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Abstract We present an efficient and easy-to-use methodology to predict—at design

time—the availability of systems that support local recovery. Our analysis techniques work

at the architectural level, where the software designer simply inputs the software modules’

decomposition annotated with failure and repair rates. From this decomposition, we

automatically generate an analytical model (a continuous-time Markov chain), from which

an availability measure is then computed, in a completely automated way. A crucial step is

the use of intermediate models in the input/output interactive Markov chain formalism,

which makes our techniques efficient, mathematically rigorous, and easy to adapt. In

particular, we use aggressive minimization techniques to keep the size of the generated

state spaces small. We have applied our methodology on a realistic case study, namely the

MPlayer open-source software. We have investigated four different decomposition alter-

natives and compared our analytical results with the measured availability on a running

MPlayer. We found that our predicted results closely match the measured ones.
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1 Introduction

Local recovery (Sozer and Tekinerdogan 2008; Sozer et al. 2009; Candea et al. 2004b) is

an important technique to achieve fault tolerance. Whereas a global recovery strategy

restarts the whole system upon detection of an error, making the entire system unavailable

until its normal operational mode is reached again, local recovery strategies work at a

lower level of granularity. They partition the system into several recoverable units (RUs)

so that each RU consists of a number of software modules, and each RU can be recovered

independently (Sozer et al. 2009). The aim is to achieve better availability: Recovering a

part of the system is usually faster than recovering the whole system and, moreover, the

non-affected system parts remain operational.

The availability of the system, that is, the percentage of time the system is up and

running (Avizienis et al. 2004), heavily depends on the chosen software decomposition

alternative, i.e., the way in which the software modules are grouped into RUs (Sozer et al.

2013). We have previously introduced a framework, called FLORA (Sozer et al. 2009) that

supports the implementation of local recovery for a particular software decomposition.

Despite the support of this framework, the implementation of local recovery for a

decomposition alternative is still a time-consuming and a non-trivial task (Sozer et al.

2009), Hence, it is important to follow a systematic method to compare various alternatives

and only implement the best one. We previously developed a tool named Recovery

Designer (Sozer et al. 2013; Sozer 2009), which optimizes software architecture decom-

position for local recovery based on quality estimations for decomposition alternatives.

However, optimization needs input from a systematic and sound method that provides

availability estimations regarding decomposition alternatives at design time.

This paper presents such a method: We take as input a decomposition of the software

architecture including (1) the set of modules; (2) failure and repair rates for each module;

and (3) the grouping of modules into RUs. Then our tool generates an analytical model—a

continuous-time Markov chain (CTMC)—in a completely automated way. We then use

standard CTMC analysis methods to predict the system availability. There exist many

studies on assessing non-functional requirements (e.g., performance, availability, relia-

bility) at the software architecture design level (Dugan and Lyu 1995; Das and Woodside

1998; Franco et al. 2012, 2014). Some of these techniques (Lai et al. 2002; Vaidyanathan

and Trivedi 2005) also employ Markov models. However, existing studies mainly aim at

facilitating general quality analysis of software systems. On the other hand, we particularly

focus on the impact of architectural decomposition alternatives of a system for local

recovery. Hereby, we apply availability analysis using a modular and compositional

approach. Modular design and composition is well-established and applied approach for

software design. A software system is usually (supposed to be) decomposed into loosely

coupled modular units each of which is responsible for a set of cohesive tasks. This

improves the maintainability of the software since changes can be better localized in the

system. This principle is less often applied for analytical models to evaluate software

architectures. Usually, a single model (e.g., a Markov chain, a queuing network) is built or

generated for the whole system at once. A modification of the architecture can lead to

changes in the monolithic analytical model at several places or the whole model must be

rebuilt/generated from scratch.

In our approach, separate analytical models are generated for different architectural

elements. These models are composed together based on how the architectural elements

are composed with each other. Different architectural configurations can be evaluated by
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just using (generating) a different composition script working on the same set of models. If

failure behavior of a module or the recovery strategy changes, such changes should only be

reflected to the corresponding analytical model that is defined separately from the other

models. A CTMC model for the overall system is generated in multiple steps. First, a set of

input/output interactive Markov chains (I/O-IMCs) (Hermanns 2002; Boudali et al. 2008)

are generated. I/O-IMCs augment traditional CTMCs with discrete actions, thus enabling

synchronization between them. They have been used successfully to analyze a wide range

of applications (Hermanns and Katoen 2000; Boudali et al. 2007b, 2008) and enable

powerful analysis methods. In particular, we exploit their compositional aggregation to

avoid state-space explosion. As the underlying formalism, we use the MIOA-syn-

tax (Kuntz and Haverkort 2008) to conveniently specify and generate: (1) one I/O-IMC for

each software module contained in an RU, modeling the failure and recovery behavior of

that module; (2) two I/O-IMCs for each RU, serving as interfaces between the RU and the

recovery manager (RM);1 and (3) one I/O-IMC corresponding to the RM. By composing

all the generated I/O-IMCs, we obtain a CTMC that can be then analyzed. However, to

reduce the size of the generated state space, we incrementally compose one by one the I/O-

IMC models and reduce the intermediate state space [by applying bisimulation mini-

mization (Boudali et al. 2007a)] after each composition. This is precisely the composi-

tional-aggregation technique mentioned before.

We have applied our modeling and analysis approach on a real-life software system,

namely the MPlayer open-source media player. We have investigated four different

decomposition alternatives and compared the availability predicted by our analytical

models to the availability measurements obtained from the actual implementations. It

turned out that our analytical results closely match the measured availabilities.

The contributions of this paper are the following: (1) a method to analyze the avail-

ability of local recovery architectures, relying on a (novel) translation of a local recovery

architecture to a set of I/O-IMC models, and the (existing) compositional-aggregation

method; (2) automated generation of scripts for composing I/O-IMC models according to

the provided architecture and for performing availability analysis on the composed models;

(3) experimental validation of our results, by comparing predicted and measured avail-

ability for a real-life application.

This work arose from the need to efficiently, easily, and automatically conduct quan-

titative analysis of the availability of various module decomposition alternatives in the

context of a software recovery mechanism. Our solution based on the I/O-IMC formalism,

as described in this paper, fulfilled this need.

