
Experiences with Formal Engineering: Model-Based
Specification, Implementation and Testing of a Software

Bus at Neopost.I

M. Sijtemab, A. Belinfantea,∗∗, M.I.A. Stoelingaa,∗, L. Marinellic

aFaculty of Computer Science, University of Twente, The Netherlands
bSytematic Software, The Hague, The Netherlands

cNeopost, Austin, Texas, USA

Abstract

We report on the actual industrial use of formal methods during the devel-
opment of a software bus. During an internship at Neopost Inc., of 14 weeks,
we developed the server component of a software bus, called the XBus, using
formal methods during the design, validation and testing phase: we modeled
our design of the XBus in the process algebra mCRL2, validated the design
using the mCRL2-simulator, and fully automatically tested our implementation
with the model-based test tool JTorX. This resulted in a well-tested software
bus with a maintainable architecture. Writing the model (mdev), simulating it,
and testing the implementation with JTorX only took 17% of the total devel-
opment time. Moreover, the errors found with model-based testing would have
been hard to find with conventional test methods. Thus, we show that formal
engineering can be feasible, beneficial and cost-effective.

The findings above, reported earlier in [1], were well-received, also in in-
dustrially oriented conferences [2, 3]. In this paper, we look back on the case
study, and carefully analyze its merits and shortcomings. We reflect on (1) the
added benefits of model checking, (2) model completeness and (3) the quality
and performance of the test process.

Thus, in a second phase, after the internship, we model checked the XBus
protocol—this was not done in [1] since the Neopost business process required
a working implementation after 14 weeks. We used the CADP tool evaluator4
to check the behavioral requirements obtained during the development. Model
checking did not uncover errors in model mdev, but revealed that model mdev

was not complete and optimized: in particular, requirements to so-called bad
weather behavior (exceptions, unexpected inputs, etc.) were missing. There-
fore, we created several improved models, checked that we could validate them,
and used them to analyze quality and performance of the test process. Model

IThis research has been partially funded by NWO Dn 63-257 (ROCKS), by STW 12238
(ArRangeer), by EU under grants PNO 318490 (SENSATION) and 318003 (TREsPASS).

∗Corresponding author
∗∗Principal corresponding author

Email addresses: marten@sytematic.nl (M. Sijtema), axel.belinfante@gmail.com
(A. Belinfante), M.I.A.Stoelinga@utwente.nl (M.I.A. Stoelinga), l.marinelli@neopost.com
(L. Marinelli)

Preprint submitted to Elsevier April 24, 2013

checking was expensive: it took us approx. 4 weeks in total, compared to 3
weeks for the entire model-based testing approach during the internship.

In the second phase, we analyzed the quality and performance of the test
process, where we looked at both code and model coverage. We found that
high code coverage (almost 100%) is in most cases obtained within 1000 test
steps and 2 minutes, which matches the fact that the faults in the XBus were
discovered within a few minutes.

Summarizing, we firmly believe that the formal engineering approach is cost-
effective, and produces high quality software products. Model checking does
yield significantly better models, but is also costly. Thus, system developers
should trade off higher model quality against higher costs.

Keywords: formal methods, formal engineering, model-based testing, IOCO,
JTorX, mCRL2, LTSmin, CADP, evaluator4, MCL, LPS, lps2torx

1. Introduction

Formal engineering, that is, the use of formal methods during the design,
implementation and testing of software systems is gaining momentum. Various
large companies use formal methods as a part of their development cycle; and
several papers report on the use of formal methods during ad hoc projects [4, 5].

Formal methods include a rich palette of mathematically rigorous modeling,
analysis and testing techniques, including formal specification, model checking,
theorem proving, extended static checking, run-time verification, and model-
based testing. The central claim made by the field of formal methods is that,
while it requires an initial investment to develop rigorous models and perform
rigorous analysis methods, these pay off in the long run in terms of better, and
more maintainable code. While experiences with formal engineering have been
a success in large and safety-critical projects [6, 7, 4, 8, 9], we investigate this
claim for a more modest and non-safety-critical project, namely the development
of a software bus.

The experiences that we report on were obtained during two phases: a first
phase in which we developed the XBus at Neopost Inc., and a second, post-case
study analysis phase, where we performed model checking of the XBus protocol,
and measured the quality and performance of the model-based testing process.

1.1. First phase: Developing the XBus

The XBus. Neopost Inc. is one of the largest companies in the world produc-
ing supplies and services for the mailing and shipping industry, like franking
and mail inserting machines, and the XBus is a software bus that supports
communication between mailing devices and software clients. The XBus allows
clients to send XML-formatted messages to each other over TCP (the X in XBus
stands for XML), and also implements a service-discovery mechanism. That is,
clients can advertise their provided services and query and subscribe to services
provided by others.

We have developed the XBus using the classical V-model [10], see Fig. 2
on page 9, and used formal methods during the design and testing phase. The
total running time of this project—an internship carried out in the summer of

2

2009 by the first author of this paper, at that time a Computer Science MSc.
student—was 14 weeks.

An important step in the design phase was the creation of a behavioral
model mdev of the XBus, written in the process algebra mCRL2 [11, 12]. We
chose mCRL2 because of its powerful data types and function declarations,
which turned out to be very helpful for our purpose. Model mdev pins down the
interaction between the XBus and its environment in a mathematically precise
way. We simulated the model to check its validity, which greatly increased our
understanding of the XBus protocol, and made the implementation phase a lot
easier. Due to time-constraints we did not use model-checking during XBus
development.

Testing the XBus. After implementing the protocol, we tested the implemen-
tation, i1, distinguishing between data and protocol behavior. Data behavior
concerns the input/output behavior of a function and is static, i.e., independent
of the order of the methods calls. Protocol behavior relates to the business logic
of the system, i.e. the interaction between the XBus and its clients. Here, the
order in which protocol messages occur crucially determines the correctness of
the protocol. Therefore, we used unit testing to test the data behavior and
model-based testing for the protocol behavior.

Model-based testing with JTorX. We used JTorX to test the implementation
against mCRL2 model mdev. JTorX [13, 14] is a model-based testing tool capa-
ble of automatic test generation, execution and evaluation. During the design
phase, we already catered for model-based testing: we designed for testabil-
ity by taking care that at the model boundaries, we could observe meaningful
messages. Moreover, we made sure that the boundaries in the mCRL2 model
matched the boundaries in the architecture. Also, the use of model-based test-
ing technology required us to write an adapter. This is a piece of software that
translates the protocol messages from the mCRL2 model into physical messages
in the implementation. Again, our design for testability greatly facilitated the
development of the adapter.

After unit testing and repairing the issues uncovered by it, we ran JTorX
against implementation i1 and mCRL2 model mdev (once configured, JTorX runs
completely automatically) and found five subtle bugs. We believe that it is much
harder to discover these bugs with unit testing, because they involve the order
in which protocol messages should occur. After repairing them, we ran JTorX
several times for more than 24 hours, without finding any more errors. After
an acceptance test, the XBus was released for use in Neopost.

1.2. Second phase: Analysis

The development of the XBus, carried out in the first phase, supported the
central claim made by Formal Methods—the use of rigorous methods during
the development is cost effective. Nevertheless, it leaves room for questions:
how thorough was the process carried out in 14 weeks? How good was the
model—this is important, since the model-based test process is as good as the
model. Would model checking have helped to produce better code? Was the
testing thorough enough; what can we say about coverage? In this paper, we
investigate these questions. In particular, we focus on (1) the added benefits of
model checking, (2) the quality of the models, and (3) test coverage.

3

Ad 1: The added benefits of model checking. We started out by model checking
the model mdev that was created during the development phase. We created a
series of new models with different features. Firstly, we needed to change mdev

to make it finite, yielding the model mdev,fin: mdev allows an unbounded number
of client connections, and uses arbitrary integers as connection identifiers—this
is not a problem for (online) testing, but for model checking it is, as it leads to
an infinite state space.

We used evaluator4 [15] from the CADP toolset to model check the XBus re-
quirements obtained during the first phase; these requirements were formalized
in the logic MCL [16], which is an extension of the µ-calculus with data. The
main reason that we chose evaluator4 is that it allows reasoning over the indi-
vidual parameters of the messages (labels). We used the mCRL2 and LTSmin
toolsets to obtain, from the mCRL2 model, the binary coded graph (.bcg) file
that evaluator4 needs. Model checking did not uncover errors in model mdev,fin.
With hindsight, this is not so surprising, because model mdev had been used
extensively already in simulation and model-based testing, and because of the
simple structure of the model, which we describe in Section 4.1 on page 15. We
did find mdev,fin (and hence mdev) to be not complete. In particular, those re-
quirements related to so-called bad weather behavior are not present: invalid or
unexpected messages were not modeled, and neither were empty lists of services.

Compared to testing, the model checking process was very labor intensive:
i.e. reworking the models, formalizing requirements, playing round with tricks
to reduce the state space and making sure that the time needed for model
checking was manageable. This took us 4 person weeks. The entire model-based
testing approach, i.e. writing the model mdev, creating the adapter, executing
and analyzing the tests, took 3 person weeks.

Ad 2: Model quality. We included the additional requirements that we uncov-
ered during our model checking activities and created a family of models, all in
mCRL2, as shown in Table 4 on page 18 and depicted in Fig. 6 on page 17. For
each model, we constructed an infinite variant (for testing) and a finite one (for
model-checking). Also, we investigated the use of queues: model mdev is simple
in the sense that it does neither model the incoming message queue, nor the
fifo-queue-like behavior of the TCP connections between the XBus server and
its clients. We show that including these queues in the model does not affect test
coverage, but does significantly increase testing time. Finally, we constructed
several model variants that were more liberal wrt the accepted inputs. An
overview of this family of models is given in Section 4.2 on page 16.

Ad 3: Test coverage. Code coverage metrics [17] are standard measures to eval-
uate the quality of a test suite: the higher the coverage, the more faults a test
suite can potentially find. We extensively evaluated the thoroughness of our test-
ing, by measuring code coverage and model coverage. Since the original XBus
implementation is proprietary software of Neopost, we had no longer access to it
after the internship. Therefore, we used a carefully reconstructed implementa-
tion. We used branch coverage as our code coverage metric, i.e. the percentage
of all branches in the control flow graph that were executed during testing. To
do so, we instrumented the code of the (reconstructed) implementation by hand.
For model coverage, we used the percentage of linear process specification (LPS)
summands executed. LPSs are a uniformized representation of mCRL2 models.

