Kenneth J. Turner. Test Generation for Radiotherapy Accelerators,
Software Toolsfor Technology Transfer, 7(4):361-375, Springer, August 2005

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Test Generation for Radiotherapy Accelerators

Kenneth J. Turner

Computing Science and Mathematics, University of Stirli@gotland FK9 4LA
e-mail:kj t @s. stir.ac. uk

September 7, 2005

Abstract System specification with &Tos (Language Of Temporal Ordering
Specification) is briefly introduced. To make test generapoacticable, speci-
fications are annotated with event constraints using PCta(Reter Constraint
Language) as a means of stating test purposes. Automategttesation can then
use the principle of input-output conformance to check Wwhetin implementa-
tion agrees with its specification. Test suites are gengfate transition tour that
either visits every transition at least once (for infinitdhaeiour) or follows ev-
ery path (for finite behaviour). The approach is applied tasecstudy in which
tests are generated for radiotherapy accelerators usesh@ectreatment. A typi-
cal specification and set of test purposes yields 256 tesesthat can be executed
manually or automatically. The goal is to determine sitadiin which an accel-
erator does not behave in conformity with its specification.

Key words Accelerator — loTos (Language Of Temporal Ordering Specifica-
tion) — Radiotherapy — Test Generation

1 Introduction
1.1 Background

In general, testing is a time-consuming and exacting tasgtiig can very rarely
be exhaustive, so there is an issue of effective coveragealttice, tests are often
defined using human expertise and are conducted manualypmn@edures differ
greatly according to the domain. In electronics, for exampl sharp distinction
is made between testing folesignerrors and testing fomanufacturingerrors.
The former is often termed design verification. Softwardingsalmost entirely
focuses on design flaws. The techniques employed includk/bthite box testing,
alpha/beta testing, module/system testing, and integvaéigression testing.

2 Kenneth J. Turner

In this paper, the focus is on conformance testing — a cortbaparises with
communications protocols. The goal is to check the agreeonfean implemen-
tation with its defining specification. Conformance testimgarticularly well de-
veloped for communications protocols, where a methodotoglframework have
been standardised [22, 25].

Techniques have been developed for the use of formal metinodanfor-
mance testing [23]. Ideally, a system would be rigoroushetieped using a formal
method throughout the whole of its development. The con&oree of an imple-
mentation to its specification (i.e. formal requirementsuld then be inevitable.
In practice, this does not apply for a number of reasons:

— It is rare for a formal method to be sufficiently wide-spentrthat it can ad-
dress development at all levels, from requirements to implation.

— In general, industrial engineers have little training imnfial methods. Formal
methods tend to be used only in special kinds of systemsdaatity-critical
or safety-critical ones).

— Stepwise refinement of a specification towards an implentientéakes con-
siderable effort. Even if it is done, there is almost indviyea gap at the stage
of final implementation. For example, it is very unusual foe tompiler that
generates executable code to have been verified. Equallgpirating system
that runs the code is most unlikely to have been verified.

— Progressing from specification to implementation, the aizé complexity of
the code increases greatly. Present day verification tqabrican only just
cope with realistic specifications. Verification of reatismplementations is
impracticable.

As aresult, itis almost always necessary to check that ateimgntation is indeed
conformant.

However, formal methods still have an important role to ptetgsting. Given a
specification, it is possible to generate useful tests ftofirhis is not, of course, as
complete as proving that an implementation respects itsifsgaion. However it
can be used to gain confidence in the implementation. Funthve, a high degree
of automation can be used to generate and apply the tests.

1.2 Radiotherapy Accelerators

Radiotherapy equipmentis used in oncology (cancer) cetdrdeliver controlled

doses of radiation, usually to destroy cancerous tissuamgthe several kinds of
radiotherapy equipment, the most important is the lineaelacator (‘accelerator’
or ‘linac’). This accelerates a beam of electrons to highgythat can be used for
treatment directly or to generate x-rays.

Radiotherapy is a safety-critical procedure that demandgrate delivery of
radiation. A number of radiation accidents have been wetudrented (e.g. [34,
35]). The Therac-25 accelerator is infamous as having chaseidental injuries,
in some cases leading to death [37]. In fact, a radiation ida$e is as undesir-
able as an overdose since it may fail to kill a tumour. Notwiglhg radiation to

Test Generation for Radiotherapy Accelerators 3

the exact area is also serious as it damages surroundinghéasue instead of
destroying cancerous growth.

The accelerator is located in a treatment room that is heagileened to pre-
vent radiation leakage to the outside. Access is via anlouieed door (or gate)
from the control room. The control room houses the operatnsale and the sup-
porting computer systems. [16] gives a comprehensivedniton to the theory
and practice of treatment with radiotherapy accelerators.

Radiotherapy equipment uses dedicated hardware. Thegalhgs$iaracteris-
tics of accelerators are regularly and thoroughly checkedexample, dosimeters
(dosage meters) are periodically calibrated against matistandards. The accu-
racy of radiation delivery is also regularly checked in diated treatments. The
hardware is extensively protected by interlocks that déihl situations like power
supply failure, dosimeter failure, or entry to the treattmem while the acceler-
ator is operating.

Early radiotherapy equipment was essentially just hardwidowever, mod-
ern accelerators are complex software-controlled systéweelerator software
resembles standard application software. It requiresphigal user interface, pe-
ripheral input-output, file system operations, and datarnanications. The accel-
erator software depends on a conventional style of operatistem. The software
must respect strict demands for dependable, real-timeatper Software, unlike
hardware, does not deteriorate over time so that differdrahility concerns ap-
ply. Like any application, the accelerator control softevés upgraded from time
to time by the manufacturers. Of course, the software isldpee much more
carefully than conventional application software. Howewéth new accelerator
software, it is desirable to check that the new version hastreduced any flaws.
Surprisingly, there seems to be little automation to heilmicd to do this.

1.3 Conformance Testing

The aim of the work reported in this paper was to adapt protemihniques to
testing the control system of radiotherapy acceleratotdirgt sight, this might
seem to be an implausible approach. However, the authormeasieaged by good
experience of using protocol techniques for hardwarertg$81]. This gave some
confidence that the same approach could be useful in testoejeaators, and in
fact for testing medical equipment more generally.

For protocols, it has been found useful to employ an implaatém relation
calledioconf(input-output conformance). The basic idea is to formadhate the
input-output behaviour of a specification to that of its ierpentation. The ap-
proach distinguishes implementation states where ouspnbi possible, i.e. the
implementation is awaiting further input. All sequencedehaviour (traces) are
considered for the specification. An implementation com®to its specification
if the outputs of the implementation after such traces can bé produced by the
specification.

Althoughioconfwas developed to evaluate communications protocols, it has
proven possible to adapt it for testing accelerators. Thmdb basis is a speci-
fication language borrowed from the communications worldras (Language

4 Kenneth J. Turner

Of Temporal Ordering Specification [21]) was originallyended for specifying
communications systems, but has subsequently been usefgrother kinds of
systems.

1.4 Methodology

The methodology used in this paper is generic, and could pkegjto test gen-
eration for other kinds of systems. However the paper greuhe approach in a
particular application domain: radiotherapy accelemtdhe steps in the method
are as follows. In each case, a brief description of the stdpliowed by what
was actually done by the author (and co-workers) in the acatdr case study.
Subsequent sections of the paper elaborate on each of tepse s

Information gathering : an understanding of the application is gathered from dis-
cussions with domain experts.

The author collaborated with a radiation physicist who spansible for op-
eration of radiotherapy accelerators in an oncology cefitinés allowed the
author to gain a technical understanding of acceleratotrcbgystems. Dis-
cussions were also held with a major accelerator manufagtout it proved
to be impracticable to involve them in the research. Tediméormation was
therefore based on knowledge gleaned from the collabgraticology centre.

Modelling: an informal model of the system is created.

Structural breakdowns and data-flow diagrams were prodtared sample

accelerator. Clarifications were sought from domain exptmtoughout this
process, though the technical representations that echerges the author’s.
An issue at this stage was choosing an appropriate levelktfadtion. The ini-

tial functional breakdown led to a rather detailed modeligeer most of this

did not deal with the core functionality. Attention was tbfare focused on the
control system of a radiotherapy accelerator as a black De.input-output

behaviour of this characterises the important aspectsafdhntrol system.

