transition and destination state). These are very well handled by CADP. The
disadvantage is that they are less efficient than other formats, which can cause a
slower state space generation for really big state spaces.

In general, the results were very satisfactory, but we have found mainly three
issues or limitations in our experience with the tool:

• The error messages of the instantiator are quite cryptic. During an im-
portant part of the research, we have been using the µCRL toolset at the
same time we developed and improved etomcrl. When there were errors in
the translation, the generated µCRL specification was sometimes syntactically
or semantically incorrect. When the error was syntactic, it was detected by
mcrl before linearizing the specification and was quite easy to fix. In the
cases where the error was semantic, the state space generation failed, and the
error messages produced for the user were often referring to some internal de-
tails of the generation processes, making very difficult to trace the error back
to the etomcrl translation and to the original Erlang program. This was,

144 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

therefore, an obstacle in our goal of making all the steps of the verification
process traceable back to the original source code.

• The efficiency of the instantiator is an issue. For complex configurations
of our input Erlang program, the translated specification was also quite com-
plex, producing very big state spaces. The fact of using AUT format for the
output files reduces the efficiency of the generation; this could be avoided by
using other formats that have been added to the last versions of the toolset,
and it is left as future work. Besides, the representation in µCRL of the nat-
ural numbers, based on the recursive definition with the constructors zero
and successor, makes any kind of computation with big numbers extremely
inefficient; in order to avoid this, be have tried to abstract from big num-
bers in our models, but a more optimal and flexible solution would imply the
implementation inside instantiator of a mechanism for moving complex
computations outside of µCRL.

• Optimization tools are complex to use and not completely automatic. The
tools for optimizing the specification described above are quite powerful and
allow the user to simplify the specification and therefore the final state space.
But due to their theorem proving nature, they are not very automatic and
require a human to participate interactively in the process. This goes a bit
against our global approach of going automatically from the system architec-
ture to the extraction of properties, and it is one of the reasons why we have
not used them more extensively. Also, the lack of a guidance or real examples
on how to use them for reducing real state spaces makes their usage quite
challenging.

8.4 CADP: model checking the state space

8.4.1 Introduction and motivation of the tool

In previous sections we have seen that our generic approach consists in translating
from the original source code in Erlang to the process algebra specification in µCRL,
in order to be able to generate the state space. But the state space itself is not
very useful (for real examples it is not even visible or printable due to its enormous
size) if we do not have the right tools for manipulating and analyzing it.

For that purpose we decided to use a set of tools, the CÆSAR/ALDEBARAN
Development Package (CADP) [FGKM96, GLM02].

CADP is a complete toolbox for specifying and verifying asynchronous finite-state
systems described using the process algebra LOTOS [BB87]. The toolbox includes
different kinds of tools oriented to help the user in different stages of the system
specification, prototyping, development or verification. CADP has been used for
years both by industry and academia, and it has been applied in a considerable
number of case studies.

From the above description, it is clear that CADP is not only a finite state
analyzer and checker. It has a wider functionality, but in our case we have mainly
used the tools related to label transition system manipulation and model checking.

8.4. CADP: MODEL CHECKING THE STATE SPACE 145

8.4.2 Parts of the CADP that we are using

The parts of the CADP toolbox we use in our method are:

• ALDBARAN. A tool for verifying distributed systems represented by a state
space. It allows the reduction of the state space modulo equivalence relations
such as strong bisimulation, observational equivalence, branching bisimula-
tion, and so on.

• BCG (Binary Coded Graphs). We use AUT files generated by the µCRL
toolset as input for CADP, but then we translate them inside CADP into
BCG files. They have a binary format which is more optimal and can be up
to 20 times smaller than AUT. Together with the format itself, CADP provides
a set of tools for opening and manipulating BCG files.

• SVL [GL01a] (Script Verification Language) is an scripting language for mak-
ing the verification easier. It offers operators for generation, minimization,
label hiding, label renaming, abstraction, comparison and model checking
of state spaces. CADP provides a compiler from SVL to a UNIX script that
performs all the steps (calls to different CADP tools) needed for perform the
verification.

• BGC MIN. Tool that complements and improves ALDÉBARAN and provides
minimization algorithms for state space graphs encoded using the BGC for-
mat. It only implements strong and branching bisimulation, but it can handle
bigger state spaces and it is faster reducing.

• EVALUATOR. Provides on-the-fly model checking of regular alternation-free
µ-Calculus formulas for the input state spaces. Regular alternation-free
µ-Calculus is an extension of the alternation-free fragment of the modal
µ-Calculus with action predicates and regular expressions over action se-
quences.

• EUCALYPTUS, shown in Fig. 8.6, is a graphical user interface developed in
Tcl/Tk that provides an homogeneous entry point for all the tools included
in CADP.

In our method, that will be explained in the next chapter, we use CADP in order
to reduce and simplify a state space, and later model checking it.

A typical SVL script for reducing a state space using a combination of CADP
tools would look like:

"abstract.bcg" = total hide all but ".*pid(0).*" in
"vodka.aut";

"state_space.bcg" = safety reduction of
total rename using "simplify.rename" in
total hide "assertion.*", "buffercall.*" in
total hide "reply(pid(0),[^{].*)" in
total hide "call(.*lookup,.*)" in
total hide ".*lookupAns,.*,\[{.*\].*" in
"abstract.bcg"

146 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

Figure 8.6: The EUCALYPTUS GUI integrates all the CADP tools

The script would take vodka.out (an AUT file with the state space for a given
configuration of the VoDKA software) as input. It first would hide (convert in
internal actions) all the labels but those one matching the given regular expression
and then would convert the state space to BCG format. After that, another set
of hiding and renaming actions are carried out and then a new reduced graph will
create another BCG file.

The simplify.rename file would contain renaming expressions for simplifying
the labels. In this example, the messages used in the VoDKA protocol are renamed
tu much simpler play and fail tags:

rename
"call(.*,{play,\(.*\),\(.*\)},.*)" -> "play(\2,\1)"
"reply(.*lookupAns,\(.*\),\[\].*)" -> "fail(\1)"

In order to model check µ-Calculus properties against a BCG file containing a
state space, we need to first write the formula in a text file. A very simple formula
for a state space where the transitions are formed by an action name play with
three arguments (process name, movie and bandwidth) would be:

[’play(.*,m1,2)’.’play(.*,m1,2)’]
<’play(.*,m2,2)’.’play(.*,m2,2)’>true

The formula says that, starting at the initial state, all transition sequences that
have two play actions for movie m1 with bandwidth 2, are leading to a state where
at least exists one transition sequence where there are two play actions for movie
m2 with bandwidth 2. In other words: after playing twice movie m1 with bandwidth
2, it is still possible to play m2 twice with the same bandwidth.

8.5. MCERLANG: MODEL CHECKING FROM ERLANG 147

Figure 8.7: CADP includes an interactive state space simulator

In order to check this kind of formulas, we can use text-based commands similar
to the following one:

bcg_open state_space.bcg evaluator -diag conterexample.bcg \
-verbose property.mcl

The µ-Calculus formula is given inside the file property.mcl, and if the con-
dition is not true, a counterexample is returned containing the part of the graph
that shows an example where the property does not hold.

All the previous tools are integrated by EUCALYPTUS under the same graphi-
cal user interface. Besides, other minor tools for exploring the state spaces (getting
the number of states, the list of labels), or for simulating the execution of the state
space (shown in Fig. 8.7) interactively are provided to the user. We have made
extensively use of all the interfaces and tools while developing our method and
applying it to our case study.

8.5 McErlang: model checking the state space directly
from Erlang

The approach of going from Erlang to µCRL and then reusing the research carried
out during a decade (µCRL toolset and CADP) has some obvious advantages, as

148 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

stated in the previous sections. But, although they have similarities, Erlang and
µCRL still belong to two different worlds (high level programming languages and
process algebra specifications), and the translation itself, together with the fact of
using several different tools, are including some limitations to the approach.

From the beginning, we thought that exploring the other alternative, a possibly
less mature but more ad hoc tool for generating the state space and doing model
checking from the Erlang model, was interesting.

McErlang [FBE06] is a new tool currently under development by Lars-Åke
Fredlund at the Universidad Politécnica de Madrid (UPM), which takes as input an
Erlang program and checks it against safety correctness properties also specified as
Erlang programs. As the verification of a program uses on-the-fly model checking
techniques, it is sometimes not required to explore the whole state space of the
Erlang program. In this section we explain the fundamentals of the tool.

8.5.1 Introduction to the tool

The main goal of the McErlang tool is to implement a model checker for Erlang
programs. The input to the model checker is potentially any kind of Erlang pro-
gram together with an special Erlang call-back module specifying the behavioural
property to be checked (called the monitor), an implementation of the state table
that determines when a new state has already been explored, and a set of state
abstractions also expressed in a call-back module. The output can be either a
positive answer saying that the property holds for all the generated states, or a
negative one together with a counterexample, showing that the program does not
possess that property. The tool can also be used to generate the state space and
visualise it; this could permit us the usage of other model checking tools like CADP
for the actual property checking.

The idea behind the McErlang implementation is to replace part of the Erlang
runtime system which implements concurrency and message passing, while still
using the runtime system for the evaluation of the sequential part of the input
programs. The relevant events in the software, mainly the ones having side effects
(process creation, message sending, process linking, etc.), are substituted in the
original source code by a call to special modules that are part of the model checker.
Receive statements (and other special side-effects) are changed so that instead of
actually waiting for the message, a special value is returned which indicates that
the process is waiting. This value is a structure which contains information about
what to do when the message is actually received in the model checker’s simulation
of the process (it contains one function for checking if the message is receivable,
and another to continue the evaluation once the reception occurs).

The model checker has a complex internal state in which the current situation
of the runtime system is represented. The structure that is maintained by the
model checker includes the list of processes that have been created and are still
alive, together with the state of each of them (mailbox, pid, process state, and so
on). Moreover the global state kept by the model checker runtime system includes
a structure to record process links, information about registered process identifiers,
etc.

The model checking of an Erlang program using McErlang requires the following
steps:

8.5. MCERLANG: MODEL CHECKING FROM ERLANG 149

• First, the original source code of the system is translated into the internal
language, where all the side-effect operations are converted into calls to the
model checker modules or special return values. There is an ongoing result to
automate this translation, but it was not ready in time for the experiments
reported in this thesis.

• Second, the model checker starts the Erlang program by calling a desig-
nated start function (using the apply Erlang function). The function call
either returns a normal return value, signalling that the associated process
has finished and can thus be removed from the global model checker state.
Alternatively, the function call returns a special return value signalling that
a receive statement is pending. At that time the model checker can schedule
another (simulated) process for execution.

Other side effects, such as e.g. spawning a new process, are handled by modi-
fying the global state of the model checker (the process table) during the call
to apply. Once the function call terminates, the newly created process can
be run by the model checker.

That is, instead of creating new processes or actually sending messages be-
tween them, the model checker global state is updated simulating those ac-
tions.

• Third, a depth-first algorithm is used in order to explore all possible future
states of the system. Multiple next states are possible during the state-space
exploration for obvious reasons. First, multiple processes may be scheduled
for execution, and second, the tool user may have deliberately specified a
non-deterministic choice in the verified program.

• Whenever a process does a computation step (i.e., typically starting by read-
ing a value from the queue and finishes waiting in another receive statement),
the target state is analysed with regards to two checks:

– The monitor is invoked to check whether the correctness property holds
of the combination of the target program state and the old monitor
state. If successful, the monitor returns an updated monitor state.
Correctness properties can be implemented, therefore, as finite state
machines where depending on the current state some actions or state
values are accepted and others are not.

– A call is made to the abstractions module for abstracting state spaces or
transitions, and with the result a call is made to the hash table in order
to determine if a given state has been seen previously or not. The user of
the tool can define ad hoc abstractions where the irrelevant information
is not taken into account at the time of distinguishing states. Adapted
hash tables can also be defined, including the possibility of stopping the
generation of new states in a given path depending on the state of the
model checker. Two states are the same if the abstractions point to the
same element of the hash table, taking into account both the state of
the monitor and the state of the model checker.

150 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

8.5.2 Internal implementation of McErlang

8.5.2.1 The internal language

All the side-effects in the original source code need to be translated into a call to
a function implemented inside the model checker modules. For example, sending a
message is done with evOS:send(), which updates the global state of the monitor
adding the message to the queue of the receiving process.

The possible values that a function can return are:

• {recv, {Mod, Fun, Args}}
It substitutes a receive statement in the original source code. The second
element of the tuple represents the checking message function that should
be called once a message is received to determine if it can be read. The
function Fun is going to be invoked using apply(Mod,Fun,[Value,Args]),
where Value is a message in the process queue, and Args are the list of values
from the context that are going to be needed later on.

The function can return two possible values. It returns false if the message
in the queue is not readable (it does not match), and true {true, ContFun}
when the message can be read. ContFun is the anonymous continuation
function that is going to receive two arguments: the message received and
the information contained in Args.

When the model checker evaluates a process that returns this kind of recv
value, it places it in a blocked state. It will be selected again by the model
checker for evaluating the checking message function once a message is re-
ceived. If the return value of that function is positive, the state of the pro-
cess will be updated to state receivable. Next time it is selected by the model
checker, the message is actually removed from the queue and the continuation
function is evaluated. This way, we can observe while model checking three
different process states when receiving a message, which can be interesting
for some properties to be checked.

The following Erlang source code:

-module(ex).

...
Value1 = 10,
Value2 = 20,
receive

{message, Msg} ->
function1(Value1, Msg),

ok;
nomessage ->

function2(Value2),
error

end.

Would be translated including the recv return value, a function for checking
the message and a continuation anonymous function, as follows:

8.5. MCERLANG: MODEL CHECKING FROM ERLANG 151

-module(ex).
...
-export([checking_function/2]).

...
Value1 = 10,
Value2 = 20,
{recv, {ex, checking_function, {Value1, Value2}}}.

checking_function({message, Msg}, {Value1, Value2}) ->
{true, fun ({message, Msg}, {Value1, Value2}) ->

function1(Value1, Msg),
ok

end};
checking_function(nomessage, {Value1, Value2}]) ->

{true, fun (nomessage, {Value1, Value2}) ->
function2(Value2),
error

end};
checking_function(_,_) ->

false.

• {choice, ListOfFuns}
Although in Erlang a non-deterministic choice construct is not available,
when doing model checking of Erlang programs it is often useful to have that
kind of expressiveness.

Whenever a function returns a choice value, the model checker will explore
all the possible paths corresponding to the evaluation of each of the func-
tions in the list. Each function should be defined as a triple of the form
{Mod,Fun,Args}, where the arguments are the values from the context that
are going to be needed in the continuation.

• {pause, {Mod, Fun, Args}}
It is similar to the previous return value, but now only one choice is given for
the continuation. The pause is interesting for interrupting the execution of a
program in order to explicitly make visible some states for the monitors.

• {letexp, {Expr, {Mod, Fun, Args}}}
The letexp construct is needed when a receive statement occurs inside an-
other Erlang expression. When Expr evaluates to a non-special value Value,
the function {Mod,Fun} will be called with two arguments: Value and Args.

In the previous example, if the receive statement occurs inside a send, we
need to surround the receive with a letexp expression:

Pid ! receive
{message, Msg} ->

function1(Value1, Msg), ok;
nomessage ->

function2(Value2), error
end

152 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

We can use letexp in the following translation (only the new parts are
shown):

-export([cont_fun/2]).

...
{letexp, {{recv, {ex, checking_function, {Value1, Value2}}},

{ex, cont_fun, {}}}}.
...

cont_fun(Value, {}) -> Pid!Value.

McErlang has built-in support for using some Erlang behaviours. This makes
easier to perform the code translations, as the code of the behaviours is already
adapted and translated, being part of the tool.

This means that calls to modules like supervisor or gen server need to be
translated into calls to ev supervisor or ev gen server.

As the generic server call function returns as a result the message sent back
from the server, it needs to be handled similarly to the receive statement. The
following code using a generic server call:

...
{lookupAns, NewOptions} = gen_server:call(Driver,MessageSent),
function1(NewOptons, MessageSent),
...

Would be translated as follows:

ev_gen_server:call(Driver,MessageSent,
{?MODULE,continuation_function,{MessageSent}),

...

continuation_function({MessageSent},{lookupAns, NewOptions}) ->
function1(NewOptions, MessageSent).

Internally, the continuation function is used to construct the recv message that
is part of the implementation of call (it first sends a message and then waits until
it is received).

McErlang has some interesting options, like the possibility of stopping or not the
model checker when a given process crashes. Normally, while debugging a system,
it is interesting to stop the generation of the state space if one of the processes fails.
However, the existence of the option, allows the users of the tool to provoke the
crashing of a given process and then study the properties under that conditions.

Another interesting option is the use of an intermediate channel introducing
delays in the message sending in order to model remote semantics. In the normal
way of working, sending a message is performed in an atomic way: the message
is immediately placed in the queue of the receiving process. However, in a real
distributed system the message can be delayed, so there is an intermediate state
of the message when it has already been sent but still not received. Configuring

8.5. MCERLANG: MODEL CHECKING FROM ERLANG 153

McErlang so that the channel is modelled this way increases significantly the state
space, but it allows to check programs under more realistic assumptions.

McErlang can also be used as a simulator where the user can select which path
to explore, or even as a tracing tool, executing randomly one of the possible paths.

8.5.2.2 Monitors

The monitor implements a correctness property for the Erlang program that should
be checked. The monitor can keep an internal state if the property is complex, and
it has the following interface:

init(Arguments) -> FirstMonState
stateChange(State,MonState, RestStack) ->
{ok, NewMonState} || Other

MonState is the state of the monitor, that can be initialised or updated; State
is the description of the global state with all the processes in the system; and
RestStack is the structure with all the previous states of the graph. All the
information in these parameters can be used by the monitor in order to check if
the property holds in the state.

Other can be any value except a binary tuple with first element ok, and it
indicates to the model checker that the property does not hold for the current
state. A counterexample can be then generated by McErlang showing the trace
back to the initial state of the graph.

8.5.2.3 Abstractions and hash tables

Abstractions are modules defined by the user that have two relevant functions:
abstract actions and abstract state. They are called by the model checker
each time a new state is generated, and allow the user of the tool to abstract
multiple states into the same state.

Abstracting both actions and states is very useful in order to have smaller state
spaces, but each property to be verified needs to be carefully reviewed in order to
check if a given abstraction still keeps all the needed information in the state space.

A very simple abstraction, used by default in McErlang, is ordering the processes
in the system state by their process identifier. The state abstractions can affect both
the state of the property (monitor) and the state of the system (list of processes).

Normally states are kept in a state table by McErlang; when a new state and
monitor combination is generated the tool checks whether the combination has
been previously explored. If so, the new state is discarded. This is safe for safety
properties; for checking liveness properties a more expressive monitor automaton
is needed.

8.5.3 The McErlang approach vs etomcrl +µCRL +CADP

McErlang is still a tool under development, and therefore lacks some functionalities
present in µCRL and CADP. Besides, the translation from Erlang to the internal
McErlang language is still being developed; only a subset of the Erlang behaviours

154 CHAPTER 8. TOOLS USED FOR THE ANALYSIS

are supported; moreover the memory consumption is still high, and the checker can
only check for compliance of safety properties.

However, already in this stage of its development, the tool shows some advan-
tages of the approach -model checking directly in Erlang- that are worth mention-
ing:

• The problems of using big numbers with µCRL are automatically solved.
Therefore, CPU-wise, when using big numbers the graph generation is more
efficient with McErlang.

• All the error messages can be easily traced back to the Erlang code, avoiding
the limitations associated with using µCRL as intermediate language, or with
the complex error messages of the tools for generating the state space.

• The translation from Erlang to the internal McErlang language is easier than
the translation from Erlang to µCRL, which makes in principle the McErlang
tool capable of handling a wider subset of the Erlang programs.

• State information is much richer than in the case of the graph generation
from µCRL. In McErlang the properties can reason about any detail included
in the system state (state of each of the processes, list of side-effect actions,
state of the property itself), which is more powerful than using µ-Calculus
over the labels of the state graph (although currently the tool is limited to
check safety properties).

• The tool is very flexible and it is written in a high level programming lan-
guage; as such, introducing modifications when needed for extracting a given
property is always possible.

• The language of the tool is the same as the language of the developers, which
makes it easier to use, or even modify it. This fits very well with the approach
presented in the previous chapter of the thesis, of facilitating the task of
verifying programs for Erlang developers.

Chapter 9

Extracting performance
information from the Erlang
source code

Contents

9.1 Introduction . 156
9.2 Method . 158

9.2.1 Step one: Erlang to µCRL 164
9.2.2 Step two: Generating a State Space from µCRL 166
9.2.3 Step three: Performance analysis with model checking . . 167

9.2.3.1 Verifying Global Properties 167
9.2.3.2 Architecture from the messages 171
9.2.3.3 Bottleneck information 172
9.2.3.4 Calculating resources for a new component . . . 173

9.3 Results . 174
9.3.1 Intermediate results of the experiment 174

9.3.1.1 µCRL model generation 174
9.3.1.2 State space generation 175

9.3.2 Final results: properties we are able to extract 177
9.3.2.1 Extracting global properties 177
9.3.2.2 Extracting architecture from the messages . . . 180
9.3.2.3 Extracting bottleneck information 182
9.3.2.4 Adding and studying new components 185

9.4 VoDKAV : hiding formal methods 186
9.5 Testing the method with McErlang 187

9.5.1 Generating the state space from the Erlang model 189
9.5.2 Checking the properties from the Erlang model 192
9.5.3 McErlang vs. etomcrl +µCRL +CADP for VoDKA 193

9.6 Analysis and discussion 194
9.6.1 Conclusions and future research paths 196

155

156 CHAPTER 9. PERFORMANCE FROM CODE

9.1 Introduction

In Part II of the thesis, the VoDKA server has been described in detail. In the
current chapter, we will focus now the research on the distributed scheduler of
VoDKA.

As explained in Sect. 5.2, there is a global distributed scheduler in the VoDKA
server, meaning that the scheduling procedures and decisions are spread all over
the processes composing the system, and not concentrated in one unique point in
the architecture. The distributed scheduler enables that whenever a user agent
is requesting a certain movie to the server, the request is transferred through the
system gathering information and passing different filters and, at the end, a set of
possible play-back qualities is returned back to the agent. In case of a non-empty
set, the internal policy algorithms select one option and, if it is possible, the movie
is streamed to the user.

The storage subsystem of the server is composed by a hierarchy of different
storage systems, i.e. they could be disks, CD/DVD players or tapes. An important
feature that should be remembered here is that all these devices have restrictions
reflecting the available resources, of which the process controlling the device is
aware. A second layer of processes controls a set of devices in one machine and
has more restrictions, for example the bandwidth of its connection. A third layer
may be further out in the network and serve as a cache to store more popular
movies. That way the limitations and bottlenecks of the hardware resources are
modelled by using the resource constraint pattern explained in Sect. 5.3.1. Again,
the status of the server is distributed all over the processes that are part of the
control subsystem.

Therefore, every process participating in the distributed scheduling of the sys-
tem has a function determining local restrictions, given the constraints, the con-
figuration, and the current state of the part of the system that process is aware
of.

Information about the system performance is very difficult to obtain due to
the distributed nature of the VoDKA scheduler (procedures and restrictions). For
that reason, we decided to try to extract it automatically from the information we
have, using formal methods. The research question is therefore: how to use formal
verification techniques to extract automatically global information from the local
restrictions existent in the source code and configuration of the system.

In the current chapter we explain how we have designed and used a method to
construct complete models of several configurations of the VoDKA system. With
techniques from the area of formal methods (in particular model checking) these
models are used to determine global properties of the system, such as the maximum
number of a certain class of movies that can be served in parallel. We are also able
to extract information about the software architecture, do some tests for bottleneck
detection, or even calculate the resources needed for introducing a new software
component.

We are talking about performance analysis on a system directly from its source
code, but there are several points of view performance analysis can be seen from.
From the user point of view, we can talk about a black-box evaluation, more
requirements oriented, in order to be able to measure the system capacity; the

9.1. INTRODUCTION 157

capacity of each of the system components; or any kind of checking to see if a given
scenario can be possible given a system configuration.

On the other side, from the developers point of view, performance analysis
would be more focused towards architectural and internal protocol analysis, more
oriented to the improvement of the design and analysis. The developers of a system
such as the VoDKA server, are interested in tools helping them to find bottlenecks
in the architecture, to extract the internal protocol and the system architecture
from the source code, or to find the required capacity for a new component. After
interviewing the development team at different stages of the software life cycle,
those where the most demanded tools, and those where, therefore, the main goals
our research was focused on.

The concrete goal of the research explained in this chapter is: given a configura-
tion for the server (its processes, the storage devices, all the restrictions, scheduling
functions, and costs), how can we extract performance information from the source
code of the system?

The local properties are restrictions (on bandwidth and number of connections
of disk drives, CD players, tape storage devices and such), local scheduling functions
(filtering and admission policies) and cost related functions (state of the component
and resources still available).

Given only these local restrictions, and the rest of the configuration of the
system (number of levels and components in each level), it is far from obvious to
extract information about the behaviour and performance of the system. Answering
questions such as how many users can watch ‘Star Wars’ at the same time, is
virtually impossible without building the actual configuration and testing this.
Answers to such questions, however, are what both the operator of the video-
on-demand server and the designers of the system are interested in. The former
want to obtain information about the capacity of the system, and the later are
more interested in knowing how the different distributed properties of the system
influence its performance, in order to be able to know how to improve it (redesign
and reconfiguration of the scheduler).

Many global properties of the system can be determined by testing, but testing
all possible scenarios of users that request a movie is rather expensive. Moreover,
one tests a certain configuration. Performing experiments with new drives, faster
network connections and all that, increases the costs even more.

We want to be able to answer questions like the following ones:

• What is the maximum number of users in the system?

• What is the minimum number of users such that serving any MO is not
possible?

• What is the minimum number of users such that serving MO1 is not possible?

• How many people can watch MO at the same time? (best case)

• How many people can watch MO1 such that the system can still serve MO2?

• How many people can watch MO1 such that serving MO2 is guaranteed?

• Would it be better to move MO from storage1 to storage2?

158 CHAPTER 9. PERFORMANCE FROM CODE

• Where should we move MO1 for being able to serve it to N users?

• Why (bottleneck) MO cannot be served to N users at the same time?

• What are the minimum requirements for a new component?

The idea we propose is rather general. In a design, either concurrent or dis-
tributed, where one has many processes that steer a certain functionality, one often
finds global properties of the system hidden in several local properties of the run-
ning processes. Here we propose a method to reveal these global properties by a
kind of exhaustive simulation of the system.

9.2 Method

In order to extract global properties from an Erlang system, we build a model of
the system by using a set of tools in a way described in this section. We use the
tools in a rather unconventional way, and we show how the obtained model can be
used in a concrete case study described in the next section.

Our goal in the development of the methodology can be summarized as: given
a real distributed system, defined by its functional requirements, the design and
implementation of the system, and its performance requirements; using techniques
from the formal methods field, composed by a compiler from Erlang to process
algebra, some process algebra tools, and some model checking and graph analysis
algorithms; we want to find and fix functional problems, performance problems
and design problems (related to the system maintainability and its flexibility).
This briefly defines our input, the tools we use and the output we want to achieve.
In the next paragraphs all these ideas are explained in detail.

