
Modelling and Verification of Real-Time
Systems with Alvis

Marcin Szpyrka, Łukasz Podolski and Michał Wypych

Abstract Alvis is a formal language specifically intended for modelling systems
consisting of concurrently operating units. By default, the time dependencies of the
modelled system are taken into account, what is expressed by the possibility of de-
termining the duration of each statement performed by the model components. This
makes Alvis suitable for modelling and verification of real-time systems. The paper
focuses on Alvis time models. The article outlines the syntax and semantics of such
models, and discusses the main issues related to the generation of Labelled Transi-
tion Systems for time models. Particular attention was paid to tools that support the
verification process.

1 Introduction

The development of concurrent systems for which we want to guarantee a high level
of reliability can be a tedious and difficult task. High degree of concurrency makes
system more flexible but increases the risk of leaving in such a system significant
bugs that cannot be detected during the system testing stage. Combination of con-
currency and time dependencies makes the task even more difficult. The verification
and validation process for such systems cannot be based on classical approaches
like peer reviewing and testing [5]. Application of formal methods in the develop-

Marcin Szpyrka
AGH University of Science and Technology, Department of Applied Computer Science,
Al. Mickiewicza 30, 30-059 Krakow, Poland e-mail: mszpyrka@agh.edu.pl

Łukasz Podolski
AGH University of Science and Technology, Department of Applied Computer Science,
Al. Mickiewicza 30, 30-059 Krakow, Poland e-mail: podolski@agh.edu.pl

Michał Wypych
AGH University of Science and Technology, Department of Applied Computer Science,
Al. Mickiewicza 30, 30-059 Krakow, Poland e-mail: mwypych@agh.edu.pl

1

2 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

ment process may significantly reduce the costs and affects the product quality [2].
However, the use of formal methods in the development process requires additional
effort in learning new skills and spending more time on analysis and design stages
of a software development cycle.

The most popular formal languages that can be used for modelling real-time sys-
tems include selected classes of Petri nets [9], [13], [14], time automata [3], and time
process algebras [1]. Due to their specific mathematical syntax, these languages are
usually treated as the ones suitable only for scientists. In contrast to these languages
Alvis [16], [15] is being developed for making the modelling and verification pro-
cess simpler and more accessible to software developers. The heavy mathematical
foundations are hidden from users without compromising the capabilities and ex-
pressive power of the formalism. Alvis is equipped with a graphical language [15]
for modelling communication channels between the considered system units (called
agents in Alvis) and a high level programming language for defining agents’s be-
haviour [18]. The language is supported by a set of tools called Alvis Toolkit. The
software can be used for designing Alvis models, for generating executable Haskell
files, for generating Labelled Transition Systems [2] (LTS graphs), and for export-
ing the LTS graphs to DOT, Aldebaran or CSV formats. This makes possible to
verify Alvis models with the most popular model checkers including nuXmv [6]
and CADP [7].

The paper is organised as follows. Section 2 provides a short introduction to the
Alvis language. Section 3 deals with semantics of time Alvis models. The concept
of LTS graphs for time models is discussed in Sec. 4. Conclusions and future works
are presented in the final section.

2 Alvis Language in a Nutshell

An Alvis model is a system of agents that usually run concurrently, communicate
with each other, compete for shared resources, etc. The set of agents can be divided
into two subsets active agents and passive agents. Active agents can be treated as
processes. Current version of the Alvis models (time and non-time models) supports
only so-called α0 system layer. It means that each active agent has access to its own
processor and can perform its statements in parallel with other agents. There is also
α1 system layer under development. The later layer is based on the assumption that
there is only one processor and all active agents compete for access to the processor.

Passive agents are used to represent shared resources. They provide a set of ser-
vices for other agents and prevent simultaneous access to the data they store. Passive
agents’ services do not have their own thread of control but always work in the con-
text of an active agent.

The set of agents of a given model is described with two description layers. The
graphical layer is called communication diagram. It takes the form of the directed
graph with nodes representing agents and edges representing communication chan-
nels between ports of agents. Alvis communication diagrams allow users to group a

Modelling and Verification of Real-Time Systems with Alvis 3

set of agents into a subsystem that is represented as a hierarchical agent at the higher
level. Hierarchical communication diagrams are used to simplify modelling of more
complex systems, but they do not influence the model semantics. Thus we will con-
sider only flat models in the remainder part of the article. For more information
on hierarchical communication diagrams see [15]. The second level contains the
Alvis code that defines the behaviour of active and passive agents. The small set of
Alvis statements is supported by the Haskell functional programming language [12].
Haskell is used to define parameters, data types and data manipulation functions.

agent A {
x :: Int = 0;
loop {
in p x;
delay 1;

}
}

agent B {
x :: Int = 0;
loop (every 8) {
in (0) p x;
null;

}
}

agent C {
x :: Int = 0;
loop {
x = pick [0,1];
out (8) get x;

}
}

agent D {
x :: Int = 0;
proc get {
x = pick [0,1];
out get x;
exit;

}
}

active agent

passive agent

port

communication
channel

passive agent
procedure

code layer

Fig. 1 Example of Alvis model

An example of Alvis model is shown in Fig. 1. The model is composed of three
active agents and one passive agent. Agents A and B compete for data provided by
agent C and for access to the agent D procedure. The behaviour of these agents
was defined for illustrating typical Alvis statements suitable for modelling real-time
systems.

