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Verification of visibility-based
properties on multiple moving robots
in an environment with obstacles

Ali Narenji Sheshkalani and Ramtin Khosravi

Abstract
A multi-robot system consists of a number of autonomous robots moving within an environment to achieve a common
goal. Each robot decides to move based on information obtained from various sensors and gathered data received through
communicating with other robots. In order to prove the system satisfies certain properties, one can provide an analytical
proof or use a verification method. This article presents a new notion to prove visibility-related properties of a multi-
robot system by introducing an automated verification method. Precisely, we propose a method to automatically generate
a discrete state space of a given multi-robot system and verify the correctness of the desired properties by means of
model-checking tools and algorithms. We construct the state space of a number of robots, each moves freely inside a
bounded polygonal area with obstacles. The generated state space is then used to verify visibility properties (e.g. if the
communication graph of robots is connected) by means of the construction and analysis of distributed processes model
checker. Using our method, there is no need to analytically prove that the properties are preserved with every change in
the motion strategy of the robots. We have implemented a tool to automatically generate the state space and verified
some properties to demonstrate the applicability of our method in various environments.
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Introduction

In multi-robot systems (MRS), a collection of two or more

autonomous robots can solve problems in a broad range of

applications by collaborating with each other and sensing

environments. For example, teams of mobile robots have

been used for inspection of nuclear power plants,1 aerial

surveillance,2 search and rescue,3 and underwater or space

exploration.4 In many applications within the general area

of robot motion planning, visibility problems play an

important role.

There has been a close relationship between robot

motion planning and computational geometry in the appli-

cations where the robots navigate within a geometric

domain. Traditionally, there has been a research area with

the goal of minimizing the number of (stationary) guards or

surveillance cameras to guard an area in the shape of a

certain geometric domain like extensions of art gallery

problems.5 Moving to the area of mobile guards, Durocher

et al.6 considered the sliding cameras problem in which the
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cameras travel back and forth along axis-aligned line seg-

ments inside an orthogonal polygon. In the Minimum Slid-

ing Cameras (MSC) problem, the objective is to guard the

polygon with the minimum number of sliding cameras. In

MSC problem, it is assumed that the polygon is covered by

the cameras if the union of the visibility polygons of the

axis-aligned segments equals the polygon. One of the orig-

inal works on the subject of mobile guards is studied by

Efrat et al.,7 considering the problem of sweeping polygons

with a chain of guards. They developed an algorithm to

compute the minimum number of guards needed to sweep

a polygon.

Commonly, within the context of computational geome-

try such as the previous works mentioned above, analytical

proofs are provided to show that the given robot navigation

algorithms satisfy some certain properties (e.g. global con-

nectivity among the robots is always preserved). In cases

when the planning algorithms get complex, it may be hard

or even impossible to provide any analytical proofs.

Furthermore, when it comes to practical applications of

robot navigation algorithms, in order to find a solution that

satisfies the problem’s constraints, the designer may adjust

some algorithm’s parameters or refine the algorithm in

such a way that the whole robot movement strategy

changes. This way, it may not be practical to repeatedly

provide analytical proof for such modified algorithms.

An alternate and more reliable approach to investigate

the correctness of the motion algorithms is formal verifica-

tion, specifically, model-checking,8 which has become

more popular in recent years. Here, a mathematical model

of all possible behaviors of the system is constructed, often

as a state transition system, and is automatically verified

against the desired correctness properties over all possible

paths. The properties are often expressed in temporal logic

formulas.

In some previous works, model-checking has been used

to verify motion planning algorithms with respect to prob-

lem’s constraints. In Fainekos et al.,9 the authors used a

discrete representation of the continuous space of the

movement of a single robot, producing a finite state transi-

tion system. Later, Fainekos et al.10 extended the previous

framework to multiple robots. These frameworks generate

a motion plan for the robot to meet some regions of interest

inside a polygon in order to satisfy a given linear temporal

logic (LTL)11 formula.

Another related area to which model-checking tech-

niques have been applied are robot swarms. In Liu and

Winfield,12 a swarm of foraging robots is presented and,

in Konur et al.,13 is analyzed using the probabilistic sym-

bolic model checker.14 A hierarchical framework for

model-checking of planning and controlling robot swarms

is suggested by Kloetzer and Belta15 to make some abstrac-

tion of the problem including the location of the individual

robots. Dixon et al.16 used model-checking techniques to

check whether desired temporal properties are satisfied to

analyze emergent behaviors of robotic swarms. Moreover,

Brambilla et al.17 introduced property-driven design, a top-

down design method for robot swarms based on prescrip-

tive modeling and model-checking. In 2014, Guo and

Dimarogonas18 proposed a knowledge transfer scheme for

cooperative motion planning of multi-agent systems. They

assumed that the workspace is partially known by the

agents where the agents have independently assigned local

tasks, specified as LTL formulas.

More recently, Sheshkalani et al.19,20 focused on the

verification of certain properties on an MRS in a continu-

ous environment. In Sheshkalani et al.,19 the robots were

assumed to move along the boundaries of a given polygon.

They constructed a transition system on which the visibility

properties can be investigated. Later, Sheshkalani et al.20

made the problem more general and let the robots move

along simple paths inside the environment.

We believe that the results presented by Sheshkalani

et al.19,20 are restrictive in the sense that the robots are only

allowed to move along predefined paths within a simple

polygon. So, in this work, we propose a method to over-

come the previous restrictions. Specifically, this article is

different from the previous work20 in the following points:

� A new notion of state definition is proposed, so that

robots can navigate the environment freely without

any movement restrictions.