Specification a formal specification is written based on the informal mode

LoTtoswas used as the specification language. The specificati@tteoth
the structural breakdown of the system as well as insighiteedaduring mod-
elling its functional behaviour. As far as the author knoffstmal) specifica-
tions are not written of accelerators so this was a necessatyseful step.

Constraint annotation: to make test generation feasible, the specification is an-
notated to indicate significant test values and orderings.

PCL (Parameter Constraint Language) was devised by theratiguide test
generation in a useful and practical manner. PCL allowspleeifier to define
which kinds of test values are important, as well as to defihechvorder-

ings of inputs are significant. Test constraints were foatad for accelera-
tors, partly following general software engineering pieetand partly using

Test Generation for Radiotherapy Accelerators 5

domain knowledge. The specification was annotated with thieesponding
test constraints. The PCL tool automatically translatesé¢hto loTos and
combines them with the original specification. The resgltpecification is
thus restricted to behave within useful test constraints.

Automaton generation a finite state automaton is automatically generated from
the annotated specification, using the test constraintsaleerthe state space
manageable.

The automaton was created automatically by a standardetofois LoTOS —
CADP (Caesar Aldébaran Development Package). The automes min-
imised (with respect to observational equivalence) in proenake test gener-
ation more efficient.

Test generation a suite of tests is automatically generated by traversiecat-
tomaton, following an existing algorithm that respectsigmnfrelation.

A test suite was created by traversing the automaton, usirgdaptation of
theioconfalgorithm. The resulting tests are known to be sound andstems.
The TestGen tool was developed for this purpose, thougHhasitoiols (TGV,
TorX) have been subsequently created by others.

Test application: the suite of tests is automatically run against the impiaiae
tion, with a view to deciding whether it conforms to its sgieeition.

This is the point which the research has reached. Curreméiytdsts can be
applied only manually, though a strategy has been devisedifming them

automatically. The goal is to run the test suite periodyclconfirm satisfac-

tory operation of the accelerator — particularly after awafe upgrade.

1.5 Related Work

Formal methods are an obvious choice to support the developamd testing of
radiotherapy equipment. A big impetus to the use of formahwods was given
by a series of accidents involving the Therac-25 accelefafj. However rather
surprisingly, radiotherapy equipment continued to attligite attention from the
formal methods community. [47] is one of few contributiohsaying made use
of LoTosto show (with the benefit of hindsight) how the Therac-25 flaasld
have been identified. The only other work known to the auttseswz to specify
the design of software for a radiation therapy machine [26—2

In formally-based conformance testing, a specificatiorheftarget system is
presumed to exist. Typically this is represented by an LT&b@lled Transition
System) that can give the semantics of a behaviourallyatgéespecification lan-
guage like loTos Test theories for LTSs have been under investigation foreso
time, based on external tests and observations (e.g. 8,43 theories support
implementation relations that formally qualify an implemtegtion with respect to
its specification. Apart from defining a suitable impleméiotarelation, confor-
mance testing requires finding a set of tests for a spectitati distinguish be-
tween correct and incorrect implementations.

6 Kenneth J. Turner

[3] elaborates a theory for testing systems specified @T@s. Several test
generation algorithms have been proposed for an LTS carneipg to Basic lo-
TOS (i.e. LoToswithout data types), e.g. [36,44]. In [48,49] the testingaty for
an LTS is refined for communicating systems that distingiripats and outputs.

A formal description of an implementation rarely existsher because the
implementation is opaque or because it would be impradedatspecify it. How-
ever by what is known as a test hypothesis, it is presumedhbatplementation
can be modelled as an IOLTS (Input-Output Labelled TramsiBystem). An LTS
gives a relatively abstract description (and so is appad@rfor a specification),
while an IOLTS gives a more realistic and concrete desanipfand so is appro-
priate for an implementation).

Conformance of an implementation can be expressed witlecesp its spec-
ification using a formal relation between the IOLTS and LT8Beibconfrelation
[49] can be used as a criterion for correct implementatiasdsl on this relation,
an algorithm has been given for defining a suite of implententdests [49]. A
test suite consists of test cases that define possible iapdtexpected outputs.
Another article in this special issue [30] provides the tiyeand principles be-
hind conformance-based test generation. The preseriegharefore gives a less
technical treatment abconf

The author and his co-workers have implemented this algaority building
on the API for the CADP toolset (Caesar Aldébaran DevelogrRenkage [12]).
Originally the goal was to generate tests for hardware [31-Subsequently the
approach has been modified for testing radiotherapy aatetst

The approach is similar to that of the test generation tooVTG3]. How-
ever because a radiotherapy accelerator specificatiomisiidependent on data,
TGV is not immediately useful. TGV also requires an accukaiawledge of the
state space of a specification, which is not known until a ifipation has been
constrained for testing. TorX is a similar tool foniros-based test generation, but
was not available to the author as it was developed for usesjpeaific project.
STG (Symbolic Test Generation [7]) could be particularlievant to accelerator
test generation.

For hardware testing, formal methods have been combindd sirtulation
techniques. In [54], software testing methods are used dsigd verification of
behavioural VHDL (VHSIC Hardware Design Language [19])17, 42] test gen-
eration is based on an FSM (Finite State Machine) or ECFMréextd Control
Flow Machine) that represents the control logic of a circlite generated test
cases are then applied to both higher level and lower leeglifipations in Verilog
[20] or VHDL. These approaches are built on a formal magldtactedfrom a
circuit design. However the author favours an approach iichvtests arelerived
from a high-level specification. [46] generates tests frdmgaer-level FSM spec-
ification, and applies them using a VHDL simulator. Unfortaly this method
cannot handle non-determinism in specifications.

Test Generation for Radiotherapy Accelerators 7

1.6 Overview of Paper

Section 2 introduces system specification withTios. To make test generation
practicable, it is necessary to constrain the specificaiging PCL (Parameter

Constraint Language) as a means of stating test purposstsgdeeration using

input-output conformance is explained in section 3. A tegiescan be automati-

cally generated according to various strategies. The n&sa study is presented
in section 4, where radiotherapy accelerators are destribemple test annota-
tions for accelerators are given, and the resulting tegt ssidiscussed. The paper
concludes with an evaluation of the approach in section 5.

2 Specification for Testing
2.1 Specification with @TOS

LoTos(Language Of Temporal Ordering Specification [21]) was ioally con-
ceived for specifying communications systems. Howeves & igeneral-purpose
language that has been used in other domains. For exaihplas been used to
specify bus architectures [5], computer-integrated mactufing [39], embedded
systems [6], graphics [45], hardware design [57], multimeystems [1], neural
networks [15], object-oriented software [41], telephoh{]} transaction process-
ing [56], user interfaces, visualisation [53], and voicevgmes [51].

LoTtos specifies behaviour using a process algebra based on CC&il(&al
of Communicating Systems [40]) and CSP (Communicating Seiigl Processes
[18]). Abstract data type specification is based @TONE [10]. Although LoTOS
is a constructive specification language, it is possiblesmitifor fairly high-level
descriptions of systems [55].

Among languages that might be used to specify radiotheregslerators, b-
TOosis a good choice for the following reasons:

— Its constructive nature is appropriate for giving behavéddescriptions.
— LoTosties in well with theories for test generation.
— LoTtosis well supported by readily available tools.

The subset of the @Tosnotation appearing in this paper is summarised below.
In-line comments are also given to explain specificationstwets as they are
used. Tutorials on Toscan be found in [2,50].

Data Types: A loTosdata type such adaturalNumbernon-negative integers)
has a sort (i.e. typelat in this case) and operators (e.g. ‘+'). Th®tos
library offers standard data types, and others can be ddfinédte specifier.

Actions: A behaviour finishes (deadlocks) wittop. A behaviour is considered
to finish successfully witlexit. Actions are events that occur at gates, which
act like ports where communication may occur. A fixed everaipeeter has the
form ‘valué, and is often used to output a value. A variable event patame

! The citations here are representative samples from a mupdr list.