First, we translate Erlang to a µCRL specification with the etomcrl tool de-
scribed in Sect. 8.2. Second, we use µCRL and the instantiator explained in
Sect. 8.3 to generate the state space of our µCRL specification, and therewith of the
Erlang code. The state space is then reduced using CADP in order to hide all the
information that is not relevant for extracting the performance information.

In the reduced graph the failures of requests are visible and therefore, the
shortest path to a failure. This answers the question on how many users are
guaranteed to be able to be served in parallel. Other questions, such as ‘How many
people can watch the movie A such that the system can still serve B?’ or ‘Where
should we store the movie A for being able to serve it to N users?’, can also be
expressed as properties of the graph.

We designed a user interface to guide the whole process: choosing the pa-
rameters of the configuration, generating the model, constructing the graph and
translating human understandable global properties of the system into a temporal
logic formula. This formula is checked by model checking techniques using CADP,
already introduced in Sect. 8.4. The formula is used as a declarative way of ask-
ing for knowledge of the system and the checking techniques primarily as efficient
graph search techniques.

9.2. METHOD 159

levels
n cache

Storage

(TAPE)
Driver

Storage
Driver
(File)

Storage
Group

(HTTP)
Driver
StorageDriver

(File)

Cache Cache
Driver
(File)

Frontend
HTTP

Frontend
HTTP

Streamer
HTTP

H.263

RTP

Group
Stream Streaming

Sched
Storage
Group

Storage
SchedSched

Cache

Group
Cache

Monitor Monitor

Monitor

VODKA_slave VODKA_slaveVODKA_slave

VODKA

Figure 9.1: Architecture configuration example for the VoD system

Case study: the VoDKA video on demand server Scheduler

Here we present the concrete architecture used in our case study. Although the
details of the VoDKA server have been already described in the previous part of the
thesis, we include a very short explanation of the most relevant information needed
for a better understanding of the current chapter. In concrete, we briefly describe
the distributed scheduler and propose an example of an architecture configuration
that is going to be taken as the case study. The case study is itself a simplified
version of VoDKA where some of the details that are not relevant for our research
have been hidden.

The system flexible architecture is based on a hierarchy of specialized levels that
can be combined in different ways, depending on the needs for a given deployment of
the server. A common configuration of the system architecture would be: a massive
storage level ; one or more cache levels, that are going to reduce the performance
requirements (i.e. the response time or the bandwidth) of the lower levels; and a
streaming level, that implements the protocol adaptation between the server and
the user client. The software of the system has been developed using Erlang/OTP ,
and it is deployed over an architecture of GNU/Linux based clusters of commodity
computers.

In Fig. 9.1 the general architecture of the system for a linear configuration is
shown. The boxes in this figure correspond to an Erlang process. Each of the levels
is composed by a set of software components (most of them are Erlang gen server
processes) with a standard API. On top of the generic server based architecture,
a supervision tree is constructed for providing fault tolerance. The system can
roughly be divided in three levels: storage level, cache level and streaming level.
Any storage level is composed by a storage scheduler and a hierarchy of storage
devices grouped by one or more storage groups. The storage level is connected to
the streaming level, but one or more cache levels may be in between them. The
structure of the cache level is similar to that of a storage level; only logically they
differ, since Media Objects are dynamically copied to it and removed after use.
The streaming level has a hierarchy of components implementing the adaptation

160 CHAPTER 9. PERFORMANCE FROM CODE

users streaming_sched

{lookupAns, [{Bw,Cost,Pid}]

{lookup,MO,[Bw]} {lookup,MO,[Bw]} {lookup,MO,[Bw]}

{lookupAns, [{Bw,Cost,Pid}] {lookupAns, [{Bw,Cost,Pid}]

{lookupAns, [{Bw,Cost,Pid}]
{lookup,MO,[Bw]}

{play, MO, Pid} {play, MO, Pid} {play, MO, Pid}
{play, MO, Pid}

User level Streaming level Storage level

storage_sched

VoDKA

tape_storagedisk_storage cd_storage

storage_groupstorage_sched

Figure 9.2: Detailed configuration example without cache level

to the streaming protocols accepted by the system (HTTP, RTP, H.263, etc.). The
processes in the streaming level create and supervise all the processes needed for
performing the actual transmission of data through the system.

All the processes of the system have local restrictions, cost functions and de-
cision algorithms, and all these configuration values are going to determine the
distributed scheduling of the multimedia server.

Whenever a user requests a given MO with a concrete quality (bandwidth),
this request is received in the streaming level and propagated trough all the levels
of the system. If the MO can be provided by a given level, because the object is
stored there and it has the resources left to provide it, then this information is
returned. The scheduler is in charge of elaborating a list of candidate providers,
with an associated cost, that is going to be sent back to the upper levels of the
hierarchy. Finally, after filtering the options in the different levels on the way back
to the user, either a fail or the opportunity to play the MO is replied.

In this chapter, a method is described to automatically derive the global schedul-
ing performance properties of the system from the local restrictions on the schedul-
ing subsystems. We concentrate on configurations of VoDKA in which we have one
streaming level and one storage level without any cache level. One may argue that
a cache level behaves like a storage level in our performance analysis, since we
consider in the storage level all possible distributions of the Media Objects over the
devices (i.e., also copies of the same object on multiple devices). For an average-
case scenario, the dynamic behaviour of the cache may become interesting, but for
a worst-case scenario, where all users start asking for a set of movies at the same
time, the cache can be seen as static storage. Fig. 9.2, the concrete group of pro-
cesses used for the case study are shown. Squares represent supervision processes,
and spheres worker processes (worker in Erlang terminology is the name given to
the processes carrying out the actual work in a system). The dotted lines represent
supervision links, and the arrows are example messages that are exchanged between
the processes. This is an abstraction of the real software, because we have decided
to hide some of the low level processes, that are not relevant for the analysis.

9.2. METHOD 161

In summary, the VoDKA server has a completely distributed scheduling subsys-
tem, without any kind of global state or global decision mechanism. The scheduling
algorithm is distributed among all the different processes in the software architec-
ture. Each process in the scheduling subsystem can implement: restrictions (num-
ber of connections, maximum bandwidth), scheduling function (filtering, cache
algorithms, admission policy), and cost (state of the component and resources still
available).

In the following sections, we will use mainly three configurations of the explained
the case study. All of them follow the architecture explained above, with one
streaming level, no cache, and a group of storage devices. The configurations are
the following ones:

• Configuration 1 of VoDKA :

– Connection of the streaming level with the storage level:

∗ Maximum bandwidth: 15 units.
∗ Maximum number of connections: 20.

– Connection of the storage level with the devices:

∗ Maximum bandwidth: 15 units.
∗ Maximum number of connections: 15.

– List of devices and restrictions in each device:

∗ Tape storage with:
· 1 maximum connection.
· 2 units of bandwidth.
· Movies of type m1 and m3. Both types are available with band-

width rate 1 and 2.
∗ CD storage with:

· 2 maximum connections.
· 3 units of bandwidth.
· Movies of type m1 and m2. Both types are available with band-

width rate 1 and 2.

• Configuration 2 of VoDKA :

– Connection of the streaming level with the storage level:

∗ Maximum bandwidth: 15 units.
∗ Maximum number of connections: 20.

– Connection of the storage level with the devices:

∗ Maximum bandwidth: 15 units.
∗ Maximum number of connections: 15.

– List of devices and restrictions in each device:

∗ Disk storage with:
· 4 maximum connections.
· 4 units of bandwidth.

162 CHAPTER 9. PERFORMANCE FROM CODE

· Movies of type m1, m4, m6 and m7. All of them are available
with bandwidth rate 1 and 2.

∗ Tape storage with:
· 1 maximum connection.
· 2 units of bandwidth.
· Movies of type m3, m5, m6 and m7. All of them are available

with bandwidth rate 1 and 2.
∗ CD storage with:

· 2 maximum connections.
· 3 units of bandwidth.
· Movies of type m2, m4, m5 and m7. All of them are available

with bandwidth rate 1 and 2.

• Configuration 3 of VoDKA :

– Connection of the streaming level with the storage level:

∗ Maximum bandwidth: 14 units.
∗ Maximum number of connections: 20.

– Connection of the storage level with the devices:

∗ Maximum bandwidth: 16 units.
∗ Maximum number of connections: 30.

– List of devices and restrictions in each device:

∗ Disk storage with:
· 5 maximum connections.
· 6 units of bandwidth.
· Movies of type m1, m5, m6, m7, m11, m12, and m15. All of

them are available with bandwidth rate 1 and 2.
∗ Disk storage with:

· 4 maximum connections.
· 4 units of bandwidth.
· Movies of type m2, m5, m8, m9, m11, m12, m14 and m15. All

of them are available with bandwidth rate 1 and 2.
∗ Tape storage with:

· 1 maximum connection.
· 2 units of bandwidth.
· Movies of type m3, m6, m8, m10, m11, m13, m14 and m15.

All of them are available with bandwidth rate 1 and 2.
∗ CD storage with:

· 2 maximum connections.
· 3 units of bandwidth.
· Movies of type m4, m7, m9, m10, m12, m13, m14 and m15.

All of them are available with bandwidth rate 1 and 2.

9.2. METHOD 163

mCRL
Erlang to mCRL to

Checker
mCRL File State Graph

Performance Questions

Erlang
Source Code

(levels, devices, restrictions,...)
Configuration High Level

Graphical User Interface

Model
State Space of the System

Global Properties

Figure 9.3: Proposed three steps methodology: from Erlang to global properties

In all the configurations, we will have an unbounded number of users asking
randomly for all the Media Objects with all the available bandwidths. This will
provoke all possible scenarios inside the system to be inspected, depending on the
order the requests are sent.

There is other important configuration value: the cost. The cost of each compo-
nent of the system allows the internal filters and scheduling algorithms to select the
component from where the content is going to be streamed. In our case, we have
selected realistic values based on the configuration of real system deployments.

Going from local restrictions to global properties

The proposed methodology consists in generating the full state space of the system
from its configuration, starting directly from the Erlang source code, which is easier
if we use the knowledge about the Erlang design patterns (behaviours). From the
system state space we hide the information that is not relevant, and we obtain a
new reduced graph, where we can extract the information we are interested in, by
model checking. The schema of the method is shown in Fig. 9.3.

The input source code is already an abstraction of the real one, where only the
scheduling subsystem is taken into account, and no resources are released. So we
construct in Erlang model we want to analyze by abstracting from the low level
details present in the actual implementation.

µCRL process algebra is used as intermediate step, because it has efficient tools
for generating the state space, and its semantics are quite similar to Erlang .

A high level GUI separates the theoretical details from the users of the method-
ology. In the case-study at hand, we are interested in the performance of several
configurations of the video server, without actually building all possible configura-
tions. Moreover, we would like to obtain some insight in the system, such that we
get an idea on how to improve the software.

As we have explained in Sect. 8.2.2, the full state space of a system consists of
the combination of all possible states that can occur in the state parameter of a
call-back function. This is a real reduction and in many practical examples it is a
finite state space.

The events in the system are the messages the particular servers receive and
reply/send. In our example, the messages are requests for Media Objects that are
passed from one level to the other, and a list of choices propagated in return. As
long as the list of Media Objects is finite, this results in a finitely branching graph.
However, in case of a realistic number of movies, this would be an enormous graph,

164 CHAPTER 9. PERFORMANCE FROM CODE

Graphical User Interface

Configuration
(levels, devices, restrictions,...)

.erl
compiler

.mCRL

.mCRL

MO List and
bandwidth

compiler
etomcrl non−det.

user process
builder

Erlang Source Code
with a mCRL like structure

mCRL code with
deterministic behavior

mCRL code with
non−determinism in

the user process

.erl

Original Erlang Source Code

.erl

etoe

.erl

modifiers

Figure 9.4: etomcrl: from Erlang to µCRL

impractical for our purposes. We realized that the level of detail on the specific
movie is unimportant for the analysis of the system. What is important is that
it is a Media Object that is stored on the first disk, or that it is an object stored
on both disk and tape. Hence, we look at configurations of the system in which
we instantiate our storage devices with abstract objects m1, m2, etc. Typically,
we have one object per combination of devices. Thus, there is one object that is
both on tape and on disk; one object only on tape, one only on disk, etc. The real
distribution of movies is a function from Media Objects to abstract Media Objects.
The user of our tools can therefore still ask the question: “Is it possible to have 30
users watch ‘Star Wars’ at the same time?”. The abstract object is computed and
the question translated.

As a real advantage of these abstract Media Objects, we get for free that we
can answer the user: “No this is not possible, but if you put one extra copy on CD
player 4, then this is possible”. We just try to answer the question for all possible
abstract Media Objects and determine the difference between the given abstract
object and the abstract object for which it succeeds.

The analysis tool consists of three parts that are connected by a graphical user
interface (GUI). First, the user interface lets the user select a configuration, i.e.
the levels in the system, the storage devices with their limitations and the Media
Objects stored on each device. The interface then calls our translation tool, that
translates the system with this particular configuration to a µCRL specification
(Sect. 9.2.1). Second, the user interface activates tools to efficiently generate the
state space and reducing it (Sect. 9.2.2). Third, several properties are presented in
the user interface that can be checked automatically using the underlying model
checker and some gluing software (Sect. 9.2.3).

9.2.1 Step one: Erlang to µCRL

In Fig. 9.4 the translation from Erlang to µCRL is sketched. The first two steps are
performed with the etomcrl compiler. The last step is a small modification to the
created µCRL code to obtain a non-deterministic user process.

The etomcrl Erlang to µCRL compiler is meant for systems that consist of
servers that are implemented using the generic server design pattern and clients

9.2. METHOD 165

(that might be servers as well) that are restricted to communicate via the generic
server API (i.e., gen server:call etc.). A set of Erlang modules implementing that
servers and clients forms the input of our compiler. In Erlang the processes imple-
mented by these modules can be dynamically created and normally a supervision
tree will be used to initiate that. Our case study fits perfectly in this kind of
systems.

The first task for the compiler is to symbolically evaluate the supervision tree
for a given set of arguments (determining the configuration) to find the processes
and their initial arguments that are used in the system. After computing the set
of processes in the system, every module implementing one of these processes is
translated. These processes are either simple clients or arbitrary complex generic
servers. The gap between Erlang and µCRL is solved by following all the translation
steps described in Sect. 8.2.

The etomcrl tool is used in our case study, therefore, in a very automatic and
transparent way. We execute it with the same arguments than the function that
would start the Erlang supervision tree, but instead of that, the code is translated
and a µCRL file.

The obtained µCRL specification can be used to generate the state space of the
Erlang system. However, in our scheduler we are not ready yet. As our main goal is
to automatically obtain global properties about the performance and behaviour of
the system, we only have to analyze the control core of the video-on-demand server.
But for ‘activating’ the system, a special interface that represents the possible users
asking for Media Objects has to be added to the model. One direct solution would
be to add to the Erlang source code an abstraction of the user process and to include
this in the supervision structure of the system, thus introducing the number of users
as a parameter in the same level as the number and configuration of the different
devices. The problem of this approach is that it would be hard to explore all the
different combinations of users, because the fact of including a lot of new processes
would make the state space to grow exponentially. In the state space with many
users one would get different paths for different orders in which the users ask for
Media Objects. We are, however, not at all interested in the difference between
user one asking for ‘Star Wars’ followed by user two asking for ‘Star Wars’ and
the sequence in which they ask it the other way around. The only thing that is
important for us is that two users asked for ‘Star Wars’ after each other. Another
disadvantage with the solution of many user processes is that it is hard to tell how
many of them will be needed to determine the capacity of the system.

The solution we choose lays in a different approach for modelling the users: in
the Erlang source code, only one client process is used to model the user pattern.
That process asks for a Media Object with a given quality, waits for the answer
(the set of options provided by the server), and plays the object or asks again (if
the request fails), repeating this loop all the time. Then, after creating the µCRL
file, we use our tool for automatically adding non-deterministic behaviour to the
user process. Instead of asking for a concrete movie with a given quality, now the
user is going to ask non-deterministically for one out of all possible Media Objects
with one out of all the possible qualities. Thus, we use one non-deterministic user
process for modelling an infinite set of users that constantly request Media Objects.
Since the user process never releases a Media Object , this process will only receive

166 CHAPTER 9. PERFORMANCE FROM CODE

.mCRL

Graphical User Interface

mCRL code with
non−determinism in

the user process

instantiator
mcrl tools

rewriter
transitions CADP

reduction
tools

The nodes of the graphs
are the states of the system
and the transitions are
the mCRL actions

Hiding and reduction rules

system behavior
Whole graph of the

with user−friendly transitions
Graph of the system

behavioral graph
Reduced high−level

Figure 9.5: From µCRL to state space of the system

‘fail’ as a reply after that the system is overloaded. As such, there is a natural
bound on the number of users in the system and the creation of an infinite state
space is avoided.

The tool set for µCRL comes with several other tools that can be used to modify
the µCRL specification before generating the state space [GL01b]. The aim of these
modifications is to end up with a specification that gives less states and transitions
(events) in the generated state space. This can theoretically be achieved because
some events, like the communication with the call-stack or the buffer may be seen
as internal actions and can be hidden in the state space. Tools like a confluence
analyzer can be used to modify the source code in such a way that only one of
the many confluent paths to a result is chosen in the generation of the state space,
provided that the obtained state space is observational bisimular with the original
one. We experimented with these tools as well, giving reductions of ten to twenty
percent in the generated state spaces.

9.2.2 Step two: Generating a State Space from µCRL

After generating the µCRL code for the concrete configuration of our system, the
second step of the proposed methodology is to create the state space for that
configuration. This step is based on standard tools for µCRL [SEN99], and tools for
hiding and renaming labels as well as the reduction tools in the Cæsar/Aldébaran
tool set [FGKM96]. Fig. 9.5 depicts which tools are used to create a reduced state
space from the process algebra specification.

In the Erlang scheduler software there are many processes that communicate
with each other. The communication is rather straight-forward, though. The user
sends a request, this is passed from one process to the other and in the end a
growing list of possibilities is passed back.

For the typical properties we are interested in, we are only concerned about
the messages that the user sends to the system and the messages that are returned
to the user. In that way, we can judge whether a user can be served and what
the possible choice for the user are. The messages between streaming level and
storage level, between storage group and devices, are irrelevant for our purpose.
However, the translation from Erlang to µCRL is such that when we use the instan-
tiator tool on the specification directly, we obtain a state space in which all these

9.2. METHOD 167

irrelevant messages are visible as well. Therefore, the state space contains at least
4 ∗ (2+#devices) times more events than we are interested in, whereas in practice
this redundancy turns out to be even larger.

We generate the full state space and then rename the labels of the events we
are interested in and we hide the other events. By using reduction tools we can
perform observational bisimulation reduction on the state space, obtaining in this
way a much smaller state space in which only the relevant events are shown.

Renaming the labels is useful to create a better readable visualization of the
graph. For small configurations such visualizations can be illustrative for the de-
signers to look at. Moreover, the properties that we use later refer to the renamed
labels. If we would not rename the labels, the properties would be harder to formu-
late. Hiding the irrelevant events has the two advantages that the properties can
be formulated configuration and system implementation independent (they need
not reflect internal behaviour) and that model checking them is faster.

Fig. 9.6 shows a very small illustrative example of a reduced state space ob-
tained from a simple linear configuration. The system was configured with two
linear levels (streaming level -with the local scheduler-, and massive storage level
-with the scheduler and the storage group). The storage group was grouping two
devices: a tape with 2 units of bandwidth, only able to handle one connection at
the same time; and a CD with 3 units of bandwidth able to handle 2 simultaneous
connections. No extra restrictions were placed in the hierarchy, other than trivial
cost functions able to select the right providers for the users. In this example, we
used the abstract approach for the Media Objects, placing in the devices all the
possible combinations of MOs. That is, to have m1 as the abstract kind of MOs
that are in both devices, and m2 and m3 as the MOs that are only in one of them.
For the quality of the MOs we chose to have only two possible qualities with 1 and
2 units of bandwidth respectively.

For the example configuration, from the original whole state space of the system,
with a total of 2547 states and 2747 transitions, the reduction results in the 8 states
and 48 transitions shown in Fig. 9.6. In the graph, the performance pattern for
this kind of systems can be seen; from the initial state 0, the transitions explain
which are the actions the users are able to perform (e.g. play(tape,m3,1) means
to serve an MO from the group m3 on the device called tape using 1 unit of
bandwidth). After more users requesting movies, the system is becoming more
busy. Some resources are not available to handle some a user request (e.g. in state
5 the system is not able to provide the user an MO from group m2 at a quality of 2
units bandwidth, because that media is only on the CD device, and the device only
has 1 unit of bandwidth available at that moment). The last node of the graph is
always representing the maximum load of the system, where all the resources are
being used (the bottlenecks of the architecture are using their maximum capacity),
and every user request results in a fail as reply.

9.2.3 Step three: Performance analysis with model checking

9.2.3.1 Verifying Global Properties

Once we have generated the reduced state space, representing the behaviour of the
system from a black box point of view, the last step of the proposed methodology

168 CHAPTER 9. PERFORMANCE FROM CODE

4

0

5

16

2

7

3

play(tape,m1,1)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])
fail(m3,[1])
fail(m2,[2])
fail(m1,[2])

play(cd,m1,2)

play(cd,m2,2)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])
fail(m3,[1])

play(tape,m1,1)

fail(m2,[1])

play(cd,m1,2)

play(cd,m2,2)

play(cd,m2,1)

play(cd,m1,1)

fail(m3,[2])

play(tape,m3,2)

fail(m3,[1])

play(cd,m1,2)

fail(m3,[2])

play(cd,m2,2)

fail(m3,[1])

fail(m2,[2])

play(cd,m2,1)

fail(m1,[2])

play(cd,m1,1)

fail(m2,[1])

play(tape,m3,1)

fail(m1,[1])

play(tape,m3,2)

play(tape,m3,2)

play(tape,m3,1)

play(cd,m2,2)

fail(m2,[2])

play(cd,m2,1)

play(tape,m1,2)

play(tape,m3,1)

play(tape,m1,2)

play(tape,m1,1)

play(tape,m3,2)

play(cd,m2,1)

play(tape,m3,1)

fail(m2,[2])

play(tape,m1,2)

Figure 9.6: Abstract graph for a simple configuration

9.2. METHOD 169

is to extract the performance properties from this graph by using model checking
techniques.

An important goal in this step is to provide the users of our tool (both the
designers trying to improve the performance and the cable operator evaluating the
system) with an understandable set of properties presented in natural language
via a graphical. user interface. The user is given the possibility to ask questions
like “How many movies can the system serve simultaneously?” instead of “What
is the longest path in the state space to the point where only fail transitions are
possible?”. Another desirable feature when designing this part of the methodology
is to provide the user with some kind of feedback information giving design related
suggestions.

One of the main subsystems of the GUI developed in our prototype is devoted
to this high level interface. The user can automatically check some properties, and
can formulate others in a very easy way, giving, for example, a description of a
concrete branching scenario in order to know if that can happen in a real execution
of the system. Internally, these properties are converted to an alternation free
µ-Calculus expression, that is going to be model checked using the CADP tools;
therefore, the users of our tools and method do not need to deal directly with the
logic.

The properties we offer the user to be analyzed are divided in three main groups,
depending on the way the model checking techniques are used in order to obtain
the information from the graph:

1. Counter-example based:

With this method for extracting system information we propose a new way
of using model checking tools. Instead of checking the property in order to
know if it holds for the graph we are analyzing, we try to find the negation
of the formula that represents the information we want to obtain. Therefore,
a counter-example to the formula corresponds to an example that the global
property holds, thus the counter-example gives us the knowledge about the
system.

One of the main properties a user would like to know about this kind of
systems is its global capacity, but the abstract concept of capacity is really
measured by a complex set of properties. One of them would be A way
of obtaining that information, using the counter-example based approach,
is to use a property that we know is only false in the special node of the
system where only fails can take place, viz. [true*]<not ’fail.*’>true
(i.e. starting at any state of the system, it is always possible to have a
transition that is not a fail). The counter-example for that property is going
to be (with the tools we are using) one of the shortest paths to that node.

Other properties for the systems, related to its performance and capacity, are
obtained using the same approach. Instead of looking at the whole capac-
ity of the system, we can focus on a concrete Media Object , and know the
server performance for that Media Object . By using the µ-Calculus property
[true*]<not ’fail(.*,m1,.*)’>true, the tool can automatically obtain a
counter-example with the shortest path to a fail for that Media Object . Some

170 CHAPTER 9. PERFORMANCE FROM CODE

other similar expressions are used in order to check the worst case perfor-
mance for the system where only plays are possible, e.g. the shortest path to
any kind of fail (giving us a capacity idea about for how long the system is
still able to always serve the user).

Another interesting property is the maximum of Media Objects that can be
served simultaneously in such a way that after serving these objects all possi-
ble requests can still be honored. Thus, the paths where all states only have
successful successor states. In our little example in Fig. 9.6 this corresponds
to the path from 0 to 4. Thus, in that example, the maximum number of
simultaneous users after which a next requesting user always can be served
is therefore ‘one’. In general one can have several distinct paths in which all
users can still be served. With this counter-example based approach we auto-
matically determine the shortest of them by using the µ-Calculus formula:
[true*](<’fail.*’>true<true>[’fail.*’]false.
The longest of them can be detected using the logarithmic search approach
described below.

Thus, with the proposed technique the user can obtain automatically, by
using a high level user interface, scenarios that fulfill global properties of the
system behaviour. All these properties can be combined with the bandwidth
usage in order to extract more detailed information.

2. Logarithmic search:

Complementing the counter-example based approach, a different set of global
properties of the system can be obtained by using model checking in combi-
nation with a fast search algorithm with logarithmic complexity. With the
counter-example approach some interesting results cannot be extracted from
the graph, because of the limitation of the CADP model checker tools, that are
giving always a shortest path to a node where the property does not hold.

One kind of properties the users of our system are interested in are reflected by
questions like: “What is the maximum number of users that can watch ‘Star
Wars’ at the same time?” or “How many simultaneous users can the system
provide such that it still is always able to play ‘Star Wars’?”. Expressed in
a property over the graph these questions refer to the longest paths to some
special nodes or situations.

As an illustrative example we have the previously mentioned maximum num-
ber of simultaneous users, such that the next requesting user can always be
served. The longest path to a state where all requests are successful is found
by repeatedly proving properties of the form:
<true*.’play.*’.true*...>[’fail.*’]false, where the length of the se-
quence of the second true* occurrence is varied doubled until the property
is false and then we search the exact point of failure by taking the middle
between previous success and previous failure recursively.

These properties, extracted also from the graph but using a different ap-
proach, complement the information obtained with the counter-examples for
giving the user global properties of the system. These properties are again

9.2. METHOD 171

obtained automatically, with only high level user interaction through the
GUI.

3. Scenario based:

Finally, as the third kind, the tool also provides to the user a more open
interface for expressing scenario-like properties in almost natural language,
that later are transformed internally into µ-Calculus expressions. Examples
of this kind of properties are the existential properties, where the user can
describe a concrete scenario (with Media Objects and bandwidths) and ask the
system if that can happen; and the eventually existential properties, where
the user can describe a more complex scenario in the form ‘after looking at
a given sequence of Media Objects with a given quality, it is still possible to
have the following scenario: . . .?’.

With these kind of properties, the abstraction of the Media Objects placed in
the system can effectively be used. If the user asks the tool whether a given
scenario is possible, the tool checks this scenario for all abstract movies,
instead of just the one that the user asked for.