• Agent A – The agent collects an integer via port p. It uses the blocking com-
munication [11] i.e. after initialisation of a communication it waits until agent
C provides the value or procedure D.get is accessible. After collecting an inte-
ger the agent is postponed for 1 time-unit. This behaviour is repeated inside the
infinite loop.

• Agent B – The agent uses the loop every statement. It means that the contents of
the loop is repeated every 8 time-units. The agent uses the non-blocking commu-
nication with argument 0. It means that the statement finalises a communication
with agent C or calls D.get procedure that must be accessible. If it is not possible,
the communication is abandoned. The null statement is necessary at the end of a
loop every statement.

4 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

• Agent C – The agent randomly selects a value from the given list, assigns it to
parameter x, and sends it via port get. If the agent initialises a communication
it waits at most 8 time-units for finalisation. Otherwise, the communication is
abandoned. This behaviour is repeated inside the infinite loop.

• Agent D – The passive agent is equipped with one procedure that provides a
randomly selected value from the given list.

Both the communication diagram and the code layer can be developed using
Alvis Editor software. The semantics of models is presented in the next section. For
more details about the Alvis syntax see the project website.1

3 Model Semantics

A state of an agent X is a tuple S(X) = (am(X), pc(X),ci(X), pv(X)), where am(X),
pc(X), ci(X) and pv(X) denote agent mode, program counter, context information
list and parameters values of the agent X respectively. A state of an Alvis model is
a sequence of such four-tuples as shown in Fig. 2 [15].

model’s agents︷ ︸︸ ︷

((am1, pc1, ci1, pv1), . . . ,

active agent︷ ︸︸ ︷
(ami, pci, cii, pvi), . . . ,

passive agent︷ ︸︸ ︷
(amj , pcj , cij , pvj), . . . , (amn, pcn, cin, pvn))

I – init
F – finished
W – waiting
X – running

agent mode

current
statement
order number

program
counter

extra information
about state
e.g. called procedures

context
information

current values
of agent’s
parameters

parameters
values

W – waiting
T – taken

agent mode

Fig. 2 Representation of an Alvis model state

An active agent can be in one of the following modes:

• Finished (F) – It means that the agent has finished its work.
• Init (I) – This is the default mode for agents that are inactive in the initial state.
• Running (X) – It means that the agent is performing one of its statements.
• Waiting (W) – It means that the agent is waiting for an event e.g. releasing a

currently inaccessible procedure

A passive agent is in the waiting mode if it is inactive and waits for another agent
to call one of its accessible procedures or in the taken (T) mode if it is executing
one of its procedures.

1 http://alvis.kis.agh.edu.pl

Modelling and Verification of Real-Time Systems with Alvis 5

The program counter points out the current statement of the corresponding agent.
The context information list contains additional information about the current state
of the corresponding agent e.g. if the agent is in the waiting mode, ci contains infor-
mation about events the agent is waiting for. In case of passive agents in the waiting
mode, the context information contains list of accessible procedures. The parame-
ters values tuple contains the current values of the agent parameters. The initial state
for the model from Fig. 1 is as follows:

((X,1, [],0),(X,1, [],0),(X,1, [],0),(W,0, [out(get)],0)

Table 1 Alvis transitions (α0 system layer)

Transition Arguments Description

TDelay Agent Int delay statement execution
TExec Agent Int exec statement execution
TExit Agent Int exit statement execution
TIn Port Int initialisation of communication, in statement
TInAP Port Port Int calling procedure by active agent, out statement
TInPP Port Port Int calling procedure by passive agent, out statement
TInF Port Port Int finalisation of communication with active agent, in statement
TJump Agent Int jump statement execution
TLoop Agent Int entering loop statement
TLoopEvery Agent Int entering loop every statement
TNull Agent Int null statement execution
TOut Port Int initialisation of communication, out statement
TOutAP Port Port Int calling procedure by active agent, out statement
TOutPP Port Port Int calling procedure by passive agent, out statement
TOutF Port Port Int finalisation of communication with active agent, out statement
TSelect Agent Int entering select statement
TStart Agent Int start statement execution
STInAP Port Port Int system version of TInAP – for wake up purposes
STInPP Port Port Int system version of TInPP – for wake up purposes
STOutAP Port Port Int system version of TOutAP – for wake up purposes
STOutPP Port Port Int system version of TOutPP – for wake up purposes
STDelayEnd Agent Int termination of agent’s suspension
STLoopEnd Agent Int termination of current loop every run
STInEnd Port Int abandonment of communication, non-blocking in statement
STOutEnd Port Int abandonment of communication, non-blocking out statement
STTime Int passage of time.