� It is allowed to have obstacles inside the

environment.

� A theoretical discussion is provided to show that the

number of states is finite.

� To demonstrate the applicability of the proposed

method, some simulation results are provided in var-

ious environments over two case studies (e.g. a

decentralized swarm aggregation algorithm21).

As an application of the problem studied in this article,

the problem of guarding a bounded environment with a

number of sliding cameras can be viewed as a special case

of our problem. This way, our method is related to the

previous study.6 Note that the mentioned study address

the combinatorial optimization problem of minimizing the

number of cameras. On the other hand, we address the

problem of verifying the correctness of the motion strate-

gies for the given system. Another, more interesting, appli-

cation of the problem is to consider the connectivity

preserving (global connectivity maintenance) of the com-

munication graph. Sabattini et al.22 proposed a method to

preserve the strong connectivity by estimating the algebraic

connectivity of the communication graph in a decentralized

manner. This way, our method can be used to guarantee the

correctness of the desired requirements related to the Con-

nectivity property.

The inputs to our method are comprised of (1) the envi-

ronment, in the form of a polygon with obstacles, (2) the

algorithms controlling the motions of the robots, (3) the

initial positions of robots, and (4) the correctness property,
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expressed as a temporal logic formula. The output of the

method is a True/False answer to the desired property as

well as a transition system, labeled by two visibility-related

atomic proposition: Connectivity (the communication

graph of the robots is connected) and Coverage (the robots

can collectively see the entire environment). The generated

transition system is used to model check the visibility prop-

erties expressed in temporal logic formulas over the men-

tioned atomic propositions. The problem is defined more

elaborately in the “Preliminaries and problem definition”

section.

Our method is abstract from the specific motion plan-

ning algorithms in the sense that each robot may be pro-

grammed with a separate algorithm which during the

execution may cause the robot to sense the surroundings

through various sensors or perform communications with

other robots. Precisely, the robots’ navigation algorithms

are seen as a black box which means that the required

information (e.g. other visible robots’ locations and the

geometry of the their surroundings) are given to each algo-

rithm as the inputs, and then the output of the algorithms

provides a decision about the next movement of the robots

(e.g. in the form of a pair of values for the direction and the

distance). In the end, all the sensing, communication, and

internal logic lead to movement steps which are treated as

actions by our method, causing transitions between states.

In general, the environments in which the robots navi-

gate can be discrete (e.g. a grid) or continuous. In the dis-

crete environments,16 a state is a snapshot of the grid which

specifies the cells that have some robots inside (static dis-

cretization). In contrast to the discrete environments, when

talking about continuous domains (like this work), the

robots may move continuously to any arbitrary locations

inside the environment. So, we need to dynamically dis-

cretize the environment in such a way that the underlying

properties can be verified. This way, we define a notion of

state for such a system to construct a transition system on

which the properties can be verified using the conventional

model-checking algorithms (“Constructing the discrete

state space” section).

Additionally, we provide a proof of correctness for the

proposed state space generation algorithm and show that

the size of the state space is bounded (“Analysis” section).

Finally, to give some intuition about the number of states

and the amount of time needed to be generated, we have

implemented a tool to automatically generate the state

space and verify the correctness of some requirements

using the construction and analysis of distributed pro-

cesses (CADP)23 tool to demonstrate the applicability of

our method in two case studies explained in “Case

studies” section.

Preliminaries and problem definition

The following definitions are borrowed from Ghosh.24 A

polygon P is defined as a closed region in the plane

bounded by a finite set of line segments (called edges of

P) such that there exists a path between any two points

inside P that intersects no edge of P. Each endpoint of an

edge of P is called a vertex of P. A vertex of P is called

convex if the interior angle at the vertex formed by two

edges of that vertex is at most 180�; otherwise it is called

reflex.

Definition 1. Visibility.24 Two points ri and rj in P are said

to be visible if the line segment joining ri and rj contains

no point on the exterior of P. This means that the seg-

ment rirj lies totally inside P. This definition allows the

segment rirj to pass through a reflex vertex or graze

along a polygonal edge. We also say that ri sees rj if ri

and rj are visible in P. It is obvious that if ri sees rj, rj

also sees ri.

For a polygon P with obstacles, we use the notation Vri

for the visibility polygon of a point ri 2 P. Removing Vri

from P may result in a number of disconnected regions

called invisible regions. Any invisible region has exactly

one edge in common with Vri
, called a window of ri, which

is characterized by a reflex vertex of P visible from ri, like

q. The window is defined as the extension of the (directed)

segment riq from ri to the boundary of P, say xj. We denote

such a window which consists of two endpoints q and xj by

riq
!. As depicted in Figure 1, the windows of r3 consist of

r3p!3 , r3o!1 , r3o!3 , and r3p!8 .