For example if the users ask whether the system can provide the following
sequence of movies: movie 1, movie 3, and movie 2. Assuming that movie 1
and 3 are both belonging to group m1 and that movie m2 belongs to group
m3, then to answer yes or no to this question, the following property is
checked:

<’play(.*,m1,.*)’.’play(.*,m1,.*)’,’play(.*,m3,.*)’>true

However, if the answer to the question is no, then we can also automatically
check the property where we smartly exchange m1 and m3 by other groups.
If one of these properties is true for the state space, we obtain a result that
can be presented as an advice to the user. In this way, the tool can return a
more complete answer like: “the scenario cannot occur, but moving movie 2
from the tape to the second CD makes this scenario possible in the system”.

Thus, by combining three (complementary) ways of using of model checking
techniques a method is given for automatically verifying global properties of the
system.

9.2.3.2 Architecture from the messages

One interesting option once we have the ability to create the full state space for the
system is to try to extract the software architecture (this meaning all the processes
and how they communicate with each other) automatically from the state space.
In order to do this, we use the extension to etomcrl that was introduced in Sect.
8.2.5.

Analyzing the Erlang generic servers and other behaviours, we can see that
information about source processes and destination processes, together with the
content of the messages, are explicit information in the process algebra actions,
and can be easy, using our framework, extracted from the code. Doing this, we are

172 CHAPTER 9. PERFORMANCE FROM CODE

High level properties are converted to mu−Calculus expressions

Countere−xample with performance
information about the system

Performance measurement of the

Yes/No answer about a possible
scenario

analyzed system

Counter−example based

logarithmic search alg.

scenario basedbehavioral graph
Reduced high−level

model checking (CADP)

model checking (CADP)

model checking (CADP)

Graphical User Interface

Figure 9.7: From the behavioural graph to the global performance properties

USER

SERVER 2

SERVER 1

GATEWAY

{lookupAns, ok, m1, 1, server1}

{lookupAns, fail, m1, 1}

{Lookup, m1, 1}

{Lookup, m1, 1}

{Lookup, m1, 2}

{Lookup, m1, 2}

{lookupAns, fail, m1, 2}

{lookupAns, fail, m1, 2}

{lookupAns, ok, m1, 1}
{lookupAns, fail, m1, 2}

{Lookup, m1, 1}
{Lookup, m1, 2}

able to build graphs similar to the one in Fig. 9.2.3.2, where the boxes represent
processes and the arrows the messages they exchange.

This kind of information extraction has shown to be very useful during the
different stages of the system development, as a way of improving the system
understanding. In some cases, we found errors in the Erlang implementation,
because the communication was taking place between the wrong processes. In other
examples, the graph was useful for increasing the understanding of the information
we were extracting from the system.

9.2.3.3 Bottleneck information

A bottleneck is a point inside the system architecture that in some way is reducing
the whole system performance, being the first part of it which collapses at a given
system load. This can be seen as a quite generic idea, which means that several
more concrete definitions can be distinguished. In the case of the VoDKA server,
three main bottleneck definitions could be found:

• Internal independent bottleneck: the first place were we can see a fail in
the system, in any of the possible execution paths. They can be extracted
automatically stopping the graph generation when any kind of fail occurs
in the system. In order to do that, we can use the extension to etomcrl
described in Sect. 8.2.4. All we need to do is determine which messages
are showing a fail in the system, annotate the modules where we want to

9.2. METHOD 173

find bottlenecks, and run the tool. The advantage of stopping the graph
generation when a bottleneck appears is that we can handle potentially much
bigger state spaces.

• External/user independent bottleneck: the point in the architecture that makes
the first fails to be answered to a user request. They can be automatically
obtained from the state graph by analyzing the fails in the top level. We
could either work with the reduced graph, generating first the complete one
and then reducing; or using again the extension for observing fail messages
in order to stop the generation. We would normally use the second option
for really big state spaces.

• Internal relative bottleneck: the part of the system where a fail in a compo-
nent is too far away from a fail in a different component. We can extract
this kind of information by model checking the graph with formulae talking
about the distance between fails. An example of this would be to state that
after a failure in component A, we should not be able to see X successful
messages before seeing a fail in a different component. This idea of bottle-
neck is assuming that the systems work better if they are balanced, i.e., that
they reach their maximum capacity almost at the same time under stress
conditions.

For all of them, using graph analysis tools, we can extract a table summary
with information about the bottlenecks in the system.

9.2.3.4 Calculating resources for a new component

In the previous sections we have seen different approaches inside our method in
order to extract information about a given configuration of the system. But an
interesting question from the designers point of view would be: “if I am going
to add a new component to the system, for example a new storage device, how
many resources (storage capacity, communication bandwidth) should I include in
the resource so that the overall system performance is going to be X?” (being X,
for example, the system performance given in terms of number of movies that can
be seen at the same time). In other words: how many resources we need to provide
a new component with in order to avoid it to be a bottleneck point in the system
architecture.

We can use the same a similar approach than the previous ones: adding to the
system architecture the new component without any resource restriction. We com-
pute the system capacity in the execution graph, and we extract by graph analysis
the information about the maximum number of times that the new component is
asked. The new component can be designed (and its restrictions adapted) in order
to be able to serve all the possible requests that is going to receive, thus avoiding
it to be the bottleneck.

In case the amount of resources needed is impossible to satisfy, or too expensive,
we still get a lot of useful knowledge from the system analysis and can use it in
order to reorganize the system configuration for satisfying the new requirements.

174 CHAPTER 9. PERFORMANCE FROM CODE

9.3 Results

In this section we will analyze the results of the method presented, applied to the
VoDKA case study. In concrete, we will discuss the results of applying them to the
three configuration examples that were described. In some cases, for illustration
purposes, other experiments will be used. The goal of the examples is neither to
explain the exact limitations of the tool nor to show a comprehensive set of exper-
iments carried out. All kind of configurations, including more complex examples
have been tried during the development of the thesis, but only those three are
discussed here for clarity purposes.

9.3.1 Intermediate results of the experiment

9.3.1.1 µCRL model generation

The translation using etomcrl worked perfectly in all the examples we tried. The
time it takes in all the cases is a matter of milliseconds1, so it is not relevant in the
whole process (the bottleneck is in the state space generation, not here).

The three VoDKA configurations described use the same Erlang model, so the
translation is similar. In fact, the configuration is only reflected in the initialization
of the processes and the code of the user process.

A simplified version of the init part of the µCRL specification for VoDKA in
its Configuration 1 would look like:

CallStack(empty) ||
cd_storage_init(cd,cons(cons(tuple(m1, tuplenil(cons(int(s(0)),
cons(int(s(s(0))),nil)))),cons(tuple(m2,
tuplenil(cons(int(s(0)),cons(int(s(s(0))),nil)))),nil)),
cons(int(s(s(0))),cons(int(s(s(s(0)))),cons(int(s(0)),
nil))))) ||

Server_Buffer(cd,emptybuffer) ||

CallStack(empty) ||
tape_storage_init(tape,cons(cons(tuple(m1, tuplenil(cons(int(s(0)),
cons(int(s(s(0))),nil)))),cons(tuple(m3, tuplenil(
cons(int(s(0)),cons(int(s(s(0))),nil)))),nil)),
cons(int(s(0)),cons(int(s(s(0))),cons(int(s(0)),
nil))))) ||

Server_Buffer(tape,emptybuffer) ||

CallStack(empty) ||
storage_group_init(storage_group,cons(tape,cons(cd,nil))) ||
Server_Buffer(storage_group,emptybuffer) ||

CallStack(empty) ||
storage_sched_init(storage_sched,storage_group) ||
Server_Buffer(storage_sched,emptybuffer) ||

CallStack(empty) ||

1For running all the experiments we present here we have used an IBM Thinkpad R51 with a
Pentium Mobile 1,5MHz CPU and 512 MB of RAM

9.3. RESULTS 175

streaming_sched_init(streaming_sched,storage_sched) ||
Server_Buffer(streaming_sched,emptybuffer) ||

users_init(pid(0),streaming_sched)

In the code above, all the hiding and encapsulation that is automatically done
in the µCRL level by the etomcrl tool has been removed for clarity reasons. For
each Erlang process, three processes are started: the call-back, the buffer, and the
process implementing the logic. The arguments specify the restrictions and the
available movies in each of the devices, together with the identifier of the processes
they need to communicate with.

After generating the µCRL translation, the users process is changed as explained
in the method, giving place, in case of Configuration 1 to the following code:

users_loop(MCRLSelf:Term,StreamingScheduler:Term) =
(gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m2, tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m2, tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m1, tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m1, tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m3, tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup,

tuple(m3, tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf)).
...
users_loop(MCRLSelf, StreamingScheduler)

The user asks randomly for the three kinds of movies present in the system
with all the possible bandwidths.

9.3.1.2 State space generation

The generation of the state space from the µCRL specification is done for all the
examples in a very automatic way, following the steps explained in the method. In
the case of VoDKA, after generating the global state space, we use the SVL script
language included in CADP in order to renaming the labels (getting a more Erlang
syntax that makes easier to trace analysis back to the original source code), hiding
all the internal information not interesting for measuring the system capacity, and
obtaining an equivalent reduced graph.

The obtained results are very different in size and computation time for the
three configurations:

• Configuration 1:

– Size of the original state space: explored 2547 states, generated 2747
transitions, and 137 levels.

– Generation time for the original state space: user 0m7.744s / sys 0m0.192s.

176 CHAPTER 9. PERFORMANCE FROM CODE

– Size of the reduced state space: 8 states, 48 transitions.

– Reduction time for the state space: user 0m2.520s / sys 0m0.636s.

• Configuration 2

– Size of the original state space: explored 62608 states, generated 69888
transitions, and 321 levels. The size of the AUT file generated is a bit
less than 4 MB.

– Generation time for the original state space: user 0m55.135s / sys
0m0.696s.

– Size of the reduced state space: 40 states, 560 transitions.

– Reduction time for the state space: user 0m3.464s / sys 0m0.764s.

• Configuration 3:

– Size of the original state space: explored 2299914 states, generated
2655048 transitions, and 583 levels. The size of the AUT file gener-
ated is 157 MB.

– Generation time for the original state space: user 44m56.525s / sys
0m26.346s.

– Size of the reduced state space: 512 states, 15360 transitions.

– Reduction time for the state space: user 0m52.775s / sys 0m1.516s.

As it can be seen from the numbers above, for small examples, the trans-
formation from the Erlang code and the concrete configuration to the abstract
behavioural state space is performed in a matter of seconds. As we complicate
the system configuration, the state space grows and the computation time is much
larger.

The main performance limitations of the approach is the time it takes the
state space generation tool of the µCRL tool set. As we said, our tool is able
to handle reasonable sized real configurations, but when the goal is to analyze a
really complex tree-like hierarchical architecture, with a big number of devices and
restrictions, and thousands of Media Objects, the computation time and the use of
resources (specially CPU but also memory handling the states) need to be reduced
as much as possible. During the evaluation of the tool we also have found some
performance problems when using big numbers in the model, due to the fact that
the traditional µCRL representation of the natural numbers, based on the successor
constructor, is not efficient when evaluating the model symbolically.

As solutions to this performance limitations, we are already exploring the use of
a kind of theorem proving tools that are part of the µCRL toolset. As mentioned
in Sect. 9.2.1, these tools are able to automatically prove certain properties of
the µCRL specification, like confluence of a certain pair of actions. By exploring
these properties the µCRL specification can be modified to a specification that
results in a smaller, but observationally bisimular equivalent state space. The first
experiments have shown promising results in reducing the size of the whole state
space of the system (both in number of states and transitions). A new more efficient
representation of the natural numbers is also being explored as a solution to the
performance limitation in numeric computations of the model.

9.3. RESULTS 177

9.3.2 Final results: properties we are able to extract

9.3.2.1 Extracting global properties

For illustrative purposes, we have already included the small example state space
generated for the Configuration 1 in Fig. 9.5. The extraction of the properties
takes the order of milliseconds and in all the cases it works without special problems:

• Shortest fail is obtained by model checking with the µ-Calculus property
[true*]<not ’fail.*’>true and it gives the counterexample composed by
the path play(tape,m3,2), play(cd,m2,2) and play(cd,m2,1). The path
first explores the usage of the whole capacity of the tape device and then
uses the capacity of the CD, asking twice for the same kind of movie, only
available there. The counterexample can be seen as a graph with the CADP
visualization tools (it is a subgraph of the original state space).

• Longest general success is extracted also using model checking with the fol-
lowing µ-Calculus property:
[true*](<’fail.*’>true or <true>[’fail.*’]false). The model check-
ing gives a counterexample of two levels, including play(cd,m1,1), which
leads to a state where failing is still impossible, and then a group of possible
plays leading already to states with fails. So at most after two plays, the
system can already give a negative answer to a user request.

• Maximum number of plays uses a logarithmic search and finds, in about a
second, that in this case the maximum possible plays is 3. We can also analyze
with the same kind of search the maximum number of plays for each of the
movie types, giving a result of 3 times for m1, 2 times for m2 and 1 for m3.

• We have used for this configuration several examples of scenarios where we
want to check if after playing a list of Media Objects, we still can play another
list. We use the GUI we have developed for constructing the properties and
the model checking takes the order of milliseconds in all the cases.

For the other two configurations, all the formulas have been used in a similar
way obtaining interesting results. Checking if the extracted information is correct
is less trivial because the reduced graphs for the second and third examples are
already very difficult to print or see in a readable way. Still, for clarity reasons we
are using a quite simple VoDKA configuration, and the results can fortunately be
checked with what the human analysis of the system would expect. It is important
to state that our tool is able to operate with more complex examples where the
human analysis would be impossible or too difficult and costly.

For Configuration 2 an example of shortest path to a fail state is described
by the following counterexample:

<initial state>
"play(cd,m2,1)"
"play(tape,m7,2)"
"play(disk4con,m1,2)"
"play(disk4con,m6,1)"
"play(cd,m2,1)"

178 CHAPTER 9. PERFORMANCE FROM CODE

0

1

2

3

4

5

6

7

89 10 11

fail(m3,[1])

play(cd,m2,1)

fail(m1,[1])

play(disk4con,m1,1)

fail(m1,[2])

fail(m2,[2])

play(disk4con,m1,1)

play(tape,m3,1)

play(tape,m3,2)

play(tape,m6,1)

play(tape,m6,2)

play(tape,m5,1)

play(tape,m5,2)

play(tape,m7,1)

play(tape,m7,2)

play(disk4con,m1,2)

play(cd,m2,1)

play(cd,m2,2)

play(cd,m4,1)

play(cd,m4,2)

play(disk4con,m1,1)

Figure 9.8: Counterexample for the longest success in VoDKA Configuration 2

"play(disk4con,m7,1)"
<goal state>

The longest general success for the same configuration is composed by a path
with three plays, and the result is obtained as the counterexample in the graph
that can be seen in Fig. 9.8. After those three plays, we only can do actions leading
to a state where at least one fail is possible.

The maximum number of plays is 7, as one would expect from the analysis of
the restrictions of the different storage devices, and the maximum number of plays
that can be accepted for each kind of movie is also limited by the capacity of the
devices storing that movies. The time it takes the logarithmic search for this size
of the graph is in all the cases less than 3 seconds.

For Configuration 3 the shortest path to a fail is described with the following
counterexample:

<initial state>
"play(cd,m10,1)"
"play(disk5con,m1,1)"
"play(tape,m15,2)"

9.3. RESULTS 179

17

0

1

2

3

4

5

6

7

8

9

10
11

1213 141516

fail(m2,[2])

play(tape,m14,2)

play(cd,m10,1)

fail(m4,[1])

play(tape,m14,1)

play(disk5con,m1,1)

fail(m3,[2])

play(tape,m13,1)
play(tape,m13,2)

play(disk5con,m1,2)

fail(m2,[2])

play(tape,m10,2)

play(disk5con,m1,1)

fail(m1,[2])fail(m1,[1])

play(tape,m10,1)

play(disk4con,m9,2)

play(tape,m8,2)

play(disk4con,m2,2)

play(tape,m8,1)

play(disk4con,m5,2)

play(tape,m6,2)

play(cd,m9,2)
play(tape,m6,1)

play(cd,m9,1)

play(tape,m3,2)
play(cd,m7,2)

play(cd,m7,1)
play(tape,m3,1)play(cd,m4,2)

play(tape,m11,1)

play(tape,m11,2)

play(cd,m4,1)

play(disk4con,m5,1)

play(cd,m12,2)

play(disk4con,m2,1)

play(cd,m12,1)

play(disk5con,m1,2)

play(tape,m15,2)

play(disk5con,m1,1)

play(tape,m15,1)

Figure 9.9: Counterexample for the longest success in VoDKA Configuration 3

"play(disk5con,m1,2)"
"play(cd,m7,2)"
"play(disk5con,m6,1)"
"play(disk4con,m15,1)"
"play(disk4con,m15,2)"
"play(disk5con,m1,1)"
"play(disk5con,m6,1)"
"play(disk4con,m15,1)"
<goal state>

The longest general success is five plays, and the result is obtained as the
counterexample in the graph that can be seen in Fig. 9.9. After those five plays,
again we only can do actions leading to a state where already a fail is possible.

The maximum number of plays is in this case 12, again as one would expect from
the analysis of the restrictions of the different storage devices, and the maximum
number of plays that can be accepted for each kind of movie is also limited by the
capacity of the devices. The time it takes the logarithmic search is in all the cases
less than 8 seconds.

180 CHAPTER 9. PERFORMANCE FROM CODE

9.3.2.2 Extracting architecture from the messages

The architecture graph was defined as a directed graph where the states are pro-
cesses and the labels show their communication (they represent messages).

For each of the different configurations,the obtained graph is very similar, and
can be created with the AUT file to AUT file transformation already explained in
the method part of this chapter. The input to the tool is the complete state space,
not the reduced one, because we are in this case interested in all the messages,
including the internal ones.

For Configuration 1 of VoDKA, the new AUT file obtained is shown in Fig.
9.10. The graph does not show all the real messages included in the original graph,
but an abstraction of them. The tool accepts as input one function abstracting
messages using pattern matching. Messages are grouped to a generic tag (in general
it is possible to map them to any Erlang term). In our case, the abstraction has
been performed using the following function:

filter({lookup,_,_}) ->
lookup;

filter({lookupAns,_}) ->
lookupAns;

filter({lookupAns,_,_,_}) ->
lookupAns;

filter({play,_,_,_})->
play;

filter({play,_,_})->
play;

filter(Message) ->
Message.

This capacity of the extension for drawing architecture graphs in the etomcrl
tool has resulted very useful for making the obtained graph more readable. In this
case, the number of labels is reduced from 2747 in the original complete graph to
23 in the abstracted architectural graph.

Both for Configuration 2 (the abstraction goes from 69888 to 30 labels) and
Configuration 3 (from 2655048 to 37 labels) the obtained state space is very
similar, with a much bigger reduction and only one or two processes more and a
few extra messages than the smaller example.

For the biggest configuration, the translation to the architectural graph takes
about 7 minutes. This can be a limitation for bigger state spaces, but it can be
reduced by detecting when no more labels are generated after some number of
messages. If a given number of continuous messages (the number being a param-
eter given by the user of the tool) is abstracted to labels that are already in the
graph, and now new graph is generated, the generation of the architecture graph is
stopped. It could be, if the parameter is not big enough, that some of the message
patterns are not recognized, and therefore the graph is incomplete, but normally
this is solved with experience and the amount of time needed for generating the
graph can be reduced dramatically.

The fact of having a result graph in AUT format is interesting. We can use
all the tools available in the CADP package for showing, changing or even executing

9.3. RESULTS 181

4

0

5

1 2 3

lookup

play

lookuplookup

lookupAns

tape

cd

cd

tape

lookupAns

play

lookupAns

lookup

cd

tape

play

lookupAns

lookup

cd

tape

play

play

lookupAns

Figure 9.10: Architecture graph for VoDKA Configuration 1

182 CHAPTER 9. PERFORMANCE FROM CODE

Figure 9.11: Architecture graph generated from the AUT file

(with the interactive GUI) the state space. We could even perform, using SVL,
reductions similar to the ones shown above in the transformation tool.

From the AUT file (where the states are numbers) plus the dictionary (where
the numbers are associated with process names or identifiers) we can use graph
generation tools for creating a picture like Fig. 9.2.3.2. An example of what can
be done is shown in Fig. 9.11.

9.3.2.3 Extracting bottleneck information

In the description of our method, we have introduced three kinds of system bottle-
necks: internal independent bottleneck, user or external independent bottleneck,
and relative bottleneck. We will discuss now how to extract the information about
them from the system state space graphs.

For the external bottlenecks we can first see the reduced state space for
Configuration 1 shown in Fig. 9.6. Which one is the point in the system archi-
tecture that makes the first fail to be answered to the user? Using human reasoning,
we can deduce it from the labels and our knowledge of the system architecture ob-
tained in previous sections. The first fails are seen when we ask for m3 for the
second time (with any bandwidth), and when we ask for m2 with bandwidth 2
after asking first for any of the movies of the CD device (i.e. m1 and m2). The
first case is due to the connection limit in the tape device, and the second one
to the bandwidth limit in the CD. But how could we extract this two bottlenecks
automatically from the graph?

The solution we have selected is: in the complete graph, we find the shortest
fail as we did for the reduced graph, but in this case we express the property
trying to find a fail message sent to the user process (not all the fail messages are
system fails now). As the counterexample, we get the path to that fail. Then, in
the counterexample, we search for the first fail message of any kind, and we check
which process is producing it. That process is the external bottleneck (meaning
the bottleneck seeing from the user point of view).

If we run again that algorithm using the µ-Calculus formula:
[true*]<not ’reply(pid(0),.*,.*,[].*’>true in the Configuration 1, we get

9.3. RESULTS 183

the following counterexample (internal actions and assertions have been removed
for clarity reasons):

<initial state>
"call(streaming_sched,{lookup,m3,[1]},pid(0))"
"call(storage_sched,{lookup,m3,[1]},streaming_sched)"
"call(storage_group,{lookup,m3,[1]},storage_sched)"
"call(tape,{lookup,m3,[1]},storage_group)"
"reply(storage_group,{lookupAns,[{1,1,tape}]},tape)"
"call(cd,{lookup,m3,[1]},storage_group)"
"reply(storage_group,{lookupAns,[]},cd)"
"reply(storage_sched,{lookupAns,[{1,1,tape}]},storage_group)"
"reply(streaming_sched,{lookupAns,[{1,1,tape}]},storage_sched)"
"reply(pid(0),{lookupAns,m3,[1],[{1,1,tape}]},streaming_sched)"
"call(streaming_sched,{play,m3,1,tape},pid(0))"
"call(storage_sched,{play,m3,1,tape},streaming_sched)"
"call(storage_group,{play,m3,1,tape},storage_sched)"
"call(tape,{play,m3,1},storage_group)"
"reply(storage_group,tape,tape)"
"reply(storage_sched,tape,storage_group)"
"reply(streaming_sched,tape,storage_sched)"
"reply(pid(0),tape,streaming_sched)"
"call(streaming_sched,{lookup,m3,[1]},pid(0))"
"call(storage_sched,{lookup,m3,[1]},streaming_sched)"
"call(storage_group,{lookup,m3,[1]},storage_sched)"
"call(tape,{lookup,m3,[1]},storage_group)"
"reply(storage_group,{lookupAns,[]},tape)"
"call(cd,{lookup,m3,[1]},storage_group)"
"reply(storage_group,{lookupAns,[]},cd)"
"reply(storage_sched,{lookupAns,[]},storage_group)"
"reply(streaming_sched,{lookupAns,[]},storage_sched)"
<goal state>

Now we analyze the first internal fail messages (i.e. lookupAns messages with
the empty list as streaming options), we would see a very early fail in the CD device
due to the absence of that Media Object there. And then we detect two more fails,
one again with the CD and the other with the tape. Including knowledge about
the presence of the movies in each device in the automatic algorithm, we can detect
that the resource limit in tape together with the absence of the Media Object in
the CD. With that information, the system designers would be able to decide if
they want to add new resources or change the allocation of Media Objects in the
devices.

In order to make easier the bottleneck analysis, it would help a lot to have
different messages when a movie is not in the system from the ones that are sent
back in the protocol when the Media Object is there but the resources are not
enough. Thinking from a more general point of view, it would be interesting also
for improving in the future the internal scheduling of the system (decisions could be
taken at a higher level for example for moving a Media Object if it is not present).
So this is left as a suggestion for the system designers that shows also the kind of
feedback that can be obtained from this kind of system analysis.

For the other two configurations of VoDKA we are studying, the results were
comparable. In the Configuration 2 the bottleneck that is found is the tape

184 CHAPTER 9. PERFORMANCE FROM CODE

when the users request m3, only present in the tape, twice. Similarly, in the
Configuration 3 it is also the tape device when the users request first m11
(present in several devices but the tape is selected), and then m3, only present
in the tape device. As the maximum number of connections is set to one, the fail
is produced as the first one in the system. Two feedback messages are obtained:
the tape is an important bottleneck; and this could be less important if the cost of
the tape is increased so that it is the last device that would be selected if there are
other alternatives.

However, the time it takes to generate the counterexample with model checking
goes up to several seconds for the more complex example we are considering, which
means that it could be a potential problem for more complex configurations. A
solution for this is to avoid generating the whole state space, trying to create only
the part of it that is relevant for our interests. In order to do that, we can use the
extension to the etomcrl tool for observing special messages stopping the graph
generation when that messages appear.

For our example, we just need to introduce the following header in the modules
we want to study (in our case we selected the storage group as the key point for
our analysis):

-observe_messages({bottleneck_message, ["{lookupAns,[]}"]}).

The annotation in the Erlang code should be read as: if this module produces
an answer with empty options (meaning the Media Object cannot be played from
that component), the state space generation should be stopped and no further
paths from the current state should be generated. Besides, the label going in this
path to the last node, should contain the message identifier bottleneck message.

We can express now easier properties (using this special label just introduced
in order to detect the first occurrence of it: the shortest path to a fail) and what
is much important from a practical point of view, the generated graph in our case
the reduction is not very big, but depending on the frequency of the fails in the
original graph it can increase a lot.

For the internal independent bottleneck the process is simpler than above.
We just need to find the first fails in the system, no matter if they cause an error
for the user or not. This can be done also by counterexample extraction, but now
we do not need to specify that we want to find fails that are actually sent to the
users. For the three configurations, we have done it and we obtain what would
be expected: the devices with less resources are the ones showing the first system
fails, together of course with the fails produced by the absence of the requested
Media Objects. The issues with the performance for bigger graphs are again solved
by using the extension developed for observing messages and stopping the graph
generation with etomcrl. This time, as we can observe messages directly in all the
components, the reduction is much bigger, and we can easily go from a graph with
several million states to another one with at most several thousand.

Finally, the internal relative bottleneck are related to distance between
fails inside the system. In the case of VoDKA, this kind of information is specially
complex to obtain. We can easily specify a property saying that after a fail due
to lack of resources in the CD device, there cannot be N plays streamed from the
tape device. If it is the case that m1 is only in CD and m2 is only in the tape, then

9.3. RESULTS 185

after streaming m1 as many times as needed for provoking a fail in the CD, we still
are going to be able to stream m2 from the tape up to the tape capacity (assuming
there are no other bottlenecks around). Should we interpret from this scenario that
CD and tape are unbalanced and that the tape is a relative bottleneck? It is clear
that the answer is no.

The solution is to reformulate a bit the way of finding this kind of bottlenecks
in our system: we should only look into what happens when we ask for the same
Media Object , and only in the group of devices that contain that Media Object .
In the previous example of tape and CD, if both contain m3, and after answering
to the user a fail for m3 from the CD, we still can play it N times from the tape,
that could (it is only a possibility) show that the system scheduling is not well
balanced and something should be reconfigured or reallocated. We have applied this
approach to our three configurations and the results were satisfactory, obtaining
the expected answers: as the algorithm we were considering selects always the
device with less cost, ant cost is not changing depending on the load of the device,
so the system is unbalanced. Changing the Erlang model so that the devices are
selected randomly or so that the cost is increasing depending on the load, makes the
checking return a more balanced status (i.e. with less presence of paths suspicious
of being bottlenecks).

9.3.2.4 Adding and studying new components

For easily illustrating the approach we propose for obtaining information, lets con-
sider that we want to add a new disk device to the Configuration 1, without
changing any other thing. Given that the rest of the restrictions are not going
to change, we want to know how many connections and how much bandwidth we
should add to the new component in order to maximize the system capacity, and
in order to avoid to convert the new resource in the system bottleneck.

A very clean solution is adding the new component with infinite resources,
representing that by a reasonably big number extracted after analyzing the archi-
tecture (doing this automatically is left as future research). In our example, we
can add it with maximum number of connections 50 and maximum bandwidth 100,
which is clearly enough. We then generate the new state space, which in any case
is not going to be much bigger than before, because the resources in the rest of
the components are limited anyway. The new bottleneck of the system is going to
be new in the upper levels of the hierarchy: in concrete the 10 connections and 15
units of bandwidth of the storage group.

Now we need to extract by graph analysis the information about the maximum
number of times that the new component is going to stream a movie and the
maximum number of total bandwidth that it would need in the “worst case”.

In our example, the worst cases would be two: the first one, when ten movies
are played from the new device, and the second one, the path were a number of
movies using up to a total of 15 units of bandwidth are used. Those are the two
limits imposed by the restrictions in the upper levels.

Again, how can we extract that information automatically from the graph? We
propose to use the same approach we presented above in the logarithmic search, but
now working with the whole state space and adapting a bit the logical expressions.
We perform two searches: first, the maximum number of play messages from the

186 CHAPTER 9. PERFORMANCE FROM CODE

new device that can contain a graph; second, the maximum amount of bandwidth
that can be contained in any path of the graph. The second set of formulas is a bit
more complex to generate, because they have to take into account the bandwidths
available in the Media Objects of the system.

Assuming that we have the labels renamed to play and fail, and that fail has
three arguments (Media Object , bandwidth and the device from which we are going
to play), the first property looks like, where N would be the variable that changes
while searching:

<true*.’play(.*,.*,device)’.true*.’play(.*,.*,device)’...
---- we repeat N times the expression ----
...’play(.*,.*,device)’>true

For the second property, we would use a similar formula varying both N and the
bandwidth argument, which would take all the values of the bandwidths present in
the system.

With the feedback obtained, the system designers would know that adding to
the new device more resources than 10 connections and 15 units of bandwidth
would not increase the global capacity of the system.

9.4 VoDKAV : hiding formal methods in the analysis

As one of the goals when designing the framework was making it available to the
developers, it was very important to be able to hide all the theoretical and technical
tools and techniques used from the end user. The role of the GUI developed in
Erlang and called VoDKAV (standing for the VoDKA Verification tool) is to make
it easier for the user to handle different models and configurations, and to go for
each of them through all the steps of the method we propose.

The tool can be seen as a proof of concept for which a prototype was developed:
is the method simple enough for being useful directly to the developers? If we are
able to develop a tool that hides as much of the formal concepts as possible, the
answer could be closer to yes.

In this section we talk about the goals of the tool and in Appendix C the most
important details about its design and implementation can be found.

The first goal of the tool was to make easier the management of the VoDKA
models and the system configurations. The VoDKA source code is not specially
stable, it changes in time and gets more complicated, and we want to handle all this
versions at the same time. Fig. 9.12 shows how this is solved. The user can add,
modify or delete designs, each of then containing, apart from the meta-information,
a pointer to the folder where the Erlang model is implemented, and another pointer
to the folder where the system configuration is described.

The second goal of the tool was to allow the user to change the configuration
for a given design and then easily go through steps 1 and 2 of our method, i.e.,
the generation of the µCRL specification and the creation of the complete and the
reduced state graphs. Fig. 9.13 shows the windows where this can be managed:
the user can change the system architecture (adding a new component or changing
the way the components are connected), change the resources available (bandwidth
and connections) and the cost for each component, or changing the Media Objects

9.5. TESTING THE METHOD WITH MCERLANG 187

Figure 9.12: VoDKAV graphical user interface: designs repository

present in each device with just a few clicks. In order to check the configura-
tion, some complementary functionality like the drawing of the supervision tree is
provided, as can be seen in Fig. 9.14.

Once the configuration is ready, with just another click all the information is
extracted and prepared for giving it as input to each of the tools we are using
(etomcrl, McErlang, µCRL toolset, CADP, etc.). The user can generate an ar-
chitectural graph, or create and view the reduced state space, for example. No
knowledge on the underlying tools is required, and everything is done automati-
cally.

Third and last goal of the tool is to make easier the extraction of information
from the state space, i.e., the third step of our method. This is solved, as can
be seen in Fig. 9.15, with a window that hides the creation of the µ-Calculus
properties as much as possible, where the user can execute the properties and see
the counterexamples. If the user is advanced and want to define its own property,
it still can be done, but the most frequent ones are encapsulated and described in
a language very simple to understand.

The tool has been extensively used during the latest years for the development
of the thesis, saving a lot of time and avoiding to deal all the time with the details
related to the formats, interfaces and languages of all the tools we are using in the
method.

9.5 Testing the method using McErlang as model checker

In section 8.5 we explained the McErlang tool, which generates a state graph and
model checks a property on-the-fly directly from the Erlang source code. In this
section we will explain how this tool fits in the method we have presented for
going from the software architecture to the formal verification of a distributed
system. First we explain our experiments for generating the state space directly
from the source code instead of first translating to µCRL. After that, we show how
the capacity properties can be checked using McErlang. Finally, we compare the

188 CHAPTER 9. PERFORMANCE FROM CODE

Figure 9.13: VoDKAV graphical user interface: model manipulation

Figure 9.14: VoDKAV graphical user interface: supervision tree

9.5. TESTING THE METHOD WITH MCERLANG 189

Figure 9.15: VoDKAV graphical user interface: property checking

results obtained with those already presented for the other tools.

9.5.1 Generating the state space from the Erlang model

In order to use McErlang for generating the complete state space for VoDKA, we
needed to provide the VoDKA source code, an abstraction, a hash table imple-
mentation and a monitor implementing a trivial one-state correctness property (in
order to avoid influencing the size of the resulting program state space).

For the graph generation, we used the default abstraction (it only orders the
processes using their identifiers), and also the default hash table, which stores
the states in a Erlang ETS table. As monitor we implemented a trivial one-state
function always returning ok with the monitor state unchanged.

For the source code we used exactly the same version that was translated to
µCRL, but now needing to translate it by hand to the internal notation of McErlang.
This was quite straight forward and can be repeated following the steps already
explained in section 8.5 (in the future it will be automated as part of the improve-
ments that are planned for the new versions of McErlang).

The only difference was the modelling of the users. As we explained in our
method, we use only one µCRL process in order to simulate a user asking non-
deterministically for all the possible combinations of Media Objects and bandwidth.
This was done in the translation to µCRL because Erlang lacks a non-deterministic
construct.

If we consider the following client code:

loop(StreamingScheduler) ->
{lookupAns, MO, Profile, Options} =

gen_server:call(StreamingScheduler,{lookup,m1,[1,2]}),
case choose(Options) of

fail ->

190 CHAPTER 9. PERFORMANCE FROM CODE

loop(StreamingScheduler);
{Pid, Bw} ->
...

end.

With McErlang, the non-deterministic choice return value can be used in order
to directly model the user process in (pseudo) Erlang in the following way (for a
system with 15 kinds of movies and two kinds of bandwidth):

loop(StreamingScheduler) ->
{choice,
[{?MODULE,select_movie,[{lookup,X,[Y]},StreamingScheduler]}||

X <- [m1,m2,m3,m4,m5,m6,m7,m8,m9,
m10,m11,m12,m13,m14,m15],Y <- [1,2]]

}.

select_movie(Message,StreamingScheduler) ->
ev_gen_server:call(StreamingScheduler,Message,

{?MODULE,loop1,[StreamingScheduler]}).

loop1([StreamingScheduler],{lookupAns, MO, Profile, Options}) ->
case choose(Options) of

fail ->
loop(StreamingScheduler);

{Pid, Bw} ->
...

end.

The size of the state space generated lies in the middle of the complete state
space generated from µCRL, and the reduced one presented in the previous sections
after hiding the internal messages of VoDKA. It contains less internal actions and
assertions than the whole state space, so it is smaller, but the transitions represent
all the messages that are received all over the software architecture.

When we started to use McErlang for VoDKA, some irrelevant messages were
increasing the size of the graph. This is the case of the exit messages that some
of the intermediate processes used in order to start the supervision tree where
generating when finishing their execution. These messages could be received, by
their supervisors, in several places in the graph, and this was increasing the final
graph without giving any interesting information for the properties we were going
to analyse. We managed to abstract from this by slightly modifying the source
code of the Erlang examples in order to keep these processes from finishing (the
changed processes wait forever on the reception of an impossible message, and thus
do not influence the state space generation).

• Configuration 1:

– Size of the state space: 1283 states explored, accessed states 1207,
hashed states 1207 (half the size of the state space obtained with µCRL).

– The generation time for the state space is less than one second (with
µCRL was almost 8 times more).

9.5. TESTING THE METHOD WITH MCERLANG 191

• Configuration 2

– Size of the state space: 30751 states explored, accessed states 28995,
hashed states 28995 (about 2 times smaller than the obtained with
µCRL).

– The generation time for the state space is less than 14 seconds, about
four times less than the time spent with µCRL.

• Configuration 3:

– Due to the very big size of the state space, the generation of a graph with
several million state spaces requires too much memory at the moment.
Optimising the memory consumption of the McErlang tool is work in
progress. Instead, we use this example to demonstrate how the current
limitations can be worked around thanks to the flexibility of the tool.
We show later in this section how we extracted some properties from
this graph without needing to generate it completely.

We have shown earlier that for some properties it would be interesting to use
a reduced version of the graph, where the internal messages of VoDKA would be
hidden, and with only the play and fail messages present. This graph is smaller,
easier to handle, and still useful for checking some of the capacity properties as
seen in previous sections.

In order to go from the detailed state space to the reduced one, using McErlang,
in this case we need to write an specialised abstraction module. Concretely the
solution is to write a normalise function making all the states where a message is
going through the system to appear like the same state, i.e., if a lookup message
is going from the users all the way down the system architecture till the storage
devices, all the states where that message is moving through the system should
be mapped by the abstraction to the same one. This can be done by creating a
normalised state where the messages are all removed from the system queues and
placed in a set of messages pending to be received, including all the messages for
all the processes.

Once we have the complete or reduced graphs generated with McErlang, we
can easily generate them in a format understood by CADP, and then model check
our properties as explained in the previous sections. We would already gain some-
thing, as the state space would be already smaller, and its generation more optimal
CPU-wise. We could also generate the architectural graph as we shown in previ-
ous sections. However, McErlang is on itself a model checker and checking the
properties at the same time new states are generated adds more advantages to the
approach, as it will be explained in next section.

We have also explored the feature of McErlang to take into account the channel
delay semantics. However, with smaller configurations the generated state graph
was already composed by several million states. For the kind of properties we
are exploring here, the results were obtained without taking into account channel
delays.

192 CHAPTER 9. PERFORMANCE FROM CODE

9.5.2 Checking the properties from the Erlang model

In order to illustrate the differences with the approach of using CADP, we have
selected one of the capacity properties shown in the previous sections: the shortest
path to a fail in the graph.

To extract that information, we needed to write a special monitor for McErlang.
The internal state of the monitor was not used, but still the monitor was made
aware of the minimum counterexample already found in the part of the graph we
have explored.

For each of the states, the monitor function is called from the model checker.
Then, the monitor explores the list of processes in the system and identifies the
ones corresponding to users that are about to receive a message from the sys-
tem saying that the requested Media Object cannot be streamed. That process
state identifies a fail in the graph, and the monitor can then check the size of the
counterexample to determine if it is the shortest counterexample seen so far which
should thus be recorded2, or otherwise, whether it should be ignored. We have
extended McErlang with a simple function that, when the model checking finishes,
prints the counterexample that was stored as being the minimum path to a fail.

Running the three configurations with the monitor described gives as answer
the shortest counterexample to a fail after generating the whole state space. The
results are obtained a bit faster than with the µCRL approach for the configurations
1 and 2, but we still have limitations with the third configuration due to the size
of the state space.

In Section 9.3.2.3 we explored the idea of using the observe messages etomcrl
extension in order to reduce the size of very big state spaces only generating the
part of them relevant for our properties. The basic idea was to generate a deadlock
when a given message was received. With that approach, we managed to reduce
the state space, but the reduction had some limitations. Using McErlang, due to
the flexibility of the tool which means that we can access all the information in
the global state about the state of each of the processes running in the system, we
improved the graph reduction dramatically.

The solution selected was to implement a variation of the standard hash ta-
ble. In our modified hash table, we modified the implementation of the function
permit state which is called by the model checker to determine whether a newly
generated state has been previously explored. The modification work by cutting
search (i.e., declare that a new state has been previously seen) if the path from the
initial program state to the new one is longer than the smallest counterexample
seen so far. This means that, for example, if the smaller counterexample we have
already found is 50, we will not explore anymore any states reachable only on paths
of length greater than 50.

The percentage of the graph that is now explored depends directly on when in
state space exploration carried out by the depth first algorithm used by McErlang
the counterexamples appear. In the case of the first configuration of VoDKA, we
reduced from 1207 to 935 states. For the second configuration, the reduction is
already bigger, and goes from 28995 down to 5355 when using the new hash table
(and obtaining the property takes now less than 4 seconds instead of the previous

2The shortest counterexample is kept in a global variable during model checking.

9.5. TESTING THE METHOD WITH MCERLANG 193

14). In the case of the third configuration, the reduction is even bigger, and we
manage to extract the capacity property of the shortest fail in a matter of 80
seconds, with a graph of size 42239, very small compared with the original one
that had approximately several million states.

The example above shows the flexibility and power of the McErlang tool. The
same approach works fine for other kind of properties we have verified using CADP
and µ-Calculus. The longest success, the maximum number of plays and other
similar capacity properties can be verified in the same way: developing a monitor
that stores the size of the maximum path already found. Unfortunately, when the
property searches for the maximum path we cannot reduce the size of the graph
with a special hash table. Scenario-based properties are also easily specified by
simple Erlang monitors.

The flexibility of the McErlang tool can be also used in order to extract bottle-
neck information or studying the resources needed to add a new component. The
procedure would be the one already exposed in the method section, but due to the
access to a more complex state and action information we can extract and take
into account even more variables.

Finally, we have explored the use of McErlang for other kind of properties not
directly related to capacity. An example of this is checking if the user always
receives an answer after sending a lookup message.

In order to verify that, we implemented a new monitor where there are two
internal states, one dangerous state where the user already sent the message and
there is an answer message pending to be received, and the state where no answer is
pending. The property can be tested by introducing a choice in one of the messages
of the VoDKA system where one of the options is not sending a message back, and
it works without problems for our system. Unfortunately liveness properties such as
the response example here cannot currently be checked by the tool in the presence of
cycles in the underlying state graph (not present in the VoDKA example), although
standard algorithms to do so exists.

9.5.3 McErlang vs. etomcrl +µCRL +CADP for VoDKA

We have shown that McErlang can be used both for generating a state space similar
to the one obtained with the µCRL toolset, and for model checking the properties
about the VoDKA software architecture in a similar way to CADP.

McErlang lacks some of the features found in mature tools like µCRL toolset
and CADP, but it has some advantages due to the approach of working directly on
the Erlang level. Apart from the general features already described in Section 8.5,
we have found some advantages for the case of using McErlang with VoDKA for
extracting capacity information.

The main advantage comes from the fact of being able to analyse the real state
space of the system in detail, accessing Erlang structures, message queues, and so
on. This is more powerful than reasoning only about actions and states without
information as it is the case with µCRL toolset and CADP.

The flexibility and extensibility of the McErlang tool also allows the user to im-
plement sophisticated abstractions and hash tables. With µCRL toolset we needed
to generate the whole state space before reducing it later with CADP. Changing the
Erlang model including observe messages examples, we managed to reduce a bit

194 CHAPTER 9. PERFORMANCE FROM CODE

the size of the original one. But now, with McErlang, we can stop the graph gen-
eration in a more flexible way whenever we are in a path where we already know
that the next states are not relevant for the property we are trying to check. Doing
this, we have been able to extract properties from state spaces that where too big
for being generated completely.

9.6 Analysis and discussion

In this chapter, the scheduler of the VoDKA system acts as a case-study for our
methodology to verify global properties of a system. The behaviour of the system is
hidden in a complex distributed scheduler, based on component restrictions (band-
width, number of connections), local policies (cost functions, filters), cost related
functions (state of the components and resources still available), and a flexible hi-
erarchical architecture. By means of this scheduler, we present a methodology for
extracting global properties of an Erlang system from the local restrictions hid-
den in its processes. The methodology is more generally applicable than only for
schedulers. Many systems can be seen as a deterministic function over the input
(in our case sequences of users demanding movies). However, these functions are
composed of many small functions: the components. These components can have
state and are therefore hard to statically analyze. However, with our approach, we
simulate all possible runs of the system, as such obtaining the function between
domain and range compacted as a graph.

The methodology is based on three main steps that are all performed in a
completely automatic way. In the first step, we use our Erlang to µCRL compiler to
translate the original Erlang source code modules into a µCRL specification. In the
second step, we use the µCRL tool set for generating the whole state space, which
then is reduced to a smaller one where only the information needed for extracting
the performance properties is shown. Finally, we use the model checker of the CADP
tool set in three complementary ways for extracting interesting properties for the
user from the reduced state space. All these steps are performed by the user with
a high level graphical user interface, developed with the goal of hiding the internal
details of the approach. The tool is even able to analyze the system in order to
provide the user some feedback information with suggestions about how to improve
the system performance.

At the moment our approach is the only one that can automatically verify this
kind of global properties of a system. Other code level model checkers for Erlang
with this accuracy do not exist. For Java and C, however, there are similar ap-
proaches when it comes to model checking source code [CDH00, HP00, Hol91]. We
are not aware of an attempt to use these source code model checkers for analyzing
a flexible concurrent and distributed architecture in the way we explain in this
report. We apply ideas of simulation in a model checking framework.

There are many papers on the analysis of scheduling algorithms and simulation.
We can state that most simulation tools use a simulation specification language that
differs from the programming language the system is implemented in. We are not
aware of an automatic translation from the source code to the simulation language.

The Erlang source code of the VoDKA scheduler contains approximately 800
lines of code distributed over nine modules (plus the code of the generic behaviours,

9.6. ANALYSIS AND DISCUSSION 195

of course). This code implements the kernel part of the video server. We modified
the code by abstracting away the parts that are not necessary for the performance
analysis (e.g. low level transmission protocols and processes). We also ignore the
release of resources, since we want to look at the overloading of the system. This
means that we are looking at the worst case performance scenario where users only
request and do not release a Media Object .

We want to obtain this state space directly from the source code of the system.
In more classical approaches in literature one often uses a formal specification of a
system, normally a manually constructed abstraction of the system. The advantage
of the use of Erlang is that we have a rather high-level of abstraction already, such
that we can use the source code as our starting point. However, even the Erlang
source code would contain too many details to make it feasible to generate the
full state space. We really build upon the existence of design patterns, like the
supervision tree and generic servers that hide a lot of the details.

With the approach described in this report, we are able to handle configurations
of the system that are as complex as the ones that are being used in the VoDKA
prototypes that have been deployed for the cable company (with the manual ab-
straction that there single cache level is seen as a storage level). This means that
we are able to extract automatically performance information about the system
from its source code and configuration parameters.

The proposed approach uses formal methods in a rather original way: using the
µ-Calculus as a powerful declarative graph information extraction language; and
using model checking tools as general, flexible and efficient graph search algorithms.
We verified properties for several configurations. Most time is spent on the genera-
tion of the full state space. The compilation from Erlang to µCRL takes only a few
seconds and similarly the reduction of the state space and verifying properties of it
only takes a few seconds up to a minute. Generating the state space, though, may
take a few hours for rather large configurations. For that reason, we are exploring
the best way of using µCRL toolset for converting the process algebra model in
the system to a bisimular equivalent one that produces a smaller state space of the
system. We can indicate already in the specification which action we want to hide
and perform transformations on the µCRL level to obtain a specification that results
in a reduced state space. The first results with these tools are very promising, being
able to reduce more than ten percent of the size of the state space. Additionally, a
new representation of natural numbers in the process algebra, in order to improve
the performance of the symbolic computation of the model, is subject of study.

We have also shown a complementary approach based on McErlang, a model
checker that works directly with the Erlang source code, that already solves some
of the problems seen in the initial alternative.

From the developers point of view, most of the formal methods tools and tech-
nologies are just research initiatives that are still far away from being useful for
software development. In our case, since the beginning the focus was to try to avoid
this, combining research with creating methods and tools useful for the project de-
velopers. The GUI developed for hiding the internal details of the approach has
permitted to keep the research closer to the development team. Still a lot of work
needs to be done, but the obtained results in this sense are very satisfactory.

196 CHAPTER 9. PERFORMANCE FROM CODE

9.6.1 Conclusions and future research paths

This chapter has shown a method for going from software architecture to the formal
verification of a distributed system. The method is very structured and consists
on several steps that are based on a group of mature tools we have selected or
developed. We have illustrated the method by a case study: the extraction of
performance information from the software architecture of the VoDKA system, a
VoD server developed using Erlang . We have been able to automatically extract
relevant information about architecture bottlenecks and system capacity, providing
a tool that can be used by the developers in order to learn more about the system.

The method has some limitations, some of them due to the use of model check-
ing, others due to the use of the selected tools, but it is very automatic and permits
to introduce formal methods in the software development process in order to in-
crease the quality of the system, as we had stated in Chapter 7.

As we have explained, the method can be applied to other distributed systems,
with other architectures or even written in other languages. The idea of going
from the source code and the system configuration to the model checking of capacity
properties complements the classical approaches of using model checking for finding
functional errors in the system.

Although the results have shown to be useful for the development team, we have
done only the first steps towards a really mature inclusion of formal verification in
the analysis of software architectures.

Some of the relevant lines that are being considered for the near future research
are:

• VoDKA is having more and more users and new versions are developed. It
would be interesting to learn more about which are the real differences be-
tween the Erlang model of the system we are using and the real prototypes
that are being used currently. Concretely, would be interesting to find out
how far we really are from taking the real source code as input of our method-
ology, even abstracting automatically from the low level details (automate the
work we are now doing by hand).

• Consider the complete addition of the ’cache’ level to the ’Erlang model’. This
is going to produce some big changes in the way we extract the properties
from the system. This is going to have a lot of influence also in the way
we are planning to use the abstract movies (movies that represent the set of
Media Objects in all the devices, in only one, in device A and B, etc.)

• Explore new ways of giving the user feedback information. For example,
implementing some algorithms that use the abstract Media Objects for giving
this kind of feedback. What happens if we want to give feedback information
that needs different state spaces of different models? How can we really use
this different state spaces for advising the user on how to change the system
restrictions? It is in particular interesting to be able to extract information
about bottlenecks of the system, i.e. being able to give the user more complete
answers (e.g., “Thirty users cannot request Star Wars simultaneously with the
proposed configuration of the system, because the bandwidth communicating
the CD device with the system is too narrow”).

9.6. ANALYSIS AND DISCUSSION 197

• Understand better which properties the users of our methodology would be
interested in. A lot of discussion has happened already, but we could do
a more systematic study with the current VoDKA Team and possibly with
some users of the system, a complete list of user-readable properties that then
we could try to extract from the local properties of the system.

• We are considering also to explore the use of ’compositional model checking’
as a way of dealing with state space explosion also in our methodology for
performance analysis.

• Continue with the experiments related to using the theorem prover like tools
of the µCRL toolset that can be used for reducing the size and time in the
generated state space. Important for being able to handle bigger examples.

• Study which features would the users need in the GUI and how to improve
it in order to hide even more details of the underlying method and tools.

But our future research goals are more ambitious. An interesting feature would
be to reduce the need of manually abstracting from some parts of the Erlang source
code. Ideally, the real system should be directly used for the model checking. Using
etomcrl it is difficult to do that, because the approach needs inherently some kind
of abstraction, but McErlang is much closer to the Erlang program and has a
more flexible nature, so we will increase the efforts for getting new results in that
direction.

In general, we want to built upon this research to create a set of tools that
help future software architects to evaluate the quality of their architectures in a
early phase and iterative in the development process. This means that we need to
continue improving our understanding of what software architects need to get from
our tools, and at the same time increase the maturity and degree of automation of
our methods and procedures.

198 CHAPTER 9. PERFORMANCE FROM CODE

Part IV

Conclusions and open paths for
future research

199

Chapter 10

Thesis conclusions

In this thesis, we have shown how to go from the software architecture to the formal
verification of a distributed system. The target of our research was VoDKA, a very
flexible, scalable, distributed VoD server developed by the LFCIA-MADS research
group during the latest years using Erlang/OTP technologies. We have developed
a method and several tools for applying formal methods to the target system. The
goal was to extract useful architectural information automatically from the source
code and the system configuration.

The thesis was divided into three main parts. Although the results and conclu-
sions of each of the parts were detailed and discussed already during each of their
chapters, we will try to summarize the most important ones hereafter.

In the first part of the thesis, we gave a general motivation for the research: a
very innovative distributed system, sharing some interesting features with all the
systems of its kind, was a very challenging target for studying how formal methods
could help to improve the software architecture. Also, the goals of the thesis were
described, mainly: to obtain a better understanding of the software, to propose
tools for improving its architecture, and to study the possibilities and limits of for-
mal methods for verifying non functional aspects of a distributed system extracting
automatically properties about it. Finally, in this part, the main concepts from the
different areas that are related to the thesis are presented. We discussed specially
the ideas referred to the development of distributed systems using Erlang/OTP
and design patterns, and also to the use of process algebras and model checking for
extracting properties from that kind of systems. This part did not have important
conclusions and acted more as an introduction for the rest of the manuscript.

In the second part of the thesis, the VoDKA system was studied and described
in detail. The goal of that part was to describe the software architecture and
at the same time to show how several features of the system motivate the use of
formal methods in order to have a better understanding of its architecture. We
have discussed in detail which requirements are the most important ones when
developing VoD servers, and also how the state of the art in the field influenced
VoDKA; at the same time, we have explained why the innovative proposal made
by the LFCIA-MADS group is a better option than the existent alternatives for
scenarios where, among other features, flexibility, scalability and affordable cost
are required. Using the 4+1 model, we described the system from several comple-
mentary points of view. Guided by the VoD requirements and the use-cases, the

201

202 CHAPTER 10. THESIS CONCLUSIONS

design of the system heavily uses design patterns for creating its main software
components, which then collaborate in a very flexible way for building the software
architecture. This could be easily done mainly because all the components share a
common message API. The configuration of VoDKA can vary a lot depending on
the concrete needs of each deployment. We have shown several different deploy-
ments and how VoDKA is configured in each of them. We have also described how
the architecture of the VoDKA system has evolved at different levels during its
life cycle. This, together with the lessons learned from the VoDKA development
that are explained in Chapter 6, motivates the need for good tools for extracting
information about the VoDKA system. Erlang lacks a type system, and although
the platform is very powerful for developing complex distributed control systems, it
also lacks good tools for helping the designers to make good architectural choices.

