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Abstract

This is chapter 11 of the PhD thesis [Tri98] where all details concerning the methods imple-
mented in the tool can be found.

1 Tools

KRONOS ! is a tool suite for the analysis of real-time systems. It has been developed at VERIMAG
since 1992 [Yov93, DOY94, DOTY96, Yov97, BDM*98]. The current state of the tool is illustrated
in figure 1. The upper part of the figure (enclosed in dotted box) represents what can be called the
“first generation” of KRONOS, consisting in a collection of modules acting as interpreters, that is,
performing the analysis directly on their input model. As of today, the modules of KRONOS are the
following;:

e ptg computes the parallel composition of a set of TA syntactically;
e kronos performs TCTL, TBA and reachability model checking (see section 1.1 below);

e minim computes the quotient graph of a TA with respect to the strong time-abstracting bisim-
ulation;

e synth-kro performs controller synthesis for invariance and reachability, using the fix-point
method;

e optikron computes the set of active clocks per discrete state of a TA (i.e., the function act(),
and accordingly optimizes the number of clocks using renaming and cross-clock assignments
(see [Daw98] for more details).

The input language of these modules is the basic TA model, that is, finite-state automata with clocks,
communicating by label synchronization.

The C-code generator module, called kronos-open, represents the next generation of KRONOs. It is
based on the compiler philosophy of SPIN [Hol91], followed by OPEN-CAESAR [Gar98]. Given an input
model, kronos-open produces C-code which can be in turn compiled to various executables, which
perform the analysis for the specific input model. The interest behind this approach is that it permits to
take advantage of the particularities of each input model in order to generate optimized code. Another
difference from the first-generation tools is that kronos-open accepts a richer input language, namely,
TA extended with bounded discrete variables and shared-variable or message-passing communication.

As part of the work for this thesis, we have contributed to the development of KRONOS by:

'Named after the Titan of ancient Greek mythology, often indiscernible with chronos, which in Greek means “time”.
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Figure 1: The modules of the KRONOS tool suite.

e extending kronos with a module computing the parallel composition of a set of TA on-the-fly;

e extending kronos with a module for TBA model checking and reachability based on abstractions,
which uses the on-the-fly parallel-composition module above;

e implementing the module minim;
e implementing the prototype version of synth-kro;

e implementing a library of variable-dimension DBMs, to be used when activity abstraction is
applied during the analysis;

e implementing kronos-open: to date, it produces code for TBA model checking and reachability
and uses the variable-dimension DBM module above.

For the extensions of kronos and the implementation of minim and synth-kro, we have used the parser
and DBM library of KRONOS, developed by S.Yovine, A.Olivero and C.Daws. For the implementation
of kronos-open, we have used the parser of sm1, developed by M.Bozga [Boz97]. The implementation
of synth-kro has been completed by K.Altisen.

In the following sections, we present kronos, minim, synth-kro and kronos-open.

1.1 The model checker kronos

The functionalities of kronos are shown in figure 2. The tool operates in one of following basic modes:

1. Full-TCTL model checking (top of figure): the system to be verified is given as a TA A (file
.tg) and the property as a TCTL formula ¢ (file .tctl). The tool computes the set of states
of A satisfying ¢ (i.e., the characteristic set of ¢). The output is given in terms of a symbolic
state. Since the input is given as a single TA, in case of a system counsisting of more than one
components, they should be statically composed before the analysis.

2. Safety-TCTL model checking (second from top in the figure): using forward reachability analysis
based on simulation graphs, this mode can treat a sub-class of TCTL formulae, such as invariance



(VO p) and bounded response (VO (p; = V<O<ep2)). The input system is given as a single TA,
as in the previous mode. The output is a yes/no answer possibly accompanied by a symbolic
diagnostic trace.

Reachability-TCTL model checking (third from top in the figure): this mode is used to check
reachability of discrete states 2 using abstractions and on-the-fly parallel composition of the
input system, which is given as a collection of TA. The property is given as a state formula, that
is, a boolean expression of atomic propositions. As previously, a yes/no answer is returned, plus
a symbolic diagnostic trace whenever reachability holds.

