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Abstract. A formal testing methodology is outlined in this paper, that proves
applicable to validation of architectural units in object-oriented models, and its
use is illustrated in the context of the design of a robot teleoperation architecture.
Automated generation of test cases to validate the functionality of the robot tra-
jectory generation unit showcases the key features of this methodology. A disci-
plined use of UML state diagrams, to model the unit’s dynamics consistently with
its static properties as modeled by class diagrams, enables one to provide such
models with IOLTS semantics, whence a rich machinery of testing theories and
tools based on those theories become readily available. Our case study tells that,
besides black-box testing of final implementation units, white-box analysis of
architectural units may greatly benefit from the flexibility of parameterized I/O-
conformance relations. Test purposes turn out to be a useful methodological link
between functional requirements, which they are drawn from, and conformance
relations, which they help one to instantiate, thereby delimiting test selection to
purposeful tests. Contingent aspects of our methodology include: a mechanical
translation of state diagrams in Basic LOTOS, a non-mechanical, use-case driven
synthesis of test purposes, expressed in the same language, and the use of the
TGV tool for automated test case generation. Other choices in these respects are
well possible, without affecting the characteristic trait of the proposed methodol-
ogy, that is rather to be found in the combination of object-oriented architectural
modeling with IOLTS semantics.

1 Introduction

The analysis, design and construction of a complex system can be made conceptually
more tractable if one describes the software architecture by a formal specification [23].
A specification of such type enables engineers and designers to check which compo-
nents functionalities, described in the system requirements, are satisfied and to verify
the intended interactions of those components. The formal specification of a software
architecture provides a solid foundation for developing architecture-based testing tech-
niques. [24].

The testing of architectural abstractions allows one to detect defects in the initial
phases of the software lifecycle, rather than after implementation or during system in-
tegration, as is common practice, and thus to prevent their propagation through the
subsequent phases.



2 G. Scollo and S. Zecchini

In very complex software systems, the amount of information in the system imple-
mentation is, typically, more than a single person could understand. A common way to
deal with these systems is by using amodelof the system. The availability of a model
derives, obviously, from the application to realize. Clearly, in a model we must include
all the relevant information for our purpose, but we must pay attention to exclude the
information that is not necessary. Indeed, a model with too much information may be
difficult to comprehend. The name “model-based testing” is a general term used to refer
to an approach that bases testing activities, such as test case generation and evaluation,
on models of the application under test [7, 2, 5].

Object-oriented models have found in the Unified Modeling Language (UML) [22]
a standard notation, supported by a wide variety of model development tools. This en-
ables one to model design concerns, requirements as well as decisions, at different ab-
straction levels, orperspectives[4], ranging from theconceptualmodeling perspective
through a more prescriptivespecificationperspective, down to concreteimplementation
perspective. Clearly, all of these prove useful, albeit in different phases of the software
development process, but we argue that there’s even room in between. Of particular
interest to this paper is anarchitecturalperspective, which is more prescriptive than
conceptual modeling in that it fixes design decisions of architectural relevance such
as naming of components (packages, classes) and connectors (associations, operations,
inheritance relations), as well as ordering of interactions between objects, yet not so
complete in its prescriptive character as a specification perspective would be.

In the next section we characterize with some more precision the level of formal
detail which is adopted in the architectural perspective taken in the subject case study.
For the time being we just point out that several types of UML diagrams prove useful
to express architectural requirements of various kind, e.g.packagediagrams to par-
tition an architecture into separate layers,classdiagrams to represent static structure
requirements,interactionand/orstatediagrams to highlight dynamic properties of the
architecture envisaged and of components or connectors thereof, etc.

One may wonder what sort of relevance or meaning should be ascribed to testing in
an architectural modeling perspective. Since this applies at an early design stage, there’s
no such a thing as an ”implementation under test” to talk about, unless the architectural
model would be usable for some kind of prototype generation—a more frequent situ-
ation with constructivespecificationmodels though. Now, traditional views of testing,
such as the so-called V-model [26], assign differenttesting scopes(system, integration,
unit) to different phases of software development, and in particular deferunit testingto
the coding phase. On the contrary, we believe that all testing scopes are of relevance to
each phase, but under differenttesting perspectives. Architectural testingthus is testing
of architectural requirements; this may be understoodeitheras analysis and verification
of architectural models, e.g. to test whether they comply with given user requirements,
or as an early stage in the design of testers which are to be employed at later develop-
ment phases, viz. their modeling in an architectural perspective.

Architectural unit testingis thus, in the first sense, testing of architectural units
against functional requirements, while in the second sense it means architectural mod-
eling of unit testing code. This activity need not wait for the coding phase to start,
insofar as theory and tools are available to assist it on the basis of early available ar-
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chitectural models. Furthermore, a clever combination of architectural unit testing in
bothsenses provides one with a kind ofvalidationof functional requirements, in that
in the first sense it maps them to architectural unit models, which are just early ab-
stractions of unit specifications, and then in the second sense it enables designers to see
whether those models give rise to sensible unit testing schemes for those requirements,
whose testability is thereby assessed. In both cases, architectural unit testing is viewed
as relative to given functional requirements here; this will be aided by translating each
requirement into a suitabletest purposefor a given architectural unit, that will drive test
selection and test case generation for the given requirement and architectural unit.

