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Abstract

ObjectivesThe aims of this work were: to define an abstract notation for interactive de-
cision trees; to formally analyse exploration errors in such trees through automated trans-
lation to LOTOS (Language Of Temporal Ordering Specification); to generatetree imple-
mentations through automated translation for an existing tree viewer, and to demonstrate
the approach on healthcare examples created by the CGT (Clinical Guidance Tree) project.

Approach An abstract and machine-readable notation was developed for describing
Clinical Guidance Trees: ADIT (Abstract Decision/Interactive Trees). A methodology has
been designed for creating trees using ADIT. In particular, tree structure is separated from
tree content. Tree structure and flow are designed and evaluated before committing to de-
tailed content of the tree. Software tools have been createdto translate ADIT tree descrip-
tions into LOTOSand into CGT Viewer format. These representations support formal anal-
ysis and interactive exploration of decision trees. Through automated conversion of existing
CGT trees, realistic healthcare applications have been used to validate the approach.

Results All key objectives of the work have been achieved. An abstract notation has
been created for decision trees, and is supported by automated translation and analysis.
Although healthcare applications have been the main focus to date, the approach is generic
and of value in almost any domain where decision trees are useful.

Key words:
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(Language Of Temporal Ordering Specification)

1 Introduction

1.1 The Role of Clinical Guidance Trees

Decision trees are often used for decision making, including widespread use for
decision support in healthcare. This paper discusses an extended kind of decision
tree that is oriented towards interactive use by non-specialists.

A Clinical Guidance Tree (CGT) is an enhanced form of decision tree for use in
clinical practice. Compared to conventional medical decision trees, Clinical Guid-
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ance Trees focus on use by non-specialists, and provide support for interactive ex-
ploration. Although these trees may be less common in medical decision-making,
various authors have argued that they have a useful role (e.g. [21,25]).

A Clinical Guidance Tree has conventional decision, chanceand terminal nodes,
and also uses probabilities and utilities (valuations of outcomes). However, such a
tree differs in a number of respects from the conventional kinds of trees used in
medical decision making. From hereon, the terms CGT and medical tree will be
used for brevity to mean these kinds of trees.

CGTs are particularly designed to support health decisionsby lay users. However,
the approach is generic and is not restricted to healthcare.For example, it can read-
ily support decision making in business, finance and risk assessment. However, the
main applications so far have been in healthcare applications.

The work reported in this paper was inspired by the CGT project [1,2]. This created
an enhanced form of decision tree that is particularly suitable for interactive explo-
ration by patients. The project developed a textual notation for defining guidance
trees. This is supported by a viewer program that allows the user to interactively ex-
plore treatment options and to evaluate the likely outcomesof these. The approach
is oriented towards patients, who need a user-friendly guide to treatment choices.
However, it also has value to medical professionals, who canview the evidence for
different choices and the implications of these. The following discussion is a broad
overview and does not imply sharp distinctions between the types of tree:

Users: Medical trees are usually designed for use by clinicians to help them eval-
uate a range of treatments or interventions. They often takeaccount of patient
views and values in assessing various outcomes. However, the primary user is
expected to be a medical professional.

A CGT is mostly oriented towards by use by non-specialists (e.g. patients)
to help them choose treatments and lifestyle changes. The advantage of a CGT
is that the user can explore choices at leisure, and can also evaluate options that
might otherwise not be considered. It is even possible that patients might be more
honest with themselves when exploring options in private.

A CGT is also useful to those with medical training but not specialist expertise
(e.g. nurses or even General Practitioners). It can be used as a training aid for
those wishing to update their knowledge of available treatments.

These considerations mean that a CGT and its supporting software need to be
designed in an accessible manner that non-specialists can benefit from.

Interactivity: Medical trees are normally designed to allow a set of treatment de-
cisions to be evaluated. Based on information supplied by the specialist, alter-
native strategies can be evaluated. This may lead to a singlerecommendation,
though sensitivity analysis is usually performed to determine whether a range of
recommendations should be considered.

In contrast, a CGT is focused more on exploration and explanation than on
evaluation and decision. As a result, CGTs are designed for interactive explo-
ration. The user can follow various paths through the tree, including backtracking
to earlier points and following other branches – perhaps many times.
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Explanation: Medical trees are usually designed for use by specialists who wish
to evaluate a range of options. As a result, explanation is mainly limited to stating
how certain recommendations are arrived at and what the alternatives are.

Because CGTs emphasise use by non-specialists, they contain much more in-
formation. This provides explanations such a layman’s description of some treat-
ment or research evidence justifying a choice. This information may be dynamic
as it depends on information gathered so far.

CGTs are also usually designed to offer explanations for more knowledgeable
users. This kind of explanation typically describes current medical knowledge
and refers to the literature to back up the statements made.

Information Gathering: Medical trees usually incorporate information just once
(e.g. probability or utility values). Some medical trees allow data to be collected
as the tree is evaluated (e.g. a variable has not yet been given a value).

Because a CGT is intended for interactive exploration, information is gath-
ered as the tree is explored. Since backtracking is explicitly allowed, informa-
tion given earlier may be changed during exploration. Some information may be
given once (e.g. a patient’s height or weight). However, some information may be
more malleable (e.g. whether a patient is willing to exercise more, stop smoking,
or choose a particular treatment). A CGT allows the user to explore the con-
sequences of such information. For example, someone with hypertension may
initially be unwilling to make lifestyle changes. On seeingthe consequences of
this, they may go back to earlier choices and see the benefits of making changes.

As well as allowing this kind of information to be changed, a CGT user is able
to set or change the utility values associated with different outcomes. Again, the
exploratory nature of a CGT encourages users to evaluate different utilities (e.g.
they may modify their initial assessment of life with a chronic condition).

Design: Considerable experience has been gained in designing medical trees, in-
cluding advice on structuring and analysis. The same methodology can be used
to design the similar aspects of CGTs. However, there is no methodology for
designing the aspects of CGTs that make them distinctive (notably interactivity).

Analysis: The most important analysis performed on medical trees is sensitivity
analysis. This reflects their primary role in evaluating decision alternatives. Other
analyses include looking for balance in trees, i.e. that possible outcomes have a
similar share of both risks and benefits [8]. Since a CGT is an extended form
of decision tree, it would be pointless to re-invent these techniques for CGTs.
However, the interactive and exploratory nature of CGTs raises the need for new
kinds of analysis. The way that a CGT is explored and the way that it gathers
information can lead to new kinds of flaws that do not arise in medical trees.

Visibility: Medical trees usually have a fixed structure. CGTs also have afixed
structure, but the need for interactivity makes it desirable to allow sub-trees to be
hidden if circumstances dictate. For example, if a patient does not have diabetes
then the treatment options presented during exploration may need to change. The
result is that users see trees that are tailored to their particular circumstances.

Combination: Suppose a tree has number of outcomes that may be combined in
arbitrary ways. For example, the Benign Prostatic Hyperplasia study mentioned
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in this paper allows for the combination of two outcomes: improvement in symp-
toms and side effects of medication. A conventional medicaltree would have in-
dividual nodes that reflect these combinations (four in thisexample). Since some
clinical trees combine many such factors, this can become cumbersome.

In the case of a CGT, the combination brings extra complications. Each out-
come is associated with an explanation for the lay user, and often with medical
evidence for the specialist. This information would then berepeated in various
combinations for all the nodes. To avoid this, a CGT supportscomposition of
individual nodes. These virtual nodes automatically acquire the explanation and
reasoning defined for each case.