Execution of Alvis statements is described using the transition idea. For example
execution of the loop statement i.e. entering a loop if its guard is true (or there is no
guard) is represented by the TLoop transition. The activity of a transition is always
considered for a given agent and statement. The set of Alvis transitions for models
with α0 system layer is given in Tab. 1.

The transitions TInAP, TInPP TInF and TIn represent the in statement. The use
of four transitions for single statement is associated with the variety of situations in

6 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

which the statement can be used. Let us focus on the model from Fig. 1. When agent
A executes the statement in p x; it means that A wants to collect a value via port
p and assign it to parameter x. The agents does not know whether the value will
be provided by the active agent C or the passive agent D. On the other hand, from
the Alvis Compiler point of view these situations must be distinguished and they
are represented by different transitions. Similarly, four transitions are used to repre-
sent the out statement. For more information about different Alvis communication
modes see [11].

Despite the set of transitions that directly represent execution of some statements,
names of these transitions start with capital T, there are transitions that represent
some activities of the model runtime environment (so-called system transitions) –
names of these transitions start with capital S. These transitions represent waking up
of an agent that, from some reasons, is in the waiting mode. There is one exception,
the STTime transition, that represents the passage of time. It is used when there
are no transitions available in the current moment (e.g. all active agents are in the
waiting mode) but at least one of them will be enabled in some future moment. It is
used to shift the value of the global clock.

Table 1 contains the list of all Alvis transitions for time α0 models. The set
of transitions used in a given model depends on the statements used in the code
layer. For example the following transitions can be enabled for agent A from the
considered example: TLoop A 1, TInF A.p C.get 2, TInAP A.p D.get 2, TIn A.p 2,
STInAP A.p D.get 2, TDelay A 3, STDelayEnd A 3. It should be stressed that we
have four different transitions for the second statement.

3.1 Enable Rules

For each of the transitions from Tab. 1 we can define enable and firing rules. En-
able rules define conditions when the given transition is enabled. The firing rules
define how the given transition influences on the change of the current model state.
For active agents and transitions: TDelay, TExec, TExit, TJump, TLoop, TLoopEv-
ery, TNull, TSelect, and TStart the given transition is enable iff the agent is in the
running mode and the corresponding statement is the current statement, what is indi-
cated by the agent program counter. In case of communication transitions additional
conditions must be fulfilled:

• TInAP – There exists an accessible procedure connected with the considered port
of the active agent and none procedure is executed for the agent currently.

• TInF – There exists an active agent that already initialised a communication (out
statement) via a port connected with the considered port of the active agent, that
executes the transition, and none procedure is executed for the agent currently.

• TIn – Transitions TInAP, TInF are not enabled and no procedure is executed
for the agent currently – If it is not possible to call a procedure or finalise a
communication, the transition initialises a communication and moves the agent

Modelling and Verification of Real-Time Systems with Alvis 7

to the waiting mode. If it waits for a currently inaccessible procedure then the
STInAP transition wakes up the agent when the procedure is accessible.

Enable conditions for TOut, TOutAP, TOutF, and STOutAP transitions are de-
fined analogously. In case of passive agents the conditions are similar but the given
passive agent must be in the taken mode and the active agent in which context it
works must be in the running mode. For passive agents, transitions TInPP, TOutPP,
STInPP, and STOutPP are used instead of corresponding . . . AP transitions.

The system transitions STDelayEnd, STInEnd, STOutEnd are enabled if the agent
is in the waiting mode after executing the corresponding statements (in case of pas-
sive agent the agent is in the taken mode and the context agent is in the waiting
mode) and the waiting time has elapsed. Finally, the STLoopEnd transition is en-
abled if the agent has finished executing the contents of the corresponding loop
every statement and the period of the loop has expired.

3.2 Firing Rules

As it is presented in Sec. 4, in case of time models a few transitions can be executed
in parallel. However, to describe the firing rules we consider the results of executing
of individual transitions in a given state s. Let nextpc(n) denote the next program
counter determined on the basis of the code structure for the considered agent and
the current program counter n. For example, if we consider a TLoop transition then
nextpc(n) is equal to the number of the first statement inside the loop if the guard
is satisfied (or there is no guard) or the number of the first statement after the loop
otherwise. It is assumed that nextpc(n) = 0 if there is no next statement.