4

Complete LPS coverage basically means that each nondeterministic alternative
is executed at least once.

We have extensively analyzed model and code coverage from short test runs
(10,000 test steps, 5–30 minutes) and long ones (250,000 test steps, 2–40+
hours), with each of our (infinite) model versions. We found that the maxi-
mal code coverage is typically already reached after 1000 test steps, i.e. after at
most two minutes of testing.

We found that, the more complete a model was (wrt requirements or ac-
cepted inputs), the higher code coverage could be obtained. Note that all the
tests were derived fully automatically by doing a random walk over (the state
space of) the model.

1.3. Our findings

In the first phase, during the internship, writing the model, simulating it,
and testing the implementation with JTorX only took 17% of the total devel-
opment time. Therefore, we conclude that the formal engineering approach has
been very successful: with limited overhead, we have created a reliable software
bus with a maintainable architecture. Thus, as in [18], we clearly show that for-
mal engineering is not only beneficial for large, complex and/or safety-critical
systems, but also for more modest projects.

In the second phase, during the analysis, after the internship, we found that,
within the limits of the model, the model-based testing that was done during
the project was rather thorough. However, we also found that the model, used
to derive these tests, was not fully complete, and more thorough analysis of the
requirements, during the project would have been desirable. This could have
been achieved with model checking, but at a high cost. We expect that more
light weight methods that trace the requirements in the model are more cost
effective.

Finally, we experienced that model and code coverage metrics can provide
valuable insight in the quality, effectiveness, and progress of the model-based
testing process. Based on our experiences, we advocate that formal engineering
pays off, and that investing in high-quality models is worth-while: the quality
of model-driven development lies within the quality of the model. To do so, we
believe that models should be as complete as possible, i.e. accept all inputs and
include all requirements. Extensive simulation and—though expensive—model-
checking help. Also, we believe that measuring coverage is helpful: if less than
100% code coverage is achieved, then the model should be augmented.

About this paper. An earlier version of this paper was published as [1]. As
elaborated above, the contributions of the current paper over [1] involves the
entire second phase, in particular: (1) model checking of the XBus protocol via
a series of new models, (2) testing against these new models, and (3) extensive
test coverage measurements.

Remainder of this paper. The remainder of this paper is organized as follows.
Section 2 provides the context of the XBus implementation project. Then,
Section 3 describes the activities involved in each phase of the development
of the XBus, including the activities done during the analysis after the project.
Section 4 gives the details of modeling, creation of additional models, and model

5

checking, and Section 5 gives the details of model-based testing, and of code
coverage and model coverage analysis. Section 6 reflects on the lessons learned
in this project. Finally, Section 7 presents conclusions.

2. Background

2.1. The XBus and its context

Neopost. Neopost Incorporated [19] is one of the world’s main manufacturers
of equipment and supplies for the mailing industry. Neopost produces both
physical machines, like franking and mail inserting machines, as well as software
to control these machines. Neopost is a multinational company headquartered
in Paris (France) that has departments all over the world. Its software division,
called Neopost Software & Integrated Solutions (NSIS) is located in Austin,
Texas, USA. This is where the XBus implementation project took place.

Shipping and franking mail. Typically, the workflow of shipping and franking
is as follows. To send a batch of mail, one first puts the mail into a folding
machine, which folds all letters. Then an inserting machine inserts all letters
into envelopes1 and finally, the mail goes into a franking machine, which puts
appropriate postage on the envelopes and keeps track of the expenses.

Thus, to ship a batch of mail, one has to set up this process, selecting
which folding, inserting and franking machine to use and configure each of these
machines, setting the mail’s size, weight, priority, and the carrier to use. These
configurations can be set manually, using the machine’s built-in displays and
buttons. More convenient, however, is to configure the mailing process via one
of the desktop applications that Neopost provides.

The XBus. To connect a desktop application to the various machines, a software
bus, called the XBus, has been developed. The XBus communicates over TCP
and allows clients to discover other clients, announce provided services, query
for services provided by other clients and subscribe to services. Also, XBus
clients can send self-defined messages across the bus.

When this project started, an older version of the XBus existed, called the
XBus version 1.0. Goal of our project was to re-implement the XBus while
maintaining backward compatibility, i.e. the XBus 2.0 must support XBus 1.0
clients. Key requirements for the new XBus were improved maintainability and
testability.

2.2. Model-based testing

The concept of model-based testing. Model-based testing (MBT, a.k.a. model-
driven testing) is an innovative testing methodology that provides methods for
automatic test generation, execution and evaluation from a formal model m.
Model m, usually a transition system, of the system-under-test (SUT, a.k.a.
implementation-under-test), pins down the desired system behavior in an un-
ambiguous way: traces of m are correct system behaviors, and traces not in m
are incorrect.

1Alternatively, a combined folding/inserting machine can be used

6

Model: m Tester

pass/fail

Adapter: a SUT

Figure 1: Model-based testing.

The concept of model-based testing is visualized in Fig. 1. Tests are derived
from a model m and applied to the SUT. Based on observations made during
test executions, a verdict (pass or fail) about the correctness of the SUT is
given.

Each test case consists of a number of test steps. Each test step either
applies a stimulus (i.e. an input to the SUT), or obtains an observation (i.e. a
response from the SUT). In the latter case, we check whether the response was
expected, that is, if it was predicted by the model m. In case of an unexpected
observation, the test case ends with verdict fail. Otherwise, the test case may
either continue with a next test step, or it may end with a verdict pass.

Test execution requires an adapter a. Its role is to translate actions in
the model m to concrete commands—in our case to TCP messages—of the
SUT. Writing an adapter can be tricky, for instance if one action in the model
corresponds to multiple actions in the system. Therefore, keeping the adapter
simple, was an important design decision for us. We achieved this by keeping a
close correspondence between m and the system architecture.

Key advantage of MBT techniques is that, given a model m and an adapter
a, model-based testing is fully automatic: MBT tools can fully automatically
derive test cases from the model, execute them, and issue verdicts. There are
various MBT tools around, like SpecExplorer from Microsoft [20], Conformiq
Qtronic [21], AGEDIS [22], and—used here—JTorX. Each of these tools varies
in the capabilities, modeling languages and underlying theories, see [23, 24] for
an overview.

JTorX. JTorX is an MBT tool developed at the University of Twente. It imple-
ments automatic test case generation, execution and evaluation from models in
a number of formalisms. JTorX has built-in support for models in graphml [25],
the Aldebaran (.aut) and Jararaca [26] file formats, and for STS-es [27] in XML
(.sax). Moreover, it is able to access models on-the-fly (on demand) via inter-
faces offered by mCRL2 [11], LTSmin [28] and CADP [29]. This allows JTorX
to deal with infinite models, as long as they are finitely branching.

JTorX improves over its predecessor TorX [30, 31], one of the first model-
based testing tools in the field. JTorX is based on a newer, and more practical,
version of the ioco-theory2and much easier to install, configure and use. More-
over, it has built-in adapter functionality to connect the model to the SUT via
TCP/IP. All this turned out to be very helpful in this case study.

2TorX was based on the ioco theory of [32] in which test cases are non input-enabled.
JTorX is based on both the refined ioco theory of [33] in which test cases are input-enabled,
and the uioco theory [34], a weaker relation than ioco developed for models that contain
underspecified traces.

7

JTorX uses so-called online (aka on-the-fly) test case generation and execu-
tion. This means that the test derivation and test execution functionalities are
tightly coupled: test cases and test steps are derived on demand (only when
required) during test execution. This is why Fig. 1 does not show test cases.
JTorX can be used in 3 modes: (1) fully automatic, i.e. random, (2) manual, i.e.
via interactive user guidance, and (3) guided via test purposes. We only used
the first mode here.

Correctness of tests. MBT provides a rigorous underpinning of the test process:
it can be shown that, under the assumption that the model correctly reflects
the desired system behavior, all test cases derived from the model are correct:
they yield the correct verdict when executed against any implementation, see
e.g. [35]. More technically, the test case derivation methods underlying JTorX
have been shown sound and complete. That is, any correct implementation of
a model m will pass all tests derived from m (soundness). Moreover, for any
incorrect implementation of m, there is at least one test case derivable from
m that exhibits the error (completeness). Note that completeness is merely an
important theoretical property, showing that the test case derivation method
has no inherent blind spots. In practice, only a finite number of test cases are
executed, and therefore, the test case exhibiting the error may or may not be
among the executed ones. As stated by Dijkstra’s famous quote: “testing can
only show the presence of errors, not their absence”.

Rich and well-developed MBT theories exist for control-dominated applica-
tions, and have been extended to test real-time properties [36, 37, 38], data-
intensive systems [27], object-oriented systems [39], and systems with measure
imprecisions [40].

2.3. The specification language mCRL2

The language mCRL2 [11, 12] is a formal modeling language for describ-
ing concurrent systems, developed at the Eindhoven University of Technol-
ogy. It is based on the process algebra ACP [41], and extends ACP with rich
data types and higher-order functions. The mCRL2 toolset facilitates sim-
ulation, analysis and visualization of behavior; model-based testing against
mCRL2 models is supported by the model-based test tool JTorX. Specifica-
tions in mCRL2 start with a definition of the required data types. Techni-
cally, the behavior of the system is declared via process equations of the form
X(x1 : D1, x2 : D2, . . . , xn : Dn) = t, where xi is a variable of type Di and t
is a process term, see the example in Section 3.2. Process terms are built from
(1) (potentially parameterized) actions; (2) operators: alternative composition,
sum, sequential composition, conditional choice (if-then-else), parallel composi-
tion; and (3) encapsulation, renaming, and abstraction. Actions represent basic
events (like sending a message or printing a file) which are used for synchro-
nization between parallel processes. Apart from analysis within the tool set,
mCRL2 interoperates with other tools: specifications in mCRL2 can be model
checked via the CADP model checker by generating the state space in .aut or
.bcg format, they can be proven correct using e.g. the theorem prover PVS,
and they can be tested against with JTorX. For model checking, we used the
evaluator4 tool from the CADP tool set. The tool evaluator4 is able to check
whether a model-checking formula, given in its input language MCL, holds for
(the state space generated from) an mCRL2 model m.

