
Kenneth J. Turner. Test Generation for Radiotherapy Accelerators,
Software Toolsfor Technology Transfer, 7(4):361-375, Springer, August 2005

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Test Generation for Radiotherapy Accelerators

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
e-mail:kjt@cs.stir.ac.uk

September 7, 2005

Abstract System specification with LOTOS (Language Of Temporal Ordering
Specification) is briefly introduced. To make test generation practicable, speci-
fications are annotated with event constraints using PCL (Parameter Constraint
Language) as a means of stating test purposes. Automated test generation can then
use the principle of input-output conformance to check whether an implementa-
tion agrees with its specification. Test suites are generated by a transition tour that
either visits every transition at least once (for infinite behaviour) or follows ev-
ery path (for finite behaviour). The approach is applied to a case study in which
tests are generated for radiotherapy accelerators used in cancer treatment. A typi-
cal specification and set of test purposes yields 256 test cases that can be executed
manually or automatically. The goal is to determine situations in which an accel-
erator does not behave in conformity with its specification.

Key words Accelerator – LOTOS (Language Of Temporal Ordering Specifica-
tion) – Radiotherapy – Test Generation

1 Introduction

1.1 Background

In general, testing is a time-consuming and exacting task. Testing can very rarely
be exhaustive, so there is an issue of effective coverage. Inpractice, tests are often
defined using human expertise and are conducted manually. Test procedures differ
greatly according to the domain. In electronics, for example, a sharp distinction
is made between testing fordesignerrors and testing formanufacturingerrors.
The former is often termed design verification. Software testing almost entirely
focuses on design flaws. The techniques employed include black/white box testing,
alpha/beta testing, module/system testing, and integration/regression testing.

2 Kenneth J. Turner

In this paper, the focus is on conformance testing – a conceptthat arises with
communications protocols. The goal is to check the agreement of an implemen-
tation with its defining specification. Conformance testingis particularly well de-
veloped for communications protocols, where a methodologyand framework have
been standardised [22,25].

Techniques have been developed for the use of formal methodsin confor-
mance testing [23]. Ideally, a system would be rigorously developed using a formal
method throughout the whole of its development. The conformance of an imple-
mentation to its specification (i.e. formal requirements) would then be inevitable.
In practice, this does not apply for a number of reasons:

– It is rare for a formal method to be sufficiently wide-spectrum that it can ad-
dress development at all levels, from requirements to implementation.

– In general, industrial engineers have little training in formal methods. Formal
methods tend to be used only in special kinds of systems (e.g.quality-critical
or safety-critical ones).

– Stepwise refinement of a specification towards an implementation takes con-
siderable effort. Even if it is done, there is almost inevitably a gap at the stage
of final implementation. For example, it is very unusual for the compiler that
generates executable code to have been verified. Equally, the operating system
that runs the code is most unlikely to have been verified.

– Progressing from specification to implementation, the sizeand complexity of
the code increases greatly. Present day verification techniques can only just
cope with realistic specifications. Verification of realistic implementations is
impracticable.

As a result, it is almost always necessary to check that an implementation is indeed
conformant.

However, formal methods still have an important role to playin testing. Given a
specification, it is possible to generate useful tests from it. This is not, of course, as
complete as proving that an implementation respects its specification. However it
can be used to gain confidence in the implementation. Furthermore, a high degree
of automation can be used to generate and apply the tests.

1.2 Radiotherapy Accelerators

Radiotherapy equipment is used in oncology (cancer) centres to deliver controlled
doses of radiation, usually to destroy cancerous tissue. Among the several kinds of
radiotherapy equipment, the most important is the linear accelerator (‘accelerator’
or ‘linac’). This accelerates a beam of electrons to high energy that can be used for
treatment directly or to generate x-rays.

Radiotherapy is a safety-critical procedure that demands accurate delivery of
radiation. A number of radiation accidents have been well documented (e.g. [34,
35]). The Therac-25 accelerator is infamous as having caused accidental injuries,
in some cases leading to death [37]. In fact, a radiation underdose is as undesir-
able as an overdose since it may fail to kill a tumour. Not delivering radiation to

Test Generation for Radiotherapy Accelerators 3

the exact area is also serious as it damages surrounding healthy tissue instead of
destroying cancerous growth.

The accelerator is located in a treatment room that is heavily screened to pre-
vent radiation leakage to the outside. Access is via an interlocked door (or gate)
from the control room. The control room houses the operator console and the sup-
porting computer systems. [16] gives a comprehensive introduction to the theory
and practice of treatment with radiotherapy accelerators.

Radiotherapy equipment uses dedicated hardware. The physical characteris-
tics of accelerators are regularly and thoroughly checked.For example, dosimeters
(dosage meters) are periodically calibrated against national standards. The accu-
racy of radiation delivery is also regularly checked in simulated treatments. The
hardware is extensively protected by interlocks that deal with situations like power
supply failure, dosimeter failure, or entry to the treatment room while the acceler-
ator is operating.

Early radiotherapy equipment was essentially just hardware. However, mod-
ern accelerators are complex software-controlled systems. Accelerator software
resembles standard application software. It requires a graphical user interface, pe-
ripheral input-output, file system operations, and data communications. The accel-
erator software depends on a conventional style of operating system. The software
must respect strict demands for dependable, real-time operation. Software, unlike
hardware, does not deteriorate over time so that different reliability concerns ap-
ply. Like any application, the accelerator control software is upgraded from time
to time by the manufacturers. Of course, the software is developed much more
carefully than conventional application software. However with new accelerator
software, it is desirable to check that the new version has not introduced any flaws.
Surprisingly, there seems to be little automation to help clinics to do this.

1.3 Conformance Testing

The aim of the work reported in this paper was to adapt protocol techniques to
testing the control system of radiotherapy accelerators. At first sight, this might
seem to be an implausible approach. However, the author was encouraged by good
experience of using protocol techniques for hardware testing [31]. This gave some
confidence that the same approach could be useful in testing accelerators, and in
fact for testing medical equipment more generally.

For protocols, it has been found useful to employ an implementation relation
calledioconf(input-output conformance). The basic idea is to formally relate the
input-output behaviour of a specification to that of its implementation. The ap-
proach distinguishes implementation states where output is not possible, i.e. the
implementation is awaiting further input. All sequences ofbehaviour (traces) are
considered for the specification. An implementation conforms to its specification
if the outputs of the implementation after such traces can also be produced by the
specification.

Although ioconfwas developed to evaluate communications protocols, it has
proven possible to adapt it for testing accelerators. The formal basis is a speci-
fication language borrowed from the communications world. LOTOS (Language

4 Kenneth J. Turner

Of Temporal Ordering Specification [21]) was originally intended for specifying
communications systems, but has subsequently been used formany other kinds of
systems.

1.4 Methodology

The methodology used in this paper is generic, and could be applied to test gen-
eration for other kinds of systems. However the paper grounds the approach in a
particular application domain: radiotherapy accelerators. The steps in the method
are as follows. In each case, a brief description of the step is followed by what
was actually done by the author (and co-workers) in the accelerator case study.
Subsequent sections of the paper elaborate on each of these steps.

Information gathering : an understanding of the application is gathered from dis-
cussions with domain experts.

The author collaborated with a radiation physicist who is responsible for op-
eration of radiotherapy accelerators in an oncology centre. This allowed the
author to gain a technical understanding of accelerator control systems. Dis-
cussions were also held with a major accelerator manufacturer, but it proved
to be impracticable to involve them in the research. Technical information was
therefore based on knowledge gleaned from the collaborating oncology centre.

Modelling: an informal model of the system is created.

Structural breakdowns and data-flow diagrams were producedfor a sample
accelerator. Clarifications were sought from domain experts throughout this
process, though the technical representations that emerged were the author’s.
An issue at this stage was choosing an appropriate level of abstraction. The ini-
tial functional breakdown led to a rather detailed model. However most of this
did not deal with the core functionality. Attention was therefore focused on the
control system of a radiotherapy accelerator as a black box.The input-output
behaviour of this characterises the important aspects of the control system.