Organization of the paper We summarize the related previous studies in Sect. 2. In

Sect. 3, we introduce the local recovery concept and the background context of this work.

In Sect. 4, we present our modeling approach including the detailed I/O-IMC models used

for modeling local recovery. In Sect. 5, we present a case study along with experimentation

results. In Sect. 6, we discuss assumptions, limitations, and the utilization of results.

Finally, we conclude the paper in Sect. 7.

1 An important component used within a software architecture that supports local recovery.
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2 Related work

There are several modeling techniques to analyze system dependability and performance.

These techniques mostly rely on state-based models (Lai et al. 2002), queuing net-

works (Das and Woodside 1998), fault trees (Dugan and Lyu 1995), or a combination of

these. For instance, Lai et al. (2002) present a Markov model to compute the availability of

a redundant distributed hardware/software system comprised of N hosts; Vaidyanathan and

Trivedi (2005) present a three-state semi-Markov model to analyze the impact of reju-

venation2 on software availability. In general, however, these models are specified man-

ually and/or the methodology lacks a comprehensive tool support, making them less

practical to use. In this work, we provide tool support to carry out such modeling/analysis,

and we employ a flexible modeling approach to easily accommodate different architectural

decompositions.

There have also been approaches aiming at automation of modeling and analysis

(Immonen and Niemel 2008). These approaches hide the underlying formalism from the

user and utilize architectural descriptions that are annotated with dependability and per-

formance properties. Different formal models are automatically generated based on these

descriptions specified with a variety of notations and languages. Franco et al. employ

software architecture descriptions in Acme architecture description language (ADL)

(Garlan et al. 1997) to estimate reliability (Franco et al. 2012) and availability (Franco

et al. 2014). Markov models are generated based on these descriptions automatically. The

authors in Majzik and Huszerl (2002) use stochastic Petri nets to model and analyze fault-

tolerant CORBA applications that are modeled using UML. Hereby, the UML profile is

extended to be able to incorporate the dependability properties that are required to generate

Petri net models. Another work (Bernardi et al. 2011) focusing on dependability analysis

extends the MARTE profile, which itself is an extension of UML for quantitative analysis

of schedulability and performance. There exist many other dependability modeling and

analysis techniques introduced for software systems specified with UML (Bernardi et al.

2012). Similarly, there exist other contributions (Rugina et al. 2007; Bozzano et al. 2011)

using AADL as an ADL. The error model annex of AADL supports dependability analysis

(Joyce 2007). Component models and models of the execution environment are also uti-

lized as input models (Brosch et al. 2012). These studies mainly focus on general

dependability analysis of software systems. Our goal in this work is not dependability

analysis in general, but to be able to evaluate architectural decomposition alternatives of a

system for local recovery in particular. We utilize architecture specifications in xADL

(Dashofy et al. 2002) as input; however, any other ADL or notation can be utilized in

principle.

There have been models, techniques, and tools developed for evaluating the reliability

and availability of fault-tolerant systems (Geist and Trivedi 1990; Dugan and Lyu 1995;

Bowles et al. 2004). However, these approaches do not consider the decomposition of an

existing architecture for local recovery. They mainly focus on fault-tolerant design that is

achieved with a number redundant subsystems. As far as local recovery strategies are

concerned, the work of Candea et al. (2004a) improves system availability with local

recovery techniques that are similar to ours. In that work, the term micro-reboot is used for

recovering individual components of the system by restarting them, while the other

components remain operational. As such, we can use the terms micro-reboot and local

2 Proactively restarting a software component to mitigate its aging and thus its failure.
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recovery interchangeably. We also basically reboot a modular unit of the system for

recovering it locally. The only difference in terms of implementation is that the framework

that we employ can restore the last check-pointed state after reboot. In Candea’s work,

components are assumed to be stateless. However, the main contribution of this paper that

makes it differ from Candea’s work is the evaluation of a decomposition alternative at

design time, before implementation. In Candea’s work, decomposition alternatives are

selected with heuristic rules and they are evaluated experimentally after implementation

(Candea et al. 2004a). In this paper, we introduce analytical models for the evaluation of

decomposition alternatives at design time. To the best of our knowledge, this approach is

novel, which makes it possible to obtain an evaluation before a costly implementation of

local recovery or micro-reboot.

Previously, we introduced Recovery Designer (Sozer et al. 2013) for automatically

finding the optimal decomposition of software architecture for local recovery. This tool

addresses a set of system constraints and balances the achieved availability and perfor-

mance overhead for decomposition alternatives. Hereby, the performance overhead is

estimated by models derived from the source code with dynamic analysis. However,

availability estimation was based on a simple heuristic objective function (Sozer et al.

2013). In this work, we incorporated model-based availability analysis for quantitative

availability assessment of decomposition alternatives. In the following, we introduce the

context of our work together with basic concepts and terminology we use regarding local

recovery.

3 Local recovery and Recovery Designer

Recovery of errors is an essential step of fault tolerance (Avizienis et al. 2004). Local

recovery is an effective approach for recovering from errors, in which the erroneous parts

of a system are recovered while the other parts of the system are kept in operation.

Introducing local recovery to a system imposes certain requirements to its design.

– Isolation: If an operational module tries to access a module that has failed or is under

recovery, then errors propagate from the failed module to the operational one. To

prevent this propagation, the system should be separated into a set of Recoverable

Units (RUs) with clear boundaries and isolation between them.

– Communication Control: Although an RU is unavailable during its recovery, other RUs

might still need to access it in the meantime. Therefore, the communication between

RUs must be mediated and controlled (e.g., through blocking, queuing, and retrying of

messages), so that the recovery of an RU is transparent to the other RUs. In Candea

et al. (2004b), for instance, the communication is mediated by an application server. As

a result, there is a need for a Communication Manager (CM) that mediates inter-RU

communication.

– System-Recovery Coordination: In case recovery actions take place while the system is

still operational, interference with the normal system functions is inevitable and the

required recovery actions need to be coordinated. For this reason, there is a need for a

Recovery Manager (RM) that controls and coordinates RUs for recovery.

