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Abstract— Web services are emerging as a key infrastructure for
providing inter-operation between applications and systems and
for providing support for the deployment of e-commerce business
processes. One important issue for ensuring the growth of Web
services is having ways of describing the available Web services
in a precise way.
One possible step toward providing semantic information for Web
services is through the use of formal contract specification—that
is, using pre/post-conditions. We present a number of ways in
which pre/post-conditions could be introduced into Web services
descriptions, for specification as well as dynamic verification
purpose.
The use of pre/post-conditions, however, is not sufficient to
describe the semantic of a group ofrelated operations, for
example, to describe the legal sequences in which these oper-
ations can/should be used. Although business process description
languages like BPEL4WS or WSCI can express such descriptions,
these areproceduraldescriptions, not necessarily appropriate for
specification purpose. We present one possible way in which
such descriptions could be provided for Web services, using
path expressionsthat can show the order in which the various
operations of a Web service can and should be invoked. Static and
dynamic uses of these protocol specifications are then described.

I. I NTRODUCTION

Web services are emerging as a key infrastructure for provid-
ing inter-operation between applications and systems and for
providing support for the deployment of e-commerce business
processes. One important issue for ensuring the growth of
Web services is having ways of describing the available Web
services in a precise manner.
Precise specifications of services can be used for different
purposes. First and foremost, when the service or system is yet
to be implemented, they serve as a precise description of the
problem to be solved, providing the implementers, and testers,
with a specific description of the expected behavior. For those
wishing to use some systems or services, appropriate spec-
ifications also help document, thus understand, the expected
behavior. When searching for Web services, specifications can
thus be used to narrow the search space. Finally, specifications,
when sufficiently precise and formal, can also be used for
verification purposes.
Although various languages and notations are currently avail-
able for describing Web services, there exists no consensus yet,
even though some standards are emerging [1], [2]. The lack

of consensus is particularly clear when it comes to describing
the behavior of business processes and their composition,
whether it be in terms of orchestration (description of a specific
business process) or in terms of choreography (description of
the interactions among a group of business processes) [3].
More importantly, some of the available notations (e.g.,
WSDL [1]) provide little semantic information pertaining to
the service’s behavior. Other notations, although they can
provide precise descriptions of behavior [2], [4], do it in a form
which is operational and algorithmic, that is, by describing
the expected behavior through programming language-like
structures. Such descriptions, however, may not necessarily
be considered as being “specifications”: “a specification is
a statement ofproperties required of a product, or a set of
products” [5]. The distinction between a model of the behavior
of the system and a specification of its expected proper-
ties is one which is made explicitly in model-checking ap-
proaches [6], where the formalisms for describing the model’s
behavior (e.g., automata, transition systems, process algebras)
are generally quite different from those use to express the
properties (e.g., temporal logic). The same characteristic is
true for abstract model or contract-based approaches to spec-
ifications [7]–[9], where the properties of the abstract model
are expressed in some form of first order logic.
In the following sections, we first present a small number
of languages, all defined as XML applications, that have
been proposed for describing Web services and business pro-
cesses [10], [11]. Although they are just a few among various
other similar languages, they are representative of the major
concepts and most appropriate for the level of specifications
we intend to discuss.
Then, we discuss how semantic information for Web ser-
vices could be provided through the use of formal contract
specifications—that is, pre/post-conditions. We present dif-
ferent ways in which such contracts specifications could be
introduced and how these contracts could also be used for
dynamic verification. However, as we also show, pre/post-
conditions are still not sufficient to describe the semantic of
a group of related operations, for example, to describe the
legal sequences in which these operations can/should be used.
We then discuss how WSDL service descriptions could be



augmented withpath expressionsspecifications, as a means
to describe the order in which the various operations can and
should be invoked.

II. EXISTING LANGUAGES FORDESCRIBINGWEB

SERVICES

There exists a large number of notations and languages for
describing Web services and business processes [10], [11]. In
the following, we present a small sample, to better understand
their expressive power and the various levels they describe.

A. WSDL

The Web Services Description Language is an XML-based
language for describing Web services in a way that is inde-
pendent of their implementation technology. The description
included in this section is based on the working draft of the
standard (version 2.0, dated March 2004) [1].
WSDL separates the abstract functionality of a web service
from its concrete implementation. The abstract functionality is
described in terms ofinterfaces—previously, calledport types
in WSDL 1.1—, which are collections of related operations.
Roughly speaking, an operation is described by a name, a
signature, and a message exchange pattern (see below); the
signature is a sequence of messages, which are directed data
flows whose contents are described in some type system—
typically using XML Schemas.
The abstract description makes no mention of the specific loca-
tion of the service (network address), message format (SOAP
or other), or transport protocol (HTTP, TCP/IP). Instead,
such information is included in the concrete description or
binding. A binding may specify message formats and message
transmission protocols for an entire interface, or for a specific
operation, or for a specific message or fault of a particular
operation. An interface may be offered at different access
points (called endpoints). Each endpoint may use a different
message format (e.g., SOAP) or message transmission protocol
(e.g., TCP/IP or HTTP) and is associated with a specific
network. Finally, a service groups together endpoints that
implement a common interface.
We illustrate the main concepts of the abstract functionality
part through a simple example, presented in Figure 1. In this
description, we have a single interface, which has a single
operation with one input message and one output message,
each composed of a single part. The types of the messages are
defined under the<types> tag as XML schema descriptions.
In this example, the types are in-lined, but they can be included
from another file. The pattern attribute of the<operation>
element points to a description of the message exchange pat-
tern that characterizes the invocation of the operation. A mes-
sage exchange pattern specifies the sequence and cardinality of
messages exchanged by the operation. The pattern is defined
in terms of named placeholders, and the mapping between
the pattern and the messages of the operation is assured via
the messageLabel attribute of message references—in this
case,in-out . The WSDL draft specification provides eight
common message exchange patterns (in-only, robust in-only,