Specification: a formal specification is written based on the informal model.

LOTOSwas used as the specification language. The specification reflects both
the structural breakdown of the system as well as insights gained during mod-
elling its functional behaviour. As far as the author knows,(formal) specifica-
tions are not written of accelerators so this was a necessaryand useful step.

Constraint annotation: to make test generation feasible, the specification is an-
notated to indicate significant test values and orderings.

PCL (Parameter Constraint Language) was devised by the author to guide test
generation in a useful and practical manner. PCL allows the specifier to define
which kinds of test values are important, as well as to define which order-
ings of inputs are significant. Test constraints were formulated for accelera-
tors, partly following general software engineering practice and partly using

Test Generation for Radiotherapy Accelerators 5

domain knowledge. The specification was annotated with the corresponding
test constraints. The PCL tool automatically translates these to LOTOS and
combines them with the original specification. The resulting specification is
thus restricted to behave within useful test constraints.

Automaton generation: a finite state automaton is automatically generated from
the annotated specification, using the test constraints to make the state space
manageable.

The automaton was created automatically by a standard toolset for LOTOS –
CADP (Cæsar Aldébaran Development Package). The automaton was min-
imised (with respect to observational equivalence) in order to make test gener-
ation more efficient.

Test generation: a suite of tests is automatically generated by traversing the au-
tomaton, following an existing algorithm that respects theioconfrelation.

A test suite was created by traversing the automaton, using an adaptation of
theioconfalgorithm. The resulting tests are known to be sound and consistent.
The TestGen tool was developed for this purpose, though similar tools (TGV,
TorX) have been subsequently created by others.

Test application: the suite of tests is automatically run against the implementa-
tion, with a view to deciding whether it conforms to its specification.

This is the point which the research has reached. Currently the tests can be
applied only manually, though a strategy has been devised for running them
automatically. The goal is to run the test suite periodically to confirm satisfac-
tory operation of the accelerator – particularly after a software upgrade.

1.5 Related Work

Formal methods are an obvious choice to support the development and testing of
radiotherapy equipment. A big impetus to the use of formal methods was given
by a series of accidents involving the Therac-25 accelerator [38]. However rather
surprisingly, radiotherapy equipment continued to attract little attention from the
formal methods community. [47] is one of few contributions,having made use
of LOTOS to show (with the benefit of hindsight) how the Therac-25 flawscould
have been identified. The only other work known to the author uses Z to specify
the design of software for a radiation therapy machine [26–29].

In formally-based conformance testing, a specification of the target system is
presumed to exist. Typically this is represented by an LTS (Labelled Transition
System) that can give the semantics of a behaviourally-oriented specification lan-
guage like LOTOS. Test theories for LTSs have been under investigation for some
time, based on external tests and observations (e.g. [8,43]). The theories support
implementation relations that formally qualify an implementation with respect to
its specification. Apart from defining a suitable implementation relation, confor-
mance testing requires finding a set of tests for a specification to distinguish be-
tween correct and incorrect implementations.

6 Kenneth J. Turner

[3] elaborates a theory for testing systems specified in LOTOS. Several test
generation algorithms have been proposed for an LTS corresponding to Basic LO-
TOS (i.e. LOTOSwithout data types), e.g. [36,44]. In [48,49] the testing theory for
an LTS is refined for communicating systems that distinguishinputs and outputs.

A formal description of an implementation rarely exists, either because the
implementation is opaque or because it would be impracticable to specify it. How-
ever by what is known as a test hypothesis, it is presumed thatthe implementation
can be modelled as an IOLTS (Input-Output Labelled Transition System). An LTS
gives a relatively abstract description (and so is appropriate for a specification),
while an IOLTS gives a more realistic and concrete description (and so is appro-
priate for an implementation).

Conformance of an implementation can be expressed with respect to its spec-
ification using a formal relation between the IOLTS and LTS. The ioconfrelation
[49] can be used as a criterion for correct implementation. Based on this relation,
an algorithm has been given for defining a suite of implementation tests [49]. A
test suite consists of test cases that define possible inputsand expected outputs.
Another article in this special issue [30] provides the theory and principles be-
hind conformance-based test generation. The present article therefore gives a less
technical treatment ofioconf.

The author and his co-workers have implemented this algorithm by building
on the API for the CADP toolset (Cæsar Aldébaran Development Package [12]).
Originally the goal was to generate tests for hardware [31–33]. Subsequently the
approach has been modified for testing radiotherapy accelerators.

The approach is similar to that of the test generation tool TGV [13]. How-
ever because a radiotherapy accelerator specification is heavily dependent on data,
TGV is not immediately useful. TGV also requires an accurateknowledge of the
state space of a specification, which is not known until a specification has been
constrained for testing. TorX is a similar tool for LOTOS-based test generation, but
was not available to the author as it was developed for use in aspecific project.
STG (Symbolic Test Generation [7]) could be particularly relevant to accelerator
test generation.

For hardware testing, formal methods have been combined with simulation
techniques. In [54], software testing methods are used for design verification of
behavioural VHDL (VHSIC Hardware Design Language [19]). In[17,42] test gen-
eration is based on an FSM (Finite State Machine) or ECFM (Extracted Control
Flow Machine) that represents the control logic of a circuit. The generated test
cases are then applied to both higher level and lower level specifications in Verilog
[20] or VHDL. These approaches are built on a formal modelextractedfrom a
circuit design. However the author favours an approach in which tests arederived
from a high-level specification. [46] generates tests from ahigher-level FSM spec-
ification, and applies them using a VHDL simulator. Unfortunately this method
cannot handle non-determinism in specifications.

Test Generation for Radiotherapy Accelerators 7

1.6 Overview of Paper

Section 2 introduces system specification with LOTOS. To make test generation
practicable, it is necessary to constrain the specificationusing PCL (Parameter
Constraint Language) as a means of stating test purposes. Test generation using
input-output conformance is explained in section 3. A test suite can be automati-
cally generated according to various strategies. The main case study is presented
in section 4, where radiotherapy accelerators are described. Sample test annota-
tions for accelerators are given, and the resulting test suite is discussed. The paper
concludes with an evaluation of the approach in section 5.

2 Specification for Testing

2.1 Specification with LOTOS

LOTOS (Language Of Temporal Ordering Specification [21]) was originally con-
ceived for specifying communications systems. However it is a general-purpose
language that has been used in other domains. For example1 it has been used to
specify bus architectures [5], computer-integrated manufacturing [39], embedded
systems [6], graphics [45], hardware design [57], multimedia systems [1], neural
networks [15], object-oriented software [41], telephony [11], transaction process-
ing [56], user interfaces, visualisation [53], and voice services [51].

LOTOS specifies behaviour using a process algebra based on CCS (Calculus
of Communicating Systems [40]) and CSP (Communicating Sequential Processes
[18]). Abstract data type specification is based on ACT ONE [10]. Although LOTOS

is a constructive specification language, it is possible to use it for fairly high-level
descriptions of systems [55].

Among languages that might be used to specify radiotherapy accelerators, LO-
TOS is a good choice for the following reasons:

– Its constructive nature is appropriate for giving behavioural descriptions.
– LOTOS ties in well with theories for test generation.
– LOTOS is well supported by readily available tools.

The subset of the LOTOSnotation appearing in this paper is summarised below.
In-line comments are also given to explain specification constructs as they are
used. Tutorials on LOTOScan be found in [2,50].

Data Types: A LOTOS data type such asNaturalNumber(non-negative integers)
has a sort (i.e. type,Nat in this case) and operators (e.g. ‘+’). The LOTOS

library offers standard data types, and others can be definedby the specifier.
Actions: A behaviour finishes (deadlocks) withStop. A behaviour is considered

to finish successfully withExit . Actions are events that occur at gates, which
act like ports where communication may occur. A fixed event parameter has the
form ‘!value’, and is often used to output a value. A variable event parameter

1 The citations here are representative samples from a much larger list.

8 Kenneth J. Turner

has a form like ‘?variable:sort’, and is often used to input a value; a value of
the given sort is assigned to the variable. It is possible to mix several ‘!’ and
‘?’ parameters in an event.