Note that there can be different implementations of local recovery: the isolation

between the different RUs can be achieved by running them on separate processes or

different Java components (Hunt 2007; Candea et al. 2004b; Sozer et al. 2013); the RM
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and CM can be composed of multiple components or they can all be implemented in a

single component; RUs can be assumed to be stateless (Candea et al. 2004b) or they can be

equipped with special state stores (Sozer et al. 2009). The specific implementation is,

however, not relevant for our methodology to estimate system availability. We have

previously developed a framework, namely FLORA (Sozer et al. 2009) that supports the

decomposition and implementation of software architecture for local recovery. We shortly

introduce this framework in the following.

3.1 The FLORA framework

FLORA (Sozer et al. 2009) partitions system modules as defined by RUs and isolates these

modules by assigning each RU to a separate process.3 In addition to the specified RUs,

FLORA introduces a CM4 and a RM. The CM mediates all inter-RU communication and

employs a set of communication policies (e.g., drop, queue, retry messages). The RM can

detect fatal errors and can restart dead RUs.

The total system availability depends on the availability of its individual modules and

the RUs’ decomposition. Generally speaking, the module availability depends on its mean

time to failure (MTTF), i.e., the time it takes on average before a module fails, and its mean

time to repair (MTTR), the average time it takes for the module to restart.

Increasing the number of RUs can provide higher availability. However, this will also

introduce an additional performance overhead since more modules will be isolated from

each other. Here, we are considering the performance overhead caused by communication

between processes and marshaling. FLORA captures all function calls across different RUs

and redirects them through inter-process communication calls. Therefore, we should

consider the amount of interactions between the chosen RU boundaries to keep the per-

formance overhead low. On the other hand, keeping the modules together in one RU will

increase the performance, but will result in a lower availability since the failure of one

module will affect the others as well. As a result, for selecting a decomposition alternative

we have to cope with a trade-off between availability and performance. Recovery Designer

(Sozer et al. 2013) supports this trade-off decision as explained in the following.

3.2 Recovery Designer

Recovery Designer (Sozer et al. 2013) is a tool that is used for optimizing software

architecture decomposition for local recovery. It supports the following activities: (1)

depict the design space of the possible decomposition alternatives, (2) take as input a set of

decomposition constraints and reduce the design space accordingly, (3) take as input

estimations of performance and availability for the remaining feasible decomposition

alternatives, and (4) balance the feasible alternatives with respect to availability and

performance by utilizing optimization techniques for evaluating large design spaces.

The tool is developed as an extension of the ArchStudio environment (Dashofy et al.

2002), which works as an Eclipse plugin (ECLIPSE 2015). Figure 1 depicts the main

components of this toolset and the overall process. First, the user provides an annotated

software architecture description. Annotations include decomposition constraints, i.e.,

which modules must (not) be separated, and the failure/repair rates of the modules. A tool

eliminates infeasible alternatives and generates a design space (1), which includes a set of

3 Interaction between the RUs is redirected through Inter-Process Communication.
4 Modeled as part of the RM as mentioned in Sect. 4.

Software Qual J



decomposition alternatives (Sozer et al. 2013). Each of these alternatives is evaluated with

respect to two quality attributes: availability and performance (2). We have previously

implemented Performance Overhead Analyzer, which estimates the performance overhead

imposed by a given decomposition (Sozer et al. 2013; Sozer 2009). In this paper, we

introduce Availability Analyzer, which provides an availability estimation for a given

decomposition alternative based on analytical models. Once performance and availability

estimations are known regarding each decomposition alternative, Optimizer (Sozer et al.

2013) can select the best alternative (3). The selected alternative is then implemented (4)

with the FLORA framework (Sozer et al. 2009).

In the rest of this paper, we focus on the Availability Analyzer tool, which is our main

contribution here. This tool is implemented in Java, and it makes use of the CADP toolset

(Garavel et al. 2007). Figure 2 depicts the intermediate artifacts and data flow during the

analysis process. Availability Analyzer takes a decomposition alternative and a set of

predefined MIOA specifications as input. MIOA specifications formally define the failure

and recovery behavior of system modules. First, Availability Analyzer generates a set of

I/O-IMC models corresponding to the given decomposition alternative. It also generates a

composition script, which specifies how these models must be combined. Then, this script

is executed with the CADP toolset to obtain a single CTMC model by composing all the

I/O-IMC models (2). Finally, the CTMC model is used for providing an availability

estimation (3). Our modeling approach and the details of this process are described in the

following section.

RU 0 RU 1

RU 2

RU 0

2

RU 1R

RU 0 RU 1

RU 2

Arch-Studio
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Performance

Overhead Analyzer

Availability 
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1
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Fig. 1 The overall process and the integrated toolset
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4 Modeling approach

The overall modeling/analysis procedure is divided into three steps, given software

modules decomposition as a set partition, together with the MTTF and MTTR for each

module:

1. An I/O-IMC model is automatically generated for each module, each RU,5 and the

RM.

2. All the generated I/O-IMCs are automatically composed into a single I/O-IMC,

describing the behavior of the whole system. During composition, the compositional-

RU 0 RU 1

RU 2

Availability 

Analyzer

Decomposition 

Alternative

KEY
data flow

Tool Module
dependencyExternal 

Tool

CADP
Availability 

Estimation

Composition Script

I/O-IMC Models

CTMC Model

"X.bcg" = 

branching stochastic 

reduction of 

{ hide recover in 

  … 

};

C

1

1

1

2
2

2

2

3

3

3

MIOA 

Specifications

1

Fig. 2 Availability analysis process

5 As described later, for each RU, two models are in fact generated.
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aggregation technique is used to efficiently generate the state space. The final I/O-IMC

is automatically converted into a CTMC model.

3. The output CTMC model is analyzed to compute system availability.

As mentioned above, a software system can be divided into several RUs, and each RU

contains a certain number of modules. The recovery manager (RM) achieves local recovery

by monitoring all the RUs and initiating recovery upon the detection of an RU failure. The

RUs do not directly communicate with each other; however, they are inter-dependent given

that they all interact with the RM.

Failure/recovery behavior of components in FLORA is characterized by the following

properties:

P1: The failure of any module within an RU causes the entire RU failure.