8

3. Implementation (3.3) 4. Unit Testing (3.4)

2. XBus Design (3.2)
a. Developing architecture (class diagram)
b. Specifying business logic (formal model)

1. XBus Requirements (3.1)

5. Integration Testing (3.5)
(model-based)

6. Acceptance Testing (3.6)

Figure 2: The V-model used for development of XBus; parenthesized numbers refer to sections.

3. Development of the XBus and post case-study analysis

Below, we describe all the activities in the development (phase 1; during
the internship) and analysis (phase 2; after the internship) of the XBus. We
developed the XBus according to the classical V-model ([10], see Fig. 2). For
each step in the V-model we report the activities carried out in both phases—
each section below corresponds to one step in the V-model, see Fig. 2 again.

During the development, the overall test strategy was to test data behavior
using unit testing, and to test protocol behavior, i.e. the interaction between
XBus and its clients, using model-based testing. We chose to use model-based
testing for protocol behavior, because here the dynamic behavior, i.e., the or-
der of protocol messages, crucially determines the correctness of the protocol.
We only started with model-based testing of protocol behavior after we had
completed unit testing of data behavior.

3.1. XBus requirements

First phase. We obtained the functional and nonfunctional requirements by
studying the documentation of the XBus version 1.0 (a four page English text
document) and by interviewing the manager of the XBus development team.

The functional requirements express that the XBus is a centralized software
application which can be regarded as a network router: clients can connect and
disconnect at any point in time; connected clients can send XML-formatted
messages to each other. Moreover, clients can discover other clients, announce
services, and query for services that are provided by other clients. Also, they
can subscribe to services, and send self-defined messages to each other. Table 3
on page 11 gives an overview of the XBus protocol messages. Table 1 on the fol-
lowing page summarizes the functional requirements; important non-functional
requirements are testability, maintainability and backwards compatibility with
the XBus 1.0.

Second phase. While formalizing the requirements in Table 1 and model check-
ing them on model mdev, we realized that so-called bad weather behavior was
not present in mdev nor in the requirements. Therefore, we extended both the
model, and the list of requirements. Table 2 on the next page shows the addi-
tional requirements, pinning down what to do with unexpected inputs.

3.2. XBus design

First phase. In the first phase, the design step encompassed two activities: we
created

9

1. XBus messages are formatted in XML, following the same Schema as the XBus 1.0.

2. Clients connecting to XBus perform a handshake with the XBus server. The hand-
shake consists of a Connreq—Connack—Connauth sequence.

3. Newly connected clients are assigned unique identifiers.

4. Clients can subscribe to be notified when a client connects or disconnects.

5. Clients can send messages to other clients with self-defined, custom, data. Such
messages can have a self-defined, custom message type. In addition there are protocol
messages for connecting, service subscription, service advertisement.

6. Clients can subscribe to receive all messages, sent by other clients, that are of one
or more given types (including self-defined messages), using the Sub message.

7. Clients can announce services that they provide, using the Servann message.

8. Clients can inquire about services, by specifying a list of service names in a Servinq

message. Service providers that provide a subset of the inquired services will respond
to this client with the Servrsp message.

9. Clients can send private messages, which are only delivered to a specified destination.

10. Clients can send local messages, which are delivered to the specified address, as well
as to clients subscribed to the specified message type.

Table 1: Overview of XBus requirements obtained in the first phase.

11. Invalid messages are discarded.

12. Unexpected messages are discarded.

13. Servann, Servinq and Servrsp messages with an empty list of services are not broad-
casted to other clients.

14. Notif local messages are not broadcasted to source or destination of a Localreq message.

Table 2: Overview of additional XBus requirements obtained in the second phase.

(A) an architectural design, given by the UML class diagram in Fig. 3 on the
following page, and

(B) an mCRL2 model, mdev, describing the protocol behavior.

We used the mCRL2 simulator to validate the design and model mdev. As said,
time constraints prevented us to use model-checking in this phase.

The architectural design and mCRL2 model mdev were developed in parallel.
Central in their design are the XBus messages: each message translates into a
method in the class diagram and into an action in mCRL2 model mdev. The
UML diagram specifies which methods are provided, while the mCRL2 model
mdev describes the order in which actions should occur, i.e. the order in which
methods should be invoked. Thus, the architectural model in UML and the
behavioral model in mCRL2 are tightly coupled and complementary.

Ad A: Architectural design. The architecture of the XBus is given in Fig. 3 on
the next page, and is based on a standard client-server architecture. Thus, the
XBus has a client side, implemented by the XBusGenericClient, and a server side,
implemented by the XBusManager. The latter handles incoming protocol mes-
sages and sends the required responses. Both the server and the client use the
Communications package, which implements communication over TCP. As illus-
trated in Fig. 4 on page 12, the ConnectionManager class in the Communications

10

Connection establishment and release
Connreq input (implicit) implied by a client establishing a TCP connection with

XBus.
Connack output sent from XBus to a client just after the client establishes a TCP

connection with the XBus, as part of the handshake.
Connauth input sent from a client to the XBus to complete the handshake.
Discreq input (implicit) implied by a client closing its TCP connection with XBus.

Service announcement and inquiry
Servann input sent (just after connecting) from a client c to XBus, which broadcasts

it to all other connected clients, to announce the services provided
by c.

Servinq input sent (just after connecting) from client to XBus, which broadcasts
it to all other connected clients, to ask what services they provide.

Servrsp output sent from a client via XBus to another client, as response to Servinq,
to tell the inquirer what services the responding client provides.

Event subscription and notification
(Un)Sub input sent from a client to XBus, with as parameter a list of (custom)

message types, to (un)subscribe receipt of all messages of the given
types.

Notifconn output sent from XBus to clients that subscribed connect notifications.
Notifdisc output sent from XBus to clients that subscribed disconnect notifications.
Notif local output sent from XBus to clients that subscribed to non-private messages.

Messages to other clients
Localreq input sent from client to XBus, to be delivered to indicated client (as

Localind), and to other clients that have subscribed the given message
type (as Notif local).

Localind output sent from XBus to clients, as consequence of a received Localreq.
Privreq input sent from client to XBus, to be delivered to indicated client only.
Privind output sent from XBus to clients, as consequence of a received Privreq.

Table 3: Overview of XBus protocol messages.

�i�ProtocolCommon

�i�ProtocolServer �i�ProtocolClient

Protocol

XBusManager

JTorXTestableXBusManager

�i�IXBus

0..*clients

XBus

ConnectionManager

�i�ConnectionListener

0..*listeners

TCPConnectionListener

�i�Connection
0..*

conns

TCPConnection

Communications�Server side�Engine

XBusGenericClient

�Client side�Client

�i�IXBusMessage XBusMessage

Messages

Figure 3: High level architecture of the XBus system. It contains a server side package,
and a client side package. Furthermore, it has functionality for TCP connections and XBus
messages. Both server and client implement the Protocol abstract class. All interfaces are
indicated with �i�.

package uses a queue data structure as a buffer for incoming messages. When
a message is handed over from the Communications package to its user—in the
server this user is the XBusManager—it is popped from the queue.

We catered for model-based testing already in the design: class XBusManager

11

c1 · · · cn XBusManager

ConnectionManager

XBus

TCP

· · ·

· · ·

data
queue

Figure 4: Communication between clients c1, . . . , cn and XBus. We show how The XBus is
decomposed into XBusManager and ConnectionManager. Incoming messages are collected in
a queue in the ConnectionManager—here drawn as the left connection between XBusManager
and ConnectionManager. The XBusManager processes these messages one by one; it sends
responses using methods offered by the Communications package—this is represented by the
arrow from XBusManager to ConnectionManager.

has a subclass JTorXTestableXBusManager. During testing, this subclass over-
rides the send message of class XBusManager, allowing JTorX to have more
control over the state of the XBus server; see Section 3.5 for more details.

Ad B: The mCRL2 model. We modeled the required XBus behavior as an
mCRL2 process; we chose mCRL2 because of its powerful datatypes and func-
tion declarations that can be defined in a functional programming style. We
profited from mCRL2’s concise notation for enumerated types, records, and
lists, and the ability to define functions.

A key decision in creating a model is what to model, and to determine the
abstraction level and model boundaries. We chose to model the XBusManager,
i.e. the handling of the messages that come into the server; this is the most
critical part of the XBus functionality. Thus, the Communications package is
not included in model mdev, and neither are the internal components like the
TCP-sockets, nor the queue that the Communications package uses as a buffer
for incoming messages. Thus, for each message that arrives at the server, mdev

models how to handle this message: it will either send a reply, relay, or broadcast
the message. Then, mdev will update its internal state: in order to determine
the correct response, the server keeps track of the client’s state by keeping an
internal list of client objects.

In Section 4.1 we discuss the model in more detail.

Second phase. In the second phase, we evaluated the quality of model mdev,
where we looked at both completeness and correctness—using model checking—
of the model. When we found that model mdev was incomplete—i.e., not all
requirements are represented in it—we created additional models, and used
model-checking to check their correctness. We elaborate on these activities, and
on the additional models, in Section 4.2.

3.3. Implementation

First phase. In the first phase, we created implementation i1, at Neopost, for
use by Neopost. Implementation i1 was only created once we had sufficient
confidence in the quality of the design—to a large extent due to modeling and
simulation. The programming language used was C#—use of .NET is Neopost

12

Model JTorX Adapter XBus

pass/fail

Figure 5: Testing XBus with JTorX playing the role of 3 clients.

company policy. Together with XBus server i1, also an XBus client library was
implemented, to ease construction of XBus clients. As we will see in Section 3.5,
this client library was also used during model-based testing of XBus server i1.

Second phase. Since implementation i1 is proprietary software of Neopost, it
was not available during the second phase. Therefore, we carefully created a
second implementation, i2, to allow analysis of the thoroughness of model-based
testing. Implementation i2 was written in the programming language Go [42].
Implementation i2 has the same functionality as i1, except that i2 uses labels
from the model, rather than XML formatted messages.