UML models most relevant to architectural unit testing are:class diagrams, for
static requirements, such as the input alphabet of each unit (we take operation names
as atomic constituents of an object’s input alphabet, as it will be explained in the next
section), andstate diagramsfor dynamic requirements, i.e. those which apply to the
object’s behaviour and constrain its interaction capabilities with its environment. A dis-
ciplined use of UML state diagrams, to model the unit’s dynamics consistently with its
required static properties, will be the starting point of our methodology for architectural
unit testing.

2 Test methodology

The architectural perspective adopted in the subject case study takes the form of a few
style prescriptions with respect to the form and level of detail put in UML models.

2.1 Architectural class diagrams

Static structure is conveyed by class diagrams, where each class element actually is a
partial description of a class interface; more precisely, it consists of a class name and a
list of operation names with no parameters. Relations between elements are the standard
ones as in UML class diagrams. A refinement of an architectural class diagram to turn it
into the specification perspective would have to complete the interface signatures, that is
to say, to add any other required operation not included in the architectural perspective,
and to define parameters and return types for all operations. Moreover, further relations
as well as attributes may be added by specification refinements.

2.2 Architectural state diagrams

Dynamic requirements on architectural units are modelled by UML state diagrams,
under a few assumptions and style prescriptions. We assume each state diagram refers
to the behaviour of a generic instance of the architectural unit, which is a class belonging
to (only) one architectural class diagram. The I/O alphabet of such an object is defined
by:
inputs: the operation names defined on the instance by its class, including inherited
operation names;
outputs: the operation names (defined in any class element of any class diagram of the
architectural model) which occur asactionsin transition labels of the state diagram.
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Simple states have parsimonious, minimal descriptions in the diagrams of present
concern, that is, just an optional name, obviously absent for pseudostates; only ini-
tial and final pseudostates are admitted here. Richer descriptions are only available for
composite, nonconcurrent states, in the form of a state diagram over the substates of the
(named) composite state; named substates may be simple as well as composite them-
selves, recursively.

We recall that the syntax of transition labels of UML state diagrams consists of a
triple event guard / action, where each of the three components may be absent1. Our
style prescriptions so far amount to only use input operation names asevents, whereas
actionsare output operation names. Furthermore, a limited form ofguard is admitted,
written [bCond] , wherebCond is just a literal for a boolean condition (a possibly
negated name thus).

Other prescriptions for architectural state diagrams are defined as follows, only mo-
tivated by the wish to translate them into Basic LOTOS, which features a fairly limited
expressiveness, and to do so in a straightforward manner:

– the state diagram has an initial (pseudo)state;
– every transition label consists of at most one of the three components allowed by

UML syntax, viz. event, guard, action, which respectively correspond to input,
internal action and output;

– anonymous states are made use of as intermediate states when conventional UML
transitions with multiple-component labels are splitted into sequences of single-
component labelled transitions, in order to satisfy the previous prescription;

– there are no cycles in the state diagram that only cross anonymous states;
– a limited form of guard conditionsis adopted, in that such a condition is just a

literal for a boolean condition, as just explained;
– the initial transition edge (viz. that from initial state to default state) has empty label

(no action thus), both at top-level and within any composite state, at any nesting
depth;

– incoming edges to the final state have empty label, both at top-level and within any
composite state, at any nesting depth.

The main motivation for the following style constraints comes from good design
practices. For example, transitions should be preserved by abstraction of a composite
state to a simple state as well as by refinement of the latter to the former. This motivates
the following restriction:

all edges that enter or leave a composite state must have their ending at the
composite state contour, rather than at some inner state.

For the transitions specified by such edges, this implies that2

1 The slash is only present if theactioncomponent is present.
2 Consistently with the UML 1.5 standard conventions w.r.t. transitions from/to the initial and

final pseudostates of composite states, whereby 1) the transition from the initial state of a
composite state must be unlabelled and represents any transition to the enclosing state (this
initial transition may have an action, though), and 2) a transition to a final state represents
the completion of activity in the enclosing state, which is exited thus—the unlabelled outgo-
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1. incoming transitions always lead to the initial state of the composite state,
2. unlabelled outgoing transitions always come from the final state of the composite

state,
3. every labelled outgoing transition is to be allowed from all of the inner states of the

composite state, excluding the initial and final (pseudo)states.

Finally, we assume there are no incoming edges to a state if,and only if, this is an initial
state, be it the top-level initial state or the initial state of a composite state.

2.3 Semantics of architectural state diagrams

UML state diagrams under the aforementioned style restrictions have a straightforward
interpretation as I/O Labelled Transition Systems (IOLTS), where the key fact consists
in seriously taking the classic OO view of message exchanges between objects as oper-
ation invocations. The following, standard definition will then take a distinct pragmatic
flavour, once the use of (a set of) internal actions in this context will be made clear.

Definition 1 (IOLTS) An IOLTS (Input-Output Labelled Transition System) is an LTS
M = (QM , AM ,→M , qM

init) whereQM is the set of states,qM
init is the initial state,

→M⊆ QM ×AM ×QM is the transition relation andAM = AM
I ∪AM

O ∪ IM , where
AM

I andAM
O are respectively the input and output alphabet, whileIM are the internal

or unobservable actions, all three alphabets being pairwise disjoint.

Unobservable actions evidently occur in UML state diagrams whenever all three
components of a transition label are absent. Should this be the only case for internal
actions, then a singleton for the internal action alphabetIM would do the job, as it
happens in traditionalLabelled Transition Systems(LTS) such as those employed in
process algebras like CCS [21] or CSP [14]. However, when message input to an object
is viewed as a invocation of an operation on that object, and output conversely, then
I/O interaction is no longer tied to value passing, but to a server/client relationship—the
invoked operation being a provided service. Now, what if an object invokes an operation
of its own? This phenomenon, often termedself-delegationin OO terminology, whereby
server and client coincide, obviously corresponds tointernal action, too.

Furthermore, suppose one would consider a variant of the IOLTS definition deprived
of internal actions, but where the input and output alphabets would not be required to be
disjoint (thus allowing for self-delegation, which can be statically enforced by declaring
privatevisibility of operations). This variant is immediately recasted into the standard
IOLTS definition by removing the intersection of the input and output alphabets from
these and putting it into the set of internal actions. This corroborates the OO view
of treating both I/O and internal actions as operation invocations, a view that has a
straightforward interpretation in the IOLTS model of concurrency. Our architectural
style prescriptions thus require that names of boolean conditions occurring in guards of

ing transition from the composite state contour represents the transition from its inner final
state. Also recall that final states have no outgoing edges and initial states no incoming edges,
according to UML 1.5.
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transition labels of an object’s state diagram be declared as (private) operations of that
object’s class, in some class diagram.

Finally, the question arises whether the set of those internal actions which corre-
spond to self-delegation coincides with the whole set of internal actions. A negative
answer is immediate from the fact that unlabelled edges are allowed in architectural
state diagrams. We then letIM include a single ”absolutely unobservable” internal
action, which corresponds to the empty label in state diagrams. The other internal ac-
tions thus get a ”limited observability” status in our methodology, in that they are 1)
unobservable by any other object in the architectural model (they are only used for self-
delegation), yet 2) observable by testers—which seems meaningful in the context of
white-box testing,e.g.for debugging purposes. These actions will be referred to as the
testable internal actions.

2.4 Test methodology implementation

Once the syntax and semantics of architectural unit modeling are fixed as outlined
above, it becomes possible to look for tool support to architectural unit testing in the
rich machinery that has flourished as offspring of IOLTS theories during recent years
[29, 9, 17, 8, 30, 13, 15]. Now, our methodology aims at test case generation forspecific
test purposes, associated to user requirements, where the generated test case is viewed
as an architectural model of the testing code for that purpose. This aim follows from a
view of test selection as not only being the practically viable alternative to exhaustive
testing, but also proving beneficial to structuring tests according to user requirements,
thus obeying to the basic principle of separation of concerns.

The view of the generated test case as an architectural abstraction of testing code
also entails that it need not be restricted to black-box testing. Architectural abstraction
does already intrude into the system internals, insofar as it is aimed at driving the or-
ganization and construction of internal structure.White-box testingcode checks those
internals too, insofar as it aims not only at detection of failures to meet externally ob-
servable requirements but also at discovering the internal sources of those failures. Gen-
eration of test cases where internal actions could be included in the tester’s observation
capability proves thus desirable in the context of our testing methodology.

Contingent aspects of our methodology include: a mechanical translation of archi-
tectural state diagrams in Basic LOTOS [3], a non-mechanical, use-case driven syn-
thesis of test purposes, expressed in the same language, and the use of the TGV (Test
Generation using Verification techniques) tool [9] for automated test case generation.
Other choices in these respects are well possible, without affecting the characteristic
trait of the proposed methodology, that is rather to be found in the combination of
object-oriented architectural modeling with IOLTS semantics.

The rest of this section recalls the relevant Basic LOTOS concepts and then gives
an outline of the three steps of the aforementioned implementation of our test method-
ology, that has been experimented in the subject case study.
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2.5 State diagrams in Basic LOTOS

LOTOS (Language of Temporal Ordering Specifications) is an ISO standard language
[16] for the specification of concurrent, distributed and non-deterministic systems. A
tutorial introduction to LOTOS is available in [3]. Roughly, LOTOS consists of two
parts:Basic LOTOS, for specifying interactions and flow of control, andACT ONE, for
the algebraic specification of abstract data types.