P2: Errors of modules are independent and they do not propagate beyond the boundaries

of RUs.

P3: The recovery of an RU entails the restart of all its modules (even the ones that did

not fail).

P4: Only one RU can be recovered at a time and the RM recovers the RUs on a first-

come-first-served (FCFS) basis.

P5: The restart of the modules inside a given RU is sequential.

As a modeling choice, the CM is considered to a be part of the RM, and as such, it is not

modeled separately. In addition, we make the following assumptions in our models:

A1: The failure and recovery6 of a module are governed by an exponential distribution7

(i.e., constant failure rate).

A2: The RM does not fail and it always correctly detects a failing RU.

A3: The recovery always succeeds.

Based on experimentation, we think that these assumptions are reasonable and they can

be easily changed within our framework (see Sect. 4.4).

Furthermore, the RM only interfaces with RUs and is unaware of the modules within

RUs. To this end, each RU exhibits two interfaces: a failure interface and a recovery

interface. The failure interface essentially listens to the failure of the modules within the

RU and outputs an RU ‘failure signal’ upon the failure of a module. It also outputs an RU

‘up signal’ upon the successful restart of all the modules. The RM listens to ‘failure’ and

‘up’ signals emitted by the failure interfaces of the RUs. The recovery interface is in charge

of the actual recovery of the various RU’s modules. Upon the receipt of a ‘start_recover’

signal from the RM, it starts a sequential recovery of the modules inside the RU. Each

module, recovery interface, failure interface, and the RM has a corresponding I/O-IMC

model. Figure 3 illustrates the interaction between these different models.

4.1 The underlying I/O-IMC modeling formalism

Input/output interactive Markov chain (I/O-IMC) (Boudali et al. 2007a, 2008) is the

underlying state-based modeling formalism we use. I/O-IMCs are a combination of input/

6 The recovery time includes the time for restarting failed modules and also the time for error detection,

error notification and diagnosis.
7 An exponential distribution might not be, in some cases, a realistic choice; however, it is also possible to

use a phase-type distribution which approximates any distribution arbitrarily closely.
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output automata (I/O-automata) (Lynch and Tuttle 1989) and interactive Markov chains

(IMCs) (Hermanns 2002). I/O-IMCs distinguish two types of transitions:

(1) Interactive transitions labeled with actions (also called signals); (2) Markovian

transitions labeled with rates k, indicating that the transition can only be taken after a delay

that is governed by an exponential distribution with parameter k.

Inspired by I/O-automata, actions can be further partitioned into:

1. Input actions (denoted a?) are controlled by the environment. They can be delayed,

meaning that a transition labeled with a? can only be taken if another I/O-IMC

performs an output action a!. A feature of I/O-IMCs is that they are input-enabled, i.e.,

in each state they are ready to respond to any of their inputs a?. Hence, each state has

an outgoing transition labeled with a?.

2. Output actions (denoted a!) are controlled by the I/O-IMC itself. In contrast to input

actions, output actions cannot be delayed, i.e., transitions labeled with output actions

must be taken immediately.

3. Internal actions (denoted a; ) are not visible to the environment. Like output actions,

internal actions cannot be delayed.

States are depicted by circles, initial states by an incoming arrow, Markovian transitions

by dashed lines (or keyword ‘rate’), and interactive transitions by solid lines. Figure 4

(taken from Boudali et al. 2008) shows an I/O-IMC with two Markovian transitions: one

from S1 to S2 with rate k and another from S3 to S4 with rate l. The I/O-IMC has one input

action a?. To ensure input-enabling, we specify a?-self-loops in states S3, S4, and S5. Note

that state S1 exhibits a race between the input and the Markovian transition: In S1, the I/O-

IMC delays for a time that is governed by an exponential distribution with parameter k and

moves to state S2. If, however, before that delay ends, an input a? arrives, then the I/O-

IMC moves to S3. The only output action b! leads from S4 to S5.

We say that two I/O-IMCs synchronize if either (1) they are both ready to accept the

same input action or (2) one is ready to output an action a! and the other is ready to receive

Fig. 3 Interaction between the various I/O-IMC models. A dashed box indicates an RU boundary, and a

solid box indicates an I/O-IMC model
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that same action (i.e., has input action a?). I/O-IMCs can be combined with a parallel

composition operator ‘‘||’’ to build larger I/O-IMCs out of smaller ones. The behavior of

P ¼ QjjR, i.e., the parallel composition of I/O-IMCs Q and R, is the joint behavior of its

constituent I/O-IMCs (details can be found in Boudali et al. 2007a).

Another important operation on I/O-IMCs is aggregation (or minimization). Aggrega-

tion is the process of transforming an I/O-IMC into a smaller and equivalent I/O-IMC. This

is indeed a state-space reduction which generalizes the notion of lumping in CTMCs. In

this work, we have used weak bisimulation (Boudali et al. 2007a) to aggregate I/O-IMCs.

It was previously shown that weak bisimulation satisfies congruence with parallel com-

position and hiding, and it leads an equivalent model in terms of behavior (Boudali et al.

2007b).

The compositional-aggregation technique is a key procedure, used within the I/O-IMC

formalism, for obtaining the overall system I/O-IMC model by composing, in successive

iterations, a number of smaller I/O-IMCs (corresponding to the various system compo-

nents) and reducing the state space of the generated I/O-IMC as the composition takes

place. The compositional-aggregation technique has proved to be very effective in com-

bating the infamous state-space explosion problem encountered in such models. The

resulting system I/O-IMC reduces (in many cases) to a CTMC which can be then analyzed

using standard methods to compute performance and/or dependability measures.

4.2 Specification and automatic generation of I/O-IMC models

We use a formal language called MIOA (Kuntz and Haverkort 2008) to describe any I/O-

IMC model. MIOA is based on the IOA language defined in Garland et al. (2004). The

MIOA language is used to describe concisely and formally an I/O-IMC in the same way

the IOA language describes I/O-automata. The MIOA (or IOA) language provides pro-

gramming language constructs, such as control structures and data types, to describe

complex system model behaviors. Once a MIOA specification/description of an I/O-IMC

model has been laid down, an algorithm explores the state space and automatically gen-

erates the corresponding I/O-IMC model. In fact, automatically deriving the I/O-IMC

models becomes essential as the models grow in size. For instance, the RM I/O-IMC

coordinating 7 RUs has 27,399 states and 397,285 transitions. In our framework, the RM

I/O-IMC size is O(n!), where n is the number of RUs. The failure and recovery interface

S1

S2

S3

S4a? a?

a?

a?

S5
b!

λ

µ

a?

Fig. 4 An example I/O-IMC model
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I/O-IMC sizes are Oð2mÞ and O(m), respectively, where m is the number of modules within

the RU. The module I/O-IMC size is constant (i.e., four states).

In the following, we will first outline the basics of the MIOA language and then explain

the generation of I/O-IMC models based on a MIOA specification.

The MIOA language Fig. 5 shows the MIOA specification of the failure interface I/O-

IMC model as an example. Any MIOA specification is divided into three sections: (1)

Signature where input/output/internal signals and Markovian rates are specified (Lines

2–4), (2) States where the states of the I/O-IMC are defined in terms of variables (Lines

5–7), and (3) Transitions where the I/O-IMC transitions are defined in a precondition-

effect style (Lines 8–24). In order for the transition to take place, the precondition, which is

a Boolean expression, has to hold.

In Fig. 5, the signature consists of the failed/up signals of the n modules belonging to

the RU (Line 3), one output signal of the RU ‘failed’ signal, and one output signal of the

RU ‘up’ signal (Line 4). The states of the failure interface I/O-IMC are defined (Lines 5–7)

using Set and Bool data types, where ‘set’ (of size n) holds the names of the modules that

have failed and ‘rufailed’ indicates if the RU has or has not failed. The initial state is also

defined in the States section; for instance, the failure interface initial state is composed of

‘set’ being empty (Line 6) and ‘rufailed’ being false (Line 7). There are 4 kinds of possible

transitions; for example, the last transition (Lines 21–24) indicates that an RU ‘up’ signal

(up_RU!) is output if ‘set’ is empty (i.e., all modules are operational) and the RU has

indeed failed at some point (i.e., ‘rufailed’ = true), and the effect of the transition is to set

‘rufailed’ to false.

Generation of I/O-IMC models We have implemented the I/O-IMC model generation

based on the MIOA specifications. Algorithm 1 shows how the states and transitions of an

I/O-IMC are generated based on its MIOA specification.

Fig. 5 MIOA specification of the failure interface I/O-IMC model
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The algorithm keeps track of the set of states, the states that are yet to be evaluated and

the set of transitions generated, which are all initialized as empty sets (Lines 1–3). An

initial state is created which comprises the initialized state variables as defined in the

MIOA specification (Line 4). The initial state is added to the state set and the set of states

to be processed (Lines 5–6). Then, the algorithm iterates over the states in the set of states

to be processed until there is no state left to be processed (Lines 7–8). For each state, all the

transitions that are specified in the MIOA specification are evaluated (Line 9). If the

precondition of the transition holds, a new state is created, on which the effects of the

transition are reflected (Lines 10–11). If the resulting state does not already exist, it is

added to the set of states and the set of states to be processed (Lines 12–15). Also, a new

transition from the original state to the resulting state is added to the set of transitions (Line

16). If the precondition of the transition does not hold for an input signal, then a self-

transition is added to the set of transitions to ensure that the generated I/O-IMC is input-

enabled (Lines 17–22).

4.3 I/O-IMC models for local recovery

In this section, we provide details on the four basic I/O-IMC models used in our frame-

work, namely the module, the failure interface, the recovery interface, and the recovery

manager. The running example (Fig. 3) consists of two RUs: RU 1 has one module A and

RU 2 has two modules B and C, and a recovery manager. By convention, the starting state

of any I/O-IMC is state 0 and the RUs are numbered starting from 1.

The module I/O-IMC Fig. 6 shows the I/O-IMC of module B. The module is initially

operational in state 0, and it can fail with rate 0.2 and move to state 2. This means
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MTTF ¼ 5 h as such rate ¼ 1=MTTF ¼ 0:2 (1/h). In state 2, the module notifies8 the

failure interface of RU 2 about its failure (i.e., transition from state 2 to 1). In state 1, the

module awaits to be recovered (i.e., receiving signal ‘recovered_B’ from the recovery

interface), and once this happens, it outputs an ‘up’ signal notifying the failure interface

about its recovery (i.e., transition from state 3 to 0). Signal ‘recovering_2’ is received from

the recovery interface, indicating that a recovery procedure of RU 2 has been initiated. The

remaining input transitions are necessary to make the I/O-IMC input-enabled.

The failure interface I/O-IMC Figure 7 shows the I/O-IMC model of RU 2 failure

interface. The failure interface simply listens to the failure signals of modules B and C, and

outputs an RU ‘failure’ signal (i.e., ‘failed_2’) upon the receipt of any of these two signals.

In fact, this interface behaves as an OR Boolean logic. Subsequently, the failure interface

outputs an RU ‘up’ signal (i.e., ‘up_2’) when the failed module(s) has(have) output its(-

their) ‘up’ signal(s). For instance, consider the following sequence of states: 0, 1, 4, 7, and

0; this corresponds to modules B and C being initially operational, then B fails, followed

by RU 2 outputting its failure signal, then signal ‘up_B’ is received from module B, and

finally RU 2 outputs its own ‘up’ signal.

The recovery interface I/O-IMC Figure 8 shows the I/O-IMC model of RU 2 recovery

interface. The recovery interface receives a ‘start_recover’ signal from the RM (i.e.,

transition from state 0 to 1), allowing it to start the RU’s recovery. A ‘recovering’ signal is

then output (i.e., transition from state 1 to 2) notifying all the modules within the RU that a

recovery phase has started (essentially disallowing any remaining operational module to

fail). Then two sequential repairs (i.e., of B and C) take place both with rate 1 (i.e.,

transitions from state 2 to 3 and 3 to 4), followed by two sequential ‘recovered’ notifi-

cations (i.e., transitions from state 4 to 5 and 5 to 0).

The recovery manager I/O-IMC Figure 9 shows the I/O-IMC model of the RM. The RM

monitors the failure of RU 1 and RU 2, and when an RU failure is detected, the RM grants

its recovery by outputting a ‘start_recover’ signal. The RM has internally a queue of failing

0 1

2

3

recovered_B?

recovering_2?
up_B!

recovering_2?

recovered_B?
failed_B!

recovered_B?

recovering_2?

rate 0.2

recovering_2?

recovered_B?

Fig. 6 The module I/O-IMC model for module B in RU 2

8 Note that these models are used for availability estimation only and they do not necessarily reflect

software implementation. In an actual implementation, a module might not be aware of its failure to notify

it. External error detection mechanisms can be employed (Sozer et al. 2009) for this purpose.
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RUs that keeps track of the order in which the RUs have failed. The RM recovery policy is

to grant a ‘start_recover’ signal to the first failing RU (i.e., FCFS). For instance, consider

the following sequence of states: 0, 1, 4, 7, 2, 6, and 0; this corresponds to both RUs being

initially operational, then RU 1 fails, immediately followed by an RU 2 failure. Since RU 1

4
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failed_B?

up_B?

up_C?
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up_C?
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Fig. 7 The failure interface I/O-IMC model for RU 2

4

0

5

1

23
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start_recover_2? recovered_C!

rate 1.0

start_recover_2?

start_recover_2?

rate 1.0

recovered_B!
recovering_2!

start_recover_2?

Fig. 8 The recovery interface I/O-IMC model for RU 2
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failed first, it is granted the ‘start_recover’ signal (i.e., transition from state 4–7), the RM

then awaits for RU 1 ‘up’ signal, and once received, RM grants the ‘start_recover’ signal to

RU 2 (as RU 2 is still in the queue of failing RUs) (i.e., transition from state 2–6). Finally,

the RM receives ‘up_2’ and both RUs are operational again.

It should be noted that I/O-IMC models are not exposed to the user. They are auto-

matically generated and composed. Therefore, their readability and understandability are

not a concern.

4.4 I/O-IMC modeling flexibility

Modeling flexibility and modularity is a powerful feature of the I/O-IMC formal-

ism (Boudali et al. 2007b, 2008). Any of the I/O-IMC models can be locally modified

without a need to modify the other models. For example, if the recovery policy is not going

to be FCFS anymore, the model regarding the recovery manager (Fig. 9) should be

changed only. The other models can be used as is. In principle, one can form a library of

recovery manager I/O-IMC models each of which defines a different strategy. One of them

can be picked during the model composition step. The complexity of these models can

differ based on the defined strategy.
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Fig. 9 The recovery manager I/O-IMC model
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One can also alter some or all of the assumptions made above. For instance, the models

can be improved to reflect the real system behavior by (1) using failure (or repair) dis-

tributions other than the exponential distribution, (2) explicitly model the communication

manager and the various communication delays, or (3) allow the RM to fail. To be able to

incorporate such changes, one should modify the corresponding analytical model (MIOA

specification). To specify redundancy, for instance, one should introduce a different failure

interface I/O-IMC model (Fig. 7), which defines how/when a failure happens. The current

model is generated based on the MIOA specification shown in Fig. 5, where a failure signal

(i.e., ‘failed_RU’) is triggered if one of the modules fails. This behavior can be modified

such that the failure signal is triggered only when two or more redundant modules fail.

4.5 Implementation details

The overall data flow and the set of artifacts of Availability Analyzer are depicted in Fig. 2.

Hereby, the input decomposition alternative is simply represented as a set partition. For

example, the decomposition with three modules and two RUs, as shown in Fig. 3, is

provided as f [A(mttr,mttf)] [B(mttf,mttr), C(mttf,mttr)]g, where mttf and mttr are values

of the module’s MTTF and MTTR (reciprocal of the failure and repair rate, respectively).

Availability Analyzer maps all the modules and RUs (i.e., partitions) in the specification

to MIOA specifications, which are used by Algorithm 1 to explore the state space and

generate the corresponding I/O-IMCs. Based on the specified decomposition, Availability

Analyzer also generates the corresponding I/O-IMC for the RM. All the generated I/O-IMC

models are output in a file format (Aldebaran) that can be processed with the CADP toolset

(Garavel et al. 2007). In addition to generating all the necessary I/O-IMCs, Availability

Analyzer generates a composition/analysis script, which conforms to the CADP SVL

scripting language (Garavel and Lang 2001). Figure 10 shows a part of the generated SVL

script, which composes the I/O-IMC models for the example decomposition with three

modules and two RUs (See Fig. 3).

The generated composition script first composes the recovery interface I/O-IMCs of

RUs with the module I/O-IMCs that are comprised by the corresponding RUs. For

instance, in Fig. 10, the I/O-IMCs of modules B and C are composed with the recovery

interface I/O-IMC of RU 1 (Lines 6–10). Similarly, the module A I/O-IMC is composed

with the recovery interface of RU 2 (Lines 16–18). The resulting I/O-IMCs are then

composed with the failure interface I/O-IMCs of the corresponding RUs. Finally, all the

resulting I/O-IMCs are composed with the RM I/O-IMC. At each composition step, the

common input/output actions that are only relevant for the I/O-IMCs being composed are

‘‘hidden.’’ That is, these actions are used for the composition of I/O-IMCs and eliminated

in the resulting I/O-IMC. The execution of the generated SVL script within CADP com-

poses and aggregates all the I/O-IMCs based on the modules decomposition, reduces the

final I/O-IMC into a CTMC, and computes the steady-state availability.

5 Case study

5.1 MPlayer

We have applied local recovery to an open-source software, MPlayer (2015). MPlayer is a

media player, which supports many input formats, codecs, and output drivers. It has

approximately 700K lines of code and it is available under the GNU General Public
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License. In our case study, we have used version v1.0rc1 of this software that is compiled

on a Linux Platform (Ubuntu version 7.04).

To introduce local recovery, we have to decompose the MPlayer software architecture

into a set of RUs. One possible decomposition of system modules is shown in Fig. 11. In

this example, the system is partitioned into three RUs;

– RU AUDIO: wraps the Libao module, which controls the playing of audio.