3.4. Unit testing

First phase. In the first phase, implementation i1 was tested using unit tests
as described below. Because the overall test strategy was to test data behavior
using unit testing, and to test protocol behavior using model-based testing, the
classes in the Communications and Messages packages were tested using unit
testing. For the Communications package, unit tests were written to test the
ability to start a TCP listener and to connect to a TCP listener, to test the
administration of connections, and to test transfer of data. For the Messages
package, unit tests were written to test construction, parsing and validation of
messages. The latter was tested using both correct and incorrect messages.

Each error that was found during unit testing was immediately repaired.

Second phase. In the second phase, no unit tests were run—implementation i2
was only tested using model-based testing.

3.5. Model-based integration testing

For both implementations, we used model-based testing for the business
logic, i.e. to test the interaction between XBus and its clients. In the first
phase, for implementation i1, we did this after we had completed unit testing of
data behavior.

General test set up. To test whether the XBus implementations interact cor-
rectly with their environment, we first have to decide on a test set up. In both
phases, we used the same test set up with three XBus clients, see Fig. 5 (al-
though, as we show, the chosen test architecture differed). Three XBus clients is
the smallest number that allows testing interesting scenarios that involve mul-
tiple clients. Thus, JTorX plays the role of three XBus clients, which are able
to perform all protocol actions described in Section 3.1.

Typically, such scenarios require one client to trigger the activity—for exam-
ple by connecting or disconnecting, or by sending a Servinq message. A second
client is necessary to cooperate in the activity, i.e. to witness or to realize the

13

effect—by receiving a message and, possibly, responding to it. The third client
can be used either to show the effect on a client that does not cooperate in the
activity, or to show that the XBus is correct when multiple clients do cooperate
in the activity. Typically, a single test run contains (many) instances of either
of these roles for the third client.

It is our experience that model-based testing can easily generate long test
runs, in which, at least for models that are as small as the one in this project,
each possible scenario that can take place, does take place, multiple times. We
come back to this in the discussion of (code- and model) coverage, in Section 5.

Dealing with potential message reordering. As mentioned above, what we mod-
eled is the XBusManager. However, the XBusManager implementation that we
want to test is just one component of the XBus server. So, as we have seen
more often when applying model-based testing (see e.g. Section 4 of [30]), we
could not connect the test tool directly to the implementation that we wanted
to test (the XBusManager), at interfaces that coincide with the model bound-
aries. An obvious way to test the XBusManager, is via the XBus server in
which it is contained, and interact with the XBus server via TCP connections—
one for each XBus client impersonated by JTorX that has a connection to the
XBus. However, messages that are sent at approximately the same moment, in
the same direction, over different TCP connections between the XBus and its
clients (whether impersonated or not), may overtake each other.

For stimuli, JTorX is in control: it can, if necessary, reduce the rate at
which stimuli are sent to the point that, when the next stimulus is sent, the
previous one will already have been received by the XBus. In both phases we
just assumed that, compared to the network, JTorX is slow, such that the pace
at which JTorX sends stimuli is slow enough to avoid one stimulus overtaking
another one.

We used different solutions to deal with the possibility that responses would
overtake each other—if we would not have dealt with this possibility, the tester
might have emitted a fail verdict to a sequence of responses whose order was
scrambled by the TCP channel. In the first phase, we extended the XBus
implementation with an additional interface that provided JTorX access to the
responses in the order in which the XBusManager produced them. In the second
phase, instead, we relaxed the model, to not only accept the responses to a single
stimulus in the single order in which they were produced by the XBusManager,
but also accept any possible reordering. We discuss details in Section 5.

First phase. After unit testing had been completed, and all errors that were
found had been repaired, we tested implementation i1 against model mdev using
JTorX, to find errors. We found 5 bugs. Typically, a bug was found within
5 minutes after the start of a test. All these bugs concern the order in which
protocol messages must occur. Therefore, it is our firm belief that they are
much harder to discover with unit testing. After these bugs had been repaired,
we ran JTorX several times for more than 24 hours, without finding any more
errors. In Section 5.1 we discuss the details of the test architecture that we
used, and of the bugs that we found.

Second phase. In the second phase, we tested implementation i2 against all (infi-
nite) models that we created in that phase, not to find errors, but to investigate

14

the thoroughness of the testing process, by looking at code coverage and model
coverage. We did not test i2 against model mdev, because the different solution
(for responses that might overtake each other) led to a different test architec-
ture than in the first phase, one that was not consistent with mdev. Among the
models that we did test i2 with, though, is model morder

dev : this model was derived
from mdev, by extending it to cater for the slightly different test architecture.
We ran tests of 10,000 steps, and of 250,000 steps, fully automatically.

Regarding code coverage, we found that with all models the maximal cov-
erage was already reached in the test runs of 10,000 steps. With model morder

dev

we obtained 79% code coverage. This is no surprise: we know that morder
dev does

not contain all possible messages, and thus certain stimuli can not be gener-
ated from it. With the most complete model, mreq,ie

opt , we obtained 100% code
coverage. The coverage obtained with the other models was between these two
numbers. Regarding model coverage, we saw that with each model we reached
the maximal coverage possible, in the runs of 250,000 steps. However, we needed
many more test steps to reach maximal model coverage, than to reach maximal
code coverage.

In Section 5.2 we discuss the details of the test architecture that we used, and
the test that we ran; in Sections 5.3–5.5 we discuss in more detail the coverage
that we obtained; and in Section 5.6 we discuss the test execution time.

3.6. Acceptance testing

First phase. Acceptance testing was done in the usual way: we organized a
session with the manager of Neopost’s ISS group, and showed how the XBus
2.0 implementation worked. In particular, we demonstrated that it implements
the features required in Section 3.1.

Second phase. In the second phase no acceptance testing was performed.

4. Modeling & Model Checking of the XBus

This section zooms in on the modeling and model checking activities de-
scribed in Section 3.2.

4.1. The model mdev

As mentioned, the mCRL2 model mdev describes the desired functioning
of the XBusManager package, which is responsible for the handling of XBus
messages and therefore the most central part of the XBus. Internally mdev keeps
track of the state of all connected clients. Based on this state mdev decides, when
a message arrives, how to handle it: send a reply or broadcast, relay it, or simply
ignore it. After handling the message, mdev updates its internal state.

Data. Model mdev stores its internal data in a single data object: a list of clients,
modeled as a list of data structures. For each client, the following information
is kept.

• an integer that represents the identity of the client;

• the connection status of the client, being either: disconnected, awaiting-
Authentication, or connected;

15

1 proc listening(c:Clients) =

2 (sum j:Int.(j >= 0 && j < numClients(c) &&

3 getClientStatus(j, c) == DISCONNECTED)

4 -> (ConnectRequest.ConnectAcknowledge.

5 listening(changeClientStatus(j, c, AWAIT_AUTH)))

6 <> delta

7) + ...

Listing 1: Definition of XBus handling of Connreq message in mCRL2.

• the subscriptions of the client, which is a list of message types.

• the services that the client provides, which is a list of integers.

Behavior. Model mdev consists of a single process that operates in the following
loop: (1) accept a message, (2) send zero or more responses, (3) update the
internal state, i.e., the client list. After these steps, mdev is ready to process
the next message. For example, when mdev receives a Connreq, it replies with a
Connack, and adds the new client to the client list.

Listing 1 shows a (slightly simplified) part of mdev. The process is named
listening, and has as single parameter the list of clients c. The listing shows
that from each client j that currently is in disconnected state (line 3), the server
is willing to accept a Connreq message, after which it will send out a Connack

message (line 4). Then it will update the status of the jth client in the list and
continue processing via a recursive call (line 5).

Model size. The entire model consists of 6 pages (180 lines, 12kB) of mCRL2,
including comments (without comments and blank lines: 142 lines, 9kB). Ap-
proximately half of it concerns the specification of data types and functions over
them; the other half is the behavioral specification.

Model validation. During the construction of the model, we exhaustively used
the simulator from the mCRL2 toolkit. We incrementally simulated smaller
and larger models, using both manual and random simulation. This was done
for two reasons. First, to get a better understanding of the working of the
whole system, and to validate the design already before the implementation
activity was started. This was particularly useful to improve our understanding
of the XBus protocol, of which only a (non-formal) English text description was
available, which contained several ambiguities. Second, to validate the model,
to be sure that it faithfully represents the design, i.e. to fulfill the assumptions
stated in Section 2.2, such that when we use JTorX to test our implementation
against the model, all tests that JTorX derives from the model will yield the
correct verdict.

4.2. Model checking & model transformation

Model completeness. During the analysis, we carefully studied the requirements,
and tried to formalize and model check them on model mdev. We found that
model mdev is incomplete, in the sense that not all requirements are represented
in it. Model mdev does not contain self-defined messages, (i.e. no private or
local messages) and thus requirements 5 and 6 can only be checked partially,
and requirements 9 and 10 can not be checked. Also, mdev does not model

16

mdev morder
dev mopt

mreq
opt

mie
opt

mq
opt

mreq,ie
opt

mq,ie
opt

second phasefirst phase

Figure 6: Relation between the XBus models discussed in this paper.

lists of services, but only uses a singleton list with exactly one service, and
thus requirements 7 and 8 can only be checked partially. Finally, mdev does not
consider the formatting of the messages, and thus requirement 1 can not be
represented in it.

During this analysis we also found that the list of requirements was incom-
plete: it only dealt with good-weather behavior; bad-weather behavior was left
unspecified. Thus, requirements 11–14 were added during this analysis.

Family of models. In order to incorporate the missing behavior, we created a
family of mCRL2 models, see Figure 6 and Table 4 on the next page, that in-
corporate all requirements except for requirement 1: we do still not consider the
XML formatting of the messages. We added the following two sets of features:
(1) self-defined, private and local messages, and non-empty lists of services (in-
stead of a singleton list with one element), (2) empty lists of services, invalid
messages, and other bad weather behavior. We did this in several steps, to con-
trol the amount of change introduced by each step, and to be able to observe
(and show) the impact of the change on state space size (see Table 5 on page 19)
and testing speed and coverage (see Sections 5.3–5.6).

We started with morder
dev , which is the same as mdev except that it caters for the

test architecture from the second phase. We optimized this model to mopt, in
which each state has a unique representation. From mopt, we investigated three
different variants: mreq

opt extends the requirements with the first set of features
mentioned above; mie

opt is an (semi) input-enabled variant of mopt, i.e. when it is
ready to accept input, it accepts any input; finally, mq

opt is obtained from mopt

by adding a message queue. We combined mreq
opt and mie

opt into mreq,ie
opt . Similarly,

we combined mie
opt and mq

opt into mq,ie
opt . As explained below, each model comes

in two variants: an infinite one for testing, and a finite one—indicated via a
subscript fin—for model checking.

Finite state space variants. The original model mdev was infinite: it could ac-
cept an unbounded number of clients, where it used an unbounded integer as
connection identifier in the protocol messages. For on-the-fly testing this is not
a problem, because we only generate the portion of the state space that the sys-
tem is currently in. For model checking, however, we need the complete state
space, and therefore models have to be finite. We achieved this by restricting
the number of times that the server accepts a new client connection to a finite
number, namely three. With three connections we can trigger the majority of
the interesting scenarios and verify the requirements. Still, the number is low

17

mdev the original model, created in the first phase, during development of the XBus.
This model alternates between accepting an input and producing the correspond-
ing outputs, and it is not input-enabled: for example, after a client has sent a Sub
message for a certain event e, a subsequent Sub message for e is only accepted
after an Unsub message for e.

morder
dev obtained from mdev, with one very small change, to accommodate the slightly

different test architecture that we used in the second phase, as discussed in Sec-
tion 3.5: it allows all possible interleavings of the outputs produced for a single
input.

mopt an optimized version of morder
dev , in which each state has a unique representation

(finite state space variant of mopt is branching bisimilar to finite state space
variant of morder

dev).

mie
opt obtained from mopt, (semi) input-enabled: when the system accepts input, all

(known) inputs are allowed.

mreq
opt obtained from mopt, by extending it such that all requirements (except require-

ment 1) are represented (but without input enabling, and: no invalid messages,
and no messages with an empty list).

mreq,ie
opt derived from mopt, by extending it such that all requirements (except require-

ment 1) are represented, and making it (semi) input-enabled.

mq
opt obtained from mopt, by adding a queue context (but without input enabling, and

without extending it to represent additional requirements).

mq,ie
opt obtained from mq

opt, by making it (semi) input-enabled.

Table 4: Overview of our XBus models.

enough to allow state space generation. Table 5 shows the sizes of the state
spaces of these model variants.

Model optimization. To make model checking feasible, we needed to optimize
the model. Thus, we produced the optimized model, mopt, because in the origi-
nal model, mdev, a single event—a client connecting to the server—could result
(non-deterministically) in multiple different configurations of the client admin-
istration data structures. This badly affected state space generation: it took
several hours, whereas with model mopt,fin it took in the order of minutes. As
discussed in Section 5.6, the speed of testing with JTorX is influenced in a sim-
ilar way. The optimized model mopt is almost fully deterministic, which greatly
reduces the work of JTorX’ on-the-fly determinization algorithm.

Model correctness. We checked Requirements 2, 3, 4, 7 and 8 on model mopt

and on model mreq,ie
opt , using the evaluator4 tool of the CADP tool set. We found

that these requirements are all satisfied by the model.
To investigate feasibility of checking the other requirements on model mreq,ie

opt ,
we also checked requirements 9 and 10 on it, and checked requirement 7 with
messages that contain a list of two services. Listing 2 shows (some) of the
properties that we used to check requirement 2.

For those requirements that we checked, we typically formulated and checked
multiple formulas, to verify a single requirement. For example, for requirement 9
we not only tried to verify that the intended destination receives the private
message that is sent to it, but also that a client c only receives a private message,
when there was client that sent that message with c as destination.

18

model #states #transitions #labels

mdev,fin 4,198,090 21,476,661 71
reduced (strong bisimulation) 686,151 1,236,486 71
reduced (branching) 362,958 867,666 71

morder
dev,fin 8,129,310 30,217,652 71

reduced (strong bisimulation) 198,095 425,112 71
reduced (branching) 83,414 194,271 71
mopt,fin 133,857 1,019,196 71
reduced (strong/branching bisim.) 83,414 194,271 71

mie
opt,fin 133,864 1,699,188 71

reduced (strong/branching bisim.) 16,620 69,550 71
mreq

opt,fin 41,264,499 743,604,503 230

reduced (strong bisimulation) 29,586,657 58,206,010 230
reduced (branching bisimulation) 21,643,798 50,263,151 230

mreq,ie
opt,fin 44,643,962 1,538,273,570 245

reduced (strong bisimulation) 4,371,205 12,321,042 245
reduced (branching bisimulation) 3,135,659 11,085,496 245
mq

opt,fin > 467,940,404 > 2,937,662,934 ?

mq,ie
opt,fin > 409,969,247 > 2,726,093,658 ?

Table 5: Size of state space of finite version of our models, before and after reduction. (Only

incomplete numbers for models mq
opt,fin and mq,ie

opt,fin available—state space generation for them

aborted, probably because the state space generator ran out of memory.)

1 (* each ConnectRequest is followed by a ConnectAcknowledge *)

2 [true* . ConnectRequest] < { ConnectAcknowledge ?m:Nat } > true

3
4 (* each ConnectAcknowledge for a connection m

5 is followed by a corresponding ConnectAuthenticate *)

6 [true* . { ConnectAcknowledge ?m:Nat }]

7 < { ConnectAuthenticate !m } > true

8
9 (* if , after sending a ConnectAcknowledge for connection m,

10 the server does not receive a corresponding ConnectAuthenticate ,

11 it will not send any other message on the connection *)

12 [true* . { ConnectAcknowledge ?m:Nat }]

13 [(not { ConnectAuthenticate !m })* .

14 ({ ServiceAdvertisementEvent !m ?n:Nat }

15 | { ServiceEnquiryEvent !m ?n:Nat }

16 | { Subscribe !m !" mConnectEvent" }

17 | { Subscribe !m !" mDisconnectEvent" }

18 | { Unsubscribe !m !" mConnectEvent" }

19 | { UnsSubscribe !m !" mDisconnectEvent" }

20)

21] false

Listing 2: MCL formulas—input for model checker evaluator4—used to verify Requirement 2.

5. Model-Based Testing of the XBus

This section describes the model-based testing activities from Section 3.5 in
more detail. We focus on (1) test architecture, (2) faults discovered, and (3) test
coverage.

5.1. Model-based integration testing in the first phase

Test architecture. We used the test architecture from Fig. 7 on the next page
to test implementation i1. We wanted to test the XBusManager, but we could

19

Model JTorX Adapter XBusManager

ConnectionManager
t

TCP

c c c

Figure 7: Test Architecture used in the first phase: JTorX provides stimuli to XBus via generic
clients (c), and observes responses via test interface (t), both over TCP. Disadvantage: we
have extended XBus with test interface t. Advantage: we do not have to extend the model
with FIFO queues to deal with possible reordering of XBus responses by TCP.

not access it directly. We accessed it via a test context : everything between
the adapter and the XBusManager. We provide stimuli to the XBusManager
using three instances of XBusGenericClient (c in Fig. 7), each of which is con-
nected to the XBus via its own TCP connection. We observe the responses
from the XBus not via the XBusGenericClient, but via a direct (testing) inter-
face that has been added to XBus—t in Fig. 7. This interface is provided by
the JTorXTestableXBusManager in the Engine package, see Fig. 3 on page 11.
JTorXTestableXBusManager overrides the function that XBus uses to send a
message to a specified client: instead, it logs the message name and relevant
parameters in the textual format that JTorX expects. Additional glue code—
the adapter—provides the connection between JTorX and the XBusGenericClient
instances on the one hand, and between JTorX and test interface t on the other
hand. From JTorX, the adapter receives requests to apply stimuli, and from test
interface t, it receives observed responses. The adapter forwards the received
responses to JTorX without additional processing. For each received request
to apply a stimulus, the adapter uses XBusGenericClient methods to construct a
corresponding XBusMessage message, and send it to the XBus server (except for
the Connreq message, for which XBusGenericClient only has to open a connection
to XBus).

The adapter is implemented as a C# program that uses the Client package
(see Fig. 3) to create the three XBusGenericClient instances, which in turn use the
Communications package to interact with the XBus. The main functionality im-
plemented in the adapter is the mapping between XBus messages and the corre-
sponding XBusGenericClient methods, and the corresponding XBusGenericClient
instances. Due to the one-to-one mapping that exists between these—by design,
recall Section 3.2— implementing this mapping was rather straightforward.

Also JTorX and the adapter communicate via TCP: the adapter works as a
simple TCP server to which JTorX connects as a TCP client.

It may seem that the Communications package does not play a role during
model-based testing with this test architecture, also because we mentioned that
we excluded it from the model. However, the Communications package is used
normally in the XBus to receive the messages that clients send to it. Moreover,
the only functionality of the Communications package that is not used in the
XBus itself in this test architecture—the functionality to send messages over
TCP—is used by the XBusGenericClient instances that are used to send the

20

Figure 8: Screen shot of the configuration pane of JTorX, set up to test XBus. JTorX will
connect to (the adapter that provides access to) the system under test via TCP on the local
machine, at port 1234. The bottom two input fields list the input and output messages.

stimuli to the XBus.

Preserving observation order. As we wrote in Section 3.5, the TCP connections
between XBus server and its client may reorder concurrently sent messages.
We also wrote, that we assumed that this would not be a problem for stimuli.
For observations we added an interface, t in Fig. 7, to allow JTorX to observe
responses in the order in which they were created. For each incoming message
the XBusManager sends at most one response to each connected client (during
the analysis phase, requirement 14 was added to make sure that this property
remained valid, even when we extended the model with local messages), and,
the order in which the XBusManager sends the responses is exactly reflected in
model mdev. As we discuss later in this paper, in the analysis phase we also
looked at other ways to deal with this issue, e.g. by extending the model with
a queue context, hence models mq

opt and mq,ie
opt . However, we found that code

coverage obtained with these models was identical to code coverage obtained
with the corresponding models without queues, but the test runs took a lot (5
to 10 times) longer.

Running JTorX. Once we had the model (mdev), the XBus implementation to
test (i1), and the means to connect JTorX to it, testing was started. We ran
JTorX in random mode. In the first phase, we used JTorX via its graphical
user interface. Figure 8 shows the settings in the JTorX GUI. These include
the location of the model file, the way in which the adapter and the XBus are
accessed, and an indication of which messages are input (from the XBus server
perspective) and which ones are output.

Bugs found in the first phase. One of the most interesting parts of testing is
finding bugs. In this case, not only because it allows improving the software, but
also because finding bugs can be seen as an indication that model based testing

21

Model JTorX Adapter XBus

TCP

Figure 9: Test architecture used in the second phase: JTorX connects to XBus over TCP,
where the TCP connections (one connection for each client of which JTorX plays the role)
are used for both stimuli and responses. Advantage: XBus is unchanged. Disadvantage: we
do have to extend the model to deal with the possibility that TCP reorders concurrently sent
XBus responses (the responses sent for a single incoming message).

is actually helping us. We found 5 bugs when testing implementation i1 (and
a few more when testing implementation i2—these we discuss in Section 5.2).
Typically these bugs were found within 5 minutes after the start of a test. Some
of them are quite subtle:

1. The Notifdisc message was sent to unsubscribed clients. This was due to
an if-statement that had a wrong branching expression.

2. The Servann message was sent (also) to unauthorized clients. Clients that
were still in the handshake process with the server, and thus not fully
authenticated, received the Servann message. To trigger this bug one client
has to (connect and) announce its service while another client is still con-
necting.

3. The message subscription administration did not behave correctly: a client
could subscribe to one item, but not to two or more. This was due to a
bug in the operation that added the subscription to the list of a client.

4. The same bug also occurred with the list of provided services. It was
implemented in the same way as the message subscription administration.

5. There was a flaw in the method that handles Unsub messages. The code
that extracts subscriptions from these messages (to be able to remove
them from the list of subscriptions of the corresponding client) contained
a typing error: two terms in an expression were interchanged.

All these bugs concern the order in which protocol messages must occur. There-
fore, it is our firm belief that they are much harder to discover with unit testing.

5.2. Model-based testing in the second phase

In the second phase, we ran JTorX on implementation i2, with all (infinite)
models except mdev. We did not test i2 against model mdev, because mdev was
designed for the test architecture of the first phase. Model morder

dev is a version of
mdev that is exactly catered for the test architecture used in the second phase.

Test architecture. In the second phase, we chose a different architecture, see
Fig. 9. Rather than the—quite complex—set up from the first phase, we chose
to observe the SUT’s responses via the same connections that are also used
for the stimuli. This led to a simpler adapter and test set up, but required

22

a more complex model: morder
dev . Observations are no longer observed via the

test interface (block t in Fig. 7), but they were sent through TCP. For each
XBus client—recall that JTorX plays the role of three XBus clients—there was a
separate TCP connection between XBus server and adapter, such that responses
might arrive at the adapter in an order, that differed from the order in which
they were sent. We adapted the model to reflect this, in two ways. In model
morder

dev we directly included the different orders in the model. In models mq
opt and

mq,ie
opt

3 we extended the model with a queue model that describes the behavior
of the TCP channel.

Running JTorX. In the second phase, we mostly invoked JTorX via its non-
graphical interface—a recent development, that did not yet exist in the first
phase. We ran the tests on the same machine that we also used for the model-
checking—it has two quad-core Intel Xeon X5555 processors and 144 GB of
memory4. To ensure that the java virtual machine that ran JTorX had ample
memory, we invoked it with command line options that allowed it to use 8GB.

We tested implementation i2 with all models from Table 4, except for mdev

which required the test architecture from the first phase. Table 6 on page 28
shows test execution time for runs of 10,000 and 250,000 test steps, and maximal
attainable code coverage.

We discuss coverage results, and test execution time, in Sections 5.3–5.6.

Bugs found in the second phase. Testing in the second phase revealed bugs in
implementation i2. This does not help to improve the quality of i1, but it does
demonstrate the ability to find errors with our approach. We mention two bugs
that we found most illustrative.

1. Implementation i2 contained a race. Its TCP listener, that waits for new
connections, would, after accepting a new connection c, do the following:

(a) first obtain a data structure for the connection information, then

(b) send a message m to the dispatcher, to inform it of c,

(c) finally, update the data structure with details necessary to send mes-
sages over the new connection.

This sequence contains a race: the implementation breaks when the dis-
patcher, after receiving message m, tries to send a Connack to the client, be-
fore the data structure update—necessary to be able to send that Connack—
has taken place. We could trigger this error with each of our models.

2. The adapter contained a resource leak. During a test run, it creates and
closes many connections, but when closing a connection it did not release
all associated resources. We found this when a long test run failed after
approximately 125,000 test steps. Note that MBT excels at long test runs.
This bug can easily be found by any test that runs long enough.

3Note that mq
opt was derived from mopt, rather than from mdev, mainly because mopt was

smaller and therefore easier to adapt.
4For model-based testing that machine was quite a bit oversized: we have also done test

runs on a Macbook with a 2.4GHz Intel Core 2 Duo processor with 8GB of memory.

23

While extending model and implementation, we occasionally tested on pur-
pose with old versions of the model or implementation, to see whether the
resulting inconsistencies were found. Again, we mention two examples.

1. The list of services that appears in a Servrsp message was not sorted cor-
rectly. We initially—on purpose—left out code to sort in the implemen-
tation, to see whether this bug would be detected; it was.

2. One version of the model incorrectly prescribed that in response to a
Localreq, first a Localind message is sent to the destination, and only then
Notif local messages are sent to the subscribers. In the implementation,
Localreq messages are handled in precisely the same way. However, in a
test run, a Notif local was observed first (due to reordering of responses by
the TCP test context), while a Localind was expected first. We adapted
the model to allow observation of Notif local and Localind in arbitrary order.

Once models and implementation i2 were stable, we ran tests of up to 250,000
test steps without finding further errors.

5.3. Model coverage

LPS summand coverage. We used LPS summand coverage as our model cov-
erage metric, i.e., the percentage of LPS summands that were hit during test
execution. To test with an mCRL2 model, it has to be translated (by mcrl22lps
from the mCRL2 toolset) into an intermediate format called Linear Process
Specification (LPS). JTorX then accesses such LPS via tool lps2torx, also from
the mCRL2 tool set5. An LPS represents a set of nondeterministic alternatives,
called summands. A summand is a syntactic expression over model variables
and parameters, containing a guard, an action to be executed, and a recursive
invocation of the process. They express, respectively, when this alternative is
enabled, the action to be taken, and the next state.

To measure LPS summand coverage, we extended the lps2torx tool from the
mCRL2 tool set, so that each summand is assigned a unique identifier. During
test execution, we record the identifiers of all executed summands and thus,
LPS summand coverage can easily be computed.

Just as programs may contain unreachable code, models may contain un-
reachable summands, i.e. summands which are never executed, because their
guard is never enabled. We do not take unreachable summands into account
when we compute model coverage; we used model checking to do the analysis
of summand reachability.

Coverage results. Figure 10 and Fig. 11 show the model coverage for test runs
of 250,000 resp. 10,000 steps on models morder

dev , mopt, mie
opt, mreq

opt, and mreq,ie
opt ;

recall that testing is done by taking random test steps. We see that models
morder

dev and mopt reach 100% code coverage quickly (within 6,000 steps), model

5 The LTSmin tool set also contains a tool lps2torx, that JTorX also can use to access
an LPS. Throughout the experiments described in this paper we used lps2torxmCRL2, except
in the analysis of testing time, where, as discussed in Section 5.6 on page 28, we also used
lps2torxLTSmin. As we did above, when needed, we use subscripts to distinguish between these
two lps2torx instances.

24

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

C
ov

er
ag

e
(%

 L
P

S
 s

um
m

an
ds

; u
nr

ea
ch

ab
le

 e
lid

ed
)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie

Figure 10: Model coverage obtained in test runs of 250,000 test steps.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
ov

er
ag

e
(%

 L
P

S
 s

um
m

an
ds

; u
nr

ea
ch

ab
le

 e
lid

ed
)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie

Figure 11: Model coverage obtained in test runs of 10,000 test steps.

mreq
opt takes somewhat more steps (slightly over 26,000), while model mie

opt needs

about 150,000 steps, and model mreq,ie
opt needs about 180,000 steps. We do not

show model coverage results for models mq
opt and mq,ie

opt , because the unreachable
summand analysis did not terminate.

25

5.4. Code coverage

Branch coverage. We used branch coverage as our code coverage metric. Branch
coverage [17] is a standard code coverage metric that counts the percentage of
branches traversed in a program’s control flow graph during test execution. It
was measured by instrumenting the code.

Initial coverage analysis showed that 19 blocks were unreachable, because of
the following reasons. Two blocks handle operating system errors, which never
occurred in our case—testing operating system related functionality requires a
different test set up, where we simulate the operating systems, and deliberately
insert errors. Four blocks handle Sub and Unsub messages with an invalid mes-
sage type—such messages do not appear in our most complete model, though
they can easily be added (we leave that for future work). Finally, thirteen blocks
handle inherently unreachable cases. For example, when an incoming message
is being handled, the list of active connections will always contain at least one
element, namely the sending connection. Therefore, the code that looks up the
connection record for a given connection, will never encounter an empty list of
connections, and thus the code that handles the case of an empty list is unreach-
able. One could use static analysis tools to show that these blocks can never be
executed, and then safely remove these blocks—but this falls beyond the scope
of this paper.

Since coverage should, in our opinion, measure the code covered by a specific
test as a percentage of what can be covered, we left out the unreachable blocks
from our coverage analysis.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

C
ov

er
ag

e
(%

 c
od

e
br

an
ch

es
; u

nr
ea

ch
ab

le
 e

lid
ed

)

Test steps

m-dev-order
m-opt

m-opt-ie
m-opt-req

m-opt-req-ie
m-opt-q

m-opt-ie-q

Figure 12: Code coverage (on i2) obtained in test runs of 10,000 test steps. Note that coverage

for morder
dev , mopt and mq

opt converges to the same level, and so does coverage for mie
opt and mq,ie

opt .
From the test runs of 250,000 steps, we obtain an almost identical plot (not shown).