Consider a polygon P with obstacles whose boundary is

specified by the sequence of n vertices hp1; p2; . . . ; pni, the

boundary of obstacles O ¼ fo1; o2; . . . ; omg with m ver-

tices, including the set of reflex vertices Reflex and convex

vertices Convex, a set of robots R ¼ fr1; r2; . . . ; rkg, and

the corresponding navigation algorithms Alg ¼ fa1; a2;
. . . ; akg (ai is the navigation algorithm of robot ri) are given

with the following properties:

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

r2

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

r2

x1

x2

x3

x4 r3p
→
3

r3o
→
1

r3o
→
3

r3p
→
8

Figure 1. The shaded area indicates the visibility polygon of point
r3 (Vr3 ). Point r1 is invisible from r3, and its containing invisible
regions are characterized by the reflex vertices p3, p8, o1, and o3

which are separated from Vr3 by line segments p3x1 , p8x2 , o1x4 ,
and o3x3 as well.
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� Each robot ri acts based on the corresponding navi-

gation algorithm ai inside P.

� Each step in the movement of each robot is specified

by a pair ðq; dÞ where q is the direction of the move-

ment, and d is the distance the robot moves (both

values are real positive numbers).

To study the characteristics of the system, we use state

space which is a mathematical model of a physical system.

Each state is connected to some related states by means of

transitions. To discretize the state space of the system, we

assume that the robots have turn taking movements (e.g.

during the movement of a robot, the position of other robots

is fixed), as described by Dixon et al.16 and Antuña et al.25

As stated in Peled et al.,26 it is possible to have one of the

following cases in order to check automatically the proper-

ties of a finite state system whose structure is unknown: (a) a

precise bound l on the number of states is known, (b) the size

of the state space is not known precisely: an upper bound l is

available, and (c) no bound l is known on the number of

states. Since our method is abstract from the specific motion

planning algorithms (each algorithm in Alg set is treated as a

black box), no bound l is available on the number of states.

So, as Peled et al.26 suggested for case (c), we may let our

method run so long as the available time and space resources

allow. This way, the guarantees depend on the running time

of our proposed method. Since the robots usually have a

specific common goal which prevents the robots from mak-

ing arbitrary actions, the number of generated states con-

verges (no new state is generated after a significant

amount of time running the proposed method) reasonably

fast as is shown in “Case studies” section.

The correctness properties may be described using tem-

poral logics which are formalisms to express temporal

properties of reactive systems.27 Apart from the logical

operators, temporal logic formulas are constructed over a

set of atomic propositions which may be True or False in

each state of the system. To the discussion in the previous

paragraph, since it is not possible to be sure that the con-

structed state space is complete, we have to evaluate LTL

over finite traces, namely LTLf .28 As stated by De Gia-

como et al.,29 LTLf uses the same syntax as of the original

LTL.11 The classical LTL formulas have different mean-

ings on finite traces as discussed by De Giacomo and

Vardi.28 To bring an example, the following are some clas-

sical LTL formulas and their meaning on finite traces:

� “Safety”: c’ means that always till the end of the

trace ’ holds.

� “Liveness”: ‚’ means that eventually before the

end of the trace ’ holds.

We refer the reader to previous studies28–30 for related

discussion about LTL over infinite and finite traces. From

now on, the LTL modalities c and ‚ are interpreted

according to LTLf semantics.

Since our goal is to verify visibility properties, we need

to define the two following properties:

Definition 2. Connectivity. The set of robots are connected if

the graph induced by the visibility relation between pairs of

robots is connected.

Definition 3. Coverage. The robots cover P if the union of

the visibility polygons of all robots ð [
ri2R

Vri
Þ covers the

whole P.

Since we do not deal with the details of model-checking

algorithms directly in this article, we refer the reader for a

detailed description of temporal logics to Baier and Katoen.27

However, to bring an example, the LTLf formula

cððConnectivity ^lCoverageÞ ! ‚ðConnectivity ^ CoverageÞÞ
describes the property that whenever the visibility graph of

robots is connected but the environment is not covered,

eventually the system reaches a state in which both

Connectivity and Coverage properties are satisfied (robots

will eventually cover the environment by collaborating

with each other).

We define an MRS as the tuple ðP;O;R;Alg; initÞ in

which P indicates the environment, O defines the boundary

of obstacles inside P, R is the set of moving robots, Alg is

the set of navigation algorithms of robots, and init specifies

the initial position of robots inside P. The navigation algo-

rithms used for robots model are assumed to be determi-

nistic. Our goal is to define the transition system

corresponding to MRS, over which temporal logic formu-

las can be model checked. The states of this transition

system are abstractions of the robots’ configuration, and

the transitions among the states occur as the robots move

inside the environment.

Constructing the discrete state space

With the ultimate goal of verifying a temporal logic for-

mula over an MRS ¼ ðP;O;R;Alg; initÞ, we must first

construct the corresponding transition system of MRS.

As mentioned before, the states are labeled with the atomic

propositions, hence, the transition system is called a labeled

transition system (LTS).31,27

We define the LTS of MRS as the tuple ðS;Act; ,!;
s0;AP; LÞ where

� S is the set of states (defined below);

� Act is the set of actions denoting the movements of

the robots (precisely defined in subsection Transi-

tion Events);

� ,! � S � Act � S is the transition relation, (we use

the notation s ,!aj
s0 whenever ðs;aj; s

0Þ 2 ,!);

� s0 2 S is the initial state (determined based on init);

� AP ¼ fConnectivity;Coverageg is the set of atomic

propositions; and

� L : S ! 2AP is the labeling function.

4 International Journal of Advanced Robotic Systems



System states

The satisfaction of AP depends on the distribution of the

robots’ position inside P. We model each state of the system

based on the topology of the robots and the vertices of P.