– RU GUI: comprises the Gui module, which provides the graphical user interface of

MPlayer.

– RU MPCORE: encapsulates five modules of the system; Stream reads the input media

and provides buffering, seek and skip functions. Demuxer separates the input to audio

and video channels. Mplayer connects the other modules and maintains the audio–

video synchronization. Libmpcodecs embodies the set of available codecs. Libvo

displays video frames.

The decomposition of the system into a set of RUs is a semiautomated process that is

supported by the FLORA framework (Sozer et al. 2009). The architect/developer needs to

define the set of RUs, their contents (set of modules), and dependencies in the form of a list

of shared variables and exchanged function calls (interface). Then, the framework can

automatically perform the decomposition by synchronizing shared variables and for-

warding function calls via inter-process communication. We implemented several

decompositions in this way to compare alternative decompositions and evaluate the

accuracy of analytical estimations as described in the following subsection.

Fig. 10 SVL script that composes the I/O-IMC models according to the example decomposition as shown

in Fig. 3
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5.2 Experimentation and analysis

We have implemented local recovery for a total of three decomposition alternatives of

MPlayer. (1) Global recovery, where all the modules are placed in a single RU (f[Mplayer,

Libmpcodecs, Libvo, Demuxer, Stream, Gui, Libao]g), (2) local recovery with two RUs,

where the module Gui is isolated from the rest of the modules (f[Mplayer, Libmpcodecs,

Libvo, Demuxer, Stream, Libao] [Gui]g), (3) local recovery with three RUs, where the

module Gui, Libao, and the rest of the modules are isolated from each other (f[Mplayer,

Libmpcodecs, Libvo, Demuxer, Stream] [Libao] [Gui]g).
To be able to measure and compare the availability of these three implementations, we

have modified each module so that they fail with the specified failure rates (MTTF).

Hereby, we do not employ a common fault/error injection (Durares and Henrique 2006)

approach, where the module can fail or not depending on the error propagation behavior.

Our approach can be regarded as failure injection (Monnet and Bertier 2007; Alvarez and

Cristian 1997), where we directly make the system crash in exponentially distributed time

intervals. This is in alignment with our analysis approach, in which we make use of MTTF

values that represent the mean time to failure. In the experiment, our goal is to evaluate if

the analysis is accurate assuming that the provided input failure rates are correct. Hence,

we consider fault triggers and error propagation behavior out-of-scope. As such we do not

simulate these.

To simulate failure rates with exponential distribution, one can generate a probability

value with uniform distribution and use it as a parameter for calculating the inverse of

cumulative exponential distribution to find the amount of time that passes until the next

failure (Devroye 1986). This amount can be compared with the time elapsed since the last

failure to decide if a new failure should be triggered or not. We simulate failures with

Fig. 11 The modules decomposition view of the MPlayer software architecture
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threads that are periodically activated to crash the process they work on. These threads

regularly sleep for a second; however, operating system controls when exactly they

become awake. So, we perform a pseudorandom number sampling within each thread as

follows. We use cumulative distribution function of exponential distribution to calculate

the probability of failure based on the time elapsed since the last failure. Then we draw a

random probability value according to uniform distribution and decide on triggering the

failure or not by comparing this value with the calculated value. One such thread is created

for each module when the module is initialized. The operation of the thread is shown in

Algorithm 2.

The failure injection thread first records the initialization time (Line 1). Then, each time

it is activated, the thread calculates the time elapsed since the initialization (Line 3). The

MTTF value of the corresponding module and the elapsed time is used for calculating the

probability of error occurrence—assuming an exponential distribution—(Line 4). random()

returns, from a uniform distribution, a sample value r 2 ½0; 1� (Line 5). This value is

compared to the calculated probability to decide whether or not to trigger a failure (Line 6).

An illegal memory operation is performed (Line 8) to trigger a failure by crashing the

process, on which the module is running.

The RM component of FLORA logs the failure and recovery times of RUs to a file

during the execution of the system. For each of the implemented alternatives, we ran the

system for 5 hours. Then, we have processed the log files to calculate the cumulative time

Tavail when the RU that contains the core system module, Mplayer, has been operational.

The whole system is unavailable if and only if this RU is unavailable. So, Tavail corre-

sponds, by definition, to the system availability as a whole. We have calculated the steady-

state availability of the system per hour as Tavail
5
. The results of the measured system

availability are given in Table 2 for the different alternatives. Table 2 also shows the

estimated system availability based on the analytical models as described in Sect. 4.

We have used the MTTF values given in Table 1 for both the analytical models and the

failure injection threads. We have measured the MTTR values from the actual imple-

mentation by calculating the mean time it takes to restart a process and the corresponding

modules over 100 runs. The measured MTTR values are used in the analytical models as

listed in Table 1. We previously introduced an architectural style (Sozer et al. 2013) as a

specialization of xADL (Dashofy et al. 2002) and utilized a graphical user interface as an

extension of ArchStudio (Dashofy et al. 2002) to be able to specify failure and repair rates

for system modules. In the background, this specification is kept in the form of an XML
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document. Listing 1 shows a simplified example snippet from such a specification, where

the MTTF and MTTR values for the Mplayer module are defined.

For the sake of comparison, the last row of Table 2 shows the estimated availability for

the most extreme decomposition alternative. In this alternative, each module of the

MPlayer is placed in a different RU (i.e., seven RUs in total) to isolate all the modules from

each other. Hence, it leads to the highest availability that can be achieved (although such

an alternative might not always be feasible due to constraints imposed by the domain,

deployment, and performance requirements). The measured availability is not shown here

since we do not have an implementation for this decomposition alternative. It is very hard

to actually implement this alternative by refactoring legacy source code. In general,

implementing local recovery for any decomposition is a time-consuming procedure.

However, one can build analytical models for decomposition alternatives including the one

Table 2 Comparison between the estimated and measured system availability

Decomposition alternative Measured availability Estimated availability

all modules in 1 RU 83.27 83.60

Gui, the rest 92.31 93.25

Gui, Libao, the rest 97.75 98.70

each module in a separate RU – 99.96

Table 1 Measured MTTR val-

ues and specified MTTF values

for the MPlayer modules

Module MTTR (ms) MTTF (s)

Libao 480 60

Libmpcodecs 500 1800

Demuxer 540 1800

Mplayer 800 1800

Libvo 400 1800

Stream 400 1800

Gui 600 30
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in which each module is placed in a separate RU. As such, it is possible to get an

estimation for any alternative. In the following, we discuss model size and the analysis

time for all the decomposition alternatives listed in Table 2.

Table 3 lists the number of states in the final CTMC models after composition and the

time it took to perform the analysis on an average machine (i.e., single core, 2GHz

computer with 1GB memory). Hereby, the analysis time also includes the time it took to

perform the composition/aggregation operations on intermediate models. Also note that the

table lists the size of the final, reduced CTMC models. Intermediate models used during the

analysis process can be much larger. For instance, the largest CTMC encountered during

the analysis of the first decomposition alternative had 9966 states, although the final CTMC

has only eight states.

In Table 2, we observe that the measured availability and the estimated availability

values (in %) are quite close to each other. In general, the measured availability is lower

than the estimated availability. This is due in part to the communication delays in the

actual implementation, which are not accounted for in the analytical models. Communi-

cation among system modules is modeled using interactive transitions in the I/O-IMC

models, which are instantaneous. Hence, communication time delays are abstracted away

in these models. However, in reality, the recovery time includes the time for error

detection, diagnosis, and communication among multiple processes, which are subject to

delays due to process context switching and inter-process communication overhead.

6 Discussion

In this work, we use the recovery style (Sozer and Tekinerdogan 2008) to document

different architectural design alternatives for local recovery. This style was introduced for

making a local recovery design explicit at the architecture design level. On the one hand, it

is not a generically applicable style like common styles in practice such as the layered

architectural style. On the other hand, it is a specialization of, and therefore conforms to, a

generic viewtype, namely the module viewtype introduced in the Views and Beyond

approach (Clements et al. 2010). This specialization approach is also aligned with the

IEEE 1471 standard (Maier et al. 2001), which does not commit to any set of styles

because of the existence of different concerns that need to be addressed for different

systems. Therefore, the set of views should not be fixed and multiple viewpoints might be

introduced by specializing existing generic viewpoints to document a particular concern.

To the best of our knowledge, there is no other architectural style proposed in the literature

to specifically document a local recovery design.

In this paper, we evaluated four different decomposition alternatives. The number of

such alternatives grows exponentially with respect to the number of modules in the system.

It turns out that the total number of ways to partition a set of n elements into arbitrary

Table 3 The size and the anal-

ysis time of the automatically

generated I/O-IMC models

Decomposition alternative Number of states Analysis time

all modules in 1 RU 8 1 min 6 s

Gui, the rest 20 1 min 26 s

Gui, Libao, the rest 60 1 min 49 s

each module in a separate RU 13700 4 min 47 s
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number of non-empty, disjoint sets is counted by the nth Bell number (Sozer et al. 2013).

This number is 15 and 877 when the number of modules n is 4 and 7, respectively. It

becomes more than a billion when n is 15. Therefore, an exhaustive search in this design

space might not be always feasible. For this reason, we previously introduced a hill-

climbing approach (Sozer et al. 2013), where we start from a decomposition and search the

design space through neighbor alternatives. A neighbor alternative is defined as the same

decomposition except a transfer of a module to a different RU. A new RU is created by

moving a module to a new RU or an RU is removed when its only module is moved into

another RU. The algorithm terminates when none of the neighbor alternatives leads to

improvement with respect to the objective function. The drawback of this approach is that

the algorithm can get stuck in a local optimum point (Sozer et al. 2013). In this paper, we

focused on estimating availability for a given decomposition alternatives. These estima-

tions can be used as input for optimization.

As explained in Sect. 3.1, we have to cope with a trade-off between availability and

performance overhead to select a decomposition alternative for local recovery. Therefore,

we also need to estimate performance overhead for each decomposition alternative. To this

aim, we previously developed a tool (Sozer et al. 2013), which can analyze source code to

calculate the number of function calls between the selected RU boundaries. We measured

the overhead caused per exchanged function and used it for estimating the overall overhead

caused by a decomposition alternative by calculating the number functions exchanged

among the RUs.

Figure 12 depicts a comparison between the estimated performance overhead and the

estimated availability for the four decomposition alternatives listed in Table 2. The vertical

axis on the left-hand side corresponds to availability. The vertical axis on the right-hand

side corresponds to performance overhead. The ranges of these two axes are different

(75–100 vs. 0–25); however, they have the same scale. The horizontal axis marks the

number of RUs included in the corresponding decomposition alternative. In fact,

Fig. 12 The trade-off between availability and performance overhead
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availability and performance overhead measures are not dependent only on the number of

RUs, but also how these RUs are defined. If the number of RUs is equal to 1 or if it is equal

to the number of modules, then there is only one decomposition alternative. This is,

however, not the case if the number of RUs is more than 1 and less than the number of

modules. In Fig. 12, we compare decomposition alternatives with two and three RUs as

well. Hereby, we refer to the particular decomposition alternatives that are listed in the

second and third rows of Table 2, respectively. Such comparisons can guide the designer to

make trade-off decisions and select a decomposition accordingly. For instance, Figure 12

shows that increasing the number of RUs from 3 to 7 leads to only a minor improvement in

availability compared with the significant increase in performance overhead.

7 Conclusion

Local recovery is applied to achieve higher system availability, and its effectiveness highly

depends on the implemented software decomposition. In this paper, we presented a method

that provides quantitative means to compare different software decomposition alternatives

in terms of their availabilities. We have automated the whole analysis procedure with a

Java/CADP-based tool. Local recovery was implemented for the open-source MPlayer

software, and we have applied our quantitative approach to estimating the availability for

four different decomposition alternatives. We have implemented three of these decom-

position alternatives and the estimated availabilities turned out to be very close to the

actual measured availabilities.

As further extensions of our work, one can revisit some or all of the assumptions made

in Sect. 4 and/or modify any of the four basic I/O-IMC models to more accurately rep-

resent the real system behavior.
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Software Qual J
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