
Extended Kronos�CADP tool� minimization� on�the��y veri�cation

and compositionality

Stavros Tripakis

Verimag

Centre �Equation� �� rue de Vignate� ������ Gi	eres� France

E
mail� tripakis�imagfr

January ����

Abstract

This is chapter �� of the PhD thesis �Tri��� where all details concerning the methods imple�
mented in the tool can be found�

� Tools

Kronos � is a tool suite for the analysis of real�time systems� It has been developed at Verimag
since ���� �Yov��� DOY�	� DOTY�
� Yov��� BDM���� The current state of the tool is illustrated
in �gure �� The upper part of the �gure �enclosed in dotted box� represents what can be called the
��rst generation� of Kronos� consisting in a collection of modules acting as interpreters� that is�
performing the analysis directly on their input model� As of today� the modules of Kronos are the
following�

� ptg computes the parallel composition of a set of TA syntactically�

� kronos performs TCTL� TBA and reachability model checking �see section ��� below��

� minim computes the quotient graph of a TA with respect to the strong time�abstracting bisim�
ulation�

� synth�kro performs controller synthesis for invariance and reachability� using the �x�point
method�

� optikron computes the set of active clocks per discrete state of a TA �i�e�� the function act���
and accordingly optimizes the number of clocks using renaming and cross�clock assignments
�see �Daw�� for more details��

The input language of these modules is the basic TA model� that is� �nite�state automata with clocks�
communicating by label synchronization�

The C�code generator module� called kronos�open� represents the next generation ofKronos� It is
based on the compiler philosophy of Spin �Hol��� followed by Open�Caesar �Gar��� Given an input
model� kronos�open produces C�code which can be in turn compiled to various executables� which
perform the analysis for the speci�c input model� The interest behind this approach is that it permits to
take advantage of the particularities of each input model in order to generate optimized code� Another
di�erence from the �rst�generation tools is that kronos�open accepts a richer input language� namely�
TA extended with bounded discrete variables and shared�variable or message�passing communication�

As part of the work for this thesis� we have contributed to the development of Kronos by�

�Named after the Titan of ancient Greek mythology� often indiscernible with chronos� which in Greek means �time��



C�code generator� kronos�open

Variable�dimension DBM library

Polyhedra library

Syntactic Parallel Composition� ptg

Model Checker� kronos

Minimization� minim

Controller synthesis� synth�kro

Clock optimization� optikron

Figure �� The modules of the Kronos tool suite�

� extending kronos with a module computing the parallel composition of a set of TA on�the��y�

� extending kronos with a module for TBA model checking and reachability based on abstractions�
which uses the on�the��y parallel�composition module above�

� implementing the module minim�

� implementing the prototype version of synth�kro�

� implementing a library of variable�dimension DBMs� to be used when activity abstraction is
applied during the analysis�

� implementing kronos�open� to date� it produces code for TBA model checking and reachability
and uses the variable�dimension DBM module above�

For the extensions of kronos and the implementation of minim and synth�kro� we have used the parser
and DBM library of Kronos� developed by S�Yovine� A�Olivero and C�Daws� For the implementation
of kronos�open� we have used the parser of smi� developed by M�Bozga �Boz��� The implementation
of synth�kro has been completed by K�Altisen�

In the following sections� we present kronos� minim� synth�kro and kronos�open�

��� The model checker kronos

The functionalities of kronos are shown in �gure �� The tool operates in one of following basic modes�

�� Full�TCTL model checking �top of �gure�� the system to be veri�ed is given as a TA A ��le
�tg� and the property as a TCTL formula � ��le �tctl�� The tool computes the set of states
of A satisfying � �i�e�� the characteristic set of ��� The output is given in terms of a symbolic
state� Since the input is given as a single TA� in case of a system consisting of more than one
components� they should be statically composed before the analysis�

�� Safety�TCTL model checking �second from top in the �gure�� using forward reachability analysis
based on simulation graphs� this mode can treat a sub�class of TCTL formulae� such as invariance