Processes: A process encapsulates parameterised behaviour in the form:
Processprocess[gates] (parameters) : result :

...
EndProc

When the process is called, specific gates and parameter values are provided.
The result may beExit (if the behaviour exits) orNoExit (if the behaviour
stops or repeats indefinitely).

Operators:
B1>> B2 (‘enables’): continues withB2 if B1exits.
B1 ||| B2 (‘interleaves’): allows the events ofB1 and B2 to occur indepen-

dently in parallel.
B1 || B2 (‘synchronises’): requiresB1andB2 to agree on all events.
Choicevariables B: allowsB for all possible combinations of variable val-

ues (as defined by their sorts).

2.2 Constraining LOTOSSpecifications

2.2.1 Constraint AnnotationsOnce a LOTOSspecification has been written, var-
ious analyses can be performed:

– The specification can be animated or simulated manually to check its be-
haviour.

– The state space of the specification can be explored to detectdeadlocks, live-
locks, unreachable states and unspecified receptions.

– Desirable properties of the service can be formulated in a temporal logic (e.g.
ACTL or XTL) and model-checked against the specification.

However, even for small specifications this can be very time-consuming or im-
practicable. A more pragmatic use for a specification is generating tests from it.
Assuming the specification is a faithful reflection of the intended behaviour, auto-
mated test generation can be used to gain confidence in the implementation. How-
ever direct test generation is typically impractical – especially if the specification
makes extensive use of data.

In protocol testing, it is common to restrict the behaviour of a specification by
imposing test purposes that constrain the behaviour to be tested. For example a
test purpose might check what happens between sending data and its reception. A
comparable approach has been adopted for testing radiotherapy accelerators, but
the focus is on the selection of data values since this kind ofspecification is heavily
data-oriented.

PCL (Parameter Constraint Language or ‘Pickle’) was developed by the author
as a means of guiding test generation through test purposes.PCL annotations are
attached to important parts of the specification. Only the specifier knows the plau-
sible values and ordering of inputs; these cannot (reasonably) be inferred from the

Test Generation for Radiotherapy Accelerators 9

specification. PCL adapts what is called boundary value testing in software devel-
opment. If values in a range must be accepted, it is worthwhile checking just inside
and just outside the range.

An extra complication is that concurrency in a specificationmay allow inputs
to be provided in many different orders. PCL defines constraints on event values in
isolation, and on the order of events. Normally PCL is used torestrict only input
events, but it can also be applied to outputs (e.g. to limit the responses from a
system). If the constraints are tighter, fewer variations have to be tested but the
tests become less comprehensive.

PCL takes the form of special LOTOS comments(*. PCL .*). As comments,
these do not affect the formal meaning of the specification sonormal analytic
techniques apply. However the PCL translator tool can turn such annotations into
LOTOSconstraints that restrict the specification. Two approaches could be adopted
for test constraints:

– Ideally, a symbolic transition system would first be createdfrom the specifi-
cation. Transitions would give event variables as names rather than as specific
values of their sorts. Tests could then be generated by traversing this sym-
bolic transition graph, choosing test values according to the PCL constraints.
[7] describes a symbolic test generation tool that could be useful. [4] is also
a promising basis. Testing of algebraic data types and processes is discussed
in [14]. Symbolic execution of LOTOS specifications is well established (e.g.
[9]).

– More practically, the PCL constraints can be applied immediately to the spec-
ification. This reduces its state space to a manageable size so that standard test
generation algorithms can be applied.

PCL is translated automatically into LOTOS. In fact, the constraints could be
written directly in LOTOS. However, as will be seen the constraints are rather com-
plex when expressed in LOTOS. PCL is a much more compact notation that links
test purposes closely with system behaviour. It is therefore preferable to use PCL
and to have the LOTOSconstraints generated automatically.

2.2.2 Event Value ConstraintsTable 1 summarises the PCL annotations for con-
straining event values. Thevaluesconstraint ensures that tests are generated only
for specific values that are thought to be useful. For values within a specific nu-
merical range,range is used. The environment may also be allowed to provide
out-of-range values withbounds.

An event may be followed by a PCL value constraint. A constraint may be
labelled for use in other constraints. Event parameters arefixed values (‘!’ prefix)
or variables (‘?’ prefix). One constraint is given for each variable value.

Suppose thecheckevent can accept alower value in the range 4 to 10, and a
highervalue with useful test values 2, 5 and 6. The valuemid in this event is fixed.
Themixtureconstraint might appear as:

check ?lower:Nat !mid ?higher:Nat (*checkevent for low/mid/high *)
(*. mixture : range(4,10);values(2,5,6) .*)

10 Kenneth J. Turner

Constraint Meaning

bounds(low,high) like range, but also includinglow-1 andhigh+1 for ro-
bustness testing

free(event) no value restrictions
range(low,high) a continuous numerical range, with exemplar test values

low, ⌊ low+high

2
⌋ andhigh

values(value1,value2,...) a list of specific values that may be chosen

Table 1 PCL Value Constraints

Each constraint must have the same number of alternative values: three in this case.
These are chosen in tandem, so the pairs of test values are (4,2), (7,5) and (10,6).

If a constraint defines a single list of values, it may be used symbolically in
another constraint. Suppose the width that is input for a rectangle should be in the
range 2 to 20 (i.e. test values 2, 11, 20). The height that is also input might then be
restricted to a range 6 to 12 more than the width. These constraints are expressed
as follows:

rectangle ?w:Nat (*rectangleevent for width *)
(*. width : range(2,20) .*)

rectangle ?h:Nat (*rectangleevent for height *)
(*. height : range(width+6,width+12) .*)

If the test value forwidth is 11, for example, theheightwould be selected from the
range 17 to 23 (i.e. test values 17, 20, 23).

LOTOSoperations may be used in PCL constraints. If test values aregiven as
operation parameters, the operation is applied to these. Insuch a case, constraints
are often nested. Suppose theMakeStatusoperation takes a pair of numerical val-
ues. The expressionMakeStatus(values(0,25,28),values(10,26,35)) applies the op-
eration to the corresponding pairs of values:MakeStatus(0,10),MakeStatus(25,26)
andMakeStatus(28,35). In the following example, the outer call ofvaluesoffers
three such lists of values, i.e. nineMakeStatusvalues in total:

accelerator !Read ?status:Status (*acceleratorevent to read status *)
(*. accelerator :values(

MakeStatus(values(2,1,2),values(2,1,2)),
MakeStatus(values(0,25,28),values(10,26,35)),
MakeStatus(values(0,1,3),values(10,50,70))) .*)

If an event has no PCL constraint, its values are unrestricted. Since test gener-
ation makes a distinction between input and output events, it is necessary to anno-
tate an unconstrained input event asfree. The PCL translator can normally infer
the structure of an event, but in this case the structure might be impossible to deter-
mine. Consider the following file action in which only the second parameter may
vary, and that in an unconstrained way. It would be difficult to determine thatresult
was fixed, so the underlying event structure is made explicitin the constraints.

Choiceresult:Condition, buffered:Bool (* for all value combinations *)
[result = OK] > (* result is OK? *)

read !result !buffered; (* read buffered value *)

Test Generation for Radiotherapy Accelerators 11

Constraint Meaning

alternate(label1,label2,...) the ith values are selected as alternatives
finish the event ends a cycle of behaviour
grouped(label1,label2,...) the ith values are selected in either order
separate(label1,label2,...) the constraints are applied independently
serial(label1,label2,...) the ith values are selected in sequence

Table 2 PCL Ordering Constraints

(*. free(read !OK ?buffered:Bool) .*)

2.2.3 Event Order ConstraintsAlthough value constraints significantly restrict
what must be tested, concurrency in the specification may allow impracticably
many variations in the order of events. For example there aremany parameters to
be set before radiotherapy accelerator treatment begins, but the ordering of these
inputs is largely irrelevant. Testing all the orderscouldbe significant, but would
probably not be. As summarised in table 2, PCL allows event ordering constraints
to be defined for lists of labelled value constraints. In the examples below, suppose
the following value constraints have been defined:deviceprovides the test values
keyboard, mouse, pen; andresolutionprovides the test values 0, 10, 20.

– Theseparateconstraint allows any order of inputs. Twenty interleaved combi-
nations would be defined byseparate(device,resolution).

– To limit the combinations,groupedcan be used to select a value from each
list in combination (each list having the same number of values). Eight com-
binations would be defined bygrouped(device,resolution): keyboardand 0 in
either order, thenmouseand 10 in either order, thenpenand 20 in either order.

– The values of each group can be chosen as alternatives. (For two lists of values,
this does not reduce the number of combinations but does reduce the number of
inputs.) Eight combinations would be defined byalternate(device,resolution):
keyboardor 0, thenmouseor 10, thenpenor 20.

– The most restrictive combination is serial: the first value in each list is chosen,
then the second value, etc. Again, there must be the same number of values in
each list. Just one combination would be defined byserial(device,resolution):
the sequence of inputskeyboard, 0,mouse, 10,pen, 20.

Further variants of these combinations are possible. An individual list of values
may be made optional by following it with a question mark: ‘device?’ means this
input may or may not occur. An entire combination may also be made optional:
alternate?(device,resolution). Ordering constraints may be given individually or
may be nested. All ordering constraints are stated after themain LOTOSbehaviour
expression. The following is drawn from the radiotherapy accelerator test annota-
tions:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)

(*.

12 Kenneth J. Turner

serial((* values in sequence *)
separate(mode), (* mode values separately *)
separate(accessory), (* accessory values separately *)
serial((* values in sequence *)

energy, dose, rate, (* energy/dose/rate values *
x1, x2, y1, y2, (* x1/x2/y1/y2 values *)
alternate?((* one of each optionally *)

gantry (* gantry values *)
rotation, latitude, longitude, vertical (* couch values *)

),
start, accelerator (* start point, accelerator values *)

)
)

.*)
The above defines the order in which certain values may be provided during test
generation. It makes use of value constraints likemodeand accessorythat are
defined as explained in section 2.2.2. The specific value constraints used here will
be given in section 4.3 once the domain of radiotherapy accelerators has been
introduced..

A specification is often cyclic: it accepts input, produces some output, and
then repeats this behaviour. In such a case, a PCL annotationis given to indicate
the event that marks the end of a cycle:

console !Done;
(*. finish .*)

2.3 Translating Event Constraints to LOTOS

The PCL translator extracts annotations from a specification and translates them
into LOTOSconstraint processes. The principles of the translation are discussed in
[52] and are not given here.

At the end of section 2.2.3, ordering constraints were givenfor the example
of a radiotherapy accelerator. These are translated in the following LOTOSprocess
structure that reflects the constraints:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)

|| (* synchronised with *)
Constraints [Console] (* constraint behaviour *)

Where (* local definitions *)
ProcessConstraints [Console] :NoExit : (* overall constraints *)

ConstraintsFree [Console] (* free event constraints *)
||| (* interleaved with *)

(
ConstraintsSerial1 [Console] (* top serial constraints *)

>> (* followed by *)
Stop (* finish of tests *)

Test Generation for Radiotherapy Accelerators 13

)
EndProc
ProcessConstraintsFree [Console] :NoExit : (* free event constraints *)

... (* individual free events *)
>> (* followed by *)
ConstraintsFree [Console] (* repeat free constraints *)

EndProc
ProcessConstraintsSerial1 [Console] :Exit : (* top serial constraints *)

ConstraintsSeparate1 [Console] (* separate mode constraints *)
>> (* followed by *)

ConstraintsSeparate3 [Console] (* separate accessory constraints *)
>> (* followed by *)

ConstraintsSerial5 [Console] (0) (* first serial constraints *)
>> (* followed by *)

ConstraintsSerial5 [Console] (1) (* second serial constraints *)
>> (* followed by *)

ConstraintsSerial5 [Console] (2) (* third serial constraints *)
EndProc
...

The constraint processes are all automatically generated from the PCL.Con-
straints defines all the constraints, synchronised with the main accelerator be-
haviour.ConstraintsFreedeals with free events, interleaved withConstraintsSe-
rial1 for the top-level serial combination. The latter (and in fact the whole speci-
fication) terminates once all test combinations have been chosen.ConstraintsFree
allows a free event to occur and then repeats.

ConstraintsSerial1defines the top-level serial constraints.ConstraintsSepa-
rate1gives themodeconstraints, whileConstraintsSeparate3gives theaccessory
constraints. Then the remaining serial constraints are given byConstraintsSerial5.
This provides three lists of test values, indexed as 0, 1, 2 inthe LOTOS transla-
tion. These values specifyenergy, dose, rate andx/y values. At this point,Con-
straintsAlternate6(not shown) optionally allows for alternative values ofgantry,
rotation, latitude, longitudeandvertical settings. Finally, it applies thestart and
acceleratorconstraints.

3 Test Generation

3.1 Input-Output Conformance

See [30] in this special issue for the theory behind the approach described here. A
specification is assumed to be modelled by an LTS (Labelled Transition System)
that can be generated from, say, a LOTOS specification. In early work on theo-
ries for conformance testing, both the specification and theIUT (Implementation
Under Test) were modelled by LTSs. To formally define the relationship between
an implementation and its specification, a test hypothesis is needed that the im-
plementation can be represented by a formal model. The IUT communicates with

14 Kenneth J. Turner

its environment through symmetric interactions, so the test environment is also
modelled as an LTS.

However in many real-world systems, there is a clear distinction between in-
put and outputs. The inputs of a system are always enabled andcannot refuse the
actions offered by the environment. After the system consumes an input, the envi-
ronment must be prepared to accept the resulting output. In [49] this kind of be-
haviour is modelled as an IOLTS (Input-Output Labelled Transition System). This
is an LTS in which the set of actions is strictly partitioned into inputs and outputs.
Quiescent states in an IOLTS are ones where only input is expected, i.e. output
is not permitted. Such states are labelled with theδ pseudo-action that means the
systems idles while waiting for input.

The specification LTS can be regarded as a partially specifiedIOLTS in the
sense that there are some states in the specification that canrefuse input actions.
This may be because it does not matter how implementations respond to unex-
pected inputs, or because the environment should not offer them anyway.

The goal is to show that an implementation is input-output conformant with
respect to its specification, i.e. that it respects theioconf relation. After all traces
of the specification, the outputs of the implementation mustalso be possible for
the specification. Since this holds also forδ actions, the implementation may not
output if the specification cannot do so.

Test cases respectingioconfare generated from an intermediate LTS called a
suspension automaton that is built from the specification LTS. The suspension au-
tomaton is obtained by addingδ self-loops for all quiescent states, and then making
the resulting automaton deterministic. Checkingioconf then amounts to checking
that implementation traces are included in those of the suspension automaton.

A test case is a finite, deterministic LTS withPassandFail states. A test suite
is a set of such test cases. For accelerator testing, a slightly modified form of the
algorithm in [49] is used. The following alternative choices are repeatedly made
during test case generation:

Choice 1: The test case is terminated with aPassverdict. Since a specification
may have infinite behaviour, test generation must be stoppedat some point –
hopefully after adequate test coverage has been obtained.

Choice 2: An input is selected from the traces of the suspension automaton. This
is fed to the implementation, and the algorithm repeats to make further choices.
Since inputs are always enabled, no deadlock can occur. To avoid unnecessary
non-determinism during testing, only one input is applied at a time.

Choice 3: Check the outputs of the implementation against the specification. If
the implementation can output something that is forbidden by the suspension
automaton of the specification, aFail verdict is given. Otherwise the algorithm
repeats.

Test Generation for Radiotherapy Accelerators 15

3.2 Test Case Example

To illustrate test generation, it is simpler to use a hardware example [31]. A hard-
ware specification needs only simple data types (bits), whereas the accelerator
specification is much more complex and uses many data types.