26

Coverage results. Figure 12 shows the code coverage results for all models, for
test runs of 10,000 steps. These experiments reveal two interesting phenomena:
(1) the maximum attainable code coverage varies per model, and (2) the use of
queues does not affect maximum attainable coverage.

The maximum attainable code coverage figures are shown in Table 6 on the
next page. As expected, we see that, the more complete a model is, the higher
the maximum code coverage is: morder

dev is the least complete model with 79% max-
imal code coverage: since morder

dev does not contain self-defined XBus messages,
it can not trigger all behavior in the implementation. Model mopt reached the
same coverage. This is no surprise either, because mopt is an optimized version
of morder

dev .
As we explain in Section 5.6, test execution from mopt is significantly faster.

Also mq
opt reaches 79% code coverage. This is interesting, because, apparently,

the use of queues does not affect maximal code coverage. Indeed, mie
opt and

mq,ie
opt reach the same maximal coverage, namely 83%. The most complete model

mreq,ie
opt reaches 100% coverage. From these experiments, we show that measuring

code coverage is important: if 100% code coverage cannot be reached, then the
model is incomplete, so not all behavior can be tested. If this is the case, we
advice to extend the model.

5.5. Distribution of coverage

In Figures 13 and 14 we see that all “hit” code blocks and all “hit” LPS
summands were hit multiple times, although the number of hits is not evenly
distributed. (Note the logarithmic scale on the vertical axis.) For the code
coverage, obviously, certain blocks are hit quite often, e.g. because they are hit
whenever an incoming message has to be processed, whereas other blocks are
only hit once, during initialization—this explains the “gap” slightly at the right
of block “0” in Figure 14.

For the plot of the model coverage (Fig. 13), it could be interesting to sepa-
rate the stimuli from the responses, to see to what extent the following hypoth-
esis is true: for stimuli, there is a direct correspondence between the number of
actions that are generated from a summand, and the number of times that the
summand is “hit”.

 1

 10

 100

 1000

 10000

 100000

-50 0 50 100 150 200 250 300 350

H
its

 (
25

0,
00

0
te

st
 s

te
ps

)

Model LPS summands

m-opt-req-ie

Figure 13: Model coverage obtained in a
test run of 250,000 test steps with model

mreq,ie
opt , showing, for each LPS summand of

the model, how often it is hit. LPS sum-
mands are ordered, in order of first “hit”.

 1

 10

 100

 1000

 10000

 100000

 1e+06

-50 0 50 100 150 200 250

H
its

 (
25

0,
00

0
te

st
 s

te
ps

)

Code branches

m-opt-req-ie

Figure 14: Code coverage obtained in a
test run of 10,000 test steps with model

mreq,ie
opt , showing, for each branch of the im-

plementation, how often it is hit. Branches
are ordered, in order of first “hit”.

27

model 10,000 steps 250,000 steps 250,000 steps jittyc max att. code coverage

morder
dev 18 minutes 24 hours 15.75 hours 79%

mopt 5 minutes 2 hours 2 hours 79%
mie

opt 6 minutes 2.5 hours 2.25 hours 83%
mreq

opt 6 minutes 3 hours 2.5 hours 91%

mreq,ie
opt 7 minutes 3 hours 2.5 hours 100%

mq
opt 37 minutes 77.75 hours 69.75 hours 79%

mq,ie
opt 30 minutes 44.5 hours 38 hours 83%

Table 6: Wall-clock time for runs on implementation i2, using JTorX in non-GUI mode, and
the maximal attainable code coverage for each model.

5.6. Testing time

We also analyzed the test execution times, see Table 6 and Figures 15–20.
Table 6 shows the test execution times for the runs of 10,000 and 250,000 test

steps. The 4th column shows the effect of enabling option jittyc of tool lps2torx;
all time-related results that we show in the plots were obtained with this option
enabled. When option jittyc is enabled, lps2torx uses a jit-compiled rewriting
engine, instead of its interpreting rewriting engine—the more rewriting that has
to be done, the greater the gain. Jit-compilation takes approx. 11 seconds at
the start of a test run; this is not shown in Figures 16, 17 and 18, to avoid
compressing the scale on the vertical axis.

Figures 15, 16, 17 and 18 present scatter plots showing, for each test step gen-
erated from respectively model morder

dev , mopt, mreq,ie
opt (accessed using lps2torxmCRL2),

and model mopt (accessed using lps2torxLTSmin), the amount of time in millisec-
onds it takes to execute. (lps2torxmCRL2 and lps2torxLTSmin were introduced in
the footnote on page 24.) Thus, in these plots a point at test step 12743 at
testing time 300, means that the 12743th test step took 300 ms. Figures 19
and 20 present the same information differently: for each test step duration d,
they shows the number of test steps that took d ms to execute.

Figure 16 shows two tick areas. One is below 20 ms, showing that most
test steps took less than 20 ms. Another tick area is around 100 ms, which is
exactly the value of the quiescence timer. This is to be expected: if one wants
to observe quiescence (i.e. absence of outputs), one observes the system for (in
our case) 100 ms and sees if any outputs are produced. Thus, if quiescence is
observed, this step takes exactly 100 ms. Also the plots for models morder

dev and

mreq,ie
opt contain these same two tick areas, but we have to zoom in sufficiently to

distinguish them; they are also visible separately in Figures 17 and 18 but not
in Fig. 15, mainly due to the different scale on the vertical axis.

Figures 15–18 show the time needed per test step as a function of the total
number of test steps executed. Those plots where the model was accessed using
lps2torxmCRL2 show few (Fig. 16) resp. a significant portion (Fig. 15, 17) of test
steps whose execution time grows linearly with the number of test steps exe-
cuted. This may be surprising, because one would assume that executing a single
test step requires a fixed amount of time. We attribute the linear behavior to
the growth of state mappings in lps2torxmCRL2: both lps2torx instances maintain
a mapping between the state representation that they uses internally, and the
state identifiers (numbers) that they exchange over their interface with JTorX.
With lps2torxmCRL2, more or less regularly, a map insertion takes more time,
when the map adjusts itself to cope with the ever growing number of entries.

28

Figure 15: Time (ms) between test steps
in run of 250,000 test steps with model
morder

dev (accessed using lps2torxmCRL2).

Figure 16: Time (ms) between test steps
in run of 250,000 test steps with model
mopt (accessed using lps2torxmCRL2).

Figure 17: Time (ms) between test steps
in run of 250,000 test steps with model

mreq,ie
opt (accessed using lps2torxmCRL2).

Figure 18: Time (ms) between test steps
in run of 250,000 test steps with model
mopt (accessed using lps2torxLTSmin).

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

N
um

be
r

of
 te

st
 s

te
ps

 th
at

 to
ok

 th
at

 ti
m

e

Time between test steps (ms)

m-dev-order
m-opt

m-opt-req-ie

Figure 19: Distribution of the time spent
per test step, for runs of 250,000 steps

with models morder
dev , mopt, and mreq,ie

opt , ac-
cessed using lps2torxmCRL2. Note logarith-
mic scale on both axes.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000

N
um

be
r

of
 te

st
 s

te
ps

 th
at

 to
ok

 th
at

 ti
m

e

Time between test steps (ms)

m-opt mCRL2
m-opt LTSmin

Figure 20: Distribution of the time spent
per test step, for runs of 250,000 steps with
model mopt, accessed using lps2torxmCRL2
resp. lps2torxLTSmin. Note logarithmic
scale on both axes.

With lps2torxLTSmin this appears to happen much less often, but when it does
happen, it takes much longer than with lps2torxmCRL2. (For this paper we did
not do a full performance comparison between lps2torxmCRL2 and lps2torxLTSmin,
we leave that for future research. The measurements that we did suggest that
lps2torxLTSmin spends, in general, slightly more time on a model-access request
from JTorX than lps2torxmCRL2. Nevertheless, with both lps2torx instances, the
same test run of 250,000 test steps with model mopt took the same two hours
of wall clock time.) The difference in severity of the linear growth, that we
see across Figures 15–17, we attribute to the different numbers of states that
the mappings contain. After 250,000 test steps, with model mopt the mapping

29

only contains approx. 900,000 states; with model mreq,ie
opt approx. 6,300,000, and

with model morder
dev approx. 35,000,000. To understand this huge difference, re-

call that in model mdev (and thus also in morder
dev) a single event could result

(non-deterministically) in multiple different configurations of the client admin-
istration data structures, i.e. in multiple different states, whereas mopt is almost
fully deterministic. Note however, that in Figures 15–18 the long test steps are
a small fraction of all steps. Figures 19 and 20 show that the majority of all
test steps take less than 1000 ms. In our experiments, test step derivation time
was not a bottleneck, but it could be an issue when testing real-time systems.

6. Findings and Lessons Learned

6.1. First phase

The internship in a time perspective. So how long did it take to create the
artefacts for model-based testing, namely the model, the test interface and the
adapter? Programming and simulating the model took 2 weeks, or 80 hours.
The test interface was created in a few hours, since it was designed to be loosely
coupled to the engine. It was a matter of a few dozens lines of code. The adapter
was created in two days, or 16 hours. Thus, given the total project time of 14
weeks, creating the artefacts needed for model-based testing took thus about
17% of our time.

The modeling process. Writing a model takes a significant amount of time, but
also forces the developer to think about the system behavior thoroughly. More-
over, we found it extremely helpful to use simulation to step through the pro-
tocol, before implementing anything. Making and simulating a model gives a
deep understanding of the system, in an early stage of development, from which
the architectural design profits.

6.2. Second phase

After a thorough analysis of the model-based testing process that was carried
out in the first phase, the question remains how good the approach was. We
reflect on the questions raised in Section 1.2.

How good was the model? Model mdev did its job, but there is certainly room
for improvement. In particular, completeness with respect to the requirements
and bad weather behavior could be improved.

Was the testing thorough enough? Given model mdev, we believe that testing
was thorough enough. On the other hand, model-based testing is as good as
the model is, so more complete models also mean better testing, as resulting in
higher code coverage.