This paper refers to the structure of a tree: the tree nodes, how they are combined,
and what their parameters are (e.g. probability of a chance branch, utility of a ter-
minal node). A conventional medical tree is not likely to need much more than this
level of description. For a concrete example of tree structure, see the tree diagram
in figure 4 and its ADIT representation in figure 5 in section 3.4.1.

It will be evident from the above that CGTs typically carry much more information
than medical trees. This supplementary information is referred to as the content of
a tree. When defining CGTs, it is common for tree structure to be just a few percent
in size of the tree content. For a concrete example of tree content, see the ADIT

representation in figure 6 in section 3.4.2.

1.2 Abstraction and Formal Analysis of Clinical Guidance Trees

The results of the CGT project provided the baseline for the work reported in this
paper. Although this project achieved useful capabilitiesand flexibility, the author
found that a number of fundamental improvements were neededto strengthen the
results of the CGT project:

• The CGT project notation for describing trees is almost a flattext file. The struc-
ture is indicated only by keywords and layout. This is not in keeping with mod-
ern methods of representing structured information (such as XML). It would be
highly desirable to have some common representation of decision trees.

• The CGT project notation also mixes tree structure and content. In particular,
tree nodes often have substantial additional information associated with them,
making it difficult to understand and review the overall structure. Since the trees
can become very complex, designing structure independently from content leads
to a beneficial separation of concerns.

• No rigorous methodology existed previously for creating CGTs. Rather, they
have been created through collaboration between medical and computing profes-
sionals. Trees have been validated only through manual debugging (i.e. manual
exploration of trees).

• When CGTs are used in healthcare, it is important that their design can be relied
on – a patient or a professional may make important choices based on the guid-
ance they receive from the tree. Formal (mathematical) methods support rigorous
analysis, and so are appropriate for maximising confidence in tree design.

• As will be seen, the CGT project developed enhanced facilities for decision trees.
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Although these offer much greater flexibility and interactivity, the price is that
tree behaviour can become very complex. Indeed the behaviour is often infinite,
with the possibility of loops and unusual transitions between tree branches. It is
therefore hard to establish full confidence in a tree design purely through manual
debugging. Again, an automated and formally-based analysis is highly desirable.

CGTs are an extension of conventional decision trees. As a result, conventional
analyses (e.g. sensitivity analysis) can also be applied tothem. The work reported
in this paper has therefore concentrated on the particular challenges of verifying
CGTs. This requires new kinds of analysis that reflect the flexibility in exploration
and information gathering that CGTs support.

To meet the challenges listed above, the author has developed various solutions:

• A methodology has been created for designing CGTs in a way that clearly sep-
arates tree structure and content. The methodology also includes rigorous tech-
niques for analysing the design of a CGT. This uses a formal (mathematical)
method to establish tree integrity. Both static (definition) and dynamic (explo-
ration) aspects of a CGT are verified.

• An abstract and formal notation has been defined for CGTs. ADIT 1 (Abstract
Decision/Interactive Trees) supports automatic translation among a number of
concrete formats for decision trees.

• A toolset has been created to automate many aspects of designing CGTs: defini-
tion, translation, verification and exploration.

1.3 Related Work

1.3.1 Decision Support in Healthcare

Decision trees (e.g. [13]) are used for decision making in many applications. An
online primer on decision trees can be found athttp://www.projectsphinx.com/
decision_trees. More particularly, decision trees have been found valuable in med-
ical and clinical practice (e.g. [5]). An online presentation of decision making
in clinical research can be found athttp://symptomresearch.nih.gov/chapter_14.
Healthcare applications of decision trees include their use in clinical practice, nurs-
ing and patient care. The journalMedical Decision Makinghas published many
articles on the use of decision trees in healthcare. Markov models have been widely
adopted as the basis of medical decision trees [23].

Decision Support Systems (DSS) are common in healthcare. Among the many tech-
niques developed are ASBRU [22], EON [17], PRODIGY [12], and PROforma[12].
However, these systems are almost invariably designed for use by clinicians.

Healthcare policies are increasingly stressing the importance of involving patients
in treatment decisions (e.g. [7]). Decision aids for directuse by patients are there-
fore becoming more common. A perspective on the spectrum of decision support
in healthcare appears in [20]. In terms of this classification, a Clinical Guidance
Tree is a consumer (patient) oriented tool. The concept of a guidance tree was first

1 An ‘adit’ is a horizontal entrance to a mine.
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explored in [10,11], and subsequently developed and trialled in [1,2,21,25]. The
present paper focuses on the special characteristics of CGTs, dealing with their
design, representation and analysis.

Decision trees are well supported by commercial and open-source tools. As an ex-
tended form of decision tree, a CGT requires additional tools such as an interactive
viewer and a behaviour verifier.

A common graphical convention for decision trees [14] uses squares for decision
nodes, circles for chance nodes, and rectangles (with utilities) for terminal nodes.
The diagrams in this paper use this notation, but with the addition of a diamond
symbol for questions. However, these are just diagramming conventions. Arden
syntax has been used to define condition-action rules for clinical procedures. GLIF
(Guideline Interchange Format [18]) is designed for interchangeable descriptions
of clinical guidelines. A comparison of such formats is given in [19].

However, the author is unaware of any standard for machine-readable descriptions
of decision trees. This paper proposes a neutral notation for decision trees, includ-
ing the characteristics required for CGTs. The notation canreadily be translated
into other notations (textual, structured, graphical, formal).

Well-known techniques and tools exist for analysing conventional decision trees.
For example, sensitivity analysis is used to investigate how strategies change as key
variables change [9]. Automated techniques can be used to analyse decision trees
for design flaws [28]. These same techniques can be applied toCGTs since they are
an extended form of decision tree. However, CGTs have distinctive characteristics
(notably interactive exploration) that require new forms of analysis – a key goal of
the work reported in this paper.

1.3.2 Formal Methods In General

The term ‘formal method’ is used in medical science of any systematic approach.
For example, the use of a decision tree is considered to be a formal method. Monte
Carlo simulation is used for statistical analysis of decision trees [6]. Markov models
are also commonly used for analysing decision trees (e.g. [23]).

However, a formal method (as used this paper) has a much more specific mean-
ing in computer science. There it refers to a mathematically-based technique for
modelling, specification and analysis of computerised systems. This is a very large
field with many techniques and tools; seehttp://vl.fmnet.infofor a regularly up-
dated overview. Several formal methods have been standardised, notably LOTOS

(Language Of Temporal Ordering Specification [15]).

Perhaps surprisingly, formal methods in computer science have seen very limited
use for modelling and analysis of decision trees. The only example known to the au-
thor is the PROformaapproach to decision support [24]. An operational semantics
for PROforma is defined with respect to an abstract machine that executes clinical
decision procedures or guidelines.

The interactive nature of CGTs mean that they are prone to classes of error that
do not arise in conventional decision trees. As a result, a new approach is needed
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to analysing decision trees for such errors. This calls for aformal method that can
effectively describe and analyse the exploration of a tree of behaviours.

Formal methods support two broad categories of analysis: validation (testing) or
verification (proof). Validation is necessarily finite, andis usually incomplete; how-
ever, it is practical for complex specifications or those with infinite behaviour. Rig-
orous validation demonstrates that a specification behavescorrectly for a finite set
of test cases. Verification is technically much more challenging, and is usually in-
effective for complex or infinite behaviours (unless these lend themselves to some
form of symbolic verification).

Model checking is a popular verification technique. It establishes whether a spec-
ification respects certain desirable properties. Model checking investigates the dy-
namic behaviour of a system by considering its state space. Generic properties of
a specification can be checked, such as freedom from deadlock(further behaviour
is blocked) and livelock (an internal loop without externalcommunication). How-
ever, it is often necessary to check specific properties (such as whether a particular
tree node can be reached or whether a particular constraint holds). These properties
are expressed in a temporal or modal logic that allows the evolving or potential
behaviour of a system to be described.

1.3.3 The LOTOSFormal Method

LOTOS is a internationally standardised language for formal specification and rig-
orous analysis. Although conceived for use with communications systems, LOTOS

has been used in many other areas. As an example from the medical field, it has
been used for modelling and testing of radiotherapy accelerators [26]. LOTOS is
classed as an algebraic specification language: abstract data types are specified by
equations defining their operations, and behaviour is specified by interacting pro-
cesses whose behaviour follows algebraic rules. Unlike a number of formalisms,
LOTOS fully supports the integrated specification of data and behaviour.

LOTOS was chosen to model CGTs partly because of its flexibility, partly because
its capabilities are a good match to the characteristics of CGTs, and partly because
of the good tool support for analysis. The main issue with LOTOS for CGTs is that
its data type library is rather rudimentary. However, it is extensible – the data types
needed for decision trees were added in the course of this work.

For space reasons, an introduction to LOTOS is not provided here. Instead, the LO-
TOS specification extracts are extensively commented. An overview of LOTOS is
given in [3]. Online tutorials can also be found athttp://www.inrialpes.fr/vasy/
pub/cadpand athttp://www.cs.stir.ac.uk/well.

LOLA (LOTOS Laboratory) is the tool that was used to validate CGT descriptions.
LOLA includes various commands to generate the state space subject to various
constraints: limiting the exploration depth, recognisingrevisited states, or combin-
ing the behaviour with a test process.

CADP (Construction and Analysis of Distributed Processes,http://www.inrialpes.
fr/vasy/cadp) is the toolset that was used to verify CGT descriptions. Desirable
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properties of trees can be written in XTL (Extended TemporalLogic [16]) and then
model checked by CADP. Efficient verification with CADP normally requires key
data types to be implemented in C. A conversion tool was also written to generate
the additional annotations that CADP needs for CGT data types.

1.4 Overview of The Paper

Section 2 illustrates a Viewer program for interactive exploration of CGTs. The
new methodology for developing CGTs is also described. Section 3 explains the
limitations of the CGT notation for decision trees. This motivated the definition of
the new ADIT notation. Section 4 explains how decision trees in ADIT notation are
translated into the LOTOS formal language. The complexity of certain tree features
emerges during this discussion. Section 5 discusses how LOTOS specifications of
CGTs can be analysed. It is explains the kinds of errors foundin the trees developed
by the CGT project. Section 6 summarises the results and points to future work.

2 Using Clinical Guidance Trees

2.1 The CGT Viewer

Support for Clinical Guidance Trees was developed by a project on ‘The Develop-
ment and Evaluation of A Computerised Clinical Guidance Tree for Benign Pro-
static Hyperplasia and Hypertension’ [1,2]. The capabilities of the CGT system are
described here as background to the new work in this paper. The primary tool de-
veloped by the CGT project was a decision tree viewer. The main focus of CGT
was a range of medical conditions: benign prostatic hyperplasia (swelling of the
prostate), hypertension (high blood pressure), influenza,and menorrhagia (exces-
sive bleeding during periods). However, the approach is completely general and
could be used for decision trees in any other field.

The CGT Viewer is a graphical application that takes the userthrough several
stages, illustrated here when exploring BPH (Benign Prostatic Hyperplasia):

(1) The user is first given background information on what a particular decision
tree covers, e.g. the nature of some medical condition.

(2) The user is then allowed to explore the tree graphically,e.g. to investigate
treatment options and their consequences. In figure 1, the user has navigated to
the point where a particular medication is described (Finasteride). As shown at
the bottom right of this figure, the user can explore various outcomes by click-
ing on treatment choices. General navigation is shown at thebottom left of this
figure, where the user can move to an alternative branch or canbacktrack. Pro-
fessionals can opt to see research evidence that describes each intervention.

(3) The user is then asked to associate utilities with the outcomes of the decision
tree. If necessary, the user can later backtrack to this stage and adjust these
utilities in the light of changed priorities.

(4) The user’s weighting of outcomes then determines the best path through the
tree, i.e. which treatment choice best suits the user. As shown in figure 2,
phytotherapy (herbal medicine) has the best score. The usercan ask for an
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Fig. 1. The Option of Finasteride Treatment for Benign Prostatic Hyperplasia

explanation of each choice.

The CGT Viewer reads decision trees in a textual notation, with keywords and
layout used to structure the text. Besides explanation, exploration, analysis and
recommendation, the CGT Viewer has other useful functions such as summarising
an exploratory session and recording the user’s choices forstatistical analysis.

2.2 Methodology for CGT Design

Figure 3 summarises the new methodology for defining CGTs using ADIT (Ab-
stract Decision/Interactive Trees). An initial concept isrefined manually into the
basis of a decision tree. This stage focuses on structure andflow in the tree. A
formal specification of the tree is automatically generatedand evaluated using the
techniques described in section 5.2. This may identify problems in the design, lead-
ing to a revised tree and re-evaluation. Now the detailed content can be added to the
tree. Again, this can be automatically formalised and evaluated. The abstract tree
design is then automatically converted into an executable representation for use
with a tree viewer (currently the CGT Viewer). The implementation can be used
many times to generate advice and recommendations.

A two-stage design (structure then content) is not enforced, nor is use of formal
analysis. However, both of these are useful and desirable – especially when a com-
plex or critical decision tree is being designed.

Trees can be defined directly in the ADIT notation. However, a separate decision
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Fig. 2. Best Path through The Decision Tree for Benign Prostatic Hyperplasia

tree editor (developed by Ross MacKenzie, University of Stirling) allows trees to
be defined using a graphical interface. This editor reads andcreates the XML form
of ADIT. Work is also under way to link the ADIT toolset to open-source tree edit-
ing software (TreeForm,http://sourceforge.net/projects/ treeform) and commercial
decision tree software (TreeAge,http://www.treeage.com).

3 Defining Clinical Guidance Trees

3.1 CGT Notation

The CGT Viewer is an effective and user-friendly tool. However, defining deci-
sion trees using its notation is an intricate and error-prone task. The CGT project
notation suffers from a number of problems:

• A tree is defined by an almost flat text file. Realistic trees require very long files
(some thousands of lines of text) and are therefore hard to grasp.

• Node descriptions often have large amounts of explanatory text (several pages).
As a result, it is very hard to see the tree structure because the notation does
not clearly separate structure and content. The notation does not readily allow
structure to be developed first, and then populated with content.

• The commonest and most serious errors in CGT design are structural, e.g. uncon-
nected nodes or linking the wrong nodes. As will be seen later, the CGT notation
allows complex flows that bypass nodes, unusual transitionsbetween branches,
and conditional inclusion of portions of a tree. Unfortunately, this flexibility risks
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making errors in the tree flow.
• In general, there is no tool support for designing correct CGT trees. The designer

must do this manually, and rely on extensive debugging to findproblems.

3.2 Defining Tree Structure with ADIT

The design of ADIT was heavily influenced by the CGT project. However, the new
approach deals with the difficulties noted above, is more abstract, and supports
formal analysis. In ADIT, the tree structure is completely separate: it need define
only the tree nodes and their relationships. Content is normally defined through
reference to separate node attributes. However, it is stillpossible to include literal
attributes with a node, typically for simple values such as aprobability or a payoff.

ADIT has various syntaxes that can be interconverted. The simplest one is applica-
tive (function-like). This is compact, easily read and easily parsed by machine. In
this syntax, a tree is defined by nested nodes in the formnode(parameters,children).
The applicative syntax is used in this paper because it is themost compact. How-
ever, for easy interchange with other programs, ADIT also has an XML syntax
where nodes correspond to elements and parameters correspond to attributes. A
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Directive Meaning

// text an explanatory comment about the tree that is
removed in the translated output

chance(id,label,attributes,node1,..) a probabilistic (‘system’) choice of child nodes

comment(text) an explanatory comment about the tree that is
transcribed to the translated output

decision(id,label,attributes,node1,..) a deterministic (user) choice of child nodes

question(id,label,attributes,node1,..) a request for user input prior to child nodes

terminal (id,label,attributes) a leaf node

tree(id,label,attributes,node) the whole tree with a single root node

value(name,value) a textual, numeric or code definition

Table 1
Summary of ADIT Directives

third syntax is that used by the CGT Viewer program. All threeformats are auto-
matically translated into each other, so the choice is up to the designer. The various
syntaxes are also automatically converted into other forms, such as the LOTOS rep-
resentation used for formal specification and analysis.

The top-level directives for defining tree structure are listed in table 1. As in other
forms of decision trees, there arechance, decisionandterminal nodes. To allow
for capture of user input during tree exploration, there is also a question node.
The whole structure is defined by atree whose structure is defined by the nested
node definitions. Each node has an identifier, a short label and attributes. All nodes
except terminals may have child nodes; a tree has a single child node as the root. A
valuedefinition is used to associate content with a node.

Question nodes allow greater interactivity with the user. At selected points, the
user can be prompted to provide input (e.g. about symptoms orlifestyle). This
information can be used to influence the later behaviour of the tree. In essence,
the user is asked a question whose answer is stored in a tree variable. However,
question nodes add considerable complexity (and were foundto be rather loosely
specified by the CGT project).

Interactive navigation allows the user to backtrack to a question that was answered
previously. At this point the user can retain the previous answer or can change it.
The user is allowed to skip a question (or a series of questions). This is permitted
because the user may be undecided, or may be unwilling to makea commitment
at this point in the exploration. The answers to such questions remain undefined or
are given default values, depending on the design of the tree. Skipping questions
can cause surprising transitions between nodes, going fromone branch of a tree
directly to another. Question nodes may also be rendered visible or invisible as the
tree is traversed, again resulting in potentially surprising or incorrect behaviour.
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Section 4.2.5 discusses the complexities of question nodesin more detail.

The specification of a question includes a definition of the permitted answers. The
units for an answer (e.g. height in metres) are stated in a question and so are implicit
in an answer. An answer is validated by checking that it fallswithin the permitted
set of values (an enumerated set or numerical range).

3.3 Defining Tree Content with ADIT

The content of a tree is normally defined by separatevalue attributes. Indeed the
ADIT design philosophy encourages the designer to focus initially on just the tree
structure and flow. At this stage, the attributes are largelyunimportant and can
mostly omitted. Only once the tree structure has been definedand validated is it
necessary to elaborate the content.

Tree content is defined by means of the node attributes listedin table 2. A number
of attributes are common, while some apply only to particular kinds of nodes. At-
tributes can be defined literally or by reference. Since ADIT is based on work by the
original CGT project, [2] can be consulted for more detail onhow these attributes
are used. The more specialised ones are discussed briefly below.

ADIT encourages short definitions of nodes so that it is easier to understand the
tree structure (as defined at the end of section 1.1). A literal definition is usually
given only if it is simple (such as a probability value or a variable name). A literal
attribute has a form such asprobability=′′0.3′′. Usually only those aspects necessary
to define the tree structure are defined along with a node. Thisis the information that
is normally associated with a conventional decision tree: the node type, identifier,
and (if relevant) probability and utility value.

Extended attributes are preferably defined separately fromtheir associated nodes.
Suppose that extensive explanation is needed of a particular treatment choice (e.g.
of the research evidence that underlies it). Rather than enlarge the node definition
by several pages of text, the explanation should be defined ina separate attribute
and referenced in the node. The corresponding value definition is named after the
node and the attribute. For example, a node (e.g. identifierWatchfulWaiting) may
refer to a separate attribute (e.g.reason). The attribute reference and definition are
linked through a name in the formnode_attribute.

ADIT also includes features such as expressions, text markup, question nodes, con-
ditional visibility and node composition.

Nodes typically have substantial textual content defined inseparate attributes. All
nodes have implicitdisplayattributes for explanations to the user. Several other
attributes such asqueryandreasonare also defined as text. Although not illustrated
here, HTML markup can be used in text. In addition, text can contain macros. These
are conventional macros (possibly with parameters) that expand to pieces of text.
They are useful for things like common explanations or shared calculations.

Sub-trees are visible by default, but may be rendered invisible during exploration
if certain conditions are met. For example, the BPH decisiontree computes an
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composed expression for using composed node headings !
conjunction text to join composed nodes !
dictionary name of a glossary file !
display text for user display (assumed by default) ! ! ! !
error text for reporting a validation error !
format format for user input !
label long label for a node ! ! ! !
macros global macros !
neutral payoff between positive/negative outcomes !
payoff expression for a payoff (i.e. utility value) !
perform user instruction text ! ! ! !
print expression for summarising a node ! ! ! !
probability expression for probability of a choice ! ! ! !
query text for question to user !
reason text for explaining a choice ! ! ! !
scale expression for scaling composed node payoff! ! ! !
valid expression to validate a question answer !
variable question variable !
variables tree variables !
version tree notation version !
visible expression to check node visibility ! ! ! !

Table 2
Summary of ADIT Attributes
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TURP

Outcome

Sexual

Introduction

Problems
0.08

Recovery
#

Phytotherapy
payoffPhytotherapy

payoffSexProblems

100

Fig. 4. Decision Tree for Benign Prostatic Hyperplasia

AUA (American Urological Association) symptom score basedon what the user
reports. Watchful waiting is appropriate only if the symptom score is less than 20;
a higher value requires active intervention. The visibility of the WatchfulWaiting
node (and its children) is therefore defined by avisibleattribute. During a particular
exploration, a sub-tree may be deemed irrelevant and shouldtherefore be hidden.
Nonetheless, even an invisible node may have an effect on others. For example, it
may affect their relative probability or utility values.

Many decision trees lead to terminal nodes that are not disjoint. This can lead to
considerable duplication in the tree – particularly of the explanatory information
that would be identical in all cases. It would be tedious and error-prone if the tree
designer had to define all such cases explicitly, since therewould be substantial
overlap in their descriptions. Instead, a virtual node may be composed from others
by combining their short labels with ‘&’, e.g. ‘Urinary Symptoms Better & Finas-
teride Side Effects’.

Some of the attributes in table 2 deal with composed nodes. Thecomposedattribute
indicates that the labels of the composing nodes should be used as a heading in the
composed node. Theconjunctionattribute defines text to join that of the composing
nodes. Thescaleattribute is used for scaling payoffs where a composing nodeis not
visible in the tree. Theneutralattribute defines the boundary between advantageous
and disadvantageous payoff values, for use in calculating the payoff of composed
nodes. As explained in [2], the neutral point is used to classify composed nodes
automatically as desirable or undesirable from the user’s point of view.

3.4 A Decision Tree Example

3.4.1 Tree Structure

To illustrate the ADIT notation, an extract has been taken from the full tree for Be-
nign Prostatic Hyperplasia (BPH). The extract serves only to explain the notation,
and is not particularly meaningful in isolation. Figure 4 shows the tree structure,
while figure 5 shows this in ADIT form.

The tree explores the consequences of choosing certain BPH treatments. Nodes in
a tree have an identifier such asBPH and a short label such as ‘Benign Prostatic
Hyperplasia’. The top-level tree element has avariablesattribute that defines tree
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tree(BPH, Benign Prostatic Hyperplasia, variables,
decision(Introduction, BPH Introduction, ,

decision(TURP, Transurethral Resection, reason,
question(Sexual, Sexually Active?,
query format=′′Edit(1)′′ variable=′′sexual′′ valid),

chance(Outcome, Surgery Outcome, ,
terminal (Problems, Sexual Problems,

probability=′′0.08′′ payoff=′′payoffSexProblems′′ visible),
terminal (Recovery, Full Recovery,
probability=′′#′′ payoff=′′100′′ reason))),

terminal (Phytotherapy, Phytotherapy Treatment,
payoff=′′payoffPhytotherapy′′ reason)))

Fig. 5. Decision Tree Structure for Benign Prostatic Hyperplasia

variables. This is followed byIntroductionas the root node. Two main branches
can then be followed the user:

TURP: This decision node allows the user to investigate Transurethral Resection
of the Prostate (TURP) as a surgical option. Areasonattribute gives research
evidence for this option. The user can now decide between answering a question
about sexual activity and the outcome of TURP:
Sexual: This question node asks whether the user is sexually active.Thequery

attribute refers to a separately defined question. Theformat attribute defines
the answer as anEdit (i.e. free-form) response of one character. Thevariable
attribute defines which variable (sexual) will receive the answer. Thevalid
attribute refers to a separately defined a check on the answer.

Outcome:This chance node leads to different terminal nodes, each with associ-
ated probability and payoff:
Problems: This terminal node corresponds to sexual problems after surgery.

The visible attribute ofProblemsrefers to a separately defined check on
the visibility of this node. If the user is sexually active, the node is visible
during tree exploration. If not, the node is invisible (i.e.only theRecovery
node is visible).

Recovery:This terminal node corresponds to full recovery after surgery. The
probability attribute uses ‘#’ to mean the residual probability. This will be
0.92 if Problemsis visible, or 1.00 if not.

Phytotherapy:This terminal node allows the user to consider phytotherapy(treat-
ment with herb or plant extracts).

This example is a little artificial for illustrative purposes. Since theSexualquestion
is in the context of a decision, the user can choose to ignore it. For this reason, a
default answer must be defined (by initialisingsexualto 1). TheSexualquestion
requires a free-form answer and therefore must be validated. In practice the tree
designer would use the formatRadio(no,yes), which is more obvious to the user
and requires no validation. If the user is not sexually active, Outcomedoes not
involve a chance alternative. The full BPH tree has many morebranches at this and
other points.
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value(BPH_ Display, Benign Prostatic Hyperplasia is ...)
value(BPH_Variables, payoffPhytotherapy = 80; payoffSexProblems = 20; sexual = 1)
value(Introduction_ Display, In most cases the best treatment is...)
value(Outcome_ Display, Surgery may lead to a variety of outcomes...)
value(Phytotherapy_ Display, The use of plants and herbs (phytotherapy) ...)
value(Phytotherapy_ Reason, This treatment is suitable only for...)
value(Problems_ Display, This surgery can lead to sexual problems ...)
value(Problems_Visible, sexual)
value(Recovery_ Display, Full recovery is possible after this surgery ...)
value(Recovery_ Reason, 29 RCTs and the UK prostatectomy audit ...)
value(Sexual_ Display, If you are sexually active then ...)
value(Sexual_ Query, Are you sexually active? (0 = no, 1 = yes))
value(Sexual_Valid, sexual == 0 or sexual == 1)
value(TURP_ Display, Transurethral Resection of the Prostate is...)
value(TURP_ Reason, 30 reports informed this advice ...)

Fig. 6. Decision Tree Content for Benign Prostatic Hyperplasia

3.4.2 Tree Content

The detailed tree content is shown separately in figure 6. Of necessity, the informa-
tion here is highly abbreviated as it occupies four pages. However, this highlights
the point that is helpful to separate content from structure. The tree content is linked
to the tree structure by combining node and attribute names.For example, value
TURP_ Reasoncorresponds to nodeTURPand attributereason. The definition of
TURP_ Reasonin figure 6 is automatically used in theTURPnode of figure 5.

The implicitdisplayattributes correspond toDisplayvalues. The top-level tree def-
inition has special attributes such asBPH_Variableshere to declare and optionally
initialise tree variables.

The attributesvalid andvisible define boolean expressions. The approach of the
CGT project to expressions has been respected: these are patterned after the C
programming language and its derivatives. In fact, it wouldbe better to call these
statements rather than expressions: they are statement sequences that yield a value.
For example, an assignment to a variable is an expression that yields the new value.
If there is a sequence of statements or a conditional statement, the last calculated
expression defines the overall result.

Problems_Visiblesimply returns the value of thesexualvariable.Sexual_Validre-
turns true ifsexualis 0 or 1. However, in general such expressions can be complex
and have side-effects.

In the trees developed by the CGT project, expressions with side-effects (variable
assignments) are frequently used. Although this is convenient from the tree de-
signer’s point of view, it makes the semantics of the tree much more complex. In the
author’s opinion, purely functional expressions would have been preferable. Side-
effects could have been achieved through separate assignments. However, ADIT

respects the original CGT work for backwards compatibility.

17



Application ADIT CGT LOTOS

Lines Attrs. Lines Nodes Lines Processes

Benign Prostatic Hyperplasia 3592 492 3258 96 2001 116

Influenza 583 49 577 16 369 17

Hypertension 6510 331 6205 75 3285 124

Menorrhagia 1034 191 926 53 1010 55

Table 3
Representations of Healthcare Applications

3.5 Applications of ADIT

Although ADIT addresses the problems of the CGT notation discussed in sec-
tion 3.1, its value lies in being able to convert tree descriptions into other notations.
A suite of tools has been created to automate the following tasks:

• For use with the CGT Viewer (section 2.1), ADIT descriptions can be converted
to/from the notation used by this tool. This allows users to benefit from existing
work on developing trees for a variety of conditions.

• For easier interchange with other tools, ADIT can be converted to/from XML
(based on work by Richard Bland, University of Stirling). This also allows use
of the decision tree editor mentioned in figure 3.

• To support formal analysis of decision trees, ADIT can be converted into LOTOS

as discussed in the next section.

ADIT also lends itself to translation into graphical languages such as GraphML [4],
which is supported by a range of graphical editors.

The ADIT conversion tools consists of around 3600 lines of code, written in the Perl
scripting language and the M4 macro language. These are not,perhaps, obvious
choices for implementing a translator. However, the syntaxof ADIT is very simple
and does not merit the use of normal compiler tools. The author also has had good
experience of developing several translators with Perl andM4.

To give some idea of the decision trees that have been developed, table 3 presents
statistics on various healthcare applications. This showsthe number of text lines in
each representation, plus the number of separately defined attributes (ADIT), tree
nodes (CGT) or processes (LOTOS). The table gives some idea of the scale of these
examples: the larger trees are non-trivial. The table also gives some idea of how the
different tree representations compare in size and number of constructs.

These healthcare applications were created by the originalCGT project. The CGT
team members were mostly medical professionals, with computer scientists being
responsible for defining the CGT notation and CGT Viewer. Theprocedure for
development of these applications was as follows:

(1) The medical professionals identified various conditions where an interactive
decision aid would be valuable. The concept for each application was then
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elaborated. This included a preliminary structure for the tree, coupled with an
outline of the explanations and research evidence required.

(2) The computer scientists then coded the trees. As noted insection 1.2, there
were several methodological weaknesses in this process: lack of a rigorous
design methodology, tree structure and content were not clearly separated, and
lack of formal semantics for tree definitions. Many iterations were needed,
with the computer scientists discovering gaps in the tree definition and the
medical professionals filling this.