8 Kenneth J. Turner

has a form like ‘Yariablesort, and is often used to input a value; a value of
the given sort is assigned to the variable. It is possibleitosaveral ‘!" and
‘?’ parameters in an event.

Processes: A process encapsulates parameterised behavfeiform:

Procesgrocesqgate§ (parameter: result :=

EndProc
When the process is called, specific gates and parametesvate provided.
The result may béxit (if the behaviour exits) oNoExit (if the behaviour
stops or repeats indefinitely).
Operators:

B1>> B2(‘enables’): continues witB2if B1 exits.

B1||| B2 (‘interleaves’): allows the events &1 and B2 to occur indepen-
dently in parallel.

B1 || B2 (‘synchronises’): requireB1andB2to agree on all events.

Choicevariables|] B: allowsB for all possible combinations of variable val-
ues (as defined by their sorts).

2.2 Constraining DTOSSpecifications

2.2.1 Constraint AnnotationsOnce a loTosspecification has been written, var-
ious analyses can be performed:

— The specification can be animated or simulated manually &zliclits be-
haviour.

— The state space of the specification can be explored to digadiocks, live-
locks, unreachable states and unspecified receptions.

— Desirable properties of the service can be formulated imgoteal logic (e.qg.
ACTL or XTL) and model-checked against the specification.

However, even for small specifications this can be very tomesuming or im-
practicable. A more pragmatic use for a specification is gaimy tests from it.
Assuming the specification is a faithful reflection of theeimed behaviour, auto-
mated test generation can be used to gain confidence in thenraptation. How-
ever direct test generation is typically impractical — esaléy if the specification
makes extensive use of data.

In protocol testing, it is common to restrict the behavioluia specification by
imposing test purposes that constrain the behaviour to diedeFor example a
test purpose might check what happens between sendingrdhits aeception. A
comparable approach has been adopted for testing racapthaccelerators, but
the focus is on the selection of data values since this kirspe€ification is heavily
data-oriented.

PCL (Parameter Constraint Language or ‘Pickle’) was deeddoy the author
as a means of guiding test generation through test purpB€tsannotations are
attached to important parts of the specification. Only trexgi@r knows the plau-
sible values and ordering of inputs; these cannot (reaspradinferred from the

Test Generation for Radiotherapy Accelerators 9

specification. PCL adapts what is called boundary valuetgst software devel-
opment. If values in a range must be accepted, it is worthendhiecking just inside
and just outside the range.

An extra complication is that concurrency in a specificativeny allow inputs
to be provided in many different orders. PCL defines consisain event values in
isolation, and on the order of events. Normally PCL is useckstrict only input
events, but it can also be applied to outputs (e.g. to linetbsponses from a
system). If the constraints are tighter, fewer variatioagehto be tested but the
tests become less comprehensive.

PCL takes the form of specialdTos commentq*. PCL .*). As comments,
these do not affect the formal meaning of the specificatiom@mnal analytic
techniques apply. However the PCL translator tool can tuolmsnnotations into
L oTosconstraints that restrict the specification. Two approacbeld be adopted
for test constraints:

— ldeally, a symbolic transition system would first be credtedn the specifi-
cation. Transitions would give event variables as namégrdhan as specific
values of their sorts. Tests could then be generated byrsiagethis sym-
bolic transition graph, choosing test values accordindgiéoRCL constraints.
[7] describes a symbolic test generation tool that could s&ful. [4] is also
a promising basis. Testing of algebraic data types and pseses discussed
in [14]. Symbolic execution of bTos specifications is well established (e.g.
[9D).

— More practically, the PCL constraints can be applied immisdy to the spec-
ification. This reduces its state space to a manageablesthatsstandard test
generation algorithms can be applied.

PCL is translated automatically intodros. In fact, the constraints could be
written directly in LoTos However, as will be seen the constraints are rather com-
plex when expressed indTos PCL is a much more compact notation that links
test purposes closely with system behaviour. It is theesgfoeferable to use PCL
and to have the dTosconstraints generated automatically.

2.2.2 Event Value ConstraintsTable 1 summarises the PCL annotations for con-
straining event values. Thaluesconstraint ensures that tests are generated only
for specific values that are thought to be useful. For valui@siwa specific nu-
merical rangerange is used. The environment may also be allowed to provide
out-of-range values witbounds

An event may be followed by a PCL value constraint. A constraiay be
labelled for use in other constraints. Event parameter§iaé values (‘! prefix)
or variables (*?’ prefix). One constraint is given for eachiale value.

Suppose theheckevent can acceptlawer value in the range 4 to 10, and a
highervalue with useful test values 2, 5 and 6. The vahidin this event is fixed.
Themixtureconstraint might appear as:

check ?lower:Nat !mid ?higher:Nat theckevent for low/mid/high *)
(*. mixture : rangg4,10);valueg2,5,6) .*)

10 Kenneth J. Turner

| Constraint | Meaning |
boundglow,high) like range, but also includingow-1 andhigh+1 for ro-
bustness testing
free(even} no value restrictions
range(low,high) a continuous numerical range, with exemplar test valpes
low, | lewthish | andhigh
valuegvaluelvalue2...) | alist of specific values that may be chosen

Table 1 PCL Value Constraints

Each constraint must have the same number of alternatiues:ahree in this case.
These are chosen in tandem, so the pairs of test values aje(#45) and (10,6).

If a constraint defines a single list of values, it may be usedi®lically in
another constraint. Suppose the width that is input for targge should be in the
range 2 to 20 (i.e. test values 2, 11, 20). The height thas@siaput might then be
restricted to a range 6 to 12 more than the width. These @nttrare expressed
as follows:

rectangle ?w:Nat (tectangleevent for width *)
(*. width : rang€g(2,20) .*)
rectangle ?h:Nat (rectangleevent for height *)

(*. height : rangeg(width+6,width+12) .*)
If the test value fowidthis 11, for example, theeightwould be selected from the
range 17 to 23 (i.e. test values 17, 20, 23).

LoTosoperations may be used in PCL constraints. If test valuegiaea as
operation parameters, the operation is applied to theseidh a case, constraints
are often nested. Suppose tflakeStatusperation takes a pair of numerical val-
ues. The expressidviakeStatugralueg0,25,28)yalueg10,26,35)) applies the op-
eration to the corresponding pairs of valuestke Statu@®,10),MakeStatu@5,26)
and MakeStatu@8,35). In the following example, the outer call wdluesoffers
three such lists of values, i.e. niMakeStatusalues in total:

accelerator |Read ?status:Status agteleratorevent to read status *)
(*. accelerator valueg
MakeStatusfalueg2,1,2)yvalueg2,1,2)),
MakeStatusfalueg0,25,28)yalueg10,26,35)),
MakeStatusfalueg0,1,3)yalueg10,50,70))) .*)

If an event has no PCL constraint, its values are unrestki@mce test gener-
ation makes a distinction between input and output everitspecessary to anno-
tate an unconstrained input eventfeee. The PCL translator can normally infer
the structure of an event, but in this case the structure rhigimpossible to deter-
mine. Consider the following file action in which only the ead parameter may
vary, and that in an unconstrained way. It would be difficiétermine thaesult
was fixed, so the underlying event structure is made exji¢ite constraints.

Choiceresult:Condition, buffered:Bod] (* for all value combinations *)
[result = OK] > (* resultis OK? *)
read !'result !buffered,; (* read buffered value *)

Test Generation for Radiotherapy Accelerators 11

| Constraint | Meaning |
alternatglabelllabel2...) | theith values are selected as alternatives
finish the event ends a cycle of behaviour

groupedlabelllabel2...) | theith values are selected in either order
separatélabelllabel2...) | the constraints are applied independently
serial(labell,label2...) theith values are selected in sequence

Table 2 PCL Ordering Constraints

(*. free(read 'OK ?buffered:Bool) .*)

2.2.3 Event Order ConstraintsAlthough value constraints significantly restrict
what must be tested, concurrency in the specification mayvalnpracticably
many variations in the order of events. For example therenamy parameters to
be set before radiotherapy accelerator treatment begimshé ordering of these
inputs is largely irrelevant. Testing all the ordexuld be significant, but would
probably not be. As summarised in table 2, PCL allows evedeimg constraints
to be defined for lists of labelled value constraints. In tkemeples below, suppose
the following value constraints have been defirgekiceprovides the test values
keyboard mouseper andresolutionprovides the test values 0, 10, 20.

— Theseparateconstraint allows any order of inputs. Twenty interleavenhbi-
nations would be defined tgeparatédeviceresolutior).

— To limit the combinationsgroupedcan be used to select a value from each
list in combination (each list having the same number of @gJuEight com-
binations would be defined lyroupeddeviceresolutior): keyboardand 0 in
either order, themouseand 10 in either order, thggenand 20 in either order.

— The values of each group can be chosen as alternativesw@tists of values,
this does not reduce the number of combinations but doesedtia number of
inputs.) Eight combinations would be definedddiernatgdeviceresolution:
keyboardor 0, thenmouseor 10, therpenor 20.

— The most restrictive combination is serial: the first valueach list is chosen,
then the second value, etc. Again, there must be the sameanuwhbalues in
each list. Just one combination would be definedénal(deviceresolutior):
the sequence of inpukeyboard 0, mouse 10, pen 20.

Further variants of these combinations are possible. Awiithail list of values
may be made optional by following it with a question maidevic®’ means this
input may or may not occur. An entire combination may also laelenoptional:
alternate?(deviceresolution. Ordering constraints may be given individually or
may be nested. All ordering constraints are stated aftanthia LoTosbehaviour
expression. The following is drawn from the radiotherapyederator test annota-
tions:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)

(*.

12 Kenneth J. Turner

serial((* values in sequence *)
separat¢mode), (* mode values separately *)
separatgaccessory), (* accessory values separately *)
serial((* values in sequence *)
energy, dose, rate, (* energy/dose/rate values *
x1,x2,y1,y2, (* x1/x2/ly1ly2 values *)
alternate?((* one of each optionally *)
gantry (* gantry values *)
rotation, latitude, longitude, vertical (* couch values *)
)
start, accelerator (* start point, accelerator values *)
)
)
*)

The above defines the order in which certain values may bddedwduring test
generation. It makes use of value constraints likedeand accessorythat are
defined as explained in section 2.2.2. The specific valuet@nts used here will
be given in section 4.3 once the domain of radiotherapy acatlrs has been
introduced..

A specification is often cyclic: it accepts input, producese output, and
then repeats this behaviour. In such a case, a PCL annoisitiiven to indicate
the event that marks the end of a cycle:

console !Done;
(*. finish .*)

2.3 Translating Event Constraints t@IOS

The PCL translator extracts annotations from a specifinaiod translates them
into LoTosconstraint processes. The principles of the translatierescussed in
[52] and are not given here.

At the end of section 2.2.3, ordering constraints were giegrthe example
of a radiotherapy accelerator. These are translated irotlosving LoTOSprocess
structure that reflects the constraints:

Behaviour (* overall behaviour *)
Accelerator [Console] (* accelerator behaviour *)
[l (* synchronised with *)
Constraints [Console] (* constraint behaviour *)
Where (* local definitions *)
ProcessConstraints [Console]NoExit := (* overall constraints *)
ConstraintsFree [Console] (* free event constraints *)
il (* interleaved with *)
(
ConstraintsSeriall [Console] (* top serial constraints *)
>> (* followed by *)

Stop (* finish of tests *)

Test Generation for Radiotherapy Accelerators 13

)

EndProc

ProcessConstraintsFree [ConsoleNoEXit := (* free event constraints *)
(* individual free events *)

> (* followed by *)

ConstraintsFree [Console] (* repeat free constraints *)

EndProc

ProcessConstraintsSeriall [ConsoleExit := (* top serial constraints *)
ConstraintsSeparatel [Console] (* separate mode contstrai

> (* followed by *)
ConstraintsSeparate3 [Console] (* separate accessosyraonis *)

>> (* followed by *)
ConstraintsSerial5 [Console] (0) (* first serial consttaif)

> (* followed by *)
ConstraintsSerial5 [Console] (1) (* second serial colirstsa)

> (* followed by *)
ConstraintsSerial5 [Console] (2) (* third serial consttai*)

EndProc

The constraint processes are all automatically generabed the PCL.Con-
straints defines all the constraints, synchronised with the main lacz®r be-
haviour. ConstraintsFreedeals with free events, interleaved wi@onstraintsSe-
riall for the top-level serial combination. The latter (and intfdie whole speci-
fication) terminates once all test combinations have beersarhConstraintsFree
allows a free event to occur and then repeats.

ConstraintsSerialldefines the top-level serial constrain®onstraintsSepa-
ratelgives themodeconstraints, whil&ConstraintsSeparatedives theaccessory
constraints. Then the remaining serial constraints arengyConstraintsSerials
This provides three lists of test values, indexed as 0, 1,thénLoTOS transla-
tion. These values specifgnergy dose rate andx/y values. At this pointCon-
straintsAlternate@not shown) optionally allows for alternative valuesgantry,
rotation, latitude, longitudeandvertical settings. Finally, it applies thgtart and
acceleratorconstraints.

3 Test Generation
3.1 Input-Output Conformance

See [30] in this special issue for the theory behind the aggraescribed here. A
specification is assumed to be modelled by an LTS (Labelledsition System)
that can be generated from, say, a10s specification. In early work on theo-
ries for conformance testing, both the specification andtHe(Implementation
Under Test) were modelled by LTSs. To formally define thetiefeship between
an implementation and its specification, a test hypothssieeded that the im-
plementation can be represented by a formal model. The IUThuenicates with

14 Kenneth J. Turner

its environment through symmetric interactions, so thé¢ éesironment is also
modelled as an LTS.

However in many real-world systems, there is a clear digstndetween in-
put and outputs. The inputs of a system are always enabledaammbt refuse the
actions offered by the environment. After the system coresiam input, the envi-
ronment must be prepared to accept the resulting outpu#dnthis kind of be-
haviour is modelled as an IOLTS (Input-Output Labelled Eiion System). This
is an LTS in which the set of actions is strictly partitionatbiinputs and outputs.
Quiescent states in an IOLTS are ones where only input isategei.e. output
is not permitted. Such states are labelled withdheseudo-action that means the
systems idles while waiting for input.

The specification LTS can be regarded as a partially spedi@dsS in the
sense that there are some states in the specification thagftese input actions.
This may be because it does not matter how implementaticamong to unex-
pected inputs, or because the environment should not d#en anyway.

The goal is to show that an implementation is input-outpuifeonant with
respect to its specification, i.e. that it respectsitio®nfrelation. After all traces
of the specification, the outputs of the implementation nalsb be possible for
the specification. Since this holds also foactions, the implementation may not
output if the specification cannot do so.

Test cases respectimgconfare generated from an intermediate LTS called a
suspension automaton that is built from the specificatioB.LTThe suspension au-
tomaton is obtained by addirgelf-loops for all quiescent states, and then making
the resulting automaton deterministic. Checkingonfthen amounts to checking
that implementation traces are included in those of theemuspn automaton.

A test case is a finite, deterministic LTS willassandFail states. A test suite
is a set of such test cases. For accelerator testing, algligbdified form of the
algorithm in [49] is used. The following alternative chaicare repeatedly made
during test case generation:

Choice 1: The test case is terminated witfPassverdict. Since a specification
may have infinite behaviour, test generation must be stoppedme point —
hopefully after adequate test coverage has been obtained.

Choice 2: An input is selected from the traces of the susparaitomaton. This
is fed to the implementation, and the algorithm repeats toerfizrther choices.
Since inputs are always enabled, no deadlock can occur.did amnecessary
non-determinism during testing, only one input is applied éme.

Choice 3: Check the outputs of the implementation agairestsghecification. If
the implementation can output something that is forbiddethle suspension
automaton of the specificationFail verdict is given. Otherwise the algorithm
repeats.

Test Generation for Radiotherapy Accelerators 15

3.2 Test Case Example

To illustrate test generation, it is simpler to use a harévexample [31]. A hard-
ware specification needs only simple data types (bits), @dwethe accelerator
specification is much more complex and uses many data types.