Consider the union of all the windows of the robots

W ¼ friq
!jri 2 R; q 2 Reflex \ Vri

g. The intersection of

the line segments in W results in a subdivision inside P

which is denoted by SubP (Figure 2). The subdivision

SubP is comprised of a number of cells denoted by ci for

1 � i � 10 in which each cell is bounded by some win-

dows and polygonal edges (e.g. cell c3 is bounded by the

line segments r3o!1 , p1p10 , r3o!3 , and o3o1). The obtained

subdivision has some useful visibility-related characteris-

tics. Precisely, the number of visible robots in each pair of

cells that has an edge in common but different in one.24 In

other words, the number of robots which are visible in the

entire cell is the same. This way, we can dynamically

abstract out the precise location of the robot inside the cell.

Since we need to deal with the overall structure of the

subdivision (proximity of the cells) and not the precise

positions of the intersection points, we use the correspond-

ing dual graph of the subdivision (Definition 4).

Definition 4. Dual graph. Let SubP be a subdivision of P. The

dual graph of SubP that is represented by DGðSubPÞ is a

graph which has a node corresponding to each cell, and

each pair of nodes is connected with an edge, iff their

related cells have an edge in common.24

Consider Figure 2. Based on the Definition 4, we assign

a node (denoted by ni for 1 � i � 10) corresponding to

each cell of the subdivision (Figure 3). Next, we connect

each pair of nodes with an edge, iff their related cells have

an edge in common. The obtained DGðSubPÞ is depicted in

Figure 4. Furthermore, we label each node of DGðSubPÞ
with the set of the windows and the polygonal edges which

determine the boundary of the corresponding cell in SubP.

As an example, consider the cell c1 of SubP as depicted in

Figure 2. This cell is bounded by the line segments r1o!1 ,

r2p!9 , and r3p!3 . The corresponding node of cell c1 in

DGðSubPÞ is n1. So, we label node n1 with the set

fr1o!1 ; r2p!9 ; r3p!3 g.
The dual graph DGðSubPÞ does not change unless some

cells are removed from or added to SubP. Therefore, we

may use the dual graph of P to represent SubP. Since the

satisfaction of AP can be determined by analyzing SubP

(Lemma 1), we can store DGðSubPÞ as a part of each state.

Assume that we consider DGðSubPÞ as the definition of

the states. To build the state space, we have to compute the

successors of each state, determined by the movements of

the robots. Precisely, if DGðSubPÞ is considered as the

definition of the states, since the structure of the subdivi-

sion depends on the location of the robots, the next changes

to the subdivision completely depend on the direction and

the distance values ðq; dÞ each robot’s navigation algorithm

calculates for the next movement. Hence, we need to keep

track of the changes to DGðSubPÞ as the robots move.

Suppose robot ri moves in a certain direction q. The set

of windows of ri ðWri
¼ friq

!jri 2 R; q 2 Reflex \ Vri
gÞ

may move radially around pi s during the movement of ri

respectively. During the movement of the line segments in

Wri
, new cells may be constructed in SubP or existing ones

may be destructed. Construction or destruction of cells may

c1

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

c5
c6

c7

c10

c8

c2

c3

c4

c9

Figure 2. A subdivision which consists of the intersection of line
segments in W inside P.

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

n1

n2

n3

n4

n5
n6

n7

n8

n9 n10

Figure 3. The corresponding node of each subdivision’s cell is
depicted (denoted by ni).

n1

n2

n3

n4

n5
n6

n7

n8

n9 n10

Figure 4. The dual graph of subdivision SubP .
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happen if and only if some line segment in Wri
intersects

some vertex of SubP.

As an example, consider SubP as depicted in Figure 5.

Suppose that r1 decides to move toward p1 (while other

robots stand still). Consequently, the window r1o!1 rotates

in the clockwise direction. As the movement continues,

eventually cell c1 disappears (Figure 6). It is easy to see

that this happens when r1 crosses the dotted line segment

o1x1 . The line segment o1x1 belongs to y1o!1 , where y1 is

the intersection point of r2p!9 and r3p!3 . Using the encod-

ing of DGðSubPÞ expressed in the Definition 4, we cannot

determine such transitions. So, to be able to compute the

successor states correctly, we have to include more infor-

mation in the states. So, we need to store the windows of

the intersection points of Subp (e.g. y1) besides DGðSubPÞ
as a definition of the states (Definition 5) in order to deter-

mine the successor states.

Let NðSubPÞ denotes the vertices of the subdivision

SubP. Consider the union of all the windows of NðSubPÞ,
namely W 0 ¼ fpq!jp 2 NðSubPÞ; q 2 Reflex \ Vpg. The

intersection of the line segments in W 0 results in another

subdivision SubSubP
. This way, we obtain a more fine-

grained subdivision by overlaying SubP and SubSubP
, which

is denoted by Sub0P (Figure 7). So, a robot may change

DGðSubPÞ (destruct or construct a new cell) if and only if

it crosses one of the line segments of SubSubP
. For example,

line segment o1x1 belongs to the subdivision Sub0P as

shown in Figure 6. Storing DGðSub0PÞ as a part of each

state (Definition 5) is necessary and sufficient to compute

the successor states regarding the transition types described

in the next section (Lemma 2).

Definition 5. State. We define a state of k robots inside the

polygon P as the pair:

� DGðSubPÞ along with the robots in each cell of SubP,

and

� DGðSub0PÞ along with the robots in each cell of

Sub0P.

To conform the standard notion of LTS, we must show

that each atomic proposition is either True or False in a

state. The following lemma states that moving of the robots

does not change the validity of the propositions Connectiv-

ity and Coverage, as long as the state defined above

remains the same.

Lemma 1. Each state s can be uniquely labeled with the

atomic propositions AP ¼ fConnectivity;Coverageg.

Proof outline. Assume that the labeling LðsÞ 2 2AP is satis-

fied by the current state s. It is sufficient to prove that by

moving the robots, LðsÞ is valid as long as the configuration

of the robots yields in the same state s. We discuss the two

atomic propositions separately.

Connectivity. Two robots ri and rj are connected, if one lies

in the visible area of the other ðri 2 Vrj
Þ. Since the bound-

ary of the visible area for each robot is determined by its

corresponding windows ðWrj
Þ that are stored as the line

segments in SubP, we can decide whether robot ri is located

inside Vrj
. Assume that robots ri and rj are connected, and

they are located in cells ci and cj, respectively (based on

c1

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

y1
x1

Figure 5. Connectivity and Coverage properties are not satisfied.

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

r1x1 y1

Figure 6. Robot r1 moves toward p1 in such a way that it crosses
y1o!1 . The Coverage property is then satisfied.

r1

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2

o3

Figure 7. Overlaid subdivisions of SubP (dashed line segments)
and SubSubP (dotted line segments) which results in Sub0P .
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SubP). If ri moves to get disconnected, it must cross one of

the line segments in Wrj
. In this case, rj does not belong to

cj anymore. So, the current state s changes based on the

definition of state.

Coverage. Polygon P is covered if and only if all the cells in

SubP are covered by the robots. Assume that there exists at

least one cell, say c1, which is not visible from any of the k

robots (Figure 5). The polygon remains uncovered as long

as c1 is not destructed. More precisely, the polygon may

become covered if the uncovered cells destructed. On the

other side, assume that all the cells of SubP are covered by

the robots. In order to make P uncovered, a new cell which

is not visible from the robots to be constructed in SubP is

needed. Since any changes in validity of Coverage need to

make SubP different from its previous structure, Coverage

is valid while s does not change. c

Transitions events

During the execution of an MRS, when the robot ri takes its

turn to move, its motion algorithm ai determines the next

step of the movement as a pair ðq; dÞ, where q is the direc-

tion of the movement and d is the distance the robot moves.

Based on the position of ri, it may cross one of the bound-

ary edges of the cell it currently resides in. So, the move-

ment with distance d may result in a sequence

ha1;a2; . . . ;ami, where aj 2 R� fW [W 0g denotes that

ri has crossed one of the windows in fW [W 0g. We define

the actions of the transition system Act ¼ R� fW [W 0g
as the set of all possible crossing events as mentioned

above.

We define the transition relation of the LTS, say ,!, as

the smallest relation containing the tuples ðs;aj; s
0Þ, where

s; s0 2 S, and s0 is the state obtained from robot ri crossing a

window rip
!
j , where rip

!
j is any window bounding the cell

containing ri. While ri is making its movement, a transition

s ,!aj
s0 can occur in the following transition types:

a. Some cells constructed or destructed in SubP which

leads to changes in DGðSubPÞ.
b. A robot crosses a window of W and moves into

another cell of SubP.

c. If none of the two above types have occurred after

the movement of the robot, it must be checked

whether DGðSub0PÞ has changed. If that is the case,

we need to have a transition to s0 with the same

DGðSubPÞ as of s but having DGðSub0PÞ updated.

As an example, consider Figure 5 (both Connectivity

and Coverage properties are not satisfied). Assume that

robot r1 moves toward p1. As depicted in Figure 6, it

destructs cell c1 and makes Coverage property satisfied

(transition type (a)). Furthermore, based on Figure 8, robot

r1 moves again toward p1 till reaches window r3o!1 (transi-

tion type (b)). This way, robots r1 and r3 become visible to

each other which satisfies the Connectivity property

as well.

We may use the plane sweep algorithm32 in order to find

out when ri reaches an intersecting point in SubP for type

(a). More precisely, radial sweep algorithm33 may be used

to rotate riq
! about q in order to discover the intersection

points of SubP. The same algorithms may be used for com-

puting SubSubP
as well to determine type (c) transitions.

Based on Lemma 1, the validity of AP only changes in

transition types (a) or (b). So, if we construct the states

which are generated by the type (c) transitions as little as

possible during the movement, we may have some reduc-

tion in the complexity of the state space. Assume that robot

ri moves from its current position posi to a new position

posj, and a transition from si to sj occurred in such a way

that type (c) transition happened. Since none of the transi-

tion types (a) and (b) has happened, the dual graph of SubP

remains the same as in si. It means that DGðSub0PÞ has

changed during the movement of ri. Precisely, DGðSub0PÞ
may change during the movement of ri before reaching

posj, but the corresponding states are not generated. Since

AP may change only in transition types (a) or (b), the states

which are not generated during the movement have the

same labels as in si.

As an example, consider Figure 8. Robot r3 is located in

the cell associated with the set of line segments

fr1o!1 ; r1p!3 ; y2p!3 ; p4p5g. Assume that r2 moves to the

right in such a way that DGðSubPÞ does not change

(Figure 9). During the movement, one of the windows of

y2 (y2p!3 , which is shown as a dotted line segment) crosses

the end point of window r1o!1 . So, the cell in which r3

belongs to changes and consequently the corresponding

node of Sub0P in DGðSub0PÞ which has r3 inside be labeled

with fr1p!3 ; y2p!3 ; p4p5g. Since during the movement of

r2, no transitions of types (a) or (b) occurred, a new state

with the same DGðSubPÞ but different DGðSub0PÞ is con-

structed at the end of the movement of r1 (transition type

(c)). Preventing the construction of type (c) transitions

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

r1

y2

Figure 8. Connectivity property is satisfied after r1 crosses r3o!1
while moving toward p1.
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(during the movement) leads us to achieve a significant

reduction in the size of the state space (“Case studies”

section).

Analysis

In the recent works, the environments in which the robots

may navigate are supposed to be discrete (e.g. a grid) or

continuous. In the discrete environments like Dixon et al.,16

a state is a snapshot of the grid which specifies the cells

which contain some robots. Since the cells are geometri-

cally fixed, and the precise locations of robots inside the

cells are abstracted out, there is no need to prove that the

definition of state is correctly defined. So, it is straight

forward to define the corresponding next states for each

state and to prove that all of the next states are always

reachable based on the directions (in a grid a robot may

pick one of the four possible directions) the robots choose

to move.

In contrast to the discrete environments, in continuous

domains, the robots may move continuously to any arbi-

trary location inside the environment (and are not forced to

choose between some fixed locations for the next step of

their movements), so there may exist some transitions that

occur during the movement (leading to a chain of states).

Since the resulting state space which is constructed based

on robots’ actions is a discrete representation of a contin-

uous environment, it is essential to prove that the notion of

state is defined correctly. Precisely, consider s as the cur-

rent state of the system. While the system is running, state s

may be reached multiple times. The definition of state must

be specified in such a way that all the successor states of s

have the potential to be reached through s with respect to

the robots’ actions.

In the following, we show that the definition of state is

correct (Lemma 2). Further, we prove that the number of

states with respect to an MRS is finite (Lemma 3).

Lemma 2. Assume an arbitrary state si in an

MRS ¼ ðP;O;R;Alg; initÞ as well as the corresponding

generated state space SS. Based on the characteristics of

a state space, the robots must always be able to move in

such a way that all the successor states of si in SS can be

reached uniquely.

Proof outline. The main part of the state definition (Defini-

tion 5), which determines the validation of two atomic

propositions Coverage and Connectivity, is DGðSubPÞ. As

shown in Lemma 1, by examining DGðSubPÞ, we can

detect whether the communication graph of the robots is

connected and the environment is covered collectively by

the robots. During a robot’s movements, several event

points may be met which leads to generating a sequence

of states. The event points indicate the points in which

DGðSubPÞ changes. So, if we are able to keep track the

sequences of event points that are met by the robots, it is

possible to determine the successor states uniquely for each

state. Since crossing a line segment in subdivision SubSubP

specifies a change in SubP, next states can be obtained

based on the robots’ movements by storing DGðSub0PÞ as

a part of the state definition which contains SubSubP
as well.

Lemma 3. The number of states regarding an

MRS ¼ ðP;O;R;Alg; initÞ is finite.

Proof outline. Consider an MRS ¼ ðP;O;R;Alg; initÞ.
Based on the proposed state definition (Definition 5), we

store DGðSubPÞ and DGðSub0PÞ as a part of the states. So,

we need to show that the number of different graphs

DGðSubPÞ and DGðSub0PÞ are finite. The line segments

inside the subdivisions SubP and Sub0P are comprised of

the set of line segments which belong to the sets W and W 0.
The number of line segments inside W (or W 0) completely

depends on MRS, particularly the geometry of the polygon,

the obstacles, and the number of robots inside the environ-

ment. Since the number of line segments in the sets W and

W 0 is finite and each subdivision is made by the intersection

of some mentioned line segments, the number of different

DGðSubPÞ (or DGðSub0PÞ), and consequently the number

of different states with respect to MRS is finite. c

Lemma 3 is provided only to show that the size of the

state space is bounded, but in practice, the size of the state

space can be reasonable with respect to MRS as shown in

the next section.

Case studies

We have used Computational Geometry Algorithms

Library34 to implement the proposed method in Cþþ.35

The program automatically constructs the state space of the

MRS ¼ ðP;O;R;Alg; initÞ during the movement of the

robots. Precisely, the states and the transitions are con-

structed with respect to the decisions made by the robots

r2

r3

p1 p2

p3 p4

p5p6

p7 p8
p9p10

o1

o2
o3

r1

y2

Figure 9. Robot r2 moves to the right in such a way that the cell
that has r3 inside changes.
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during their movements (determined by the motion

algorithms).

The pseudocode of the state space generation process is

illustrated in Algorithm 1. At first, the initial state of the

system is constructed (initstate) with respect to the initial

positions of robots (init). At each permutation, each robot ri

makes the corresponding decision and moves toward the

target. With respect to the robot decision, CreateStates

returns the states obtained by taking action act½ri� based

on the transition types described in the “Constructing the

discrete state space” section. GrowSS extends the current

generated state space (SS) with respect to current state CS

and the returned states of CreateStates by generating only

the new states and transitions which do not exist in SS.

Since more than one event point may occur during the move-

ment of ri, CreateStates may construct more than one state (a

chain of states) for action act½ri�. Because we consider all the

permutations of robots to compute the next states, we may

have a set of unexplored states called US which are explored

in turn. Therefore, SS grows up gradually with respect to the

movements of the robots. Due to the geometric complexity

of the proposed method we do not provide the pseudocode of

CreateStates function here, we refer the reader to the avail-

able online implementation35 which contains the source

code as well as a Debian-based package.