Consider a basic logic design element: a JK flip-flop. This is asingle-bit mem-
ory with control inputsJ andK. If they are both set to 0, the flip-flop state stays the
same. If they are both set to 1, the flip-flop inverts its storedvalue. IfJ andK are
set to different values, the value ofJ is stored. The output is conventionally called
Q, while its complement isNQ (notQ). It can be specified by a LOTOSprocess as
follows. The parameterdatais set to 0 when the process is instantiated.

ProcessJK [J,K,Q,NQ] (data:Bit) :NoExit : (* JK flip-flop *)
J ?newJ:Bit; (* get new J value *)
K ?newK:Bit; (* get new K value *)
(

[(newJ Eq 0) And (newK Eq 0)]> (* J and K both 0? *)
Q !data; (* output current data *)
NQ !Not(data); (* output inverted data *)
JK [J,K,Q,NQ] (data) (* repeat for same state *)

[(newJ Eq 1) And (newK Eq 1)]> (* J and K both 1? *)
Q !Not(data); (* output inverted data *)
NQ !data; (* output current data *)
JK [J,K,Q,NQ] (Not(data)) (* repeat for opposite state *)

[newJ Ne newK] > (* J and K differ? *)
Q !newJ; (* output J value *)
NQ !Not(newJ); (* output inverted J value *)
JK [J,K,Q,NQ] (newJ) (* repeat for J value *)

)
EndProc
The left-hand diagram of Fig. 1 shows a minimised LTS generated from this

specification. The right-hand diagram shows the corresponding suspension LTS.
Since the specification is deterministic, the suspension automaton requires onlyδ
self-loops where further input is expected. In general, thesuspension automaton
differs significantly where non-determinism has to be unfolded.

Fig. 2 shows sample test cases generated by traversing the suspension automa-
ton of Fig. 1. For convenience, test cases are grouped in the diagrams where they
share a common prefix. Each test case is a single sequence thatstarts withJ !1 and
finishes at a leaf node of the diagram. Fig. 2 thus illustratesten separate test cases.

3.3 TestGen Tool

The principal author of [31] developed an initial version ofTestGen tool, embody-
ing the algorithm in section 3.1. This made use of the API for the CADP toolset
(Cæsar Aldébaran Development Package [12]).

16 Kenneth J. Turner

J!0

K!1K!0

J!1

K!0 K!1

Q!1

NQ!0

J!0

J!1

K!0 K!1

Q!0

NQ!1
J!0

K!1K!0

J!1

K!0 K!1

Q!1

NQ!0

J!0

J!1

K!0 K!1

Q!0

NQ!1

δ δ

δ

δ

δ

Fig. 1 Specification LTS and Suspension LTS for JK Flip-Flop

For the work reported in this article, a more elaborate version of the TestGen
tool was developed and coupled with use of PCL. Although testgeneration is au-
tomated (with amakefile), quite a number of stages are involved:

– The PCL annotations in the specification are translated to LOTOS and com-
bined with the original to make a new specification.

– A header file in C is generated for the LOTOS data types. An LTS is then
generated in Aldébaran format for the LOTOS behaviour. This is minimised
with respect to observational equivalence (which respectsthe ioconfrelation).

– A header file and a code file in C are created for the minimised specification.
All the code is then compiled and run to generate the tests.

TestGen needs to classify events as inputs or outputs. This is achieved by a
separate file in C that recognises output events using regular expressions. An event
pattern may refer simply to the event gate or to any parts of the event. For the
radiotherapy accelerator, for example, all events at theCouchgate are outputs,
while only events with aDisplayor Finishedparameter are outputs for theConsole
gate.

A test suite aims to cover all transitions in the suspension automaton. Note
that this is not the same as following paths through the LOTOS source, since the
suspension automaton is based on a minimised and more abstract representation
of behaviour. For a specification with infinite behaviour, TestGen can perform an
edge tour of the suspension automaton. Visiting every edge in a graph at least once

Test Generation for Radiotherapy Accelerators 17

J !1

K !0

Q !1 NQ !0Q !0 NQ !1

NQ !0

Pass

Fail

δ

Fail Fail Fail

J !1

Q !1 NQ !0NQ !1

Pass Fail

δ

Fail Fail Fail

Q !0

Fig. 2 Some Test Cases for the JK Flip-Flop

is the Chinese postman problem. As suspension automata may not be strongly
connected, the algorithm given by [17] was adapted as it is suitable for all kinds of
directed graph. This method uses depth-first search whenever possible. But when
an unvisited edge cannot be reached, then breadth-first search is used to find a state
with an unvisited edge. The whole procedure repeats until all transitions have been
covered.

For a specification with finite behaviour, TestGen can perform a complete
traversal of the suspension automaton (up to some specified limit on the num-
ber of tests). If the specification has been restricted by PCLconstraints, this will
ensure that the specification always terminates. When PCL isused with radiother-
apy accelerator specifications, this kind of transition tour is appropriate for test
generation.

4 Case Study

4.1 Radiotherapy Accelerators

A typical radiotherapy accelerator is shown schematicallyin Fig. 3. The accel-
erator proper is mounted on a gantry that rotates about the horizontal axis. The
accelerator uses a travelling waveguide to accelerate electrons from an electron
gun. The beam is controlled so as to yield electrons with energies typically in the

18 Kenneth J. Turner

Rotating
Gantry

Gantry
Support

Electron
Beam

Treatment
Couch

Electron/X-Ray
Beam

Treatment
Head

Gun

Pendant

Fig. 3 Accelerator Outline

range 6 to 20 MeV (million electron-volts). Radiation dosages are measured in
MUs (monitor units). MUs reflect the calibration of dosimeters rather than any ab-
solute unit, but 1 MU approximates to 1 cGy (centigray, a standard unit of radiation
dosage).

The horizontal electron beam is bent by magnets through 90◦(or 270◦) so
that it points downwards. In electron mode the electrons emerge through a radio-
transparent plate to reach the patient. In x-ray mode the electrons strike a target,
causing a shower of x-rays towards the patient.

The treatment head contains a collimator. This consists of four movable plates,
two that move in the X direction and two that move in the Y direction. They define
a rectangle that restricts the beam to a defined aperture. A sophisticated accelerator
will have an MLC (multi-leaf collimator). This has many (oneor two hundred)
individually movable leaves that may be used to set an arbitrary shape for the beam
aperture. An ‘accessory’ may also be fitted to the treatment head to control the
beam distribution. The treatment head also houses an optical system that allows the
shape and position of the beam to be seen on the patient’s skinprior to treatment.

The patient lies on a treatment couch that may be adjusted forheight, in-out
position (longitude), side-to-side position (latitude),and rotation. A pendant (re-
mote control device) is attached to the couch for setting thecouch position and
also for rotating the gantry. The operator sets up the patient and the accelerator so
that the correct part of the body will be irradiated.

4.2 Accelerator Control System

During treatment, the delivered radiation dose is read periodically from the accel-
erator. For safety, this is measured by two independent dosimeters whose readings
are accumulated. The first dosimeter reading usually decides when treatment is
complete. The accumulated dose should rise to the planned dose, but some toler-
ance is allowed. In case the first dosimeter does not work properly, readings from

Test Generation for Radiotherapy Accelerators 19

Couch

Accelerator

Control
System

Couch Setting

Start/Pause/Finish
Mode, Energy

Dose Units, Rate
Gantry Angle

Couch Setting
Collimator Setting
Accessory Setting

Start/Pause/Finish
Mode, Energy

Dose Units, Rate
Gantry Angle

Collimator Setting
Accessory Setting

Status
Interlock

Interlock
Display

Clock

Time

Pendant

Console

Gantry Angle
Couch Setting

Fig. 4 Simplified Accelerator Control System

the second one are used as a backstop. The dose rate is also checked at every mea-
surement. It may not deviate from the planned rate by more than an amount that
depends on the particular treatment. Finally, the treatment time is calculated from
the dose and dose rate. A clock is read to ensure that treatment does not exceed the
planned time by more than a specified percentage.