(3) The CGT team now manually debugged the trees. This identified technical
errors (such as missing nodes or incorrect tree transitions) and explanation
errors (such as incomplete advice). Again, many iterationswere needed.

(4) Following ethical approval, the trees were now tried by volunteer patients.
This stage was mainly focused on evaluating the capabilities of the approach.

(5) Finally, selected trees were used in real trials with patients: the hypertension
guidance tree [25], and the menorrhagia guidance tree [21].The author is not
aware of any RCTs so far using the BPH tree.

Prior to deployment, roughly two man-years of effort had gone into thorough de-
velopment of the trees by medical and computing professionals. The trees had also
been informally evaluated by patients. All significant flawsshould therefore have
been eliminated prior to the work reported here. Section 5 describes the kinds of
formal analysis that the trees were later subjected to, and what emerged from this
investigation.

4 Formalising Decision Trees

4.1 Specification Approach

4.1.1 Level of Abstraction

ADIT descriptions of decision trees are automatically translated into LOTOS for
analysis. The translation of a decision tree is an abstraction of what the user sees
when exploring it. Certain aspects are intentionally excluded because the focus is
on analysing the structure and flow of the tree. Explanatory text is not included in
the specification. This is considered to be content and is best developed manually.

An important aspect covered by the formalisation is user exploration of the tree.
In particular, the user is allowed to backtrack in the tree aswell as move forwards
when making choices. As will be seen when node checks and question nodes are
discussed, it is easy to make mistakes in these aspects of thetree flow. Tree naviga-
tion is therefore supported in the formal specifications.

Numerical aspects such as probabilities and payoffs are notcurrently handled in
the specification. These will be incorporated in future using a probabilistic variant
of LOTOS. The current emphasis of ADIT is thus on the functional behaviour of the
tree, i.e. on defining the tree flow and on detecting possible errors in this.
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4.1.2 Tree Variables

A number of specialised data types were defined in LOTOSfor the ADIT library. All
tree variables are floating point numbers – a type that the standard LOTOS library
does not support. A rather complex specification was developed for real numbers
in the form<sign,whole,fraction>.

Typical trees have many variables (hundreds in some cases).Although each variable
could be a separate process parameter in LOTOS, this would be extremely unwieldy.
Instead, variable values are stored in amap as a single value. This is the usual
concept of a map from variable names to values.

Since LOTOS does not have global variables, the variablemap is passed into and
out of every process to reflect changing variable values. Some special variables are
used for internal purposes:backing(whether the user chose to backtrack),satisfied
(whether a question was answered correctly),skipping(whether the user chose to
skip all questions of a series),valid (whether a question answer is valid), andvisible
(whether a node is visible).

4.1.3 Tree Expressions

A number of attributes (e.g. for validity or visibility checks) define expressions.
As discussed in section 3.4.2, expressions can have side-effects. Furthermore, ex-
pressions often use conditional or sequential forms. As a result, a tree expression
cannot simply be translated as a LOTOS value expression (which is always purely
functional). Instead, a tree expression is translated intoa LOTOSprocess that takes
a variable map and produces a variable map. Such processes behave almost like
functions, but can have side-effects, conditions and sequences.

Since probabilities and payoffs are currently abstracted away, any variables deal-
ing with these are eliminated during translation into LOTOS. For the same reason,
expressions involving these variables are also removed. The trees produced by the
CGT project often used checks with a value offalse, i.e. some questions may never
be answered correctly or some sub-trees may never be traversed. It was found that
the CGT project needed these only during early stages and intended them to be-
come dormant. The LOTOS formalisation handles this by eliminating unreachable
portions of a tree during translation.

The translation of a typical validity check (Sexual_Validin figure 6) is shown in
figure 7. The effect of this process is to set the validity of the answer to theSexual
question. Variable values are retrieved from a map viagetand stored withset. In this
case, the value of variablesexualis retrieved and checked to be 0 or 1. The resulting
boolean value is stored in the map as the last result calculated. The outcome of a
check is a new map; this is accepted and stored in a variable named after the node
(Sexual). A similar translation strategy is followed for visibility checks. If there are
side-effects or complicated expressions, validity and visibility checks have fairly
complex translations to LOTOS.

LOTOS processes resemble procedures or methods in a programming language.
Process parameters may be given in parentheses (e.g.mapfor tree variables). Pro-
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ProcessSexualValid (map:Map) :Exit (map) : (* validatesexual*)
Exit (set(get(sexual,map) == 0 or get(sexual,map) == 1, map)) (*exit with validity *)

>> Acceptmap:MapIn (* get new map *)
Exit (setValid(Sexual,map)) (* set validity forSexual*)

EndProc (* end SexualValid*)
Fig. 7. Validation Process forSexual

ProcessRecovery [user] (map:Map) :Exit (Map) : (* terminal Recovery*)
user !Recovery; (* enterRecovery*)
(

Exit ({}) (* exit leaf node *)
(* or *)

user !Back; (* go back *)
Outcome [user] (map) (* to parent *)

)
EndProc (* end Recovery*)

Fig. 8. Terminal Node Process forRecovery

cesses may exit with optional values (e.g. the resultingmap). A LOTOS process
communicates via ‘gates’ (like ports) that are given in brackets. Process outputs
have the formgate !value, while process inputs from have the formgate ?vari-
able:type. Comments in LOTOSappear in ‘(* ... *)’.

4.2 Node Specifications

4.2.1 Nodes in General

Each tree node is translated to a LOTOSprocess. The automatically generated spec-
ification is neatly laid out and fully commented – the examples in this paper are
literal extracts from the translator output. This ensures that the specification can be
readily related to the original ADIT description. The tree example in figures 5 and
6 is translated to 430 lines of LOTOSand 10 processes.

4.2.2 Terminal Nodes

The translation of a typical terminal node (Recoveryfrom figure 5) is shown in fig-
ure 8. All nodes start by advising the user they have been entered using an event
of the form ‘user !node’. As it is a leaf node, a terminal can exit the entire speci-
fication with an empty map (‘{}’) as the map is no longer significant at this point.
However, the user may backtrack to the node’s parent (Outcome) by issuing aBack
command. Backtracking may cause behaviour to become infinite, making formal
analysis more difficult. For this reason, backtracking can be omitted from the spec-
ification through a translator option.

4.2.3 Decision Nodes

After entry, a decision node simply allows a deterministic (i.e. user) choice of its
child nodes using the LOTOS ‘ ’ (‘or’) operator.
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Fig. 9. A Decision Tree with Questions

4.2.4 Chance Nodes

After entry, a chance node allows non-deterministic exploration of its child nodes
(i.e. the user cannot influence the selection). In LOTOS, non-deterministic alterna-
tives are selected by an internal eventI . This is anonymous, i.e. the exact nature
of this event is not stated. As a translator option, this may be made explicit (using
a hidden event gate for each of the choices). Internal eventsin LOTOS represent
actions within a system that are not explicitly identified orcontrolled. Typically
they are used in LOTOS to affect choices. The LOTOSuse of ‘internal event’ should
not be confused with, say, internal event triggers in guideline models like GLEE
(Guideline Execution Engine [18]). Equally, the LOTOSuse of ‘choice’ for alterna-
tives does not mean a ‘decision’ in a decision tree sense.

Every node may have an associated visibility condition. Section 4.1.3 explains that
such checks are translated as separate processes. Because these may contain inter-
nal events (caused byExit ), they may not be used in the context of a LOTOSchoice
since an internal event determines which branch is taken. Instead, visibility checks
for children of a chance node must be performed at the start ofa chance node so
that all alternatives are possible. The results of these checks are used in calls of the
visibleoperation.