Assume we consider the result of a transition firing for agent X , n denotes the
number of the statement the considered transition refers to, and context(X) denotes
the active agent in which context X works if X is a passive agent. Firing of the
TExec, TJump, TLoop, TLoopEvery, TNull, TSelect or TStart transition sets pc(X)=
nextpc(n). Moreover, the TExec transition updates the value of the parameter used
as the left-hand side of the assign operator; TLoopEvery transition adds timer(n,d)
entry to ci(X), where d represents the number of time-units to the end of the current
loop run; and the TStart transition set its argument (agent) to the running mode and
its program counter to 1 if the agent is in the init mode. If X is an active agent and
nextpc(n) = 0 then any of these transitions (except TJump and TLoopEvery) sets
am(X) = F and ci(X) = []. The null statement is also used to point out the end
of the contents of a loop every statement. In such a case, the corresponding TNull
transition sets am(X) = W (or am(context(X)) = W if X is a passive agent), and
pc(X) to the number of the corresponding loop every statement.

Firing of the TDelay transition sets am(X) =W (or am(context(X)) =W if X is
a passive agent) and adds timer(n,d) entry to ci(X), where d represents the number
of time-units of the suspension.

If X is an active agent then firing of the TExit transition sets pc(X) = 0, am(X) =
F, and ci(X) = []. If X is a passive agent then firing of the TExit transition ends

8 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

the current procedure (let us denote it by X .p) i.e. sets am(X) = W, pc(X) = 0,
and ci(X) to the set of X procedures accessible in the new state. Moreover, if the
procedure has been called by an agent Y then the proc(X .p) entry is removed from
ci(Y) and pc(Y) is set to its next value (if it is 0 and Y is an active agent then also
am(Y) = F, and ci(Y) = []).

Firing of the transition TInAP X .p Y.q n (or TInPP, TOutAP, TOutPP with the
same arguments) inserts proc(Y.q) entry to ci(X) and sets am(Y) = T, ci(Y) = [],
and pc(Y) to the number of the first statement in Y.q procedure. System transi-
tions STInAP and STInPP additionally changes am(X) (am(context(X)) if X is a
passive agent) from W to X and removes in(p), timer(n,d) entries from ci(X) (the
timer(n,d) entry is used only for non-blocking communication). System transitions
STOutAP and STOutPP work similarly but it removes out(p) entry instead of in(p).
The result of the TIn X .p n transition firing depends on the type of communication:

1. Non-blocking with time d = 0: sets pc(X) = nextpc(n) (if it is 0 and X is an active
agent then also am(X) = F, and ci(X) = []).

2. Non-blocking with time d > 0: sets am(X) = W (am(context(X)) = X if X is a
passive agent), and inserts in(p), timer(n,d) entries into ci(X).

3. Blocking, X is an active agent: sets am(X)=W and inserts in(p) entry into ci(X).
4. Blocking, X is a passive agent, X .p is non-procedure port: sets am(context(X))=

W and inserts in(p) entry into ci(X).
5. Blocking, X is passive agent, X .p is procedure port: sets pc(X) = nextpc(n), and

updates value of the corresponding parameter (if a value has been sent).

The TOut transition works similarly but out(p) entry is inserted instead of in(p) and
in case of a procedure port there is no parameter update.

Firing of the TInF X .p Y.q n transition updates value of the corresponding pa-
rameter of agent X (if a value has been sent), sets pc(X) = nextpc(n), am(Y) = X,
pc(Y) = nextpc(m) (where m is the current value of pc(Y)), and removes out(q) and
timer(n,d) entries from ci(Y). If nextpc(n) = 0 or nextpc(m) = 0 then for the corre-
sponding agent the mode is set to F and the context list to []. The TOutF transition
works similarly but in(q) entry is removed instead of out(q) and a parameter of Y
agent is potentially updated.

Firing of the STLoopEnd transition sets am(X) = X (am(context(X)) = X if X is
a passive agent), and removes timeout(n) entry from ci(X). Firing of a STDelayEnd
transition additionally sets pc(X) = nextpc(n) (if it is 0 and X is an active agent then
also am(X) = F, and ci(X) = []).

Firing of the STInEnd transition sets am(X) = X (am(context(X)) = X if X is a
passive agent), removes in(p) and timeout(n) entries from ci(X), and sets pc(X) =
nextpc(n) (if it is 0 and X is an active agent then also am(X) = F, and ci(X) = []).
A STOutEnd works similarly but it removes out(p) entry instead of in(p).

The presented enable and firing rules show how the firing of a transition affects
the changes of states. More precise definitions of the rules but in the context of
the Intermediate Haskell Representation (IHR) of Alvis models are presented in the
language manual [18]. The next section describes how a new state is determined if
we take into account a set of transitions executed in parallel and the passage of time.