For the work reported in this paper, the control system has been simplified as
shown in Fig. 4. The detailed information flows are shown against the arrows. All
control functions are thus grouped in a single black box, with the main inputs and
outputs as shown. Although the real system involves considerable communication
among subsystems, Fig. 4 is a legitimate abstraction since it shows only the exter-
nally observable interfaces. The LOTOSspecification reflects this black-box view
of the control system.

More details of the control system and its LOTOSspecification appear in [52].
730 lines of LOTOSare required to specify a typical accelerator, about half ofthese
dealing with data types. Many of the data types simply renamethe natural num-
bers (e.g. dose units, angles, positions). Although in practice these parameters are
floating point numbers with various scales and ranges, this simplified approach is
acceptable. It just means that the offset and units for theseparameters are calcu-
lated differently from normal.

Although the specification contains a clock process, this merely increments
a time count. It would be necessary to use E-LOTOS (Enhanced LOTOS [24]) if
a more precise notion of time were required. However, E-LOTOS tool support is
still rather incomplete. The current approach therefore deals with only an abstract
notion of time.

The main process initially allows setup of the accelerator parameters. Setting
the gantry or the couch position causes movement commands tobe issued; other
accelerator parameters are merely stored prior to treatment. The console display
is updated after every input to reflect the current accelerator status. The operator
may initiate treatment once a valid set of parameters has been entered.

The accelerator setting is then sent to the accelerator and radiation begins. A
monitoring process periodically reads the accelerator status, i.e. the two dosimeter

20 Kenneth J. Turner

readings. Normally, treatment continues until the prescribed dose has been deliv-
ered. However an incorrect dose, dose rate, or time limit will force treatment to
be aborted. The operator is permitted to pause and resume treatment, perhaps be-
cause the patient is restless. Any abnormal condition such as an interlock stops the
treatment immediately.

4.3 Test Annotations

Key specification events were annotated with PCL value constraints as follows:
mode :values(XRayMode,ElectronMode) (* treatment mode *)
energy :range(6,20) (* beam energy *)
dose :range(5,100) (* dose units *)
rate :range(1,50) (* dose rate *)
gantry :range(0,359) (* gantry angle *)
x1 : values(0,0,39) (* collimator X1 position *)
x2 : values(1,40,40) (* collimator X2 position *)
y1 : values(0,0,39) (* collimator Y1 position *)
y2 : values(1,40,40) (* collimator Y2 position *)
accessory :values(AccessoryIn,AccessoryOut) (* accessory setting *)
rotation :range(0,359) (* couch rotation *)
latitude :range(0,50) (* couch latitude position *)
longitude :range(0,150) (* couch longitude position *)
vertical :range(60,170) (* couch vertical position *)
accelerator :values((* dosimeter readings *)

MakeStatus(values(2,1,2),values(2,1,2)), (* first readings *)
MakeStatus(values(0,25,28),values(10,26,35)), (* second readings *)
MakeStatus(values(0,1,3),values(10,50,70))) (* third readings *)

Most of the input values are simple ranges or typical values.TheMakeStatus
operation records a pair of dosimeter readings. As discussed in 2.2.2, theaccelera-
tor constraint defines three such pairs, used on each of three successive treatments.
The dosimeter values are chosen to match the dose values, artificially introducing
some variations in readings. The values cause treatment to stop on the final value
of each triple. In the third treatment, it is supposed that the first dosimeter is incor-
rectly reporting low values; readings from the second dosimeter cause treatment
to end.

The value constraints above are combined using the orderingconstraints given
as an example in section 2.2.3. The complete set of constraints is translated into
LOTOSas outlined in section 2.3, adding about 180 lines to the basic specification.

4.4 Accelerator Test Generation

The TestGen tool was run to generate test cases based on the PCL annotations.
The automaton initially generated has 41097 states and 62224 transitions. After
minimisation with respect to observational equivalence, the automaton has 520
states and 546 transitions.

Test Generation for Radiotherapy Accelerators 21

Exhaustive coverage of all paths through the automaton generates 256 test
cases, of which the following is a sample. For brevity, outputs to the operator
display have been omitted below. In this test, the operator initially sets the ac-
celerator into electron mode and chooses to use an accessory. The operator then
starts off three treatment cycles. At the beginning of each,the operator sets accel-
erator parameters and starts treatment. The control systemthen takes over, moni-
toring dosimeter readings until treatment is finished. At this point, aPassverdict
is recorded. As permitted by the optionalalternateconstraint, this particular test
does not set the gantry, rotation, latitude, longitude and vertical parameters.

The reader should be able to match the test case below to the value constraints
in section 4.3 and the ordering constraints in section 2.2.3.

(* start of test case *)
Console !Mode !ElectronMode (* operator sets electron mode*)
Console !Accessory !AccessoryIn (* operator chooses accessory *)

Console !Energy !6 (* operator sets energy 6 MeV *)
Console !Dose !5 (* operator sets dose 5 cGy *)
Console !Rate !1 (* operator sets dose rate 1 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 x-coord *)
Console !CollimatorX2 !1 (* operator sets collimator 2 x-coord *)
Console !CollimatorY1 !0 (* operator sets collimator 1 y-coord *)
Console !CollimatorY2 !1 (* operator sets collimator 2 y-coord *)
Console !Start (* operator starts treatment *)
Accelerator !Set !MakeSetting(...) (* control system setsup accelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator !Read !MakeStatus(2,2) (* control system reads dosimeters *)
Accelerator !Read !MakeStatus(1,1) (* and second pair of values *)
Accelerator !Read !MakeStatus(2,2) (* and third pair of values *)
Accelerator !Finish (* accelerator reports treatment end *)
Console !Finished (* operator told of treatment end *)

Console !Energy !13 (* operator sets energy 13 MeV *)
Console !Dose !52 (* operator sets dose 52 cGy *)
Console !Rate !25 (* operator sets dose rate 25 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 x-coord *)
Console !CollimatorX2 !40 (* operator sets collimator 2 x-coord *)
Console !CollimatorY1 !0 (* operator sets collimator 1 y-coord *)
Console !CollimatorY2 !40 (* operator sets collimator 2 y-coord *)
Console !Start (* operator starts treatment *)
Accelerator !Set !MakeSetting(...) (* control system setsup accelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator !Read !MakeStatus(0,10) (* control system reads dosimeters *)
Accelerator !Read !MakeStatus(25,26) (* and second pair ofvalues *)
Accelerator !Read !MakeStatus(28,35) (* and third pair of values *)
Accelerator !Finish (* accelerator reports treatment end *)
Console !Finished (* operator told of treatment end *)

22 Kenneth J. Turner

Console !Energy !20 (* operator sets energy 20 MeV *)
Console !Dose !100 (* operator sets dose 100 cGy *)
Console !Rate !50 (* operator sets dose rate 50 cGy/min *)
Console !CollimatorX1 !39 (* operator sets collimator 1 x-coord *)
Console !CollimatorX2 !40 (* operator sets collimator 2 x-coord *)
Console !CollimatorY1 !39 (* operator sets collimator 1 y-coord *)
Console !CollimatorY2 !40 (* operator sets collimator 2 y-coord *)
Console !Start (* operator starts treatment *)
Accelerator !Set !MakeSetting(...) (* control system setsup accelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator !Read !MakeStatus(0,10) (* control system reads dosimeters *)
Accelerator !Read !MakeStatus(1,50) (* and second pair of values *)
Accelerator !Read !MakeStatus(3,70) (* and third pair of values *)
Accelerator !Finish (* accelerator reports treatment end *)
Console !Finished (* operator told of treatment end *)

(* end of test case –Pass*)
At present, test cases like these have to be entered and executed manually on

the accelerator. In future it is intended to convert test cases into prescription files.
Prescriptions (i.e. pre-planned treatments) are normallydevised by an oncologist
using a separate treatment planning system. When the patient arrives for treat-
ment, the prescription is automatically loaded into the accelerator. By handling
test cases like prescriptions, it will be possible to execute them automatically. The
accelerator logs all actions, so its response to a test case will be analysed offline
by comparing the log and the test cases. The goal, of course, is to discover situa-
tions in which the accelerator does not behave as the specification requires. This is
particularly critical after an upgrade of the accelerator software.