Consider a basic logic design element: a JK flip-flop. Thisdmgle-bit mem-
ory with control inputs] andK. If they are both set to 0, the flip-flop state stays the
same. If they are both set to 1, the flip-flop inverts its stor@de. IfJ andK are
set to different values, the value &fs stored. The output is conventionally called
Q, while its complement i8lQ (not Q). It can be specified by adTosprocess as
follows. The parametatatais set to 0 when the process is instantiated.

ProcessIK [J,K,Q,NQ] (data:Bit) NoExit := (* JK flip-flop *)
J ?newJ:Bit; (* get new J value *)
K ?newK:Bit; (* get new K value *)
(
[(newd Eq 0) And (newK Eq 0)}> (* J and K both 0? *)
Q !data; (* output current data *)
NQ !Not(data); (* output inverted data *)
JK[J,K,Q,NQ] (data) (* repeat for same state *)
I
[(newd Eq 1) And (newK Eq 1)}> (* Jand K both 1?7 *)
Q 'Not(data); (* output inverted data *)
NQ !data; (* output current data *)
JK [J,K,Q,NQ] (Not(data)) (* repeat for opposite state *)
I
[newJ Ne newK]> (* J and K differ? *)
Q 'newJ; (* output J value *)
NQ !'Not(newJ); (* output inverted J value *)
JK [J,K,Q,NQ] (newJ) (* repeat for J value *)
EndProc

The left-hand diagram of Fig. 1 shows a minimised LTS gerer&tom this
specification. The right-hand diagram shows the correspgrglispension LTS.
Since the specification is deterministic, the suspensitonaaton requires only
self-loops where further input is expected. In general siigpension automaton
differs significantly where non-determinism has to be uihdal.

Fig. 2 shows sample test cases generated by traversinggpersion automa-
ton of Fig. 1. For convenience, test cases are grouped inidigeasns where they
share a common prefix. Each test case is a single sequens&ttsivith] 1 and
finishes at a leaf node of the diagram. Fig. 2 thus illustregerseparate test cases.

3.3 TestGen Tool

The principal author of [31] developed an initial versionfestGen tool, embody-
ing the algorithm in section 3.1. This made use of the API lfier CADP toolset
(Ceesar Aldébaran Development Package [12]).

16 Kenneth J. Turner

K1
Qo

Fig. 1 Specification LTS and Suspension LTS for JK Flip-Flop

For the work reported in this article, a more elaborate eersif the TestGen
tool was developed and coupled with use of PCL. Althoughdeseration is au-
tomated (with anakefild, quite a number of stages are involved:

— The PCL annotations in the specification are translateddods and com-
bined with the original to make a new specification.

— A header file in C is generated for theofLos data types. An LTS is then
generated in Aldébaran format for theotos behaviour. This is minimised
with respect to observational equivalence (which respeet®confrelation).

— A header file and a code file in C are created for the minimisedifipation.
All the code is then compiled and run to generate the tests.

TestGen needs to classify events as inputs or outputs. $tashieved by a
separate file in C that recognises output events using negxgaessions. An event
pattern may refer simply to the event gate or to any parts efetirent. For the
radiotherapy accelerator, for example, all events atGbhachgate are outputs,
while only events with ®isplayor Finishedparameter are outputs for t@®nsole
gate.

A test suite aims to cover all transitions in the suspensistoraaton. Note
that this is not the same as following paths through tlog s source, since the
suspension automaton is based on a minimised and more @lrgfpaesentation
of behaviour. For a specification with infinite behavioursilgéen can perform an
edge tour of the suspension automaton. Visiting every etdgaraph at least once

Test Generation for Radiotherapy Accelerators 17

NQ 10 Fail Fail Fail Fail
Pass

Qlo

@ .))]

Pass Fail Fail Fail Fail

Fig. 2 Some Test Cases for the JK Flip-Flop

is the Chinese postman problem. As suspension automata atdyenstrongly
connected, the algorithm given by [17] was adapted as itiiatsle for all kinds of
directed graph. This method uses depth-first search whepessible. But when
an unvisited edge cannot be reached, then breadth-firstsisarsed to find a state
with an unvisited edge. The whole procedure repeats uhtikeailsitions have been
covered.

For a specification with finite behaviour, TestGen can penfar complete
traversal of the suspension automaton (up to some spedifigiddn the num-
ber of tests). If the specification has been restricted by B@istraints, this will
ensure that the specification always terminates. When PGseid with radiother-
apy accelerator specifications, this kind of transitionr isuappropriate for test
generation.

4 Case Study

4.1 Radiotherapy Accelerators

A typical radiotherapy accelerator is shown schematicallfig. 3. The accel-
erator proper is mounted on a gantry that rotates about thedmbal axis. The
accelerator uses a travelling waveguide to acceleratérehescfrom an electron
gun. The beam is controlled so as to yield electrons withgiasttypically in the

18 Kenneth J. Turner

Electron :l\
Beam G
Treatmen un
Head
Electron/X-Ray Gantry
\ 2 1 | Rotating
<> Treatment k Gantry
Couch
- Penan‘

Fig. 3 Accelerator Outline

range 6 to 20 MeV (million electron-volts). Radiation dosagre measured in
MUs (monitor units). MUs reflect the calibration of dosinrsteather than any ab-
solute unit, but 1 MU approximatesto 1 cGy (centigray, adad unit of radiation
dosage).

The horizontal electron beam is bent by magnets throudtio®®70) so
that it points downwards. In electron mode the electronsrgentrough a radio-
transparent plate to reach the patient. In x-ray mode ttareles strike a target,
causing a shower of x-rays towards the patient.

The treatment head contains a collimator. This consistswfrhovable plates,
two that move in the X direction and two that move in the Y dii@t. They define
a rectangle that restricts the beam to a defined apertureptisticated accelerator
will have an MLC (multi-leaf collimator). This has many (ooe two hundred)
individually movable leaves that may be used to set an aryishape for the beam
aperture. An ‘accessory’ may also be fitted to the treatmeatiho control the
beam distribution. The treatment head also houses an bgyitam that allows the
shape and position of the beam to be seen on the patient'ps&irto treatment.

The patient lies on a treatment couch that may be adjusteleight, in-out
position (longitude), side-to-side position (latitudaid rotation. A pendant (re-
mote control device) is attached to the couch for settingcthech position and
also for rotating the gantry. The operator sets up the pagied the accelerator so
that the correct part of the body will be irradiated.

4.2 Accelerator Control System

During treatment, the delivered radiation dose is reacopérally from the accel-
erator. For safety, this is measured by two independentdisrs whose readings
are accumulated. The first dosimeter reading usually decideen treatment is
complete. The accumulated dose should rise to the planres] dat some toler-
ance is allowed. In case the first dosimeter does not workguhppeadings from

Test Generation for Radiotherapy Accelerators 19

Start/Pause/Finish Start/Pause/Finish

Mode, Energy
Mode, Energy Dose Units, Rate
Dose Units, Rate
Gantry Angle AGantry Angle
Console Couch’ Setting Collimator Setting | Accelerator
Collimator Setting Accessory Settin
InterlocR~G\ccessory Setting
Display
Control Status
System Interlock
Gantry Angle
Couch Settin N X
Couch Setting Time
A\ 4
Pendant Couch Clock

Fig. 4 Simplified Accelerator Control System

the second one are used as a backstop. The dose rate is alkedcheevery mea-
surement. It may not deviate from the planned rate by mone dimamount that

depends on the particular treatment. Finally, the treatriee is calculated from

the dose and dose rate. A clock is read to ensure that trebtimesinot exceed the
planned time by more than a specified percentage.

For the work reported in this paper, the control system has lsemplified as
shown in Fig. 4. The detailed information flows are shown asfathe arrows. All
control functions are thus grouped in a single black boxhwie main inputs and
outputs as shown. Although the real system involves coredide communication
among subsystems, Fig. 4 is a legitimate abstraction sirst®ws only the exter-
nally observable interfaces. TheoiLos specification reflects this black-box view
of the control system.

More details of the control system and it tos specification appear in [52].
730 lines of LoTosare required to specify a typical accelerator, about hatiese
dealing with data types. Many of the data types simply rendraenatural num-
bers (e.g. dose units, angles, positions). Although intimathese parameters are
floating point numbers with various scales and ranges, timiplgied approach is
acceptable. It just means that the offset and units for thasameters are calcu-
lated differently from normal.