Modelling and Verification of Real-Time Systems with Alvis 9

4 LTS Graphs for Time Models

To verify an Alvis model’s properties using model checking techniques [2] it is
necessary to generate the model state-space first. We use Labelled Transition Sys-
tems (LTS graphs) to represent such state-spaces. Nodes of an LTS graph represent
reachable model states. Labels of arcs provide two pieces of information: a set of
transitions that are executed in parallel and lead from the corresponding arc source
state to the arc destination state and the time that elapsed between these two con-
secutive states. The initial part of the LTS graph for the model from Fig. 1 is shown
in Fig. 3. This section focuses on the most important parts of the LTS generation
algorithm implemented in Alvis Toolkit.

(0)
A: (X,1,[],0)
B: (X,1,[],0)
C: (X,1,[],0)

D: (W,0,[out(get)],0)

(1)
A: (X,2,[],0)

B: (X,1,[sft(1)],0)
C: (X,2,[],0)

D: (W,0,[out(get)],0)

{TLoop A,TLoopEvery B,TLoop C}/1

(2)
A: (X,2,[sft(1)],0)

B: (X,2,[timer(1,6)],0)
C: (X,2,[sft(1)],0)

D: (W,0,[out(get),lock(A)],0)

{TInAP A.p D.get,TLoopEvery B,TExec C}/1

(3)
A: (X,2,[proc(D.get)],0)

B: (X,2,[timer(1,5),sft(2)],0)
C: (X,3,[],0)
D: (T,1,[],0)

{TIn B.p,TInAP A.p D.get,TExec C}/1

(4)
A: (X,2,[proc(D.get)],0)

B: (X,2,[timer(1,5),sft(2)],0)
C: (X,3,[],1)
D: (T,1,[],0)

{TIn B.p,TInAP A.p D.get,TExec C}/1

(5)
A: (X,2,[proc(D.get)],0)
B: (X,3,[timer(1,3)],0)

C: (X,3,[sft(1)],0)
D: (T,2,[],0)

{TIn B.p,TOut C.get,TExec D}/2

(6)
A: (X,2,[proc(D.get)],0)
B: (X,3,[timer(1,3)],0)

C: (X,3,[sft(1)],0)
D: (T,2,[],1)

{TIn B.p,TOut C.get,TExec D}/2

(7)
A: (X,2,[proc(D.get)],0)
B: (X,3,[timer(1,3)],0)

C: (X,3,[sft(1)],1)
D: (T,2,[],0)

{TIn B.p,TOut C.get,TExec D}/2

(8)
A: (X,2,[proc(D.get)],0)
B: (X,3,[timer(1,3)],0)

C: (X,3,[sft(1)],1)
D: (T,2,[],1)

{TIn B.p,TOut C.get,TExec D}/2

(9)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,3)],0)

C: (X,3,[sft(1)],0)
D: (T,2,[sft(3)],0)

{TNull B,TOut C.get,TOut D.get}/0

(10)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,3)],0)

C: (X,3,[sft(1)],0)
D: (T,2,[sft(3)],1)

{TNull B,TOut C.get,TOut D.get}/0

(11)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,3)],0)

C: (X,3,[sft(1)],1)
D: (T,2,[sft(3)],0)

{TNull B,TOut C.get,TOut D.get}/0

(12)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,3)],0)

C: (X,3,[sft(1)],1)
D: (T,2,[sft(3)],1)

{TNull B,TOut C.get,TOut D.get}/0

(13)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,2)],0)

C: (W,3,[out(get),timer(3,8)],0)
D: (T,2,[sft(2)],0)

{TOut C.get,TOut D.get}/1

(14)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,2)],0)

C: (W,3,[out(get),timer(3,8)],0)
D: (T,2,[sft(2)],1)

{TOut C.get,TOut D.get}/1

(15)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,2)],0)

C: (W,3,[out(get),timer(3,8)],1)
D: (T,2,[sft(2)],0)

{TOut C.get,TOut D.get}/1

(16)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timer(1,2)],0)

C: (W,3,[out(get),timer(3,8)],1)
D: (T,2,[sft(2)],1)

{TOut C.get,TOut D.get}/1

(17)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timeout(1)],0)

C: (W,3,[out(get),timer(3,6)],0)
D: (T,3,[],0)

{TOut D.get}/2

(18)
A: (X,2,[proc(D.get)],1)
B: (W,1,[timeout(1)],0)

C: (W,3,[out(get),timer(3,6)],0)
D: (T,3,[],1)

{TOut D.get}/2

(19)
A: (X,2,[proc(D.get)],0)
B: (W,1,[timeout(1)],0)

C: (W,3,[out(get),timer(3,6)],1)
D: (T,3,[],0)

{TOut D.get}/2

(20)
A: (X,2,[proc(D.get)],1)
B: (W,1,[timeout(1)],0)

