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Abstract—Alvis is a novel modelling language defined espe-
cially for the embedded systems design and verification. The
language has its origin in CCS and XCCS process algebras, but
algebraic equations have been replaced with a Haskell based high
level programming language. Moreover, Alvis provides communi-
cation diagrams for the visual modelling of an embedded system
structure, especially from the control and data-flow point of view.
This paper presents an introduction to Alvis based on a model
of a controller for the Hexor II mobile robot.

Index Terms—Alvis modelling language, embedded systems,
Hexor II Robot, formal modelling

I. INTRODUCTION

The aim of the paper is to present an introduction to Alvis
modelling language based on a real example. For this purpose,
we have chosen a model of a controller for the Hexor II mobile
robot that has been already presented in [1], but this time a
different modelling language has been used and the model is
very close the real implementation of the controller.

The direct ancestors of Alvis are the XCCS [2], [3], [4]
and CCS process algebras [5], [6], [7]. CCS (Calculus of
Communicating Systems) is one of the most famous process
calculi. It provides a tool for the high-level description of inter-
actions, communications, and synchronizations among agents
and also algebraic laws to analyse agents properties. One of the
main disadvantages of CCS is the lack of a suitable graphical
language for modelling concurrent systems. A designer is
forced to use the textual (algebraic equations) form of a system
description.

XCCS (eXtended CCS) is a graphical extension of the
CCS process algebra. XCCS provides a graphical modelling
language for the description of interactions among agents, but
still preserves algebraic equations to describe the behaviour of
individual agents. XCCS is compatible with CCS calculus. It
is possible to transform an XCCS model to an equivalent CCS
script automatically. Generated CCS scripts are compatible
with Edinburgh Concurrency Workbench [8], so the CWB tool
can be used for the formal verification of XCCS models.
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The CWB tool is also one of the main disadvantages of
XCCS. An application of XCCS and finally CWB for the
modelling and verification of a controller for the Hexor II
mobile robot [4], [1] exposed essential limitations of the
verification tool. CWB is not able to cope with a state space
with more than 300 thousands states.

Alvis, as well as XCCS, uses two layers, a graphical and a
textual one. The Alvis graphical layer, called communication
diagrams, is a significant enhancement of XCCS diagrams.
Communication diagrams are hierarchical constructions and
reflect the structure of the system under consideration more
precisely (active and passive agents, two-way ports, etc.) than
XCCS diagrams. The XCCS algebraic layer has been replaced
with a completely new Alvis code layer. Instead of algebraic
equations, Alvis uses a high level programing language based
on the Haskell syntax. Moreover, Haskell is used to define
data types for parameters and to define functions for data
manipulation.

Alvis provides a possibility of the formal verification of
models. An Alvis model is transformed into a labelled tran-
sition system (LTS) encoded using the Binary Coded Graphs
(BCG) format. Then, the CADP toolbox [9] is used to verify
its properties.

The paper is organised as follows. Section II presents some
basic information about Hexor mobile robot and the new
controller. Section III deals with communication diagrams
– the graphical layer of Alvis. The second (code) layer is
described in Section IV. A short summary is given in the final
section.

II. HEXOR MICROCONTROLLER MODEL

Hexor II (see Fig. 1) is an autonomous 6-legged mobile
robot developed by the Stenzel company for educational pur-
poses [10]. An Alvis model of the ATmega128 microcontroller
[11] is considered in the paper. The tasks of that chip are as
follows:

• scanning sensors (sonar, tentacles, infrared),
• generating signals for servos (PWM),
• executing the movement algorithm,
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• communicating with the host computer,
• executing higher level algorithm (obstacle avoidance,

obstacle search, etc.).

Figure 1. Hexor mobile robot

Because of some software platform limitations [12], [13] of
the original design, a new Hexor’s internal controlling software
architecture has been developed. The basic program with one
control loop and interrupt routines has been replaced by a real-
time embedded operating system. Each subsystem of Hexor
robot is managed by its own task (see Fig. 2). One of the main
advantages of these modifications is a more clear and easy to
understand source code. This simplifies the parent control layer
and enhances response time of a robot.

Figure 2. Hexor task model

The complete Hexor system architecture is presented in
Fig. 3. It consists of three elements:

• AvrX micro-kernel,
• HexorNG software,
• High level intelligence.
Figure 2 presents a model of tasks and communication in the

proposed new system. Ovals represent tasks, arrows represent
FIFO’s and data flow direction, and the square represents ISR1.
The tasks are used for the following purposes:

• Control & Communication task is the main system task
responsible for setting up hardware, interchanging data

1Interrupt Service Routine

Hexor hardware

AvrX

HexorNG

High level inteligence

Figure 3. Hexor system architecture

between other tasks, communication services and basic
intelligence. The last feature means simply: do not run
into obstacles.