5 Conclusion

System specification with LOTOS has been briefly introduced. To have any prac-
tical hope of generating tests, the specification must be annotated with guidance
as to useful test inputs. Although PCL has been designed to help with accelera-
tor testing, it is generic and should be useful for testing inother domains. PCL
annotations define key test inputs – explicit values (say, for an enumerated type)
or boundary values (for a numeric range). Unconstrained events are also marked.
PCL annotations are further used to constrain how inputs areordered. The result-
ing constraint processes are automatically generated and placed in parallel with
the main behaviour, allowing a manageable automaton to be generated.

The theory of input-output conformance is used to check whether an imple-
mentation agrees with its specification. A suspension automaton is generated from
the LTS of the constrained specification. The suspension automaton is traversed to
generate test cases that form a test suite. A transition tourmay visit each edge at
least once (for infinite behaviour) or may cover each path (for finite behaviour).

Radiotherapy accelerators have been briefly described. These are complex,
software-controlled systems whose correct operation is vital for successful and

Test Generation for Radiotherapy Accelerators 23

safe treatment of cancer. It is therefore very desirable to test their control systems
systematically. A typical accelerator model has been outlined. PCL annotations
have been given, along with an example of what the generated test cases look like.
Test cases must currently be executed manually, though a strategy for automatic
execution is being investigated.

The case study has demonstrated the following:

– that it is practicable to specify the key behaviour of radiotherapy accelerators
using LOTOS

– that it is necessary to constrain the values in such specifications in order to
make test generation practicable

– that PCL is adequate for constraining data-dominated specifications so that
tests can be generated from them

– that the principles behindioconfcan be used to generate tests for radiotherapy
accelerators.

Some important questions arise from the approach:

– Is the specification a faithful reflection of what an accelerator should do? In
the main, the specification has been based on information from domain ex-
perts (the radiation physicists who oversee their operation). This is significant
in that such experts see an accelerator as a black box. It would have been use-
ful to gain insight into the detailed design of an accelerator, but attempts to
involve an accelerator manufacturer have so far provided only limited infor-
mation. The specification is believed to be a plausible modelof an accelerator.
However, more detailed experience with testing may show up flaws where the
specificationis incorrect, not theimplementation.

– Are the test annotations appropriate? It may be that boundary value testing
should be supplemented with other techniques that select critical values, e.g.
determined by white-box knowledge of the implementation.

– Are the generated tests practicable? The current size of thetest suite (256
cases) is manageable, though small variations in the test annotations can re-
sult in test suites from 16 to several thousand test cases. Small numbers of
test cases (say, less than 20) can be manually executed. But for larger numbers
of cases, an automated approach that simulates patient prescriptions will be
essential.

– Are the generated tests useful? This is a much harder question to answer at this
stage. Of necessity, test coverage is a tiny fraction of possible system behaviour
due to the extensive use of data to control the accelerator. By concentrating on
boundary value testing that is known to be useful in general software develop-
ing, it is hoped that the tests will be able to uncover problems.

– Can the tests discover known faults? Since the Therac-25, a record of accelera-
tor problems has been built up. There have been incidents – fortunately rare and
generally minor – since the original Therac-25 problems. Now that test suites
can be generated and executed, it is intended to make a detailed study of what
known faults can be found. Failure to discover such faults could arise from an
error in the specification, an inappropriate choice for its level of abstraction, or
a limitation of the strategy for generating selected test cases.

24 Kenneth J. Turner

All these issues are being actively studied in ongoing work.
More theoretical techniques would also be an interesting future development.

For example, the constrained specifications produced by theapproach lend them-
selves to model checking. Desirable specification properties include disallowing
high-energy beams in electron mode, and forbidding certainaccelerator setups.
Such properties could be used to check the integrity of the specification. It is con-
ceivable that a hybrid solution could be devised, exploiting model checking results
for both the specification and the implementation. Test generation based on sym-
bolic values is also a promising line of enquiry.

Although this research is ongoing, the paper has hopefully given insight into
the practicability and importance of the approach for testing radiotherapy acceler-
ators.

AcknowledgementsThis work was supported by the National Computing Centre (Manch-
ester,www.ncc.co.uk). The author is indebted to Dr. Hamish Porter (Western General Hos-
pital, Edinburgh) for his extensive advice on accelerator design and operation. However
any errors and misconceptions in the paper are due to the author. Mr. Qian Bing collabo-
rated on all of the work reported here. Dr. Ji He implemented most of the test generation
tool. The author thanks Dr. Jan Tretmans (University of Nijmegen) for his insights into test
generation.

References

1. G. Blair, L. Blair, H. Bowman, and A. Chetwynd.Formal Specification of Distributed
Multimedia Systems. UCL Press, London, UK, 1998.

2. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
Computer Networks, 14(1):25–59, Jan. 1988.

3. E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. K. Sabnani,
editors,Proc. Protocol Specification, Testing and Verification VIII. North-Holland, Am-
sterdam, Netherlands, June 1988.

4. M. Calder and C. E. Shankland. A symbolic semantics and bisimulation for full LOTOS.
In M. Kim, B. Chin, S. Kang, and D. Lee, editors,Proc. Formal Techniques for Net-
worked and Distributed Systems (FORTE XIV), pages 184–200. Kluwer Academic
Publishers, London, UK, Sept. 2001.

5. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and
verification of the PowerScale bus arbitration protocol: Anindustrial experiment with
LOTOS. Technical Report 2958, INRIA, 78153 Le Chesnay Cedex, France, Aug. 1996.

6. R. G. Clark. The development of concurrent ADA systems from LOTOSspecifications.
In R. J. Mitchell and D. Simpson, editors,ADA into the 90’s, pages 115–129. Woodhead
Publishing Ltd, 1991.

7. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A symbolic test generation tool.
In Proc. Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
number 2280 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
2002.

8. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.Theory of
Computer Science, pages 83–133, 1984.

9. H. Eertink and D. Wolz. Symbolic execution of LOTOS specifications. In M. Diaz
and R. Groz, editors,Proc. Formal Description Techniques V, pages 295–310. North-
Holland, Amsterdam, Netherlands, Oct. 1992.

Test Generation for Radiotherapy Accelerators 25

10. H. Ehrig and B. Mahr.Fundamentals of Algebraic Specification 1, volume 6 ofEATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Berlin, Germany,
1985.

11. M. Faci, L. M. S. Logrippo, and B. Stepien. Structural models for specifying telephone
systems.Computer Networks, 29(4):501–528, Mar. 1997.

12. J.-C. Fernández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP (CÆSARALDÉBARAN Development Package): A protocol validation and
verification toolbox. In R. Alur and T. A. Henzinger, editors, Proc. 8th. Conference
on Computer-Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 437–440. Springer-Verlag, Berlin, Germany, Aug. 1996.

13. J. C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verification techniques
for the generation of test suites. In R. Alur and T. A. Henzinger, editors,Computer
Aided Verification’96, volume 1102 ofLecture Notes in Computer Science, pages 348–
359. Springer-Verlag, Berlin, Germany, 1996.

14. M.-C. Gaudel and P. R. James. Testing algebraic data types and processes: A unifying
theory.Formal Aspects of Computing, 10(5):436–451, 1999.

15. J. P. Gibson. A LOTOS-based approach to neural network specification. Technical
Report CSM-112, Department of Computing Science and Mathematics, University of
Stirling, UK, May 1993.

16. D. Greene and P. C. Williams.Linear Accelerators for Radiation Therapy. IOP Pub-
lishing Ltd., Bristol and Philadelphia, 1997.

17. R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture validation for
processors. InProc. 22nd. Annual International Symposium on Computer Architecture,
1995.

18. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, New Jersey, USA, 1985.