TBA model checking (bottom of figure): the property here is given in terms of a TBA, the
discrete states of which are labeled with boolean expressions of atomic propositions on the
system. As in previous mode, parallel composition is computed on-the-fly. Diagnostics are
reported in terms of symbolic paths ending in a cycle. The implemented technique is based on
the double-DFS algorithm of [CVWY92] to find non-zeno, accepting cycles. This technique is
sound but generally incomplete.

Function modes 3 and 4 have been implemented as part of this thesis. We now give examples of
their usage, for the verification of the well-known Train Gate Closure system. The input .tg files

(text)

for the three automata are shown below:

/* Train.tg */
#states 3
#trans 3
#clocks 1 X

state: 0

prop:

far

invar: true

trans:

true

=> approach; reset{X}; goto 1

state: 1

prop:

near

invar: X<=5
trans:
X>2 => in; reset{}; goto 2

state: 2

prop:

in

invar: X<=5
trans:

X<=5

=> exit; reset{}; goto O

/* Gate.tg */
#states 4
#trans 4
#clocks 1 Y

2Any safety property can be reduced to (negation of) reachability. For this, it is sometimes necessary to use an
auxiliary automaton to monitor the system and move to an error state whenever the property is violated.
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Figure 2: The function modes of the model checker kronos.



state: 0

prop: up
invar: true
trans:

true => lower; reset{Y}; goto 1

state: 1

prop: coming_down

invar: Y<1

trans:

Y<1 => down; reset{}; goto 2

state: 2

prop: down

invar: true

trans:

true => raise; reset{Y}; goto 3

state: 3

prop: going_up

invar: Y<=2

trans:

Y>=1 => up; reset{}; goto O

/* Controller.tg */

#states 4
#trans 4
#clocks 1 Z
state: O
prop: cO
invar: true
trans:

true => approach; reset{Z}; goto 1

state: 1
prop: cl
invar: Z<=1
trans:

Z=1 => lower; reset{}; goto 2

state: 2
prop: c2
invar: true
trans:

true => exit; reset{Z}; goto 3

state: 3
prop: c3
invar: Z<=1



trans:
Z<=1 => raise; reset{}; goto 0

We would like to check the formula VO (in = down), stating that whenever the train is in the
crossing, the gate is down. For this, it suffices to check that the state formula (in A ~down) is not
reachable. The property can be verified by running kronos as follows:

kronos -R "in and not down" Train.tg Gate.tg Controller.tg

Building synchronization tables...

Using breadth-first search with max symbolic-states set size: 1000
Reachability failed.

Full state space explored: 11 states. Max depth reached: 9

The tool reports that reachability has failed, meaning that invariance holds.

As a second example, consider the bounded-response property “whenever the gate is down, it
comes up at most 6 time units later”. We can verify this property using a TBA encoding the negation
of the property, similar to TBA By of figure ??. The .tg file for this automaton (buchi_bounded.tg)
is shown below:

/* Timed Buchi automaton testing bounded response */
#states 4

#trans 4

#clocks 1 W

state: 0O

invar: true

trans:

true => go; reset{ W }; goto 1

state: 1

prop: down

invar: true

trans:

true => wait; reset{}; goto 2

state: 2

prop: not up

invar: true

trans:

W>6 => error; reset{}; goto 3

state: 3

prop: accept

invar: true

trans:

true => accept; reset{}; goto 3

Then, we can run kronos as follows:

kronos train.tg gate.tg control.tg buchi_bounded.tg



Building synchronization tables...

On-the-fly model checking by Buchi acceptance.

Using depth-first search with max stack depth: 1000
Search for acceptance cycles successful.

Sample scenario dumped in file: buchi_bounded.trail
State space explored: 19 states. Max depth reached: 18

The tool reports a counter-example of length 17, meaning that the property does not hold. In fact,
we can get a shorter counter-example by limiting the size of the DFS stack to 12:

kronos train.tg gate.tg control.tg buchi_bounded.tg -STACK 12

Building synchronization tables...

On-the-fly model checking by Buchi acceptance.

Using depth-first search with max stack depth: 12
Search for acceptance cycles successful.