4.2.5 Question Nodes

While exploring a tree, the user can move forwards (making choices) and back-
wards (reversing choices). The user can choose to skip a question (or a series
of them). If a question is revisited, the user can preserve the previous answer or
change it. The formalisation faithfully respects these aspects because they are a
likely source of errors in the tree design.

A correctly designed tree will allow the user to explore it interactively, to backtrack,
and to change answers to questions. An incorrectly designedtree may fail to take
account of this, leading to incorrect outcomes. This is particularly a problem if
questions are interdependent. CGTs therefore require thorough analysis to check
that these kinds of problems do not arise.

Exit from a question node essentially progresses to the nextavailable node. Con-
sider the sample tree in figure 9 with decision nodes (D), question nodes (Q) and
terminal nodes (T). Skipping Q3 moves to Q4, while skipping Q4 moves to T5.
When at any question node, choosing to skip all questions also moves to T5.

If the user chooses to navigate back from Q4, what now happensdepends on the
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ProcessSexual [user] (map:Map) :Exit (map) : (* questionSexual*)
SexualAux [user] (map) (* ask question *)

>> Acceptmap:MapIn (* get new map *)
(

[backing(map)] > (* going back? *)
TURP [user] (unback(map)) (* toTURP, not going back *)

(* or *)
[not(backing(map))] > (* not going back? *)

Let map:Map = unskip(map)In (* stop skipping questions *)
Outcome [user] (map) (* to Outcome*)

)
Where (* local definitions *)

ProcessSexualAux [user] (map:Map) :Exit (Map) : (* auxiliary process *)
...

EndProc (* end SexualAux*)
EndProc (* end Sexual*)

Fig. 10. Question Node Process forSexual

prior answers. If Q2 was previously skipped, it will be askedagain. Choosing to
skip Q2 again will cause Q3 to be considered (and ignored if previously answered).
If Q2 was previously answered correctly, the user will be asked whether the prior
answer should be preserved or changed.

In fact the situation is even more complex. For example, Q2 may be conditionally
visible. Suppose Q2 is initially visible so the user is prompted to answer it. How-
ever, the answer to Q2 or Q3 may change this visibility. If theuser chooses to go
back, it may be found that Q2 has effectively disappeared; the next node will be
T5. As a concrete example, suppose Q2 initially asks whetherthe user is willing to
answer questions about sexual behaviour. If the user declines, then Q2 can be made
invisible to future exploration. This would be an unusual but permissible design for
a tree; the semantics must therefore give it a precise interpretation.

It is therefore not surprising that the translation into LOTOS of question nodes is
complex. In fact, the documents describing the CGT work [1,2] were found to be
rather loose (and even incorrect) in their description of question nodes.

The translation of a typical question node (Sexualfrom figure 5) is shown in fig-
ure 10. The real work of a question is performed by an auxiliary process that yields
the question answer. SinceSexualAuxrequires a page of specification, it is omit-
ted here. If the user decides to backtrack, the question moves to its parent node.
Otherwise, the question moves to the next node. The user can choose to skip the
current question and others that follow it in a series. When aseries of questions
ends, skipping is cancelled.

5 Analysing Decision Trees

5.1 Analysing LOTOSSpecifications

Developing the strategy for translating ADIT into LOTOSwas a valuable exercise in
its own right. The resulting semantics give a precise notionof what CGTs mean. In
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a number of cases discussed with the CGT team, the meaning of various constructs
was unclear or undefined – and sometimes surprising even to the CGT team. One
example is what should happen if a node is hidden. The problemis that checking its
visibility may have side-effects. These may change how the rest of the tree behaves,
even if the node is invisible. Similarly, validity checks and other calculations may
have unexpected and unintended consequences.

As noted in section 1.3.1, CGTs have distinctive characteristics (e.g. interactive
exploration) that require new forms of analysis. The aim of the formal analysis de-
scribed here is to find flaws that are particular to CGTs. More conventional analyses
are used to discover other kinds of flaws in CGTs and are not discussed here.

Having generated a LOTOS specification for a tree, any kind of formal analysis
can be used. In the present context, the goal is to discover the new kinds of flaws
that may arise in CGT design. ADIT automates this analysis as far as possible.
In fact, the ideal is that the designer just works with the description of a tree –
formal analysis would ideally be fully automated. The author has developed several
techniques to ease validation and verification, though these still require effort to
define appropriate validation tests and verification properties.

MUSTARD (Multiple-Use Scenario Testing and Refusal Description [27]) is de-
signed for automatically validating specifications. Testsare expressed in a neutral
language that is independent of the application domain, thespecification language,
and the validation tool. For example, MUSTARD has been used to validate specifi-
cations of voice services, web/grid services and radiotherapy devices. MUSTARD

support includes LOTOSand its various toolsets.

PCL (Parameter Constraint Language [26]) deals with the problem that specifica-
tions often use variables with infinite sets of values (e.g. asimple number, as in
decision trees). This may make formal analysis impracticable or impossible. How-
ever, as in conventional software testing, it is usually necessary to check only criti-
cal values. Suppose an input must lie in a numerical range. Values just outside the
range, just inside it, and in the middle should be tested. PCLallows a LOTOSspec-
ification to be annotated to indicate the key values to check.PCL annotations are
automatically translated into LOTOSand used to constrain the analysis.

5.2 Analysing Clinical Guidance Trees

The kinds of errors that can be made in a CGT fall into the following categories:

Syntactic errors mean the tree is badly formed. For example, a terminal node may
have children or a question node may not define the answer format.

Static semantic errors mean the tree description is well formed but can be found
to be incorrect without traversing it. For example, an expression may use an
uninitialised variable or a variable may be undeclared.

Path errors mean that exploring the tree leads to problems. For example,a ques-
tion may be asked indefinitely or a node may be unreachable.

Numeric errors mean that calculations are incorrect. For example, probabilities
do not sum to 1 or payoffs are wrongly determined.
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Explanation errors mean that explanations given to the user are wrong, incom-
plete or misleading. For example, a medical condition mightbe incorrectly ex-
plained or the consequences of a treatment might be incompletely described.

Because of the level of abstraction chosen for formalising decision trees, numeric
errors and explanation errors are currently not covered in the analysis (though de-
tection of numeric errors will be undertaken in future). These aspects fall within
the definition of tree content, which is not the current focusin analysing CGTs.
The other kinds of error are concerned with the tree structure and flow, and so are
checked. Since CGTs allow interactive exploration, the principal focus is on path
errors. This requires the dynamic behaviour of the tree to beanalysed, i.e. the state
space of its specification to be checked. The analysis is performed automatically to
uncover the kinds of flaws that a user might meet during actualexploration.

The ADIT approach was used on the healthcare studies developed by theCGT
project. These have been briefly described in earlier sections. In particular, sec-
tion 3.5 describes how these applications were developed bythe CGT team, and
what quality assurance procedures were used. Note that these applications hadal-
readybeen thoroughly evaluated by medical and computing professionals, had been
informally evaluated by patients, and (in two cases) had been used in trials.

The analysis reported in this paper was therefore performedafter the fact. This was
therefore a severe test of the new work. If formal analysis could still find errors
in thoroughly evaluated trees, this would give confidence that it would prove even
more useful when developing new trees from scratch.

ADIT tree descriptions were automatically generated from four healthcare CGTs:
benign prostatic hyperplasia, influenza, hypertension andmenorrhagia. The ana-
lytic techniques described in section 5.1 were applied to these. The ADIT translators
detect syntactic and static semantic errors automatically. The checks for dynamic
flaws were focused on path errors, such as those arising from incorrect validity or
visibility checks. The following techniques were used to detect path errors.