In the third part of the thesis, from the deep understanding of the VoDKA
architecture, we explored how formal methods could be an answer to the lack of
good tools for extracting information about distributed systems. Chapter 7 is
itself an important result of this thesis: it explains and discusses why and how
we decided to use formal methods for the VoDKA project. The main motivation
was increasing the quality of the system. We decided to collaborate in increasing
the quality by giving the VoDKA team a method for learning more about the
software performance. Our approach included detecting design problems or finding
errors, but was more focused on the automatic extraction of software architecture
information from each version of the implementation. Inside formal methods, we
selected model checking. Simulation, testing and theorem proving could be used
as complements to our approach, having some advantages and disadvantages that
we have detailed throughout the thesis manuscript. Our proposal follows an agile
formal verification approach in each iteration of the software development life-cycle
in order to enrich the design decisions for the future features that are going to be
added to the system.

Our agile model checking-based approach, detailed and discussed in Chapter
9 consists in defining a method that, given the source code of our system and
the architecture configuration as input, is able to extract performance information
using logical formulas that are model checked against the system state space.

But for each of the steps in the method, we needed concrete tools. Chapter 8
discusses in detail the ones we have selected and developed after seeing the needs
of our method. In our initial approach, we first go from the Erlang source code to
the process algebra µCRL; in order to do this, an ad hoc compiler was developed.
The compiler, called etomcrl, uses the Erlang behaviours as a basis for simplifying
the translation, abstracting from some low level details that are not relevant for
creating the state space. etomcrl is able to translate automatically a big part
of the Erlang language. We satisfactorily used the non-determinism in µCRL for
simulating the users activating our system with all kind of possible requests. Once
we have the process algebra specification, we use the µCRL toolset for generating
the state space of the system. As the state space can be big, we have to reduce it
before model checking. The reduction in the graph and the checking of the formulas
is done using CADP.

We applied our method successfully to the VoDKA system. Following the pro-
posed approach, we managed to extract different kinds of capacity properties about

203

the system. We could automatically extract information like the number of times
that a Media Object can be played or how many people can watch MO1 such that
the system can still serve MO2; following the same method, we can also extract
information about system architecture, system bottlenecks, or even get some hints
about how the current architecture would need to be modified when adding a new
resource. In general, the results were optimal and we managed to get answers for
most of the questions we had stated as goals. However, the approach has some
limitations we have described in detail: some of them inherent to the use of model
checking (mainly state space explosion), and others related to the kind of proper-
ties we are using for extracting information from the system (some performance
properties are difficult to formulate as logical expressions over the state space).
Apart from the limits of the approach, the tools used have also some limitations,
like the time needed for generating the state space or the problems for finding the
right reduction rules for making the state space smaller. Trying to overcome that
limits and at the same time trying to show that the method is generic and can be
implemented using other tools, we applied it again using McErlang. This tool al-
lows the direct model checking of Erlang programs. We have shown that McErlang
can be used both for generating a state space similar to the one obtained with the
µCRL toolset, and for model checking the properties about the VoDKA software
architecture in a similar way to CADP. McErlang lacks some of the features found in
mature tools like µCRL toolset and CADP, but it has some advantages due to the
approach of working directly on the Erlang level: it is able to analyze the real state
space of the system in detail, accessing all kind of Erlang structures of the real
processes of the system. This is more powerful than reasoning only about actions
and states without information as it is the case with µCRL toolset and CADP. We
have also described how to use McErlang in a creative way for stopping the graph
generation in a more flexible way whenever we are in a path where we already know
that the next states are not relevant for the property we are trying to check. Doing
this, we have been able to extract properties from state spaces that where too big
for being generated completely with the previous tools.

Creating a method that could be used by people without expertise in the area of
formal methods was also one of the goals of the thesis. On top of all the specialized
tools we use, we have developed the prototype for an application that hides the un-
derlying details making easier the extraction of the system properties. The results
are very promising and although for advanced properties the users are probably
always going to need to know the internal details of the method, we have simplified
a lot the extraction of a relevant set of properties and architectural information.

An important thing to remark is that the method proposed is not only flexible
in the tools used, but also in the target systems it can be applied to. In this thesis,
we have addressed the extraction of properties from the VoDKA system, but as we
have explained in Chapter 9, the same could be applied to other similar systems,
sharing the main features of VoDKA, namely: having a flexible architecture, being
aware of the underlying hardware resources (or simulating that by some kind of
environment), and use of design patterns as the basis for creating the software
components.

204 CHAPTER 10. THESIS CONCLUSIONS

Chapter 11

Open paths for future research

The results obtained in this thesis open all kind of research paths that would be
interesting and challenging to explore. Again, we have already described the main
open paths along the different parts of the thesis manuscript, but we will summarize
the most relevant ones here.

About the VoDKA system itself, there are three lines that are currently the
most interesting ones: to develop the capacity of automatically auto-design the
system architecture in order to improve its performance; to improve the system
architecture by having more and better components; and to increase the code
reusability, mainly by using better and more sophisticated design patterns. This is
mainly a task for the system architects, but it cannot be easily done without the
help of much better tools that the ones available nowadays.

The conclusions of the thesis show that extracting functional and non-functional
(e.g. about performance) information automatically from the source code and the
system configuration is possible. Main future paths should focus in improving that
results in the following four lines:

• Explore the use of other tools from the area of formal methods inside our
method. The promising results obtained using McErlang suggest that more
experiments of using that model checker for Erlang in the VoDKA system
should be carried out. It would be also desirable to compare what we can
get from other alternative tools apart from McErlang. Also, although we
have used some small tools from the area of theorem proving, it would be
more than interesting to try to combine them deeper with the model checking
approach.

• Complement the study about the limits of the approach and which properties
cannot be extracted this way. We have managed to extract interesting results,
but it would be interesting to formally explore where we can get with this
method and where are the limits that cannot be overcame. For those limits,
variations of our method should be proposed.

• Create better top level applications doing exactly what the user wants without
removing flexibility and power. We have created a first prototype, but it
should be evolved towards a mature and usable application. In order to
decide what should be in the interface, a detailed research on the concrete
needs of the system architects should be carried out.

205

206 CHAPTER 11. OPEN PATHS FOR FUTURE RESEARCH

• Apply to other systems and learn from that experience. We have shown that
our method is not only valid for VoDKA, but also for other distributed sys-
tems. A natural next step is to apply carefully the method to other systems,
what is surely going to produce improvements and changes in the method
itself and the underlying tools.

As we said with more detail in the discussion and conclusions of Chapter 9, we
want to built upon this research to create a set of innovative tools that can give
feedback to software architectures for helping them to increase the quality of their
systems.

Part V

Appendixes

207

209

In the following appendixes we include some documentation that complements
what has been explained in the previous chapters. They are not part of the core
research that has been done, but complete or help to understand it in some way.

210

Appendix A

etomcrl tool: simple example,
tool usability and other case
studies

Contents

A.1 A simple translation example 211

A.1.1 Original Erlang source code of the example 212

A.1.1.1 The supervision tree: st.erl 212

A.1.1.2 A simple generic server: disk.erl 212

A.1.1.3 A trivial client: users.erl 213

A.1.2 µCRL specification generated automatically from the ex-
ample . 214

A.2 Using the etomcrl tool 218

A.3 Other case study: ATM switch 219

A.3.1 An ATM switch Locker 219

A.3.1.1 Project description 220

A.3.1.2 Results of using the tool within this project . . . 220

A.1 How the tool works: a simple translation example

In this section, a trivial translation from Erlang source code to a µCRL specification
is given. The trivial example is composed by a simple supervision tree that starts
two processes, one for the server (a trivial disk storage implementation) and the
other for the users accessing the disk server. Hereafter, the most important parts
of the three Erlang modules implementing the example and the resulting µCRL
specification are shown.

211

212 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

A.1.1 Original Erlang source code of the example

A.1.1.1 The supervision tree: st.erl

The module st implements the call back functions for a very simple supervision
tree (the Erlang standard behaviour that models a tree of processes supervising
their children). The module only exports two functions, one is the start link that
is going to be used in order to start the software, and the other the init function,
which is going to be the call-back function used by the module supervisor in order
to extract the configuration parameters of the supervision tree to be created. init
answers with a standard structure where the tree is described: in this case, formed
by two worker processes supervised by one node. The Erlang atoms and numbers
are used to configure the policies for re-starting nodes in case of processes crashing,
and other similar parameters.

The user would start the program with the call to st:start link(MOList).
Where MOList is the (configurable at start up) list of Media Objects that are going
to be available in the server. Then the function would call to the start link of
the supervisor module, which will perform generic initialization steps common to
any supervision tree, and will extract the configuration of this tree from the result
of the function init.

-module(st).
-behaviour(supervisor).

-export([start_link/1]).
-export([init/1]).

start_link(MOList) ->
supervisor:start_link(?MODULE,MOList).

init(MOList) ->
Disk =
{disk,{disk,start_link,[MOList]},

permanent,2000,worker, []},
Users =
{user_simulation,{users,start_link,[disk]},

permanent,2000,worker,[]},
{ok,{{one_for_one,0,5000},

[Disk,Users]}}.

A.1.1.2 A simple generic server: disk.erl

The worker process implementing the storage containing the list of Media Objects
uses the gen server behaviour. The module implementing the call-back functions
is shown below. Apart from the standard start link, two more functions are
exported: the init, used by the generic server module for obtaining the initial
state; and the handle call, implementing the call-backs for the two messages that
can be received from the user. The initial state in this case is the list of Media
Objects and the number of connections that are in use initially (which is always
zero). The messages that can be received are either a lookup or a request for
playing a given Media Object . If the server receives a lookup, in case the requested

A.1. A SIMPLE TRANSLATION EXAMPLE 213

Media Object is present in the disk and there are still available connections, the
reply sends an affirmative result (setting the value to 1); in other case it sends a
negative result. If the message is a play, the number of used connections is updated.
It is interesting to note that a lot of things, including the server loop, are hidden
here and only present in the code of the behaviour.

Another interesting thing to note is that even for this small example we are
already working with an abstraction of the source code. In a real implementation,
when a play message arrives, something more than updating the number of con-
nections should be done. A number of processes should be created and then the
actual streaming should be done. Also, when the streaming stops, the connection
should be released. In this case we abstract from this and we only would be able
to look, while doing verification, to the performance of the system when the load
is continuously increasing. A very similar abstraction is done in the more complex
source code of the VoDKA system.

-module(disk).
-behaviour(gen_server).

-define(MAX_CONNECTIONS, 2).

-export([start_link/1]).
-export([init/1, handle_call/3]).

start_link(Movies) -
gen_server:start_link({local,?MODULE},?MODULE, Movies, []).

init(Movies) ->
{ok, {Movies,0}}.

handle_call({lookup,MO}, From, {Movies,Connections}) ->
case lists:member(MO,Movies) and

(?MAX_CONNECTIONS >= Connections) of
true ->

{reply, {lookupAns, 1, MO}, {Movies, Connections}};
false ->

{reply, {lookupAns, 0, MO}, {Movies,Connections}}
end;

handle_call({play, MO, Dest}, From, {Movies, Connections}) ->
{reply, self(), {Movies, Connections + 1}}.

A.1.1.3 A trivial client: users.erl

Finally, we show the code of a very simple client. The client is a normal Erlang
process and it does not implement any behaviour. When it is started, it receives the
process identifier of the disk, and it creates a new process calling to spawn link,
where the function init is evaluated. The main loop is now explicit, and it does
a request for the Media Object m1 to the disk device. If the answer is negative,
it ignores it and loops, and if it is positive, it requests to play the movie before
looping.

-module(users).

214 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

-export([start_link/1, init/1]).

start_link(Disk) ->
{ok, spawn_link(?MODULE, init,[Disk])}.

init(Disk) ->
loop(Disk).

loop(Disk) ->
{lookupAns, Answer, MO} =

gen_server:call(Disk,{lookup,m1}),
case Answer of

0 ->
loop(Disk);

1 ->
gen_server:call(Disk,{play,MO,user}),
loop(Disk)

end.

A.1.2 µCRL specification generated automatically from the exam-
ple

Using the etomcrl tool, presented in Chapter 8, the above supervision tree with
two processes can be translated automatically to the following µCRL specification.
Instead of showing the whole file, which contains almost a thousand lines of µCRL,
we will comment the more interesting parts one by one.

We omit the first part of the specification, which defines in µCRL the rewriting
rules for all the data types (sorts in µCRL notation) and the pure functions. Bool,
Natural, Term (for Erlang terms) and all kind of operations are defined over them.
An example of the kind of code we find in this first part is the following one, where
equality over terms and the if command are partially defined:

map
eq: Term # Term -> Bool
if: Bool # Term # Term -> Term

var
T1,H1,MCRLTerm1,MCRLTerm2: Term
MCRLBool: Bool
N: Natural

rew
if(T,MCRLTerm1,MCRLTerm2) = MCRLTerm1
if(F,MCRLTerm1,MCRLTerm2) = MCRLTerm2
eq(pid(N),MCRLTerm2) =

and(is_pid(MCRLTerm2),eq(N,pid1(MCRLTerm2)))
eq(MCRLTerm1,pid(N)) =

and(is_pid(MCRLTerm1),eq(pid1(MCRLTerm1),N))
eq(int(N),MCRLTerm2) =

and(is_int(MCRLTerm2),eq(N,int1(MCRLTerm2)))
eq(MCRLTerm1,int(N)) =

and(is_int(MCRLTerm1),eq(int1(MCRLTerm1),N))
...

A.1. A SIMPLE TRANSLATION EXAMPLE 215

But the most interesting part is the one defining the actions, the communication
pairs, and the processes that interact in the model.

For our example, the following actions are created:

act
bufferfull: Term
gen_server_call,gscall,buffercall: Term # Term # Term
gen_server_cast,gscast,buffercast: Term # Term
send,gsinfo,bufferinfo: Term # Term
gshcall,handle_call,call: Term # Term # Term
gshcast,handle_cast,cast: Term # Term
gshinfo,handle_info,info: Term # Term
gen_server_reply,gen_server_replied,reply: Term # Term # Term

Some of them model the communication between the artificial buffers that are
added as explained by the etomcrl tool and the processes, and others model the
Erlang communications between the different generic servers. In µCRL the actions
can have parameters. In our case, the parameters are going to be translated from
the Erlang terms that appear in the original messages.

But, in order to communicate, the actions need to be placed in pairs. The
following code shows how they synchronize:

comm
gen_server_call | gscall = buffercall
gen_server_cast | gscast = buffercast
send | gsinfo = bufferinfo
gshcall | handle_call = call
gshcast | handle_cast = cast
gshinfo | handle_info = info
gen_server_reply | gen_server_replied = reply

After the actions and communication are specified, we enter into the process
part.

The specification of the buffer is shown below. Inside it, we can see that the
size of the buffer is limited. If the buffer is full, messages can only be removed
from the state. If not, a non-deterministic choice is made in order to decide if a
new message (cast, call or info, the three possible messages of a generic server in
Erlang) is received, or we remove the first from the state. The µCRL code of this
implementation is not generated from the Erlang source code; instead, the same
µCRL code is reused for all the translations.

proc
Server_Buffer(MCRLSelf: Term, Messages: GSBuffer) =
(bufferfull(MCRLSelf).
(gshcast(MCRLSelf,cast_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_cast(Messages) |>
(gshinfo(MCRLSelf,info_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_info(Messages) |>
(gshcall(MCRLSelf,call_term(Messages),

call_pid(Messages)).

216 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_call(Messages) |>
delta))))

<| maxbuffer(Messages) |>
(sum(Msg: Term,
sum(From: Term,
gscall(MCRLSelf, Msg, From).
Server_Buffer(MCRLSelf,

addcall(Msg,From,Messages)))) +
sum(Msg: Term,

gscast(MCRLSelf, Msg).
Server_Buffer(MCRLSelf, addcast(Msg,Messages))) +

sum(Msg: Term,
gsinfo(MCRLSelf, Msg).
Server_Buffer(MCRLSelf, addinfo(Msg,Messages))) +

(gshcast(MCRLSelf,cast_term(Messages)).
Server_Buffer(MCRLSelf,rmhead(Messages))

<| is_cast(Messages) |>
(gshinfo(MCRLSelf,info_term(Messages)).

Server_Buffer(MCRLSelf,rmhead(Messages))
<| is_info(Messages) |>
(gshcall(MCRLSelf,call_term(Messages),

call_pid(Messages)).
Server_Buffer(MCRLSelf,rmhead(Messages))

<| is_call(Messages) |>
delta))))

For the buffer, and for all the rest of the processes, the translation adds the
process identifier as the first parameter. This is useful in order to reuse actions for
the synchronization of the different processes.

After the buffer, we can found in the output file the specification of the user
process. We see that the supervision tree disappears in the translation. Now the
process has a function initializing, very simple, and then the process main loop.

users_init(MCRLSelf:Term,Disk:Term) =
users_loop(MCRLSelf,Disk)

users_loop(MCRLSelf:Term,Disk:Term) =
gen_server_call(Disk,tuple(lookup, tuplenil(m1)),MCRLSelf).
sum(Answer: Term,
sum(MO: Term,

gen_server_replied(MCRLSelf,tuple(lookupAns,
tuple(Answer, tuplenil(MO))),Disk).

(users_loop(MCRLSelf,Disk)
<| eq(equal(Answer,int(0)),true) |>

(gen_server_call(Disk,tuple(play, tuple(MO,
tuplenil(user))),MCRLSelf).

sum(MCRLFree0: Term,
gen_server_replied(MCRLSelf,MCRLFree0,Disk).
users_loop(MCRLSelf,Disk))

<| eq(equal(Answer,int(s(0))),true) |>
delta))))

A.1. A SIMPLE TRANSLATION EXAMPLE 217

The main loop has a very similar structure to the original Erlang code. Here
we can see that tracing errors back would still be pretty simple. The functions
sending messages in the call-back module of the generic server are substituted by
actions, and the rest is mainly syntactic translation from Erlang to µCRL.

Finally, we can see the code of the disk device:

disk_init(MCRLSelf:Term,Movies:Term) =
disk_serverloop(MCRLSelf,tuple(Movies,

tuplenil(int(0))))

disk_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,
sum(MO: Term,
handle_call(MCRLSelf,tuple(lookup, tuplenil(MO)),From).
assertion(equal(size(State),int(s(s(0))))).
(gen_server_reply(From,tuple(lookupAns, tuple(int(s(0)),

tuplenil(MO))),MCRLSelf).
disk_serverloop(MCRLSelf,tuple(element(int(s(0)),State),

tuplenil(element(int(s(s(0))),State))))
<| eq(equal(and(member(MO,element(int(s(0)),State)),

mcrl_geq(int(s(s(0))),
element(int(s(s(0))),State))),true),true) |>

(gen_server_reply(From,tuple(lookupAns, tuple(int(0),
tuplenil(MO))),MCRLSelf).

disk_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),

tuplenil(element(int(s(s(0))),State))))
<| eq(equal(and(member(MO,element(int(s(0)),State)),

mcrl_geq(int(s(s(0))),
element(int(s(s(0))),State))),false),true) |>

delta)))) +
sum(From: Term,

sum(MO: Term,
sum(Dest: Term,

handle_call(MCRLSelf,tuple(play,
tuple(MO, tuplenil(Dest))),From).

assertion(equal(size(State),int(s(s(0))))).
gen_server_reply(From,MCRLSelf,MCRLSelf).
disk_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),
tuplenil(mcrl_plus(element(int(s(s(0))),

State),int(s(0)))))))))

It is a bit more complex but also quite similar to the original Erlang code. The
two handle call clauses are translated into a non-deterministic choice between two
actions. Some assertions are added because of the conditions created by the pattern
matching. The state is extracted from the code and made now explicit in the server
loop (remember that it was hidden in the behaviour-based implementation).

The last part of the µCRL specification is what is called the initialization area.
It starts all the processes in parallel with their initial parameters. This part can
be seen as a substitution of the supervision module and its call-back module with
the concrete configuration for our example.

218 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

init
hide({conftau,buffercall,buffercast,bufferinfo},
encap({handle_call,gen_server_call,

handle_cast,gen_server_cast,
gscall,gshcall,gscast,gshcast,send,gsinfo,
gen_server_reply,gen_server_replied},

users_init(pid(0),disk) ||
hide({push_callstack,pop_callstack},

encap({rcallvalue,wcallvalue,rcallresult,wcallresult},
CallStack(empty) ||

disk_init(disk,cons(m1,cons(m2,nil))))) ||
Server_Buffer(disk,emptybuffer)
))

The actions that are not relevant for verification purposes are encapsulated and
hidden. The goal is to reduce as much as possible the information present in the
state space that would be derived from the specification.

A.2 Using the etomcrl tool

One of the goals of the etomcrl tool was, since the very beginning, being easy
to use and available for the research community. Because of this, it was early
published as free software in one of the main public repositories. Besides, the tool
is easy to compile and install, only needing to follow the very standard techniques
used in most of the Erlang projects. As an example of this concept, we include in
this section some ideas about how the tool is used.

The tool API is defined in the etomcrl.erl module. This module acts as the
interface between the user and the etomcrl tool. It contains high level functions
that allow to use the compiler inside the Erlang shell or from the command line of
any other shell. The main API functions are the following ones:

• The script/0 function is used in order to execute the supervisor function
without starting the Erlang shell. It obtains the arguments from the string
given as a parameter after the -start option, and could be used as follows:

erl -noshell -s etomcrl script \\
-start "mod:function([arguments])"

• The functions batch/0 and batch/2 allow to check a list of properties against
a list of configurations. To do so, they call the µCRL tools needed to generate
the LTS and the CADP tools to model check the properties. Therefore, this
functions integrate the etomcrl tool with external software. An example of
use would be the following one:

erl -noshell -s etomcrl batch -file "file1" -property "file2"

file1 should contain a list of "mod:function([arguments])". Those are
the programs one wants to verify; file2 should contain a list of properties
expressed in the alternation-free mu-calculus used by the CADP toolset.

A.3. OTHER CASE STUDY: ATM SWITCH 219

batch/0 takes the command line arguments, reads the contents of the given
files and calls batch/2 which would perform all the other operations.

• supervisor/3 and supervisor/6 are the main functions in the tool API.
They start all the compilation process. The first one is used if no source and
destination directories are specified, and in that case the current directory
is taken by default as source directory and for the destination directory the
directory specified in the etomcrl.h file.

supervisor(SrcDir::string(), DestDir::string(),
Mod::atom(), Fun::atom(), Args::[term()],
Options::options()) -> string()

ScrDir is the directory where the source code is located. Destdir is the
directory where the resulting file with µCRL specification is located. The
file is named after the name of the module given as a third argument for
the supervisor/6 function and it has a µCRL extension. Mod is an atom
representing the name of the module. This module contains the implemen-
tation of the root of the supervision tree. Fun is the function that starts the
supervision tree Args is the list of the arguments that are passed to Fun.
Options is a list of tuples with options for the compiler. Supported options
are: {file,Directory} to store intermediate files, that are created at dif-
ferent stages during the compilation. {buffer,N} to set the size of buffer
to int N. This buffer is used to implement the asynchronous communication
between processes in µCRL. This is only used in the last phase of the compi-
lation, when the Erlang program is fully translated to µCRL. N could also be
the Erlang atom none, meaning synchronous communication.

The function returns the name of the file where the µCRL spec is written.

• The function instantiator/3 works as a script that generates the µCRL file
from the Erlang source files and then calls the µCRL tools to generate the
corresponding LTS. It has the following specification:

instantiator(Mod, Fun, Args) -> term()

A.3 Other case study: ATM switch

The etomcrl tool has been successfully used in two industrial case studies, one
is the VoDKA server, subject of this thesis, and the other is introduced in the
current section. Both teams working in both case studies have shared their efforts
and conclusions during the last years, and some of the tools and steps have been
also born out of that collaboration.

A.3.1 An ATM switch Locker

Below, we summarize the main ideas behind the research carried out for the verifica-
tion of an ATM switch locker using etomcrl. More details can be found in [ABD04].

220 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

A.3.1.1 Project description

The telecommunication company Ericsson is using the functional programming lan-
guage Erlang for the development of concurrent/distributed software for telecom-
munications equipment. One of the larger examples of such a system is the AXD
301 high capacity ATM switch [BR98b], used to implement, for example, the back-
bone network in the UK. The software of this switch consists of about half a million
lines of Erlang code.

This code is written in a development process that is rather similar to the
eXtreme Programming approach: designers write and test it themselves and in
small iterations, features are added to the code until a final release stage is reached.

As it was the case of VoDKA, in Ericsson the software for large projects like
the AXD 301 switch is written according to rather strict design principles. For the
AXD, a number of software components are used which have been specified for use
in a number of Ericsson projects. These components can be seen as higher-order
functions for which certain functions have to be given to determine the specific
functionality of the component. About eighty percent of the software implements
code for this specific functionality of one of these components, the majority of this
for the generic server component.

The development process and the use of these library components both ensure
that the code is tested many times before the final implementation. For exam-
ple, during development the software is often written during day-time and tested
overnight. The test cases are written by the designers in parallel with the code and
a test server automatically runs these test cases.

However, despite this extensive testing, for critical hardware such as telecom-
munications switches it is clearly preferably to have even higher levels of assurance
that the code is correct. The aim, therefore, was to build a formal verification
tool that fit into this development process. etomcrl tool would be part of this
framework.

A.3.1.2 Results of using the tool within this project

The use of the tool is similar to the one presented for VoDKA in this thesis, although
some of the steps in the method and the kind of properties that are extracted are
completely different.

The idea followed in this case study consists of the following steps. The Erlang
code for a component is automatically translated to a process algebraic specifica-
tion written in µCRL. We then generate a labelled transition system (LTS) from
this µCRL specification by using components of the µCRL toolset. The properties
of interest are then written in the logic of the model checker we use, here we use
the regular alternation-free µ-Calculus to express non-starvation and mutual ex-
clusion. The labelled transition system is then checked against this property using
the Cæsar/Aldébaran toolset. For some properties it is necessary to transform
the LTS (e.g., using hiding for non-starvation) so that we can model check with a
simpler formulation of the property of interest (e.g., one without alternating fixed
points).

In general, the approach uses similar tools and steps, but has different kinds
of goals. The properties in this case are the classical ones, trying to find errors in

A.3. OTHER CASE STUDY: ATM SWITCH 221

the software. The effort, therefore, is complementary to the one presented in this
thesis.

222 APPENDIX A. MORE ABOUT THE ETOMCRL TOOL

Appendix B

An example of using etomcrl in
VoDKA with source code

Contents

B.1 Supervision tree: vodka.erl 223

B.2 Supervision tree: storage.erl 224

B.3 Generic server: storage sched.erl 224

B.4 Generic server: storage group.erl 225

B.5 Generic server: streaming sched.erl 226

B.6 Generic server: disk storage.erl 227

B.7 µCRL code for the main part of the example 229

Hereafter we include, for completeness and ilustrative reasons, the main parts
of the source code of one of the Erlang models of VoDKA that we have presented
in Chapter 9, together with the resulting µCRL translation.