The structural operational semantics of a LOTOS specification is given by a LTS,
and is defined by a set of inference rules. In general, a LOTOS specification describes
a system using a process hierarchy. Aprocessis an entity that may execute internal,
unobservable actions, and may interact with other processes through itsgates, or inter-
action points. Complex interactions between processes are built up of elementary units
of synchronization which are calledevents, or (atomic) interactions, or simplyactions.
A system consists of a set of interacting processes. The environment of a system may
also be seen as anobserverprocess, which could be a human, that is assumed to be al-
ways ready to observe any observable action at the system interface. Plenty of examples
of analysis and verification of properties of LOTOS specifications can be found in the
literature, such as [20, 27, 28], to mention but a few.

To verify the conformance of an architectural unit to required functionalities, its
state diagram is translated to Basic LOTOS, which fact proves mechanically feasible
when the aforementioned style restrictions on UML state diagrams are obeyed. A de-
tailed outline of this translation is presented in the next subsection. The Basic LOTOS
”disabling” operator[> proves very useful in that it allows an almost direct translation
of labelled outgoing transitions from composite states in UML state diagrams. Practi-
cally, verification and test case generation are based on a possibly partial exploration
of the LTS that describes the behaviour of the system under test. IOLTS semantics is
somewhat different from LTS semantics because of the partitioning of the action alpha-
bet into I/O and internal actions. This is circumvented, in our methodology as well as
in IOLTS-based test generation tools, by declaring the action partitioning outside the
(Basic) LOTOS specification.

2.6 Translation UML → Basic LOTOS

In this section a mechanical translation of UML state diagrams in Basic LOTOS is
worked out in detail, under the style prescriptions defined in section 2.2. Before pre-
senting the recursive definition of the translation rules, it’s useful to introduce some
notation which proves convenient to this purpose.
Notation:

ε : the empty label (in state diagrams);
SD : the set of states in diagramD, partitioned into:

ND : the set of named states inD (we let them coincide with their names),
UD : the set of anonymous states inD;

CD : the set of composite states in diagramD,with CD ⊆ ND ;
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initD : the initial state in diagramD;
dsD : the default state in diagramD (target state of unique outgoing edge frominitD);
Ds : the state diagram inside the region of composite states ∈ CD;
LD : the set of edge labels in diagramD;
s

a→D: if a is the (possibly empty) label of some outgoing edge from states in D;
sucD : SD × LD

.→ SD : the partial map such thatsucD(s, a) ↓ iff s
a→D, in which

case it’s the target state of thea-labeled edge outgoing from states ;
OutD(s) = {a | s a→D}, partitioned into:

NOutD(s) = {a | s a→D, sucD(s, a) ∈ ND} ,
UOutD(s) = {a | s a→D, sucD(s, a) ∈ UD} ;

∑
a∈L

a;Ba =


L = ∅ : stop

L = {a} : a;Ba

L = {a} ∪ L′ : a;Ba [ ]
∑

a′∈L′

a′;Ba′ (a /∈ L′)

(well defined up to associativity and commutativity of [])

where the last definition is standard notation for Basic LOTOS behaviour expressions
in normal form, viz. only usingstop , action prefix and choice;L is a finite set of
nonempty labels here, possibly extended withi, the LOTOS symbol for the absolutely
unobservable internal action. Owing to LOTOS concrete syntax, a bijectiverelabeling
l : LD → (LD\{ε}) ∪ {i} is defined, with subscript argument, wherebylε = i, la = a
if a 6= ε.

For each named state in the diagram a corresponding LOTOS process is defined,
with the name of that state. The diagramD itself is translated to a specification having
LD\{ε} as gate set and functionalityFD defined to beexit if D has a top-level final
state,noexit otherwise; the same gate set and functionality are ascribed to every pro-
cess definition that is defined for a top-level named state, viz. a named state that is not
a substate of a composite state. Named substates of composite states take the gate set
and functionality defined as above, but for the diagramDs that lies inside the region of
their closest containing composite states, thusLDs

\{ε} as gate set, and functionality
FDs

= exit iff a final state is a direct substate ofs. The mapGD : ND → 2LD\{ε}

sends every named states to the gate set ascribed to the process definition fors.
For a given state diagramD, we now define a mapBD sending each states ∈ SD

to a Basic LOTOS behaviour expression over the appropriate set of gates. The mapBD
will provide:

1. the Basic LOTOS specification with its top-level behaviour expressionBD(initD),
and

2. the process definition of each named states ∈ ND with its defining behaviour
expressionBD(s),

thereby completing the definition of the translation of architectural state diagrams in
Basic LOTOS. MapBD is recursively defined as follows.

TheBD-image of any (anonymous) final state (be it the top-level final state or the
final state of any composite state) is the LOTOSexit process.
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TheBD-image of any (anonymous) initial state (be it the top-level initial state or
the initial state of any composite state) depends on whether the subsequent default state
is named:

BD(initD) = BD(dsD) if dsD ∈ UD
BD(initD) = dsD[GD(dsD)] if dsD ∈ ND

For any other states ∈ SD, if s is simple (i.e. not composite, see below for this
case), then

BD(s) =
∑

a∈NOutD(s)

la; sucD(s, a)[GD(sucD(s, a))] [ ]
∑

a∈UOutD(s)

la;BD(sucD(s, a))