<?xml version="1.0"?>
<definitions name="StockQuote">

...
<types>

<schema
targetNamespace=

"http://example.com/stockquote.xsd"
xmlns=

"http://www.w3.org/2000/10/XMLSchema">
<complexType name="TradePriceRequest">

...
</complexType>
<complexType name="TradePrice">
...
</complexType>

</schema>
</types>

<message name="GetLastTradePriceInput">
<part name="body"

type="xsd1:TradePriceRequest"/>
</message>

<message name="GetLastTradePriceOutput">
<part name="body"

type="xsd1:TradePrice"/>
</message>

<interface name="StockQuotePortType">
<operation name="GetLastTradePrice"

pattern=
"http://www.w3.org/2004/03/wsdl/in-out">

<input messageLabel="In"
element="tns:GetLastTradePriceInput"/>

<output messageLabel="Out"
element="tns:GetLastTradePriceOutput"/>

</operation>
</interface>
...
<binding>
..
</binding>
<service>
...
</service>

</definitions>

Fig. 1. Excerpts from a WSDL specification

in-out, in-optional-out, out-only, robust out-only, out-in, and
out-optional-in) [1].
Operations can throw exceptions, called faults in WSDL. A
fault is characterized by 1) its name, 2) its data contents, and
3) its direction (which distinguishes between exceptions/faults
raised by the operation itself and those received by it). Faults
are defined per interface (omitting direction information) and
then referenced in specific operations using either an<in-
fault> element or an<outfault> element, enabling shar-
ing faults between different operations. The message exchange
patterns may specify how faults are handled (e.g., returned in
lieu of the output message, or as a separate message [1]).
The recent version of WSDL supports the specification of
features and properties, notions absent in WSDL 1.1. A feature
describes “an abstract piece of functionality typically associ-
ated with the exchange of messages between communicating
parties” [1]. Features include things such security, reliability,
transaction. The presence of a feature means that a service



supports it and requires partners to do the same (e.g., secure
communications).
Features may have accompanying documentation, like all
WSDL components (interfaces, operations, messages, etc.),
and can have different scopes, including interfaces-level,
operations-level, or message-level.
Similarly, properties are used to describe the service’s opera-
tional parameters, and may be used to control the behavior
of a feature. A property can specify values or constraints
on values. An example property would be the encryption
algorithm, and the constraint would state that it must be a
public key encryption algorithm. This property controls the
behavior of the security feature. Values and constraints may
be defined by referring to types defined using XML Schemas.
Properties also have similar scopes and composition model to
that of features.

B. BPEL4WS

The Business Process Executable Language For Web Ser-
vices (BPEL4WS) [4] is a language for modeling business
processes, executable or not, written for the Web services
context. The basic idea is that a process may be thought of
as a collaboration between services or tasks described in the
Web services format, more specifically, using WSDL. Whereas
WSDL defines a syntax for expressing the interface of services
(in the IDL sense, i.e., signature of operations), but says
little about the interaction model (or rather assumes a simple
one-way or round-trip message passing protocol), BPEL4WS
allows to describe the entire interaction sequence. BPEL4WS
has two target uses, which are clearly stated and explained:

• executable processes: these describe actual business pro-
cesses that are internal to an organization and are com-
pletely specified (i.e., executable);

• abstract processes, also known as business protocols:
these are the parts of a business process of an enterprise
that are exposed to outside processes in the context of an
inter-enterprise interaction.

This distinction is very helpful and not made in the case of
other languages, such as BPML [12]. This, plus the fact that
BPEL4WS makes provision for roles and partners, makes it
more appropriate for describing inter-organizational processes.
Roughly speaking, a BPEL4WS process description consists
of a declaration part that introduces various elements needed
to describe the process, followed by the actual description of
the process, i.e., its behavior. The declaration part includes the
following elements:

• A description of the messages exchanged between ser-
vices. The message structure is similar to that used in
WSDL: a message consists of parts, each with a name
and a type. The type component is described using XSD
types—the use of XSD is not exclusive and BPEL4WS
can accommodate other type systems.

<message name="POMessage">
<part name="customerInfo"

type="sns:customerInfo"/>
<part name="purchaseOrder"

type="sns:purchaseOrder"/>

</message>
<message name="InvMessage">

<part name="IVC" type="sns:Invoice"/>
</message>

• A description of the services invoked. The description
follows the WSDL standard (as of version 1.1): each
service, defined as aportType (now called inter-
face in WSDL 2.0), consists of a bunch of operations.
An operation has a name and a set of parameters. The
parameters are simply messages playing the role of inputs
and outputs.

<portType name="purchaseOrderPT">
<operation name="sendPurchaseOrder">

<input message="pos:POMessage"/>
<output message="pos:InvMessage"/>
<fault name="cannotCompleteOrder"

message="pos:orderFaultType"/>
</operation>

</portType>

• A description of the “contracts” between participating
process. Each contract—called partner link type—defines
roles and associates them with port types (interfaces). For
example, in a supply chain example, we have customers,
businesses, and their suppliers. The interaction between a
customer and the business to fulfill an order, and between
the business and its suppliers to restock, are managed by
two separate contracts/partner link types, each of which
identifies the roles played by each service interface (port
type). One of the role describes what is provided by
the process being described, whereas the other describes
what is required from the other partner; when no specific
requirements is placed on the expected partner, a single
role can be specified. For example, the following, taken
from [4], describes a contract where aninvoiceSer-
vice provides access to acomputePricePT port
type but in turn requires the other partner to provide an
invoiceCallbackPT port type on which the answer
can be sent back:

<plnk:partnerLinkType name="invoiceLT">
<plnk:role name="invoiceService">

<plnk:portType name="pos:computePricePT"/>
</plnk:role>
<plnk:role name="invoiceRequester">

<portType name="pos:invoiceCallbackPT"/>
</plnk:role>

</plnk:partnerLinkType>

• A description of partners. While partner link types define
the various contracts, it does not specify which entity will
play which side in the contract. A BPEL4WS process thus
contains an identification of the various partners involved
in the various contracts, the roles they play (partner link
type), and the role (myRole ) the enterprise doing the
modeling plays. Those partners will be referred to later
in the description of the steps of the process: each step
is performed by a partner (or self). Here, we show a
description of two partners, where the first is the customer
and the second is theinvoiceProvider playing the
role invoiceService in the contract (partner link
type) invoiceLT , where I, myself, play the role of
invoiceRequester .