C: (W,3,[out(get),timer(3,6)],1)
D: (T,3,[],1)

{TOut D.get}/2

(21)
A: (X,2,[proc(D.get)],0)

B: (X,1,[],0)
C: (W,3,[out(get),timer(3,6)],0)

D: (T,3,[sft(1)],0)

{STLoopEnd B,TExit D}/0

(22)
A: (X,2,[proc(D.get)],1)

B: (X,1,[],0)
C: (W,3,[out(get),timer(3,6)],0)

D: (T,3,[sft(1)],1)

{STLoopEnd B,TExit D}/0

(23)
A: (X,2,[proc(D.get)],0)

B: (X,1,[],0)
C: (W,3,[out(get),timer(3,6)],1)

D: (T,3,[sft(1)],0)

{STLoopEnd B,TExit D}/0

(24)
A: (X,2,[proc(D.get)],1)

B: (X,1,[],0)
C: (W,3,[out(get),timer(3,6)],1)

D: (T,3,[sft(1)],1)

{STLoopEnd B,TExit D}/0

Fig. 3 Initial part of the LTS graph for the model from Fig. 1

10 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

The generation of an LTS graph for time models starts with the initial state that
has the serial number 0 and is the initial node of the LTS graph. The initial state
is the first current node. For any current node the set of outgoing arcs and finally
direct successors are generated. Let s denote the model state represented by the
current node. We start with generation of the set of transitions enabled in state s
according to the enable rules presented in Sec. 3. For example the set of transitions
enabled in the initial state of the considered model contains three elements: TLoop
A 1, TLoopEvery B 1, TLoop C 1. If such a set does not contain any communication
transition then all the transitions can be executed in parallel as shown in Fig. 3

By default duration of each statement (transition) is equal to 1 time-unit. One can
define the individual value of duration for each model statement. This is done using
the duration function implemented in Haskell. In case of the considered model the
function is defined as follows:
duration :: Agent -> Int -> Int
duration A 1 = 1
duration A 2 = 2
duration A 3 = 1
duration B 1 = 2
duration B 2 = 3
duration B 3 = 0
duration C 1 = 1
duration C 2 = 2
duration C 3 = 3
duration D 1 = 2
duration D 2 = 3
duration D 3 = 1
duration _ _ = 1

This means that the three enabled transitions have different durations (1, 2, and
1 respectively) and we cannot move from the initial state directly to a state where
all the transitions are finished. In this case, we can move only 1 time-unit forward.
Thus, the new state describes a situation when one of the transitions is still under
execution (see state 1, Fig. 3). The sft(n) (step finish time) entry used in ci(B) points
out the number of time-units necessary to finish the current transition.

The set of transitions executed in parallel is called multi-step. The LTS graph
generation algorithm determines the maximal time shift for each multi-step. This
value is selected so as not to lose any information about the changes of states of
the analysed system. The algorithm takes into account not only the duration of each
transition in the multi-step but also the arguments of context entries such as sft or
timer.

The result of a multi-step execution consists not only of the effects of single
transitions execution but also the results of the time shift i.e. the arguments of all
timers and sft entries are reduced by the value of the time shift, even if an agent does
not execute a transition in the given multi-step. Moreover, if the time argument of a
timer is reduced to 0, then the entry is replaced with timeout one (e.g. see state 17
Fig. 3).

If the set of enabled transitions contains communication transitions then conflicts
may arise e.g. two transitions are enabled but they cannot be executed in parallel.
This is the case with the state 437:

(X,2, [],0),(X,2, [timer(1,6)],0),(X,3, [sft(1)],0),(W,0, [out(get)],0))

Modelling and Verification of Real-Time Systems with Alvis 11

The set of enabled transitions contains the following elements: TInAP A.p D.get
2, TInAP B.p D.get 2, and TOut C.get 3. Thus, we have two agents A and B that
compete for the access to the same passive agent. Of course these three transitions
cannot be executed in parallel. The set of enabled transitions must be divided into
two multi-steps.

(437)
A: (X,2,[],0)

B: (X,2,[timer(1,6)],0)
C: (X,3,[sft(1)],0)

D: (W,0,[out(get)],0)

(453)
A: (X,2,[sft(1)],0)

B: (X,2,[timer(1,5),sft(2)],0)
C: (W,3,[out(get),timer(3,8)],0)
D: (W,0,[out(get),lock(A)],0)

{TOut C.get,TIn B.p,TInAP A.p D.get}/1

(454)
A: (X,2,[sft(1)],0)

B: (X,2,[timer(1,5),sft(2)],0)
C: (W,3,[out(get),timer(3,8)],0)
D: (W,0,[out(get),lock(B)],0)

{TOut C.get,TIn A.p,TInAP B.p D.get}/1

(477)
A: (X,2,[proc(D.get)],0)