TheBD-image of a composite state is built by means of thesequential composition
anddisablingoperators, in addition to the previous constructs. Thedisablingopera-
tor is employed to take care of the labelled outgoing transitions from the composite
state, thus rendering the fact that such transitions may occur from any of the inner (non
pseudo)states of the composite state. Thesequential compositionoperator is employed
to specify behaviour after termination of the composite state process, whenever this has
exit functionality. TheBD-image ofs ∈ CD is an instance of one of the following
behaviour expression schemes, depending on which case applies, withBi ranging over
behaviour expressions (i = 1, 2, 3):

(B1 [> B2) >> B3 if FDs
= exit andOutD(s)\{ε} 6= ∅

B1 [> B2 if FDs
= noexit andOutD(s)\{ε} 6= ∅

B1 >> B3 if FDs
= exit andOutD(s) = {ε}

B1 if FDs
= noexit andOutD(s) = ∅

where the constituent behaviour expressions are recursively defined as follows:

B1 = BD(initDs)

B2 =
∑

a∈NOutD(s)\{ε}

a; sucD(s, a)[GD(sucD(s, a))] [ ]
∑

a∈UOutD(s)\{ε}

a;BD(sucD(s, a))

B3 = BD(sucD(s, ε))

2.7 Test purposes

A test purposeis an abstract description of a subset of a specification, that allows one
to choose behaviours to test, and consequently, helps one to reduce the extent of speci-
fication exploration. This is interpreted as an IOLTS where two disjoint subsets of final
states are distinguished. Final states of the test purpose graph are: eitheraccepting states
(this means that the purpose is reached) orrefusing states(this means that parts of the
specification are rejected). A test purpose can thus be formalized by an IOLTS with
selected marked states [9, 19], as follows.

Definition 2 (Test Purpose) A test purpose is an IOLTS,TP = (QTP , ATP ,→TP

, qTP
init), with a set of statesACCEPT⊆ QTP , that define the verdictPass, and a set of

statesREFUSE⊆ QTP , that define the verdictFail.
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Test purposes enable tools to limit the specification graph exploration by taking a
synchronous product of the specification with the test purpose, where specified actions
that are not in the I/O alphabets of the test purpose IOLTS are considered as internal ac-
tions of the specification. By giving priority to test purpose actions, an effective pruning
of the specification graph is obtained. This is explained in some more detail as follows.

2.8 Automatic test generation

The third step of our methodology implementation is concerned with automatic test
case generation using TGV. This is a tool for the generation of test suites based on
verification technology [9, 8], that is integrated into the CADP toolbox [17, 13, 15].

TGV takes two inputs as arguments: a specification of the system’s behaviour, de-
fined in a language with IOLTS semantics, and the test purpose, which is made use of
to select a purposeful subset of the system’s behaviour to be tested.

To produce automatically the appropriatetest case, TGV uses algorithms that are
peculiar to systems verification technology, such asTarjan’s Algorithm. The generation
is done ”on-the-fly” on the synchronous product of the specification with the test pur-
pose. This product avoids states explosion by only exploring the particular fragment
of the specification selected according to the test purpose. Thereupon TGV produces a
test case, represented by an IOLTS, in which transitions may be labelled with the test
verdicts, that arepass, fail or inconclusive. Therefore, a test case is a set of sequences
of actions describing all possible interactions between the implementation under test
(IUT) and a tester aimed at checking whether the implementation conforms to the spec-
ification according to a given test purpose, insofar as this is concerned.

In the present architectural setting, significance of test case generation is twofold: 1)
the testability of user requirements is validated by generating test cases for test purposes
which are deemed to reflect those requirements in the given model; and 2) the generated
test cases are architectural specifications of testers for those test purposes, and may thus
be taken as early models for their design, well in advance of implementation and coding
phases. In this perspective, reference to the (envisaged) IUT is meaningful although no
IUT may be actually available when architectural test case generation takes place.

The system specification and the test case (or tester) TC are both IOLTS, and the
output alphabet of TC is a subset of the output alphabet of specification,ATC

O ⊆ AS
O.

In practice, in the test case, every trace, that is a transition sequence, describes a cor-
responding interaction sequence between tester and IUT. Basically, the conformance
relation is theiocoz relation described in [29]. Informally, the conformance relation
states that a IUT I conforms to a specification S, according to a set of tracesz if,
after every observable trace inz, the outputs of I is included in the outputs of S. In
our methodology,z is the subset of the traces of S that in the test purpose lead to an
accepting state.

To use the TGV tool, the specification must be defined as a Binary Coded Graph
(BCG),spec.bcg, or as a LOTOS specification, while the test purpose must be described
as a BCG, say filetp.bcg, or in Aldebaran format, say filetp.aut[15, 18].

In the present application of our methodology we describe the test purpose in Basic
LOTOS and we translate the obtained file in Aldebaran format using theCAESAR/AL-
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DEBARAN Development Package(CADP) tools. Descriptions of this package can be
found in [13, 15, 17].

3 A software architecture for telerobotics

A few elements of the software architecture for the telerobotics system described in
[32] are introduced in this section, that should help the reader to grasp the context of
the sample application of the testing methodology proposed here.