State space exploration was used to assess general classes of error. Deadlocks can
occur if a node should be visible but is not; the effect is thatcertain leaf nodes
become unreachable. Although livelock is not strictly possible in CGTs, infinite
loops can arise if a validation condition is incorrect and causes a question to be
asked repeatedly. If the user is allowed to backtrack in the tree, its behaviour be-
comes infinite. Although backtracking can be omitted through a translation option,
it is normally enabled as it allows detection of certain validation or visibility errors.

Property checking was used to assess particular types of error. For example, if the
question about sexual activity is correctly answered then this question should not
be repeated. Conversely, an incorrect answer must lead to immediate repetition
of the question. If the user is sexually active, then the possibility of sexual prob-
lems following surgery must be a permitted option (and vice versa). Properties like
these were formulated using either specific LOTOStest processes or XTL (Extended
Temporal Logic [16]).
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Like other temporal logics, XTL is used to define properties that must hold for
all dynamic behaviours of a system (i.e. during interactiveexploration of a CGT).
Temporal properties fall into certain broad classes. Safety properties state what a
system must never do (e.g. if the user is not sexually active,then sexual problems
must not be presented as a possible problem). Liveness properties state what a
system must eventually do (e.g. if the user chooses to undergo TURP surgery, then
the outcomes of this must eventually be presented). Fairness properties ensure that
all permitted behaviours of a system do occur (e.g. exploring the TURP branch does
not lead to exclusion of the phytotherapy branch). In addition to generic properties
like these, application-specific properties were formulated (e.g. that the best payoff
for BPH results from choosing TURP).

The following categories of errors were found through formal analysis of the four
healthcare studies. The ADIT tree descriptions were obtained from the original
CGT trees through automatic translation, so these errors were also present in the
originals.

Structural errors A number of cases were found where a sub-tree could not be
explored because a question could never be answered correctly or the sub-tree
was always invisible. In terms of formal analysis, there were unreachable states.
These errors were corrected by eliminating sub-trees during translation (because
they were intentionally dormant) or by correcting their conditions. Structural
errors are detected either during translation (e.g. a question that is not followed
by anything) or when checking the static semantics of the translated specification
(e.g. nodes processes are technically inconsistent). The original CGT trees had
already been thoroughly checked, so complex semantic errors were not found in
the work reported here. But it is anticipated that in new developments it will be
valuable to have significant semantic errors detected automatically.

Initialisation errors Variables may be initialised in the wrong order. For example
probUnwellwas initialised to1 - probWell, but initialisation ofprobWellcame
later. Such errors result in failure during exploration dueto undefined variables.

Macro errors Macros may be used only in text values, yet in several cases they
were used in numeric calculations (e.g. of visibility). Such errors result in failure
during exploration due to invalid calculations.

Condition errors Validity and visibility conditions should yieldtrue or false. In
several cases, however, conditions were found to end with anassignment such as
probNoSideEffects = revisedRisk * (1 - probSideEffects). The problem here is a
subtle one. In most cases,probNoSideEffectswill be assigned a non-zero value
which counts astrue. However if it is assigned a zero value then the condition
will yield false, leading to an invalid or invisible result. This results in seemingly
random behaviour during exploration, depending on the exact values for certain
variables that are set dynamically.

Missing range checksAll free-form inputs should be checked for validity as they
are just numbers. In a number of cases, no range check was given. This allowed
meaningless values such as a negative value or 200 for an age.Such errors result
in the user being able to enter meaningless values and receiving erroneous advice
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based on these.
Incorrect range checks Some range checks were incorrect. For example, blood

pressure inputs should be checked for validity. In one case the intention was to
check that systolic blood pressure was in the range 100 to 220mm Hg inclu-
sive. However, the range check was for over 99 and less than 221. Such errors
mean the user can enter fractional values outside the intended range, conceivably
leading to incorrect advice being offered.

Besides these technical errors, explanation errors were also found as a by-product
of the formalisation. There were small editorial problems such as formatting errors
and small technical errors.

The trees had already been thoroughly evaluated by the CGT team, by patients in-
formally, and through RCTs. Nonetheless, the formal analysis reported here found
a number of problems. Some flaws would cause run-time exceptions in the CGT
Viewer. Unless the user is technically minded and checks theViewer log, these
errors would go unnoticed. Some flaws could cause erratic behaviour or result in
incorrect advice from the CGT Viewer. Particularly for trees of a critical nature,
flaws like these are important. Supplementing manual debugging with automated
analysis is thus beneficial.

It is believed that the work reported in this paper will be of value in future devel-
opment of CGTs. There is now a rigorous methodology for defining and verifying
CGTs. The separation of concerns into design of tree structure and tree content
supports manageable development of each aspect. The abstract tree notation allows
a single description to be used for multiple purposes: design, formal analysis, in-
terchange with other tools, and implementation. The new techniques are also com-
plementary to existing approaches for design of medical decision trees.

6 Conclusions

6.1 Evaluation

The work described in this paper has achieved a number of important goals:

Abstraction The aim was to define an abstract notation for CGTs that allowsstruc-
ture to be separated from content. ADIT allows content to be defined by means
of separate attributes that are referenced from the tree structure. This also allows
the tree structure to be defined and investigated in advance of defining the main
content. Once the key aspects of tree flow and exploration have been verified, the
designer can add content to fill out the tree.

Formalisation Another important objective was to formally specify and analyse
CGTs. The ADIT notation is automatically translated into LOTOS, opening up
many possibilities for validating and verifying tree behaviour. This allowed the
author to find a number of problems in the trees developed by the CGT project.

Implementation It was also important to use the same tree description to create
implementations as well as formalisations. The ADIT notation is automatically
translated into the format used by the CGT Viewer, allowing atree description
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to be evaluated by theoretical means and also explored by practical means.
Application Finally, the approach has been demonstrated to be useful on some

realistic trees. These trees provide advice to lay users on some important medical
conditions. Through automated conversion from healthcareexamples developed
by the CGT project, a range of sizable studies has been conducted.

In the development of an abstract and formal model of CGTs, a number of subtle
issues have been clarified. Indeed, ADIT now gives a denotational semantics for
these kinds of decision tree. A number of errors were also found in realistic medical
trees through formal analysis.

Although ADIT has largely been used with healthcare applications so far, it is cer-
tainly not restricted to these. For example, applications in data mining, finance and
risk assessment can readily be imagined. The notation is abstract, and therefore
independent of the application domain and the decision treetool.

For the benefit of the community, the ADIT tools, examples and CGT Viewer have
been made available athttp://www.cs.stir.ac.uk/~kjt/ research/adit.html.

6.2 Future Work

So far, ADIT has been used retrospectively on trees that were already developed and
thoroughly tested. However, the existence of a rigorous methodology can now be
exploited in new developments. For example, the development of CGTs for heart
disease is planned. Work is also under way to develop CGTs that advise athletes
on diet, exercise and training. Although it is believed thatADIT is generic, it is
possible that new application domains will suggest furtherenhancements.

Further work on aspects of verification (proof) would be desirable. So far, formal
analysis has mainly focused on testing and on model checking. An interesting av-
enue to explore would be symbolic verification, where properties are proven in
general rather than for specific values of variables. It is also intended to use a prob-
abilistic variant of LOTOS to support the analysis of probabilities and payoffs.

At present, ADIT supports translation only to the implementation format supported
by the CGT Viewer. Translation will be investigated to/fromthe proprietary formats
of commercial decision support tools (e.g. PRODIGY or PROforma in healthcare).
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