We analyze the proposed method based on two factors,

the number of generated states and the convergence time

(minutes). The number of generated states shows how com-

plex MRS is modeled, and the convergence time indicates

that how long does it take for the state space generation

algorithm to converge and does not generate any new state.

Precisely, in order to obtain the convergence time, we let

the state space generation algorithm run for a significant

amount of time to be sure that no new state is generated.

In the following subsections, we discuss two case stud-

ies (1) robots move based on Alpha algorithm36 within

polygonal domains with some restrictions on their move-

ments (e.g. robots are only allowed to choose from some

fixed movement directions) and (2) robots move freely

based on a decentralized swarm aggregation algorithm21

within environments with obstacles. Our simulation envi-

ronment is an Ubuntu 14.04 machine, Intel Pentium CPU

2.6 GHz with 4 GB RAM.

Constrained movement

As the first case study, we consider robot swarms algorithms

in which the robots use only local wireless connectivity

information to achieve swarm aggregation. Particularly, we

use the simplest Alpha algorithm which is examined

using simulations and real robot experiments of previous

studies16,36,37, as the navigation algorithms of the robots in

this simulation. The implemented Alpha algorithm focuses

on maintaining the connectivity of the communication graph

during the robots’ movements. Alpha algorithm performs

based on the value of a which is given as a threshold num-

ber. For each robot, If the number of visible robots is above

the value of a, it executes a random turn to avoid the swarm

simply collapsing on itself, otherwise, it executes a 180� turn

to avoid moving out of the swarm.

The environments used by Dixon et al.16 is discretized

by means of a grid which lets the robots only move in four

directions (up, down, left, and right) with a fixed value of

movement distance (robots move discretely). We con-

strained the possible movement directions of our proposed

method (which has no limitations on the angle of directions

and the value of movement distance) to the four directions

with a fixed value of movement distance (robots move

continuously with distance equal to one unit) in order to

compare the number of generated states.

Table 1 analyzes our proposed state space generation

algorithm with respect to the environments depicted in

Figure 10. From the number of states (or convergence time)

Table 1. Analysis of the generated state space for grid-
constrained movements.

Environment # Robots # States Convergence time (min)

Polygon (I) 3 217 5.7
4 735 31

Polygon (II) 3 308 41.1
4 1895 131.2

r1

r4

r2

r3

r1

r4

r2

r3

Polygon (I) Polygon (II)

Figure 10. The polygon used for robots with grid-constrained
movement.

Algorithm 1. State space generation.
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perspective, in Polygon (II), the ratio of the number of

generated states when the number of robots is three (r1,

r2, and r3) and four increases about twice in comparison

with Polygon (I). So, as the geometry of the environment

gets more complex, the number of robots plays an impor-

tant role on the number of generated states.

Dixon et al.16 implemented the Alpha algorithm for

three robots (k ¼ 3) within grid sizes of 5� 5 and 6� 6

and obtained 168� 106 and 501� 106 number of states,

respectively. Even though they completely abstracted out

the geometry of the environment, the number of states

achieved is considerably greater than the number of states

computed by our method which let the robots move con-

tinuously in a geometric domain with obstacles.

In the previous work,20 the motion of robots was

restricted to only move along simple paths inside a simple

polygon (with no obstacles inside). We put some limita-

tions on our proposed method and constrain the possible

movement directions of robots to two (left and right) over a

given path in order to analyze the complexity of the gen-

erated state space. Table 2 examines the two state space-

generation algorithms with respect to Figure 11 (obtained

from O’Rourke5) where each robot is only allowed to tra-

verse the corresponding path. As expected, the number of

states computed by Sheshkalani et al.20 is fewer than the

number of states achieved in this work. In the previous

work, in addition to DGðSubPÞ, they stored two (left and

right) sequences for each robot (e.g. Seq
move ���

ri

) in order to

indicate the sequence of intersection points of Wri
with

vertices of SubP during traversing the corresponding path

to the right. So, they only needed to compute the event

points which may be reached when robot is moving to the

left or right direction along the path in order to compute the

successor states. Based on the state definition (Definition 5)

sketched out in this work, which let the robots move freely

inside the environment, we store the sequence of intersec-

tion points (by means of DGðSub0PÞ) in such a way that the

successor states can be obtained uniquely (Lemma 2) with

any arbitrary direction the robots choose to move. So, with

respect to path-constrained movement, the previous work

achieved fewer number of states (more information is

stored as the state definition in this work to let the robots

move freely) and subsequently converges faster than the

proposed method.

Free movement

As the second case study, we consider a decentralized

swarm aggregation algorithm based on local interactions

for MRS with an integrated obstacle avoidance21 in which

robots can move freely inside environments with obstacles.

Although they used the second smallest eigen value (e.g.

the algebraic connectivity) of the Laplacian matrix of the

robots’ communication graph in order to preserve the con-

nectivity, they could not have any integration of a connec-

tivity maintenance algorithm within the proposed control

schema. So, further we show that how our proposed method

can be applied to guarantee that the respecting property

may be preserved during the robots’ movements. Their

proposed algorithm was examined using simulations along

with experimental results carried out with the SAETTA

mobile robotic platform. We use the proposed aggregation

control law21 for each robot ri in our simulations as the

navigation algorithm ai within the environments containing

some obstacles.