3.1 Why this architecture?

In robot teleoperation, the human operator takes part not only in the supervision of the
activity but in the machine control and programming too [10]. Operators can control
the movements of a manipulator or of a mobile robot, placed in a remote environment,
from a local site. Teleoperation is defined as the extension of a person’s sensing and ma-
nipulation capability to a remote location [25]. Teleoperation in robot-assisted surgery
is a major challenge of current years.Teleroboticsis a form of teleoperation in which
a human operator acts as a supervisor, communicating information about tasks, goals,
constraints and plans to a computer, and getting back information about accomplish-
ments and difficulties, and sensory data. The robot does the required task, but also has
a form of intelligence, e.g. it can react to unexpected events and execute high level
commands.

To manage the complexity of large robotic systems, in which a lot of independent
and autonomous entities work together to achieve a common task, suitable program-
ming techniques are badly needed. The emergence of software engineering also arises
from this need, while it helps one to design reusable software which could be used in
different contexts. Robotics also has an increasing interest in the research of tools to de-
velop open and modular applications, that could evolve together with the never ending
availability of new hardware and software technologies. Choosing the right architec-
ture, both hardware and software, is fundamental for designing high quality systems. A
model of system architecture can also help the analysis and description of the system
properties, and assists the engineer in planning and design decisions.

In the literature there is plenty of work on software architectures for robotic systems
that deal with mobile robots. There are only few examples of software architectures for
teleoperation of manipulators (see e.g. NASREM [1]). This has motivated our develop-
ment of a software architecture which should coordinate the components of a telerobotic
system, organize control structures, and manage the components’ functionalities.

3.2 A layered architecture

For designing our architecture we have followed a layering approach. As the reader can
see in figure 1, the architecture is composed of three layers:planning layer, control
layer andexecution layer.

The planning layermanages real-time tasks defined using artificial intelligence
techniques, to provide a deliberative component. Thecontrol layer provides the up-
per layer with functionalities and consists of the abstract classes that interact with the
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Fig. 1.Architecture layers

Fig. 2.Class packages in the control layer
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Fig. 3.The TrajectoryGen class.

user or that are independent from hardware. In theexecution layerthe more concrete
classes are implemented, that interact with the hardware subsystem and that depend
on this. We have modelled thecontrol layerof this architecture. In this layer we have
located four packages (see figure 2):

CommandInterpreter ;
MotionControl&Manipulation ;
Compensation&Filtering ;
Vision&Perception .
The class that we use in our methodology application example isTrajectoryGen ,

a class of theMotionControl&Manipulation package, shown in figure 3.
This class is responsible for trajectory generation, uses forward and inverse kinemat-

ics of the robots for this computation, and checks whether the final position is reachable,
as well as for possible collisions.

3.3 State diagram of TrajectoryGen

Figure 4 shows the state diagram of aTrajectoryGen object.
Consistently with the style prescriptions defined in section 2.2 for architectural state

diagrams, we let every nonempty transition label consist of only one out of the three la-
bel components allowed by UML syntax, viz.event, guard, action, resp. corresponding
to input, internal action, output.

Upon creation, aTrajectoryGen object is in theIdle state, waiting for new data
and, in particular, new positions for the controlled robot(s). When it receives these
data, the object moves to theCheck state, to see whether the final position is within
reach (TestPosition ) and, if so, for the absence of obstacles and possible collisions
(TestObstacle ). If the verification succeeds, the object moves to theWaitGetT state,
otherwise it goes back toIdle .



14 G. Scollo and S. Zecchini

Fig. 4.State diagram of TrajectoryGen class

In the WaitGetT state the object waits for agetTrajectory input. When this
occurs, the condition whether the position received is either a modification of a previous
trajectory, or a new position used to generate a new trajectory, fires a transition, resp. to
CompModTor toCompNewT. When the computation in either state terminates, the object
moves to stateTrajReady , where it outputs the/newTrajectory to the robot(s),
unless anewObject input occurs, signaling a new obstacle in the environment.

If the presence of a new obstacle is signalled, the object moves to theControl

state, where it checks whether a collision with the obstacle may occur ([collision-

Detected] ). If so, then the object goes to theApproach state, where the previous
trajectory is modified, so that the robot approaches the obstacle without collisions. The
new trajectory is output to the robot, and the trajectory generator goes to theCheck

state again, where the new trajectory is computed, to reach the final position from the
newly reached point. When the new obstacle does not lie on the trajectory, the trajectory
generator outputs the computed trajectory to the robot and moves back toIdle .

When the object is in theIdle state and a new obstacle is detected in the robot work
environment, a transition to theCheckTraj state fires, where it is checked whether or
not there is a trajectory followed by the robot already. If there is such a trajectory, then



Architectural Unit Testing 15

the object moves to theControl state, where the possibility of collisions with the new
obstacle is checked, otherwise it moves back toIdle .

4 Sample application of the test methodology

In this section we apply our test methodology to theTrajectoryGen state diagram,
see figure 4.