<partnerLinks>
<partnerLink

name="customer"
partnerLinkType="lns:purchaseLT"
myRole="purchaseService"/>

<partnerLink
name="invoiceProvider"
partnerLinkType="lns:invoiceLT"
myRole="invoiceRequester"
partnerRole="invoiceService"/>

...
</partnerLinks>

Other elements in the declaration part include local
variables defined within the scope of the process and
exchanged as inputs/outputs between the process steps,
and a description of fault handlers, which specify the
desired response in case of a fault.
The process (i.e., its dynamic behavior) is defined using
a flow, which is a partially ordered set of activities that
correspond to invocation of operations, defined in the
various services, that will be performed by the partners
identified above. Process flow supports sequential activ-
ities (using the<sequence> tag), concurrent activities
(<flow> tag), and arbitrary control dependencies be-
tween process steps (using<link> s) which ensure that a
particular process step can only be executed after another
step has completed. As with BPML processes [12],
BPEL4WS processes include descriptions of compensa-
tion handlers and support the notion of scope (called
context in BPML) and correlation sets, which are data
values that uniquely identify process instances. Figure 2
shows excerpts from a process behavior description. The
(purchase order handling) process starts by receiving a
purchase order (PO) from a customer. It then makes a
copy of the customer info fromPO into the customer
info of a shipping request. Then it invokes an operation
of the shippingProvider partner to ship the order
to the customer. This example illustrates, in part, the
use of control dependencies: therequestShipping
operation is thesourceof a control dependency (a link,
called ship-to-invoice ) linking it to the operation
(not shown here)sendShippingPrice of the in-
voiceProvider partner.

BPEL4WS, unlike WSDL, makes some notion of contract
explicit, in the sense of clearly stating a bidirectional rela-
tionships between two parties, that is, apartnerLinkType
is an association between two services. It is implicit that the
operations within those services collaborate through message
exchange. An example of such an exchange is given in the
description of the process, but this may not be the only valid
exchange.

C. WSCI and WS-CDL

WS-CDL (Web Services Choreography Description Language)
is the latest initiative from the Web Services Choreography
Group of the World Wide Web Consortium (W3C) [2]. This
language has an interesting history. A draft proposal for WSCI
(Web Service Choreography Interface) was issued in August

<sequence>
<receive partnerLink="customer"

portType="lns:purchaseOrderPT"
operation="sendPurchaseOrder"
variable="PO">

</receive>
<flow>

<links>
<link name="ship-to-invoice"/>
<link name="ship-to-scheduling"/>

</links>

<sequence>
<assign>
<copy>

<from variable="PO" part="customerInfo"/>
<to variable="shippingRequest"

part="customerInfo"/>
</copy>
</assign>
<invoke partnerLink="shippingProvider"

portType="lns:shippingPT"
operation="requestShipping"
inputVariable="shippingRequest"
outputVariable="shippingInfo">

<source linkName="ship-to-invoice"/>
</invoke>
...

</sequence>
...

</flow>
...

</sequence>
...

Fig. 2. Excerpts from a BPLE4WS behavior (flow) description (taken
from [4])

2002 [13]. That effort seems to have been abandoned, and a
new standardization effort launched under the name WS-CDL,
which, for all practical purposes, seems to have started from
scratch. Indeed, it started with a new requirements document,
from which the new language, WS-CDL, was built from the
ground up, with no reference to the WSCI effort. Because
we feel that there were some useful ideas in WSCI, we first
describe the latter. We then briefly comment on the emerging
WS-CDL standard.

The premise of WSCI is that WSDL descriptions are insuffi-
cient to describe the true nature of services. Indeed, WSDL
defines services in terms of collections of seemingly unrelated
operations (port types, i.e., interfaces), but has no notion of
state, and does not state the valid sequences of operation
invocations. Using the classical example of a travel agent
service, a traveler can confirm an itineray—e.g., invoke some
operation confirmItinerary() —only if that itinerary
has already been created—e.g., by invoking an operation
createItinerary() —and if it was created explicitly for
that same customer. Yet, nothing in a WSDL description
makes those constraints explicit. To some extent, WSCI brings
statefulness into web service descriptions both explicitly by
associating properties (variables) with interface definitions,
and implicitly by stating the valid operation invocation se-
quences. Further, WSCI considers that the same web service
can be used by several different processes, and thus, a given



service (WSDL interface) may be associated with several valid
sequences of uses, where each one would be characterized by
a specific process description. These are the basic premises of
WSCI.
Figure 3 shows excerpts of a simplified version of a travel
agent service. Notice this example uses WSDL 1.1’s syntax,
and hence, web services are represented by port types instead
of interfaces. The<interface> tag used here is WSCI-
specific, and will be discussed further below.
In this example, the travel agent web service includes two
port types (interfaces in WSDL 2.0),TAtoTraveler , whose
definition is shown above and which interfaces with travelers,
andTAtoAirline , which interfaces with airlines and whose
definition is not shown but is referenced in the process
BookSeats (line 15). The valid message sequences that the
travel agent web service supports are enclosed in the<in-
terface> under WSDL’s top-level<definitions> . Each
valid interaction sequence is represented by a<process> ,
and each process is a combination of<action> s, where each
action corresponds to the invocation of an operation (lines 8-
10). The process calledPlanAndBookTrip (lines 5-14) is a
simple<sequence> of actions. Other compositions include
<all> (parallel execution),<foreach> , and <switch> .
Line 3 shows the declaration of a<correlation> ele-
ment, which is referenced in line 12. The idea here is that
a travel agent service would typically be handling several
“conversations” (process instances) with different customers
or with the same customer but for different itineraries. The
<correlation> element specifies how to uniquely identify
a given process instance (or a given thread of conversation).
This is identical to BPEL4WS’s notion of correlation set.
Also, processes define scopes—called contexts—within which
variables may be defined—called properties. These properties
are typically used to hold data values (i.e., state information)
exchanged and manipulated by the different operations of a
process.
Also, not shown in this example, processes can raise excep-
tions. Those exceptions would be specified, along with the
steps to handle them. Processes can also specify transaction
boundaries around a set of actions to indicate that the whole set
should be treated as an atomic action, as well as compensation
activities to specify what to do when transactions fail (using
a <compensate> activity).
In addition to representing the dynamic behavior of individual
services, WSCI includes the notion of a global model, which
binds together several interfaces, one per web service. In the
travel example, the travel agent service interfaces with both
travelers and airlines. Similarly, airlines interface with both
travel agents—for booking and pricing, say—and with travel-
ers, for ticket delivery. In a global travel scenario, operations
from the travel agent service will be talking to operations from
the airline web service. The global model simply connects
operations from the various interfaces. Figure 4 shows part
of the global model for the travel scenario. A<connect>
element associates the operation that initiates an exchange with
the one that completes it.

<?xml version = "1.0" ?>
<wsdl:definitions

name = "GlobalModel"
targetNamespace=

"http://example.com/consumer/models"
<!--various imports -->

<wsdl:import
namespace=

"http://example.com/consumer/traveler"
location=

"http://example.com/traveler.wsci"/>
...

<model name = "AirlineTicketing">
<interface ref="air:Airline"/>
<interface ref="tra:Traveler"/>
<interface ref="ta:TravelAgent"/>

<!-- Traveler / TravelAgent -->
<connect operations=

"tra:TravelerToTA/PlaceItinerary
ta:TAtoTraveler/ReceiveTrip" />

...
<!-- Travel Agent / Airline -->
<connectoperations=

"ta:TAtoAirline/CheckAvailability
air:AirlineToTA/VerifySeatAvailability"/>

...
<!-- Traveler / Airline -->

...
</model>
</wsdl:definitions>

Fig. 4. An example WSCI global model for a travel scenario (taken from [13])

WSCI’s descendant, the Web Services Choreography De-
scription Language (WS-CDL), is still very much in its
infancy [2]. The description of the choreography itself is not
much different from that of process in WSCI or BPEL4WS.
At the interface level, WS-CDL uses the participant, role, and
relationship triad whereby participants play roles in relation-
ships (contracts). In this regard, WS-CDL looks more like
BPEL4WS than WSCI.

III. SPECIFYING CONTRACTS OFOPERATIONS

As shown earlier, WSDL-based specifications of web services
and their associated operations are expressed strictly insyn-
tactic terms, that is, operations are described simply by giving
their signature—the name and types of their arguments and
results. Clearly, such specifications provide little information
about the exact behavior of the operations. In this section,
we examine a number of approaches to provide improved
specification for web services operations.

A. Contracts as Pre/Post-Conditions

Using pre/post-conditions for describing and specifying the
behavior of operations is a long established practice. Viewing
such specifications ascontractsbetween the user of a service
and the provider of this service has been popularized by
Meyer’s design by contract approach [9]. A contract neces-
sarily entails some benefits as well as some obligations to
both parties, as illustrated in Table I.
Specifying contracts as explicit pre/postconditions requires us-
ing an appropriate “formal” specification language. Many such



<? xml version = "1.0" ?>
<wsdl:definitions name = "Travel Agent Dynamic Interface"...> 1.

<!-- WSDL complex types --> 2.
...
<!-- WSDL message definitions -->
...
<portType name = "TAtoTraveler">

<documentation>
This port type references the operations the Travel Agent
performs with the Traveler service

</documentation>
<operation name = "ReceiveTrip">

<input message = "tns:tripOrderRequest"/>
<output message = "tns:tripOrderAcknowledgement"/>

</operation>
<operation name = "BookTickets">

<input message = "tns:bookingRequest"/>
<output message = "tns:bookingConfirmation"/>

</operation>
<operation name = "SendStatement">

<output message = "tns:statement"/>
</operation>

</portType>

<-- WSCI’s specific additions -->

<correlation name = "itineraryCorrelation" 3.
property = "tns:itineraryID">

</correlation>

<interface name = "TravelAgent"> 4.
<process name = "PlanAndBookTrip" 5.

instantiation = "message"> 6.
<sequence> 7.

<action name = "ReceiveTripOrder" 8.
role = "tns:TravelAgent" 9.
operation = "tns:TAtoTraveler/ReceiveTrip"> 10.

</action>
<action name = "ReceiveConfirmation" 11.

role = "tns:TravelAgent"
operation = "tns:TAtoTraveler/bookTickets">

<correlate correlation="tns:itinCorrelation"/> 12.
<call process = "tns:BookSeats" /> 13.

</action>
<action name = "SendStatement" 14.

role = "tns:TravelAgent"
operation = "tns:TAtoTraveler/SendStatement"/>

</action>
</sequence>

</process>
<process name = "BookSeats" instantiation = "other"> 15.

<action name = "bookSeats"
role = "tns:TravelAgent"
operation = "tns:TAtoAirline/bookSeats">

</action>
</process>

</interface>
</wsdl:definitions>

Fig. 3. Excerpts from a WSCI example (taken from [13])



Obligations Benefit
Client Must satisfy the pre-

condition
Is assured that the post-
condition will hold

Provider Must satisfy the post-
condition

Is assured the pre-
condition will hold

TABLE I

OBLIGATIONS AND BENEFITS OF CONTRACTS FOR CLIENT AND PROVIDER

OF A SERVICE

languages exist, e.g., Z [8], VDM [7], OCL [14], etc. In recent
years, however, various ways of using pre/post-conditions in
programming languageshave been proposed, thus lowering
the level at which such contracts can be expressed: direct
support of pre/post-conditions by the programming language
itself (e.g., Eiffel [15]), special comments that can handled
by a pre-processor (e.g., theiContract tool for Java [16]),
simpleassert instruction (e.g., in C and Java 1.4).
An interesting benefit of including and supporting pre/post-
conditions directly in programs is that the associated con-
ditions can be checkeddynamically. In other words, such
contracts can be used for documentation purpose as well
as for verification purpose, ensuring at run-time that the
software do behave correctly with respect to the specified
pre/post-conditions—additional assertions can also be stated,
to describe the key states along which the program make
progress. Using assertions and contracts is becoming a key
practice for professional software development [17], [18] and
thus should also be available for the development of Web
services.
In what follows, we briefly describe three proposals to the
specifications of pre/post-conditions-style contracts in WSDL:
DAML-S, an existing proposal, and two alternative proposals,
Larch/WSDL and WSDL-Contract.