Although the specification contains a clock process, thiseipgencrements
a time count. It would be necessary to use &fbs (Enhanced bTos[24]) if
a more precise notion of time were required. However,d&a&s tool support is
still rather incomplete. The current approach therefosgeith only an abstract
notion of time.

The main process initially allows setup of the accelerasyameters. Setting
the gantry or the couch position causes movement commarsissued; other
accelerator parameters are merely stored prior to treatribe console display
is updated after every input to reflect the current accedestitus. The operator
may initiate treatment once a valid set of parameters has éxatered.

The accelerator setting is then sent to the acceleratoraidtion begins. A
monitoring process periodically reads the acceleratbustae. the two dosimeter

20 Kenneth J. Turner

readings. Normally, treatment continues until the présatidose has been deliv-
ered. However an incorrect dose, dose rate, or time limitfaite treatment to
be aborted. The operator is permitted to pause and resuatm#et, perhaps be-
cause the patient is restless. Any abnormal condition ssieim é&nterlock stops the
treatment immediately.

4.3 Test Annotations

Key specification events were annotated with PCL value caimés as follows:

mode :valueyXRayMode,ElectronMode) (* treatment mode *)
energy rrange(6,20) (* beam energy *)
dose rrange(5,100) (* dose units *)
rate :range(1,50) (* dose rate *)
gantry :range(0,359) (* gantry angle *)
x1 : valueg0,0,39) (* collimator X1 position *)
x2 : valueg1,40,40) (* collimator X2 position *)
y1 :valueg0,0,39) (* collimator Y1 position *)
y2 :valueg1,40,40) (* collimator Y2 position *)
accessory valuegAccessoryln,AccessoryOut) (* accessory setting *)
rotation :range(0,359) (* couch rotation *)
latitude :range(0,50) (* couch latitude position *)
longitude :range(0,150) (* couch longitude position *)
vertical :range(60,170) (* couch vertical position *)
accelerator valueq (* dosimeter readings *)
MakeStatusfalueq2,1,2)valueg2,1,2)), (* first readings *)
MakeStatusfalueq0,25,28)yalueq10,26,35)), (* second readings *)
MakeStatusfalueg0,1,3)yvalueg10,50,70))) (* third readings *)

Most of the input values are simple ranges or typical vallibe.MakeStatus
operation records a pair of dosimeter readings. As disdias&?2.2, theaccelera-
tor constraint defines three such pairs, used on each of threessive treatments.
The dosimeter values are chosen to match the dose valuésiadlt introducing
some variations in readings. The values cause treatmetdgpgma the final value
of each triple. In the third treatment, it is supposed thaffitst dosimeter is incor-
rectly reporting low values; readings from the second desimcause treatment
to end.

The value constraints above are combined using the ordeoimgtraints given
as an example in section 2.2.3. The complete set of conttigitranslated into
LoTosas outlined in section 2.3, adding about 180 lines to thectsgscification.

4.4 Accelerator Test Generation

The TestGen tool was run to generate test cases based on thanPGtations.
The automaton initially generated has 41097 states and46@agsitions. After
minimisation with respect to observational equivalenbe, automaton has 520
states and 546 transitions.

Test Generation for Radiotherapy Accelerators 21

Exhaustive coverage of all paths through the automatonrgm®e256 test
cases, of which the following is a sample. For brevity, otépio the operator
display have been omitted below. In this test, the operatiitinily sets the ac-
celerator into electron mode and chooses to use an acce$serpperator then
starts off three treatment cycles. At the beginning of edehpperator sets accel-
erator parameters and starts treatment. The control sytetemtakes over, moni-
toring dosimeter readings until treatment is finished. Ad fhoint, aPassverdict
is recorded. As permitted by the optioradiernate constraint, this particular test
does not set the gantry, rotation, latitude, longitude aartical parameters.

The reader should be able to match the test case below toltieec@nstraints
in section 4.3 and the ordering constraints in section 2.2.3

(* start of test case *)

Console IMode !ElectronMode (* operator sets electron nfgde
Console !Accessory !Accessoryln (* operator chooses acrgs)
Console !Energy 6 (* operator sets energy 6 MeV *)
Console 'Dose !5 (* operator sets dose 5 cGy *)
Console IRate '1 (* operator sets dose rate 1 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 xeed *)
Console !Collimatorx2 1 (* operator sets collimator 2 xeed *)
Console !CollimatorY1 !0 (* operator sets collimator 1 yeed *)
Console !CollimatorY2 11 (* operator sets collimator 2 yeed *)
Console !Start (* operator starts treatment *)
Accelerator !Set MakeSetting(...) (* control system agisaaccelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator |Read !MakeStatus(2,2) (* control system sadokimeters *)
Accelerator !Read !MakeStatus(1,1) (* and second pair bfesa*)
Accelerator 'Read !MakeStatus(2,2) (* and third pair ofues *)
Accelerator !Finish (* accelerator reports treatment end *
Console !Finished (* operator told of treatment end *)
Console |IEnergy 113 (* operator sets energy 13 MeV *)
Console 'Dose 152 (* operator sets dose 52 cGy *)
Console 'Rate 125 (* operator sets dose rate 25 cGy/min *)
Console !CollimatorX1 !0 (* operator sets collimator 1 xeed *)
Console ICollimatorx2 40 (* operator sets collimator 2 gecd *)
Console !CollimatorY1 !0 (* operator sets collimator 1 yeed *)
Console !CollimatorY2 140 (* operator sets collimator 2 gecd *)
Console !Start (* operator starts treatment *)
Accelerator !Set MakeSetting(...) (* control system agisaaccelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator |Read !MakeStatus(0,10) (* control systentdsedosimeters *)
Accelerator |Read !MakeStatus(25,26) (* and second parabfes *)
Accelerator 'Read !MakeStatus(28,35) (* and third pair alires *)
Accelerator !Finish (* accelerator reports treatment end *

Console !Finished (* operator told of treatment end *)

22 Kenneth J. Turner

Console !Energy 120 (* operator sets energy 20 MeV *)
Console !Dose 100 (* operator sets dose 100 cGy *)
Console 'Rate 50 (* operator sets dose rate 50 cGy/min *)
Console !CollimatorX1 39 (* operator sets collimator 1 geed *)
Console ICollimatorx2 40 (* operator sets collimator 2 gecd *)
Console ICollimatorY1 !39 (* operator sets collimator 1 gecd *)
Console ICollimatorY?2 40 (* operator sets collimator 2 gecd *)
Console !Start (* operator starts treatment *)
Accelerator !Set MakeSetting(...) (* control system agisaaccelerator *)
Accelerator !Start (* control system starts treatment *)
Accelerator |Read !MakeStatus(0,10) (* control systentdsedosimeters *)
Accelerator |Read !MakeStatus(1,50) (* and second paiabfes *)
Accelerator 'Read !MakeStatus(3,70) (* and third pair dfres *)
Accelerator !Finish (* accelerator reports treatment end *
Console !Finished (* operator told of treatment end *)

(* end of test case Pass*)

At present, test cases like these have to be entered andtesdenanually on
the accelerator. In future it is intended to convert tesesasto prescription files.
Prescriptions (i.e. pre-planned treatments) are nornagysed by an oncologist
using a separate treatment planning system. When the patigves for treat-
ment, the prescription is automatically loaded into theetarator. By handling
test cases like prescriptions, it will be possible to exetiém automatically. The
accelerator logs all actions, so its response to a test clideevanalysed offline
by comparing the log and the test cases. The goal, of cosrse discover situa-
tions in which the accelerator does not behave as the sgmficequires. This is
particularly critical after an upgrade of the acceleratdtvgare.

5 Conclusion

System specification with @Tos has been briefly introduced. To have any prac-
tical hope of generating tests, the specification must betated with guidance
as to useful test inputs. Although PCL has been designedlpowith accelera-
tor testing, it is generic and should be useful for testingtimer domains. PCL
annotations define key test inputs — explicit values (sayafoenumerated type)
or boundary values (for a numeric range). Unconstrainedtevare also marked.
PCL annotations are further used to constrain how inputsiaered. The result-
ing constraint processes are automatically generated laddin parallel with
the main behaviour, allowing a manageable automaton to hergted.