B: (X,2,[timer(1,4),sft(1)],0)
C: (W,3,[out(get),lock(B)],0)

D: (T,1,[],0)

{TInAP A.p D.get,TInF B.p C.get}/1

(478)
A: (X,3,[],0)

B: (X,2,[timer(1,4),sft(1)],0)
C: (X,1,[],0)

D: (W,0,[out(get),lock(B)],0)

{TInF A.p C.get,TInAP B.p D.get}/1

(501)
A: (X,2,[proc(D.get)],0)
B: (X,3,[timer(1,3)],0)

C: (X,1,[],0)
D: (T,1,[sft(1)],0)

{TInF B.p C.get,TExec D}/1

(502)
A: (W,3,[timer(3,1)],0)

B: (X,2,[proc(D.get),timer(1,3)],0)
C: (X,2,[],0)
D: (T,1,[],0)

{TDelay A,TInAP B.p D.get,TLoop C}/1

Fig. 4 Part of the LTS graph for the model from Fig. 1

The transitions TInAP A.p D.get 2 and TInAP B.p D.get 2 cannot be placed in
the same multi-step, but both agents A and B can execute a transition in each of this
two multi-steps. If we chose the TInAP A.p D.get 2 transition then the port D.get is
already inaccessible for agent B, but the agent can execute the TIn B.p 2 transition.
Thus both multi-sets contain three transitions as shown in Fig. 4 (see labels for node
437 outgoing arcs). States 453, 454 and 478 illustrate a situation when agent D is
still in the waiting mode, because the corresponding TInAP is not finished yet, but
it is not accessible for other agents, because the TInAP is already started. This is
indicated by the lock entry included into the context information list.

Stages like determining the list of enabled transitions, dividing the set into multi-
steps, determining time shift for each multi-step are performed for each reachable
state. The final LTS graph contains a node for each reachable state and an arc for
each executed multi-step. The LTS graph is generated automatically. The Alvis lan-
guage is supported by computer tools called Alvis Toolkit. Models can be designed
with Alvis Editor that provides essential editing features, such as: diagram edition,
basic tools for alignment and colouring, automatic creation and removal (flattening)
of hierarchical pages [15], textual layer addition with syntax colouring and code

12 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

folding. An Alvis model stored in an XML file is then processed by Alvis Compiler
that generates the IHR for the model. The generated Haskell file can be modified by
the user. For example user-defined verification algorithms, a priority management
algorithm, user-defined duration function (assignment of duration to each model
statement), user-defined main function, etc. can be included into the file before com-
pilation. Finally, depending on the used Alvis Compiler options and user’s optional
code modifications, as a result of the Haskell program execution, the LTS graph in
various textual represtation that can be directly passed into standard model checkers
like e.g. CADP, simulation logs and/or result of user-defined verification procedures
are provided.

5 Conclusions and Future Work

The most important features of Alvis time models that are essential for modelling
real-time systems have been presented in the paper. Both the Alvis language and
the Alvis Toolkit were developed for providing comfortable and flexible formal
tools for engineers. The language provides statements for modelling of phenom-
ena typical for real-time systems modelling like: concurrent executing of processes,
synchronisation of processes, periodic processes, priorities of processes, relative de-
lays, timeouts, etc.

The verification methods for Alvis models are mainly based on the LTS graph,
generated for the given model automatically, and model checking techniques [2].
Users can choose the preferred output format that the generated program will de-
liver, compiler expose -dot, -ald and -csv options for Graphviz DOT, CADP Alde-
baran and popular CSV formats respectively. Thus, Alvis models can be verified
using popular model checkers like nuXmv [6], [4] and CADP [7] and languages
for statistical data analysis like Python [8] and R [10]. Possible processing paths of
Alvis models are shown in Fig. 5.

It is worth emphasizing yet another advantage of the IHR use. The Alvis exec
statement is represented by the assignment operator (=) that takes an agent’s param-
eter as its left-hand side argument and a Haskell expression as the right-hand side
argument. The statement evaluates the expression and assigns its result to the param-
eter. This is represented as a single step in the LTS graph, but the Haskell expression
may contain any user-defined function and may represent complex operations on
some data. It is an easy way to include, for example, artificial intelligence systems
like rule-based systems, decision trees, neural networks, etc. into Alvis models. An
example of including a decision support system into an Alvis model of a railway
traffic management system is presented in [17].

The presented version of Alvis time models supports only so-called α0 system
layer. There is also α1 system layer under development. This layer is based on the
assumption that there is only one processor and all active agents compete for access
to it. This will allow Alvis to be used for modelling of software for single-processor
embedded systems.