Sample scenario dumped in file: buchi_bounded.trail
State space explored: 13 states. Max depth reached: 11

The buchi_bounded.trail file is shown below:

Path reaching cycle (length: 10)

0: <0, 0, 0, O, X=Y and X=Z and X=W >
-—— APPROACH --->
1: <1, 0, 1, O, X=1 and Z=1 and 1<=W and X<=Y and Y=W >
--- LOWER --->
2: <1, 1, 2, 0, 1<=X and X<2 and X=Y+1 and X=Z and X<=W >
-—— DOWN -—
3: <1, 2, 2, 0, 1<=X and X<2 and X=Y+1 and X=Z and X<=W >
-—- GO -—
4: <1, 2, 2,1, 2<X and X<=5 and X=Y+1 and X=Z and X<W+2 and W+1<=X >
-—-— WAIT -—
5: <1, 2, 2, 2, 2<X and X<=5 and X=Y+1 and X=Z and X<W+2 and W+1<=X >
-— 1IN -—>
6: <2, 2, 2, 2, X<=5 and 3<W and X=Y+1 and X=Z and W+1<=X >
-—— EXIT -—>
7: <0, 2, 3, 2, Z<=1 and 4<W and X=Y+1 and X<=Z+5 and Z+4<X and W+1<=X >
-—- RAISE --->
8: <0, 3, 0, 2, Y<=2 and 6<W and X<=Z+5 and W+1<=X and Y<Z and Z<=Y+1
and Z+3<W >
--— ERROR --->
9: <0, 3, 0, 3, 1<Y and Y<=2 and 6<=W and X<=Z+5 and W+1<=X and Z<=Y+1
and Y+4<W >
-—— UP -—>

Cycle (length: 0)

10: < 0, 0, 0, 3, 1<Y and 6<=W and X<=Z+5 and W+1<=X and Z<=Y+1 and Y+4<W >
--—— ACCEPT --->
. back to node 10 ...



1.2 The minimization module minim

Figure 3 illustrates the usage of the module minim. The tool takes as input a TA 3 and outputs
its STa-quotient. Optionally, the initial partition can also be given as input. By default the initial
partition consists in a set of zones (q, (1), ..., (q,(n) for each discrete state g, where (3, ...,(p, is the
canonical decomposition of the guards of edges leaving ¢: for each zone (; and each guard, (; is either
included in the guard or has an empty intersection with it. For example, if # < 1 and y > 2 are
the guards, we would obtain four zones, namely, t < 1Ay > 2, c < 1Ay <2, z<1Ay>2and
z<1lAy<2

The output comes in a various set of formats, including the (untimed) labeled graph format .aut
of CADP and an extended TA format .mtg to represent 7-transitions. Typically, the .aut graphs
produced by minim are given as input to aldebaran, in order to be re-minimized or compared with
respect to various (untimed) bisimulations or simulations. They can also be visualized (when they are
reasonably small) using the module bcg_edit, or model checked against p-calculus formulae using the
module evaluator.

For example, the STa-quotient of the TGC system (figure ??) can be minimized with respect to
the observational equivalence, yielding the following graph (in .aut format):

des (0, 9, 8)

(0, APPROACH,?2)
(1, APPROACH,7)
(1, UP,0)

(2, LOWER,3)
(3, DOWN,4)

(4, IN,5)

(5, EXIT,6)

(6, RAISE,1)
(7, UP,2)

According to lemma 77, this graph is the Tao-quotient of the TGC system. We can use bcg_edit to
visualize and transform the graph, which can then be output in postscript format, shown in figure ?7.

CADP tool suite:

— Comparison/Minimization
w.r.t. untimed bi-/simulations
(aldebaran)

STa-quotient
of A

1L

_ N
TA A: g — Visualization (bcg-edit)

J -meg| — p-calculus model checking
: (evaluator)

Initial partition

Figure 3: The minimization module minim.

1.3 The controller-synthesis module synth-kro

This module is presented in figure 4. It takes as input:

e a TA in .tg format (the special label U__ is used to mark uncontrollable edges);

3 Actually, minim accepts as input the parsed .tg file. The parsing is done by kronos.
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Figure 4: The controller-synthesis module synth-kro.

e a TCTL formula in .tctl format, of the form VO ¢ (invariance) or 3¢ ¢ (reachability), where
¢ is a boolean expression on atomic propositions.

The tool produces two output files:
e a .eval file containing the set of winning states;

e (if the above set is non-empty) a .tg file specifying the restriction of the input TA to the set of
winning states.

The TGC example of figure ?? is specified by the TA shown below:

/* Timed graph generated for the parallel composition of:
automaton 0: train.tg
automaton 1: gate.tg
automaton 2: control.tg

*/

#states 12
#trans 17
#clocks 3

X /*x train */

Y /* gate */

Z /* control */
state: 0 /* vector state: < 0, 0, 0 > %/
prop: FAR UP CO
invar: TRUE
trans:

1<=X => U__ APPROACH ; RESET{ X Z }; goto 1

state: 1 /* vector state: < 1, 0, 1 > %/
prop: NEAR UP C1

invar: X<=5 and Z<=3

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 2

Z<=3 => LOWER ; RESET{ Y }; goto 3

state: 2 /* vector state: < 2, 0, 1 > %/
prop: IN UP C1

invar: X<=5 and Z<=3

trans:

Z<=3 => LOWER ; RESET{ Y }; goto 4



state: 3 /* vector state: < 1, 1, 2 >
prop: NEAR COMING_DOWN C2

invar: X<=5 and Y<1

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 4

Y<1 => U__ DOWN ; reset{}; goto 5

state: 4 /* vector state: < 2, 1, 2 >
prop: IN COMING_DOWN C2

invar: X<=5 and Y<1

trans:

Y<1 => U__ DOWN ; reset{}; goto 6

X<=5 => U__ EXIT ; RESET{ X Z }; goto 7
state: 5 /* vector state: < 1, 2, 2 >
prop: NEAR DOWN C2

invar: X<=b

trans:

2<X and X<=5 => U__ IN ; reset{}; goto 6
state: 6 /* vector state: < 2, 2, 2 >
prop: IN DOWN C2

invar: X<=b

trans:

X<=56 => U__ EXIT ; RESET{ X Z }; goto 8
state: 7 /* vector state: < 0, 1, 3 >
prop: FAR COMING_DOWN C3

invar: Y<1 and Z<=1

trans:

Y<1 => U__ DOWN ; reset{}; goto 8

state: 8 /* vector state: < 0, 2, 3 >
prop: FAR DOWN C3

invar: Z<=1

trans:

Z<=1 => RAISE ; RESET{ Y }; goto 9

state: 9 /* vector state: < 0, 3, 0 >

prop: FAR GOING_UP CO

invar: Y<=2

trans:

1<=Y and Y<=2 => U__ UP ; reset{}; goto 0
1<=X => U__ APPROACH ; RESET{ X Z }; goto 10

state: 10 /* vector state: <1, 3, 1 >
prop: NEAR GOING_UP Ci1

invar: X<=5 and Y<=2 and Z<=3

trans:

10

*/

*/



2<X and X<=5 => U__ IN ; reset{}; goto 11
1<=Y and Y<=2 => U__ UP ; reset{}; goto 1

state: 11 /* vector state: < 2, 3, 1 > %/
prop: IN GOING_UP C1

invar: X<=5 and Y<=2 and Z<=3

trans:

1<=Y and Y<=2 => U__ UP ; reset{}; goto 2

Running synth-kro on the above TA and the TCTL formula VO (in = down), yields the following
restricted TA:

/* closed system for AB(IN impl DOWN) x*/

#states 12
#trans 17
#ticlocks 3 X Y Z

state: 0O

prop: CO UP FAR
invar: TRUE
trans:

1<=X => APPROACH U__; RESET{ X Z } ; goto 1

state: 1

prop: UP C1 NEAR
invar: X<=1 and Z<=3
trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 2
X<=1 and Z<=3 => LOWER; RESET{ Y } ; goto 3

state: 2

prop: UP C1 IN

invar: false

trans:

false => LOWER; RESET{ Y } ; goto 4

state: 3

prop: NEAR C2 COMING_DOWN

invar: X<=5 and Y=1 or Y<=1 and X<=Y+1
trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 4
Y<=1 => U__ DOWN; RESET{} ; goto 5

state: 4

prop: IN C2 COMING_DOWN

invar: false

trans:

Y<1 => U__ DOWN; RESET{} ; goto 6

X<=6 => U__ EXIT; RESET{ X Z } ; goto 7
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state: 5

prop: NEAR C2 DOWN

invar: X<=b

trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 6

state: 6

prop: IN C2 DOWN

invar: X<=b

trans:

X<=6 => U__ EXIT; RESET{ X Z } ; goto 8

state: 7

prop: FAR COMING_DOWN C3

invar: false

trans:

Y<1 => U__ DOWN; RESET{} ; goto 8

state: 8

prop: FAR DOWN C3

invar: X=0 and Z<=1

trans:

X=0 and Z<=1 => RAISE; RESET{ Y } ; goto 9

state: 9

prop: CO FAR GOING_UP

invar: Y<=2 and X<=Y or 1<=Y and Y<=2 and Y<=X+1 or 1<=Y and Y<=2 and X<=Y+8
trans:

1<=Y and Y<=2 => U__ UP; RESET{} ; goto O

1<=X => APPROACH U__; RESET{ X Z } ; goto 10

state: 10

prop: C1 NEAR GOING_UP

invar: Y<=2 and X+1<=Y and Z<=Y+1 or Z<=3 and X+2<=Z and Y+1<=Z and Z<=Y+2
trans:

2<X and X<=5 => U__ IN; RESET{} ; goto 11

1<=Y and Y<=2 => U__ UP; RESET{} ; goto 1

state: 11

prop: C1 IN GOING_UP

invar: false

trans:

1<=Y and Y<=2 => U__ UP; RESET{} ; goto 2

Notice that only controllable edges have restricted guards, for instance, the edge LOWER of state 1

finds its guard restricted from z < 3 to z < 1 A z < 3. Also notice that the discrete states which are
eliminated by the synthesis algorithm have invariant false.
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1.4 The connection of KrRONOS to OPEN-C

AESAR

In this section we describe the code-generator kronos-open which interfaces KRONOS to the verifica-
tion platform OPEN-CAESAR. The steps of the verification process using kronos-open are illustrated
in figure 5 and explained in the following paragraphs.

.exp

analysis choice

Hit/Repeat
states:

.accl - >’ kronos-open ‘e

Variable-dimension)
DBM library J

OPEN-CAESAR
library )

regular expression —=

p-calculus formula —=

C compiler

(script)

xsimulator
A ]

generator -aut

profounder %Y-es/ No answer and
diagnostic timed run or cycle

exhibitor . Yes/No answer and
diagnostic untimed run

evaluator 7 a8

Figure 5: The usage of the module kronos-open.

1.4.1 Input

The input is given as a Lotos-like expression specifying the system components and their channel
connections (file .exp). For example, the .exp file for the BANG&OLUFSEN case study is shown

below:

Lotos-Behavior

(
Bus
| [ zero, one ]|
(
(
( Sender_A |[ a_check ]| Detector_A )
|[ a_frame, a_new_pn, a_reset ]|
FrameGen_A
)
[11
(
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( Sender_B |[ b_check ]| Detector_B )
I[ b_frame, b_new_pn, b_reset 1|
FrameGen_B
)
)
)
[

Observer

In the above expression, names such as Bus, Sender_A, etc, denote the TA of the system. For each
of these names there is a .aut file containing the description of the TA. Names such as zero, one,
etc, are channels, used for communication between different components. Communication takes place
through synchronization of two or more components. To specify which components synchronize on
which channels, the notation |[ ... 1] is used, for instance, the Bus synchronizes with the rest of
the system on channels | [ zero, one ]]|.

Apart from clocks, the TA can have boolean, bounded-integer, and enumerative-type variables.
There is an associated .types file containing type definitions, such as:

enum msg {m0, ml, m2, m3, m4, m5, m6, m7, m8, m9, mi0}

The variables and the structure of each TA are specified in the corresponding .aut file. Part of
this file for the TA Sender_A is shown below:

/* variable declaration */

a_c : clock
a_pf : bool
a_pn : bool
a_sli : bool
a_s2 : bool
a_msg ! msg
atomic : bool

\index{states'!atomic}
/* the TA x/
des(0,34,19)

/* start x/
(0, [“atomic] send a_go a_c:=0, 1)

/* idle */
(1, [(Catomic) and (a_c=781)] send a_start_frame atomic:=true a_c:=0, 2)

/* atomic:ex_start */
(2, [(a_c<=0) and ("b_start)] send b_silent atomic:=false, 3)

(2, [(a_c<=0) and b_start] send b_sends atomic:=false, 4)

/* ex_silencel */
(3, [(“atomic) and (a_c=2343)] receive a_zero a_c:=0, 1)

14



(3, [("atomic) and (a_c=2343)] receive a_one a_c:=0, 6)

/* other_started */
(4, [("atomic) and b_start and (a_c=3124)] send b_sends a_c:=0, 4)
(4, [("atomic) and (“b_start) and (a_c=3124)] send b_silent a_c:=0, 3)

/* atomic:goto_idle (removed) */

/* ex_silence2 */
(6, [("atomic) and (a_c=781)] receive a_zero a_c:=0, 1)
(6, [("atomic) and (a_c=781)] receive a_one a_c:=0, 7)

/* transmit */
(7, [(Catomic) and (a_c=781)] send a_frame a_err:=e0 a_diff:=false
a_pf:=true atomic:=true a_c:=0, 8)

/* until_silence */
(16, [(Tatomic) and (a_c=781)] receive a_zero a_c:=0, 16)
(16, [(Tatomic) and (a_c=781)] receive a_one a_c:=0, 17)

/* hold */
(17, [(Catomic) and (a_c=28116)] send a_hold a_res:=r0 a_c:=0, 1)

/* jam *x/
(18, [(“atomic) and (a_c=25000)] send a_jam a_pn:=true
a_start:=false a_res:=r0 a_c:=0, 7)

/* invariants */

[1, a_c<=781]
[2, ~atomic]

[3, a_c<=2343]
[4, a_c<=3124]

[17, a_c<=28116]
[18, a_c<=25000]

1.4.2 Code generation

kronos-open creates a .c file which implements the on-the-fly generation of the simulation graph of
the input model. The core of the .c file consists of the data structures to represent symbolic states
(zones) and edges, and the implementation of post(). More precisely:

e A record-like data structure is used to represent zones. The structure has a separate field for
each discrete variable, plus an additional field for the convex polyhedron. The size of each
discrete-variable field is the number of bits necessary to encode the type of the variable. The
field for the polyhedron is a pointer to a variable-dimension DBM. The implementation for the
latter is parameterized by the maximal number of clocks (depending on the input model) and is
contained in a separate library.
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e There is a C function to produce the initial zone.
e post() is implemented by a set of C-functions:

— Two functions for each edge e: the first one takes as input a zone and returns its intersection
with the guard of e; the second function performs the assignments on the discrete variables
and applies the clock-reset and time-passage operators to the DBM.

— An iterator function which takes as input a zone and generates its successors one by one.
The out-going edges of the zone are computed on-the-fly, based on information stored about
the possible channel synchronizations of the input model.

It is worth noticing the main benefit of the compiler approach, compared to the interpreter one:
guards, asssignments and clock resets are transformed directly to C code, which results in more
efficient execution, than having generic functions for the above operations. In particular, when these
operations are trivial (e.g., true guard, no assignment) they can be completely skipped.

On the other hand, the approach has the potential disadvantage of explosion of the size of the .c
file generated, in case there is a very large number of transitions in the input model. Luckily, this is
rarely the case, since these are high-level transitions: at the TA level, not at the graph level.

1.4.3 Final output

After the . c file has been generated, it is compiled and linked to the OPEN-CAESAR and DBM libraries
using a script. As a result, we obtain an executable program performing a certain type of analysis.
An option given to the script tells it which type of analysis is to be performed, that is, which type of
executable is to be generated. Currently, the following types of executables are available:

e xsimulator performs user-guided simulation in a window-based environment.
e generator builds the simulation graph of the system in untimed labeled graph .aut format.

e profounder performs reachability analysis or TBA emptiness. It takes as supplementary input
a .acc file specifying the discrete states to be reached (hit states) or the repeating states (repeat
states). In case of reachability, profounder can generate timed diagnostics.

e exhibitor searches for a finite untimed trail matching an input regular expression.

e evaluator performs p-calculus model checking.

Relation to the literature

Apart from KRONOS, perhaps the most successful tool for dense-time verification is UPPAAL [LPY97].
To our knowledge, synth-kro is currently the only tool for dense-time controller synthesis.
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