4.1 State diagram translation in Basic LOTOS

A direct translation of theTrajectoryGen state diagram in Basic LOTOS is possible,
since this diagram satisfies the constraints prescribed in section 2.2, hence the transla-
tion defined in section 2.6 is applicable.

Now, the presence of a composite state, such asCheck , with outgoing transitions is
no problem as far as translation to Basic LOTOS is concerned, thanks to the availability
of the disable operator[> . However, the Caesar compiler complains about our transla-
tion using this feature, as we explain later. The following translation thus departs from
the TrajectoryGen state structure in this respect: we collapse stateTestPosition

to its parent superstateCheck , whose outgoing transitions are replicated for its substate
TestObstacle . We thus obtain an equivalent state diagram with no composite state.

For the sake of conciseness, we map operation names to shorter gate names, and
observe the convention that all names of internal actions have ani prefix. This mapping
is as follows.
Input actions:
nP : newPoint

dP : desiredPosition

gT : getTrajectory

nO : newObject

Output actions:
nT : newTrajectory

Internal actions:
i te : trajectoryExists

i tn : not trajectoryExists

i wb : withinBounds

i rp : reachablePoint

i up : not reachablePoint

i tg : trajectoryGeneration

i tm : trajectoryModification

i cn : computedNewTrajectory

i cm : computedModifiedTrajectory

i cd : collisionDetected

i nd : not collisionDetected

Under these premises, the Basic LOTOS translation of theTrajectoryGen state
diagram is as follows.
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specification TrajGen[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,
i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]

:noexit
behaviour Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
where

process Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
nP ; Check[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
dP ; Check[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
nO ; CheckTraj[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,

i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc

process Check[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
i_wb ; TestObstacle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
i_up ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc

process CheckTraj[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
i_te ; Control[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
i_tn ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc

process TestObstacle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,
i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
i_rp ; WaitGetT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
i_up ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc
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process WaitGetT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
gT ; ( i_tg ; CompNewT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
i_tm ; CompModT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd] )
endproc

process CompNewT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
i_cn ; TrajReady[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc
process CompModT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,

i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit
:=
i_cm ; TrajReady[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc
process TrajReady[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,

i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit
:=
nT ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
nO ; Control[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc

process Control[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
i_cd ; Approach[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
[]
i_nd ; nT ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc

process Approach[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,i_up,
i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
nT ; Check[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,

i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]
endproc
endspec
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As mentioned above, this translation is not exactly a direct translation of the given
state diagram because of a complaint by the Caesar compiler w.r.t. the translation of the
composite stateCheck , with its outgoing transitions, using the Basic LOTOS disabling
operator[> . It seems instructive, though, to report such a translation as well, that goes
as follows.

process Check[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,
i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]:noexit

:=
(TestPosition[i_wb]

[> i_up ; Idle[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,
i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]

) >> i_rp ; WaitGetT[nP,dP,gT,nT,nO,i_te,i_tn,i_wb,i_rp,
i_up,i_tg,i_tm,i_cn,i_cm,i_cd,i_nd]

endproc
process TestPosition[i_wb] : exit :=
i_wb ; TestObstacle
endproc
process TestObstacle : exit :=

exit
endproc

Basically, the Caesar compiler complains because of the recursive occurrence of the
Idle process in the left argument of the Basic LOTOS enabling operator>>. This as
well as other cases of recursion, even though well-guarded ones, are forbidden by the
so-called restriction rules, which admit regular behaviours only[11]. It is to be noted,
however, that those rules provide one with an onlysufficientcondition for regularity,
that is termedstatic control propertyin [11] as well as in the Cæsar manual[12]. This
property is meant to ensure that LOTOS specifications can be translated into finite state
graphs. Now, our translation goes in the opposite direction, and we actually have a finite
state graph to start with, yet we may expect that whenever some cycle goes through a
composite state, then one has got to unfold the corresponding LOTOS enabling and
disabling constructs, in order to recover that property.

4.2 A sample test purpose

The next step is a use-case driven synthesis of a test purpose, expressed in Basic LO-
TOS. This derivation is not mechanical, in that process-algebraic languages are not quite
logical languages, but rather have a constructive character, thus prove better suited to
describe models rather than requirements. However, their use under appropriate specifi-
cation styles, such as the constraint-oriented style [31], enables one to get specifications
which come quite close to taking a logical flavour.

We illustrate this aspect of our methodology by assuming a previous analysis of
the functional requirements which apply to our architectural unit, that splits them into
separate, indipendent prescriptions. For example, the trajectory generator should in all
cases output trajectories which prevent collisions with objects in the robot work envi-
ronment; this may be split by case analysis, and modelled in UML by distinct use cases,
by considering: collisions with still objects, or with moving objects; and, in either case,
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under the assumption that no new object comes into play during the new trajectory
computation, or under the opposite assumption. Here we choose the first case under the
first assumption, that is, output of new trajectory free from collisions with still objects,
assuming that no new object is detected during the trajectory computation. This enables
us to formulate the test purpose in terms of action traces, where the only relevant ac-
tions are: thenewPoint input, thenewTrajectory output, and the internal actions
reachablePoint and its opposite.

An informal statement of the selected test purpose exhibiting a kind of logical
flavour could be as follows: whenIdle , the unit inputs anewPoint , then itCheck s
whether this is areachablePoint ; if so, it outputs anewTrajectory , if not , it goes
back toIdle ; the test is passed upon output of anewTrajectory .

The formulation of the subject test purpose in Basic LOTOS, however, is also meant
to be used for test case generation by the TGV tool. This means that we must follow this
tool’s conventions to mark final states of testing traces as eitheracceptingor refusing. In
the TGV representation of the IOLTS associated with the LOTOS TP specifications, the
accepting states (and respectively the refusing states) are characterized by cyclic transi-
tions with predefined labelACCEPTor accept (and respectivelyREFUSEor refuse ).
The latter are implicitly determined by the tool itself, whereas the former require ex-
plicitly specifiedaccept action cycles. A slightly nasty problem in this respect is that
accept also is a LOTOS reserved keyword, used in the value-passing forms of the en-
able operator, hence it cannot be made use of as a gate name directly. We get around
this problem by using a different gate name,acc , and then replacing it with theaccept

label as required by TGV test case generation afterwards.

Our test purpose formulation in Basic LOTOS thus looks like as follows.

specification TP [nP,i_rp,i_up,nT,acc] : noexit
behaviour Idle[nP,i_rp,i_up,nT,acc]
where

process Idle[nP,i_rp,i_up,nT,acc] : noexit :=
nP ; Check[nP,i_rp,i_up,nT,acc]
endproc

process Check[nP,i_rp,i_up,nT,acc] : noexit :=
i_rp ; nT ; Accepted[acc]
[]
i_up ; Idle[nP,i_rp,i_up,nT,acc]
endproc

process Accepted[acc] : noexit :=
acc ; Accepted[acc]
endproc
endspec

The corresponding IOLTS (see figure 5) is generated by the Caesar compiler in
Aldebaran format, that is one of the two formats required by TGV for test case genera-
tion.
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?>=<89:;3 ACCEPT

vv

?>=<89:;2
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OO

?>=<89:;1
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��?>=<89:;0

NP

OO

Fig. 5. IOLTS derived from test purpose

4.3 The TGV test case

The last step aims at test case generation for the previously specified test purpose. With
TGV, we choose to explicitly specify the inputs to the specification, the other actions
being its outputs. This partitioning is to be defined by regular expressions with the Unix
regexpsyntax, put in an ad-hoc.io file as required by the TGV option-io . The content
of this file (STG.io ) is the following:

input
[nNdD]P
[gG]T
[nN]O

We get a fairly interesting, yet economical test case from TGV by invoking it with
the following CADP command:
caesar.open TrajGen.lotos tgv -io STG.io -tpprior TP.aut

whereby we ask TGV to take the system specificationTrajGen.lotos and the sys-
tem I/O description fileSTG.io to generate a test case for the test purposeTP.aut

(previously generated by the Caesar compiler from the test purpose specification given
in section 4.2). Note that system inputs are outputs by the tester, and conversely. I/O
labeling of transitions in the IOLTS of the generated test case refers to the tester.

We donot hide any internal actions, although this would be well possible by the
-hide option, consistently with our view of the generated test case as an architectural
model of a white-box testing unit.

The option-tpprior prescribes priority to actions of the test purpose in generat-
ing the test case. Figure 6 displays the test case thus obtained. Note that, without this
option, priority is by default assigned to specification actions; this would produce a
substantially larger test case, where also actions such asnOoutputs by the tester would
appear in testing traces, against our intuition of the test purpose as being limited to still
objects under the assumption of no new object entering the scene during new trajec-
tory computation. Selection of test purpose priority seems to be a necessary ingredient
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Fig. 6.The test case obtained

of the implementation of our testing methodology when using TGV, and appears to be
effective—judging from this example at least.

5 Conclusions

A combination of object-oriented architectural modeling with IOLTS semantics has
been explored in this paper, as a framework for a formal testing methodology to assess
testability of functional requirements, as well as to generate architectural models of
unit testers, at early design stages. The proposed methodology has been tried in a non-
trivial case study drawn from design of a telerobotics software architecture, and an
implementation of the methodology using a well-established toolbox for IOLTS test
case analysis and generation has been successfully experimented.

A single experiment is no definite assessment, of course, yet no reason of principle
seems to hamper feasibility of further experiments. In particular, other tools such as
TorX [30] or Promela/SPIN [6] seem to deserve attention, perhaps to overcome certain
drawbacks which have surfaced in our first experiment.
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Further directions of this research relate to: 1) extension of the methodology to other
architectural testing scopes, viz. integration and system testing, involving other kinds
of UML models, particularly those provided by concurrent state diagrams, interaction
diagrams and activity diagrams; 2) investigation of relationships with testing at more
advanced development phases, whereby models are built in a more prescriptive, possi-
bly complete specification perspective; 3) on the formal side of the previous research
direction, extension of the expressive means of testing models to cater for data, e.g. in
the form of parameter passing in I/O operations, evaluation in internal actions, etc.
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