B.1 Supervision tree: vodka.erl

The following code implements the call-back module for the main supervision tree in
the VoDKA system: the one that starts the storage and streaming server, together
with the users process.

-module(vodka).
-behaviour(supervisor).

-export([start_link/1]).
-export([init/1]).

start_link(DeviceList) ->
supervisor:start_link(?MODULE,DeviceList).

init(DeviceList) ->
StorageSup =
{storage_supervisor,{storage,start_link,

[DeviceList]},

223

224 APPENDIX B. USING ETOMCRL ON VODKA

permanent,2000,supervisor,[]},
StorageSched =
{storage_sched,{storage_sched,start_link,[storage_group]},

permanent,2000,worker,[]},
StreamingSched =
{streaming_sched,{streaming_sched,start_link,

[storage_sched]},
permanent,2000,worker, []},

Users =
{user_simulation,{users,start_link,[streaming_sched]},

permanent,2000,worker,[]},
{ok,{{one_for_one,0,5000},

[Users,StreamingSched,StorageSched,StorageSup]}}.

B.2 Supervision tree: storage.erl

The code below implements the storage level, which is also a supervision subtree
of the general one. It starts the storage group and the list of storage devices.

-module(storage).
-behaviour(supervisor).

-export([start_link/1]).
-export([init/1]).

start_link(Drivers) ->
supervisor:start_link(?MODULE, Drivers).

init(Drivers) ->
StorageGroup =
{storage_group,{storage_group,start_link,

[lists:map(fun({DriverName,_,_,_,_,_}) ->
DriverName

end,Drivers)]
},

permanent,2000,worker,[]},
DriverSpecs =
lists:map(fun({DriverName, DriverType, MOs,

MaxConnections, MaxBandwidth, Cost}) ->
{DriverName,
{DriverType,start_link,

[DriverName, MOs,
MaxConnections,MaxBandwidth, Cost]},

permanent,2000,worker,[]}
end,Drivers),

{ok,{{one_for_one,2,5000}, [StorageGroup|DriverSpecs]}}.

B.3 Generic server: storage sched.erl

The storage level acts as a middleware between the storage devices and the stream-
ing level. It forwards messages both ways doing some scheduling in the middle if
needed.

B.4. GENERIC SERVER: STORAGE GROUP.ERL 225

-module(storage_sched).
-behaviour(gen_server).

-export([start_link/1]).
-export([init/1, handle_call/3]).

start_link(StorageGroup) ->
gen_server:start_link({local,?MODULE},?MODULE,

StorageGroup, []).

init(StorageGroup) ->
{ok, {StorageGroup,0, 0}}.

handle_call({lookup,MO,Profile}, From,
{StorageGroup,UsedConnections, UsedBandwidth}) ->

{lookupAns,Options} =
gen_server:call(StorageGroup,{lookup,MO,Profile}),

{reply, {lookupAns,cost(Options,UsedConnections)},
{StorageGroup,UsedConnections, UsedBandwidth}};

handle_call({play,MO, Bw, Pid}, From,
{StorageGroup, UsedConnections, UsedBandwidth}) ->

Reply = gen_server:call(StorageGroup, {play,MO, Bw, Pid}),
{reply, Reply,

{StorageGroup, UsedConnections+1, UsedBandwidth+Bw}}.

cost(Options,Connections) ->
Options.

B.4 Generic server: storage group.erl

This generic server groups all the storage devices, acting as a unique proxy for the
upper levels in the system configuration. It forwards messages to all the connected
devices and then groups the answers back.

-module(storage_group).
-behaviour(gen_server).

-export([start_link/1]).
-export([init/1, handle_call/3]).

start_link(StorageDrivers) ->
gen_server:start_link({local,?MODULE},?MODULE,

StorageDrivers, []).

init(StorageDrivers) ->
{ok, {StorageDrivers,0, 0}}.

handle_call({lookup,MO,Profile}, From,
{StorageDrivers,UsedConnections, UsedBandwidth}) ->

Options = send_all({lookup,MO,Profile},StorageDrivers,[]),
{reply, {lookupAns,cost(Options,UsedConnections)},
{StorageDrivers,UsedConnections, UsedBandwidth}};

226 APPENDIX B. USING ETOMCRL ON VODKA

handle_call({play, MO, Bw, Pid}, From,
{StorageDrivers, UsedConnections, UsedBandwidth}) ->

Reply = gen_server:call(Pid, {play,MO, Bw}),
{reply, Reply,

{StorageDrivers, UsedConnections+1, UsedBandwidth+Bw}}.

send_all(Message,[], Options) -> Options;
send_all(Message,[Driver|Drivers],Options) ->

{lookupAns, NewOptions} = gen_server:call(Driver,Message),
send_all(Message, Drivers, NewOptions++Options).

cost(Options, Connections) ->
Options.

B.5 Generic server: streaming sched.erl

The streaming level acts as a middleware between the storage and the user. It
forwards messages both ways doing some scheduling in the middle.

-module(streaming_sched).
-behaviour(gen_server).

-export([start_link/1]).
-export([init/1, handle_call/3]).

start_link(StorageSched) ->
gen_server:start_link({local,?MODULE},?MODULE,

StorageSched, []).

init(StorageSched) ->
{ok, {StorageSched, 0, 0}}.

handle_call({lookup,MO,Profile}, From,
{StorageSched,UsedConnections, UsedBandwidth}) ->

{lookupAns,Options} =
gen_server:call(StorageSched,{lookup,MO,Profile}),

{reply, {lookupAns, MO, Profile, cost(Options,UsedConnections)},
{StorageSched,UsedConnections, UsedBandwidth}};

handle_call({play,MO, Bw, Pid}, From,
{StorageSched, UsedConnections, UsedBandwidth}) ->

Reply = gen_server:call(StorageSched, {play,MO, Bw, Pid}),
{reply, Reply,

{StorageSched, UsedConnections+1, UsedBandwidth+Bw}}.

cost(Options,Connections) ->
Options.

B.6. GENERIC SERVER: DISK STORAGE.ERL 227

B.6 Generic server: disk storage.erl

The code for the storage devices is quite similar. They store a list of Media Objects
and they react to the messages in the protocol depending on the availability of me-
dia an resources. The differences between then are more related to the underlying
resources they are managing. We only include here the code for the disk.

However, in the translation we include all of them (tape, disk and cd), to show
their similarities also in the µCRL specification.

-module(disk_storage).
-behaviour(gen_server).

-export([start_link/5]).
-export([init/1, handle_call/3]).

start_link(Name, Movies, MaxConnections, MaxBandwidth, Cost) ->
gen_server:start_link({local,Name}, ?MODULE,

[Movies, MaxConnections, MaxBandwidth, Cost], []).

init([Movies, MaxConnections, MaxBandwith, Cost]) ->
{ok, {Movies,MaxConnections,MaxBandwith,Cost,0,0}}.

handle_call({lookup,MO,Profile}, From,
{Movies, MaxConnections, MaxBandwidth,

Cost, Connections, UsedBandwidth}) ->
{reply,
{lookupAns,
scheduling(MO, Profile, Movies,

UsedBandwidth, Connections,
MaxConnections, MaxBandwidth,

Cost, self())},
{Movies, MaxConnections, MaxBandwidth,
Cost, Connections, UsedBandwidth}};

handle_call({play, MO, Bandwidth}, From,
{Movies, MaxConnections, MaxBandwidth,

Cost, Connections, UsedBandwidth}) ->
{reply, self(), {Movies, MaxConnections, MaxBandwidth, Cost,
Connections + 1, UsedBandwidth + Bandwidth}}.

scheduling(MO, Profile, Movies, UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost, ProcId) ->
case UsedConnections >= MaxConnections of
true ->

[];
false ->

case UsedBandwidth >= MaxBandwidth of
true ->

[];
false ->

AvailableBw =
check_available_bw(MO, Profile, Movies),

scheduling_still_resources(

228 APPENDIX B. USING ETOMCRL ON VODKA

AvailableBw, UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost, ProcId)

end
end.

scheduling_still_resources ([], UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost, ProcId) ->

[];
scheduling_still_resources ([B|RestBandwidths],

UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost, ProcId) ->

case MaxBandwidth >= (UsedBandwidth+B) of
false ->

scheduling_still_resources (
RestBandwidths, UsedBandwidth, UsedConnections,

MaxConnections, MaxBandwidth, Cost, ProcId);
true -> [
{B,
cost(B,UsedBandwidth, UsedConnections,

MaxConnections, MaxBandwidth, Cost),
ProcId}
|
scheduling_still_resources (

RestBandwidths, UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost, ProcId)

]
end.

cost(MOBandwidth, UsedBandwidth, UsedConnections,
MaxConnections, MaxBandwidth, Cost) ->
MOBandwidth * (UsedConnections+1) * Cost.

check_available_bw (MO, Profile, []) ->
[];

check_available_bw (MO1, Profile,
[{MO2,AvailableProfile}|OtherMOs]) ->

case (MO1 == MO2) of
true ->

list_intersection (Profile, AvailableProfile);
false ->

check_available_bw (MO1, Profile, OtherMOs)
end.

list_intersection ([],List) ->
[];

list_intersection (List, []) ->
[];

list_intersection ([Hd1|Tail1], [Hd2|Tail2]) ->
case Hd1 >= Hd2 of

false ->
list_intersection (Tail1, [Hd2|Tail2]);

true ->
case Hd1 == Hd2 of

B.7. µCRL CODE FOR THE MAIN PART OF THE EXAMPLE 229

true ->
[Hd1 | list_intersection (Tail1, Tail2)];

false ->
list_intersection ([Hd1|Tail1], Tail2)

end
end.

B.7 µCRL code for the main part of the example

The transformation for the input Erlang code shown above, after removing the
innitial part of the µCRL file (were the data types and the pure rewriting rules are
described), would be as follows:

proc

cd_storage_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,

sum(MO: Term,
sum(Profile: Term,

handle_call(MCRLSelf,tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

assertion(equal(size(State),
int(s(s(s(s(s(s(0))))))))).

gen_server_reply(From,tuple(lookupAns,
tuplenil(cd_storage_scheduling(MO,Profile,
element(int(s(0)),State),
element(int(s(s(s(s(s(s(0))))))),State),
element(int(s(s(s(s(s(0)))))),State),
element(int(s(s(0))),State),
element(int(s(s(s(0)))),State),
element(int(s(s(s(s(0))))),State),
MCRLSelf))),MCRLSelf).

cd_storage_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),

tuple(element(int(s(s(0))),State),
tuple(element(int(s(s(s(0)))),State),
tuple(element(int(s(s(s(s(0))))),State),
tuple(element(int(s(s(s(s(s(0)))))),State),
tuplenil(element(int(s(s(s(s(s(s(0))))))),

State)))))))))))
+

sum(From: Term,
sum(MO: Term,

sum(Bandwidth: Term,
handle_call(MCRLSelf,tuple(play,

tuple(MO, tuplenil(Bandwidth))),From).
assertion(equal(size(State),

int(s(s(s(s(s(s(0))))))))).
gen_server_reply(From,MCRLSelf,MCRLSelf).
cd_storage_serverloop(MCRLSelf,

tuple(element(int(s(0)),State),
tuple(element(int(s(s(0))),State),
tuple(element(int(s(s(s(0)))),State),

230 APPENDIX B. USING ETOMCRL ON VODKA

tuple(element(int(s(s(s(s(0))))),State),
tuple(plus(element(int(s(s(s(s(s(0)))))),State),

int(s(0))),
tuplenil(plus(element(int(s(s(s(s(s(s(0))))))),

State),Bandwidth)))))))))))

cd_storage_init(MCRLSelf:Term,MCRLArg1:Term) =
(cd_storage_serverloop(MCRLSelf,tuple(hd(MCRLArg1),

tuple(hd(tl(MCRLArg1)),
tuple(hd(tl(tl(MCRLArg1))),

tuple(hd(tl(tl(tl(MCRLArg1)))),
tuple(int(0),

tuplenil(int(0))))))))
<| eq(equal(tl(tl(tl(tl(MCRLArg1)))),nil),true) |> delta)

tape_storage_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,

sum(MO: Term,
sum(Profile: Term,

handle_call(MCRLSelf,tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

assertion(equal(size(State),
int(s(s(s(s(s(s(0))))))))).

gen_server_reply(From,tuple(lookupAns,
tuplenil(tape_storage_scheduling(MO,Profile,

element(int(s(0)),State),
element(int(s(s(s(s(s(s(0))))))),State),
element(int(s(s(s(s(s(0)))))),State),
element(int(s(s(0))),State),
element(int(s(s(s(0)))),State),
element(int(s(s(s(s(0))))),State),
MCRLSelf))),MCRLSelf).

tape_storage_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),
tuple(element(int(s(s(0))),State),
tuple(element(int(s(s(s(0)))),State),
tuple(element(int(s(s(s(s(0))))),State),
tuple(element(int(s(s(s(s(s(0)))))),State),
tuplenil(element(int(s(s(s(s(s(s(0))))))),
State))))))))))) +

sum(From: Term,
sum(MO: Term,

sum(Bandwidth: Term,
handle_call(MCRLSelf,tuple(play,

tuple(MO, tuplenil(Bandwidth))),From).
assertion(equal(size(State),

int(s(s(s(s(s(s(0))))))))).
gen_server_reply(From,MCRLSelf,MCRLSelf).
tape_storage_serverloop(MCRLSelf,

tuple(element(int(s(0)),State),
tuple(element(int(s(s(0))),State),
tuple(element(int(s(s(s(0)))),State),
tuple(element(int(s(s(s(s(0))))),State),

B.7. µCRL CODE FOR THE MAIN PART OF THE EXAMPLE 231

tuple(plus(element(int(s(s(s(s(s(0)))))),State),
int(s(0))),

tuplenil(plus(element(int(s(s(s(s(s(s(0))))))),
State),

Bandwidth)))))))))))

tape_storage_init(MCRLSelf:Term,MCRLArg1:Term) =
(tape_storage_serverloop(MCRLSelf,

tuple(hd(MCRLArg1), tuple(hd(tl(MCRLArg1)),
tuple(hd(tl(tl(MCRLArg1))),

tuple(hd(tl(tl(tl(MCRLArg1)))),
tuple(int(0), tuplenil(int(0))))))))

<| eq(equal(tl(tl(tl(tl(MCRLArg1)))),nil),true) |> delta)

storage_group_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,

sum(MO: Term,
sum(Profile: Term,

handle_call(MCRLSelf,tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

assertion(equal(size(State),int(s(s(s(0)))))).
storage_group_send_all(MCRLSelf,

tuple(lookup, tuple(MO,
tuplenil(Profile))),
element(int(s(0)),State),nil).

sum(Options: Term,
rcallresult(MCRLSelf,Options).
gen_server_reply(From,
tuple(lookupAns,
tuplenil(storage_group_cost(Options,
element(int(s(s(0))),State)))),MCRLSelf).

storage_group_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),
tuple(element(int(s(s(0))),State),
tuplenil(element(int(s(s(s(0)))),
State))))))))) +

sum(From: Term,
sum(MO: Term,

sum(Bw: Term,
sum(Pid: Term,

handle_call(MCRLSelf,tuple(play,
tuple(MO, tuple(Bw,

tuplenil(Pid)))),From).
assertion(equal(size(State),

int(s(s(s(0)))))).
gen_server_call(Pid,tuple(play,

tuple(MO, tuplenil(Bw))),
MCRLSelf).

sum(Reply: Term,
gen_server_replied(MCRLSelf,Reply,Pid).
gen_server_reply(From,Reply,MCRLSelf).
storage_group_serverloop(MCRLSelf,

tuple(element(int(s(0)),State),

232 APPENDIX B. USING ETOMCRL ON VODKA

tuple(plus(element(
int(s(s(0))),State),int(s(0))),
tuplenil(plus(element(

int(s(s(s(0)))),State),
Bw))))))))))

storage_group_send_all(MCRLSelf:Term,Message:Term,
MCRLArg1:Term,Options:Term) =

(wcallresult(MCRLSelf,Options)
<| eq(equal(MCRLArg1,nil),true) |>

gen_server_call(hd(MCRLArg1),Message,MCRLSelf).
sum(NewOptions: Term,

gen_server_replied(MCRLSelf,tuple(lookupAns,
tuplenil(NewOptions)),hd(MCRLArg1)).

storage_group_send_all(MCRLSelf,Message,
tl(MCRLArg1),append(NewOptions,Options))))

storage_group_init(MCRLSelf:Term,StorageDrivers:Term) =
storage_group_serverloop(MCRLSelf,

tuple(StorageDrivers, tuple(int(0), tuplenil(int(0)))))

storage_sched_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,

sum(MO: Term,
sum(Profile: Term,

handle_call(MCRLSelf,tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

assertion(equal(size(State),int(s(s(s(0)))))).
gen_server_call(element(int(s(0)),State),

tuple(lookup, tuple(MO,
tuplenil(Profile))),MCRLSelf).

sum(Options: Term,
gen_server_replied(MCRLSelf,

tuple(lookupAns, tuplenil(Options)),
element(int(s(0)),State)).

gen_server_reply(From,
tuple(lookupAns,
tuplenil(storage_sched_cost(Options,
element(int(s(s(0))),State)))),MCRLSelf).

storage_sched_serverloop(MCRLSelf,tuple(
element(int(s(0)),State),

tuple(element(int(s(s(0))),State),
tuplenil(element(int(s(s(s(0)))),
State))))))))) +

sum(From: Term,
sum(MO: Term,

sum(Bw: Term,
sum(Pid: Term,
handle_call(MCRLSelf,tuple(play,
tuple(MO, tuple(Bw, tuplenil(Pid)))),From).
assertion(equal(size(State),int(s(s(s(0)))))).
gen_server_call(element(int(s(0)),State),

tuple(play, tuple(MO, tuple(Bw, tuplenil(Pid)))),

B.7. µCRL CODE FOR THE MAIN PART OF THE EXAMPLE 233

MCRLSelf).
sum(Reply: Term,
gen_server_replied(MCRLSelf,Reply,

element(int(s(0)),State)).
gen_server_reply(From,Reply,MCRLSelf).
storage_sched_serverloop(MCRLSelf,

tuple(element(int(s(0)),State),
tuple(plus(element(int(s(s(0))),State),

int(s(0))),
tuplenil(plus(element(int(s(s(s(0)))),

State),
Bw))))))))))

storage_sched_init(MCRLSelf:Term,StorageGroup:Term) =
storage_sched_serverloop(MCRLSelf,

tuple(StorageGroup, tuple(int(0), tuplenil(int(0)))))

streaming_sched_serverloop(MCRLSelf:Term,State:Term) =
sum(From: Term,

sum(MO: Term,
sum(Profile: Term,

handle_call(MCRLSelf,tuple(lookup,
tuple(MO, tuplenil(Profile))),From).

assertion(equal(size(State),int(s(s(s(0)))))).
gen_server_call(element(int(s(0)),State),
tuple(lookup, tuple(MO,

tuplenil(Profile))),MCRLSelf).
sum(Options: Term,

gen_server_replied(MCRLSelf,
tuple(lookupAns, tuplenil(Options)),

element(int(s(0)),State)).
gen_server_reply(From,
tuple(lookupAns,
tuple(MO, tuple(Profile,
tuplenil(streaming_sched_cost(

Options,element(int(s(s(0))),
State)))))),MCRLSelf).

streaming_sched_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),
tuple(element(int(s(s(0))),State),
tuplenil(
element(int(s(s(s(0)))),
State))))))))) +

sum(From: Term,
sum(MO: Term,
sum(Bw: Term,
sum(Pid: Term,
handle_call(MCRLSelf,tuple(play,

tuple(MO, tuple(Bw,
tuplenil(Pid)))),From).

assertion(equal(size(State),int(s(s(s(0)))))).

234 APPENDIX B. USING ETOMCRL ON VODKA

gen_server_call(element(int(s(0)),State),
tuple(play, tuple(MO,
tuple(Bw, tuplenil(Pid)))),MCRLSelf).

sum(Reply: Term,
gen_server_replied(MCRLSelf,Reply,

element(int(s(0)),State)).
gen_server_reply(From,Reply,MCRLSelf).
streaming_sched_serverloop(MCRLSelf,
tuple(element(int(s(0)),State),
tuple(plus(element(int(s(s(0))),State),

int(s(0))),
tuplenil(plus(element(int(s(s(s(0)))),State),

Bw))))))))))

streaming_sched_init(MCRLSelf:Term,StorageSched:Term) =
streaming_sched_serverloop(MCRLSelf,

tuple(StorageSched, tuple(int(0), tuplenil(int(0)))))

users_init(MCRLSelf:Term,StreamingScheduler:Term) =
users_loop(MCRLSelf,StreamingScheduler)

users_loop(MCRLSelf:Term,StreamingScheduler:Term) =
(gen_server_call(StreamingScheduler,tuple(lookup, tuple(m2,
tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup, tuple(m2,
tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup, tuple(m1,
tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup, tuple(m1,
tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup, tuple(m3,
tuplenil(cons(int(s(0)),nil)))),MCRLSelf) +
gen_server_call(StreamingScheduler,tuple(lookup, tuple(m3,
tuplenil(cons(int(s(s(0))),nil)))),MCRLSelf)).
sum(MO: Term,
sum(Profile: Term,
sum(Options: Term,

gen_server_replied(MCRLSelf,tuple(lookupAns,
tuple(MO, tuple(Profile,
tuplenil(Options)))),StreamingScheduler).
(users_loop(MCRLSelf,StreamingScheduler)

<| eq(users_choose(Options),fail) |>
gen_server_call(StreamingScheduler,tuple(play,
tuple(MO,
tuple(element(int(s(s(0))),users_choose(Options)),
tuplenil(element(int(s(0)),

users_choose(Options)))))),MCRLSelf).
sum(MCRLFree0: Term,

gen_server_replied(MCRLSelf,
MCRLFree0,StreamingScheduler).

users_loop(MCRLSelf,StreamingScheduler))))))

proc streaming_sched_buffer(MCRLSelf: Term, Messages: Buffer) =

B.7. µCRL CODE FOR THE MAIN PART OF THE EXAMPLE 235

(bufferfull(MCRLSelf).
sum(Msg: Term,

gshcast(MCRLSelf,Msg).
streaming_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
streaming_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

<| maxbuffer(Messages) |>
sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).
streaming_sched_buffer(MCRLSelf,

add(gscall(Msg,From),Messages)))
+
gscast(MCRLSelf,Msg).
streaming_sched_buffer(MCRLSelf, add(gscast(Msg),Messages))
+
(gshcast(MCRLSelf,Msg).
streaming_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
streaming_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

proc storage_sched_buffer(MCRLSelf: Term, Messages: Buffer) =
(bufferfull(MCRLSelf).
sum(Msg: Term,

gshcast(MCRLSelf,Msg).
storage_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
storage_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

<| maxbuffer(Messages) |>
sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).
storage_sched_buffer(MCRLSelf,

add(gscall(Msg,From),Messages)))
+
gscast(MCRLSelf,Msg).
storage_sched_buffer(MCRLSelf, add(gscast(Msg),Messages))
+
(gshcast(MCRLSelf,Msg).
storage_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>

236 APPENDIX B. USING ETOMCRL ON VODKA

sum(From: Term,
gshcall(MCRLSelf,Msg,From).
storage_sched_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

proc storage_group_buffer(MCRLSelf: Term, Messages: Buffer) =
(bufferfull(MCRLSelf).
sum(Msg: Term,

gshcast(MCRLSelf,Msg).
storage_group_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
storage_group_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

<| maxbuffer(Messages) |>
sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).
storage_group_buffer(MCRLSelf,

add(gscall(Msg,From),Messages)))
+
gscast(MCRLSelf,Msg).
storage_group_buffer(MCRLSelf,

add(gscast(Msg),Messages))
+
(gshcast(MCRLSelf,Msg).
storage_group_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
storage_group_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

proc tape_storage_buffer(MCRLSelf: Term, Messages: Buffer) =
(bufferfull(MCRLSelf).
sum(Msg: Term,

gshcast(MCRLSelf,Msg).
tape_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
tape_storage_buffer(MCRLSelf,

removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

<| maxbuffer(Messages) |>
sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).

B.7. µCRL CODE FOR THE MAIN PART OF THE EXAMPLE 237

tape_storage_buffer(MCRLSelf,
add(gscall(Msg,From),Messages)))

+
gscast(MCRLSelf,Msg).
tape_storage_buffer(MCRLSelf,

add(gscast(Msg),Messages))
+
(gshcast(MCRLSelf,Msg).
tape_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
tape_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

proc cd_storage_buffer(MCRLSelf: Term, Messages: Buffer) =
(bufferfull(MCRLSelf).
sum(Msg: Term,

gshcast(MCRLSelf,Msg).
cd_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
cd_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

<| maxbuffer(Messages) |>
sum(Msg: Term,

sum(From: Term,
gscall(MCRLSelf, Msg, From).
cd_storage_buffer(MCRLSelf,

add(gscall(Msg,From),Messages)))
+
gscast(MCRLSelf,Msg).
cd_storage_buffer(MCRLSelf, add(gscast(Msg),Messages))
+
(gshcast(MCRLSelf,Msg).
cd_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscast(Msg),Messages) |>
sum(From: Term,

gshcall(MCRLSelf,Msg,From).
cd_storage_buffer(MCRLSelf,removehead(Messages))
<| ishead(gscall(Msg,From),Messages) |>
delta)))

proc callreturn(Calls: CallStacks) =
sum(Pid: Term,

sum(Value:Term,
(rcallvalue(Pid,Value).
callreturn(push(Pid,Value,Calls)))
+
(wcallvalue(Pid,Value).

238 APPENDIX B. USING ETOMCRL ON VODKA

callreturn(pop(Pid,Calls))
<| stacked(Pid,Value,Calls) |>
delta)))

init
hide({conftau,callvalue,callresult,buffercall},
encap({handle_call,gen_server_call,

handle_cast,gen_server_cast,
gscall,gshcall,gscast,gshcast,
gen_server_reply,gen_server_replied,
rcallresult, wcallresult, rcallvalue, wcallvalue},

cd_storage_init(cd,cons(cons(tuple(m1,
tuplenil(cons(int(s(0)),cons(int(s(s(0))),nil)))),
cons(tuple(m2,
tuplenil(cons(int(s(0)),cons(int(s(s(0))),nil)))),nil)),
cons(int(s(s(0))),cons(int(s(s(s(0)))),cons(int(s(0)),

nil)))))
|| cd_storage_buffer(cd,nomsg) ||

tape_storage_init(tape,cons(cons(tuple(m1,
tuplenil(cons(int(s(0)),cons(int(s(s(0))),nil)))),

cons(tuple(m3,
tuplenil(cons(int(s(0)),cons(int(s(s(0))),nil)))),nil)),
cons(int(s(0)),cons(int(s(s(0))),cons(int(s(0)),nil)))))
|| tape_storage_buffer(tape,nomsg) ||
storage_group_init(storage_group,cons(tape,cons(cd,nil)))
|| storage_group_buffer(storage_group,nomsg) ||
storage_sched_init(storage_sched,storage_group) ||
storage_sched_buffer(storage_sched,nomsg) ||
streaming_sched_init(streaming_sched,storage_sched) ||
streaming_sched_buffer(streaming_sched,nomsg) ||
users_init(pid(0),streaming_sched) ||
callreturn(calls(cd,empty,calls(tape,empty,

calls(storage_group,
empty,calls(storage_sched,empty,

calls(streaming_sched,empty,
calls(pid(0),empty,nocalls)))))))

))

Appendix C

The implementation of
VoDKAV

Contents

C.1 General design of the tool 239

C.2 The CollectionServer and its interfaces 240

C.3 The ModelServer and its interfaces 241

C.4 The CheckingServer and its interfaces 244

C.1 General design of the tool

In Section 9.4 we explained that, as a proof of concept, we developed a GUI interface
with the goal of hiding the internal details of the method we proposed. In this
appendix, we discuss how the tool was designed and implemented.