�



��� p� and bounded response ��� �p� � ���c p���� The input system is given as a single TA�
as in the previous mode� The output is a yes�no answer possibly accompanied by a symbolic
diagnostic trace�

�� Reachability�TCTL model checking �third from top in the �gure�� this mode is used to check
reachability of discrete states � using abstractions and on�the��y parallel composition of the
input system� which is given as a collection of TA� The property is given as a state formula� that
is� a boolean expression of atomic propositions� As previously� a yes�no answer is returned� plus
a symbolic diagnostic trace whenever reachability holds�

	� TBA model checking �bottom of �gure�� the property here is given in terms of a TBA� the
discrete states of which are labeled with boolean expressions of atomic propositions on the
system� As in previous mode� parallel composition is computed on�the��y� Diagnostics are
reported in terms of symbolic paths ending in a cycle� The implemented technique is based on
the double�DFS algorithm of �CVWY�� to �nd non�zeno� accepting cycles� This technique is
sound but generally incomplete�

Function modes � and 	 have been implemented as part of this thesis� We now give examples of
their usage� for the veri�cation of the well�known Train Gate Closure system� The input �tg �les
�text� for the three automata are shown below�

�� Train�tg ��

�states �

�trans �

�clocks � X

state� 	

prop� far

invar� true

trans�

true 
� approach� resetX�� goto �

state� �

prop� near

invar� X�
�

trans�

X�� 
� in� reset�� goto �

state� �

prop� in

invar� X�
�

trans�

X�
� 
� exit� reset�� goto 	

�� Gate�tg ��

�states �

�trans �

�clocks � Y

�Any safety property can be reduced to �negation of� reachability� For this� it is sometimes necessary to use an
auxiliary automaton to monitor the system and move to an error state whenever the property is violated�

�



kronos �trail

TA A�k � � � kAn�

kronos �trace

�tctlformula ��
TCTL state

TA A�k � � � kAn�

� � �

� � �

Abstraction

TCTL safety
formula �� �tctl

kronos �trace

Abstraction

�tctl

kronos �eval

TCTL formula ��

TA A�

TA A�

TBA B�

�tg �tg

�tg

�tg �tg

�tg

�tg
and zone path
Yes�No answer

satisfying�violating �

Yes�No answer
and zone path
satisfying�violating �

Set of states
satisfying �

Yes�No answer and
non�zeno� accepting cycle
of �A�k � � � kAn��B

Figure �� The function modes of the model checker kronos�

	



state� 	

prop� up

invar� true

trans�

true 
� lower� resetY�� goto �

state� �

prop� coming�down

invar� Y��

trans�

Y�� 
� down� reset�� goto �

state� �

prop� down

invar� true

trans�

true 
� raise� resetY�� goto �

state� �

prop� going�up

invar� Y�
�

trans�

Y�
� 
� up� reset�� goto 	

�� Controller�tg ��

�states �

�trans �

�clocks � Z

state� 	

prop� c	

invar� true

trans�

true 
� approach� resetZ�� goto �

state� �

prop� c�

invar� Z�
�

trans�

Z
� 
� lower� reset�� goto �

state� �

prop� c�

invar� true

trans�

true 
� exit� resetZ�� goto �

state� �

prop� c�

invar� Z�
�

�



trans�

Z�
� 
� raise� reset�� goto 	

We would like to check the formula �� �in� down�� stating that whenever the train is in the
crossing� the gate is down� For this� it su�ces to check that the state formula �in � �down� is not
reachable� The property can be veri�ed by running kronos as follows�

kronos �R �in and not down� Train�tg Gate�tg Controller�tg

���

Building synchronization tables���

Using breadth�first search with max symbolic�states set size� �			

Reachability failed�

Full state space explored� �� states� Max depth reached� �

The tool reports that reachability has failed� meaning that invariance holds�
As a second example� consider the bounded�response property �whenever the gate is down� it

comes up at most 
 time units later�� We can verify this property using a TBA encoding the negation
of the property� similar to TBA B� of �gure ��� The �tg �le for this automaton �buchi bounded�tg�
is shown below�

�� Timed Buchi automaton testing bounded response ��

�states �

�trans �

�clocks � W

state� 	

invar� true

trans�

true 
� go� reset W �� goto �

state� �

prop� down

invar� true

trans�

true 
� wait� reset�� goto �

state� �

prop� not up

invar� true

trans�

W�� 
� error� reset�� goto �

state� �

prop� accept

invar� true

trans�

true 
� accept� reset�� goto �

Then� we can run kronos as follows�

kronos train�tg gate�tg control�tg buchi�bounded�tg






���

Building synchronization tables���

On�the�fly model checking by Buchi acceptance�

Using depth�first search with max stack depth� �			

Search for acceptance cycles successful�

Sample scenario dumped in file� buchi�bounded�trail

State space explored� �� states� Max depth reached� ��

The tool reports a counter�example of length ��� meaning that the property does not hold� In fact�
we can get a shorter counter�example by limiting the size of the DFS stack to ���

kronos train�tg gate�tg control�tg buchi�bounded�tg �STACK ��

���

Building synchronization tables���

On�the�fly model checking by Buchi acceptance�

Using depth�first search with max stack depth� ��

Search for acceptance cycles successful�

Sample scenario dumped in file� buchi�bounded�trail

State space explored� �� states� Max depth reached� ��

The buchi bounded�trail �le is shown below�

Path reaching cycle �length� �	�

	� � 	� 	� 	� 	� X
Y and X
Z and X
W �

��� APPROACH ����

�� � �� 	� �� 	� X
� and Z
� and ��
W and X�
Y and Y
W �

��� LOWER ����

�� � �� �� �� 	� ��
X and X�� and X
Y�� and X
Z and X�
W �

��� DOWN ����

�� � �� �� �� 	� ��
X and X�� and X
Y�� and X
Z and X�
W �

��� GO ����

�� � �� �� �� �� ��X and X�
� and X
Y�� and X
Z and X�W�� and W���
X �

��� WAIT ����

�� � �� �� �� �� ��X and X�
� and X
Y�� and X
Z and X�W�� and W���
X �

��� IN ����

�� � �� �� �� �� X�
� and ��W and X
Y�� and X
Z and W���
X �

��� EXIT ����

�� � 	� �� �� �� Z�
� and ��W and X
Y�� and X�
Z�� and Z���X and W���
X �

��� RAISE ����

�� � 	� �� 	� �� Y�
� and ��W and X�
Z�� and W���
X and Y�Z and Z�
Y��

and Z���W �

��� ERROR ����

�� � 	� �� 	� �� ��Y and Y�
� and ��
W and X�
Z�� and W���
X and Z�
Y��

and Y���W �

��� UP ����

Cycle �length� 	�

�	� � 	� 	� 	� �� ��Y and ��
W and X�
Z�� and W���
X and Z�
Y�� and Y���W �

��� ACCEPT ����

��� back to node �	 ���

�



��� The minimization module minim

Figure � illustrates the usage of the module minim� The tool takes as input a TA � and outputs
its STa�quotient� Optionally� the initial partition can also be given as input� By default the initial
partition consists in a set of zones �q� ���� ���� �q� �m� for each discrete state q� where ��� ���� �m is the
canonical decomposition of the guards of edges leaving q� for each zone �i and each guard� �i is either
included in the guard or has an empty intersection with it� For example� if x � � and y � � are
the guards� we would obtain four zones� namely� x � � � y � �� x � � � y � �� x � � � y � � and
x � � � y � ��

The output comes in a various set of formats� including the �untimed� labeled graph format �aut
of CADP and an extended TA format �mtg to represent � �transitions� Typically� the �aut graphs
produced by minim are given as input to aldebaran� in order to be re�minimized or compared with
respect to various �untimed� bisimulations or simulations� They can also be visualized �when they are
reasonably small� using the module bcg edit� or model checked against ��calculus formulae using the
module evaluator�

For example� the STa�quotient of the TGC system ��gure ��� can be minimized with respect to
the observational equivalence� yielding the following graph �in �aut format��

des �	� �� ��

�	� APPROACH���

��� APPROACH���

��� UP�	�

��� LOWER���

��� DOWN���

��� IN���

��� EXIT���

��� RAISE���

��� UP���

According to lemma ��� this graph is the Tao�quotient of the TGC system� We can use bcg edit to
visualize and transform the graph� which can then be output in postscript format� shown in �gure ���

minimTA A�

�mtg

�aut

Initial partition

of A

�tg

STa�quotient
� Comparison�Minimization

w�r�t� untimed bi��simulations
�aldebaran�

�evaluator�
� ��calculus model checking
� Visualization �bcg edit�

CADP tool suite�

Figure �� The minimization module minim�

��� The controller�synthesis module synth�kro

This module is presented in �gure 	� It takes as input�

� a TA in �tg format �the special label U is used to mark uncontrollable edges��

�Actually� minim accepts as input the parsed �tg �le� The parsing is done by kronos�

�



�eval
States of A
satisfying �

Restricted automaton
�tg of the closed system�tctl

�tg

synth�kro
TCTL formula ��

��� or 	� �

TA A�

Figure 	� The controller�synthesis module synth�kro�

� a TCTL formula in �tctl format� of the form �� � �invariance� or 	� � �reachability�� where
� is a boolean expression on atomic propositions�

The tool produces two output �les�

� a �eval �le containing the set of winning states�

� �if the above set is non�empty� a �tg �le specifying the restriction of the input TA to the set of
winning states�

The TGC example of �gure �� is speci�ed by the TA shown below�

�� Timed graph generated for the parallel composition of�

automaton 	� train�tg

automaton �� gate�tg

automaton �� control�tg

��

�states ��

�trans ��

�clocks �

X �� train ��

Y �� gate ��

Z �� control ��

state� 	 �� vector state� � 	� 	� 	 � ��

prop� FAR UP C	

invar� TRUE

trans�

��
X 
� U�� APPROACH � RESET X Z �� goto �

state� � �� vector state� � �� 	� � � ��

prop� NEAR UP C�

invar� X�
� and Z�
�

trans�

��X and X�
� 
� U�� IN � reset�� goto �

Z�
� 
� LOWER � RESET Y �� goto �

state� � �� vector state� � �� 	� � � ��

prop� IN UP C�

invar� X�
� and Z�
�

trans�

Z�
� 
� LOWER � RESET Y �� goto �

�



state� � �� vector state� � �� �� � � ��

prop� NEAR COMING�DOWN C�

invar� X�
� and Y��

trans�

��X and X�
� 
� U�� IN � reset�� goto �

Y�� 
� U�� DOWN � reset�� goto �

state� � �� vector state� � �� �� � � ��

prop� IN COMING�DOWN C�

invar� X�
� and Y��

trans�

Y�� 
� U�� DOWN � reset�� goto �

X�
� 
� U�� EXIT � RESET X Z �� goto �

state� � �� vector state� � �� �� � � ��

prop� NEAR DOWN C�

invar� X�
�

trans�

��X and X�
� 
� U�� IN � reset�� goto �

state� � �� vector state� � �� �� � � ��

prop� IN DOWN C�

invar� X�
�

trans�

X�
� 
� U�� EXIT � RESET X Z �� goto �

state� � �� vector state� � 	� �� � � ��

prop� FAR COMING�DOWN C�

invar� Y�� and Z�
�

trans�

Y�� 
� U�� DOWN � reset�� goto �

state� � �� vector state� � 	� �� � � ��

prop� FAR DOWN C�

invar� Z�
�

trans�

Z�
� 
� RAISE � RESET Y �� goto �

state� � �� vector state� � 	� �� 	 � ��

prop� FAR GOING�UP C	

invar� Y�
�

trans�

��
Y and Y�
� 
� U�� UP � reset�� goto 	

��
X 
� U�� APPROACH � RESET X Z �� goto �	

state� �	 �� vector state� � �� �� � � ��

prop� NEAR GOING�UP C�

invar� X�
� and Y�
� and Z�
�

trans�

��



��X and X�
� 
� U�� IN � reset�� goto ��

��
Y and Y�
� 
� U�� UP � reset�� goto �

state� �� �� vector state� � �� �� � � ��

prop� IN GOING�UP C�

invar� X�
� and Y�
� and Z�
�

trans�

��
Y and Y�
� 
� U�� UP � reset�� goto �

Running synth�kro on the above TA and the TCTL formula �� �in� down�� yields the following
restricted TA�

�� closed system for AB�IN impl DOWN� ��

�states ��

�trans ��

�clocks � X Y Z

state� 	

prop� C	 UP FAR

invar� TRUE

trans�

��
X 
� APPROACH U��� RESET X Z � � goto �

state� �

prop� UP C� NEAR

invar� X�
� and Z�
�

trans�

��X and X�
� 
� U�� IN� RESET� � goto �

X�
� and Z�
� 
� LOWER� RESET Y � � goto �

state� �

prop� UP C� IN

invar� false

trans�

false 
� LOWER� RESET Y � � goto �

state� �

prop� NEAR C� COMING�DOWN

invar� X�
� and Y
� or Y�
� and X�
Y��

trans�

��X and X�
� 
� U�� IN� RESET� � goto �

Y�
� 
� U�� DOWN� RESET� � goto �

state� �

prop� IN C� COMING�DOWN

invar� false

trans�

Y�� 
� U�� DOWN� RESET� � goto �

X�
� 
� U�� EXIT� RESET X Z � � goto �

��



state� �

prop� NEAR C� DOWN

invar� X�
�

trans�

��X and X�
� 
� U�� IN� RESET� � goto �

state� �

prop� IN C� DOWN

invar� X�
�

trans�

X�
� 
� U�� EXIT� RESET X Z � � goto �

state� �

prop� FAR COMING�DOWN C�

invar� false

trans�

Y�� 
� U�� DOWN� RESET� � goto �

state� �

prop� FAR DOWN C�

invar� X
	 and Z�
�

trans�

X
	 and Z�
� 
� RAISE� RESET Y � � goto �

state� �

prop� C	 FAR GOING�UP

invar� Y�
� and X�
Y or ��
Y and Y�
� and Y�
X�� or ��
Y and Y�
� and X�
Y��

trans�

��
Y and Y�
� 
� U�� UP� RESET� � goto 	

��
X 
� APPROACH U��� RESET X Z � � goto �	

state� �	

prop� C� NEAR GOING�UP

invar� Y�
� and X���
Y and Z�
Y�� or Z�
� and X���
Z and Y���
Z and Z�
Y��

trans�

��X and X�
� 
� U�� IN� RESET� � goto ��

��
Y and Y�
� 
� U�� UP� RESET� � goto �

state� ��

prop� C� IN GOING�UP

invar� false

trans�

��
Y and Y�
� 
� U�� UP� RESET� � goto �

Notice that only controllable edges have restricted guards� for instance� the edge LOWER of state �
�nds its guard restricted from z � � to x � � � z � �� Also notice that the discrete states which are
eliminated by the synthesis algorithm have invariant false�

��



��� The connection of Kronos to Open�Caesar

In this section we describe the code�generator kronos�open which interfaces Kronos to the veri�ca�
tion platform Open�Caesar� The steps of the veri�cation process using kronos�open are illustrated
in �gure � and explained in the following paragraphs�

�c

Open�Caesar

library

Variable�dimension
DBM library C compiler

�script�

profounder

generator

exhibitor

evaluator

xsimulator

Yes�No answer and
diagnostic untimed run

�exp

regular expression

��calculus formula

�aut

�acc
Hit�Repeat
states�

analysis choice
kronos�open

Yes�No answer and
diagnostic timed run or cycle

Figure �� The usage of the module kronos�open�

����� Input

The input is given as a Lotos�like expression specifying the system components and their channel
connections ��le �exp�� For example� the �exp �le for the Bang�Olufsen case study is shown
below�

Lotos�Behavior

�

Bus

�� zero� one ��

�

�

� Sender�A �� a�check �� Detector�A �

�� a�frame� a�new�pn� a�reset ��

FrameGen�A

�

���

�

��



� Sender�B �� b�check �� Detector�B �

�� b�frame� b�new�pn� b�reset ��

FrameGen�B

�

�

�

���

Observer

In the above expression� names such as Bus� Sender A� etc� denote the TA of the system� For each
of these names there is a �aut �le containing the description of the TA� Names such as zero� one�
etc� are channels� used for communication between di�erent components� Communication takes place
through synchronization of two or more components� To specify which components synchronize on
which channels� the notation �� ��� �� is used� for instance� the Bus synchronizes with the rest of
the system on channels �� zero� one ���

Apart from clocks� the TA can have boolean� bounded�integer� and enumerative�type variables�
There is an associated �types �le containing type de�nitions� such as�

enum msg m	� m�� m�� m�� m�� m�� m�� m�� m�� m�� m�	�

The variables and the structure of each TA are speci�ed in the corresponding �aut �le� Part of
this �le for the TA Sender A is shown below�

�� variable declaration ��

a�c � clock

a�pf � bool

a�pn � bool

a�s� � bool

a�s� � bool

a�msg � msg

���

atomic � bool

 indexstates!atomic�

�� the TA ��

des�	�������

�� start ��

�	� �"atomic� send a�go a�c�
	� ��

�� idle ��

��� ��"atomic� and �a�c
����� send a�start�frame atomic�
true a�c�
	� ��

�� atomic�ex�start ��

��� ��a�c�
	� and �"b�start�� send b�silent atomic�
false� ��

��� ��a�c�
	� and b�start� send b�sends atomic�
false� ��

�� ex�silence� ��

��� ��"atomic� and �a�c
������ receive a�zero a�c�
	� ��

�	



��� ��"atomic� and �a�c
������ receive a�one a�c�
	� ��

�� other�started ��

��� ��"atomic� and b�start and �a�c
������ send b�sends a�c�
	� ��

��� ��"atomic� and �"b�start� and �a�c
������ send b�silent a�c�
	� ��

�� atomic�goto�idle �removed� ��

�� ex�silence� ��

��� ��"atomic� and �a�c
����� receive a�zero a�c�
	� ��

��� ��"atomic� and �a�c
����� receive a�one a�c�
	� ��

�� transmit ��

��� ��"atomic� and �a�c
����� send a�frame a�err�
e	 a�diff�
false

a�pf�
true atomic�
true a�c�
	� ��

���

�� until�silence ��

���� ��"atomic� and �a�c
����� receive a�zero a�c�
	� ���

���� ��"atomic� and �a�c
����� receive a�one a�c�
	� ���

�� hold ��

���� ��"atomic� and �a�c
������� send a�hold a�res�
r	 a�c�
	� ��

�� jam ��

���� ��"atomic� and �a�c
��			�� send a�jam a�pn�
true

a�start�
false a�res�
r	 a�c�
	� ��

�� invariants ��

��� a�c�
����

��� "atomic�

��� a�c�
�����

��� a�c�
�����

���

���� a�c�
������

���� a�c�
��			�

����� Code generation

kronos�open creates a �c �le which implements the on�the��y generation of the simulation graph of
the input model� The core of the �c �le consists of the data structures to represent symbolic states
�zones� and edges� and the implementation of post��� More precisely�

� A record�like data structure is used to represent zones� The structure has a separate �eld for
each discrete variable� plus an additional �eld for the convex polyhedron� The size of each
discrete�variable �eld is the number of bits necessary to encode the type of the variable� The
�eld for the polyhedron is a pointer to a variable�dimension DBM� The implementation for the
latter is parameterized by the maximal number of clocks �depending on the input model� and is
contained in a separate library�

��



� There is a C function to produce the initial zone�

� post�� is implemented by a set of C�functions�

� Two functions for each edge e� the �rst one takes as input a zone and returns its intersection
with the guard of e� the second function performs the assignments on the discrete variables
and applies the clock�reset and time�passage operators to the DBM�

� An iterator function which takes as input a zone and generates its successors one by one�
The out�going edges of the zone are computed on�the��y� based on information stored about
the possible channel synchronizations of the input model�

It is worth noticing the main bene�t of the compiler approach� compared to the interpreter one�
guards� asssignments and clock resets are transformed directly to C code� which results in more
e�cient execution� than having generic functions for the above operations� In particular� when these
operations are trivial �e�g�� true guard� no assignment� they can be completely skipped�

On the other hand� the approach has the potential disadvantage of explosion of the size of the �c
�le generated� in case there is a very large number of transitions in the input model� Luckily� this is
rarely the case� since these are high�level transitions� at the TA level� not at the graph level�

����� Final output

After the �c �le has been generated� it is compiled and linked to theOpen�Caesar and DBM libraries
using a script� As a result� we obtain an executable program performing a certain type of analysis�
An option given to the script tells it which type of analysis is to be performed� that is� which type of
executable is to be generated� Currently� the following types of executables are available�

� xsimulator performs user�guided simulation in a window�based environment�

� generator builds the simulation graph of the system in untimed labeled graph �aut format�

� profounder performs reachability analysis or TBA emptiness� It takes as supplementary input
a �acc �le specifying the discrete states to be reached �hit states� or the repeating states �repeat
states�� In case of reachability� profounder can generate timed diagnostics�

� exhibitor searches for a �nite untimed trail matching an input regular expression�

� evaluator performs ��calculus model checking�

Relation to the literature

Apart from Kronos� perhaps the most successful tool for dense�time veri�cation is Uppaal �LPY���
To our knowledge� synth�kro is currently the only tool for dense�time controller synthesis�

References

�BDM���� M� Bozga� C� Daws� O� Maler� A� Olivero� S� Tripakis� and S� Yovine� Kronos	 a model�checking
tool for real�time systems� In CAV���� �����

�Boz�
� M� Bozga� SMI	 An open toolbox for symbolic protocol veri�cation� Technical report� Verimag�
March ���
�

�CVWY��� C� Courcoubetis� M� Vardi� P� Wolper� and M� Yannakakis� Memory ecient algorithms for the ver�
i�cation of temporal properties� Formal Methods in System Design� �	�
������ ����� A preliminary
version appeared in the proceedings of CAV��� �also in Springer Verlag LNCS��

�




�Daw��� C� Daws� M�ethodes d�analyse de syst�emes temporis�es� de la th�eorie �a la pratique� PhD thesis�
Institut National Polytechnique de Grenoble� ����� In french�

�DOTY��� C� Daws� A� Olivero� S� Tripakis� and S� Yovine� The tool KRONOS� In Hybrid Systems III�

Veri�cation and Control� volume ���� of LNCS� pages �������� Springer�Verlag� �����

�DOY��� C� Daws� A� Olivero� and S� Yovine� Verifying ET�LOTOS programs with KRONOS� In D� Hogrefe
and S� Leue� editors� Proc	 
th	 IFIP WG G	� International Conference of Formal Description

Techniques� FORTE���� pages ��
����� Bern� Switzerland� October ����� Formal Description Tech�
niques VII� Champan � Hall�

�Gar��� H� Garavel� Open�Caesar	 An open software architecture for veri�cation� simulation and testing�
In Tools and Algorithms for the Construction and Analysis of Systems ���� Lisbon� Portugal� LNCS
����� Springer�Verlag� �����

�Hol��� G� Holzmann� Design and Validation of Computer Protocols� Prentice Hall� �����

�LPY�
� K� Larsen� P� Petterson� and W� Yi� Uppaal in a nutshell� Software Tools for Technology Transfer�
������� October ���
�

�Tri��� Stavros Tripakis� L�Analyse formelles des Syt�emes temporis�es en Pratique� PhD thesis� Univ�ersit�e
Joseph Fourier � Grenoble I� December �����

�Yov��� S� Yovine� M�ethodes et outils pour la v�eri�cation symbolique de syst�emes temporis�es� PhD thesis�
Institut National Polytechnique de Grenoble� ����� In french�

�Yov�
� S� Yovine� Kronos	 a veri�cation tool for real�time systems� Software Tools for Technology

Transfer� ���
�

��


