
VoDkaV Tool: Model Checking for
Extracting Global Scheduler Properties from Local Restrictions

Juan José Sánchez Penas
LFCIA, University of Corunha

Campus de Elvinha S/N. 15071, A Corunha, Spain
juanjo@lfcia.org

Thomas Arts
IT-university of Giöteborg

Box 8718, 402 75 Göteborg, Sweden
thomas.arts@ituniv.se

Abstract

The VoDka server is a Video on Demand system devel-
oped using Erlang/OTP. We have developed a tool1 that,
taking directly a simple abstraction of the source code of
the system, first translates it into a intermediate process al-
gebra and, later, generates the state space of a given con-
figuration of the system. From this state space, some global
properties of the system can be extracted. The tool uses in-
ternally different translation and model checking tools, and
has a prototype GUI for hiding the internal details of the
process.

1 Tool description

The VoDka server [5, 4] is a flexible video-on-demand
system, developed using Erlang/OTP [1]. This server can
be delivered in many possible configurations with different
types of hardware, different network topology and different
number of subsystems. The storage subsystem of the server
is composed by a hierarchy of different storage systems, i.e.,
disks, CD players or tapes. These devices all have restric-
tions of which the process controlling the device is aware of.
A second layer of processes controls a set of devices in one
machine and has restrictions, for example, the bandwidth
of its connection. A third layer may be further out in the
network and serve as a cache to store more popular movies.
Thus, the system has a complex and flexible architecture.

We have constructed a tool that helps the developers of
the system to formally verify scheduling properties of con-
figurations of this system, without the need to build them.
The tool takes the source code of all scheduler related mod-
ules as input, it lets the user build a configuration by a handy
interface and can then be used to formally verify a set of pre-
defined properties of the scheduling behaviour of the chosen
configuration.

1Partially supported by MCyT, Spain, Project TIC 2002-02859

The tool is a further development of a general tool for the
verification of distributed Erlang programs [2] in combina-
tion with a specific front-end for this scheduler application.

Every process in the scheduler of the system has a func-
tion determining local restrictions based on the configura-
tion and present state of the system. The local properties
are restrictions (on bandwidth and number of connections
of disk drives, CD players, tape storage devices and such),
local scheduling functions (filtering and admission policies)
and cost related functions (state of the component and re-
sources still available).

Given only these local restrictions, and the rest of the
configuration of the system (number of levels and compo-
nents in each level), it is far from obvious to extract infor-
mation about the behaviour and performance of the system.
Answering questions such as how many users can watch
‘Star Wars’ at the same time, is virtually impossible without
building the actual configuration and testing this. Answers
to such questions, however, are what both the operator of
the video-on-demand server and the designers of the sys-
tem are interested in. The former want to obtain information
about the capacity of the system, and the later are more in-
terested in knowing how the different distributed properties
of the system influence its performance, in order to be able
to know how to improve it (redesign and reconfiguration of
the scheduler).

Our tool is made to help in this matter. From the source
code of the system, in which the local functions are present,
and some configuration parameters, it constructs a complete
communication model of that configuration. With tech-
niques from the area of formal methods (in particular model
checking) these models are used to determine global proper-
ties of the system, such as the maximum number of a certain
class of movies that can be served in parallel.

Many global properties of the system can be determined
by testing, but testing all possible scenarios of users that
request a movie is rather expensive. Moreover, one tests
a certain configuration. Performing experiments with new
drives, faster network connections and all that, increases the

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

mCRL
Erlang to mCRL to

Checker
mCRL File State Graph

Performance Questions

Erlang
Source Code

(levels, devices, restrictions,...)
Configuration High Level

Graphical User Interface

Model
State Space of the System

Global Properties

Figure 1. Three steps methodology: from Er-
lang to global properties

costs even more.
We use formal methods in a rather unconventional way.

The combination of the front-end that we constructed for
the scheduler and the slightly modified verification tool for
Erlang [2], we construct a graph that represents the system
load when users request all possible sequences of classes of
movies. This graph is constructed by automatically translat-
ing the Erlang source code of a certain configuration into a
process algebraic model (µCRL [7]). This model serves as
an intermediate step for generating the performance graph
of the system. This graph is a reduction of the state space
generated (by existing tools [8, 9]) from the µCRL model.

In this graph the failures of requests are visible and there-
fore, the shortest path to a failure. This answers the question
on how many users are guaranteed to be able to be served
in parallel. Other questions, such as ‘How many people can
watch the movie A such that the system can still serve B?’
or ‘Where should we store the movie A for being able to
serve it to N users?’, can also be expressed as properties of
the graph.

We designed a user interface to guide the whole process:
choosing the parameters of the configuration, generating the
model, constructing the graph and translating human under-
standable global properties of the system into a temporal
logic formula. This formula is checked by model checking
techniques using the Caesar/Aldebaran Development Pack-
age [6] (using the formula as a declarative way of asking
for knowledge of the system and the checking techniques
primarily as efficient graph search techniques).

2 Conclusions

The tool we have developed uses the scheduler of the
VoDka server as a case-study for our methodology to ver-
ify global performance properties of a distributed system.
The methodology is based on three main steps that are all
performed in a completely automatic way, managed by the
user with a high level graphical interface, developed with
the goal of hiding the technical details.

With the current version of the tool, we are able to han-
dle configurations of the system that are as complex as the
ones that are being used in the VoDka prototypes. The main

bottleneck is the step from the process algebra to the state
space of the system, that can take quite a lot of time for
complex system configurations. As an example: if we take
a system with two level configuration, without cache, and
almost without restrictions, but with four storage devices,
and all the possible media object combinations, the result-
ing state space contains up to a few million states.

The methodology implemented in this tool and future
work have been discussed more detailed in [3].

3 Acknowledgements

The authors would like to thank Vı́ctor M. Gulı́as, mem-
ber of the VoDka development team, for his help with the
technical details of the server implementation. We also
would like to thank Clara Benac Earle for her contributions
to the development and testing of the tools we use as under-
lying framework.

References

[1] J. Armstrong, S. Virding, M. Williams, and C. Wikström.
Concurrent Programming in Erlang, 2nd edition. Prentice
Hall International, 1996.

[2] T. Arts and C. Benac Earle. Verifying Erlang code: a resource
locker case-study. In Int. Symposium on Formal Methods Eu-
rope, volume 2391 of LNCS, pages 183–202. Springer-Verlag,
July 2002.

[3] T. Arts and J. J. Sanchez-Penas. Global scheduler proper-
ties derived from local restrictions. In Proceedings of Er-
lang Workshop at PLI2002, Workshops in Computing Series.
ACM, 2002.

[4] M. Barreiro, V. M. Gulı́as, J. L. Freire, and J. J. Sánchez.
An Erlang-based hierarchical distributed VoD. In 7th Int.
Erlang/OTP User Conference. Ericsson Utvecklings AB,
September 2001.

[5] M. Barreiro, V. M. Gulı́as, J. J. Sánchez, and S. Jorge.
The tertiary level in a functional cluster-based hierarchical
VoD system. In Functional Programming and λ-Calculus
Workshop, volume 2178 of LNCS, pages 540–554. Springer-
Verlag, February 2001.

[6] J. Fernández, H. Garavel, A. Kerbrat, and R. Mateesc. Cae-
sar/Aldébaran development package: A protocol validation
and verification toolbox. In 11th Int. Conf. on Computer-
Aided Verification, volume 1102 of LNCS, pages 437–440.
Springer-Verlag, August 1996.

[7] J. Groote. The syntax and semantics of timed µCRL. Techni-
cal Report SEN-R9709, CWI, Amsterdam, The Netherlands,
June 1997.

[8] SEN group. A language and tool set to study com-
municating processes with data. Technical report, CWI,
http://www.cwi.nl/∼mcrl, February 1999.

[9] A. G. Wouters. Manual for the µCRL tool set (version
2.8.2). Technical Report SEN-R0130, CWI, Amsterdam, The
Netherlands, 2001.

Proceedings of the Third International Conference on Application of Concurrency to System Design (ACSD’03)

0-7695-1887-7/03 $17.00 © 2003 IEEE