B. DAML-S

DAML (DARPA Agent Markup Language) is an AI-inspired
language, building on RDF and RDF-S, for defining ontologies
to be used in the development of the so-called Semantic web.
Building on DAML, a group of researchers has developed a
markup language to more specifically describe the semantic of
Web services, “that provides an agent-independent declarative
API capturing the data and meta-data associated with a service
together with specifications of its properties and capabilities,
the interface for its execution, andthe prerequisites and
consequencesof its use” [19], [20].
The proposed DAML-S ontology contains the following three
classes of concepts:

• Service profile: Concepts in this category describe “what
the service does”, that is, they describes functionalities in
terms of input and output types, effects (events caused by
the execution of the service), etc. Logical properties are
used to describe such conditions (although how exactly
these properties are expressed is not clearly specified).

• Service model: A concept in this category “tells “how the
service works”; that is, it describes what happens when

the service is carried out” [20]. More specifically, a partic-
ular subclass of service model has been defined, namely,
the process model, which in fact consists of two aspects:
the process model itself—which describes the process
behavior in terms of its composite and atomic actions,
à la BPEL4WS—and the process control model—which
allows agents to monitor and control the execution of a
process (this part has not yet been defined).

• Service grounding: A concept in this category describes
how the service can be accessed by an agent, for example,
using a specific communication protocol.

Because of DAML-S’ roots in ontology languages, the syntax
presented in the various papers describing DAML-S is based
on RDF. A number of elements of DAML-S appear not yet
to be fully specified (at least from the examples presented
in those papers), for instance, how exactly the preconditions
and effects (postconditions) would be described, what kind of
logical language would be used, etc.
Probably because it predates the work on BPEL4WS, the
DAML-S papers do refer to WSDL, but not to BPEL4WS.
However, they do claim to inherit, for their process model
description, from previous work on existing process and
workflow specification languages.

C. Larch/WSDL

The Larch approach to formal specification [21] is well known
for having introduced atwo-tier approachthat leads to the
definition of a family of specification languages. Larch’s first
tier is the Larch Shared Language (LSL), which is essentially
a library of (pure) abstract data types described using an alge-
braic approach—i.e., in terms of signatures (syntax) and recur-
sive equations (semantics) relating the various operations—and
which is independent of any specific programming language.
This tier thus describes an ideal mathematical world consisting
strictly of (immutable) values and functions on such values,
where notions such as side-effects or exceptions do not exist.
Clearly, this is not the world in which software artifacts live.
Software systems and components are described, instead,
using a second-tier, which builds on the first-tier for the key
mathematical types and concepts. This second tier, because
it aims at describing the interface of concrete software com-
ponents, isprogramming language specific. Thus, numerous
variants of Larch interface languages exist, each tailored to
the specific interactions mechanisms provided by the target
language—for example, LCL (Larch C language) [21] does not
provide exceptions whereas Larch/Ada and Larch/C++ [22]
do.
Although a Larch interface language is specific to a target
language, the specifications clearly cannot be expressed totally
in the target language syntax. Thus, a suitable syntax must be
developed for each interface language. Specifications written
in this language can then be analyzed and some of their
properties can be checked using the Larch Prover. Although
the specifications can be included as comments in the target
language based descriptions, there is no specific support for
the dynamic evaluation of the pre/postconditions, as done



for example in the Eiffel language [15]. Thus, the interface
specification, although expressed with concepts specific to
the target language, does not get fully integrated into the
associated implementations.
One possible direction for integrating contracts into web
services description would be by defining a Larch/WSDL
interface language. However, as mentioned earlier, the inte-
gration of the interface specification into the target language
(WSDL specification in our case) is not necessarily natural or
seamless. Furthermore, LSL is a rich and complex language,
whose use requires a lot of expertise. Enriching this library
is not easy either, because of the reliance on the algebraic
specification method (recursive equations).

D. WSDL-Contract

The Eiffel language, developed by Meyer [15], popularized the
use of pre/postconditions for both the specification of opera-
tions’ contracts and for their dynamic (run-time) verification.
More precisely, in Eiffel, mechanisms for the specification of
pre/postconditions and other assertions (including loop vari-
ants/invariants) have been integrated directly into the language
definition. Such specifications can be interpreted logically,
that is, as formal specification (and documentation) of the
operations. In addition, these assertions can also be interpreted
operationally, that is, as conditions that must be checked at
run-time to ensure the program is in a correct state relative to
its intended specification.
Although Eiffel is, as of our knowledge, the only language
to directly integrate such formal specification and verifica-
tion of contracts into the language, other strategies have
been proposed to obtain similar results—formal documenta-
tion and specification together with run-time verification of
assertions—in other languages. The most common approach,
now available for a wide variety of languages (for example,
Java [16], C [23], Python [24], etc.), is the use of special
comments together with a pre-processor (à la JavaDoc). The
fact that the pre/postconditions are specified using comments
means that the source program can be handled normally by the
regular compiler. On the other hand, if required by the user,
the pre-processor can also be used to analyze those special
comments and generate, in the executable code, appropriate
run-time checks.
One such pre-processor for Java isiContract [16], where
the special comments are based on the JavaDoc style and the
syntax of the logical expressions is based on OCL [14], a part
of UML [25]. A simple example of an operation to add an
elemento into a collectionc is presented in Figure 5.
Using a similar approach for integrating contracts into WSDL
descriptions would have a number of advantages. First of
all, such an approach is relativelylightweight compared to a
Larch-based approach, as it does not rest on understanding a
complex library (LSL) of algebraic types; instead, knowledge
of the key collection operations,̀a la OCL, is generally
sufficient. Also, as mentioned earlier, such an approach to the
integration of contracts is becoming fairly common, as it is
now available in many programming languages. Finally, such

/**
Add an element o to collection c.

@pre !c.contains(o)
@post c.size() = c@pre.size()+1
@post c.contains(o)

*/
public void addElement( Collection c, Object o )
{ ... }

Fig. 5. An example of aniContract specification

an approach would also allow for the integration of dynamic
verification of assertions associated with Web services oper-
ations, an interesting way to verify the behavior of complex
business processes.
We are currently in the process of defining an appropri-
ate XML-based syntax for specifying such contracts for
WSDL operations, based on OCL concepts and operations.
WSDL 2.0’s feature/property mechanism will be used to
specify those contract specifications. We are also planning
to develop a dynamic contract evaluation engine, in order
for the various contract conditions to be verified dynamically.
Appropriate assertion violation faults will be defined and will
be generated when pre/post-conditions fail to hold.

IV. SPECIFYING WEB SERVICES PROTOCOLS

Using Web services to integrate various business applications
and processes requires being able to describe long sequence
of interactions between partners, that is, requires defining
appropriatebusiness protocols— “formal description of the
message exchange protocols used by business processes in
their interactions” [4, p. 8].
In the present section, we first explain why describing such
protocols is important, and why it cannot be done solely with
pre/post-conditions. We then introduce a number of ways in
which such protocols can be described, illustrating why the
operational-type of specifications used in existing languages
may not be the best approach. Finally, we discuss how
protocols specifications can be used for verification purpose,
for example, for ensuring that the protocol is indeed obeyed.

A. The Limits of Pre/Post-Conditions and the Need for Pro-
tocol Descriptions

WSDL describes web services in terms of collections of
seemingly unrelated operations that users can invoke in any
particular order. This may be true for services offering basic
search capabilities into an information database, but is rarely
the case with services that represent access points to elaborate
business processes. More is needed.
BPEL4WS enables us to describe business processes that
involve the interaction of several business partners. When
the process under description is internal to an organization,
the partners could be departments or divisions within the
enterprise. When the process is external, the partners would be
different enterprises. In either case, the functionality supported
by a partner is expressed in terms of a WSDL web service.
While the WSDL descriptions of the individual partners are



stateless, the structure of the overall process shows a chore-
ography of their services for the purposes of executing a
global process. Using abstract BPEL4WS processes, it is also
possible to explicitly state which operation of a given service
S should precede which other operation of S, thus showing the
overall orchestrationof operations from the various partners
in the context of a specific process.
WSCI also attempts to address WSDL’s statelessness by
providing specification of valid sequences of operations within
each service, regardless of any specific global process in which
a given service might be involved. This is unique to WSCI:
defining the range of stateful behaviors that a given service
can support independently of a usage context. WSCI’s global
model does provide an example of such a context.
It thus appears that various distinct concepts are needed to
capture the semantics of Web services:

1) The Web service API, represented in a WSDL format;
2) Thecontracts(pre/postconditions) of the individual op-

erations;
3) The protocol showing the valid sequences of operation

calls.
As discussed in the previous section, one of the traditional
way of representing operation semantics is by using pre/post-
conditions. Such pre/post-conditions do not obviate the need
for finding a way to express what are the valid sequences of
calls to the operations. If we think of operations as simply
steps in an overall process, then we must have an idea about
what this processes is. For instance, in the context of a
traveling agent service, we could model the semantics of the
operation that checks itineraries with the post-condition that
the returned itineraries (output message) correspond to the
requested dates and destination (input message). However, this
does not tell us thateach inquiry must necessarily conclude
either with a cancellation or with an actual booking.
Specifying a business protocol thus aims at describing “the
observable behavior of a service and the rules for interacting
with the service from the outside [. . . ] [such] that external
actors will know at each stage in the given process which
messages that service may or must send or receive next” [13,
p. 14].

B. Operational or Declarative Descriptions?

Both BPEL4WS (with its abstract business protocols) and
WSCI allow the description of the legal sequence of operations
associated with a business service. In both cases, it is explicitly
stated that these descriptions cannot be executed. For instance,
in the case of WSCI, it is said that an interface description “is
declarative and cannot, by itself, be executed.” [13, p. 14].
However, such specifications are far from declarative. For
instance, declarative programming languages can be described
as follows [26], :

Whereas imperative programming gives the com-
puter a list of instructions to execute in a particu-
lar order, declarative programming describes to the
computer a set of conditions and lets the computer
figure out how to satisfy them.

The constructs used to define business protocols in both
BPEL4WS and WSCI are clearly based on procedural and
imperative control structures. Although such control struc-
tures are fine to describe concrete, thus executable, business
processes, they may not be the best notation for describing
(abstract) business protocols. Let us illustrate this with a
simple example.
Suppose we want to define a simple Web service (int-
VarMachine ) for managing a non negative integer variable
whose operations and associated protocol are the following—
note that these operations can be seen as an abstraction of
a common pattern of use, where some entity is created,
repetitively updated, and then released or finalized:

1) First, the state of the variable must be initialized (with
a specific integer value) by calling theinit operation.

2) Then, a sequence of calls can be performed toinc
(increase) ordec (decrease) the variable’s value; each
such call requires specifying an integer argument and
returns no result. If a call todec would produce a
negative value for the variable, aninvalid dec fault
is signaled.

3) Finally, the content of the variable can be obtained
by using thedemandVal operation, whose result is
returned through an asynchronous call (operationre-
ceiveVal from incDecPTCallback port type).
Furthermore, once the value of the variable has been
obtained, no further call toinc , dec or demandVal
can be performed until a new call toinit is performed.

The WSDL interface (portType ) for this service is
presented (in part) in Figure 6. Using BPEL4WS abstract
protocols, the required protocol can then be described as
presented in Figure 7.
Although the abstract process presented in Figure 7 does
describe the correct and allowable sequences of calls, this
description is expressed strictly in procedural and operational
terms. For example, the possibility of an exception being
signaled is modeled through a non-deterministic (opaque) as-
signment to aninvalidValue variable, whereas an explicit
while-loop has to be used with an associatedterminated
variable to indicate the end of the sequence of calls to
inc /dec .
This procedural specification of business protocols stems from
the origins of BPEL4WS or WSCI, which are essentially
XML-based representation of constructs found in languages
used to describe the behavior ofreactivesystems, for example,
the family of process algebraic languages [27]–[29]. The litera-
ture on the specification and verification of such systems [30]–
[32], including the literature on model-checking [6], has long
shown the usefulness of trying to separate the description of
the model of the behavior of the system, what BPEL4WS and
WSCI are all about, from the specification of the properties
expected from that behavior. Furthermore, as the work on bi-
simulation has shown [29], behavior descriptions which are
sufficiently abstractcan also be used as specification. It can
hardly be argued that descriptions such as the one presented
above are at a high level of abstraction.



<process name="intVarMachine" ...abstractProcess="yes">
<partnerLinks>

<partnerLink name="incDec"
partnerLinkType="tns:incDecLT"
myRole="incDecService"
partnerRole="incDecServiceRequester"/>

</partnerLinks>

<variables>
<variable name="x" messageType="tns:x_nat"/>
<variable name="dummy" messageType="tns:dummy"/>
<variable name="r" messageType="tns:x_nat"/>
<variable name="terminated" messageType="tns:t_boolean"/>
<variable name="invalidValue" messageType="tns:t_boolean"/>
<variable name="decErr" messageType="tns:invalid_dec"/>

</variables>

<sequence name="main">
<receive name="receiveInput" partnerLink="incDec" portType="tns:incDecPT"

operation="init" variable="x" createInstance="yes"/>

<assign>
<copy> <from expression="false()"/> <to variable="terminated"/> </copy>

</assign>

<while condition="bpws:getVariableData(’terminated’) = ’false’">
<pick>

<onMessage partnerLink="incDec" portType="tns:incDecPT" operation="inc" variable="x">
<empty/>

</onMessage>

<onMessage partnerLink="incDec" portType="tns:incDecPT" operation="dec" variable="x">
<sequence>

<assign>
<copy> <from opaque="yes"/> <to variable="invalidValue"/> </copy>

</assign>
<switch>

<case condition="bpws:getVariableData(’invalidValue’) = ’true’">
<empty/>

</case>
<otherwise>

<throw faultName="invalid_dec" faultVariable="decErr"/>
</otherwise>

</switch>
</sequence>

</onMessage>

<onMessage partnerLink="incDec" portType="tns:incDecPT" operation="demandVal" variable="dummy">
<assign>

<copy> <from expression="true()"/> <to variable="terminated"/> </copy>
</assign>

</onMessage>
</pick>

</while>

<invoke name="callbackClient" partnerLink="incDec" portType="tns:incDecPTCallback"
operation="receiveVal" inputVariable="r"/>

</sequence>
</process>

Fig. 7. Abstract protocol described in BPEL4WS forintVarMachine



<definitions name="intVarMachine" ...>
<message name="x_nat">

<part name="idpart"
element="s1:x_natElement"/>

</message>

<message name="t_boolean">
<part name="idpart"

element="s1:t_booleanElement"/>
</message>

<message name="invalid_dec">
<part name="idpart"

element="s1:invalid_decElement"/>
</message>

<message name="dummy"/>

<portType name="incDecPT">
<operation name="init">

<input message="tns:x_nat"/>
</operation>

<operation name="inc">
<input message="tns:x_nat"/>

</operation>

<operation name="dec">
<input message="tns:x_nat"/>
<fault message="tns:invalid_dec"/>

</operation>

<operation name="demandVal">
<input message="tns:dummy"/>

</operation>

</portType>

<portType name="incDecPTCallback">
<operation name="receiveVal">

<input message="tns:x_nat"/>
</operation>

</portType>

<plnk:partnerLinkType name="incDecLT">
<plnk:role name="incDecService">

<plnk:portType name="tns:incDecPT"/>
</plnk:role>
<plnk:role name="incDecServiceRequester">

<plnk:portType name="tns:incDecPTCallback"/>
</plnk:role>

</plnk:partnerLinkType>
</definitions>

Fig. 6. Excerpts from a WSDL description for a simple Web service for
managing an integer variable

In order to write concise and precise descriptions of protocols,
simpler, and more abstract, notations should be used. In
the following, we examine one possible such notation (and
variants of it).

C. Path Expressions

Path expressions were introduced to express synchronization
of concurrent processes [33], [34]. A path expression can
be used to describe, and restrict, the allowable sequences
of operations on an entity, thus can be interpreted as a
specification of the allowable “transactions” associated with

a system [35].
Path expressions are a kind ofregular expressionswhere basic
path expressions have the following form [34]—parenthesis
can be used, as necessary, to create sub-expressions:

• A;B : A can be executed followed byB.
• A+B: eitherA or B can be executed.
• A∗: 0, 1 or more copies ofA can be executed consecu-

tively.

The protocol for invocation of the various operations of our
integer variable Web service presented earlier in Figure 6 could
thus be represented by the following path expression :

init; (inc + dec)*; demandVal

D. ω-Regular Languages and Temporal Logic Specifications

Regular expressions in various forms can also be found in
other languages for specifying properties of processes’ behav-
ior. For instance, it is possible to extend modal and temporal
logic operators with such regular expressions. This is done,
for example, in theregular alternation-free mu-calculus[36],
where various useful properties of processes can be expressed
quite intuitively and concisely using those regular expressions,
instead of using the more complex fixed point operators.
Of course, a reactive systems generally exhibits a non termi-
nating behavior. In this case, regular expressions, which cor-
respond to finite automata and finite sequences of operations,
can be generalized toω-regular expressions, which correspond
to ω-automata that can deal with infinite sequences of com-
putation. Figure 8 presents a (simplified) Buchi automata for
our protocol, one possible form ofω-automata–here, the single
states1 , appearing in a double circle, is anacceptingstate
(instead of a final one).1

init

demandVal

dec

inc,

s1

s2

Fig. 8. A Buchi automata for specifying the protocol of the
intVarMachine

Appropriate mappings between such automata and equivalent
(linear) temporal logic exist, for example, between LTL and
generalized Buchi automata [6]. Thus, specifying protocols
using appropriate (ω-)regular expressions or linear temporal
logic can be considered equivalent.