• Sonar task provides the most recent sonar sensor read-
ings.

• IR and Tentacles tasks report any changes in sensors state.
• Movement task controls servo positions and executes the

movement algorithm on demand.
• Watchdog task simply resets the hardware watchdog chip

every second.
• ISR is responsible for generating proper PWM2 signals

for servos. It is also used for context switching and timer
execution for AvrX micro kernel.

III. COMMUNICATION DIAGRAMS

The Alvis graphical layer is used to define interconnections
among agents and takes the form of a hierarchical communi-
cation diagram. The term agent stand for any distinguished
part of the model under consideration with its own identity.
The graphical layer shows all communication channels among
agents. It is composed of a set of pages, i.e. non-hierarchical
parts of the diagram. A page may contain active agents, passive
agents and connections among them.
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Figure 4. Communication page

There are two kinds of agents in Alvis. Active agents (drawn
as ovals) perform some activities and are similar to tasks in
Ada programing language [14], [15], [16]. Each of them can
be treated as a thread of control in a concurrent system. On
the other hand, passive agents (drawn as rectangles) do not
perform any individual activity, and are similar to protected
objects (shared variables). Passive agents provide mechanism
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for the mutual exclusion and data synchronisation. Moreover,
Alvis provides mechanisms for the description of interrupt
handling routines in the form of agents. An interrupt service
is represented by a single active agent called interrupt agent.
Such an agent is drawn using dashed lines.

The Hexor controller communication diagram contains four
pages. Communication page is shown in Fig. 4. The page
contains four agents. Two of them are simple FIFO queues
for storing frames to be send or to be received. Another two
agents are interrupt service routines. They provide interrupt
driven UART communication. The Receiver task is executed
every time a byte is ready to be taken from shift register.
When it receives a complete frame it is stored in the queue.
The Transmitter task is executed every time a byte was shifted
from UART register. It takes frames from the output queue and
sends them byte by byte.

An agent can communicate with other agents through ports.
Ports are drawn as circles placed at the edges of the corre-
sponding oval or rectangle. There is no distinction between
input and output ports on communication diagrams. Any port
can be used as an input or output one. The role a port plays
is defined by its connections and the implementation of the
corresponding agent.

It should be underlined that Alvis is a case sensitive
language. Identifiers for agents must start with an uppercase
letter, while identifiers for ports must start with a lowercase
letter. Other characters (if any) must be alphabetic character,
either uppercase or lowercase, digits, or an underscore.
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Figure 5. ServoController page

Alvis agents can communicate with each other directly
using the connection mechanism (communication channels).
A connection between two active agents creates a synchroni-
sation point between them. On the other hand, a connection
between an active and an passive agents is similar to an asyn-
chronous procedure call. Communication diagrams provide

two kinds of connections: one-way (see Fig. 5) and two-way
(see Fig. 4) ones. A one-way connection contains an arrowhead
that points out the input port, but such a port is treated as
an input port only for this particular connection. It can play
another role for its other connections.

Figure 5 presents the ServoController page. It consists of
two major elements. The first is a five channel software
PWM implementation that generates signals for servos. The
second element is the MoveController agent that executes the
movement algorithm. It sets desired servo positions according
to the selected movement mode (stop, forward, backward,
left or right). Both agents are exchanging information via the
ServoSig passive agent, which has also an input port for setting
the camera position.
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Figure 6. Hexor page

Alvis communication diagrams are hierarchical graphs.
Pages are combined using the so-called substitution mecha-
nism. An active agent at one level can be replaced by a page
on the lower level, which usually gives a more precise and
detailed description of the activity represented by the agent.
Such an substituted agent is called hierarchical one. Hierar-
chical agents are indicated by black triangles. It should be
underlined that all ports of an hierarchical agent must appear
on the corresponding subpage as external (unconnected) ones.

The communication diagram for the controller contains two
levels. The first (higher) level is shown in Fig. 6. Three agents
with black triangles icons stand for three different modules of
the system under consideration. Agent Controller represents
the main control process of the system. The last page of
the communication diagram is shown in Fig. 7. The agents
represent the robot sensors.

IV. CODE LAYER

To describe the behaviour of individual agents, Alvis uses
a high level programing language based on the Haskell [17]
syntax called Alvis Behaviour Description Language or shortly
ABD language [18]. The ABD language has its origin in CCS
and XCCS process algebras. However, to make the language
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Figure 7. Sensors page

more convenient from the practical (engineering) point of
view, algebraic equations and operators have been replaced
with statements typical for high level programming languages.

ABD language is used to define:
• data types used in the model under consideration,
• functions for data manipulation
• behaviour of individual agents.
This section presents a few pieces of Alvis code that

demonstrate the most important parts of the language.
The code layer of an Alvis model is stored in a textual

source file. The file contains two parts – the preamble and im-
plementation. Encoded in pure Haskell, the preamble contains
definitions of types, constants and functions used to manipulate
data in a model. The implementation contains definitions of the
agents’ behaviour and is encoded using native ABD language
statements.

Table I
SELECTED BASIC HASKELL TYPES

Type name Description
Char Unicode characters
Bool Values in Boolean logic – True and False
Int Fixed-width integer values – The exact range of

values represented as Int depends on the system’s
longest native integer.

Double Float-point numbers typically 64 bits wide and uses
the system’s native floating-point representation.

The ABD language uses the Haskell type system. Selected
basic Haskell’s types recommended to be used in ABD lan-
guage are presented in Table I. The most common composite
data types in Haskell (and ABD) are lists and tuples. A list is
a sequence of elements of the same type, with the elements

being enclosed in square brackets and separated by commas,
while a tuple is a sequence of elements of possibly different
types, with the elements being enclosed in parentheses and
separated by commas. Moreover, to make the source code
more readable, one can introduce a synonym for an existing
type (see type Frame below) and define the so-called algebraic
data types, e.g. an enumeration type (see type FrameType
Listing 1). For more details see for example [17].

data FrameType = IR | TENT | MOVE | CAM | SONAR
type Frame = (FrameType, Int)

char2ftype :: Char -> FrameType
char2ftype ’1’ = IR
char2ftype ’2’ = TENT
char2ftype ’3’ = MOVE
char2ftype ’4’ = CAM
char2ftype ’5’ = SONAR

Listing 1. Part of the model preamble

Listing 1 presents a part of the model preamble.
The implementation part contains definitions of the agents’

behaviour. It contains at least one agent block of the following
form:

agent AgentName
-- declaration of parameters
-- agent body

agent Sonar
-- parameters

value :: Int
oldVal :: Int

-- body
oldVal = 0
startPoint:

in sonar value
jump (value == oldVal) sNoChange
out getSonar value
oldVal = value

sNoChange:
delay 100
jump startPoint

Listing 2. Agent Sonar implementation

Let us consider the definition of the agent Sonar presented
in Listing 2. The agent Sonar uses two integer parameters
value and oldVal (with the initial value equal to 0). ABD
language uses the recursion mechanism for looping. Two
language concepts are used for this purpose labels and the
jump statement. Labels are identifiers followed by a colon (e.g.
startPoint: in Listing 2). The jump statement is composed
of the jump key word and a label name (without a colon).
Most Alvis statements may be followed by a guard. A guard
is an additional constraint, which must be fulfilled before
the corresponding statement is executed. Guards are logical
expressions, written in Haskell, placed inside round brackets
after the statement name (see the first jump statements in
Listing 2).



The ABD language uses two statements for the commu-
nication. The in instruction for collecting data and out for
sending. Each of them takes a port name as its first argument
and optionally a parameter name as the second. Parameters are
not used for pure synchronisations. The in statement assigns
the collected value to its parameter, while the out statement
sends the value of its parameter (or constant). The Sonar agent
collects data through the port sonar and sends data through
the port getSonar. To postpone the agent for 100 milliseconds
the delay statement is used.

In the implementation part, the = symbol stands for the
assignment operator and is a part of the exec statement. The
exec statement is the default one in the ABD language and
therefore, it can be omitted if no guard is used. For example,
the Sonar agent uses the exec statement to assign a new value
to the oldVal parameter.

The Ir and Tentacles agents are implemented in a similar
way.

agent PWM
-- parameters

servos :: (Int,Int,Int,Int,Int)
-- left leg, tilt, rigth leg,
-- camera horizontal, camera vertical
counter :: Int

-- body
counter = 0

startPoint:
jump (counter < 60 ) go

counter = 0
go:
in clock
in servosignals servos
alt (counter == 0)

out srv1 1
out srv2 1
out srv3 1
out srv4 1
out srv5 1

alt (counter > 0)
out (counter == get1st servos) srv1 0
out (counter == get2nd servos) srv2 0
out (counter == get3rd servos) srv3 0
out (counter == get4th servos) srv4 0
out (counter == get5th servos) srv5 0

counter = counter + 1
jump startPoint

Listing 3. Agent PWM implementation

A communication through a port can be a pure synchronisa-
tion i.e. a communication without sending values of parame-
ters. Such a communication only synchronises two agents. For
example, the PWM agent (see Listing 3) synchronises with the
clock.

In order to allow for the description of agents whose
behaviour may follow different alternative paths, the ABD lan-
guage offers the alt statement. The statement is similar to the
basic select statement from Ada programming language. Let
us consider the piece of code from Listing 4. The behaviour
of the agent Controller is described by a single loop with

agent Controller
f :: Frame
ft :: FrameType
d :: Int

-- body
startPoint:
alt -- frame received from serial link
in frame f
ft = fst f
alt (ft = IR)

out ir -128
alt (ft = TENT)

out tentacles -128
alt (ft = SONAR)

out sonar -128
alt (ft = MOVE)

d = snd f
out move d

alt (ft = CAM)
d = snd f
out camera d

alt -- new sensor values to send
in ir d
f = (IR, d)
out frame f

alt
in sonar d
f = (sonar, d)
out frame f

alt
in tentacles d
f = (TENT, d)
out frame f

jump startPoint

Listing 4. Agent Controller implementation

four alternatives (branches). Each branch may have attached
a guard. A branch is called open, if it does not have a guard
attached or its guard evaluates to true. Otherwise, a branch
is called closed. When an alt statement is to be executed, all
guards are evaluated to determine, which branches are open.
If more than one branch is open, the choice between them is
indeterministic.

agent FQ
fqueue :: [Frame]
count :: Int
f :: Frame

-- body
count = 0
alt (count > 0)
f = head fqueue
fqueue = tail fqueue
count = count -1
out get f

alt
in put f
fqueue = fqueue ++ [f]
count = count + 1

Listing 5. Agent FQ implementation

The alt statement is also used for description services
provided by passive agents. Let us consider the implementation



of the FQ agent presented in Listing 5. The agent represents a
FIFO queue. The two alt branches provide the queue interface.
The first one describes collecting the queue head, while the
second describes including a new element to the queue.

agent Receiver
ftype :: FrameType
c1 :: Char
c2 :: Char
f :: Frame
count :: Int

-- body
count = 1
in udr c1
critical

alt (count == 1)
ftype = char2ftype c1
count = count + 1

alt (count == 2)
c2 = c1
count = count + 1

alt (count == 3) -- complete frame received
f = (ftype, (char2int c2 c1))
out fget f
count = 1

Listing 6. Agent Receiver implementation

As it was already said, an interrupt service is represented
by an interrupt agent. Example of an implemention such an
agent is shown in Listing 6. The Receiver agent is triggered
every time a byte is ready to be taken from the shift register.
When it receives a complete frame it is stored in the queue.
The char2int function is used to convert two digits into an
integer. The Transmitter agent works in a similar way. It is
triggered every time a byte was shifted from UART register.
It takes frames from the output queue and sends them byte by
byte.

V. SUMMARY

Selected parts of an Alvis model of a controller for the
Hexor II mobile robot have been presented in the paper. The
model has been used to present a survey of main features of
Alvis modelling language. Alvis has its origin in the CCS and
XCCS process algebras, but to make it more convenient from
the practical point of view, algebraic equations and operators
have been replaced with statements typical for high level
programming languages.

Defined for the embedded systems design, Alvis seems to be
more accessible for engineers than classical formal methods,
but still preserves a possibility of formal verification with
CADP (Construction and Analysis of Distributed Processes)
toolbox [19], [9].

To verify or simulate an Alvis model a third layer is intro-
duced. It gathers information about all agents in the model and
their states. The meta-data layer is generated automatically.
Each agent is described using the so-called agent description
block (ADB) and a list of its parameters values. The meta-data
layer keeps the current state of a model and is used for the LTS
generation. To verify a model, the generated LTS is encoded

in the BCG (Binary Coded Graphs) format. Then, the CADP
Evaluator is used to check whether the generated LTS satisfies
its requirements defined using µ-calculus [20] formulas. The
CADP toolbox and BCG format allow us to analyse models
up to 30 milion states.
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