What can we say about code coverage? The model mdev does not reach 100%
code coverage. For that, more complete models are required.

Would model checking have helped to produce better code? Formalizing the
requirements, which is a prerequisite for model checking, helps to improve the
model, and therefore the code. However, model checking requires great effort,
because models need to be made finite and efficient. For model-based testing,
this was not needed, since performance was not an issue here.

Despite these observations, we still believe in our approach during the first
phase. If we had to redo the XBus development we would take a very similar

30

approach, but (1) invest more effort in the modeling phase: trace back the
requirements, and make models input-complete, and (2) measure coverage.

7. Conclusions and Future Research

We conclude that the approach of using formal methods in both the design
step and the integration testing step of the V-model was a success: with a
relatively limited effort, we found five subtle bugs. We needed 17% of the
time to develop the artifacts needed for model-based testing, and given the
errors found, we consider that time well spent. Moreover, for future versions of
the XBus, JTorX can be used for automatic regression tests: by adapting the
mCRL2 model to new functionality, one can detect automatically if new bugs
are introduced.

Our post-case study analysis showed that a 14 week development process is
feasible but short: the model quality would have benefited from more attention—
in particular, tracing back the requirements would have been helpful.

The test execution time analysis results suggest that performance improve-
ments can be made by optimizing the interface between JTorX and the lps2torx
tools of the mCRL2 and LTSmin tool sets; for this, further measurements and
analysis will be necessary.

Thus, the post-internship analysis gave us a deeper understanding of the lim-
itations and the successes of the work done during the internship, an increased
understanding of what factors are responsible for the successes, and valuable
feedback that may help us to improve our tools.

References

[1] M. Sijtema, M. I. A. Stoelinga, A. F. E. Belinfante, L. Marinelli, Experi-
ences with formal engineering: Model-based specification, implementation
and testing of a software bus at neopost, in: G. Salaün, B. Schätz (Eds.),
FMICS 2011, volume 6959 of LNCS, Springer, 2011, pp. 117–133.

[2] M. Ferreira, V. Romanenko, Programme Booklet of the 16th Dutch Testing
Day, 2010.

[3] TechWatch, Bits &Chips conference on Embedded Systems, 2011.

[4] S. Kowalewski, M. Roveri (Eds.), FMICS 2010, volume 6371 of LNCS,
Springer, 2010.

[5] D. D. Cofer, A. Fantechi (Eds.), FMICS 2008, Revised Selected Papers,
volume 5596 of LNCS, Springer, 2009.

[6] H. H. Hansen, J. Ketema, S. P. Luttik, M. R. Mousavi, J. C. van de Pol,
Towards model checking executable UML specifications in mCRL2, Inno-
vations in Systems and Software Engineering 6 (2010) 83–90.

[7] A. Ferrari, D. Grasso, G. Magnani, A. Fantechi, M. Tempestini, The Metrô
Rio ATP case study, in: [4], pp. 1–16.

[8] N. G. Leveson, Experiences in designing and using formal specification
languages for embedded control software, in: [9], p. 3.

31

[9] N. A. Lynch, B. H. Krogh (Eds.), HSCC 2000, volume 1790 of LNCS,
Springer, 2000.

[10] P. E. Rook, Controlling software projects, IEEE Software Engineering
Journal 1 (January 1986) 7–16.

[11] J. F. Groote, et al., The mCRL2 toolset, in: Proc. International Work-
shop on Advanced Software Development Tools and Techniques (WAS-
DeTT 2008), 2008, pp. 5/1–10.

[12] mCRL2 Toolkit webpage, http://www.mcrl2.org/, 2012.

[13] A. Belinfante, JTorX: A tool for on-line model-driven test derivation and
execution, in: TACAS 2010, volume 6015 of LNCS, Springer, 2010, pp.
266–270.

[14] JTorX webpage, http://fmt.ewi.utwente.nl/tools/jtorx/, 2011.

[15] CADP evalutor4 manual webpage, http://cadp.inria.fr/man/

evaluator4.html, 2012.

[16] R. Mateescu, D. Thivolle, A model checking language for concurrent value-
passing systems, in: Proceedings of the 15th International Symposium on
Formal Methods FM’08, volume 5014 of LNCS, 2008, pp. 148–164.

[17] G. J. Myers, The Art of Software Testing, Wiley, 1979.

[18] H. Garavel, C. Viho, M. Zendri, System design of a CC-NUMA multiproces-
sor architecture using formal specification, model-checking, co-simulation,
and test generation, STTT 3 (2001) 314–331.

[19] Neopost Inc. webpage, http://www.neopost.com/, 2009.

[20] M. Veanes, et al., Model-based testing of object-oriented reactive systems
with Spec Explorer, in: Formal Methods and Testing, volume 4949 of
LNCS, Springer, 2008, pp. 39–76.

[21] Conformiq webpage, http://www.conformiq.com/, 2011.

[22] A. Hartman, K. Nagin, The AGEDIS tools for model based testing, SIG-
SOFT Softw. Eng. Notes 29 (2004) 129–132.

[23] A. Belinfante, L. Frantzen, C. Schallhart, Tools for test case generation,
in: Model-Based Testing of Reactive Systems: Advanced Lectures, volume
3472 of LNCS, Springer, 2005, pp. 391–438.

[24] A. Hartman, Model based test generation tools, Technical Re-
port, AGEDIS Consortium, 2002. http://agedis.de/documents/

ModelBasedTestGenerationTools.pdf. Accessed on June 21, 2012.

[25] GraphML file format, http://graphml.graphdrawing.org/, 2012.

[26] Jararaca manual, http://fmt.cs.utwente.nl/tools/torx/jararaca.1.
html, 2012.

32

http://www.mcrl2.org/
http://fmt.ewi.utwente.nl/tools/jtorx/
http://cadp.inria.fr/man/evaluator4.html
http://cadp.inria.fr/man/evaluator4.html
http://www.neopost.com/
http://www.conformiq.com/
http://agedis.de/documents/ModelBasedTestGenerationTools.pdf
http://agedis.de/documents/ModelBasedTestGenerationTools.pdf
http://graphml.graphdrawing.org/
http://fmt.cs.utwente.nl/tools/torx/jararaca.1.html
http://fmt.cs.utwente.nl/tools/torx/jararaca.1.html

[27] L. Frantzen, J. Tretmans, T. A. C. Willemse, A symbolic framework for
model-based testing, in: Formal Approaches to Software Testing and Run-
time Verification, volume 4262 of LNCS, Springer, 2006, pp. 40–54.

[28] S. C. C. Blom, J. C. van de Pol, M. Weber, Bridging the Gap between
Enumerative and Symbolic Model Checkers, Technical Report TR-CTIT-
09-30, CTIT, University of Twente, Enschede, 2009.

[29] H. Garavel, et al., CADP 2006: A toolbox for the construction and analysis
of distributed processes, in: CAV 2007, 2007, pp. 158–163.

[30] A. Belinfante, et al., Formal test automation: A simple experiment, in:
IWTCS 1999, Kluwer, 1999, pp. 179–196.

[31] J. Tretmans, H. Brinksma, TorX: Automated model-based testing, in:
A. Hartman, K. Dussa-Ziegler (Eds.), First European Conference on Model-
Driven Software Engineering, Nuremberg, Germany, 2003, pp. 31–43.

[32] J. Tretmans, Test generation with inputs, outputs, and repetitive quies-
cence, Software - Concepts and Tools 17(3) (1996) 103–120.

[33] J. Tretmans, Model Based Testing with Labelled Transition Systems, in:
Formal Methods and Testing, volume 4949 of LNCS, Springer, 2008, pp.
1–38.

[34] H. M. van der Bijl, A. Rensink, J. Tretmans, Compositional testing with
ioco, in: FATES 2003, volume 2931 of LNCS, Springer, 2004, pp. 86–100.

[35] M. Timmer, E. Brinksma, M. Stoelinga, Model-based testing, in: Soft-
ware and Systems Safety: Specification and Verification, NATO Science
for Peace and Security Series - D, IOS Press, 2011.

[36] A. David, K. G. Larsen, S. Li, B. Nielsen, Timed testing under partial
observability, in: ICST, IEEE Computer Society, 2009, pp. 61–70.

[37] K. G. Larsen, M. Mikucionis, B. Nielsen, Online testing of real-time systems
using UPPAAL: Status and future work, in: Perspectives of Model-Based
Testing, volume 04371 of Dagstuhl Seminar Proceedings, 2004.

[38] L. Brandán Briones, Theories for Model-based Testing: Real-time and Cov-
erage, Ph.D. thesis, University of Twente, 2007.

[39] W. Grieskamp, X. Qu, X. Wei, N. Kicillof, M. B. Cohen, Interaction
coverage meets path coverage by SMT constraint solving, in: TESTCOM
2009 and FATES 2009, volume 5826 of LNCS, Springer, 2009, pp. 97–112.

[40] H. C. Bohnenkamp, M. I. A. Stoelinga, Quantitative testing, in: Pro-
ceedings of the 7th ACM International conference on Embedded software,
ACM, New York, 2008, pp. 227–236.

[41] J. A. Bergstra, J. W. Klop, Algebra of communicating processes, in: J. W.
de Bakker, M. Hazewinkel, J. K. Lenstra (Eds.), Proceedings of the CWI
Symposium on Mathematics and Computer Science, CWI, Amsterdam,
The Netherlands, 1985.

[42] The Go Programming Language webpage, http://golang.org/, 2012.

33

http://golang.org/

	Introduction
	First phase: Developing the XBus
	Second phase: Analysis
	Our findings

	Background
	The XBus and its context
	Model-based testing
	The specification language mCRL2

	Development of the XBus and post case-study analysis
	XBus requirements
	XBus design
	Implementation
	Unit testing
	Model-based integration testing
	Acceptance testing

	Modeling & Model Checking of the XBus
	The model mdev
	Model checking & model transformation

	Model-Based Testing of the XBus
	Model-based integration testing in the first phase
	Model-based testing in the second phase
	Model coverage
	Code coverage
	Distribution of coverage
	Testing time

	Findings and Lessons Learned
	First phase
	Second phase

	Conclusions and Future Research