1Note that this is a simplifiedω-automata, since some transitions have been
omitted, namely, the non legal ones.



E. Generalizing Regular Expressions for Web Services

To better describe the behavior of Web services as allowed
in BPEL4WS and WSCI, it is useful to describe not only the
incoming messages but also the outgoing ones—the responses
as well as the requests. Concurrent execution of operations
can also be expressed in BPEL4WS or WSCI. Furthermore,
specifying the possible faults, distinct from the regular mes-
sages/operations, can be useful. One possible way of better
reflecting these aspects of a Web service behavior is to extend
the language of path expressions with the following constructs:

• A | B : execution ofA andB can proceed in parallel.
• [A] : execution ofA is optional.
• ˆA : invocation, by the service, of an operationA that must

be provided by the client, e.g., a callback operation.
• !A : signaling a faultA.

The specification of the protocol for our earlier example could
thus be refined as follows:

init;
( inc + (dec; [!invalid_dec]) )*;
demandVal;
ˆreceiveVal

F. Verifications Based on Protocol Specifications

Specifying a protocol can play different roles. Of course,
first and foremost, it can be used for documentation purpose,
stating the precise manner in which a Web service can and
must be used. Additionally, once such protocol specifications
are provided, a number of verifications can then be performed.
Static verification of protocol usage:Given a protocol de-
scription expressed as an appropriate path or (ω-)regular
expression, we are interested in checking whether a specific
executable business process that uses this web service do
obey the indicated protocol. We are currently in the process
of developing a tool that will perform such analysis. This
tool will be built around the CADP toolbox (Construction
and Analysis of Distributed Processes, formerly known as
“CAESAR/ALDEBARAN Development Package”) [37].
More precisely, the goal is to analyze an executable process
description written in BPEL4WS and check whether the
process do conform to the protocol of the various web services
used by the process. This tool will work as follows:

• Using theBPWS4Jtool and API [38], a business pro-
cessesP expressed in BPEL4WS will be parsed and
analyzed and the various Web services used byP will
be identified.

• For each key service, the appropriate (slice of) flow
of control within P will be analyzed and an algebraic
process model representing this flow will be generated—
LOTOS [28], one of the key language supported by
the CADP toolbox, will be used as our target algebraic
process model.

• The path expression describing the protocol of a service
will be translated into an appropriate regular alternation-
free mu-calculus expression [36], one of the logic nota-
tion supported by the CAPD toolbox.

• Conformance of the abstract model ofP with the
service’s protocol will then be verified using the
evaluator model-checking tool of CADP.

Dynamic verification of protocol usage:A static analysis
cannot, in general, be exact and complete. Whenever static
analysis cannot ensure that a process does conform to a
protocol, it could be interesting to introduce a form ofrun-time
monitoring. Such dynamic monitoring would be the equiva-
lent, for protocol description, of the dynamic verification of
pre/post-conditions and assertions in the case of contracts.
How to integrate such dynamic monitoring into executable
process is still under investigation. Work done in the context of
security checks, e.g., using Schneider’s security automata [39],
should be useful in this regard.

G. Related Work

Nakajima [40] applies model-checking to Web services de-
scribed in WSFL (Web Services Flow Language), a net-
oriented specification language based on a workflow descrip-
tion language. The verification is performed by translating
WSFL descriptions into Promela, where properties to be
checked are expressed in LTL. One problem appears to be
that WSFL’s operational semantics does not correctly handle
some types of dataflow, a problem which has been corrected
in BPEL4WS using a form of dead path elimination (DPE).

Narayanan and McIlraith [41] start with the DAML-S ontology
for Web services, for which they provide a formal semantics
defined by mapping DAML-S into PSL (Process Specification
Language). This PSL semantics is then translated into Petri
nets, on which various analysis are performed, e.g., reach-
ability, liveness, and deadlock detection. Model-checking of
temporal properties, however, is not addressed.

Fosteret al. [42] describe an approach to the model-based
verification of Web services compositions using BPEL4WS.
More precisely, LTSA-MSC (Labelled Transition System An-
alyzer extended with Message Sequence Chart) is first used
to describe the intended behavior of the workflow using
scenario-based specifications, which are then compiled into
FSP (Finite State Processes), a textual notation for process
calculus. A BPEL4WS implementation is then written and
translated into FSP. Verifying that the implementation satisfies
the specification is done through trace equivalence analysis
of the resulting FSP representations (a form of bi-simulation
checking). The types of properties that can be checked using
this approach are not stated.

Koshkina and van Breugel [43] introduce the BPE-calculus,
which targets the essence of BPEL4WS, focusing on the
flow of control but abstracting from data and ignoring fault
and compensation handlers. The formal syntax and (structural
operational) semantics of the BPE-calculus are defined using
the notation supported by PAC (Process Algebra Compiler),
which then interfaces with the CWB (Concurrency Work-
Bench) where model-checking is performed.



V. CONCLUSION

In this paper, we have presented some proposals toward adding
specification of contracts and protocols to Web service descrip-
tions, showing how these specifications could also be used
for verification purposes. Admittedly, the work we have been
presenting is stillin progress, so that no result are available yet.
However, we think the questions raised are important, since a
number of standards or proposals for describing Web services
have recently been, and still are, emerging. Understanding
the strengths, and limits, of these proposals is important.
Furthermore, we think that the development of Web services
should also benefit from the same kind of conceptual tools,
such as contracts, now available in other areas of software
development.
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