Considering Figure 12, the convergence time of the pro-

posed state space generation algorithm for polygons (IV)

and (V) is 5:8 and 10:9 min, respectively. The reason for

which the convergence time of Polygon (V) takes longer

Table 2. Analysis of the generated state space for
path-constrained movement.

Sheshkalani et al.20

The proposed
method Robots # States

Convergenc
time (min)

Polygon (III) r1; r2; r3 150 0.7
194 5

r2; r3; r4 186 1.5
198 5.4

r2

r1 r4

r3

Polygon (III)

Figure 11. The polygon used for robots with path-constrained
movement.5

r1

r2

r3

r1

r2

r3

Polygon (IV) Polygon (V)

Figure 12. The polygons used for the robots with free
movement.
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than Polygon (IV) is described as follows. As shown in

Polygon (V), the robots are not visible to each other. So,

at the beginning of the movement, each robot tries locally

to find other robots in order to make the communication

graph connected. This way, it takes more time for the

robots to aggregate, and consequently maintain the connec-

tivity in comparison with Polygon (IV), where the commu-

nication graph of robots is initially connected.

We used the CADP23 model-checker to verify the

requirements (e.g. expressed in LTLf formulas) regarding

the generated state space. CADP evaluates each formula in

less than 2 s which shows the applicability of the proposed

method. Since the state space is constructed based on the

given MRS, the verification method has to be rerun upon

changes to MRS (e.g. navigation algorithms or initial posi-

tion of robots). Figure 13 depicts an overall view of the

automated verification process of an MRS. Table 3 shows

the results of the verification process with respect to the

environments depicted in Figure 12 and the mentioned

LTLf formulas. Recall that in the following, the LTL mod-

alities c and ‚ are interpreted according to LTLf seman-

tics. The first formula cConnectivity, which is a safety

property, indicates whether the communication graph of

the robots is connected until the end of the trace and never

gets violated. The second formula ‚cConnectivity, which

may reveal an important feature of Leccese et al.,21 is True;

if eventually after some amount of time the robots become

connected, and from then on, they always preserve the

connectivity. The third formula ‚Connectivity is True, if

the robots are eventually connected which means that the

communication graph does not always stay disconnected.

According to LTLf semantics, the second formula

(persistence property) is equivalent to say that the last

point in the trace satisfies Connectivity, that is, it is

equivalent to ‚ðLast ^ ConnectivityÞ.28 The last formula

‚ðConnectivity ^ CoverageÞ is True, if the system eventu-

ally reaches a state in which the communication graph is

connected and the environment is fully covered by the

robots which may be considered as a goal state.

Consider the polygons of Figure 12. Based on the initial

positions of robots in Polygon (IV), the corresponding

communication graph is connected. As stated in Table 3,

the formula cConnectivity is True, which means that the

underlying aggregation control law always preserves the

global connectivity during the robots’ movements. On

the other hand, robots’ positions in Polygon (V) show that

the communication graph of robots is not initially con-

nected which makes the mentioned formula False.

Although Connectivity property is violated at first, as time

goes by, the robots try to find each other and obtain the

connectivity with respect to the navigation algorithms. In

contrast to cConnectivity, the formula ‚cConnectivity is

satisfied in regard to Polygon (V) which shows that the

proposed aggregation control law21 guarantees to maintain

the connectivity as soon as the communication graph of

robots becomes connected.

In the conclusions of Leccese et al.21 work, it is men-

tioned that they will focus on the integration of a connec-

tivity maintenance algorithm within the proposed control

schema. To the best of our knowledge, no contribution has

been published to address the mentioned issue yet. Using

our method, they can guarantee that the communication

graph of robots is connected during the robots’ movements

regarding the MRS and the desired LTLf formula.

Conclusions

We presented a method to construct a discrete state space

for an MRS and then verify the correctness properties by

means of model-checking techniques. The notion of state

has been defined in such a way that each state can be

uniquely labeled with the atomic propositions Connectivity

and Coverage. An important aspect of our method is that it

treats the navigation algorithms as black boxes. Iteratively

searching for new states, at each step, our algorithm asks

the black box for its next action and creates the states

caused by the action based on a precise definition of transi-

tions. Using our provided implementation, the modeler can

code the navigation algorithms and generate the state

space. The generated state space is used to verify temporal

formulas constructed over the mentioned propositions

using the CADP tool. An important benefit of this approach

is to eliminate the need for analytical proof of correctness

upon changes to the navigation algorithms.

dynamic discretization
MRS = (P, O, R, Alg, init)

(bounded) state space

CADP
temporal logic formula

True False

on finite traces

Figure 13. The overall view of the automated verification pro-
cess of an MRS. MRS: multi-robot system.

Table 3. The results of the verification of two LTLf formulas for
free movement.

LTLf formulas Polygon (IV) Polygon (V)

cConnectivity True False
‚cConnectivity True True
‚Connectivity True True
‚ðConnectivity ^ CoverageÞ False False

LTL: linear temporal logic.
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Since the robots’ initial positions have an influence

on the verification results, it would be beneficial to

suggest some specific regions of the environment as the

possible robots’ initial positions have the potential to

make the given temporal formulas satisfied. Future work

will be focused on adding a preprocessing phase that

subdivides the environment with respect to the formulas

and let the modeler choose the initial positions from the

suggested regions.
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