The theory of input-output conformance is used to check drean imple-
mentation agrees with its specification. A suspension aatomis generated from
the LTS of the constrained specification. The suspensiamsatbn is traversed to
generate test cases that form a test suite. A transitiomn@yrvisit each edge at
least once (for infinite behaviour) or may cover each pathfiiite behaviour).

Radiotherapy accelerators have been briefly describedseThee complex,
software-controlled systems whose correct operationta for successful and

Test Generation for Radiotherapy Accelerators 23

safe treatment of cancer. It is therefore very desirablegbtheir control systems
systematically. A typical accelerator model has been wedi PCL annotations
have been given, along with an example of what the generasédases look like.
Test cases must currently be executed manually, thouglategyr for automatic
execution is being investigated.

The case study has demonstrated the following:

— that it is practicable to specify the key behaviour of raliérapy accelerators
using LoTtos

— that it is necessary to constrain the values in such speuifitsain order to
make test generation practicable

— that PCL is adequate for constraining data-dominated Spatddns so that
tests can be generated from them

— that the principles behinidconfcan be used to generate tests for radiotherapy
accelerators.

Some important questions arise from the approach:

— Is the specification a faithful reflection of what an acceaterahould do? In
the main, the specification has been based on information tomain ex-
perts (the radiation physicists who oversee their oparatibhis is significant
in that such experts see an accelerator as a black box. Ithtawe been use-
ful to gain insight into the detailed design of an accelaréiat attempts to
involve an accelerator manufacturer have so far provided lanited infor-
mation. The specification is believed to be a plausible motiah accelerator.
However, more detailed experience with testing may showawgsfwhere the
specificatioris incorrect, not thémplementation

— Are the test annotations appropriate? It may be that boyneiue testing
should be supplemented with other techniques that selgicatvalues, e.g.
determined by white-box knowledge of the implementation.

— Are the generated tests practicable? The current size ofeiesuite (256
cases) is manageable, though small variations in the tesitations can re-
sult in test suites from 16 to several thousand test caseall &ombers of
test cases (say, less than 20) can be manually executedBatder numbers
of cases, an automated approach that simulates patiemfriptemns will be
essential.

— Are the generated tests useful? This is a much harder goéstamswer at this
stage. Of necessity, test coverage is a tiny fraction ofiplessystem behaviour
due to the extensive use of data to control the acceleragaoBcentrating on
boundary value testing that is known to be useful in genafalare develop-
ing, it is hoped that the tests will be able to uncover prolsem

— Can the tests discover known faults? Since the Therac-28oad of accelera-
tor problems has been built up. There have been incidentsunfately rare and
generally minor — since the original Therac-25 problemswNluat test suites
can be generated and executed, it is intended to make asdisaildy of what
known faults can be found. Failure to discover such faultdatarise from an
error in the specification, an inappropriate choice foratel of abstraction, or
a limitation of the strategy for generating selected tesesa

24 Kenneth J. Turner

All these issues are being actively studied in ongoing work.

More theoretical techniques would also be an interestihgréudevelopment.
For example, the constrained specifications produced bggheoach lend them-
selves to model checking. Desirable specification propeiticlude disallowing
high-energy beams in electron mode, and forbidding cedatelerator setups.
Such properties could be used to check the integrity of tieeifipation. It is con-
ceivable that a hybrid solution could be devised, explgitimodel checking results
for both the specification and the implementation. Test geite based on sym-
bolic values is also a promising line of enquiry.

Although this research is ongoing, the paper has hopefillgnginsight into
the practicability and importance of the approach for testadiotherapy acceler-
ators.

Acknowledgements This work was supported by the National Computing Centren@ha
esterwww.ncc.co.uk The author is indebted to Dr. Hamish Porter (Western Gertéos-
pital, Edinburgh) for his extensive advice on acceleragsigh and operation. However
any errors and misconceptions in the paper are due to therah Qian Bing collabo-
rated on all of the work reported here. Dr. Ji He implementextnof the test generation
tool. The author thanks Dr. Jan Tretmans (University of Migan) for his insights into test
generation.

References

1. G. Blair, L. Blair, H. Bowman, and A. Chetwyndrormal Specification of Distributed
Multimedia SystemdJCL Press, London, UK, 1998.

2. T. Bolognesi and E. Brinksma. Introduction to the ISO #peation language bTos
Computer Networksl4(1):25-59, Jan. 1988.

3. E. Brinksma. A theory for the derivation of tests. In S. Aggal and K. K. Sabnani,
editors,Proc. Protocol Specification, Testing and Verification MINbrth-Holland, Am-
sterdam, Netherlands, June 1988.

4. M. Calder and C. E. Shankland. A symbolic semantics arichblation for full LoTos.

In M. Kim, B. Chin, S. Kang, and D. Lee, editorBroc. Formal Techniques for Net-
worked and Distributed Systems (FORTE Xlpages 184—200. Kluwer Academic
Publishers, London, UK, Sept. 2001.

5. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. duli Specification and
verification of the PowerScale bus arbitration protocol:iAdustrial experiment with
LoTos Technical Report 2958, INRIA, 78153 Le Chesnay Cedex, ¢&afug. 1996.

6. R. G. Clark. The development of concurremissystems from bTosspecifications.
In R. J. Mitchell and D. Simpson, edito’sDA into the 90’spages 115-129. Woodhead
Publishing Ltd, 1991.

7. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A sglightest generation tool.
In Proc. Tools and Algorithms for the Construction and Anaysfi Systems (TACAS)
number 2280 in Lecture Notes in Computer Science. Sprikgdeg, Berlin, Germany,
2002.

8. R. De Nicola and M. C. B. Hennessy. Testing equivalencepracessesTheory of
Computer Sciencgages 83-133, 1984.

9. H. Eertink and D. Wolz. Symbolic execution oblros specifications. In M. Diaz
and R. Groz, editorRroc. Formal Description Techniques Wages 295-310. North-
Holland, Amsterdam, Netherlands, Oct. 1992.

Test Generation for Radiotherapy Accelerators 25

10. H. Ehrig and B. MahrFundamentals of Algebraic Specificationvblume 6 ofEATCS
Monographs on Theoretical Computer Scienc8pringer-Verlag, Berlin, Germany,
1985.

11. M. Faci, L. M. S. Logrippo, and B. Stepien. Structural misdor specifying telephone
systems Computer Network29(4):501-528, Mar. 1997.

12. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. MateesciMaunier, and M. Sighire-
anu. CADP (GESARALDEBARAN Development Package): A protocol validation and
verification toolbox. In R. Alur and T. A. Henzinger, editpRroc. 8th. Conference
on Computer-Aided Verificatiomumber 1102 in Lecture Notes in Computer Science,
pages 437-440. Springer-Verlag, Berlin, Germany, Aug6199

13. J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. Usirtherily verification techniques
for the generation of test suites. In R. Alur and T. A. Heneingditors,Computer
Aided Verification’96volume 1102 of_ecture Notes in Computer Scienpages 348—
359. Springer-Verlag, Berlin, Germany, 1996.

14. M.-C. Gaudel and P. R. James. Testing algebraic data gk processes: A unifying
theory. Formal Aspects of Computing0(5):436—451, 1999.

15. J. P. Gibson. A bTosbased approach to neural network specification. Technical
Report CSM-112, Department of Computing Science and Madlties) University of
Stirling, UK, May 1993.

16. D. Greene and P. C. Williams&.inear Accelerators for Radiation TherapyOP Pub-
lishing Ltd., Bristol and Philadelphia, 1997.

17. R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architéure validation for
processors. IRroc. 22nd. Annual International Symposium on Computehiéecture
1995.

18. C. A. R. Hoare. Communicating Sequential ProcesseBrentice-Hall, Englewood
Cliffs, New Jersey, USA, 1985.

19. IEEE. VHSIC Hardware Design LanguageEEE 1076. Institution of Electrical and
Electronic Engineers Press, New York, USA, 1993.