The implementation, completely done in Erlang , has a clean design based on
three main layers: the first one handles a list of models, the second one lets the
user change the configuration for each of the models, and the last one allows the
user to check some properties.

Adding a new layer or more functionality is very simple with that structure.
Also, creating a new interface would be easy. For example, in the future there are
plans for developing a text based interface for the tool, and also for transforming
the gs based interface into a more powerful one based on GTK using GTKNode (a
project for binding GTK and Erlang).

All the information handled by the tool is stored in XML files and managed
using the xmerl Erlang module for reading, modifying and writing XML files.

The process architecture of the VoDKAV tool can be seen in Fig. C.1. The
square boxes represent Erlang processes that communicate passing messages. The
dotted boxes represent external files read and written by the processes. The small
rounded squares represent the main external tools used by VoDKAV .

239

240 APPENDIX C. THE IMPLEMENTATION OF VODKAV

gtk_ui_ModelServer

text_ui_ModelServer

gs_ui_ModelServer

etomcrl

mcrltools

CheckingServer

CollectionServer

gtk_ui_CollectionServer

gs_ui_CollectionServer

text_ui_CollectionServer

ModelServer

text_ui_CheckingServer

gtk_ui_CheckingServer

calls

messages

messages

messages

of architectures

configuration

code in Erlang

access to

starts

starts

One pair of processes per architecture

Version of the

XML with collection

access to

XML with the

gs_ui_CheckingServer
CADP

Figure C.1: Design of the VoDKAV : GUI interface for our method

C.2 The CollectionServer and its interfaces

When the application is started, the CollectionServer (an Erlang process imple-
mented as a generic server) is created, together with one or several of the interfaces
available to access it. The structure follows the Model-View-Controller design pat-
tern.

When booting, the CollectionServer reads an XML file where all the available
designs are declared, and stores them in an internal format as part of the server
state. A design is a combination of a model version and its configuration. An
example of the information contained in the XML file is shown below:

<?xml version="1.0" ?>

<designs>
<design>

<name>Design number 4</name>
<path>new-design4</path>
<created>Sep, 2005</created>
<modified>Jul, 2006</modified>
<version>simple_param_bw</version>
<description>2levels/bw</description>

</design>
<design>
...
</design>
...
</designs>

Name, created, modified and description are just meta-information about the
concrete design. path shows to the application where to find the description of the

C.3. THE MODELSERVER AND ITS INTERFACES 241

design with the configuration details, and version points to the Erlang source code
of the concrete version of VoDKA this design uses.

The corresponding UI process associated to the CollectionServer offers the
user interfaces (graphical or text based) for consulting, adding, or removing designs
from the application catalog. That user actions are transformed into standard Er-
lang messages that are understood by the CollectionServer, which is the process
actually doing all the management of the design information.

C.3 The ModelServer and its interfaces

From the user interface, the user can select one of the designs and start the second
part of the system, the ModelServer with its set of associated interfaces (text or
graphical ones). This process is again implemented as a generic server. When
booting, receives from the CollectionManager the relevant information about the
source code version and the place where the information about the design config-
uration can be found. This information is read from another XML file and stored
as part of the state of the server. An example of the file structure can be seen in
the following example:

<?xml version="1.0"?>
<design>

<levels>
<level>

<name>streaming</name>
<type>streaming_level</type>
<max_connections>10</max_connections>
<max_bandwidth>20</max_bandwidth>
<cost>50</cost>
<next>storage</next>

</level>
<level>

<name>storage_group</name>
<type>storage_group</type>
<max_connections>10</max_connections>
<max_bandwidth>15</max_bandwidth>
<cost>70</cost>
<next>devices</next>

</level>
</levels>
<storages>

<storage>
<name>tape</name>
<type>tape_storage</type>
<max_connections>1</max_connections>
<max_bandwidth>2</max_bandwidth>
<cost>1</cost>
<mo_list>

<mo>m1</mo>
<mo>m3</mo>

</mo_list>
</storage>

242 APPENDIX C. THE IMPLEMENTATION OF VODKAV

<storage>
<type>cd_storage</type>
<max_connections>2</max_connections>
<max_bandwidth>3</max_bandwidth>
<cost>1</cost>
<mo_list>

<mo>m1</mo>
<mo>m2</mo>

</mo_list>
</storage>

</storages>
</design>

The user can start as many ModelManagers as needed, in order to work at the
same time with different designs. If one of them crashes, this does not affect to the
rest, and the process crashed can be restarted in a very clean way.

From any of the interfaces offered to the user, a lot of operations can be done
over the design. The supervision tree can be drawn for the current configuration.
The model can be translated to µCRL and then the state graph generated. Then
the state space or the architecture graph can be shown, or the current information
saved at any time to the XML files. Again, when the users selects any option, it is
translated into a message and sent to the ModelManager process associated to the
model we are working with. Then the generic server calls the call-back module,
where the message is parsed and the different tools called with the rigth parameters
(in most of the cases generated on-demand from the state of the model).

The following code shows part of the call-back module for the ModelManager:

handle_cast (draw, {#designData{storages=StorageList,
levels=Levels},

Dir, ErlModelVersion}) ->
ModelDir = ?VODKAVDir ++ "/" ++ ?ERLANGModelDir ++

"/" ++ErlModelVersion,
{ok, PreviousDir} = file:get_cwd(),
StorageListPrepared = prepare_for_etomcrl(StorageList),
file:set_cwd(ModelDir),
spawn(visualize,supervisor,[vodka,start_link,

[StorageListPrepared]]),
receive after 1000 -> ok end,
file:set_cwd(PreviousDir),
{noreply, {#designData{storages=StorageList,

levels=Levels}, Dir, ErlModelVersion}};

It shows what happens when from the user interface we receive a message
requesting the current model to be drawn. Basically, what is done is to prepare
the relevant part of the state (in this case the list of storages) for passing it as
parameter to the visualize module, and then calling it with the right arguments.

A bit more complex is the part of the call-back module that handles the
generate message, received when the user wants to create the µCRL translation
and then the whole state space and the reduced one:

handle_cast (generate,

C.3. THE MODELSERVER AND ITS INTERFACES 243

{#designData{storages=StorageList, levels=Levels},
Dir, ErlModelVersion}) ->

StorageListPrepared = prepare_for_etomcrl(StorageList),

{ok, PreviousDirectory} = file:get_cwd(),
file:set_cwd(?VODKAVDir++"/"++

?ERLANGModelDir++"/"++"/"++ErlModelVersion),

PreviousMCRLDirEnv = os:getenv("MCRLDIR"),
os:putenv("MCRLDIR",?VODKAVDir++"/"++?DESIGNSDir++"/"++Dir),

PreviousTEMPDirEnv = os:getenv("MCRLTEMP"),
os:putenv("MCRLTEMP",?VODKAVDir++"/"++?DESIGNSDir++"/"++Dir),

etomcrl:supervisor(".",?VODKAVDir++"/"++?DESIGNSDir++"/"++
Dir,vodka,start_link,

[StorageListPrepared],[{file,"/tmp"}]),

file:set_cwd(?VODKAVDir++"/"++?DESIGNSDir++"/"++Dir),

io:format("~s",[os:cmd("mv vodka.mCRL vodka-det.mCRL")]),

Pattern =
"\\(" ++ "gen_server_call(StreamingScheduler,tuple(lookup,

tuple(" ++ "\\)" ++
"\\(" ++ "m1" ++ "\\)" ++
"\\(" ++ ", tuplenil(" ++ "\\)" ++
"\\(" ++ ".*" ++ "\\)" ++
"\\(" ++ "))),MCRLSelf)" ++ "\\)" ++
"\\(" ++ "." ++ "\\)",

AllMOs = sets:to_list (get_MOs_from_storages(StorageList)),
ReplacementPattern = sed_mo_pattern(AllMOs),
Command = "sed -e ’s/"++

Pattern++ "/" ++
ReplacementPattern++ "/’ " ++
"vodka-det.mCRL" ++ " > " ++
"vodka.mCRL",

io:format("~s~n",[os:cmd(Command)]),

io:format("~s",[os:cmd("time " ++
?MCRL_Command ++ " -tbfile vodka.mCRL")]),

io:format("~s",[os:cmd("time instantiator vodka.mCRL")]),
transitions:file("vodka.mCRL.aut"),

io:format("~s",[os:cmd("cp " ++ ?VODKAVDir ++
"/" ++ ?SCRIPTSDir ++ "/"

++ ?ABSTRACTScript ++ " .")]),
io:format("~s",[os:cmd("cp "++

?VODKAVDir ++ "/" ++
?SCRIPTSDir ++ "/"

++ ?SIMPLIFYScript ++ " .")]),
io:format("~s",[os:cmd("time svl " ++ ?ABSTRACTScript)]),
io:format("~s",[os:cmd("rm -rf " ++ ?ABSTRACTScript

244 APPENDIX C. THE IMPLEMENTATION OF VODKAV

++ " " ?SIMPLIFYScript)]),

file:set_cwd(PreviousDirectory),
case PreviousMCRLDirEnv of

false -> ok;
_ -> os:putenv("MCRLDIR", PreviousMCRLDirEnv)

end,
case PreviousTEMPDirEnv of

false -> ok;
_ -> os:putenv("MCRLTEMP", PreviousTEMPDirEnv)

end,
{noreply, {#designData{storages=StorageList,

levels=Levels},
Dir, ErlModelVersion}};

The main steps performed in the code above are: first, calling the etomcrl tool;
second, using the UNIX sed command in order to modify the µCRL specification
for including in the user request all the possible combinations of Media Objects
and bandwidths; third, calling the instantiator in order to generate the whole state
space for the µCRL file; and forth, using a SVL script that calls several tools of the
CADP toolset in order to generate the reduced graph. In the middle of these four
steps, different tasks related to the environment management are performed, and
the measurements about the amount of time it takes to execute each of the tools
is provided to the user.

C.4 The CheckingServer and its interfaces

When the user finished doing all kind of operations with the current model, the
third part of the VoDKAV tool can be started: the CheckingServer and its asso-
ciated graphical or text based user interfaces. From the interface, several standard
or user provided properties can be selected for checking. This is again translated
into messages that are sent to the generic server in charge of first constructing
the properties from the system configuration data necessary, and then calling the
CADP tool for doing the model checking of the property. There are also interfaces
for showing the property created or the counterexample generated if the logical
formula does not hold for the model.

The following code is part of the call-back module of the generic server imple-
menting the CheckingServer:

handle_cast({checkProperty, Property}, {Dir}) ->
check_property(Dir,Property),
{noreply,{Dir}};

handle_cast({diagProperty, Property}, {Dir}) ->
diag_property(Dir, Property),
{noreply,{Dir}};

handle_cast({viewProperty, Property}, {Dir}) ->
view_property(Dir, Property),
{noreply,{Dir}};

handle_cast({scenviewProperty, BeforeScenario,
AfterScenario},

C.4. THE CHECKINGSERVER AND ITS INTERFACES 245

{Dir}) ->
scen_property(BeforeScenario, AfterScenario),
{noreply,{Dir}};

handle_cast({scencheckProperty, BeforeScenario,
AfterScenario},

{Dir}) ->
check_property_string(Dir,

scen_property(BeforeScenario, AfterScenario),
?scenario),

{noreply,{Dir}};
handle_cast({checkmaxPlays, MO}, {Dir}) ->

check_max_plays(MO,Dir,1),
{noreply,{Dir}};

handle_cast(checkmaxPlays, {Dir}) ->
check_max_plays(".*",Dir,1),
{noreply,{Dir}};

handle_cast({checkadhocProperty,PropertyString}, {Dir}) ->
check_property_string(Dir,PropertyString, ?adhoc),
{noreply,{Dir}}.

check_property_string (Dir, PropertyString, PropertyName) ->
{ok, File} = file:open(?VODKAVDir ++ "/" ++ ?PROPSDir

++ "/" ++ PropertyName ++ ?PropExtension,
[write]),
io:put_chars(File, PropertyString),
check_property (Dir, PropertyName),
{noreply,{Dir}}.

check_property (Dir, Property) ->
{ok, PreviousDir} = file:get_cwd(),
file:set_cwd(?VODKAVDir ++ "/" ++ ?DESIGNSDir

++ "/" ++ Dir),
Answer = os:cmd(?CADP_CounterexampleCommand ++ " " ++

Property ++ ?CounterexampleExtension
++ " -verbose " ++

?VODKAVDir ++ "/" ++ ?PROPSDir ++ "/" ++
Property ++ ?PropExtension),

file:set_cwd(PreviousDir),
Answer.

diag_property (Dir, Property) ->
{ok, PreviousDir} = file:get_cwd(),
file:set_cwd(?VODKAVDir ++ "/" ++ ?DESIGNSDir

++ "/" ++ Dir),
os:cmd(?CADP_EditCommand ++ " " ++

Property ++ ?CounterexampleExtension),
file:set_cwd(PreviousDir).

scen_property (BeforeScen, AfterScen) ->
"[" ++ scen_property_list(BeforeScen) ++ "]" ++

"<" ++ scen_property_list(AfterScen) ++ ">"
++ ?true.

246 APPENDIX C. THE IMPLEMENTATION OF VODKAV

scen_property_list([]) -> "";
scen_property_list([MO,Bw]) ->

"’play(.*," ++ MO ++ "," ++ Bw ++ ")’";
scen_property_list([MO|[Bw|BeforeScen]]) ->

"’play(.*," ++ MO ++ "," ++ Bw ++ ")’." ++
scen_property_list(BeforeScen).

check_max_plays(MO,Dir,Times) ->
{ok, File} = file:open(?VODKAVDir ++ "/" ++

?PROPSDir ++ "/" ++ ?maxPlays ++ ?PropExtension,
[write]),
io:put_chars(File, exists_playsmo_property(MO,Times)),
case extract_boolean_from_cadp_answer(

check_property (Dir, ?maxPlays)) of
true ->

check_max_plays(MO,Dir,Times+1);
false ->

Times-1
end.

The result of all this modules is a very flexible, extensible and easy to maintain
and use tool. It is well adapted to its goals of proving that hiding most of the
underlying concepts and tools of the method proposed in this thesis is possible.
The tool has been used extensively while doing the present thesis and there are
current plans for extending and improving that are here left as future work.

Appendix D

Thesis metainformation

The more relevant thesis meta-information is:

• The thesis was developed during 5 years, from mid-2001 to mid-2006.

• Of those 5 years, about one was spent in Sweden (Gẗeborg and Stockholm)
and four in Spain (A Corunha).

• During the thesis, research visits where done to the Ericsson Computer Sci-
ence Lab (2001 and 2002), to the Swedish Institute of Computer Science
(2002), to the IT-University of Göteborg (2003, 2004 and 2006), and to the
Universidad Politécnica de Madrid (2005 and 2006).

• The last version of the thesis was finished June 21st, 2006.

Main tools used for carrying out the research and development:

• Debian GNU/Linux as operating system.

• GNOME as desktop environment.

• Erlang/OTP for the development of all the systems and applications.

• CADP for manipulation of state spaces and model checking.

• µCRL toolset for the creation of the state space from µCRL.

• etomcrl for the generation of µCRL from the Erlang source code.

• McErlang for the generation of the state space from the Erlang source code.

• emacs as IDE for the development in the different languages.

• UNIX scripting languages, commands, and autotools for helping with the
automation of the steps.

• CVS for version management.

• VoDKA as main motivation and case study for the research in the thesis.

• XML languages and libraries for data storage.

247

248 APPENDIX D. THESIS METAINFORMATION

Main tools used for writing the thesis manuscript:

• Debian GNU/Linux as operating system.

• GNOME as desktop environment.

• LaTeX as markup language for the thesis manuscript.

• pdflatex for the generation of the PDF version.

• Bibtex and JavRef for bibliography management.

• emacs as text editor for LaTeX.

• xfig and dia for the diagrams and graphs.

• CVS for version management.

Appendix E

Licensing of the thesis

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 2.5 License. To view a copy of this license,
visit
http://creativecommons.org/licenses/by-nc-nd/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

249

250 APPENDIX E. LICENSING OF THE THESIS

Bibliography

[AA98] Thomas Arts and Joe Armstrong. A practical type system for Er-
lang. In Proc. of the Erlang User Conference, Stockholm, Sweden,
September 1998.

[ABC+94] Adnan Aziz, Felice Balarin, Szu-Tsung Cheng, Ramin Hojati, Tim-
othy Kam, Sriram C. Krishnan, Rajeev K. Ranjan, Thomas R.
Shiple, Vigyan Singhal, Serdar Tasiran, Huey-Yih Wang, Robert K.
Brayton, and Alberto L. Sangiovanni-Vincentelli. HSIS: A BDD-
based environment for formal verification. In Design Automation
Conference, pages 454–459, 1994.

[ABD04] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified
Erlang program for resource locking. Int. J. on Software Tools for
Technology Transfer, 2004.

[ACD+03] Thomas Arts, Gennady Chugunov, Mads Dam, Lars-Åke Fredlund,
Dilian Gurov, and Thomas Noll. A tool for verifying software writ-
ten in erlang. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 4(4), 2003.

[AD99] Thomas Arts and Mads Dam. Verifying a distributed database
lookup manager written in erlang. In FM ’99: Proceedings of the
Wold Congress on Formal Methods in the Development of Comput-
ing Systems-Volume I, pages 682–700, London, UK, 1999. Springer-
Verlag.

[AGF+03] Carlos Abalde, Vı́ctor M. Guĺıas, José L. Freire, Juan J. Sánchez,
and José M. Garćıa-Tizón. Development of a scalable, fault tolerant
and low cost cluster-based e-payment system with a distributed
functional kernel. In Proceedings of Ninth International Conference
on Computer Aided Systems Theory. LNCS 2809, selected papers,
pages 220–230, February 2003.

[AGFS02] Carlos Abalde, Vı́ctor M. Guĺıas, José L. Freire, and Juan J.
Sánchez. A cluster-based payment gateway system developed us-
ing a distributed functional language. In Proceedings of EurAsia
ICT 2002, Advances in Information and Communication Technol-
ogy, pages 79–83, October 2002.

251

252 BIBLIOGRAPHY

[AH03] T. Arts and J. Hughes. Erlang QuickCheck. In Ericsson, editor,
Proceedings of the Ninth International Erlang/OTP User Confer-
ence (EUC 2003), Stockholm, Sweden, November 2003.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A
Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, 1977.

[AK04] Reynald Affeldt and Naoki Kobayashi. A Coq library for verification
of concurrent programs. Electronic Notes in Theoretical Computer
Science, 2004.

[AKY05] Reynald Affeldt, Naoki Kobayashi, and Akinori Yonezawa. Verifica-
tion of concurrent programs using the Coq proof assistant: A case
study. IPSJ Transactions on Programming, 46(1):110–120, 2005.

[AO92] D. Anderson and Y. Osawa. A file system for continuous media.
ACM Transactions on Computer System, 10(4), November 1992.

[App] Apple Computer Inc. About Darwin streaming server.

[Arm03] Joe Armstrong. Making reliable distributed systems in the pres-
ence of software errors. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, December 2003.

[AS02] Thomas Arts and Juan J. Sánchez. Global scheduler properties
derived from local restrictions. In Proceedings of the ACM Sigplan
Erlang Workshop at the Principles,Logics, and Implementations of
high-level programming languages, Pittsburg, USA, October 2002.
ACM.

[AVWW96] J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikström.
Concurrent Programming in Erlang, 2nd edition. Prentice Hall In-
ternational, 1996.

[Bae05] J. C. M. Baeten. A brief history of process algebra. Theoretical
Computer Science, 335(2-3):131–146, 2005.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks and ISDN Sys-
tems, 14(1):25–59, 1987.

[BC87] Kent Beck and Ward Cunningham. Using pattern languages for
object-oriented programs. In OOPSLA-87 workshop on the Spec-
ification and Design for Object-Oriented Programming, September
1987.

[Ber94] S. Berson. Staggered striping in multimedia information systems.
ACM SIGMOD Conference, pages 79–90, June 1994.

[BFD05] C. Benac Earle, L. Fredlund, and J. Derrick. Verifying fault-tolerant
Erlang programs. In ACM SIGPLAN Erlang workshop, pages 26–
34, 2005.

BIBLIOGRAPHY 253

[BFGS01] Miguel Barreiro, José Luis Freire, Vı́ctor M. Guĺıas, and Juan J.
Sánchez. Exploiting sequential libraries on a cluster of computers.
In Proceedings of the Erlang Workshop, (EW 2001), Firenze, Italy,
September 2001.

[BG99] M. Barreiro and V. M. Guĺıas. Cluster setup and its administration.
In Rajkumar Buyya, editor, High Performance Cluster Computing,
volume I. Prentice Hall, 1999.

[BGF+01] Miguel Barreiro, Vı́ctor M. Guĺıas, José L. Freire, Javier Mosquera,
and Juan J. Sánchez. An Erlang-based hierarchical distributed VoD
system. In Proc. of Seventh International Erlang/OTP User Con-
ference, Stockholm, Sweden, September 2001. Ericsson Utvecklings
AB.

[BGM95] S. Berson, L. Golubchik, and R.R. Muntz. A fault tolerant design
of a multimedia server. ACM SIGMOD Conference, 1995.

[BGMS01] Miguel Barreiro, Vı́ctor M. Guĺıas, Javier Mosquera, and Juan J.
Sánchez. Utilización de programación funcional distribuida y clus-
ters linux en el desarrollo de servidores de v́ıdeo bajo demanda. In
Senén Barro Ameneiro, José Luis Freire Nistal, and Jesús Rivero
Laguna, editors, Actas del Simposio en Informática y Telecomuni-
cación, SIT 2001, pages 83–95, September 2001.

[BGS00] M. Barreiro, V. Guĺıas, and J.J. Sánchez. A monitoring and instru-
mentation tool developed in Erlang. In Proc. of 6th International
Erlang/OTP User Conference, Stockholm, Sweden, 2000.

[BGSJ01] Miguel Barreiro, Victor M. Guĺıas, Juan J. Sánchez, and J. Santiago
Jorge. The tertiary level in a functional cluster-based hierarchical
VoD server. In Proc. of EUROCAST, pages 540–554, 2001.

[BH06] Jonathan P. Bowen and Michael G. Hinchey. Ten commandments
of formal methods ...ten years later. Computer, 39(1):40–48, 2006.

[BM88] Robert S. Boyer and J. Strother Moore. A computational logic
handbook. Academic Press Professional, Inc., San Diego, CA, USA,
1988.

[BMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and
Marta Simeoni. Model-based performance prediction in software
development: A survey. IEEE Trans. Softw. Eng., 30(5):295–310,
2004.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture: A System of Pat-
terns. Wiley, New York, 1996.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that.
Cambridge University Press, New York, NY, USA, 1998.

254 BIBLIOGRAPHY

[BR98a] D. Baumer and D. Riehle. Product trader. In In Pattern Lan-
guages of Program Design 3 (PLoPD3), pages 29–46. Addison-
Wesley, 1998.

[BR98b] S. Blau and J. Rooth. AXD 301 – a new generation ATM switching
system. Ericsson Review, 1, 1998.

[Bry92] Randal E. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293–318,
1992.

[BS95] Ulrich Berger and Helmut Schwichtenberg. Program extraction
from classical proofs. In LCC ’94: Selected Papers from the In-
ternational Workshop on Logical and Computational Complexity,
pages 77–97, London, UK, 1995. Springer-Verlag.

[BT85] Jan A. Bergstra and J. V. Tucker. Top-down design and the algebra
of communicating processes. Sci. Comput. Program., 5(2):171–199,
1985.

[CCF+] Cristina Cornes, Judical Courant, Jean-Christophe Fillitre, Gérard
Huet, Pascal Manoury, César Mu noz, Chetan Murthy, Catherine
Parent, and et al. The Coq proof assistant - reference manual.

[CDH00] J. Corbett, M. Dwyer, and L. Hatcliff. Bandera: A source-level in-
terface for model checking java programs. In Teaching and Research
Demos at ICSE’00, June 2000.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Logic of Programs, Workshop, pages 52–71, London, UK, 1982.
Springer-Verlag.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifi-
cations. ACM Transactions on Programming Languages and Sys-
tems, 8(2):244–263, 1986.

[CGR93] D. Craigen, S. Gerhart, and T.J. Ralston. An international sur-
vey of industrial applications of formal methods (volume 1: Pur-
pose, approach, analysis and conclusions, volume 2: Case stud-
ies). Technical Report NIST GCR 93/626-V1 & NIST GCR 93-
626-V2, National Technical Information Service, 5285 Port Royal
Road, Springfield, VA 22161, USA, 1993.

[CGR95] Dan Craigen, Susan Gerhart, and Ted Ralston. Formal methods
reality check: Industrial usage. IEEE Transactions on Software
Engineering, 21(2):90–98, 1995.

[CH00] Koen Claessen and John Hughes. Quickcheck: a lightweight tool
for random testing of haskell programs. In ICFP ’00: Proceedings

BIBLIOGRAPHY 255

of the fifth ACM SIGPLAN international conference on Functional
programming, pages 268–279, New York, NY, USA, 2000. ACM
Press.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software
Architectures. Methods and Case Studies. Addison-Wesley, 2002.

[CKM+91] Dan Craigen, Sentot Kromodimoeljo, Irwin Meisels, Bill Pase, and
Mark Saaltink. Eves: An overview. In VDM ’91: Proceedings of
the 4th International Symposium of VDM Europe on Formal Soft-
ware Development-Volume I, pages 389–405, London, UK, 1991.
Springer-Verlag.

[CKY94] M. Chen, D. Kandlur, and P. S. Yu. Support for fully interactive
playout in a disk-array-based video server. Proceedings of the 2nd
Annual ACM Multimedia Conference, October 1994.

[Col89] M. Cole. Algorithmic skeletons: Structured management of paral-
lel computation. Research Monographs in Parallel and Distributed
Computing, 1989.

[CPS93a] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
Concurrency Workbench: A semantics-based tool for the verifica-
tion of concurrent systems. ACM Transactions on Programming
Languages and Systems, 15(1):36–72, January 1993.

[CPS93b] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The
concurrency workbench: a semantics-based tool for the verification
of concurrent systems. ACM Transactions on Programming Lan-
guages and Systems, 15(1):36–72, 1993.

[CS00] Inc. Cisco Systems. A Distributed Video Server Architecture for
Flexible Enterprise-Wide Video Delivery. White Paper. 2000.

[CS05] K. Claessen and H. Svensson. A semantics for distributed Erlang.
In Proc. of ACM SIGPLAN Erlang Workshop, 2005.

[CT97a] S. G. Chan and F. Tobagi. Hierarchical storage systems for inter-
active Video-on-Demand. Technical Report, Stanford University,
Computer Systems Laboratory, Number CSL-TR-97-723, 1997.

[CT97b] S. Gary Chan and F. Tobagi. Hierarchical storage systems for in-
teractive Video-on-Demand. Technical Report, Stanford Univer-
sity, Computer Systems Laboratory, Number CSL-TR-97-723, p.
84., April 1997.

[CVV97a] T. Chiueh, C. Venkatramani, and M. Vernick. Design and imple-
mentation of the Stony Brook Video Server. Software – Practice
and Experience, 1997.

[CVV97b] T. Chiueh, M. Vernick, and C. Venkatramani. Performance evalu-
ation of Stony Brook Video Server. ECSL-TR-24, 1997.

256 BIBLIOGRAPHY

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods:
state of the art and future directions. ACM Computing Surveys,
28(4):626–643, 1996.

[CZ92] Edmund Clarke and Xudong Zhao. Analytica - an experiment in
combining theorem proving and symbolic computation. Technical
Report CS-92-147, 1992.

[D0̈0] Bjarne Däcker. Concurrent functional programming for telecom-
munications: A case study of technology introduction. Licentiate
Thesis TRITA-IT AVH 00:08, Royal Institute of Technology, Stock-
holm, Sweden, November 2000.

[DF98] Mads Dam and Lars-Åke Fredlund. On the verification of open
distributed systems. In SAC ’98: Proceedings of the 1998 ACM
symposium on Applied Computing, pages 532–540, New York, NY,
USA, 1998. ACM Press.

[DFG98] Mads Dam, Lars-Åke Fredlund, and Dilian Gurov. Toward para-
metric verification of open distributed systems. Lecture Notes in
Computer Science, 1536:150–185, 1998.

[DHLV96] D. Du, J. Hsieh, J. Liu, and R. J. Vetter. Building Video-
on-Demand Servers Using Shared-Memory Multiprocessor. North
Dakota State University, 1996.

[DHT04] Tai Do, Kien A. Hua, and Mounir Tantaoui. P2VoD: Providing fault
tolerant Video-on-Demand streaming in Peer-to-Peer environment.
In Proc. of the IEEE Int. Conf. on Communications, June 2004.

[dMvEP01] Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer. Theo-
rem proving for functional programmers - SPARKLE: A functional
theorem prover. In Arts and Mohnen, editors, Proc. of the 13th
International Workshop on the Implementation of Functional Lan-
guages (IFL 2001), pages 55–71, älvsjö, Sweden, 2001. Springer-
Verlag, LNCS 2312.

[DSB04] Jim Davies, Wolfram Schulte, and Michael Barnett, editors. Formal
Methods and Software Engineering, 6th International Conference
on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA,
November 8-12, 2004, Proceedings, volume 3308 of Lecture Notes in
Computer Science. Springer, 2004.

[EHS97] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL - formal object-
oriented language for communicating systems. Prentice Hall, 1997.

[Eks00] U. Ekstrom. Design patterns for simulation in Erlang/OTP. Mas-
ter’s thesis, University of Upsala, Upsala, Sweden, 2000.

[Eri06] Ericsson. Erlang/OTP R11B documentation, 2006.

BIBLIOGRAPHY 257

[Erl00] L. Erlikh. Leveraging legacy system dollars for E-business. IT Pro,
pages 17–23, May/June 2000.

[FBA03] Roy Friedman, Lior Baram, and Shiri Abarbanel. Fault-tolerant
multi-server Video-on-Demand service. International Parallel and
Distributed Processing Symposium (IPDPS’03), 00:70a, 2003.

[FBE06] Lars-Åke Fredlund and Clara Benac-Earle. Model checking erlang
programs: The functional approach. In ACM Sigplan International
Erlang Workshop, Portland, Oregon, USA, September 2006.

[FG99] Lars-Åke Fredlund and Dilian Gurov. A framework for formal rea-
soning about open distributed systems. In Asian Computing Sci-
ence Conference, pages 87–100, 1999.

[FGKM96] J.C. Fernández, H. Garavel, A. Kerbrat, and R. Mateesc. Cae-
sar/Aldébaran development package: A protocol validation and
verification toolbox. In 11th Int. Conf. on Computer-Aided Ver-
ification, volume 1102 of LNCS, pages 437–440. Springer-Verlag,
August 1996.

[FGN+03] L-Å. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G.
Chugunov. A verification tool for Erlang. Int. J. on Software Tools
for Technology Transfer, 4(4):405–420, 2003.

[Fis96] Kathryn Fisler. A unified approach to hardware verification through
a heterogeneous logic of design diagrams. PhD thesis, Indiana Uni-
versity, 1996. Co-Chairman-K. Jon Barwise and Co-Chairman-
Steven D. Johnson.

[FNBFFBS01] J. L. Freire-Nistal, A. Blanco-Ferro, J.E. Freire-Brañas, and Juan J.
Sánchez. Fusion and deforestation in Coq. In Eurocast 2001,
selected papers. Lecture Notes in Computer Science 2178, pages
583–596, Las Palmas de Gran Canaria, España, February 2001.
Springer-Verlang.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2000.

[Fre01] L-Å. Fredlund. A framework for reasoning about Erlang code. PhD
thesis, Dept. of Microelectronics and Information Technology, Royal
Institute of Technology, Stockholm, 2001.

[GAS03a] Victor M. Guĺıas, Carlos Abalde, and Juan J. Sánchez. Lambda
goes to hollywood. In Practical Aspects of Declarative Languages
(PADL 2003). Lecture Notes of Computer Science 2562, January
2003.

[GAS03b] Vı́ctor M. Guĺıas, Carlos Abalde, and Juan J. Sánchez. Lambda
goes to Hollywood. In Fifth International Simposium on Practi-
cal Aspects of Declarative Languages (PADL’03), volume 2562 of
LNCS. Springer-Verlang, January 2003.

258 BIBLIOGRAPHY

[GBF05] V. Guĺıas, M. Barreiro, and J. L. Freire. VoDKA: Developing
a Video-on-Demand server using distributed functional program-
ming. Journal of Functional Programming, 15 (3):403–430, 2005.

[GC92] Gemmel and Christodoulakis. Principles of delay-sensitive multi-
media data storage and retrieval. ACM Transaction on Information
Systems, 10(1), January 1992.

[GCSPMR04] Alejandro Garćıa-Castro, Juan José Sánchez-Penas, and Fco. Javier
Morán-Rua. SERVAL: a VLAN software switch developed in Er-
lang. In Proceedings of Erlang/OTP User Conference, Stockholm,
Sweden, October 2004. Ericsson AB.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison Wesley,
Reading, 1994.

[GL01a] Hubert Garavel and Frédéric Lang. SVL: a scripting language for
compositional verification. In Myungchul Kim, Byoungmoon Chin,
Sungwon Kang, and Danhyung Lee, editors, Proceedings of the 21st
IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems FORTE’2001 (Cheju Island,
Korea), pages 377–392. IFIP, Kluwer Academic Publishers, August
2001. Full version available as INRIA Research Report RR-4223.

[GL01b] J.F. Groote and B. Lisser. Computer assisted manipulation of al-
gebraic process specifications. Technical Report SEN-R0117, CWI,
Amsterdam, The Netherlands, 2001.

[GLM02] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An overview of
CADP 2001. European Association for Software Science and Tech-
nology (EASST) Newsletter, 4:13–24, August 2002. Also available
as INRIA Technical Report RT-0254 (December 2001).

[GM93] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A the-
orem proving environment for higher order logic. Cambridge Uni-
versity Press, 1993.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Sim-
ple on-the-fly automatic verification of linear temporal logic. In
Protocol Specification Testing and Verification, pages 3–18, War-
saw, Poland, 1995. Chapman & Hall.

[GR01] J. F. Groote and M. A. Reniers. Algebraic process verification. In
Handbook of Process Algebra, pages 1151–1208. Elsevier, 2001.

[Gro93] The RAISE Language Group. The RAISE specification language.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[Gro97] J.F. Groote. The syntax and semantics of timed µCRL. Techni-
cal Report SEN-R9709, CWI, Amsterdam, The Netherlands, June
1997.

BIBLIOGRAPHY 259

[GTBRS01] José M. Garćıa-Tizón, Antonio Blanco, Miguel Rodŕıguez, and
Juan J. Sánchez. Integración y coexistencia de aplicaciones legacy
y aplicaciones web usando patrones. In Actas del Simposio en In-
formática y Telecomunicación (SIT 2001), pages 109–121, Septiem-
bre 2001.

[Har87] David Harel. Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231–274, 1987.

[HD01] John Hatcliff and Matthew Dwyer. Using the Bandera tool set to
model-check properties of concurrent Java software. Lecture Notes
in Computer Science, 2154, 2001.

[HF04] Yin-Fu Huang and Chih-Chiang Fang. Load balancing for clusters
of VoD servers. Inf. Sci. Inf. Comput. Sci., 164(1-4):113–138, 2004.

[HLS+02] Pao-Ann Hsiung, Trong-Yen Lee, Win-Bin See, Jih-Ming Fu, and
Sao-Jie Chen. VERTAF: An object-oriented application frame-
work for embedded real-time systems. In Proc. of the International
Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’2002). IEEE Computer Science Press, April 2002.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun.
ACM, 21(8):666–677, 1978.

[Hoa85] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1985.

[Hol91] G. J. Holzmann. Design and validation of computer protocols.
Prentice-Hall, Inc., 1991.

[HP00] K. Havelund and T. Pressburger. Model checking java programs
using java PathFinder. Software Tools for Technology Transfer,
2(4):366–381, March 2000.

[HR00] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Sci-
ence: Modelling and Reasoning about Systems. Cambridge Univer-
sity Press, Cambridge, England, 2000.

[HS96] Klaus Havelund and Natarajan Shankar. Experiments in theorem
proving and model checking for protocol verification. In Marie-
Claude Gaudel and Jim Woodcock, editors, FME’96: Industrial
Benefit and Advances in Formal Methods, pages 662–681. Springer-
Verlag, 1996.

[HS04] F. Huch and V. Stolz. Runtime verification of Concurrent Haskell
programs. In Proceedings of the Fourth Workshop on Runtime Ver-
ification, to appear in ENTCS. Elsevier Science Publishers, 2004.

[Huc99] F. Huch. Verification of Erlang programs using abstract interpreta-
tion and model checking. ACM SIGPLAN Notices, 34(9):261–272,
September 1999.

260 BIBLIOGRAPHY

[Huc01] F. Huch. Model checking erlang programs - abstracting recursive
function calls. In Proc. of the International Workshop on Functional
and Constraint Logic Programming (WFLP 2001), Kiel, Germany,
2001.

[ISO88] ISO/IEC. LOTOS – A formal description technique based on the
temporal ordering of observational behaviour. In International
Standard 8807, Information Processing Systems – Open Systems
Interconnection. International Organization for Standardization,
September 1988.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM.
Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1990.

[Kie02] Richard B. Kieburtz. P-logic: property verification for Haskell pro-
grams, 2002.

[KM96] M. Kaufmann and J. Moore. ACL2: An industrial strength version
of Nqthm. In Proc. of the Eleventh Annual Conference on Computer
Assurance (COMPASS-96), pages 23–34. IEEE Computer Society
Press, June 1996.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE
Software, 12(6):42–50, 1995.

[Kur98] R.P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc.,
1998.

[KZ95] D. Kapur and H. Zhang. An overview of rewrite rule laboratory
(RRL). J. Computer and Mathematics with Applications, 29(2):91–
114, 1995.

[LAKN98] Shaoying Liu, Masashi Asuka, Kiyotoshi Komaya, and Yasuaki
Nakamura. An approach to specifying and verifying safety-critical
systems with practical formal method SOFL. In Proceedings of
Fourth IEEE International Conference on Engineering of Complex
Computer Systems, pages 100–114, Monterey, California, USA, Au-
gust 1998. IEEE Computer Society Press.

[LC03] Yiu-Wing Leung and T.K.C. Chan. Design of an interactive Video-
On-Demand system. IEEE Transactions on Multimedia, 5:130–140,
March 2003.

[LGS+95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani,
and Saddek Bensalem. Property preserving abstractions for the ver-
ification of concurrent systems. Formal Methods in System Design,
6(1):11–44, 1995.

[LL96] S. Lau and J. Lui. Scheduling and replacement policies for a hierar-
chical multimedia storage server. Proceedings of Multimedia Japan
96, International Symposium on Multimedia Systems, March 1996.

BIBLIOGRAPHY 261

[LL97] U. Lechner and C. Lengauer. Specification, abstraction and verifi-
cation in a concurrent object-oriented language. In M. Mühlhäuser,
editor, Special Issues in Object-Oriented Programming, pages 544–
547, 1997.

[LP99] Lamport and Paulson. Should your specification language be typed?
ACM Transactions on Programming Languages and Systems, 21,
1999.

[LS93] P. Lougher and D. Shepherd. The design of a storage server for
continous media. The Computer Journal, 36(1), 1993.

[LS04] Tobias Lindahl and Konstantinos Sagonas. Detecting software de-
fects in telecom applications through lightweight static analysis: A
war story. In Chin Wei-Ngan, editor, Programming Languages and
Systems: Proceedings of the Second Asian Symposium (APLAS’04),
volume 3302 of LNCS, pages 91–106. Springer, November 2004.

[LV94] Thomas D. C. Little and Dinesh Venkatesh. Prospects for interac-
tive Video-on-Demand. IEEE MultiMedia, 1(3):14–24, Fall 1994.

[MBB+99] Zohar Manna, Nikolaj S. Bjørner, Anca Browne, Michael Colón,
Bernd Finkbeiner, Mark Pichora, Henny B. Sipma, and Tomás E.
Uribe. An update on STeP: Deductive-algorithmic verification of
reactive systems. In Rudolf Berghammer and Yassine Lakhnech, ed-
itors, Tool Support for System Specification, Development and Ver-
ification, Advances in Computing Science, pages 174–188. Springer-
Verlag, 1999.

[McM92] Kenneth Lauchlin McMillan. Symbolic model checking: an approach
to the state explosion problem. PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, 1992.

[MGP+01] Castor Mariño Pérez, Vı́ctor M. Guĺıas, Marta Penas, M. G.
Penedo, V. Leborán, A. Mosquera, M. J. Carreira, and D. Lloret.
Sistema de interpretación automática de secuencias slo basada en un
servidor vod. Simposio en Informática y Telecomunicación, pages
319–329, September 2001.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall In-
ternational (UK) Ltd., Hertfordshire, UK, UK, 1995.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, June 1999.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems. Springer-Verlag New York, Inc., New York,
NY, USA, 1992.

262 BIBLIOGRAPHY

[MV96] T. Chiueh M. Vernick, C. Venkatramani. Adventures in building
the Stony Brook Video Server. Proceedings of ACM Multimedia,
1996.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[Ora98a] Oracle. Oracle Video Server Administrators Guide and Command
Reference. 1998.

[Ora98b] Oracle. Oracle Video Server System Technical Overview. 1998.

[OSR95] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS
Specification and Verification System. CSL, 1995.

[PA03] Juan José Sánchez Penas and Thomas Arts. Performance analy-
sis using model checking. In Proceedings of the 9th Erlang User
Conference (EUC 2003). Ericsson, November 2003.

[PAI02] L. Pinho, C. Amorim, and E. Ishikawa. GloVE: A distributed en-
vironment for low cost scalable VoD systems. 14th Symposium on
Computer Architecture and High Performance Computing, 2002.

[Phi] Philips. Webcine server guide.

[Pie97] Benjamin Pierce. Foundational calculi for programming languages.
In Allen B. Tucker, editor, The Computer Science and Engineering
Handbook. CRC Press, Boca Raton, FL, 1997.

[Pol94] Robert Pollack. The Theory of LEGO: A Proof Checker for the Ex-
tended Calculus of Constructions. PhD thesis, Univ. of Edinburgh,
1994.

[PR03] Juan José Sánchez Penas and Carlos Abalde Ramiro. Extending the
VoDKA architecture to improve resource modelling. In ERLANG
’03: Proceedings of the 2003 ACM SIGPLAN workshop on Erlang,
pages 15–22, New York, NY, USA, 2003. ACM Press.

[Pre97] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 1997.

[QS01] Juan Quintela and Juan J. Sánchez. Persistent Haskell. In Euro-
cast 2001, selected papers. Lecture Notes in Computer Science 2178,
pages 657–667. Springer-Verlang, February 2001.

[RdS91] V. Roy and Robert de Simone. Auto/autograph. In CAV ’90:
Proceedings of the 2nd International Workshop on Computer Aided
Verification, pages 65–75, London, UK, 1991. Springer-Verlag.

BIBLIOGRAPHY 263

[RGA+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S. -T. Cheng, S. Edwards, S. Khatri, Y. Kuki-
moto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple,
G. Swamy, and T. Villa. VIS: a system for verification and synthe-
sis. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings
of the Eighth International Conference on Computer Aided Veri-
fication CAV, volume 1102, pages 428–432, New Brunswick, NJ,
USA, / 1996. Springer Verlag.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Mod-
eling Language Reference Manual, The (2nd Edition). Pearson
Higher Education, 2004.

[Rus93] J. Rushby. Formal methods and the certification of critical systems.
Technical Report SRI-CSL-937, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993.

[RV92] P. Rangan and H. Vin. Designing an on-demand multimedia service.
IEEE Communication Magazine, 30(7), July 1992.

[RV93] P. Rangan and H. Vin. Efficient storage techniques for digital con-
tinuous multimedia. Transactions on Knowledge and Data Engi-
neering, August 1993.

[S0́1] J.J. Sánchez. State of the art in formal verification of distributed
functional software. In Report for the Diploma de Estudios Avan-
zados. Universidade da Corunha, 2001.

[SBG+01] Juan J. Sánchez, Miguel Barreiro, Vı́ctor M. Guĺıas, José L. Freire,
and Javier Mosquera. Functional scheduling in a distributed VoD
server. In Thomas Arts and Markus Mohnen, editors, Proceedings of
13th International Workshop on the Implementation of Functional
Languages, September 2001.

[Sca98] B. Scattergood. FDR: User Manual and Tutorial. Formal Systems
(Europe) Ltd., 1998.

[SEN99] SEN group. A language and tool set to study communicating pro-
cesses with data. Technical report, CWI, February 1999.

[SFB+00] Juan J. Sánchez, Jose L. Freire, Miguel Barreiro, Vı́ctor M. Guĺıas,
and Javier Mosquera. An Erlang-based hierarchical distributed VoD
system. In In proceedings of 7th International Erlang/OTP User
Conference, 2000.

[SGVM00] J.J. Sánchez, V. Guĺıas, A. Valderruten, and J. Mosquera. State of
the art and design of VoD systems. In Proc. of the International
Conference on Information Systems Analysis (SCI’00-ISAS’00),
Orlando, Florida, USA, July 2000.

264 BIBLIOGRAPHY

[SJGFS05] J. Santiago-Jorge, V. Guĺıas, J.L. Freire, and J.J. Sánchez. To-
wards a certified and efficient computing of gröbner bases. In Com-
puter Aided Systems Theory - EUROCAST 2005: 10th Interna-
tional Conference on Computer Aided Systems Theory. LNCS 3643,
revised selected papers, pages 111–120. Springer-Verlang, February
2005.

[SJO+05] Carl-Johan H. Seger, Robert B. Jones, John W. O’Leary, Thomas F.
Melham, Mark Aagaard, Clark Barrett, and Don Syme. An indus-
trially effective environment for formal hardware verification. IEEE
Trans. on CAD of Integrated Circuits and Systems, 24(9):1381–
1405, 2005.

[SM97] Ph. Wadler S. Marlow. A practical subtyping system for erlang.
In Proc. of the Int. Conf. on Functional Programming, Amsterdan,
The Netherlands, 1997.

[SMC+95] B. Steffen, T. Margaria, A. ClaBetaen, V. Braun, and M. Reit-
enspiess. An environment for the creation of intelligent network
services. In Proc. of the IEC Annual Review of Communications -
also SNI-Rep (Invited Contribution), 1995.

[SPA03] Juan José Sánchez-Penas and Thomas Arts. VoDkaV tool: Model
checking or extracting global scheduler properties from local re-
strictions. In Poster and Tool Presentation. Proceedings of Third
International Conference on Application of Concurrency to System
Design (ACSD 2003), pages 247–248. IEEE, June 2003.

[STH06] Simon Sheu, Wallapak Tavanapong, and Kien A. Hua. A scalable
cost-effective video broadcasting system for on-demand video ser-
vices. Multimedia Tools Appl., 28(3):321–345, 2006.

[Sun] Sun Microsystems Inc. Sun storedge media central streaming server.

[TA04] Juan José Sánchez Thomas Arts, Clara Benac. From Erlang to µcrl.
making industrial code available for research tools. In IEEE, edi-
tor, Proceedings of Forth International Conference on Application
of Concurrency to System Design (ACSD 2004), pages 135–144,
June 2004.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

[THS03] Duc A. Tran, Kien A. Hua, and Simon Sheu. A new caching ar-
chitecture for efficient Video-on-Demand services on the Internet.
In SAINT ’03: Proceedings of the 2003 Symposium on Applications
and the Internet, page 172, Washington, DC, USA, 2003. IEEE
Computer Society.

[VGM+00] A. Valderruten, V.M. Guĺıas, J. Mosquera, J.J. Sánchez, and
A. Blanco. Evaluación del rendimiento de un sistema de tiempo

BIBLIOGRAPHY 265

real multihilo usando un modelo reactivo śıncrono. In Actas del
Simposio Español de Informática Distribúıda (SEID 2000), pages
437–444, Ourense, Spain, September 2000.

[VGS+01a] Alberto Valderruten, Vı́ctor M. Guĺıas, Juan J. Sánchez, José L.
Freire, and Javier Mosquera. Implementación de un modelo de
monitorización para un servidor de v́ıdeo bajo demanda en Erlang.
In Jonás Montilva, editor, Proceedings of XXVII Conferencia Lati-
noamericana de Informática, September 2001.

[VGS+01b] Alberto Valderruten, Vı́ctor M. Guĺıas, Juan J. Sánchez, José L.
Freire, and Javier Mosquera. Implementación de un modelo de
monitorización para un servidor de v́ıdeo bajo demanda en Er-
lang. In Proceedings of XXVII Conferencia Latinoamericana de
Informática. Jonás Montilva, September 2001.

[Wad87] P. Wadler. Efficient compilation of pattern matching. In Simon
Peyton-Jones, editor, The implementation of Functional Program-
ming Languages, pages 78–103. Prentice Hall, 1987.

[WD96] Jim Woodcock and Jim Davies. Using Z: specification, refinement,
and proof. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[WDRW99] P. Wilkinson, M. DeSisto, H. Rother, and Y. Wong. IBM
VideoCharger 101. IBM Redbook. International Technical Support
Organization, 1999.

[Wou01] A. G. Wouters. Manual for the µCRL tool set. Technical Report
SEN-R0130, CWI, Amsterdam, The Netherlands, 2001.

[WS98] Lloyd G. Williams and Connie U. Smith. Performance evaluation
of software architectures. In WOSP ’98: Proceedings of the 1st
international workshop on Software and performance, pages 164–
177, New York, NY, USA, 1998. ACM Press.

[Yu98] S. Yu. Formal Verification of Concurrent Programs Based on Type
Theory. PhD thesis, Department of Computer Science, University
of Durham, October 1998.

	I Context
	Motivation
	Introduction
	Main goals of the thesis
	Main contributions of the thesis
	Published articles related to the thesis
	Structure of the thesis manuscript

	Thesis preliminaries
	Erlang/OTP for distributed systems
	Short motivation and history of Erlang
	Erlang main features
	Sequential Erlang
	Concurrent and distributed Erlang
	Open Telecom Platform
	Erlang success stories

	Design patterns and distribution
	Design and implementation patterns
	Erlang behaviours
	An example Erlang behaviour: the generic server

	Process algebras
	Introduction to process algebras
	CRL: a process algebra with data

	FM for distributed systems
	Specification languages
	Model checking
	Theorem provers
	Formal verification of functional and concurrent systems
	Formal verification of Erlang

	II VoDKA development
	VoD servers
	Video-on-Demand definitions
	VoD server requirements
	State of the art in VoD systems
	Enterprise Solutions
	Academic World Solutions

	VoDKA architecture
	System use-cases
	General design ideas
	Logical View
	Distributed design patterns
	Internal protocol (message API)
	Description of software components

	Process View
	Development View
	Physical View
	VoDKA very simple deployment
	VoDKA on the Borg cluster
	VoDKA on a faculty network
	VoDKA on a city cable network

	Evolutions of the VoDKA architecture

	Lessons learned from VoDKA
	Evaluation against requirements
	Relation with other solutions
	Erlang/OTP and VoDKA
	Conclusions and future research

	III Using formal methods for improving VoDKA
	Formal methods for VoDKA
	Why: advantages versus disadvantages
	What: methods and tools
	When and how in the dev. process
	Who: the actors involved
	Our proposed approach
	Limits of the approach
	Other approaches

	Tools used for the analysis
	Introduction
	etomcrl: translating Erlang to CRL
	Introduction and motivation of the tool
	Bridging the gap between Erlang and the CRL process algebra
	Processes and communication
	Design pattern: generic server
	Functions with side-effect
	Pattern matching in the communication part
	Pattern matching a pure function return value
	Design pattern: supervision tree
	Higher-order functions
	Data and pure functions
	Module system

	Overview of the etomcrl tool
	Detecting messages matching a given pattern
	arch_graph: inter-process relations from the state graph
	Conclusions and limitations

	CRL toolset
	Introduction and motivation of the tool
	Using the CRL toolset for our purposes

	CADP: model checking the state space
	Introduction and motivation of the tool
	Parts of the CADP that we are using

	McErlang: model checking from Erlang
	Introduction to the tool
	Internal implementation of McErlang
	The internal language
	Monitors
	Abstractions and hash tables

	The McErlang approach vs etomcrl +CRL +CADP

	Performance from code
	Introduction
	Method
	Step one: Erlang to CRL
	Step two: Generating a State Space from CRL
	Step three: Performance analysis with model checking
	Verifying Global Properties
	Architecture from the messages
	Bottleneck information
	Calculating resources for a new component

	Results
	Intermediate results of the experiment
	CRL model generation
	State space generation

	Final results: properties we are able to extract
	Extracting global properties
	Extracting architecture from the messages
	Extracting bottleneck information
	Adding and studying new components

	VoDKAV: hiding formal methods
	Testing the method with McErlang
	Generating the state space from the Erlang model
	Checking the properties from the Erlang model
	McErlang vs. etomcrl +CRL +CADP for VoDKA

	Analysis and discussion
	Conclusions and future research paths

	IV Conclusions and open paths for future research
	Thesis conclusions
	Open paths for future research

	V Appendixes
	More about the etomcrl tool
	A simple translation example
	Original Erlang source code of the example
	The supervision tree: st.erl
	A simple generic server: disk.erl
	A trivial client: users.erl

	CRL specification generated automatically from the example

	Using the etomcrl tool
	Other case study: ATM switch
	An ATM switch Locker
	Project description
	Results of using the tool within this project

	Using etomcrl on VoDKA
	Supervision tree: vodka.erl
	Supervision tree: storage.erl
	Generic server: storage_sched.erl
	Generic server: storage_group.erl
	Generic server: streaming_sched.erl
	Generic server: disk_storage.erl
	CRL code for the main part of the example

	The implementation of VoDKAV
	General design of the tool
	The CollectionServer and its interfaces
	The ModelServer and its interfaces
	The CheckingServer and its interfaces

	Thesis metainformation
	Licensing of the thesis