19. IEEE. VHSIC Hardware Design Language. IEEE 1076. Institution of Electrical and
Electronic Engineers Press, New York, USA, 1993.

20. IEEE. IEEE Standard Hardware Design Language based on the VerilogHardware
Description Language. IEEE 1364. Institution of Electrical and Electronic Engineers
Press, New York, USA, 1995.

21. ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS
– A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva,
Switzerland, 1989.

22. ISO/IEC. Information Processing Systems – Open Systems Interconnection – Confor-
mance Testing Methodology and Framework. ISO/IEC 9646. International Organiza-
tion for Standardization, Geneva, Switzerland, 1991.

23. ISO/IEC. Information Technology – Framework: Formal Methods in Conformance
Testing. ISO/IEC 13245-1. International Organization for Standardization, Geneva,
Switzerland, 1997.

24. ISO/IEC.Information Processing Systems – Open Systems Interconnection – Enhanced
LOTOS – A Formal Description Technique based on the TemporalOrdering of Obser-
vational Behaviour. ISO/IEC 15437. International Organization for Standardization,
Geneva, Switzerland, 2001.

25. ITU. Information Processing Systems – Open Systems Interconnection – Conformance
Testing Methodology and Framework. ITU X.290. International Telecommunications
Union, Geneva, Switzerland, 1996.

26. J. Jacky. Specifying a safety-critical control system in Z. In J. C. P. Woodcock and P. G.
Larsen, editors,Formal Methods Europe ’93: (Industrial-Strength) Formal Methods,

26 Kenneth J. Turner

volume 670 ofLecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
1993.

27. J. Jacky and M. Patrick. Modelling, checking and implementing a control program for
a radiation therapy machine. InProc. AAS. Dec. 1996.

28. J. Jacky and J. Unger. Formal development of A graphical user interface for a radiation
therapy machine. In J. P. Bowen and M. G. Hinchey, editors,Proc. 9th. International
Conference of Z Users, volume 967 ofLecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, Sept. 1995.

29. J. Jacky, J. Unger, M. Patrick, D. Reid, and R. Risler. Experience with Z developing
a control program for a radiation therapy machine. In J. P. Bowen, editor,Proc. 10th.
International Conference of Z Users, Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, Dec. 1996.

30. C. Jard and T. Jéron. TGV: Theory, principles and algorithms. Software Tools for
Technology Transfer, 2004. In this special issue.

31. Ji He and K. J. Turner. Protocol-inspired hardware testing. In G. Csopaki, S. Dibuz, and
K. Tarnay, editors,Proc. Testing Communicating Systems XII, pages 131–147, London,
UK, Sept. 1999. Kluwer Academic Publishers.

32. Ji He and K. J. Turner. Specification and verification of synchronous hardware using
LOTOS. In J. Wu, S. T. Chanson, and Q. Gao, editors,Proc. Formal Methods for
Protocol Engineering and Distributed Systems (FORTE XII/PSTV XIX), pages 295–
312, London, UK, Oct. 1999. Kluwer Academic Publishers.

33. Ji He and K. J. Turner. Verifying and testing asynchronous circuits using LOTOS. In
T. Bolognesi and D. Latella, editors,Proc. Formal Methods for Distributed System De-
velopment (FORTE XIII/PSTV XX), pages 267–283, London, UK, Oct. 2000. Kluwer
Academic Publishers.

34. E. J. Joyce. Accelerator linked to fifth radiation overdose.American Medical News, 1,
Feb. 1987.

35. C. J. Karzmark. Procedural and operator error aspects ofradiation accidents in radio-
therapy. International Journal of Radiation Oncology Biological Physics, 13:1599–
1602, Jan. 1987.

36. G. Leduc. A framework based on implementation relationsfor implementing LOTOS

specifications.Computer Networks and ISDN Systems, 25(1):23–41, Aug. 1992.
37. N. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. IEEE

Computer, 26(7):18–41, July 1993.
38. N. G. Leveson, editor.Safeware: System Safety and Computers. Addison-Wesley,

Reading, Massachusetts, USA, 1995.
39. A. McClenaghan. Experience of using LOTOSwithin the CIM-OSA project. In K. R.

Parker and G. A. Rose, editors,Formal Description Techniques IV, pages 109–116,
Amsterdam, Feb. 1992. North-Holland.

40. A. J. R. G. Milner. Communication and Concurrency. Addison-Wesley, Reading,
Massachusetts, USA, 1989.

41. A. M. D. Moreira and R. G. Clark. Complex objects: Aggregates. Technical Report
CSM-123, Department of Computing Science and Mathematics,University of Stirling,
UK, May 1994.

42. D. Moundanos, A. Abraham, and Y. V. Hoskote. Abstractiontechniques for validation
coverage analysis and test generation.IEEE Transactions on Computers, 47:2–14,
1998.

43. R. D. Nicola. External equivalences for transition systems.Acta Informatica, 24:211–
237, 1987.

44. D. H. Pitt and D. Freestone. The derivation of conformance tests from LOTOSspecifi-
cations.IEEE Transactions on Software Engineering, 16(12):1337–1343, Dec. 1990.

Test Generation for Radiotherapy Accelerators 27

45. C. M. P. Reade. Process algebra in the specification of graphics standards. Technical
Report CSTR-92-1, Department of Computer Science, Brunel University, Middlesex,
UK, Sept. 1992.

46. J. M. T. Romijn, O. Sies, and J. R. Moonen. A two-level approach to automated con-
formance testing of VHDL designs.Testing of Communicating Systems, 10:432–447,
1997.

47. M. H. Thomas. The story of the Therac-25 in LOTOS. High Integrity Systems Journal,
1(1):3–15, Feb. 1994.

48. J. Tretmans. Conformance testing with labelled transition systems: Implementation
relations and test generation.Computer Networks, 29:25–59, 1996.

49. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.Software
Concepts and Tools, 17:103–120, 1996.

50. K. J. Turner, editor.Using Formal Description Techniques — An Introduction to ES-
TELLE, LOTOS and SDL. Wiley, New York, Jan. 1993.

51. K. J. Turner. Representing new voice services and their features. In D. Amyot and
L. Logrippo, editors,Proc. 7th. Feature Interactions in Telecommunications andSoft-
ware Systems, pages 123–140. IOS Press, Amsterdam, Netherlands, June 2003.

52. K. J. Turner and Q. Bing). Protocol techniques for testing radiotherapy accelerators.
In D. A. Peled and M. Y. Vardi, editors,Proc. Formal Techniques for Networked and
Distributed Systems (FORTE XV), number 2529 in Lecture Notes in Computer Science,
pages 81–96. Springer-Verlag, Berlin, Germany, Nov. 2002.

53. K. J. Turner, A. McClenaghan, and C. Chan. Specification and animation of reactive
systems. In V. Atalay, U. Halici, K.̇Inan, N. Yalabik, and A. Yazici, editors,Proc.
International Symposium on Computer and Information Systems XI, pages 355–364,
Ankara, Turkey, Nov. 1996. Middle-East Technical University.

54. F. Vemuri and R. Kalyanaraman. Generation of design verification tests from behav-
ioral VHDL programs using path enumeration and constraint programming. IEEE
Transactions on Very Large Scale Integration Systems, 3:201–214, 1995.

55. C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and specification style in
formal descriptions of distributed systems.Theoretical Computer Science, 89:179–206,
1991.

56. I. Widya, F. Sadoun, and G.-J. van der Heijden. Specification of a distributed coor-
dination function in LOTOS. In K. R. Parker and G. A. Rose, editors,Proc. Formal
Description Techniques IV, pages 133–148. North-Holland, Amsterdam, Netherlands,
Nov. 1991.

57. K. Yasumoto, A. Kitajima, T. Higashino, and K. Taniguchi. Hardware synthesis from
protocol specifications in LOTOS. In S. Budkowski, E. Najm, and A. Cavalli, editors,
Proc. Formal Description Techniques XI/Protocol Specification, Testing and Verifica-
tion XVIII. Chapman-Hall, London, UK, 1998.