20. IEEE. IEEE Standard Hardware Design Language based on the Veklagiware
Description Language IEEE 1364. Institution of Electrical and Electronic Enegans
Press, New York, USA, 1995.

21. ISO/IEC. Information Processing Systems — Open Systems InterciiomecLOTOS
— A Formal Description Technique based on the Temporal GOndeof Observational
Behaviour ISO/IEC 8807. International Organization for Standaation, Geneva,
Switzerland, 1989.

22. ISO/IEC.Information Processing Systems — Open Systems Interd@mmecConfor-
mance Testing Methodology and Framewol8O/IEC 9646. International Organiza-
tion for Standardization, Geneva, Switzerland, 1991.

23. ISO/IEC. Information Technology — Framework: Formal Methods in Qonfance
Testing ISO/IEC 13245-1. International Organization for Stawlileation, Geneva,
Switzerland, 1997.

24. ISO/IEC Information Processing Systems — Open Systems InterdimmedEnhanced
LOTOS — A Formal Description Technique based on the Tem@nagring of Obser-
vational Behaviour ISO/IEC 15437. International Organization for Standzaition,
Geneva, Switzerland, 2001.

25. ITU. Information Processing Systems — Open Systems InterdimmedConformance
Testing Methodology and FrameworkTU X.290. International Telecommunications
Union, Geneva, Switzerland, 1996.

26. J.Jacky. Specifying a safety-critical control systard.iln J. C. P. Woodcock and P. G.
Larsen, editorsFormal Methods Europe '93: (Industrial-Strength) FormakeMods

26

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Kenneth J. Turner

volume 670 ofLecture Notes in Computer Scien&pringer-Verlag, Berlin, Germany,
1993.

J. Jacky and M. Patrick. Modelling, checking and impletimg a control program for
a radiation therapy machine. Rroc. AASDec. 1996.

J. Jacky and J. Unger. Formal development of A graphied interface for a radiation
therapy machine. In J. P. Bowen and M. G. Hinchey, editersc. 9th. International
Conference of Z Usersolume 967 ofLecture Notes in Computer Scien&pringer-
Verlag, Berlin, Germany, Sept. 1995.

J. Jacky, J. Unger, M. Patrick, D. Reid, and R. Risler. eignce with Z developing
a control program for a radiation therapy machine. In J. Rvé8q editor,Proc. 10th.
International Conference of Z Userkecture Notes in Computer Science. Springer-
Verlag, Berlin, Germany, Dec. 1996.

C. Jard and T. Jéron. TGV: Theory, principles and algors. Software Tools for
Technology Transfe2004. In this special issue.

JiHe and K. J. Turner. Protocol-inspired hardwarerigstn G. Csopaki, S. Dibuz, and
K. Tarnay, editorsProc. Testing Communicating Systems K#ges 131-147, London,
UK, Sept. 1999. Kluwer Academic Publishers.

Ji He and K. J. Turner. Specification and verification efcéyonous hardware using
Lotos In J. Wu, S. T. Chanson, and Q. Gao, edit®s)c. Formal Methods for
Protocol Engineering and Distributed Systems (FORTE >8WN XIX) pages 295—
312, London, UK, Oct. 1999. Kluwer Academic Publishers.

Ji He and K. J. Turner. Verifying and testing asynchra@naiucuits using loTos In
T. Bolognesi and D. Latella, editorBroc. Formal Methods for Distributed System De-
velopment (FORTE XIII/PSTV XX)ages 267—-283, London, UK, Oct. 2000. Kluwer
Academic Publishers.

E. J. Joyce. Accelerator linked to fifth radiation oveseldAmerican Medical Newd,
Feb. 1987.

C. J. Karzmark. Procedural and operator error aspectal@tion accidents in radio-
therapy. International Journal of Radiation Oncology Biological Y&ics 13:1599—
1602, Jan. 1987.

G. Leduc. A framework based on implementation relatfonsmplementing loTOS
specificationsComputer Networks and ISDN Syste5(1):23-41, Aug. 1992.

N. Leveson and C. S. Turner. An investigation of the Tt@% accidents. |IEEE
Computey 26(7):18-41, July 1993.

N. G. Leveson, editor.Safeware: System Safety and Computefsidison-Wesley,
Reading, Massachusetts, USA, 1995.

A. McClenaghan. Experience of usingtoswithin the CIM-OSA project. In K. R.
Parker and G. A. Rose, editorsprmal Description Techniques J\pages 109-116,
Amsterdam, Feb. 1992. North-Holland.

A. J. R. G. Milner. Communication and ConcurrencyAddison-Wesley, Reading,
Massachusetts, USA, 1989.

A. M. D. Moreira and R. G. Clark. Complex objects: Aggrega Technical Report
CSM-123, Department of Computing Science and Mathematiciwersity of Stirling,
UK, May 1994.

D. Moundanos, A. Abraham, and VY. V. Hoskote. Abstractemhniques for validation
coverage analysis and test generatidEEE Transactions on Computerd7:2—14,
1998.

R. D. Nicola. External equivalences for transition egsd. Acta Informatica 24:211—
237, 1987.

D. H. Pitt and D. Freestone. The derivation of conforneatests from loTos specifi-
cations.|[EEE Transactions on Software Engineerii$(12):1337-1343, Dec. 1990.

Test Generation for Radiotherapy Accelerators 27

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

C. M. P. Reade. Process algebra in the specification phgrsstandards. Technical
Report CSTR-92-1, Department of Computer Science, Bruméldusity, Middlesex,
UK, Sept. 1992.

J. M. T. Romijn, O. Sies, and J. R. Moonen. A two-level apph to automated con-
formance testing of VHDL designslesting of Communicating Syster8:432—-447,
1997.

M. H. Thomas. The story of the Therac-25 inatos High Integrity Systems Journal
1(1):3-15, Feb. 1994,

J. Tretmans. Conformance testing with labelled traorsisystems: Implementation
relations and test generatioBomputer Networks29:25-59, 1996.

J. Tretmans. Test generation with inputs, outputs apetiteve quiescenceSoftware
Concepts and Tool47:103—-120, 1996.

K. J. Turner, editorUsing Formal Description Techniques — An Introduction te ES
TELLE, LOTOS and SDLWWiley, New York, Jan. 1993.

K. J. Turner. Representing new voice services and teatufes. In D. Amyot and
L. Logrippo, editorsProc. 7th. Feature Interactions in Telecommunications Soft-
ware Systemgpages 123-140. 10S Press, Amsterdam, Netherlands, J0Be 20

K. J. Turner and Q. Bing). Protocol techniques for testiadiotherapy accelerators.
In D. A. Peled and M. Y. Vardi, editor$2roc. Formal Techniques for Networked and
Distributed Systems (FORTE XWiumber 2529 in Lecture Notes in Computer Science,
pages 81-96. Springer-Verlag, Berlin, Germany, Nov. 2002.

K. J. Turner, A. McClenaghan, and C. Chan. Specificati@hanimation of reactive
systems. In V. Atalay, U. Halici, Kinan, N. Yalabik, and A. Yazici, editor®roc.
International Symposium on Computer and Information $ystX| pages 355-364,
Ankara, Turkey, Nov. 1996. Middle-East Technical Univarsi

F. Vemuri and R. Kalyanaraman. Generation of desigrieation tests from behav-
ioral VHDL programs using path enumeration and constraingamming. |[EEE
Transactions on Very Large Scale Integration Syste#01-214, 1995.

C. A. Vissers, G. Scollo, and M. van Sinderen. Architeetand specification style in
formal descriptions of distributed syster$heoretical Computer Sciend@9:179-206,
1991.

I. Widya, F. Sadoun, and G.-J. van der Heijden. Spedificaif a distributed coor-
dination function in loTos In K. R. Parker and G. A. Rose, editoRroc. Formal
Description Techniques |\pages 133-148. North-Holland, Amsterdam, Netherlands,
Nov. 1991.

K. Yasumoto, A. Kitajima, T. Higashino, and K. Tanigucklardware synthesis from
protocol specifications in@Tos In S. Budkowski, E. Najm, and A. Cavalli, editors,
Proc. Formal Description Techniques Xl/Protocol Spectfima Testing and Verifica-
tion XVIII. Chapman-Hall, London, UK, 1998.