Modelling and Verification of Real-Time Systems with Alvis 13

Alvis Editor
communication diagram + code layer

Alvis Compiler
Altis → Haskell translation

Arbitrary text editor
including user-defined Haskell code

GHC Compiler

XML file

Haskell file

Haskell file

Haskell file

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())
B: (X,1,[],())

loop(A)

(2)
A: (X,1,[],())
B: (X,2,[],())

loop(B)

(3)
A: (W,2,[out(a)],())

B: (X,1,[],())

out(A.a)

(4)
A: (X,2,[],())
B: (X,2,[],())

loop(B) loop(A)

(5)
A: (X,1,[],())

B: (W,2,[in(b)],())

in(B.b)

(6)
A: (W,2,[out(a)],())

B: (X,2,[],())

loop(B) out(A.a)

(7)
A: (X,2,[],())

B: (W,2,[in(b)],())

in(B.b) loop(A)

in(B.b) out(A.a)

DOT file

0

1

loop(A)

2

loop(B)

3

out(A.a)

4

loop(B) loop(A)

5

in(B.b)

6

loop(B) out(A.a)

7

in(B.b) loop(A)

in(B.b) out(A.a)

Aldebaran file

0; A; X; 1; []; (); B; X; 1; ...
1; A; X; 2; []; (); B; X; 1; ...
2; A; X; 1; []; (); B; X; 2; ...
3; A; W; 2; [out(a)]; (); B; ...
4; A; X; 2; []; (); B; X; 2; ...
5; A; X; 1; []; (); B; W; 2; ...
6; A; W; 2; [out(a)]; (); B; ...
7; A; X; 2; []; (); B; W; 2; ...

TXT file

?
user-defined

nuXmv CADP R, Python

binary file execution

Fig. 5 Possible processing paths of Alvis models

References

1. Aceto, L., Ingófsdóttir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling, Specification
and Verification. Cambridge University Press, Cambridge, UK (2007)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London, UK (2008)
3. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. Lecture Notes on

Concurrency and Petri Nets 3098 (2004)
4. Biernacki, J.: Alvis models of safety critical systems state-base verification with nuXmv. In:

Proceedings of the Federated Conference on Computer Science and Information Systems, pp.
1701–1708 (2016)

5. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems. CRC Press
(2011)

6. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S.,
Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Computer Aided Verifi-
cation, Lecture Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014)

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In: Computer Aided Verification (CAV’2007), LNCS,
vol. 4590, pp. 158–163. Springer, Berlin, Germany (2007)

8. Idris, I.: Python Data Analysis. Packt Publishing Ltd. (2014)
9. Jensen, K., Kristensen, L.: Coloured Petri nets. Modelling and Validation of Concurrent Sys-

tems. Springer, Heidelberg (2009)
10. Lee, A., Ihaka, R., Triggs, C.: Advanced Statistical Modelling. Course notes for University of

Auckland Paper STATS 330 (2012)

14 Marcin Szpyrka, Łukasz Podolski and Michał Wypych

11. Matyasik, P., Szpyrka, M., Wypych, M., Biernacki, J.: Communication between agents in
Alvis language. In: Proc. of Mixdes 2016, the 23nd International Conference Mixed Design
of Integrated Circuits and Systems, pp. 448–453. Łódź, Poland (2016)

12. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O’Reilly Media, Sebastopol,
CA, USA (2008)

13. Samolej, S., Rak, T.: Simulation and performance analysis of distributed internet systems
using TCPNs. Informatica (Slovenia) 33(4), 405–415 (2009)

14. Szpyrka, M., Biernacki, J., Biernacka, A.: Tools and methods for RTCP-nets modelling and
verification. Archives of Control Sciences 26(3), 339–365 (2016). DOI 10.1515/acsc-2016-
0019

15. Szpyrka, M., Matyasik, P., Biernacki, J., Biernacka, A., Wypych, M., Kotulski, L.: Hierarchi-
cal communication diagrams. Computing and Informatics 35(1), 55–83 (2016)

16. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – modelling language for concurrent systems.
In: P. Bouvry, H. Gonzalez-Velez, J. Kołodziej (eds.) Intelligent Decision Systems in Large-
Scale Distributed Environments, Studies in Computational Intelligence, vol. 362, chap. 15, pp.
315–341. Springer-Verlag (2011)

17. Szpyrka, M., Matyasik, P., Podolski, L., Wypych, M.: Simulation of multi-agent systems with
Alvis Toolkit. In: L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh,
Z. J. (eds.) Artificial Intelligence and Soft Computing. ICAISC 2017, LNCS, vol. 10246, pp.
599–608. Springer-Verlag (2017). DOI 10.1007/978-3-319-59060-8 54

18. Szpyrka, M., Matyasik, P., Wypych, M., Biernacki, J., Podolski, L.: Alvis Modelling Language
(2017). URL http://alvis.kis.agh.edu.pl

